
μT-Kernel 3.0 Specification

December 2019

TRON Forum

www.tron.org

μT-Kernel 3.0 Specification i

μT-Kernel 3.0 Specification

μT-Kernel 3.0 Specification ii

Copyright © 2019 TRON Forum

μT-Kernel Specification Ver.3.00.00

Copyright © 2019 by TRON Forum

You should not transcribe the content, duplicate a part of this specification, etc. without the consent of TRON
Forum.

For improvement, etc., information in this specification is subject to change without notice.

For information about this specification, please contact the following:

TRON Forum Secretariat
In YRP Ubiquitous Networking Laboratory
SEIJITSU BLD -1, 2-12-3, Nishi -Gotanda Shinagawa ,
Tokyo Japan
141 -0031
TEL: +81 -(0) -3-5437-0572
FAX: +81 -(0) -3-5437-2399
E-mail: office@tron.org

μT-Kernel 3.0 Specification iii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

3.00.00 2019-12-11 Initial release. TRON Forum

μT-Kernel 3.0 Specification iv

Contents

API Notation 1

Index of μT-Kernel/OS APIs 3

Index of μT-Kernel/SM APIs 7

Index of μT-Kernel/DS APIs 10

1 Overview of μT-Kernel 3.0 12

1.1 TRON Project and μT-Kernel 3.0 . 13

1.2 Design Policy of μT-Kernel 3.0 . 14

1.3 Structure of μT-Kernel 3.0 . 15

1.4 Reference Code . 17

1.5 Adaptability and Service Profile . 18

1.6 Implementation Specification Document . 19

1.7 Relation with Existing RTOS Specifications . 20

1.7.1 Relation with μT-Kernel 2.0 . 20

1.7.2 Relation with T-Kernel 2.0 . 20

1.7.3 Relation with IEEE 2050-2018 . 21

2 μT-Kernel Concepts 22

2.1 Meaning of Basic Terminology . 23

2.2 Task States and Scheduling Rules . 25

2.2.1 Task States . 25

2.2.2 Task Scheduling Rules . 28

2.3 Interrupt Handling . 31

2.4 Task Exception Handling . 32

2.5 System States . 33

2.5.1 System States While Non-task Portion Is Executing . 33

2.5.2 Task-Independent Portion and Quasi-Task Portion . 34

2.6 Objects . 36

2.7 Protection Levels . 37

2.8 Service Profile . 38

μT-Kernel 3.0 Specification v

3 Common Rules of μT-Kernel 39

3.1 Data Types . 40

3.1.1 General Data Types . 40

3.1.2 Other Defined Data Types . 41

3.2 System Calls . 43

3.2.1 System Call Format . 43

3.2.2 APIs Possible from Task-Independent Portion . 43

3.2.3 Restricting System Call Invocation . 45

3.2.4 Modifying a Parameter Packet Format . 45

3.2.5 Function Codes . 46

3.2.6 Error Codes . 46

3.2.7 Timeout . 47

3.2.8 Relative Time and System Time . 47

3.3 High-Level Language Support Routines . 49

3.4 Service Profile . 51

3.4.1 Service Profile Items that Represent Function Availability . 51

3.4.1.1 Device Driver Functions . 51

3.4.1.2 Power Management Functions . 51

3.4.1.3 Static/dynamic Memory Management Functions . 51

3.4.1.4 Task Exception Handling Functions . 51

3.4.1.5 Subsystem Management Functions . 52

3.4.1.6 System Configuration Information Acquisition Functions 52

3.4.1.7 Supporting 64-bit and 16-bit CPUs . 52

3.4.1.8 Functions that Depend on CPU, Hardware, System, and Compiler 52

3.4.1.8.1 Interrupt Management Functions . 52

3.4.1.8.2 Memory Cache Control Functions . 53

3.4.1.8.3 FPU(COP) Support Functions . 53

3.4.1.8.4 Miscellaneous Functions . 53

3.4.1.9 Debugger Support Functions . 53

3.4.1.10 Check Method of Service Profile . 53

3.4.2 Service Profile Items that Represent Values . 54

3.4.3 Examples of Service Profile Items . 54

3.4.3.1 Service Profile Items for a Very Small-scale System using 16-bit CPU 55

3.4.3.2 Service Profile Items for a Relatively Large-scale System 56

μT-Kernel 3.0 Specification vi

4 μT-Kernel/OS Functions 58

4.1 Task Management Functions . 59

4.1.1 tk_cre_tsk - Create Task . 60

4.1.2 tk_del_tsk - Delete Task . 64

4.1.3 tk_sta_tsk - Start Task . 65

4.1.4 tk_ext_tsk - Exit Task . 66

4.1.5 tk_exd_tsk - Exit and Delete Task . 68

4.1.6 tk_ter_tsk - Terminate Task . 69

4.1.7 tk_chg_pri - Change Task Priority . 71

4.1.8 tk_get_reg - Get Task Registers . 73

4.1.9 tk_set_reg - Set Task Registers . 75

4.1.10 tk_get_cpr - Get Task Coprocessor Registers . 77

4.1.11 tk_set_cpr - Set Task Coprocessor Registers . 79

4.1.12 tk_ref_tsk - Reference Task Status . 81

4.2 Task Synchronization Functions . 84

4.2.1 tk_slp_tsk - Sleep Task . 85

4.2.2 tk_slp_tsk_u - Sleep Task (Microseconds) . 87

4.2.3 tk_wup_tsk - Wakeup Task . 88

4.2.4 tk_can_wup - Cancel Wakeup Task . 90

4.2.5 tk_rel_wai - Release Wait . 91

4.2.6 tk_sus_tsk - Suspend Task . 93

4.2.7 tk_rsm_tsk - Resumes a task in a SUSPENDED state . 95

4.2.8 tk_frsm_tsk - Force Resume Task . 97

4.2.9 tk_dly_tsk - Delay Task . 99

4.2.10 tk_dly_tsk_u - Delay Task (Microseconds) . 100

4.2.11 tk_sig_tev - Signal Task Event . 101

4.2.12 tk_wai_tev - Wait Task Event . 103

4.2.13 tk_wai_tev_u - Wait Task Event (Microseconds) . 105

4.2.14 tk_dis_wai - Disable Task Wait . 106

4.2.15 tk_ena_wai - Enable Task Wait . 109

4.3 Task Exception Handling Functions . 110

4.3.1 tk_def_tex - Define Task Exception Handler . 111

4.3.2 tk_ena_tex - Enable Task Exception . 113

4.3.3 tk_dis_tex - Disable Task Exception . 115

4.3.4 tk_ras_tex - Raise Task Exception . 117

4.3.5 tk_end_tex - end task exception handler . 119

4.3.6 tk_ref_tex - Reference Task Exception Status . 121

4.4 Synchronization and Communication Functions . 123

4.4.1 Semaphore . 124

μT-Kernel 3.0 Specification vii

4.4.1.1 tk_cre_sem - Create Semaphore . 125

4.4.1.2 tk_del_sem - Delete Semaphore . 127

4.4.1.3 tk_sig_sem - Signal Semaphore . 128

4.4.1.4 tk_wai_sem - Wait on Semaphore . 129

4.4.1.5 tk_wai_sem_u - Wait on Semaphore (Microseconds) 131

4.4.1.6 tk_ref_sem - Reference Semaphore Status . 132

4.4.2 Event Flag . 133

4.4.2.1 tk_cre_flg - Create Event Flag . 134

4.4.2.2 tk_del_flg - Delete Event Flag . 136

4.4.2.3 tk_set_flg - Set Event Flag . 137

4.4.2.4 tk_clr_flg - Clear Event Flag . 138

4.4.2.5 tk_wai_flg - Wait Event Flag . 139

4.4.2.6 tk_wai_flg_u - Wait Event Flag (Microseconds) . 142

4.4.2.7 tk_ref_flg - Reference Event Flag Status . 144

4.4.3 Mailbox . 145

4.4.3.1 tk_cre_mbx - Create Mailbox . 147

4.4.3.2 tk_del_mbx - Delete Mailbox . 149

4.4.3.3 tk_snd_mbx - Send Message to Mailbox . 150

4.4.3.4 tk_rcv_mbx - Receive Message from Mailbox . 152

4.4.3.5 tk_rcv_mbx_u - Receive Message from Mailbox (Microseconds) 154

4.4.3.6 tk_ref_mbx - Reference Mailbox Status . 155

4.5 Extended Synchronization and Communication Functions . 157

4.5.1 Mutex . 158

4.5.1.1 tk_cre_mtx - Create Mutex . 160

4.5.1.2 tk_del_mtx - Delete Mutex . 162

4.5.1.3 tk_loc_mtx - Lock Mutex . 163

4.5.1.4 tk_loc_mtx_u - Lock Mutex (Microseconds) . 165

4.5.1.5 tk_unl_mtx - Unlock Mutex . 166

4.5.1.6 tk_ref_mtx - Refer Mutex Status . 168

4.5.2 Message Buffer . 169

4.5.2.1 tk_cre_mbf - Create Message Buffer . 171

4.5.2.2 tk_del_mbf - Delete Message Buffer . 174

4.5.2.3 tk_snd_mbf - Send Message to Message Buffer . 175

4.5.2.4 tk_snd_mbf_u - Send Message to Message Buffer (Microseconds) 177

4.5.2.5 tk_rcv_mbf - Receive Message from Message Buffer 179

4.5.2.6 tk_rcv_mbf_u - Receive Message from Message Buffer (Microseconds) 181

4.5.2.7 tk_ref_mbf - Reference Message Buffer Status . 182

4.6 Memory Pool Management Functions . 184

4.6.1 Fixed-size Memory Pool . 185

μT-Kernel 3.0 Specification viii

4.6.1.1 tk_cre_mpf - Create Fixed-size Memory Pool . 186

4.6.1.2 tk_del_mpf - Delete Fixed-size Memory Pool . 189

4.6.1.3 tk_get_mpf - Get Fixed-size Memory Block . 190

4.6.1.4 tk_get_mpf_u - Get Fixed-size Memory Block (Microseconds) 192

4.6.1.5 tk_rel_mpf - Release Fixed-size Memory Block . 193

4.6.1.6 tk_ref_mpf - Reference Fixed-size Memory Pool Status 194

4.6.2 Variable-size Memory Pool . 196

4.6.2.1 tk_cre_mpl - Create Variable-size Memory Pool . 197

4.6.2.2 tk_del_mpl - Delete Variable-size Memory Pool . 200

4.6.2.3 tk_get_mpl - Get Variable-size Memory Block . 201

4.6.2.4 tk_get_mpl_u - Get Variable-size Memory Block (Microseconds) 203

4.6.2.5 tk_rel_mpl - Release Variable-size Memory Block . 204

4.6.2.6 tk_ref_mpl - Reference Variable-size Memory Pool Status 205

4.7 Time Management Functions . 207

4.7.1 System Time Management . 208

4.7.1.1 tk_set_utc - Set System Time . 209

4.7.1.2 tk_set_utc_u - Set Time (Microseconds) . 211

4.7.1.3 tk_set_tim - Set System Time (TRON) . 212

4.7.1.4 tk_set_tim_u - Set Time (TRON, Microseconds) . 213

4.7.1.5 tk_get_utc - Get System Time . 214

4.7.1.6 tk_get_utc_u - Get System Time (Microseconds) . 216

4.7.1.7 tk_get_tim - Get System Time (TRON) . 218

4.7.1.8 tk_get_tim_u - Get System Time (TRON, Microseconds) 220

4.7.1.9 tk_get_otm - Get Operating Time . 222

4.7.1.10 tk_get_otm_u - Get Operating Time (Microseconds) 223

4.7.2 Cyclic Handler . 224

4.7.2.1 tk_cre_cyc - Create Cyclic Handler . 225

4.7.2.2 tk_cre_cyc_u - Create Cyclic Handler (Microseconds) 228

4.7.2.3 tk_del_cyc - Delete Cyclic Handler . 230

4.7.2.4 tk_sta_cyc - Start Cyclic Handler . 231

4.7.2.5 tk_stp_cyc - Stop Cyclic Handler . 232

4.7.2.6 tk_ref_cyc - Reference Cyclic Handler Status . 233

4.7.2.7 tk_ref_cyc_u - Reference Cyclic Handler Status (Microseconds) 235

4.7.3 Alarm Handler . 236

4.7.3.1 tk_cre_alm - Create Alarm Handler . 237

4.7.3.2 tk_del_alm - Delete Alarm Handler . 239

4.7.3.3 tk_sta_alm - Start Alarm Handler . 240

4.7.3.4 tk_sta_alm_u - Start Alarm Handler (Microseconds) 241

4.7.3.5 tk_stp_alm - Stop Alarm Handler . 242

μT-Kernel 3.0 Specification ix

4.7.3.6 tk_ref_alm - Reference Alarm Handler Status . 243

4.7.3.7 tk_ref_alm_u - Reference Alarm Handler Status (Microseconds) 245

4.8 Interrupt Management Functions . 246

4.8.1 tk_def_int - Define Interrupt Handler . 247

4.8.2 tk_ret_int - Return from Interrupt Handler . 250

4.9 System Management Functions . 252

4.9.1 tk_rot_rdq - Rotate Ready Queue . 253

4.9.2 tk_get_tid - Get Task Identifier . 255

4.9.3 tk_dis_dsp - Disable Dispatch . 256

4.9.4 tk_ena_dsp - Enable Dispatch . 258

4.9.5 tk_ref_sys - Reference System Status . 259

4.9.6 tk_set_pow - Set Power Mode . 261

4.9.7 tk_ref_ver - Reference Version Information . 263

4.10 Subsystem Management Functions . 266

4.10.1 tk_def_ssy - Define Subsystem . 267

4.10.2 tk_evt_ssy - Call Event Function . 272

4.10.3 tk_ref_ssy - Reference Subsystem Status . 274

5 μT-Kernel/SM Functions 276

5.1 System Memory Management Functions . 277

5.1.1 Memory Allocation Library Functions . 278

5.1.1.1 Kmalloc - Allocate Memory . 279

5.1.1.2 Kcalloc - Allocate Memory and Clear . 280

5.1.1.3 Krealloc - Reallocate Memory . 281

5.1.1.4 Kfree - Release Memory . 283

5.2 Device Management Functions . 284

5.2.1 Common Notes Related to Device Drivers . 286

5.2.1.1 Basic Concepts . 286

5.2.1.1.1 Device Name (UB* type) . 286

5.2.1.1.2 Device ID (ID type) . 287

5.2.1.1.3 Device Attribute (ATR type) . 287

5.2.1.1.4 Device Descriptor (ID type) . 288

5.2.1.1.5 Request ID (ID type) . 288

5.2.1.1.6 Data Number (W type, D type) . 288

5.2.1.2 Attribute Data . 289

5.2.2 Device Input/Output Operations . 291

5.2.2.1 tk_opn_dev - Open Device . 292

5.2.2.2 tk_cls_dev - Close Device . 294

5.2.2.3 tk_rea_dev - Start Read Device . 295

μT-Kernel 3.0 Specification x

5.2.2.4 tk_rea_dev_du - Read Device (64-bit, Microseconds) 297

5.2.2.5 tk_srea_dev - Synchronous Read . 299

5.2.2.6 tk_srea_dev_d - Synchronous Read (64-bit) . 301

5.2.2.7 tk_wri_dev - Start Write Device . 303

5.2.2.8 tk_wri_dev_du - Write Device (64-bit, Microseconds) 305

5.2.2.9 tk_swri_dev - Synchronous Write . 307

5.2.2.10 tk_swri_dev_d - Synchronous Write (64-bit) . 309

5.2.2.11 tk_wai_dev - Wait for Request Completion for Device 311

5.2.2.12 tk_wai_dev_u - Wait Device (Microseconds) . 313

5.2.2.13 tk_sus_dev - Suspends Device . 315

5.2.2.14 tk_get_dev - Get Device Name . 317

5.2.2.15 tk_ref_dev - Get Device Information . 318

5.2.2.16 tk_oref_dev - Get Device Information . 319

5.2.2.17 tk_lst_dev - Get Registered Device Information . 320

5.2.2.18 tk_evt_dev - Send Driver Request Event to Device . 322

5.2.3 Registration of Device Driver . 323

5.2.3.1 Registration Method of Device Driver . 323

5.2.3.1.1 tk_def_dev - Register Device . 324

5.2.3.1.2 tk_ref_idv - Reference Device Initialization Information 327

5.2.3.2 Device Driver Interface . 328

5.2.3.2.1 openfn - Open function . 331

5.2.3.2.2 closefn - Close function . 332

5.2.3.2.3 execfn - Execute function . 333

5.2.3.2.4 waitfn - Wait-for-completion function . 335

5.2.3.2.5 abortfn - Abort function . 337

5.2.3.2.6 eventfn - Event function . 339

5.2.3.3 Device Event Notification . 341

5.2.3.4 Device Suspend/Resume Processing . 343

5.2.3.4.1 Device suspend processing . 343

5.2.3.4.2 Device resume processing . 343

5.3 Interrupt Management Functions . 344

5.3.1 CPU Interrupt Control . 345

5.3.1.1 DI - Disable External Interrupts . 346

5.3.1.2 EI - Enable External Interrupt . 347

5.3.1.3 isDI - Get Interrupt Disable Status . 348

5.3.1.4 SetCpuIntLevel - Set Interrupt Mask Level in CPU 349

5.3.1.5 GetCpuIntLevel - Get Interrupt Mask Level in CPU 351

5.3.2 Control of Interrupt Controller . 352

5.3.2.1 EnableInt - Enable Interrupts . 353

μT-Kernel 3.0 Specification xi

5.3.2.2 DisableInt - Disable Interrupts . 354

5.3.2.3 ClearInt - Clear Interrupt . 355

5.3.2.4 EndOfInt - Issue EOI to Interrupt Controller . 356

5.3.2.5 CheckInt - Check Interrupt . 357

5.3.2.6 SetIntMode - Set Interrupt Mode . 358

5.3.2.7 SetCtrlIntLevel - Set Interrupt Mask Level in Interrupt Controller 360

5.3.2.8 GetCtrlIntLevel - Get Interrupt Mask Level in Interrupt Controller 362

5.4 I/O Port Access Support Functions . 363

5.4.1 I/O Port Access . 363

5.4.1.1 out_b - Write to I/O Port (In Unit of Byte) . 364

5.4.1.2 out_h - Write to I/O Port (In Unit of Half-word) . 365

5.4.1.3 out_w - Write to I/O Port (In Unit of Word) . 366

5.4.1.4 out_d - Write to I/O Port (In Unit of Double-word) . 367

5.4.1.5 in_b - Read from I/O Port (In Unit of Byte) . 369

5.4.1.6 in_h - Read from I/O Port (In Unit of Half-word) . 370

5.4.1.7 in_w - Read from I/O Port (In Unit of Word) . 371

5.4.1.8 in_d - Read from I/O Port (In Unit of Double-word) 372

5.4.2 Micro Wait . 373

5.4.2.1 WaitUsec - Micro Wait (Microseconds) . 373

5.4.2.2 WaitNsec - Micro Wait (Nanoseconds) . 374

5.5 Power Management Functions . 375

5.5.1 low_pow - Move System to Low-power Mode . 376

5.5.2 off_pow - Move System to Suspend State . 378

5.6 System Configuration Information Management Functions . 380

5.6.1 System Configuration Information Acquisition . 381

5.6.1.1 tk_get_cfn - Get Numbers . 382

5.6.1.2 tk_get_cfs - Get Character String . 383

5.6.2 Standard System Configuration Information . 384

5.7 Memory Cache Control Functions . 386

5.7.1 SetCacheMode - Set Cache Mode . 387

5.7.2 ControlCache - Control Cache . 389

5.8 Physical Timer Functions . 391

5.8.1 Use Case of Physical Timer . 392

5.8.2 StartPhysicalTimer - Start Physical Timer . 394

5.8.3 StopPhysicalTimer - Stop Physical Timer . 396

5.8.4 GetPhysicalTimerCount - Get Physical Timer Count . 398

5.8.5 DefinePhysicalTimerHandler - Define Physical Timer Handler 399

5.8.6 GetPhysicalTimerConfig - Get Physical Timer Configuration Information 401

5.9 Utility Functions . 403

μT-Kernel 3.0 Specification xii

5.9.1 Set Object Name . 404

5.9.1.1 SetOBJNAME - Set Object Name . 405

5.9.2 Fast Lock and Multi-lock Libraries . 406

5.9.2.1 CreateLock - Create Fast Lock . 407

5.9.2.2 DeleteLock - Delete Fast Lock . 408

5.9.2.3 Lock - Lock Fast Lock . 409

5.9.2.4 Unlock - Unlock Fast Lock . 410

5.9.2.5 CreateMLock - Create Fast Multi-lock . 411

5.9.2.6 DeleteMLock - Delete Fast Multi-lock . 412

5.9.2.7 MLock - Lock Fast Multi-lock . 413

5.9.2.8 MLockTmo - Lock Fast Multi-lock (with Timeout) . 414

5.9.2.9 MLockTmo_u - Lock Fast Multi-lock (with Timeout, Microseconds) 415

5.9.2.10 MUnlock - Unlock Fast Multi-lock . 416

6 μT-Kernel/DS Functions 417

6.1 Kernel Internal State Acquisition Functions . 418

6.1.1 td_lst_tsk - Reference Task ID List . 419

6.1.2 td_lst_sem - Reference Semaphore ID List . 420

6.1.3 td_lst_flg - Reference Event Flag ID List . 421

6.1.4 td_lst_mbx - Reference Mailbox ID List . 422

6.1.5 td_lst_mtx - Reference Mutex ID List . 423

6.1.6 td_lst_mbf - Reference Message Buffer ID List . 424

6.1.7 td_lst_mpf - Reference Fixed-size Memory Pool ID List . 425

6.1.8 td_lst_mpl - Reference Variable-size Memory Pool ID List . 426

6.1.9 td_lst_cyc - Reference Cyclic Handler ID List . 427

6.1.10 td_lst_alm - Reference Alarm Handler ID List . 428

6.1.11 td_lst_ssy - Reference Subsystem ID List . 429

6.1.12 td_rdy_que - Reference Task Precedence . 430

6.1.13 td_sem_que - Reference Semaphore Queue . 431

6.1.14 td_flg_que - Reference Event Flag Queue . 432

6.1.15 td_mbx_que - Reference Mailbox Queue . 433

6.1.16 td_mtx_que - Reference Mutex Queue . 434

6.1.17 td_smbf_que - Reference Message Buffer Send Queue . 435

6.1.18 td_rmbf_que - Reference Message Buffer Receive Queue . 436

6.1.19 td_mpf_que - Reference Fixed-size Memory Pool Queue . 437

6.1.20 td_mpl_que - Reference Variable-size Memory Pool Queue . 438

6.1.21 td_ref_tsk - Reference Task Status . 439

6.1.22 td_ref_tex - Reference Task Exception Status . 441

6.1.23 td_ref_sem - Reference Semaphore Status . 442

μT-Kernel 3.0 Specification xiii

6.1.24 td_ref_flg - Reference Event Flag Status . 443

6.1.25 td_ref_mbx - Reference Mailbox Status . 444

6.1.26 td_ref_mtx - Refer Mutex Status . 445

6.1.27 td_ref_mbf - Reference Message Buffer Status . 446

6.1.28 td_ref_mpf - Reference Fixed-size Memory Pool Status . 447

6.1.29 td_ref_mpl - Reference Variable-size Memory Pool Status . 448

6.1.30 td_ref_cyc - Reference Cyclic Handler Status . 449

6.1.31 td_ref_cyc_u - Reference Cyclic Handler Status (Microseconds) 450

6.1.32 td_ref_alm - Reference Alarm Handler Status . 451

6.1.33 td_ref_alm_u - Reference Alarm Handler Status (Microseconds) 452

6.1.34 td_ref_sys - Reference System Status . 453

6.1.35 td_ref_ssy - Reference Subsystem Status . 454

6.1.36 td_get_reg - Get Task Register . 455

6.1.37 td_set_reg - Set Task Registers . 457

6.1.38 td_get_utc - Get System Time . 458

6.1.39 td_get_utc_u - Get System Time (Microseconds) . 460

6.1.40 td_get_tim - Get System Time (TRON) . 461

6.1.41 td_get_tim_u - Get System Time (TRON, Microseconds) . 463

6.1.42 td_get_otm - Get Operating Time . 464

6.1.43 td_get_otm_u - Get Operating Time (Microseconds) . 466

6.1.44 td_ref_dsname - Refer to DS Object Name . 467

6.1.45 td_set_dsname - Set DS Object Name . 469

6.2 Trace Functions . 471

6.2.1 td_hok_svc - Define System Call/Extended SVC Hook Routine 472

6.2.2 td_hok_dsp - Define Task Dispatch Hook Routine . 474

6.2.3 td_hok_int - Define Interrupt Handler Hook Routine . 476

7 Appendix 478

7.1 System Configuration . 479

7.2 Keywords . 480

8 Reference 481

8.1 List of C Language Interface . 482

8.1.1 μT-Kernel/OS . 482

8.1.1.1 Task Management Functions . 482

8.1.1.2 Task Synchronization Functions . 482

8.1.1.3 Task Exception Handling Functions . 483

8.1.1.4 Synchronization and Communication Functions . 483

8.1.1.5 Extended Synchronization and Communication Functions 484

μT-Kernel 3.0 Specification xiv

8.1.1.6 Memory Pool Management Functions . 484

8.1.1.7 Time Management Functions . 485

8.1.1.8 Interrupt Management Functions . 485

8.1.1.9 System Management Functions . 485

8.1.1.10 Subsystem Management Functions . 486

8.1.2 μT-Kernel/SM . 486

8.1.2.1 System Memory Management Functions . 486

8.1.2.2 Device Management Functions . 486

8.1.2.3 Interrupt Management Functions . 487

8.1.2.4 I/O Port Access Support Functions . 488

8.1.2.5 Power Management Functions . 488

8.1.2.6 System Configuration Information Management Functions 488

8.1.2.7 Memory Cache Control Functions . 488

8.1.2.8 Physical Timer Functions . 488

8.1.2.9 Utility Functions . 489

8.1.3 μT-Kernel/DS . 489

8.1.3.1 Kernel Internal State Acquisition Functions . 489

8.1.3.2 Trace Functions . 490

8.2 List of Error Codes . 491

8.2.1 Normal Completion Error Class (0) . 491

8.2.2 Normal completion Internal Error Class (5 to 8) . 491

8.2.3 Unsupported Error Class (9 to 16) . 491

8.2.4 Parameter Error Class (17 to 24) . 491

8.2.5 Call Context Error Class (25 to 32) . 492

8.2.6 Resource Constraint Error Class (33 to 40) . 492

8.2.7 Object State Error Class (41 to 48) . 493

8.2.8 Wait Error Class (49 to 56) . 493

8.2.9 Device Error Class (57 to 64) (μT-Kernel/SM) . 493

8.2.10 Status Error Class (65 to 72) (μT-Kernel/SM) . 493

8.3 List of APIs and Service Profile Items . 494

8.3.1 μT-Kernel/OS . 494

8.3.1.1 Task Management Functions . 494

8.3.1.2 Task Synchronization Functions . 494

8.3.1.3 Task Exception Handling Functions . 495

8.3.1.4 Synchronization and Communication Functions . 495

8.3.1.5 Extended Synchronization and Communication Functions 495

8.3.1.6 Memory Pool Management Functions . 496

8.3.1.7 Time Management Functions . 496

8.3.1.8 Interrupt Management Functions . 497

μT-Kernel 3.0 Specification xv

8.3.1.9 System Management Functions . 497

8.3.1.10 Subsystem Management Functions . 497

8.3.2 μT-Kernel/SM . 498

8.3.2.1 System Memory Management Functions . 498

8.3.2.2 Device Management Functions . 498

8.3.2.3 Interrupt Management Functions . 499

8.3.2.4 I/O Port Access Support Functions . 500

8.3.2.5 Power Management Functions . 500

8.3.2.6 System Configuration Information Management Functions 500

8.3.2.7 Memory Cache Control Functions . 500

8.3.2.8 Physical Timer Functions . 500

8.3.2.9 Utility Functions . 501

8.3.3 μT-Kernel/DS . 501

8.3.3.1 Kernel Internal State Acquisition Functions . 501

8.3.3.2 Trace Functions . 502

μT-Kernel 3.0 Specification xvi

List of Figures

1.1 Position and Structure of μT-Kernel 3.0 . 15

2.1 Task State Transition Diagram . 27

2.2 Precedence in Initial State . 29

2.3 Precedence After Task B Goes To RUNNING State . 30

2.4 Precedence After Task B Goes To WAITING State . 30

2.5 Precedence After Task B WAITING State Is Released . 30

2.6 Classification of System States . 34

2.7 Interrupt Nesting and Delayed Dispatching . 35

3.1 Behavior of High-Level Language Support Routine . 50

4.1 Multiple Tasks Waiting for One Event Flag . 141

4.2 Format of Messages Using a Mailbox . 145

4.3 Synchronous Communication by Message Buffer . 170

4.4 Synchronous Communication Using Message Buffer of bufsz = 0 . 173

4.5 Precedence Before Issuing tk_rot_rdq . 254

4.6 Precedence After Issuing tk_rot_rdq (tskpri = 2) . 254

4.7 maker Format . 264

4.8 prid Format . 264

4.9 spver Format . 264

4.10 μT-Kernel Subsystems . 266

5.1 Device Management Functions . 285

μT-Kernel 3.0 Specification xvii

List of Tables

2.1 State Transitions Distinguishing Invoking Task and Other Tasks . 28

4.1 Target Task State and Execution Result (tk_ter_tsk) . 70

4.2 Values of tskwait and wid . 82

4.3 Target Task State and Execution Result (tk_rel_wai) . 92

5.1 Whether Concurrent Open of Same Device is Allowed or NOT . 293

μT-Kernel 3.0 Specification 1 / 502

API Notation

In the parts of this specification that describe APIs, the specification of each API (Application Programming
Interface) is explained in the format illustrated below. In addition to system calls that directly call kernel func-
tions, APIs include functions implemented as extended SVCs (extended system calls), macros, and libraries.

API Name - Description

This is an API name and its description.

C Language Interface

This is an API’s C language interface and header file(s) to include.

Parameter

Describes an API’s parameter(s), i.e. information passed to the μT-Kernel when the API is issued.

Return Parameter

Describes an API’s return parameter(s), i.e. information returned by the μT-Kernel when the execution of
the API ends.

A return parameter that is returned as an API’s function value may be called ”return code.” A return parameter
can include, besides return code, a value stored at a pointer that points at memory location where some
information can be stored.

Error Code

Describes errors that can occur in an API.

The following error codes are common to all APIs and are not included in the error code listings for each API:

E_SYS , E_NOSPT , E_RSFN , E_MACV , E_OACV.

The detection of the error conditions that may result in the following error codes is implementation-dependent;
such conditions may not always be detected as errors:

E_PAR , E_MACV , E_CTX.

Error code E_CTX is included in the error code section of individual API only when API can encounter an error
due to a semantically wrong caller context: e.g., the case of task-independent portion’s calling an API that can
block. If an API’s constraints in the caller’s context are implementation-dependent, and such semantic errors

μT-Kernel 3.0 Specification 2 / 502

are not universal across all implementations, the explanation of E_CTX is not included in the error section of
the API under discussion.

Implementations may generate errors that are not explained in the explanation section of error codes.

Valid Context

Indicates the context (task portion, quasi-task portion, and task-independent portion) that can issue the API
under consideration. Note that items marked with ”x” are sometimes clearly impossible to use in the context
discussed, but the usability of some items in the context discussed may be implementation-dependent, and
some may be usable in some implementations.

Related Service Profile Items

The relation of the service profile item(s) associated with API is shown.

Description

Describes the API functions.

When the values to be passed in a parameter are selected from various choices, the following notation is used
in the parameter descriptions:

(x || y || z)
Set one of x, y, or z.

x | y
Both x and y can be set at the same time (in which case the logical sum of x and y is taken).

[x]
x is optional.

Example of Using Parameters Notation

wfmode := (TWF_ANDW || TWF_ORW) | [TWF_CLR]

The above description means that wfmode can be specified in any of the following four ways:
TWF_ANDW
TWF_ORW
(TWF_ANDW | TWF_CLR)
(TWF_ORW | TWF_CLR)

Additional Notes

Supplements the description by noting matters that need special attention or caution, etc.

Rationale for the Specification

Explains the reason for adopting a particular approach and specification.

μT-Kernel 3.0 Specification 3 / 502

Index of μT-Kernel/OS APIs

The μT-Kernel/OS system APIs described in this specification are listed below in alphabetical order.

• tk_can_wup - Cancel Wakeup Task

• tk_chg_pri - Change Task Priority

• tk_clr_flg - Clear Event Flag

• tk_cre_alm - Create Alarm Handler

• tk_cre_cyc - Create Cyclic Handler

• tk_cre_cyc_u - Create Cyclic Handler (Microseconds)

• tk_cre_flg - Create Event Flag

• tk_cre_mbf - Create Message Buffer

• tk_cre_mbx - Create Mailbox

• tk_cre_mpf - Create Fixed-size Memory Pool

• tk_cre_mpl - Create Variable-size Memory Pool

• tk_cre_mtx - Create Mutex

• tk_cre_sem - Create Semaphore

• tk_cre_tsk - Create Task

• tk_def_int - Define Interrupt Handler

• tk_def_ssy - Define Subsystem

• tk_def_tex - Define Task Exception Handler

• tk_del_alm - Delete Alarm Handler

• tk_del_cyc - Delete Cyclic Handler

• tk_del_flg - Delete Event Flag

• tk_del_mbf - Delete Message Buffer

• tk_del_mbx - Delete Mailbox

• tk_del_mpf - Delete Fixed-size Memory Pool

• tk_del_mpl - Delete Variable-size Memory Pool

• tk_del_mtx - Delete Mutex

• tk_del_sem - Delete Semaphore

μT-Kernel 3.0 Specification 4 / 502

• tk_del_tsk - Delete Task

• tk_dis_dsp - Disable Dispatch

• tk_dis_tex - Disable Task Exception

• tk_dis_wai - Disable Task Wait

• tk_dly_tsk - Delay Task

• tk_dly_tsk_u - Delay Task (Microseconds)

• tk_ena_dsp - Enable Dispatch

• tk_ena_tex - Enable Task Exception

• tk_ena_wai - Enable Task Wait

• tk_end_tex - End Task Exception Handler

• tk_evt_ssy - Call Event Function

• tk_exd_tsk - Exit and Delete Task

• tk_ext_tsk - Exit Task

• tk_frsm_tsk - Force Resume Task

• tk_get_cpr - Get Task Coprocessor Registers

• tk_get_mpf - Get Fixed-size Memory Block

• tk_get_mpf_u - Get Fixed-size Memory Block (Microseconds)

• tk_get_mpl - Get Variable-size Memory Block

• tk_get_mpl_u - Get Variable-size Memory Block (Microseconds)

• tk_get_otm - Get Operating Time

• tk_get_otm_u - Get Operating Time (Microseconds)

• tk_get_reg - Get Task Registers

• tk_get_tid - Get Task Identifier

• tk_get_tim - Get System Time (TRON)

• tk_get_tim_u - Get System Time (TRON, Microseconds)

• tk_get_utc - Get System Time

• tk_get_utc_u - Get System Time (Microseconds)

• tk_loc_mtx - Lock Mutex

• tk_loc_mtx_u - Lock Mutex (Microseconds)

• tk_ras_tex - Raise Task Exception

• tk_rcv_mbf - Receive Message from Message Buffer

• tk_rcv_mbf_u - Receive Message from Message Buffer (Microseconds)

• tk_rcv_mbx - Receive Message from Mailbox

• tk_rcv_mbx_u - Receive Message from Mailbox (Microseconds)

• tk_ref_alm - Reference Alarm Handler Status

μT-Kernel 3.0 Specification 5 / 502

• tk_ref_alm_u - Reference Alarm Handler Status (Microseconds)

• tk_ref_cyc - Reference Cyclic Handler Status

• tk_ref_cyc_u - Reference Cyclic Handler Status (Microseconds)

• tk_ref_flg - Reference Event Flag Status

• tk_ref_mbf - Reference Message Buffer Status

• tk_ref_mbx - Reference Mailbox Status

• tk_ref_mpf - Reference Fixed-size Memory Pool Status

• tk_ref_mpl - Reference Variable-size Memory Pool Status

• tk_ref_mtx - Refer Mutex Status

• tk_ref_sem - Reference Semaphore Status

• tk_ref_ssy - Reference Subsystem Status

• tk_ref_sys - Reference System Status

• tk_ref_tex - Reference Task Exception Status

• tk_ref_tsk - Reference Task Status

• tk_ref_ver - Reference Version Information

• tk_rel_mpf - Release Fixed-size Memory Block

• tk_rel_mpl - Release Variable-size Memory Block

• tk_rel_wai - Release Wait

• tk_ret_int - Return from Interrupt Handler

• tk_rot_rdq - Rotate Ready Queue

• tk_rsm_tsk - Resume Task

• tk_set_cpr - Set Task Coprocessor Registers

• tk_set_flg - Set Event Flag

• tk_set_pow - Set Power Mode

• tk_set_reg - Set Task Registers

• tk_set_tim - Set System Time (TRON)

• tk_set_tim_u - Set System Time (TRON, Microseconds)

• tk_set_utc - Set System Time

• tk_set_utc_u - Set System Time (Microseconds)

• tk_sig_sem - Signal Semaphore

• tk_sig_tev - Signal Task Event

• tk_slp_tsk - Sleep Task

• tk_slp_tsk_u - Sleep Task (Microseconds)

• tk_snd_mbf - Send Message to Message Buffer

• tk_snd_mbf_u - Send Message to Message Buffer (Microseconds)

μT-Kernel 3.0 Specification 6 / 502

• tk_snd_mbx - Send Message to Mailbox

• tk_sta_alm - Start Alarm Handler

• tk_sta_alm_u - Start Alarm Handler (Microseconds)

• tk_sta_cyc - Start Cyclic Handler

• tk_sta_tsk - Start Task

• tk_stp_alm - Stop Alarm Handler

• tk_stp_cyc - Stop Cyclic Handler

• tk_sus_tsk - Suspend Task

• tk_ter_tsk - Terminate Task

• tk_unl_mtx - Unlock Mutex

• tk_wai_flg - Wait Event Flag

• tk_wai_flg_u - Wait Event Flag (Microseconds)

• tk_wai_sem - Wait on Semaphore

• tk_wai_sem_u - Wait on Semaphore (Microseconds)

• tk_wai_tev - Wait Task Event

• tk_wai_tev_u - Wait Task Event (Microseconds)

• tk_wup_tsk - Wakeup Task

μT-Kernel 3.0 Specification 7 / 502

Index of μT-Kernel/SM APIs

The μT-Kernel/SM system APIs described in this specification are listed below in alphabetical order.

• abortfn - Abort function

• CheckInt - Check Interrupt

• ClearInt - Clear Interrupt

• closefn - Close function

• ControlCache - Control Cache

• CreateLock - Create Fast Lock

• CreateMLock - Create Fast Multi-lock

• DefinePhysicalTimerHandler - Define Physical Timer Handler

• DeleteLock - Delete Fast Lock

• DeleteMLock - Delete Fast Multi-lock

• DI - Disable External Interrupts

• DisableInt - Disable Interrupts

• EI - Enable External Interrupts

• EnableInt - Enable Interrupts

• EndOfInt - Issue EOI to Interrupt Controller

• eventfn - Event function

• execfn - Execute function

• GetCpuIntLevel - Get CPU Interrupt Mask Level

• GetCtrlIntLevel - Get Interrupt Controller Interrupt Mask Level

• GetPhysicalTimerConfig - Get Physical Timer Configuration Information

• GetPhysicalTimerCount - Get Physical Timer Count

• in_b - Read from I/O Port (in Bytes)

• in_d - Read from I/O Port (in Double-words)

• in_h - Read from I/O Port (in Half-words)

• in_w - Read from I/O Port (in Words)

• isDI - Get Interrupt Disable Status

μT-Kernel 3.0 Specification 8 / 502

• Kcalloc - Allocate Memory and Clear

• Kfree - Release Memory

• Kmalloc - Allocate Memory

• Krealloc - Reallocate Memory

• Lock - Lock Fast Lock

• low_pow - Move System to Low-power Mode

• MLock - Lock Fast Multi-lock

• MLockTmo - Lock Fast Multi-lock (with Timeout)

• MLockTmo_u - Lock Fast Multi-lock (with Timeout, Microseconds)

• MUnlock - Unlock Fast Multi-lock

• off_pow - Move System to Suspend State

• openfn - Open function

• out_b - Write to I/O Port (in Bytes)

• out_d - Write to I/O Port (in Double-words)

• out_h - Write to I/O Port (in Half-words)

• out_w - Write to I/O Port (in Words)

• SetCacheMode - Set Cache Mode

• SetCpuIntLevel - Set CPU Interrupt Mask Level

• SetCtrlIntLevel - Set Interrupt Controller Interrupt Mask Level

• SetIntMode - Set Interrupt Mode

• SetOBJNAME - Set Object Name

• StartPhysicalTimer - Start Physical Timer

• StopPhysicalTimer - Stop Physical Timer

• tk_cls_dev - Close Device

• tk_def_dev - Register Device

• tk_evt_dev - Send Driver Request Event to Device

• tk_get_cfn - Get Numbers

• tk_get_cfs - Get Character String

• tk_get_dev - Get Device Name

• tk_lst_dev - Get Registered Device Information

• tk_opn_dev - Open Device

• tk_oref_dev - Get Device Information

• tk_rea_dev - Start Read Device

• tk_rea_dev_du - Read Device (64-bit, Microseconds)

• tk_ref_dev - Get Device Information

μT-Kernel 3.0 Specification 9 / 502

• tk_ref_idv - Reference Device Initialization Information

• tk_srea_dev - Synchronous Read

• tk_srea_dev_d - Synchronous Read (64-bit)

• tk_sus_dev - Suspends Device

• tk_swri_dev - Synchronous Write

• tk_swri_dev_d - Synchronous Write (64-bit)

• tk_wai_dev - Wait for Request Completion for Device

• tk_wai_dev_u - Wait Device (Microseconds)

• tk_wri_dev - Start Write Device

• tk_wri_dev_du - Write Device (64-bit, Microseconds)

• Unlock - Unlock Fast Lock

• waitfn - Wait function

• WaitNsec - Micro Wait (Nanoseconds)

• WaitUsec - Micro Wait (Microseconds)

μT-Kernel 3.0 Specification 10 / 502

Index of μT-Kernel/DS APIs

The μT-Kernel/DS APIs described in this specification are listed below in alphabetical order.

• td_flg_que - Reference Event Flag Queue

• td_get_otm - Get Operating Time

• td_get_otm_u - Get Operating Time (Microseconds)

• td_get_reg - Get Task Register

• td_get_tim - Get System Time (TRON)

• td_get_tim_u - Get System Time (TRON, Microseconds)

• td_get_utc - Get System Time

• td_get_utc_u - Get System Time (Microseconds)

• td_hok_dsp - Define Task Dispatch Hook Routine

• td_hok_int - Define Interrupt Handler Hook Routine

• td_hok_svc - Define System Call/Extended SVC Hook Routine

• td_lst_alm - Reference Alarm Handler ID List

• td_lst_cyc - Reference Cyclic Handler ID List

• td_lst_flg - Reference Event Flag ID List

• td_lst_mbf - Reference Message Buffer ID List

• td_lst_mbx - Reference Mailbox ID List

• td_lst_mpf - Reference Fixed-size Memory Pool ID List

• td_lst_mpl - Reference Variable-size Memory Pool ID List

• td_lst_mtx - Reference Mutex ID List

• td_lst_sem - Reference Semaphore ID List

• td_lst_ssy - Reference Subsystem ID List

• td_lst_tsk - Reference Task ID List

• td_mbx_que - Reference Mailbox Queue

• td_mpf_que - Reference Fixed-size Memory Pool Queue

• td_mpl_que - Reference Variable-size Memory Pool Queue

• td_mtx_que - Reference Mutex Queue

μT-Kernel 3.0 Specification 11 / 502

• td_rdy_que - Reference Task Precedence

• td_ref_alm - Reference Alarm Handler Status

• td_ref_alm_u - Reference Alarm Handler Status (Microseconds)

• td_ref_cyc - Reference Cyclic Handler Status

• td_ref_cyc_u - Reference Cyclic Handler Status (Microseconds)

• td_ref_dsname - Refer to DS Object Name

• td_ref_flg - Reference Event Flag Status

• td_ref_mbf - Reference Message Buffer Status

• td_ref_mbx - Reference Mailbox Status

• td_ref_mpf - Reference Fixed-size Memory Pool Status

• td_ref_mpl - Reference Variable-size Memory Pool Status

• td_ref_mtx - Refer Mutex Status

• td_ref_sem - Reference Semaphore Status

• td_ref_ssy - Reference Subsystem Status

• td_ref_sys - Reference System Status

• td_ref_tex - Reference Task Exception Status

• td_ref_tsk - Get Task Status

• td_rmbf_que - Reference Message Buffer Receive Queue

• td_sem_que - Reference Semaphore Queue

• td_set_dsname - Set DS Object Name

• td_set_reg - Set Task Registers

• td_smbf_que - Reference Message Buffer Send Queue

μT-Kernel 3.0 Specification 12 / 502

Chapter 1

Overview of μT-Kernel 3.0

μT-Kernel 3.0 Specification 13 / 502

1.1 TRON Project and μT-Kernel 3.0

This standard defines the specification of a real-time operating system (RTOS) called ”μT-Kernel 3.0.” μT-
Kernel 3.0 is the latest result from the TRON project (http://www.tron.org/), which was started by Dr. Ken
Sakamura, then at the University of Tokyo in 1984.

The TRON Project envisioned that environments optimized to humans would be created by embedding small
microprocessors, invented in the prior decade, in many objects in our surroundings and having them talk
to each other. In the TRON Project, the computing paradigm to achive this goal was called a ”Highly Func-
tionally Distributed System (HFDS)” and an RTOS called ITRON was created to control such microprocessors
efficiently. The specificaton of the first version of ITRON, namely ITRON1, was published in 1987. The project
promoted the industry-academic cooperation and published the technical specification and other information
so that anyone can make use of the technology for free under the philosophy of ”Open Approach.” As a result,
ITRON specification OS was born and it ran on many types of processors. It became the de facto standard
RTOS for embedded computer systems. Additionally, the development of ”μITRON,” which is an improved
version of ITRON and has better adaptability, proceeded concurrently. OSs based on ITRON and μITRON
specifications have been used widely in many embedded computer systems: they are used in consumer prod-
ucts, such as home electronic appliances and AV equipment, and industrial applications, such as machine
control on factory floors, engine control of automobiles, etc.

The concept of ”HFDS,” which the TRON Project proposed, started to be called ”ubiquitous computing” be-
fore the turn of the century and is now widely recognized as the Internet of Things (IoT). Since its inception
in 1984, the TRON Project has targeted the IoT in today’s parlance as the main application field of micropro-
cessors and carried out research and development of OS and computer architecture. The latest result of such
research and development of OS is μT-Kernel, a resource-efficient RTOS suitable for IoT edge nodes. It is an
improvement of μITRON, and has features for IoT.

Based on the adoptions so far, it has been reported that 60 percent or more of embedded devices use the re-
sults of the TRON Project in the 2010s, 30 years after the inception of the project (https://www.tron.org/blog/2017/07/press20170406/).
In 2018, IEEE (Institute of Electrical and Electronics Engineers), a global standard creating organization, pub-
lished the IEEE 2050-2018 standard specification for RTOS for IoT edge nodes based on the specification of
the updated version of μT-Kernel, μT-Kernel 2.0.

This document defines the standard of μT-Kernel 3.0, an updated version of μT-Kernel 2.0 by streamlining
some features to adapt them specificically for controlling IoT edge devices. μT-Kernel 3.0 maintains high
compatibility with IEEE 2050-2018 by adopting the API added in IEEE 2050-2018. As a result, μT-Kernel
3.0 specification is completely upper compatible with IEEE 2050-2018.

μT-Kernel 3.0 Specification 14 / 502

1.2 Design Policy of μT-Kernel 3.0

μT-Kernel 3.0 specification defines an embedded real-time OS with small resource footprint meant for con-
trolling IoT edge devices. μT-Kernel improves development efficiency and interoperability of the software
by standardizing basic OS functions and API specification. It is designed to deliver high performance even
on a lower-end single-chip microcontroller unit (MCU), including 16-bit MCU, MCUs without a memory man-
agement unit (MMU), and small-scale embedded systems with a small amount ROM/RAM. Furthermore, μT-
Kernel has functions such as device driver control and power saving, so it can build low-power systems in
which various types of devices and communication methods are embedded for building an IoT network.

The %utk 3.0 specification defines a standard for an RTOS, and it can be implemented on many types of CPUs
irrespective of CPU architectures. At the same time, the designers are aware that it makes sense to adapt the
OS implementation or limit the OS functions in the case of very resource-poor systems in order to cope with
a particular choice of CPU and hardware configuration as in the case of tiny IoT edge nodes. To cope with
such situations, a concept and description of ”service profile” has been introduced in %utk to leave room for
the flexible implementation of the OS, at the same time retaining the compatibility of software and portability.
Service profile makes it possible to formally describe the omission and/or difference of functions available in
a particular implementation of the OS. This makes it easy for middleware and applications that run under the
OS to learn and cope with the implementation-dependent differences.

The %utk 3.0 specification includes common definitions such as data types, the state transition of tasks, which
are the basic units of parallel execution inside programs, non-task behavior such as that of interrupt handler,
and API specifications provided by the OS. File system management, network communication, process man-
agement, etc., are not included in the %utk 3.0 specification. However, by adding appropriate middleware
packages, we can build relatively large systems using %utk 3.0. That is, %utk 3.0 can be used as a microkernel
for a large system that has functions such as file system management, network communication, and process
management. It can be extended to support multi-core processors as well.

μT-Kernel 3.0 Specification 15 / 502

1.3 Structure of μT-Kernel 3.0

%utk 3.0 consists of ”%utk/OS” that handles the intrinsic functions of RTOS such as task scheduling, synchro-
nization, and communication between tasks, ”%utk/SM” that offers additional system management functions,
and ”%utk/DS” that offers functions for software debugger. The position and structure of μT-Kernel 3.0 is
shown in Figure 1.1, “Position and Structure of μT-Kernel 3.0”.

Figure 1.1: Position and Structure of μT-Kernel 3.0

μT-Kernel/OS provides the following functions:

• Task Management Functions

• Task Synchronization Functions

• Task Exception Handling Functions

• Synchronization and Communication Functions

• Extended Synchronization and Communication Functions

• Memory Pool Management Functions

• Time Management Functions

• Interrupt Management Functions

• System Management Functions

• Subsystem Management Functions

μT-Kernel/SM provides the following kinds of functions:

μT-Kernel 3.0 Specification 16 / 502

• System Memory Management Functions

• Device Management Functions

• Interrupt Management Functions

• I/O Port Access Support Functions

• Power Management Functions

• System Configuration Information Management Functions

• Memory Cache Control Functions

• Physical Timer Functions

• Utility Functions

μT-Kernel/DS provides the following kinds of functions exclusively for debugging use:

• Kernel Internal State Acquisition Functions

• Trace Functions

μT-Kernel 3.0 Specification 17 / 502

1.4 Reference Code

Since the optimization and customization is very important on small scale embedded systems, μT-Kernel 3.0
does not aim at the uniqueness of source code unlike T-Kernel. Instead it offers reference code, a source
code that can be referenced as a sample implementation.

Reference code is an example of an implementation of μT-Kernel 3.0, and is distributed by TRON Forum. A
major difference with T-Kernel is that this reference code is not the only implementation of μT-Kernel 3.0,
and it is free for any OS implementer to modify this reference code, or implement it from scratch. However,
only those that behave exactly as the reference code is officially recognized as μT-Kernel 3.0 specification
OS.

The reference code has been provided to specify behaviors which are difficult to describe in the specification,
and the introduction of the reference code has made it possible to assure and check the uniform behavior
across different implementations that are optimized and customized to target systems.

μT-Kernel 3.0 Specification 18 / 502

1.5 Adaptability and Service Profile

μT-Kernel 3.0 has been designed by paying attention to the the compatibility with T-Kernel. Namely, porting
between μT-Kernel 3.0 and T-Kernel ought to be simple. If only common features are used, a simple re-
compilation will do. Even if changes are necessary, the amount of change is small. That is the design goal.

For features that have strong dependency on hardware such as MMU and FPU, unnecessary features for the
intended narrow target, and features that have potential implications for run-time efficiency such as hooks
for debug support, the specification allows subsetting. To accommodate the subsetting in this manner, and
the desire to keep the distribution and portability of middleware and application high, such software needs
to obtain information about the implementation details of μT-Kernel 3.0. μT-Kernel 3.0 has introduced a
mechanism, ”service profile”, to let each implementation of μT-Kernel 3.0 describe implementation details
clearly. All μT-Kernel 3.0 implementations shall provide a service profile and provide information on the
functions that were omitted to create a subset.

μT-Kernel 3.0 Specification 19 / 502

1.6 Implementation Specification Document

With the introduction of service profile, not all the implementations of μT-Kernel 3.0 provide all the features
in the specification completely.

Hence, to let the user verify the implementation-dependent details of a particular implementation of μT-
Kernel 3.0, and avoid spending time to understand unexpected behavior, all μT-Kernel 3.0 implementations
shall produce an implementation specification document. The implementation specification document shall
describe the following at least.

Version number of μT-Kernel 3.0 specification
Clearly specify the major and minor version numbers of μT-Kernel 3.0.

Information about the Service Profile
Explicitly specify the values of all the service profile items.

μT-Kernel 3.0 Specification 20 / 502

1.7 Relation with Existing RTOS Specifications

This section lists the major differences between the μT-Kernel 3.0 specification and other legacy RTOS spec-
ifications that have close relationship with μT-Kernel 3.0.

1.7.1 Relation with μT-Kernel 2.0

1. Removal of features that assumes process management and virtual memory

μT-Kernel 3.0 defines a real-time OS to control small embedded systems and IoT edge nodes equipped
with 16-bit or 32-bit CPU. It is not designed to be used as the OS kernel with process management or
virtual memory for generic information processing systems. Because of this design decision, Address
Space Management Functions (Address Space Configuration, Address Space Checking, Logical Address
Space Management) and System Memory Allocation function which μT-Kernel 2.0 has are not included
in μT-Kernel 3.0. Also, among Subsystem Management Functions, startup/cleanup processing and
functions for resource group are not included in μT-Kernel 3.0.

2. Addition of handling system time

API that uses 0:00:00 of January 1st 1970 (UTC) as epoch to set system time have been added to μT-
Kernel 3.0: these are tk_set_utc, tk_set_utc_u, tk_get_utc, tk_get_utc_u, td_get_utc, td_get_utc_u.

3. Removal of Rendezvous Function

μT-Kernel 3.0 does not have Rendezvous function, one of Extended Synchronization and Communica-
tion Functions of T-Kernel.

1.7.2 Relation with T-Kernel 2.0

1. Removal of features that assumes process management and virtual memory

μT-Kernel 3.0 defines a real-time OS to control small embedded systems and IoT edge nodes equipped
with 16-bit or 32-bit CPU. It is not designed to be used as the OS kernel with process management or
virtual memory for generic information processing systems. Because of this design decision, Address
Space Management Functions (Address Space Configuration, Address Space Checking, Logical Address
Space Management) and System Memory Allocation function which T-Kernel 2.0 has are not included
in μT-Kernel 3.0. Also, among Subsystem Management Functions, startup/cleanup processing and
functions for resource group are not included in μT-Kernel 3.0.

2. Introduction of service profile

For μT-Kernel that addresses the needs of small-scale embedded systems, the specification aims at the
ease of optimization and customization. However, at the same time, to improve the ease of distribution
of middleware and applications by increasing portability, a formal mechanism to describe the issues
for implementation-dependency of μT-Kernel is now introduced. For details, see Section 2.8, “Service
Profile” .

3. Specification of user buffer

APIs that need to use internal memory on the stack or in the memory pools can use a user-specified
buffer area instead of using the automatically allocated area by the kernel. Specification by TA_USERBUF
is enough to use a user-specified buffer in general.

4. Type changes for supporting 16-bit CPU

μT-Kernel needs to support 16-bit CPU, and the integer that can be represented by INT or UINT type
may be restricted to 16-bit integer values. For this reason, some arguments of APIs and members of
structures now have wide enough scalar types, instead of INT or UINT types, so that they can present
the values adequately.

μT-Kernel 3.0 Specification 21 / 502

5. Customization for small-scale embedded systems

μT-Kernel is meant for small-scale embedded systems, and so the specification has been tuned to such
usage. For example, an implementation with a smaller value, than in T-Kernel, for the largest value of
task priority is allowed.

6. Re-organization and extension of interrupt management function

μT-Kernel 3.0 offers interrupt management functions that are based on those of T-Kernel 2.0 after re-
organizing and extending these one way or the other. There are differences as follows.

(a) Addition of functions to obtain and set interrupt mask level
Add APIs for obtaining and setting the interrupt mask level of CPU and/or interrupt controller
namely SetCpuIntLevel, GetCpuIntLevel, SetCtrlIntLevel, and GetCtrlIntLevel.

(b) Abolishing interrupt vector number (INTVEC)
In order to simplify number systems used for interrupts and make it simple to understand, we abol-
ished with the specification using interrupt vector number (INTVEC) For APIs that take INTVEC as
argument in T-Kernel 2.0, we use the common interrupt number used in tk_def_int() as the argument
instead of INTVEC.

1.7.3 Relation with IEEE 2050-2018

Specification of μT-Kernel 3.0 is upward compatible with the specification of IEEE 2050-2018 standard which
IEEE published for the standard RTOS for IoT edge nodes. Because of this, an OS that satisfies the μT-Kernel
3.0 specification automatically satisfies IEEE 2050-2018 specification.

On the other hand, the specification of IEEE 2050-2018 is a subset of μT-Kernel 3.0 specification. The fol-
lowing functions of μT-Kernel 3.0 are not included in IEEE 2050-2018: Subsystem Management Functions,
and Kernel Internal State Acquisition Functions and Trace Functions for debugging purposes provided by
μT-Kernel/DS. Also the following functions are not in IEEE 2050-2018: Functions that handle DS Object
Names(dsname) and APIs to handle system time using 00:00:00, January 1, 1985 (GMT) as epoch (tk_get_tim,
tk_get_tim_u, tk_set_tim, tk_set_tim_u).

μT-Kernel 3.0 Specification 22 / 502

Chapter 2

μT-Kernel Concepts

μT-Kernel 3.0 Specification 23 / 502

2.1 Meaning of Basic Terminology

Real-time system and real-time operating system (RTOS)

A system whose response time and delay time are deterministic without uncertainty and non-reproducibility
and has an internal configuration that makes the worst value predictable or makes it easy to produce an
educated guess value is called a real-time system.

μT-Kernel is the real-time operating system (RTOS) that is used for building real-time systems with the
preceding characteristics.

Task, invoking task

The basic logical unit of concurrent program execution is called a ”task.” Whereas the code in one
task is executed in sequence, codes in different tasks can be executed in parallel. This concurrent
processing is a conceptual phenomenon, from the standpoint of applications; in actual implementation
it is accomplished by time-sharing among tasks as controlled by the kernel.

A task that invokes a system call is called the ”invoking task.”

Dispatch, dispatcher

The switching of tasks executed by the processor is called ”dispatching” (or task dispatching). The
kernel mechanism by which dispatching is realized is called a ”dispatcher” (or task dispatcher).

Scheduling, scheduler

The processing to determine which task to execute next is called ”scheduling” (or task scheduling). The
kernel mechanism by which scheduling is realized is called a ”scheduler” (or task scheduler). Generally
a scheduler is implemented inside system call processing or in the dispatcher.

Context

The environment in which a program runs is generally called ”context.” For a context to be called iden-
tical, at the very least the processor operation mode must be the same and the stack space must be the
same (part of the same contiguous area). Note that context is a conceptual entity from the standpoint of
applications; even when processing must be executed in independent contexts, in actual implementation
both contexts may sometimes use the same processor operation mode and the same stack space.

Precedence

The execution order of tasks, i.e., the order relation, is called precedence. This refers to the order of
tasks when an execution right is given to a task among a group of tasks in the executable state to be in
the execution state. If task Y has a higher precedence than task X, task Y will be executed first. If task
Y, which has higher precedence than task X, becomes ready for execution while task X is executed, the
execution right will be transferred to task Y, and task Y will be in execution state, i.e., RUNNING state.
In this case, task X will be in the executable state, i.e., READY state, instead of execution state.

Additional Notes
Precedence has a similar meaning to ”priority”, and they both affect the execution order of tasks. How-
ever, ”priority” is an attribute of tasks specified by API parameter, etc., explicitly from applications,
whereas ”precedence” is a concept that is employed to define the execution order among a group of
tasks. The precedence among a group of tasks is determined based on the priority of the tasks. A task
with higher priority has higher precedence. On the other hand, tasks with the same priority do not have
the same precedence. Among tasks having the same priority, the one that entered an executable state
(i.e., RUNNING state or READY state) first has the highest precedence. It is possible, however, to use
an API such as tk_rot_rdq to change the precedence among tasks having the same priority.

API and system call

The standard interfaces for calling functions provided by μT-Kernel from applications or middleware
are collectively called API (Application Programming Interface). In addition to system calls that directly
call kernel functions, APIs include functions implemented as extended SVCs, macros, and libraries.

μT-Kernel 3.0 Specification 24 / 502

Extended SVC

System calls that are added at the time of the initial startup of OS or added later are called extended
SVC. μT-Kernel 3.0 specification stipulates @_Subsystem Management Functions_@ can be used to
define/implement extended SVC. Implementation of μT-Kernel/SM API can use extended SVC(s).

A program that executes the function of an extended SVC is extended SVC handler.

Kernel

Kernel refers to the portion of μT-Kernel that is not implemented by extended SVCs, compile-time
macros, or library functions. μT-Kernel/SM API can be implemented using extended SVC, compile-
time macros, and/or library functions. Such APIs are part of μT-Kernel specification. However, it is
not deemed to be part of the kernel. On the other hand, all the functions of μT-Kernel/OS and μT-
Kernel/DS are included in the kernel.

When we refer to system state while a non-task portion is executing, we need to be aware whether the
execution is within the kernel or not.

Implementation-defined

That something is implementation-defined means that something is not standardized in the T-Kernel
specification and should be defined for each implementation. The specifics of the implementation should
be described clearly in the implementation specifications. In application programs, the portability for
the portion dependent on implementation-defined items is not assured.

Implementation-dependent

That something is implementation-dependent means that in the T-Kernel specification, the behavior of
something varies according to the target systems or system operating conditions. The behavior should
be defined for each implementation. The specifics of the implementation should be described clearly in
the implementation specifications. In application programs, the portion dependent on implementation-
dependent items needs to be modified when porting in principle.

μT-Kernel 3.0 Specification 25 / 502

2.2 Task States and Scheduling Rules

2.2.1 Task States

Task states are classified primarily into the five below. Of these, Waiting state in the broad sense is further
classified into three states. Saying that a task is in a RUN state means it is in either RUNNING state or READY
state.

RUNNING state
The task is currently being executed. When a task-independent portion is executing, except when oth-
erwise specified, the task that was executing prior to the start of task-independent portion execution is
said to be in RUNNING state.

READY state
The task has completed preparations for running, but cannot run because a task with higher precedence
is running. In this state, the task is able to run whenever it becomes the task with the highest precedence
among the tasks in READY state.

Waiting states
The task cannot run because the conditions for running are not in place. In other words, the task is
waiting for the conditions for its execution to be met. While a task is in one of the Waiting states, the
program counter and register values, and the other information representing the program execution
state, are saved. When the task resumes running from this state, the program counter, registers and other
values revert to their values immediately prior to going to the Waiting state. This state is subdivided into
the following three states.

WAITING state
Execution is stopped because a system call was invoked that interrupts execution of the invoking
task until some condition is met.

SUSPENDED state
Execution was forcibly interrupted by another task.

WAITING-SUSPENDED state
The task is in both WAITING state and SUSPENDED state at the same time. WAITING-SUSPENDED
state results when another task requests suspension of a task already in WAITING state.
μT-Kernel makes a clear distinction between WAITING state and SUSPENDED state. A task cannot
go to SUSPENDED state on its own.

DORMANT state
The task has not yet been started or has completed execution. While a task is in DORMANT state,
information presenting its execution state is not saved. When a task is started from DORMANT state,
execution starts from the task start address. Except when otherwise specified, the register values are
not saved.

NON-EXISTENT state
A virtual state before a task is created, or after it is deleted, and is not registered in the system.

Depending on the implementation, there may also be transient states that do not fall into any of the above
categories (see Section 2.5, “System States”).

When a task going to READY state has higher precedence than the currently running task, a dispatch may
occur at the same time as the task goes to READY state and it may make an immediate transition to RUNNING
state. In such a case the task that was in RUNNING state up to that time is said to have been preempted by
the task that goes to RUNNING state anew. Note also that in explanations of system call functions, even when
a task is said to go to READY state, depending on the task precedence it may go immediately to RUNNING
state.

Task starting means transferring a state from DORMANT state to READY state. A task is therefore said to be
in ”started” state if it is in any state other than DORMANT or NON-EXISTENT. Task exit means that a task in
started state goes to DORMANT state.

μT-Kernel 3.0 Specification 26 / 502

Task wait release means that a task in WAITING state goes to READY state, or a task in WAITING-SUSPENDED
state goes to SUSPENDED state. The resumption of a suspended task means that a task in SUSPENDED state
goes to READY state, or a task in WAITING-SUSPENDED state goes to WAITING state.

Task state transitions in a typical implementation are shown in Figure 2.1, “Task State Transition Diagram”.
Depending on the implementation, there may be other states besides those shown here.

μT-Kernel 3.0 Specification 27 / 502

Figure 2.1: Task State Transition Diagram

μT-Kernel 3.0 Specification 28 / 502

A feature of μT-Kernel is the clear distinction made between system calls that perform operations affecting the
invoking task and those whose operations affect other tasks (see Table 2.1, “State Transitions Distinguishing
Invoking Task and Other Tasks”). The reason for this is to clarify task state transitions and facilitate under-
standing of system calls. This distinction between system call operations in the invoking task and operations
affecting other tasks can also be seen as a distinction between state transitions from RUNNING state and
those from other states.

Operations in invoking tasks
(Transition from RUNNING

state)

Operations on other tasks
(Transitions from other states)

Task transition to a waiting state
(including SUSPENDED) tk_slp_tsk

RUNNING state → WAITING
state

tk_sus_tsk
READY state, WAITING state →

SUSPENDED state,
WAITING-SUSPENDED state

Task exit tk_ext_tsk
RUNNING state → DORMANT

state

tk_ter_tsk
READY state, WAITING state →

DORMANT state
Task deletion tk_exd_tsk

RUNNING state →
NON-EXISTENT state

tk_del_tsk
DORMANT state →

NON-EXISTENT state

Table 2.1: State Transitions Distinguishing Invoking Task and Other Tasks

Additional Notes
WAITING state and SUSPENDED state are orthogonally related, in that a request for transition to SUSPENDED
state cannot have any effect on the conditions for task wait release. That is, the task wait release conditions
are the same whether the task is in WAITING state or WAITING-SUSPENDED state. Thus even if transition to
SUSPENDED state is requested for a task that is in a state of waiting to acquire some resource (semaphore
resource, memory block, etc.), and the task goes to WAITING-SUSPENDED state, the conditions for allocation
of the resource do not change but remain the same as before the request to go to SUSPENDED state.

Rationale for the Specification
The reason the μT-Kernel makes a distinction between WAITING state (wait caused by the invoking task) and
SUSPENDED state (wait caused by another task) is that these states sometimes overlap. By recognising these
overlapped states as WAITING-SUSPENDED states, the task state transitions become clearer and system calls
are easier to understand. On the other hand, since a task in WAITING state cannot invoke a system call,
different types of WAITING state (e.g., waiting for wakeup, or waiting to acquire a semaphore resource) will
never overlap. Since there is only one kind of waiting state caused by another task (SUSPENDED state), the
μT-Kernel treats repeated entries to SUSPENDED state as nesting, thereby achieving clarity of task state
transitions.

2.2.2 Task Scheduling Rules

The μT-Kernel adopts a preemptive priority-based scheduling method based on priority levels assigned to
each task. Tasks having the same priority are scheduled on a FCFS (First Come First Served) basis. Specif-
ically, task precedence is used as the task scheduling rule, and precedence among tasks is determined as
follows based on the priority of each task. If there are multiple tasks that can be run, the one with the highest
precedence goes to RUNNING state and the others go to READY state. In determining precedence among
tasks, of those tasks having different priority levels, that with the highest priority has the highest precedence.
Among tasks having the same priority, the one that entered a run state (RUNNING state or READY state) first

μT-Kernel 3.0 Specification 29 / 502

has the highest precedence. It is possible, however, to use a system call to change the precedence among
tasks having the same priority.

When the task with the highest precedence changes from one task to another, a dispatch occurs immediately
and the task in RUNNING state is switched. If no dispatch occurs (during execution of a handler, during
dispatch disabled state, etc.), however, the switching of the task in RUNNING state is held off until the next
dispatch occurs.

Additional Notes
According to the scheduling rules adopted in the μT-Kernel, so long as there is a higher precedence task in a
run state, a task with lower precedence will simply not run. That is, unless the highest-precedence task goes
to WAITING state or for other reason cannot run, other tasks are not run. This is a fundamental difference
from TSS (Time Sharing System) scheduling in which multiple tasks are treated equally.
It is possible, however, to issue a system call changing the precedence among tasks having the same priority.
An application can use such a system call to realize round-robin scheduling, which is a typical kind of TSS
scheduling.
Examples in figures below illustrate how the task that first goes to a run state (RUNNING state or READY state)
gains precedence among tasks having the same priority. Figure 2.2, “Precedence in Initial State” shows the
precedence among tasks after Task A of priority 1, Task E of priority 3, and Tasks B, C and D of priority 2 are
started in that order. The task with the highest precedence, Task A, goes to RUNNING state.
When Task A exits, Task B with the next-highest precedence goes to RUNNING state (Figure 2.3, “Precedence
After Task B Goes To RUNNING State”). When Task A is again started, Task B is preempted and reverts to
READY state; but since Task B went to a run state earlier than Task C and Task D, it still has the highest prece-
dence among tasks with the same priority. In other words, the task precedence reverts to that in Figure 2.2,
“Precedence in Initial State”.
Next, consider what happens when Task B goes to WAITING state in the conditions in Figure 2.3, “Precedence
After Task B Goes To RUNNING State”. Since task precedence is defined among tasks that can be run,
the precedence among tasks becomes as shown in Figure 2.4, “Precedence After Task B Goes To WAITING
State”. Thereafter when the Task B waiting state is released, Task B goes to run state after Task C and Task
D, and thus assumes the lowest precedence among tasks of the same priority (Figure 2.5, “Precedence After
Task B WAITING State Is Released”).
Summarizing the above, immediately after a task that goes from READY state to RUNNING state reverts to
READY state, it has the highest precedence among tasks of the same priority; but after a task goes from
RUNNING state to WAITING state and then the wait is released, its precedence is the lowest among tasks of
the same priority.
Note that after a task goes from SUSPENDED state to a run state, it has the lowest precedence among tasks
of the same priority.

Figure 2.2: Precedence in Initial State

μT-Kernel 3.0 Specification 30 / 502

Figure 2.3: Precedence After Task B Goes To RUNNING State

Figure 2.4: Precedence After Task B Goes To WAITING State

Figure 2.5: Precedence After Task B WAITING State Is Released

μT-Kernel 3.0 Specification 31 / 502

2.3 Interrupt Handling

Interrupts in the μT-Kernel include both external interrupts from devices and interrupts due to CPU excep-
tions. One interrupt handler may be defined for each interrupt handler number. Interrupt handlers can be
started in two ways: one is to start it without the kernel intervention, the other is to start it via a high-level
language support routine.

For more details, see Section 4.8, “Interrupt Management Functions”.

μT-Kernel 3.0 Specification 32 / 502

2.4 Task Exception Handling

The μT-Kernel defines task exception handling functions for dealing with exceptions. Note that CPU excep-
tions are treated as interrupts.

A task exception handling function invokes a system call requesting task exception handling by a designated
task, interrupts execution by the specified task, and runs a task exception handler. Execution of the task
exception handler takes place in the same context as the interrupted task. Upon return from the task exception
handler, the interrupted processing continues.

One task exception handler per task can be registered from an application.

For more details, see Section 4.3, “Task Exception Handling Functions”.

μT-Kernel 3.0 Specification 33 / 502

2.5 System States

2.5.1 System States While Non-task Portion Is Executing

When programming tasks to run on μT-Kernel, one can keep track of the changes in task states by using a
task state transition diagram. In the case of routines such as interrupt handlers or extended SVC handlers,
however, the user must perform programming at a level closer to the kernel than tasks. In this case consider-
ation must be made also of system states while a non-task portion is being executed, for application programs
to work properly. An explanation of μT-Kernel system states is therefore given here.

System states are classified as in Figure 2.6, “Classification of System States”.

Of these shown in Figure 2.6, “Classification of System States”, a ”transient state” is equivalent to the kernel
running state (system call execution). From the standpoint of the user, it is important that each of the system
calls issued by the user application program be executed indivisibly, and that the internal states while a system
call is executing cannot be seen by the user. For this reason the state while the kernel running is considered
a ”transient state” and internally it is treated as a black box.

However, in the following case, for instance, a transient state may become visible to users.

• When memory is being allocated or freed in the case of a system call that gets or releases memory (while a
μT-Kernel/SM system memory management function is called).

When a task is in a transient state such as these, the behavior of a task termination (tk_ter_tsk) system call is
not guaranteed. Moreover, task suspension (tk_sus_tsk) may cause a deadlock or other problem by stopping
without clearing the transient state.

Accordingly, as a rule tk_ter_tsk and tk_sus_tsk cannot be used in programs. These system calls should be
used only in specific middleware or debugger, which is closely related to OS itself.

While being a ”non-task portion,” the portion that is considered to be running a processing requested from a
specific task (called a ”requesting task”) is called ”quasi-task portion.” For example, an extended SVC handler
is executed as a ”quasi-task portion.” The invoking task can be identified in a ”quasi-task portion” and the
requesting task becomes the invoking task. Similar to the task portion, in the quasi-task portion, the task state
transitions can be defined and system calls can be issued to enter into WAITING state from the quasi-task
portion. In this way, the quasi-task portion behaves similarly to a subroutine called from a requesting task.
”Quasi-task portion” is, however, positioned as an extended part of OS and its processor operation mode and
stack space are different from those of the task portion. It means that when a state enters into a quasi-task
portion from a task portion, its processor operation mode and stack space are switched. This behavior is
different from when a function or subroutine is called in a task portion.

Among the ”non-task portion,” a ”task-independent portion” is activated due to a factor that completely
ignore the progress of the task portion or quasi-task portion processing. Specifically, an interrupt handler
that is triggered by an external interrupt or a time event handler (cyclic handler and alarm handler) that
is triggered due to the specified elapsed time is executed as a ”task-independent portion.” Note that both
the external interrupt and the specified elapsed time are the factors that is independent from a task that is
incidentally running at that moment.

Finally, ”non-task portion” is separated into three classes: ”transient state,” ”quasi-task portion,” and ”task-
independent portion.” The states other than these represent a state where a program for the task is running,
this is, the state where ”task portion is running.”

μT-Kernel 3.0 Specification 34 / 502

Figure 2.6: Classification of System States

2.5.2 Task-Independent Portion and Quasi-Task Portion

A feature of a task-independent portion (interrupt handlers, time event handlers, etc.) is that it is meaningless
to identify the task that was running immediately prior to entering a task-independent portion, and the concept
of ”invoking task” does not exist. Accordingly, a system call that enters WAITING state, or one that is issued
implicitly specifying the invoking task, cannot be called from a task-independent portion. Moreover, since
the currently running task cannot be identified in a task-independent portion, there is no task switching
(dispatching). If dispatching is necessary, it is delayed until processing leaves the task-independent portion.
This is called delayed dispatching.

If dispatching were to take place in the interrupt handler, which is a task-independent portion, the rest of
the interrupt handler routine would be delayed for execution after the task started by the dispatching, caus-
ing problems in case of interrupt nesting. This is illustrated in Figure 2.7, “Interrupt Nesting and Delayed
Dispatching”.

In Figure 2.7, “Interrupt Nesting and Delayed Dispatching”, Interrupt X is raised during Task A execution,
and while its interrupt handler is running, a higher-priority interrupt Y is raised. In this case, if dispatching
were to occur immediately on return from interrupt Y at (1),1 starting Task B, the processing of parts (2) to (3)
of Interrupt X would be put off until after Task B relinquishes CPU, with parts (2) to (3) executed only after Task
A goes to RUNNING state. The danger is that the low-priority Interrupt X handler would be preempted not
only by a higher-priority interrupt but even by Task B started by that interrupt. There would no longer be any
guarantee of the interrupt handler execution maintaining priority over task execution, making it impossible
to write an interrupt handler. This is the reason for introducing the principle of delayed dispatching.

A feature of a quasi-task portion, on the other hand, is that the task executing prior to entering the quasi-
task portion (the requesting task) can be identified, making it possible to define task states just as in the task
portion; moreover, it is possible to enter WAITING state while in a quasi-task portion. Accordingly, dispatching
occurs in a quasi-task portion in the same way as in ordinary task execution. As a result, even though the
OS extended part and other quasi-task portion is a non-task portion, its execution does not necessarily have
priority at all times over the task portion. This is in contrast to interrupt handlers, which must always be given
execution precedence over tasks.

The following two examples illustrate the difference between a task-independent portion and quasi-task por-
tion.

1 If dispatching takes place at (1), the remainder of the handler routine for Interrupt X ((2) to (3)) ends up being put off until later.

μT-Kernel 3.0 Specification 35 / 502

• An interrupt is raised while Task A (priority 8 = low) is running, and in its interrupt handler (task-independent
portion) tk_wup_tsk is issued for Task B (priority 2 = high). In accordance with the principle of delayed
dispatching, however, dispatching does not yet occur at this point. Instead, after tk_wup_tsk execution, first
the remaining part of the interrupt handler are executed. Only when tk_ret_int is executed at the end of the
interrupt handler does dispatching occur, causing Task B to run.

• An extended SVC is executed in Task A (priority 8 = low), and in its extended SVC handler (quasi-task
portion), tk_wup_tsk is issued for Task B (priority 2 = high). In this case the principle of delayed dispatching
is not applied, so dispatching occurs in tk_wup_tsk processing. Task A goes to READY state in a quasi-task
portion, and Task B goes to RUNNING state. Task B is therefore executed before the rest of the extended
SVC handler is completed. The rest of the extended SVC handler is executed after dispatching occurs again
and Task A goes to RUNNING state.

Figure 2.7: Interrupt Nesting and Delayed Dispatching

μT-Kernel 3.0 Specification 36 / 502

2.6 Objects

”Object” is the general term for resources handled by μT-Kernel. Besides tasks, objects include memory
pools, semaphores, event flags, mailboxes and other synchronization and communication mechanisms, as
well as time event handlers (cyclic handlers and alarm handlers).

Attributes can generally be specified when an object is created. Attributes determine detailed differences in
object behavior or the object initial state. When TA_XXXXX is specified for an object, that object is called
a ”TA_XXXXX attribute object.” If there is no particular attribute to be defined, TA_NULL (= 0) is specified.
Generally there is no interface provided for reading attributes after an object is registered.

In an object attribute value, the lower bits indicate system attributes and the upper bits indicate implementation-
dependent attributes. This specification does not define the bit position at which the upper and lower dis-
tinction is to be made. Basically, bits that are not defined in the standard specification can be used as
implementation-dependent attributes. In principle, however, the system attribute portion is assigned from
the least significant bit (LSB) toward the most significant bit (MSB), and implementation-dependent attributes
from the MSB toward the LSB. Bits not defining any attribute must be cleared to 0.

In some cases an object may contain extended information. Extended information is specified when the object
is registered. Information passed in parameters when an object starts execution has no effect on μT-Kernel
behavior. Extended information can be read by calling an object status reference system call.

An object is identified by an ID number. In μT-Kernel, an ID number is automatically assigned when an object
is created. Users cannot specify ID numbers. This makes identifying an object during debugging difficult. We
can specify an object name for debugging upon creating each object. This name is used temporarily for
debugging and can be referred to only from μT-Kernel/DS functions. No check is performed on the naming
by μT-Kernel.

μT-Kernel 3.0 Specification 37 / 502

2.7 Protection Levels

In μT-Kernel, four levels from 0 to 3 (meaning privileged mode, user mode, etc.) are defined as the protection
level at runtime, and also four levels from 0 to 3 are defined as the protection level of memory to be accessed.
The currently running execution task can access only to the memory with the same or lower protection level.
This function is useful for protecting a system such as the OS from being illegally accessed by programs.

The uses of each protection level are as follows.

Protection Levels Usage
0 Kernel, subsystems, device drivers, etc.
1 System application tasks
2 (reserved)
3 User application tasks

Some CPUs support only two protection levels privileged (supervisor mode) and user levels. In such a case
protection level 0 is assigned to the privileged level and protection level 3 to the user level. In such a case
if protection levels from 0 to 2 are specified in an API the behavior of the system is the same as in the case
of privileged level 0 being specified. For example if TA_RNG2 is specified in tskatr when tk_cre_tsk is invoked
it is assumed that TA_RNG0 has been specified and the task executes at the privileged level (protection level
0). Another example is specifying TA_RNG2 in mplatr when tk_cre_mpl is invoked. This is assumed to specify
TA_RNG0 and the access protection level of the created memory pool is 0. In this case the service profile defines
the following macros to be 0: TK_MEM_RNG0, TK_MEM_RNG1, TK_MEM_RNG2.

In the case of CPUs without any distinction for privileged and user modes only protection level 0 is used. In
such a case if protection levels 1 to 3 are specified in an API the behavior of the system is the same as in the
case of privileged level 0 being specified. In this case the service profile defines the following macros to be
0: TK_MEM_RNG0, TK_MEM_RNG1, TK_MEM_RNG2, TK_MEM_RNG3.

When a protection privilege level of the currently running context is lower than that of the memory being
accessed the violation of memory access privilege shall be detected and a CPU exception shall be generated.

Changing from one protection level to another is accomplished by invoking a system call or extended SVC or
by interrupt or CPU exception.

A non-task portion (task-independent portion, quasi-task portion, etc.) runs at protection level 0. Only a task
portion can run at protection levels 1 to 3. A task portion can also run at protection level 0.

μT-Kernel 3.0 Specification 38 / 502

2.8 Service Profile

μT-Kernel 3.0 is an OS specification for small-scale embedded computer systems, and it allows many im-
plementations, and permits customization and optimization suitable for each target platform. For features
that have strong dependency on hardware such as floating-point unit (FPU), and features that have potential
implications for run-time efficiency such as hooks for debug support, the specification allows subsetting as
exceptional case, and this allows efficient implementation of μT-Kernel 3.0 specification OS on target hard-
ware. To accommodate the subsetting in this manner, and the desire to keep the distribution and portability
of middleware and application high, μT-Kernel 3.0 has introduced a mechanism to let each implementation
of μT-Kernel 3.0 describe the differences in the implementation from other implementation of μT-Kernel
3.0. This description as a whole is called service profile.

Service profile in μT-Kernel 3.0 is realized by enumerating the information about a particular implementation
of μT-Kernel 3.0 as a list of C language macros that have constant value. For example, an implementation
that allows the specification of TA_USERBUF, the corresponding service profile items must be defined as below
to announce the support of TA_USERBUF.

#define TK_SUPPORT_USERBUF TRUE /* Support of user -specified buffer
(TA_USERBUF) */

Applications and middleware can use the service profile information and write code according to the existence
of the support of TA_USERBUF. For example, the following is a typical use case.

T_CTSK ctsk = {
.exinf = NULL ,

#if TK_SUPPORT_USERBUF
.tskatr = TA_HLNG|TA_RNG0|TA_USERBUF ,
.bufptr = taskA_stack ,

#else
.tskatr = TA_HLNG|TA_RNG0 ,

#endif
.task = task ,
.itskpri = 10,
.stksz = 2048

};

tskid = tk_cre_tsk (&ctsk);

The code sample above changes, depending on the availability of TA_USERBUF, changes the content of param-
eter packet ctsk which is passed to tk_cre_tsk. In this manner, it is possible to develop applications and
middleware that can be used on both the implementations, those that support TA_USERBUF and those that do
not. Middleware developers are requested to improve the portability and thus facilitate distribution of mid-
dleware software packages by using the service profile mechanism appropriately.

For the details of service profile items defined in μT-Kernel 3.0, see Section 3.4, “Service Profile”.

μT-Kernel 3.0 Specification 39 / 502

Chapter 3

Common Rules of μT-Kernel

μT-Kernel 3.0 Specification 40 / 502

3.1 Data Types

3.1.1 General Data Types

typedef signed char B; /* signed 8-bit integer */
typedef signed short H; /* signed 16-bit integer */
typedef signed long W; /* signed 32-bit integer */
typedef signed long long D; /* signed 64-bit integer */
typedef unsigned char UB; /* unsigned 8-bit integer */
typedef unsigned short UH; /* unsigned 16-bit integer */
typedef unsigned long UW; /* unsigned 32-bit integer */
typedef unsigned long long UD; /* unsigned 64-bit integer */

typedef char VB; /* 8-bit data without an intended type */
typedef short VH; /* 16-bit data without an intended type */
typedef long VW; /* 32-bit data without an intended type */
typedef long long VD; /* 64-bit data without an intended type */

typedef volatile B _B; /* volatile declaration */
typedef volatile H _H;
typedef volatile W _W;
typedef volatile D _D;
typedef volatile UB _UB;
typedef volatile UH _UH;
typedef volatile UW _UW;
typedef volatile UD _UD;

typedef signed int INT; /* signed integer of processor bit width */
typedef unsigned int UINT; /* unsigned integer of processor bit width */

typedef INT SZ; /* Generic SiZe */

typedef INT ID; /* general ID */
typedef W MSEC; /* general time (in milliseconds) */

typedef void (*FP)(); /* general function address */
typedef INT (* FUNCP)(); /* general function address */

#define LOCAL static /* local symbol definition */
#define EXPORT /* global symbol definition */
#define IMPORT extern /* global symbol reference */

/*
* Boolean values
* TRUE = 1 is defined , but any value other than 0 is logically TRUE.
* Do NOT use as in if (bool == TRUE)
* use as in if (bool)
*/
typedef UINT BOOL;
#define TRUE 1 /* true */
#define FALSE 0 /* false */

μT-Kernel 3.0 Specification 41 / 502

Note

• VB, VH, VW, and VD differ from B, H, W, and D in that the former mean only the bit width is known, not the
contents of the data type, whereas the latter clearly indicate integer type.

• SZ type is an integer data type with implementation-defined bit width, and it shall be properly defined
based on the CPU bit width and memory space size for each implementation.

• BOOL defines TRUE as 1, but any value other than 0 is also true. For this reason, TRUE must not be used as
left-hand or right-hand value of comparison operators (== and !=) for deciding whether the value is true
or false. That is, conditional operations like ”if (boolean value == TRUE)” should be avoided, and instead
use boolean value directly as condition, like ”if (boolean value)”.

Related Service Profile Items
The 64-bit data types, D, UD, and VD, are guaranteed to be usable when the following service profile item is
set to be effective.

TK_HAS_DOUBLEWORD Support of 64-bit data types (D, UD, VD)

Additional Notes
Parameters such as stksz, wupcnt, and message size that clearly do not take negative values are also in prin-
ciple signed integer (INT or W) data type. This is in keeping with the overall TRON project rule that integers
should be treated as signed numbers as much as possible. As for the timeout (TMO tmout) parameter, its
being a signed integer enables the use of TMO_FEVR＝(-1) having special meaning. Parameters with unsigned
data type are those treated as bit patterns (object attribute, event flag, etc.)

3.1.2 Other Defined Data Types

The following names are used for other data types that appear frequently or have special meaning, in order
to make The parameter meaning clear.

typedef INT FN; /* Function Codes */
typedef UW ATR; /* Object/handler attributes */
typedef INT ER; /* Error Code */
typedef INT PRI; /* Priority */
typedef W TMO; /* Timeout specification in milliseconds */
typedef D TMO_U; /* Timeout specification in microseconds with 64- ←↩

bit integer */
typedef UW RELTIM; /* Relative time in milliseconds */
typedef UD RELTIM_U; /* Relative time in microseconds with 64-bit ←↩

integer */

typedef struct systim { /* System time in milliseconds */
W hi; /* High 32 bits */
UW lo; /* Low 32 bits */

} SYSTIM;

typedef D SYSTIM_U; /* System time in microseconds with 64-bit integer ←↩
*/

/*
* Common constants
*/

μT-Kernel 3.0 Specification 42 / 502

#define NULL 0 /* Null pointer */
#define TA_NULL 0 /* No special attributes indicated */
#define TMO_POL 0 /* Polling */
#define TMO_FEVR (-1) /* Eternal wait */

Note

• A data type that combines two or more data types is represented by its main data type. For example, the
value returned by tk_cre_tsk can be a task ID or error code, but since it is mainly a task ID, the data type is
ID.

Related Service Profile Items
TMO_U, RELTIM_U, and SYSTEM_U dealing with date and relative time in microsecond resolution are guar-
anteed to be usable only when the following service profile items are set to be effective.

TK_SUPPORT_USEC Support of microsecond

Additional Notes
The policy is to append ”_u” (u means μ) or ”_U” at the end for parameters and data types representing
microsecond (μsec), or append ”_d” (d means double integer) or ”_D” at the end for other parameters and
data types representing 64-bit integer. TMO_U, RELTIM_U, and SYSTIM_U are data type names complying
to this policy.

μT-Kernel 3.0 Specification 43 / 502

3.2 System Calls

3.2.1 System Call Format

μT-Kernel adopts C as the standard high-level language, and standardizes interfaces for system call execution
from C language routines.

The method for interfacing with the assembly language shall be implementation-dependent. Calling by means
of a C language interface is recommended even when an assembly language is used. In this way, portability
is assured for programs written in assembly language even if the OS changes, so long as the CPU is the same.

The following common rules are established for system call interfaces.

• All system calls are defined as C language functions.

• A function return code of 0 or a positive value indicates normal completion, while negative values are used
for error codes.

The implementation of the system call interface is not standardized, and is implementation-dependent. For
example, we can use C language macros, inline functions, inline assembly language description, etc.

Among C language interfaces for system calls, those which pass parameters using a packet or pointer have
CONST modifier attached to explicitly indicate that μT-Kernel does not overwrite a parameter referred to by
the pointer.

CONST is intended to be the C language const modifier equivalent. This alias for const is used so that the
compiler check can be disabled by using #define macro function when any program that does not support
const modifier mixes in.

Specific usage of CONST is as follows: Details, however, depend on the development environment.

1. Include the following descriptions in the common include file:

/* If TKERNEL_CHECK_CONST definition exists , enable the check for const */
#ifdef TKERNEL_CHECK_CONST
#define CONST const
#else
#define CONST
#endif

2. Describe a function definition or system call definition in the program by using CONST.

Description Example of CONST

tk_cre_tsk(CONST T_CTSK *pk_ctsk);
foo_bar(CONST void *buf);

In μT-Kernel 3.0 or later, it is strongly recommended that CONST is used explicitly in a program and the
check for const is enabled in the configuration.

3.2.2 APIs Possible from Task-Independent Portion

The following system calls of μT-Kernel/OS can be issued from a task-independent portion and in dispatch
disabled state:

System call name Summary description
tk_sta_tsk Start Task
tk_ref_tsk Reference Task Status

μT-Kernel 3.0 Specification 44 / 502

System call name Summary description
tk_wup_tsk Wakeup Task
tk_rel_wai Release Wait
tk_sus_tsk Suspend Task
tk_sig_tev Signal Task Event
tk_sig_sem Signal Semaphore
tk_set_flg Set Event Flag
tk_sta_cyc Start Cyclic Handler
tk_stp_cyc Stop Cyclic Handler
tk_ref_cyc Reference Cyclic Handler Status
tk_ref_cyc_u Reference Cyclic Handler Status (Microseconds)
tk_sta_alm Start Alarm Handler
tk_sta_alm_u Start Alarm Handler (Microseconds)
tk_stp_alm Stop Alarm Handler
tk_ref_alm Reference Alarm Handler Status
tk_ref_alm_u Reference Alarm Handler Status (Microseconds)
tk_ret_int Return from Interrupt Handler (can be issued only

from an interrupt handler written in an assembly
language)

tk_rot_rdq Rotate Ready Queue
tk_get_tid Get Task Identifier
tk_ref_sys Reference System Status

The following APIs of μT-Kernel/SM can be issued from a task-independent portion and in dispatch disabled
state:

API name Summary description
DI Disable External Interrupts
EI Enable External Interrupts
isDI Get Interrupt Disable Status
SetCpuIntLevel Set CPU Interrupt Mask Level
GetCpuIntLevel Get CPU Interrupt Mask Level
EnableInt Enable Interrupts
DisableInt Disable Interrupts
ClearInt Clear Interrupt
EndOfInt Issue EOI to Interrupt Controller
CheckInt Check Interrupt
SetIntMode Set Interrupt Mode
SetCtrlIntLevel Set Interrupt Controller Interrupt Mask Level
GetCtrlIntLevel Get Interrupt Controller Interrupt Mask Level
out_b Write to I/O Port (in Bytes)
out_h Write to I/O Port (in Half-words)
out_w Write to I/O Port (in Words)
out_d Write to I/O Port (in Double-words)
in_b Read from I/O Port (in Bytes)
in_h Read from I/O Port (in Half-words)
in_w Read from I/O Port (in Words)
in_d Read from I/O Port (in Double-words)
WaitUsec Micro Wait (Microseconds)
WaitNsec Micro Wait (Nanoseconds)
SetOBJNAME Set Object Name

All system calls of μT-Kernel/DS can be issued from a task-independent portion and in dispatch disabled
state.

Whether system calls or APIs other than those above can be issued from a task-independent portion or in
dispatch disabled state is implementation-dependent.

μT-Kernel 3.0 Specification 45 / 502

3.2.3 Restricting System Call Invocation

The protection levels at which a system call is invokable can be restricted. In this case, if a system call is
issued from a task (task portion) running at lower privilege than the specified protection level, the error code
E_OACV is returned.

Extended SVC calling cannot be restricted.

If, for example,issuing a system call from a level with lower privilege than level 1 is prohibited, system calls
cannot be made from tasks running at protection levels 2 and 3. Tasks running at those levels will only be
able to make extended SVC calls, and are programmed using subsystem functions only.

This kind of restriction is used when μT-Kernel is combined with middleware that offers process management
function and other functions, to prevent tasks (as part of user process, etc.) that use the functions of such
middleware (process management, etc.) from directly accessing μT-Kernel functions. It allows μT-Kernel
to be used as a micro-kernel. The idea is that the user process cannot control the micro-kernel directly via
available process API, and only the middleware can control the micro-kernel directly.

The protection level restriction on system call invocation is set using the system configuration information
management functions. (see Section 5.6, “System Configuration Information Management Functions”).

3.2.4 Modifying a Parameter Packet Format

Some parameters passed to system calls use packet format. The packet format parameters are of two kinds,
either input parameters passing information to a system call (e.g., T_CTSK) or output parameters returning
information from a system call (e.g., T_RTSK).

Additional information that is implementation-dependent can be added to a parameter packet. When implementation-
dependent information is added, it must be positioned after the standard defined information. It is permitted
to delete only parameters that are declared ineffective by the service profile, and other parameters shall not be
deleted. It is not allowed, however, to change the data types and order of information defined in the standard
specification.

When implementation-dependent information is added to a packet of input information passed to a system
call (T_CTSK, etc.), if the system call is invoked while this additional information is not yet initialized (memory
content is indeterminate), the system call must still function normally.

Ordinarily a flag indicating that valid values are set in the additional information is defined in the implementation-
dependent area of attribute flag included in the standard specification. When that flag is set (1), the additional
information is to be used; and when the flag is not set (0), the additional information is not initialized (memory
content is indeterminate) and the default values are to be used instead.

The reason for this specification is to make sure we can run the same application program merely by recom-
piling, irrespective of whether implementation dependent function extension is added to an implementation
of the specification.

μT-Kernel 3.0 Specification 46 / 502

Porting Guideline
A care must be taken now for parameter packet initialization since the parameter may be deleted by declaring
it to be ineffective by service profile. For example, it is not recommended to initialize T_CTSK structure in
the following manner from the viewpoint f portability.

T_CTSK ctsk = {
NULL ,
TA_HLNG|TA_RNG0|TA_USERBUF ,
task ,
10,
2048,
"",
buf

};

Instead, it is recommended to perform initialization using the syntax specified in ISO/IEC 9899:1999 as
follows.

T_CTSK ctsk = {
.exinf = NULL ,
.tskatr = TA_HLNG|TA_RNG0|TA_USERBUF ,
.task = task ,
.itskpri = 10,
.stksz = 2048,
.bufptr = buf

};

3.2.5 Function Codes

Function codes are numbers assigned to each system call and used to identify the system call.

The system call function codes are not specified here but are to be defined in implementation.

See tk_def_ssy on extended SVC function codes.

3.2.6 Error Codes

System call return codes are in principle to be signed integers. When an error occurs, a negative error code is
returned; and if processing is completed normally, E_OK (= 0) or a positive value is returned. The meaning of
returned values in the case of normal completion is specified individually for each system call. An exception
to this principle is that there are some system calls that do not return when called. A system call that does
not return is declared in the C language interface as having no return code (i.e., a void type function).

An error code consists of the main error code and sub error code. The low 16 bits of the error code are the
sub error code, and the remaining high bits are the main error code. Main error codes are classified into error
classes based on the necessity of their detection, the circumstances in which they occur and other factors.

#define MERCD(er) ((ER)(er) >> 16) /* main error code */
#define SERCD(er) ((H)(er)) /* sub error code */
#define ERCD(mer , ser) ((ER)(mer) << 16 | (ER)(UH)(ser))

Note that, in an environment where ER is 16-bit data type, sub error code can be omitted and main error code
can be returned as the error code. In this case, SERCD macro shall not be defined.

#define MERCD(er) ((ER)(er)) /* main error code */
#define ERCD(mer , ser) ((ER)(mer))

μT-Kernel 3.0 Specification 47 / 502

Related Service Profile Items
Only when the service profile items below are set to be effective, the error code contains sub error code, and
SERCD macro is supported.

TK_SUPPORT_SERCD Support of sub error code

3.2.7 Timeout

A system call that may enter WAITING state has a timeout function. If processing is not completed by the
time the specified timeout interval has elapsed, the processing is canceled and the system call returns error
code E_TMOUT.

In accordance with the principle that there should be no side-effects from calling a system call if that system
call returns an error code, the calling of a system call that times out should in principle result in no change
in system state. An exception to this is when the functioning of the system call is such that it cannot return
to its original state if processing is canceled. This is indicated in the system call description.

If the timeout interval is set to 0, a system call does not enter even when a situation arises in which it would
ordinarily go to WAITING state. In other words, a system call with timeout set to 0 when it is invoked has
no possibility of entering WAITING state. Invoking a system call with timeout set to 0 is called polling; i.e., a
system call that performs polling has no chance of entering WAITING state.

The descriptions of individual system calls as a rule describe the behavior when there is no timeout (in other
words, when an eternal wait occurs). Even if the system call description states that the system call ”enters
WAITING state” or ”is put in WAITING state,” if a timeout is set and that time interval elapses before pro-
cessing is completed, the WAITING state is released and the system call returns error code E_TMOUT. In the
case of polling, the system call returns E_TMOUT without entering WAITING state.

Timeout (TMO and TMO_U types) is given as a positive integer, or as TMO_POL＝0 for polling, or as TMO_FEVR (=
-1) for eternal wait. If a timeout interval is set, the timeout processing must be guaranteed to take place after
the specified interval from the system call issuing has elapsed.

Additional Notes
Since a system call that performs polling does not enter WAITING state, there is no change in the precedence
of the task calling it.
In a general implementation, when the timeout is set to 1, timeout processing takes place on the second
timer interrupt (sometimes called ”time tick”) after a system call is invoked. Since a timeout of 0 cannot be
specified (0 being allocated to TMO_POL), in this kind of implementation timeout does not occur on the initial
timer interrupt after the system call is invoked.

3.2.8 Relative Time and System Time

When the time of an event occurrence is specified relative to another time, such as the time when a system
call was invoked, relative time (RELTIM or RELTIM_U type) is used. If relative time is used to specify event
occurrence time, it is necessary to guarantee that the event processing will take place after the specified
time has elapsed from the time base. Relative time (RELTIM or RELTIM_U type) is also used for e.g. event
occurrence. In such cases the method of interpreting the specified relative time is determined for each case.
When time is specified as an absolute value, system time (SYSTIM or SYSTIM_U type) is used. The μT-Kernel
provides a function for setting system time, but even if the system time is changed using this function, there
is no change in the real world time (actual time) at which an event occurs that was specified using relative
time. What changes is the system time at which an event occurs that was specified as relative time.

SYSTIM: System time
Time base 1 millisecond, 64-bit signed integer

μT-Kernel 3.0 Specification 48 / 502

typedef struct systim {
W hi; /* High 32 bits */
UW lo; /* Low 32 bits */

} SYSTIM;

SYSTIM_U: System time
Time base 1 microsecond, 64-bit signed integer

typedef D SYSTIM_U; /* 64-bit */

RELTIM: Relative time
Time base 1 millisecond, 32-bit unsigned integer (UW)

typedef UW RELTIM;

RELTIM_U: Relative time
Time base 1 microsecond, 64-bit unsigned (UD) integer

typedef UD RELTIM_U; /* Relative time in microseconds with 64-bit integer */

TMO: Timeout time
Time base 1 millisecond, 32-bit signed integer (W)

typedef W TMO;

Eternal wait can be specified as TMO_FEVR (= -1).

TMO_U timeout period
Time base 1 microsecond, 64-bit signed (D) integer

typedef D TMO_U; /* Timeout in microseconds with 64-bit integer */

Eternal wait can be specified as TMO_FEVR (= -1).

Related Service Profile Items
TMO_U, RELTIM_U, and SYSTEM_U dealing with date and relative time in microsecond resolution are guar-
anteed to be usable only when the following service profile items are set to be effective.

TK_SUPPORT_USEC Support of microsecond

Additional Notes
Timeout or other such processing must be guaranteed to occur after the time specified as RELTIM, RELTIM_U,
TMO, or TMO_U has elapsed. For example, if the timer interrupt interval is 1 ms and a timeout of 1 ms is
specified, timeout occurs on the second timer interrupt after system call invocation. (The first timer interrupt
does not exceed 1 ms.)
When a system time (SYSTIM_U) value that may overflow internally in kernel is specified as an argument, the
system call behavior is undefined.

μT-Kernel 3.0 Specification 49 / 502

3.3 High-Level Language Support Routines

High-level language support routine capability is provided so that even if a task or handler is written in high-
level language, the kernel-related processing can be kept separate from the language environment-related
processing. Whether or not a high-level language support routine is used is specified in TA_HLNG, one of the
object attributes and handler attributes.

When TA_HLNG is not specified, a task or handler is started directly from the start address passed in a param-
eter to tk_cre_tsk or tk_def_int, etc.; whereas when TA_HLNG is specified, first the high-level language startup
processing routine (high-level language support routine) is started, then from this routine an indirect jump is
made to the task start address or handler address passed in a parameter to tk_cre_tsk or tk_def_int. Viewed
from the kernel, the task start address or handler address is a parameter given to the high-level language
support routine. Separating the kernel processing from the language environment processing in this way
facilitates support for different language environments.

Use of high-level language support routines has the further advantage that when a handler is written as a C
language function, a system call for return from a handler can be executed automatically, simply by performing
a function return (explicit return or ”}”).

In a system that utilizes CPU’s operating modes, however, whereas it is relatively easy to realize a high-level
language support routine in the case of an interrupt handler or the like that runs at the same protection level
as the kernel, it is more difficult in the case of a task or task exception handler running at a different protection
level from the kernel’s. For this reason, when a high-level language support routine is used for a task, there
is no guarantee that the task will exit by a return from the function. Returning a task function using return
or ”}” leads to an undefined behavior. At the end of a task, Exit Task (tk_ext_tsk) or Exit and Delete Task
(tk_exd_tsk) must always be issued.

In the case of a task exception handler, the high-level language support routine is supplied as source code
and is to be embedded in the user program.

The internal working of a high-level language support routine is as illustrated in Figure 3.1, “Behavior of
High-Level Language Support Routine”.

μT-Kernel 3.0 Specification 50 / 502

Figure 3.1: Behavior of High-Level Language Support Routine

μT-Kernel 3.0 Specification 51 / 502

3.4 Service Profile

μT-Kernel 3.0 service profile items are shown below. Defining these service profile items is a requirement.
The implementor of OS may add original service profile definitions.

3.4.1 Service Profile Items that Represent Function Availability

The service profile item that shows whether a particular function is effective (or enabled) or ineffective (or
disabled) is described by using a macro shown below, which is defined to be either TRUE, or FALSE. (The
following definitions are given as example only, and each implementation shall define these appropriately.)

3.4.1.1 Device Driver Functions

#define TK_SUPPORT_TASKEVENT TRUE /* Support of task event */
#define TK_SUPPORT_DISWAI TRUE /* Support of disabling wait */
#define TK_SUPPORT_IOPORT TRUE /* Support of I/O port access */
#define TK_SUPPORT_MICROWAIT TRUE /* Support of micro wait */

Setting TK_SUPPORT_TASKEVENT and TK_SUPPORT_DISWAI to TRUE is recommended on systems that use advanced
general-purpose device drivers.

Setting TK_SUPPORT_IOPORT and TK_SUPPORT_MICROWAIT to TRUE is generally recommended.

3.4.1.2 Power Management Functions

#define TK_SUPPORT_LOWPOWER TRUE /* Support of power management functions */

Setting TK_SUPPORT_LOWPOWER to TRUE is recommended. However, this may as well be set to FALSE on systems
with little need for power-saving or restrictions due to used hardware.

3.4.1.3 Static/dynamic Memory Management Functions

#define TK_SUPPORT_USERBUF FALSE /* Support of user -specified buffer
(TA_USERBUF) */

#define TK_SUPPORT_AUTOBUF TRUE /* Support of automatic buffer allocation
(No TA_USERBUF specification) */

#define TK_SUPPORT_MEMLIB TRUE /* Support of memory allocation library */

Setting TK_SUPPORT_USERBUF to FALSE is generally recommended.

Setting TK_SUPPORT_AUTOBUF to TRUE is generally recommended.

However, it is acceptable in a system where memory management is staticfally done to set TK_SUPPORT_USERBUF
to TRUE, and TK_SUPPORT_AUTOBUF to FALSE.

You cannot set both TK_SUPPORT_USERBUF and TK_SUPPORT_AUTOBUF to FALSE.

Setting TK_SUPPORT_MEMLIB to TRUE is generally recommended.

3.4.1.4 Task Exception Handling Functions

#define TK_SUPPORT_TASKEXCEPTION TRUE /* Support of task exception handling
functions */

Setting TK_SUPPORT_TASKEXCEPTION to TRUE is recommended on a relatively large system that consist of many
software modules and that requires flexible handling of abnormal conditions.

μT-Kernel 3.0 Specification 52 / 502

3.4.1.5 Subsystem Management Functions

#define TK_SUPPORT_SUBSYSTEM TRUE /* Support of subsystem management
functions */

#define TK_SUPPORT_SSYEVENT TRUE /* Support of event processing of subsystems */

Setting TK_SUPPORT_SUBSYSTEM and TK_SUPPORT_SSYEVENT to TRUE is recommended on a relatively large system
which use middleware.

3.4.1.6 System Configuration Information Acquisition Functions

#define TK_SUPPORT_SYSCONF FALSE /* Support of system configuration
information management functions */

TK_SUPPORT_SYSCONF need to be set to FALSE on a system where system configuration information such as the
maximum counts of objects (e.g. tasks), is fixed statically at OS build time by hard-coding. On the other hand,
if the system configuration information is specified flexibly (e.g. at runtime), TK_SUPPORT_SYSCONF need to be
set to TRUE.

3.4.1.7 Supporting 64-bit and 16-bit CPUs

#define TK_HAS_DOUBLEWORD FALSE /* Support of 64-bit data types
(D, UD , VD) */

#define TK_SUPPORT_USEC FALSE /* Support of microsecond */
#define TK_SUPPORT_LARGEDEV FALSE /* Support of large mass -storage device

(64-bit) */
#define TK_SUPPORT_SERCD TRUE /* Support of sub error code */

TK_HAS_DOUBLEWORD, TK_SUPPORT_USEC, and TK_SUPPORT_LARGEDEV need to be set to either TRUE or FALSE, according
to the target hardware characteristics, and the usage or purpose of the target system.

TK_SUPPORT_USEC and TK_SUPPORT_LARGEDEV depend on TK_HAS_DOUBLEWORD. That is, when TK_HAS_DOUBLEWORD is set
to FALSE, these two profile items are also set to FALSE.

Setting TK_SUPPORT_SERCD to TRUE is recommended on a system where INT and ER are 32 bit entities. Setting
TK_SUPPORT_SERCD to FALSE is recommended on a system where INT and ER are 16 bit entities.

3.4.1.8 Functions that Depend on CPU, Hardware, System, and Compiler

Each of the following profiles needs to be set to TRUE or FALSE according to the target hardware and the
implementation of the OS.

3.4.1.8.1 Interrupt Management Functions

#define TK_SUPPORT_INTCTRL TRUE /* Support of interrupt controller
management */

#define TK_HAS_ENAINTLEVEL TRUE /* Can specify interrupt priority
level */

#define TK_SUPPORT_CPUINTLEVEL FALSE /* Support of CPU interrupt mask level */
#define TK_SUPPORT_CTRLINTLEVEL TRUE /* Support of interrupt controller

mask level */
#define TK_SUPPORT_INTMODE TRUE /* Support of setting interrupt mode */

μT-Kernel 3.0 Specification 53 / 502

3.4.1.8.2 Memory Cache Control Functions

#define TK_SUPPORT_CACHECTRL TRUE /* Support of memory cache control
functions */

#define TK_SUPPORT_SETCACHEMODE TRUE /* Support of set cache mode function */
#define TK_SUPPORT_WBCACHE FALSE /* Support of write -back cache */
#define TK_SUPPORT_WTCACHE TRUE /* Support of write -through cache */

3.4.1.8.3 FPU(COP) Support Functions

#define TK_SUPPORT_FPU TRUE /* Support of FPU */
#define TK_SUPPORT_COP0 TRUE /* Support of co -processor number 0 */
#define TK_SUPPORT_COP1 FALSE /* Support of co -processor number 1 */
#define TK_SUPPORT_COP2 FALSE /* Support of co -processor number 2 */
#define TK_SUPPORT_COP3 FALSE /* Support of co -processor number 3 */

3.4.1.8.4 Miscellaneous Functions

#define TK_SUPPORT_ASM FALSE /* Support of assembly language function
entry/exit */

#define TK_SUPPORT_REGOPS FALSE /* Support for task -register manipulation
functions */

#define TK_ALLOW_MISALIGN FALSE /* Memory misalign access is permitted */
#define TK_BIGENDIAN FALSE /* Is big endian (Must be defined) */
#define TK_TRAP_SVC TRUE /* Use CPU Trap instruction for system ←↩

call entry */
#define TK_HAS_SYSSTACK TRUE /* Task has a separate system stack */
#define TK_SUPPORT_PTIMER TRUE /* Support of physical timer function */
#define TK_SUPPORT_UTC TRUE /* Support of UNIX time */
#define TK_SUPPORT_TRONTIME FALSE /* Support of TRON time */

At least one of TK_SUPPORT_UTC and TK_SUPPORT_TRONTIME must be set to TRUE.

3.4.1.9 Debugger Support Functions

#define TK_SUPPORT_DSNAME FALSE /* Support of DS object name */
#define TK_SUPPORT_DBGSPT FALSE /* Support of μT-Kernel/DS */

Depending on the user’s need, TK_SUPPORT_DSNAME and TK_SUPPORT_DBGSPT may be set to either TRUE or FALSE.

TK_SUPPORT_DBGSPT specifies whether the APIs of μT-Kernel/DS, other than td_ref_dsname and td_set_dsname,
can be used. Even if TK_SUPPORT_DBGSPT is set to FALSE, td_ref_dsname and td_set_dsname can be used if
TK_SUPPORT_DSNAME is set to TRUE.

3.4.1.10 Check Method of Service Profile

Although the implementations of μT-Kernel 3.0 must define the profile items mentioned previously, the use
of profile where some definitions are missing should be practiced since other OSs does not provide profile at
all, and there bound to be implementation’s failures to define all the profile items. For example, if you want
to distinguish the effective/ineffective/undefined status, you can perform the following check:

#if defined(TK_SUPPORT_xxx)
#if TK_SUPPORT_xxx
/* when a profile item is set to be effective. */

#else

μT-Kernel 3.0 Specification 54 / 502

/* when a profile item is set to be ineffective */
#endif

#else
/* when a profile item is undefined. */

#endif

Note that if profile item is directly used for the parameter of ”#if” macro as follows, you cannot distinguish
whether the profile item is ineffective or undefined.

#if TK_SUPPORT_xxx
/* when a profile item is set to be effective. */

#else
/* when a profile item is set to be ineffective or undefined. */

#endif

3.4.2 Service Profile Items that Represent Values

A service profile item that represents a limit value or version number will be specified as a MACRO that
holds the value. (The following definitions are given as example only. The real values of profile items are
implementation-dependent.)

#define TK_SPECVER_MAGIC 6 /* Magic number of μT-Kernel */
#define TK_SPECVER_MAJOR 3 /* Major Version number of μT-Kernel */
#define TK_SPECVER_MINOR 0 /* Minor Version number of μT-Kernel */
#define TK_SPECVER ((TK_SPECVER_MAJOR << 8) | TK_SPECVER_MINOR)

/* Version number of μT-Kernel */
#define TK_MAX_TSKPRI 32 /* Maximum task priority (>= 16) */
#define TK_WAKEUP_MAXCNT 65535 /* Maximum queuing count of the task wakeup

requests (>= 1) */
#define TK_SEMAPHORE_MAXCNT 65535 /* Upper limit of maximum semaphore resource

count (maxsem) (>= 32767) */
#define TK_SUSPEND_MAXCNT 65535 /* Maximum nest count of the forced wait

of tasks (>= 1) */
#define TK_MEM_RNG0 0 /* Real memory protection level of TA_RNG0

(0〜3) */
#define TK_MEM_RNG1 0 /* Real memory protection level of TA_RNG1

(0〜3) */
#define TK_MEM_RNG2 0 /* Real memory protection level of TA_RNG2

(0〜3) */
#define TK_MEM_RNG3 3 /* Real memory protection level of TA_RNG3

(0〜3) */
#define TK_MAX_PTIMER 2 /* Maximum number of physical timers (>= 0)

(Values from 1 to TK_MAX_PTIMER can be used
as physical timer number) */

TK_MEM_RNGn defines the real memory protection level of memory specified by TA_RNGn, and if TK_MEM_RNGn ==
TK_MEM_RNGm, then as far as memory access protection level goes, TA_RNGn and TA_RNGm are equivalent. In other
words, it is guaranteed that a task with protection level m can access memory with protection level n without
generating access privilege violation exception.

It is recommended that the developer is prepared for the case of missing definitions for service profile items
that are supposed to have a value by means of coding such as defined(...).

3.4.3 Examples of Service Profile Items

Following are concrete examples of service profile items.

μT-Kernel 3.0 Specification 55 / 502

3.4.3.1 Service Profile Items for a Very Small-scale System using 16-bit CPU

#define TK_SUPPORT_TASKEVENT FALSE
#define TK_SUPPORT_DISWAI FALSE
#define TK_SUPPORT_IOPORT TRUE
#define TK_SUPPORT_MICROWAIT TRUE

#define TK_SUPPORT_LOWPOWER TRUE

#define TK_SUPPORT_USERBUF TRUE
#define TK_SUPPORT_AUTOBUF FALSE
#define TK_SUPPORT_MEMLIB FALSE

#define TK_SUPPORT_TASKEXCEPTION FALSE

#define TK_SUPPORT_SUBSYSTEM FALSE
#define TK_SUPPORT_SSYEVENT FALSE

#define TK_SUPPORT_SYSCONF FALSE

#define TK_HAS_DOUBLEWORD FALSE
#define TK_SUPPORT_USEC FALSE
#define TK_SUPPORT_LARGEDEV FALSE
#define TK_SUPPORT_SERCD FALSE

#define TK_SUPPORT_INTCTRL FALSE
#define TK_HAS_ENAINTLEVEL FALSE
#define TK_SUPPORT_CPUINTLEVEL FALSE
#define TK_SUPPORT_CTRLINTLEVEL FALSE
#define TK_SUPPORT_INTMODE TRUE

#define TK_SUPPORT_CACHECTRL FALSE
#define TK_SUPPORT_SETCACHEMODE FALSE
#define TK_SUPPORT_WBCACHE FALSE
#define TK_SUPPORT_WTCACHE FALSE

#define TK_SUPPORT_FPU FALSE
#define TK_SUPPORT_COP0 FALSE
#define TK_SUPPORT_COP1 FALSE
#define TK_SUPPORT_COP2 FALSE
#define TK_SUPPORT_COP3 FALSE

#define TK_SUPPORT_ASM TRUE
#define TK_SUPPORT_REGOPS FALSE
#define TK_ALLOW_MISALIGN FALSE
#define TK_BIGENDIAN FALSE
#define TK_TRAP_SVC FALSE
#define TK_HAS_SYSSTACK FALSE
#define TK_SUPPORT_PTIMER FALSE
#define TK_SUPPORT_UTC TRUE
#define TK_SUPPORT_TRONTIME FALSE

#define TK_SUPPORT_DSNAME FALSE
#define TK_SUPPORT_DBGSPT FALSE

#define TK_SPECVER_MAGIC 6
#define TK_SPECVER_MAJOR 3
#define TK_SPECVER_MINOR 0
#define TK_SPECVER ((TK_SPECVER_MAJOR << 8) | TK_SPECVER_MINOR)

#define TK_MAX_TSKPRI 16
#define TK_WAKEUP_MAXCNT 4095

μT-Kernel 3.0 Specification 56 / 502

#define TK_SEMAPHORE_MAXCNT 4095
#define TK_SUSPEND_MAXCNT 4095
#define TK_MEM_RNG0 0
#define TK_MEM_RNG1 0
#define TK_MEM_RNG2 0
#define TK_MEM_RNG3 0
#define TK_MAX_PTIMER 0

3.4.3.2 Service Profile Items for a Relatively Large-scale System

#define TK_SUPPORT_TASKEVENT TRUE
#define TK_SUPPORT_DISWAI TRUE
#define TK_SUPPORT_IOPORT TRUE
#define TK_SUPPORT_MICROWAIT TRUE

#define TK_SUPPORT_LOWPOWER TRUE

#define TK_SUPPORT_USERBUF FALSE
#define TK_SUPPORT_AUTOBUF TRUE
#define TK_SUPPORT_MEMLIB TRUE

#define TK_SUPPORT_TASKEXCEPTION TRUE

#define TK_SUPPORT_SUBSYSTEM TRUE
#define TK_SUPPORT_SSYEVENT TRUE

#define TK_SUPPORT_SYSCONF TRUE

#define TK_HAS_DOUBLEWORD TRUE
#define TK_SUPPORT_USEC TRUE
#define TK_SUPPORT_LARGEDEV TRUE
#define TK_SUPPORT_SERCD TRUE

#define TK_SUPPORT_INTCTRL TRUE
#define TK_HAS_ENAINTLEVEL TRUE
#define TK_SUPPORT_CPUINTLEVEL FALSE
#define TK_SUPPORT_CTRLINTLEVEL TRUE
#define TK_SUPPORT_INTMODE TRUE

#define TK_SUPPORT_CACHECTRL TRUE
#define TK_SUPPORT_SETCACHEMODE TRUE
#define TK_SUPPORT_WBCACHE TRUE
#define TK_SUPPORT_WTCACHE TRUE

#define TK_SUPPORT_FPU TRUE
#define TK_SUPPORT_COP0 TRUE
#define TK_SUPPORT_COP1 FALSE
#define TK_SUPPORT_COP2 FALSE
#define TK_SUPPORT_COP3 FALSE

#define TK_SUPPORT_ASM TRUE
#define TK_SUPPORT_REGOPS TRUE
#define TK_ALLOW_MISALIGN FALSE
#define TK_BIGENDIAN FALSE
#define TK_TRAP_SVC TRUE
#define TK_HAS_SYSSTACK TRUE
#define TK_SUPPORT_PTIMER TRUE
#define TK_SUPPORT_UTC TRUE
#define TK_SUPPORT_TRONTIME FALSE

μT-Kernel 3.0 Specification 57 / 502

#define TK_SUPPORT_DSNAME TRUE
#define TK_SUPPORT_DBGSPT TRUE

#define TK_SPECVER_MAGIC 6
#define TK_SPECVER_MAJOR 3
#define TK_SPECVER_MINOR 0
#define TK_SPECVER ((TK_SPECVER_MAJOR << 8) | TK_SPECVER_MINOR)

#define TK_MAX_TSKPRI 140
#define TK_WAKEUP_MAXCNT 65535
#define TK_SEMAPHORE_MAXCNT 65535
#define TK_SUSPEND_MAXCNT 65535
#define TK_MEM_RNG0 0
#define TK_MEM_RNG1 0
#define TK_MEM_RNG2 0
#define TK_MEM_RNG3 3
#define TK_MAX_PTIMER 10

μT-Kernel 3.0 Specification 58 / 502

Chapter 4

μT-Kernel/OS Functions

This chapter describes details of the system calls provided by μT-Kernel/OS (Operating System).

μT-Kernel 3.0 Specification 59 / 502

4.1 Task Management Functions

Task management functions are functions that directly manipulate or reference task states. Functions are
provided for creating and deleting a task, for task starting and exit, changing task priority, and referencing
task state. A task is an object identified by an ID number called a task ID. Task states and scheduling rules
are explained in Section 2.2, “Task States and Scheduling Rules”.

For control of execution order, a task has a base priority and current priority. When simply ”task priority”
is mentioned, this means the current priority. The base priority of a task is initialized to the startup priority
when a task is started. If the mutex function is not used, the task current priority is always identical to its base
priority. For this reason, the current priority immediately after a task is started is the task startup priority.
When the mutex function is used, the current priority is set as discussed in Section 4.5.1, “Mutex”.

The kernel does not perform processing for freeing of resources acquired by a task (semaphore resources,
memory blocks, etc.) upon task exit, other than mutex unlocking. Freeing of task resources is the responsibility
of the application.

μT-Kernel 3.0 Specification 60 / 502

4.1.1 tk_cre_tsk - Create Task

C Language Interface

#include <tk/tkernel.h>

ID tskid = tk_cre_tsk(CONST T_CTSK *pk_ctsk);

Parameter

CONST T_CTSK* pk_ctsk Packet to Create Task Information about task creation

pk_ctsk Detail:

void* exinf Extended Information Extended information
ATR tskatr Task Attribute Task attribute
FP task Task Start Address Task start address
PRI itskpri Initial Task Priority Initial task priority
SZ stksz Stack Size Stack size (in bytes)
SZ sstksz System Stack Size System stack size (in bytes)
void* stkptr User Stack Pointer User stack pointer
UB dsname[8] DS Object name DS object name
void* bufptr Buffer Pointer User buffer pointer
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID tskid Task ID Task ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block or user stack cannot be allocated)
E_LIMIT Number of tasks exceeds the system limit
E_RSATR Reserved attribute (tskatr is invalid or cannot be used), or the specified

coprocessor does not exist
E_NOSPT Unsupported functions(when the specification of TA_ASM, TA_USERSTACK,

TA_TASKSPACE, or TA_USERBUF is not supported.)
E_PAR Parameter error
E_NOCOP The specified coprocessor cannot be used (not installed, or abnormal operation

detected)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

μT-Kernel 3.0 Specification 61 / 502

TK_SUPPORT_ASM Support for specifying TA_ASM for task attribute
TK_SUPPORT_USERBUF Support for specifying TA_USERBUF for task attribute
TK_SUPPORT_AUTOBUF Automatic buffer allocation is supported (by not specifying

TA_USERBUF to task attribute)
TK_SUPPORT_FPU Support for specifying TA_FPU for task attribute
TK_SUPPORT_COPn Support for specifying TA_COPn for task attribute
TK_HAS_SYSSTACK Task can have a system stack independent of user-stack, and

each can be specified separately using (TA_USERSTACK,
TA_SSTKSZ)

TK_SUPPORT_DSNAME Support for specifying TA_DSNAME for task attribute
TK_MAX_TSKPRI Maximum task priority that can be specified (must be 16 or

higher)

Description

Creates a task, assigning to it a task ID number. This system call allocates a TCB (Task Control Block) to the
created task and initializes it based on itskpri, task, stksz and other parameters.

After the task is created, it is initially in DORMANT state.

itskpri is used to specify the startup priority when a task is started. Task priority level can be specified by
a positive integer, and the smaller the value, higher priority the task has. The largest task priority level is
defined by TK_MAX_TSKPRI.

exinf can be used freely by the user to insert miscellaneous information about the task. The information set
here is passed to the task as startup parameter information and can be referred to by calling tk_ref_tsk. If
a larger area is needed for indicating user information, or if the information may need to be changed after
the task is created, this can be done by allocating separate memory for this purpose and putting the memory
packet address in exinf. The kernel pays no attention to the contents of exinf.

tskatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of tskatr is as follows.

tskatr := (TA_ASM || TA_HLNG)
| [TA_SSTKSZ] | [TA_USERSTACK] | [TA_USERBUF] | [TA_DSNAME]
| (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3)
| [TA_COP0] | [TA_COP1] | [TA_COP2] | [TA_COP3] | [TA_FPU]

TA_ASM Indicates that the task is written in assembly language
TA_HLNG Indicates that the task is written in high-level language
TA_SSTKSZ Specifies the system stack size
TA_USERSTACK Points to the user stack
TA_USERBUF Use of user-specified memory area as stack
TA_DSNAME Specifies DS object name
TA_RNGn Indicates that the task runs at protection level n
TA_COPn Specifies use of the nth coprocessor (including floating point coprocessor or DSP)
TA_FPU Specifies use of a floating point coprocessor (when a coprocessor specified in

TA_COPn is a general-purpose FPU particularly for floating point processing and not
dependent on the CPU)

The function for specifying implementation-dependent attributes can be used, for example, to specify that a
task is subject to debugging. One use of the remaining system attribute fields is for indicating multiprocessor
attributes in the future.

#define TA_ASM 0x00000000 /* Task in Assembly Language */
#define TA_HLNG 0x00000001 /* Task in High -level language */
#define TA_SSTKSZ 0x00000002 /* System stack size */
#define TA_USERSTACK 0x00000004 /* User stack pointer */

μT-Kernel 3.0 Specification 62 / 502

#define TA_USERBUF 0x00000020 /* Use user -specified buffer */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_RNG0 0x00000000 /* Run at protection level 0 */
#define TA_RNG1 0x00000100 /* Run at protection level 1 */
#define TA_RNG2 0x00000200 /* Run at protection level 2 */
#define TA_RNG3 0x00000300 /* Run at protection level 3 */
#define TA_COP0 0x00001000 /* Use ID=0 coprocessor */
#define TA_COP1 0x00002000 /* Use ID=1 coprocessor */
#define TA_COP2 0x00004000 /* Use ID=2 coprocessor */
#define TA_COP3 0x00008000 /* Use ID=3 coprocessor */

When TA_HLNG is specified, starting the task jumps to the task address not directly but by going through a
high-level language environment configuration program (high-level language support routine). The task takes
the following form in this case.

void task(INT stacd , void *exinf)
{

/*
(processing)

*/

tk_ext_tsk (); or tk_exd_tsk (); /* Exit task */
}

The startup parameters passed to the task include the task startup code stacd specified in tk_sta_tsk, and the
extended information exinf specified in tk_cre_tsk.

The task cannot (must not) be terminated by a simple return from the function, otherwise the operation will
be indeterminate (implementation-dependent).

The form of the task when the TA_ASM attribute is specified in implementation-dependent, but stacd and exinf
must be passed as startup parameters.

The task runs at the protection level specified in the TA_RNGn attribute. When a system call or extended SVC
is called, the protection level goes to 0, then goes back to its original level upon return from the system call
or extended SVC.

Each task has two stack areas, a system stack and user stack. The user stack is used at the protection level
specified in TA_RNGn while the system stack is used at protection level 0. When the calling of a system call or
extended SVC causes the protection level to change, the stack is also switched.

Note that a task running at TA_RNG0 does not switch protection levels, so there is no stack switching either.
When TA_RNG0 is specified, the combined total of the user stack size and system stack size is the size of one
stack, employed as both a user stack and system stack.

When TA_SSTKSZ is specified, sstksz is valid. If TA_SSTKSZ is not specified, sstksz is ignored and the default
size applies.

When TA_USERSTACK is specified, stkptr is valid. In this case a user stack is not provided by the OS, but must
be allocated by the caller. stksz must be set to 0. If TA_USERSTACK is not specified, stkptr is ignored. Note that
if TA_RNG0 is set, TA_USERSTACK cannot be specified. E_PAR occurs if TA_RNG0 and TA_USERSTACK are specified at
the same time.

TA_USERBUF can be specified for implementation where there is no distinction of user stack and system stack
and there is only one unified stack for a task. When this attribute is specified, bufptr becomes effective, and
the memory area starting at bufptr containing stksz octets is used as the unified user and system stack area.
In this case, the kernel does not provide the stack area.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

μT-Kernel 3.0 Specification 63 / 502

Additional Notes

A task runs either at the protection level set in TA_RNGn or at protection level 0. For example, a task for which
TA_RNG3 is specified in no case runs at protection level 1 or 2.

In a system with separate interrupt stack, interrupt handlers also use the system stack. An interrupt handler
runs at protection level 0.

The system stack default size is decided taking into account the amount taken up by system call execution
and, in a system with separate interrupt stack, the amount used by interrupt handlers.

The definition of TA_COPn is dependent on the CPU and other hardware and is not portable.

TA_FPU is provided as a portable notation method only for the definition in TA_COPn of a floating point coproces-
sor. If, for example, the floating point coprocessor is TA_COP0, then TA_FPU = TA_COP0. If there is no particular
need to specify the use of a coprocessor for floating point operations, TA_FPU = 0 is set.

Even in a system with a single CPU’s operating mode, for the sake of portability all attributes including TA_RNGn
must be accepted. It is possible, for example, to handle all TA_RNGn as equivalent to TA_RNG0, but error must
not be returned.

Porting Guideline

The T-Kernel 2.0 specification does not define TA_USERBUF and its associated notion of bufptr. So if this feature
is used, a modification is necessary to port the software to T-Kernel 2.0. However, if stksz is properly set
already, simply removing TA_USERBUF and bufptr will complete the modification for porting.

The largest task priority is defined by TK_MAX_TSKPRI. Although TK_MAX_TSKPRI is variable, but is guaranteed to
be equal to or larger than 16, and so by restricting the used task priorities only to the range from 1 to 16, there
shall be no need for modifying the task priorities during porting.

μT-Kernel 3.0 Specification 64 / 502

4.1.2 tk_del_tsk - Delete Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_tsk(ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error Code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (the task is not in DORMANT state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Deletes the task specified in tskid.

This system call changes the state of the task specified in tskid from DORMANT state to NONEXISTENT state
(no longer exists in the system), releasing the TCB and stack area that were assigned to the task. The task ID
number is also released. When this system call is issued for a task not in DORMANT state, error code E_OBJ
is returned.

This system call cannot specify the invoking task. If the invoking task is specified, error code E_OBJ is returned
since the invoking task is not in DORMANT state. The invoking task is deleted not by this system call but by
the tk_exd_tsk system call.

μT-Kernel 3.0 Specification 65 / 502

4.1.3 tk_sta_tsk - Start Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sta_tsk(ID tskid, INT stacd);

Parameter

ID tskid Task ID Task ID
INT stacd Task Start Code Task start code

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (the task is not in DORMANT state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

None.

Description

Starts the task specified in tskid. This system call changes the state of the specified task from DORMANT
state to READY state.

Parameters to be passed to the task when it starts can be set in stacd. These parameters can be referred to
from the started task, enabling use of this feature for simple message passing.

The task priority when it starts is the task startup priority (itskpri) specified when the started task was created.

Start requests by this system call are not queued. If this system call is issued while the target task is in a state
other than DORMANT state, the system call is ignored and error code E_OBJ is returned to the calling task.

Porting Guideline

Note that stacd is INT type, and its value range is implementation-dependent, so care must be taken.

μT-Kernel 3.0 Specification 66 / 502

4.1.4 tk_ext_tsk - Exit Task

C Language Interface

#include <tk/tkernel.h>

void tk_ext_tsk(void);

Parameter

None.

Return Parameter

Does not return to the context issuing the system call.

Error Codes

The following kind of error may be detected, but no return is made to the context issuing the system call
even if the error is detected. For this reason the error code cannot be passed directly as a system call return
parameter. The behavior in case an error occurs is implementation-dependent.

E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Exits the invoking task normally and changes its state to DORMANT state.

Additional Notes

When a task terminates by tk_ext_tsk, the resources acquired by the task up to that time (memory blocks,
semaphores, etc.) are not automatically freed. The user is responsible for releasing such resources before the
task exits.

tk_ext_tsk is a system call that does not return to the context from which it was called. Even if an error code
is returned when an error of some kind is detected, normally no error checking is performed in the context
from which the system call was invoked, leaving the possibility that the program will behave in an unexpected
manner. For this reason these system calls do not return even if error is detected.

As a rule, the task priority and other information included in the TCB is reset when the task returns to DOR-
MANT state. If, for example, the task priority is changed by tk_chg_pri and later terminated by tk_ext_tsk, the

μT-Kernel 3.0 Specification 67 / 502

task priority reverts to the startup priority (itskpri) specified by tk_cre_tsk at startup. It does not keep the
task priority in effect at the time tk_ext_tsk was executed.

System calls that do not return to the calling context are those named tk_ret_??? or tk_ext_??? (tk_exd_???).

μT-Kernel 3.0 Specification 68 / 502

4.1.5 tk_exd_tsk - Exit and Delete Task

C Language Interface

#include <tk/tkernel.h>

void tk_exd_tsk(void);

Parameter

None.

Return Parameter

Does not return to the context issuing the system call.

Error Codes

The following kind of error may be detected, but no return is made to the context issuing the system call
even if the error is detected. For this reason the error code cannot be passed directly as a system call return
parameter. The behavior in case an error occurs is implementation-dependent.

E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Terminates the invoking task normally and also deletes it. This system call changes the state of the invoking
task to NON-EXISTENT state (no longer exists in the system).

Additional Notes

When a task terminates by tk_exd_tsk, the resources acquired by the task up to that time (memory blocks,
semaphores, etc.) are not automatically freed. The user is responsible for releasing such resources before the
task exits.

tk_exd_tsk is a system call that does not return to the context from which it was called. Even if an error code
is returned when an error of some kind is detected, normally no error checking is performed in the context
from which the system call was invoked, leaving the possibility that the program will behave in an unexpected
manner. For this reason these system calls do not return even if error is detected.

μT-Kernel 3.0 Specification 69 / 502

4.1.6 tk_ter_tsk - Terminate Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ter_tsk(ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (the target task is in DORMANT state or is the invoking task)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Forcibly terminates the task specified in tskid. This system call changes the state of the target task specified
in tskid to DORMANT state.

Even if the target task was in the waiting state (including SUSPENDED state), the waiting state is released
and the task is terminated. If the target task was in some kind of queue (semaphore wait, etc.), executing
tk_ter_tsk results in its removal from the queue.

This system call cannot specify the invoking task. If the invoking task is specified, error code E_OBJ is
returned.

The relationships between target task states and the results of executing tk_ter_tsk are summarized in Ta-
ble 4.1, “Target Task State and Execution Result (tk_ter_tsk)”.

Additional Notes

When a task is terminated by tk_ter_tsk, the resources acquired by the task up to that time (memory blocks,
semaphores, etc.) are not automatically freed. The user is responsible for releasing such resources before the
task is terminated.

μT-Kernel 3.0 Specification 70 / 502

Target Task State tk_ter_tskercd Return Value (processing)
Run state (RUNNING or READY) (not
for invoking task)

E_OK Forced termination

Running state (RUNNING) (invoking
task)

E_OBJ No operation

Waiting state (WAITING) E_OK Forced termination
Suspended state (SUSPENDED) E_OK Forced termination
Waiting-suspended state
(WAITING-SUSPENDED)

E_OK Forced termination

Dormant state (DORMANT) E_OBJ No operation
Non-existent state (NON-EXISTENT) E_NOEXS No operation

Table 4.1: Target Task State and Execution Result (tk_ter_tsk)

As a rule, the task priority and other information included in the TCB is reset when the task returns to DOR-
MANT state. If, for example, the task priority is changed by tk_chg_pri and later terminated by tk_ter_tsk, the
task priority reverts to the startup priority (itskpri) that is specified by tk_cre_tsk at startup. The task priority
at task termination by tk_ter_tsk is not used after the task is restarted by tk_sta_tsk.

Forcible termination of another task is intended for use only by a debugger or a few other tasks closely related
to the OS. As a rule, this system call is not to be used by ordinary applications or middleware, for the following
reason.

Forced termination occurs regardless of the running state of the target task. If, for example, a task were
forcibly terminated while the task was calling a middleware function, the task would terminate right while the
middleware was executing. If such a situation were allowed, normal operation of the middleware could not
be guaranteed.

This is an example of how task termination should not be allowed when the task status (what it is executing)
is unknown. Ordinary applications therefore must not use the forcible termination function.

μT-Kernel 3.0 Specification 71 / 502

4.1.7 tk_chg_pri - Change Task Priority

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_chg_pri(ID tskid, PRI tskpri);

Parameter

ID tskid Task ID Task ID
PRI tskpri Task Priority Task priority

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (tskpri is invalid or cannot be used)
E_ILUSE Illegal use (upper priority limit exceeded)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

TK_MAX_TSKPRI Maximum task priority that can be specified (must be 16 or
higher)

Description

Changes the base priority of the task specified in tskid to the value specified in tskpri. The current priority
of the task also changes as a result.

Task priority values are specified from 1 to TK_MAX_TSKPRI, with the smaller numbers indicating higher priority.

When TSK_SELF (= 0) is specified in tskid, the invoking task is the target task. Note, however, that when
tskid=TSK_SELF is specified in a system call issued from a task-independent portion, error code E_ID is re-
turned. When TPRI_INI (= 0) is specified as tskpri, the target task base priority is changed to the initial
priority when the task was started (itskpri).

A priority changed by this system call remains valid until the task is terminated. When the task reverts to
DORMANT state, the task priority before its exit is discarded, with the task again assigned to the initial priority
when the task was started (itskpri). However, the priority changed in DORMANT state is valid. The next time
the task is started, it has the new initial priority.

μT-Kernel 3.0 Specification 72 / 502

If as a result of this system call execution the target task current priority matches the base priority (this
condition is always met when the mutex function is not used), processing is as follows.

If the target task is in a run state, the task precedence changes according to its priority. The target task has
the lowest precedence among tasks of the same priority after the change.

If the target task is in some kind of priority-based queue, the order in that queue changes in accordance with
the new task priority. Among tasks of the same priority after the change, the target task is queued at the end.

If the target task has locked a TA_CEILING attribute mutex or is waiting for a lock, and the base priority specified
in tskpri is higher than any of the ceiling priorities, error code E_ILUSE is returned.

Additional Notes

In some cases when this system call results in a change in the queued order of the target task in a task priority-
based queue, it may be necessary to release the wait state of another task waiting in that queue (in a message
buffer send queue, or in a queue waiting to acquire a variable-size memory pool).

In some cases when this system call results in a base priority change while the target task is waiting for a
mutex lock with TA_INHERIT dynamic priority inheritance processing may be necessary.

When a mutex function is not used and the system call is issued specifying the invoking task as the target task,
setting the new priority to the base priority of the invoking task, the order of execution of the invoking task
becomes the lowest among tasks of the same priority. This system call can therefore be used to relinquish
execution privilege.

Porting Guideline

The largest task priority is defined by TK_MAX_TSKPRI. Although TK_MAX_TSKPRI is variable, but is guaranteed to
be equal to or larger than 16, and so by restricting the used task priorities only to the range from 1 to 16, there
shall be no need for modifying the task priorities during porting.

μT-Kernel 3.0 Specification 73 / 502

4.1.8 tk_get_reg - Get Task Registers

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_reg(ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs);

Parameter

ID tskid Task ID Task ID
T_REGS* pk_regs Packet of Registers Pointer to the area to return the

general register values
T_EIT* pk_eit Packet of EIT Registers Pointer to the area to return the

values of registers saved when an
exception occurs

T_CREGS* pk_cregs Packet of Control Registers Pointer to the area to return the
control register values

Return Parameter

ER ercd Error Code Error code

The contents of T_REGS, T_EIT, and T_CREGS are defined for each CPU and implementation.

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for the invoking task)
E_CTX Context error (called from task-independent portion)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_REGOPS Support for task-register manipulation functions

Description

Gets the current register contents of the task specified in tskid.

If NULL is set in pk_regs, pk_eit, or pk_cregs, the corresponding registers are not referenced.

μT-Kernel 3.0 Specification 74 / 502

The referenced register values are not necessarily the values at the time the task portion was executing.

If this system call is issued for the invoking task, error code E_OBJ is returned.

Additional Notes

In principle, all registers in the task context can be referenced. This includes not only physical CPU registers
but also those treated by the kernel as virtual registers.

μT-Kernel 3.0 Specification 75 / 502

4.1.9 tk_set_reg - Set Task Registers

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_reg(ID tskid, CONST T_REGS *pk_regs, CONST T_EIT *pk_eit, CONST T_CREGS *pk_cregs);

Parameter

ID tskid Task ID Task ID
CONST T_REGS* pk_regs Packet of Registers General registers
CONST T_EIT* pk_eit Packet of EIT Registers Registers saved when EIT occurs
CONST T_CREGS* pk_cregs Packet of Control Registers Control registers

The contents of T_REGS, T_EIT, and T_CREGS are defined for each CPU and implementation.

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for the invoking task)
E_CTX Context error (called from task-independent portion)
E_PAR Invalid register value (implementation-dependent)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_REGOPS Support for task-register manipulation functions

Description

Sets the current register contents of the task specified in tskid.

If NULL is set in pk_regs, pk_eit, or pk_cregs, the corresponding registers are not set.

The set register values are not necessarily the values while the task portion is executing. The kernel is not
responsible for handling the side-effects of register value changes.

μT-Kernel 3.0 Specification 76 / 502

It is possible, however, that some registers or register bits cannot be changed if the kernel does not allow such
changes.(Implementation-dependent)

If this system call is issued for the invoking task, error code E_OBJ is returned.

μT-Kernel 3.0 Specification 77 / 502

4.1.10 tk_get_cpr - Get Task Coprocessor Registers

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_cpr(ID tskid, INT copno, T_COPREGS *pk_copregs);

Parameter

ID tskid Task ID Task ID
INT copno Coprocessor Number Coprocessor number (0 to 3)
T_COPREGS* pk_copregs Packet of Coprocessor

Registers
Pointer to the area to return
coprocessor register values

Return Parameter

ER ercd Error Code Error code

pk_copregs Detail:

T_COP0REG cop0 Coprocessor Number 0
Register

Coprocessor number 0 register

T_COP1REG cop1 Coprocessor Number 1
Register

Coprocessor number 1 register

T_COP2REG cop2 Coprocessor Number 2
Register

Coprocessor number 2 register

T_COP3REG cop3 Coprocessor Number 3
Register

Coprocessor number 3 register

The contents of T_COPnREG are defined for each CPU and implementation.

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for the invoking task)
E_CTX Context error (called from task-independent portion)
E_PAR Parameter error (copno is invalid or the specified coprocessor does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

TK_SUPPORT_COPn Support of co-processor number n

μT-Kernel 3.0 Specification 78 / 502

If TK_SUPPORT_COPn is ineffective for all n, this API is unsupported.

Description

Gets the current contents of the register specified in copno of the task specified in tskid.

The referenced register values are not necessarily the values at the time the task portion was executing.

If this system call is issued for the invoking task, error code E_OBJ is returned.

Additional Notes

In principle, all registers in the task context can be referenced. This includes not only physical CPU registers
but also those treated by the kernel as virtual registers.

μT-Kernel 3.0 Specification 79 / 502

4.1.11 tk_set_cpr - Set Task Coprocessor Registers

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_cpr(ID tskid, INT copno, CONST T_COPREGS *pk_copregs);

Parameter

ID tskid Task ID Task ID
INT copno Coprocessor Number Coprocessor number (0 to 3)
CONST T_COPREGS* pk_copregs Packet of Coprocessor

Registers
Coprocessor register

pk_copregs Detail:

T_COP0REG cop0 Coprocessor Number 0
Register

Coprocessor number 0 register

T_COP1REG cop1 Coprocessor Number 1
Register

Coprocessor number 1 register

T_COP2REG cop2 Coprocessor Number 2
Register

Coprocessor number 2 register

T_COP3REG cop3 Coprocessor Number 3
Register

Coprocessor number 3 register

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for the invoking task)
E_CTX Context error (called from task-independent portion)
E_PAR Parameter error (copno is invalid or the specified coprocessor does not exist), or the

set register value is invalid (implementation-dependent)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

TK_SUPPORT_COPn Support of co-processor number n

μT-Kernel 3.0 Specification 80 / 502

If TK_SUPPORT_COPn is ineffective for all n, this API is unsupported.

Description

Sets the contents of the register specified in copno of the task specified in tskid.

The set register values are not necessarily the values while the task portion is executing. The kernel is not
responsible for handling the side-effects of register value changes.

It is possible, however, that some registers or register bits cannot be changed if the kernel does not allow such
changes.(Implementation-dependent)

If this system call is issued for the invoking task, error code E_OBJ is returned.

μT-Kernel 3.0 Specification 81 / 502

4.1.12 tk_ref_tsk - Reference Task Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_tsk(ID tskid, T_RTSK *pk_rtsk);

Parameter

ID tskid Task ID Task ID
T_RTSK* pk_rtsk Packet to Return Task Status Pointer to the area to return the task

status

Return Parameter

ER ercd Error Code Error code

pk_rtsk Detail:

void* exinf Extended Information Extended information
PRI tskpri Task Priority Current priority
PRI tskbpri Task Base Priority Base priority
UINT tskstat Task State Task State
UW tskwait Task Wait Factor Wait factor
ID wid Waiting Object ID Waiting object ID
INT wupcnt Wakeup Count Wakeup request queuing count
INT suscnt Suspend Count Suspend request nesting count
UW waitmask Wait Mask Disabled wait factors
UINT texmask Task Exception Mask Allowed task exceptions
UINT tskevent Task Event Raised task event
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (invalid pk_rtsk)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

TK_SUPPORT_DISWAI Information about disabled wait factors (waitmask) is obtainable
TK_SUPPORT_TASKEXCEPTION Task exception information (texmask) can be acquired.
TK_SUPPORT_TASKEVENT Generated task event(tskevent) can be acquired

μT-Kernel 3.0 Specification 82 / 502

Description

Gets the state of the task specified in tskid.

tskstat takes the following values.

TTS_RUN 0x0001 RUNNING state
TTS_RDY 0x0002 READY state
TTS_WAI 0x0004 WAITING state
TTS_SUS 0x0008 SUSPENDED state
TTS_WAS 0x000c WAITING-SUSPENDED state
TTS_DMT 0x0010 DORMANT state
TTS_NODISWAI 0x0080 Disabling of wait by tk_dis_wai is prohibited

Task states such as TTS_RUN and TTS_WAI are expressed by corresponding bits, which is useful when making a
complex state decision (e.g., deciding that the state is one of either RUNNING or READY state). Note that of
the above states, TTS_WAS is a combination of TTS_SUS and TTS_WAI but TTS_SUS is never combined with other
states (TTS_RUN, TTS_RDY, TTS_DMT).

In the case of TTS_WAI (including TTS_WAS), disabling of wait by the tk_dis_wai is prohibited, TTS_NODISWAI is
set. TTS NODISWAI is never combined with states other than TTS WAI.

When tk_ref_tsk is executed for an interrupted task from an interrupt handler, RUNNING (TTS_RUN) is returned
as tskstat.

When tskstat is TTS_WAI (including TTS_WAS), the values of tskwait and wid are as shown in Table 4.2, “Values
of tskwait and wid”.

tskwait Value Description wid
TTW_SLP 0x00000001 Wait caused by tk_slp_tsk 0
TTW_DLY 0x00000002 Wait caused by tk_dly_tsk 0
TTW_SEM 0x00000004 Wait caused by tk_wai_sem semid
TTW_FLG 0x00000008 Wait caused by tk_wai_flg flgid
TTW_MBX 0x00000040 Wait caused by tk_rcv_mbx mbxid
TTW_MTX 0x00000080 Wait caused by tk_loc_mtx mtxid
TTW_SMBF 0x00000100 Wait caused by tk_snd_mbf mbfid
TTW_RMBF 0x00000200 Wait caused by tk_rcv_mbf mbfid
TTW_CAL 0x00000400 (reserved) (reserved)
TTW_ACP 0x00000800 (reserved) (reserved)
TTW_RDV 0x00001000 (reserved) (reserved)
(TTW_CAL | TTW_RDV) 0x00001400 (reserved) (reserved)
TTW_MPF 0x00002000 Wait caused by tk_get_mpf mpfid
TTW_MPL 0x00004000 Wait caused by tk_get_mpl mplid
TTW_EV1 0x00010000 Wait for task event #1 0
TTW_EV2 0x00020000 Wait for task event #2 0
TTW_EV3 0x00040000 Wait for task event #3 0
TTW_EV4 0x00080000 Wait for task event #4 0
TTW_EV5 0x00100000 Wait for task event #5 0
TTW_EV6 0x00200000 Wait for task event #6 0
TTW_EV7 0x00400000 Wait for task event #7 0
TTW_EV8 0x00800000 Wait for task event #8 0

Table 4.2: Values of tskwait and wid

When tskstat is not TTS_WAI (including TTS_WAS), both tskwait and wid are 0.

waitmask is the same bit array as tskwait.

μT-Kernel 3.0 Specification 83 / 502

texmask is a logical OR bit array representing permitted task exception codes in the form 1<< task exception
code for each code.

tskevent shows the list of generated and pending task events by representing each event as 1<< (task event
number - 1) and calculating the logical OR of the bit values.

For a task in DORMANT state, wupcnt = 0, suscnt = 0, and tskevent = 0.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid=TSK_SELF=0
is specified in a system call issued from a task-independent portion, error code E_ID is returned.

When the task specified with tk_ref_tsk does not exist, error code E_NOEXS is returned.

Additional Notes

Even when tskid = TSK_SELF is specified with this system call, the ID of the invoking task is not known. Use
tk_get_tid to find out the ID of the invoking task.

μT-Kernel 3.0 Specification 84 / 502

4.2 Task Synchronization Functions

Task synchronization functions achieve synchronization among tasks by direct manipulation of task states.
They include functions for task sleep and wakeup, for canceling wakeup requests, for forcibly releasing task
WAITING state, for changing a task state to SUSPENDED state, for delaying execution of the invoking task,
and for disabling task WAITING state.

Wakeup requests for a task are queued. That is, when it is attempted to wake up a task that is not sleeping,
the wakeup request is remembered, and the next time the task is to go to a sleep state (waiting for wakeup),
it does not enter that state. The queuing of task wakeup requests is realized by having the task keep a task
wakeup request queuing count. When the task is started, this count is cleared to 0.

Suspend requests for a task are nested. That is, if it is attempted to suspend a task already in SUSPENDED
state (including WAITING-SUSPENDED state), the request is remembered, and later when it is attempted
to resume the task in SUSPENDED state (including WAITING-SUSPENDED state), it is not resumed. The
nesting of suspend requests is realized by having the task keep a suspend request nesting count. When the
task is started, this count is cleared to 0.

μT-Kernel 3.0 Specification 85 / 502

4.2.1 tk_slp_tsk - Sleep Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_slp_tsk(TMO tmout);

Parameter

TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (tmout ≦ (-2))
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Changes the state of the invoking task from RUNNING state to sleep state (WAITING state for tk_wup_tsk).
Note if the wakeup requests for the invoking task are queued, i.e., the wakeup request queuing count of the
invoking task is 1 or more, the count is decremented by 1, and the execution is continued without moving the
invoking task to the waiting state.

If tk_wup_tsk is issued for the invoking task before the time specified in tmout has elapsed, this system call
completes normally. If timeout occurs before tk_wup_tsk is issued, the timeout error code E_TMOUT is re-
turned. Specifying tmout = TMO_FEVR (= -1) means eternal wait. In this case, the task stays in waiting state until
tk_wup_tsk is issued.

Additional Notes

Since tk_slp_tsk is a system call that puts the invoking task into the waiting state, tk_slp_tsk can never be
nested. It is possible, however, for another task to issue tk_sus_tsk for a task that was put in the waiting state

μT-Kernel 3.0 Specification 86 / 502

by tk_slp_tsk. In this case the task goes to WAITING-SUSPENDED state.

For simply delaying a task, tk_dly_tsk should be used rather than tk_slp_tsk.

The task sleep function is intended for use by applications and as a rule should not be used by middleware.
The reason is as follows.

Attempting to achieve synchronization by putting a task to sleep in two or more places would cause confu-
sion, leading to mis-operation. For example, if sleep were used by both an application and middleware for
synchronization, a wakeup request might arise in the application while middleware has a task sleeping. In
such a situation, normal operation would not be possible in either the application or middleware.

In this manner, proper task synchronization is not possible if it is not clear where the wait for wakeup origi-
nated. Task sleep is often used as a simple means of task synchronization. Applications should be able to use
it freely, which means as a rule it should not be used by middleware.

μT-Kernel 3.0 Specification 87 / 502

4.2.2 tk_slp_tsk_u - Sleep Task (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_slp_tsk_u(TMO_U tmout_u);

Parameter

TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (tmout_u ≦ (-2))
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_slp_tsk.

The specification of this system call is same as that of tk_slp_tsk, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_slp_tsk.

μT-Kernel 3.0 Specification 88 / 502

4.2.3 tk_wup_tsk - Wakeup Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_wup_tsk(ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for the invoking task or for a task in DORMANT state)
E_QOVR Queuing or nesting overflow (too many queued wakeup requests in wupcnt)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

TK_WAKEUP_MAXCNT Maximum queuing count of the task wakeup requests (>= 1)

Description

If the task specified in tskid has been put in WAITING state by tk_slp_tsk, this system call releases the WAIT-
ING state.

This system call cannot be called for the invoking task. If the invoking task is specified, error code E_OBJ is
returned.

If the target task has not called tk_slp_tsk and is not in WAITING state, the wakeup request by tk_wup_tsk is
queued. That is, the calling of tk_wup_tsk for the target task is recorded, then when tk_slp_tsk is called after
that, the task does not go to WAITING state. This is what is meant by queuing of wakeup requests.

The queuing of wakeup requests works as follows. Each task keeps a wakeup request queuing count (wupcnt) in
its TCB. Its initial value (when tk_sta_tsk is executed) is 0. When tk_wup_tsk is issued for a task not sleeping
(not in WAITING state), the count is incremented by 1; but each time tk_slp_tsk is executed, the count is
decremented by 1. When tk_slp_tsk is executed for a task whose wakeup queuing count is 0, the queuing
count is not made negative but rather the task goes to WAITING state.

μT-Kernel 3.0 Specification 89 / 502

It is always possible to queue tk_wup_tsk at least one time (wupcnt = 1), but the maximum queuing count (
wupcnt) is implementation-dependent and its maximum value is defined by serviced profile item, TK_WAKEUP_MAXCNT.
In other words, issuing tk_wup_tsk once for a task not in WAITING state does not return an error, but whether
an error is returned for the second or subsequent call of tk_wup_tsk is implementation-dependent.

When calling tk_wup_tsk causes wupcnt to exceed the allowed maximum value, error code E_QOVR is returned.

μT-Kernel 3.0 Specification 90 / 502

4.2.4 tk_can_wup - Cancel Wakeup Task

C Language Interface

#include <tk/tkernel.h>

INT wupcnt = tk_can_wup(ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

INT wupcnt Wakeup Count Number of queued wakeup requests
or Error Code Error code

Error Code

E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for a task in DORMANT state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Passes in the return value the wakeup request queuing count (wupcnt) for the task specified in tskid, at the
same time canceling all wakeup requests. That is, this system call clears the wakeup request queuing count
(wupcnt) to 0 for the specified task.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

Additional Notes

This system call can be used to determine whether the processing was completed within the allotted time when
processing is performed that involves cyclic wakeup of a task. Before processing of a prior wakeup request
is completed and tk_slp_tsk is called by the waken up task, the task monitoring this task calls tk_can_wup.
If wupcnt in the return parameter is 1 or above, this means the previous wakeup request was not processed
within the allotted time. Measure can then be taken accordingly to compensate for the delay.

μT-Kernel 3.0 Specification 91 / 502

4.2.5 tk_rel_wai - Release Wait

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rel_wai(ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for a task not in WAITING state (including when called

for the invoking task, or for a task in DORMANT state))

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

None.

Description

If the task specified in tskid is in some kind of waiting state (not including SUSPENDED state), forcibly
releases that state.

To the task whose WAITING state was released by tk_rel_wai, the error code E_RLWAI is returned. At this time,
the target task is guaranteed to be released from its wait state without the allocation of the waited resource
(without the wait release conditions being met).

Wait release requests are not queued by tk_rel_wai. That is, if the task specified in tskid is already in WAITING
state, the WAITING state is cleared; but if it is not in WAITING state when this system call is issued, error
code E_OBJ is returned to the caller. Likewise, error code E_OBJ is returned when this system call is issued
specifying the invoking task.

The tk_rel_wai system call does not release a SUSPENDED state. If tk_rel_wai is issued for a task in WAITING-
SUSPENDED state, the task goes to SUSPENDED state. If it is necessary to release SUSPENDED state, the
separate system call tk_rsm_tsk or tk_frsm_tsk is used.

The states of the target task when tk_rel_wai is called and the results of its execution in each state are shown
in Table 4.3, “Target Task State and Execution Result (tk_rel_wai) ”.

μT-Kernel 3.0 Specification 92 / 502

Target Task State
tk_rel_waiercd Return
Value

(processing)

Run state (RUNNING or READY) (not for
invoking task)

E_OBJ No operation

Running state (RUNNING) (invoking task) E_OBJ No operation
Waiting state (WAITING) E_OK Wait released/release wait
Suspended state (SUSPENDED) E_OBJ No operation
Waiting-suspended state
(WAITING-SUSPENDED)

E_OK Goes to SUSPENDED
state

Dormant state (DORMANT) E_OBJ No operation
Non-existent state (NON-EXISTENT) E_NOEXS No operation

Table 4.3: Target Task State and Execution Result (tk_rel_wai)

Additional Notes

A function similar to timeout can be realized by using an alarm handler or the like to issue this system call
after a given task has been in WAITING state for a set time.

The main differences between tk_rel_wai and tk_wup_tsk are the following.

• Whereas tk_wup_tsk releases only WAITING state effected by tk_slp_tsk, tk_rel_wai releases also WAITING
state caused by other factors (tk_wai_flg, tk_wai_sem, tk_rcv_mbx, tk_get_mpl, tk_dly_tsk, etc.).

• Seen from the task in WAITING state, release of the WAITING state by tk_wup_tsk returns a Normal com-
pletion (E_OK), whereas release by tk_rel_wai returns an error code (E_RLWAI).

• Wakeup requests by tk_wup_tsk are queued if tk_slp_tsk has not yet been executed. If tk_rel_wai is issued
for a task not in WAITING state, error code E_OBJ is returned.

μT-Kernel 3.0 Specification 93 / 502

4.2.6 tk_sus_tsk - Suspend Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sus_tsk(ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for the invoking task or for a task in DORMANT state)
E_CTX A task in RUNNING state was specified in dispatch disabled state
E_QOVR Queuing or nesting overflow (too many nested requests in suscnt)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

TK_SUSPEND_MAXCNT Maximum nest count of the forced wait of tasks (>= 1)

Description

Puts the task specified in tskid in SUSPENDED state and interrupts execution by the task.

SUSPENDED state is released by issuing system call tk_rsm_tsk or tk_frsm_tsk.

If tk_sus_tsk is called for a task already in WAITING state, the state goes to a combination of WAITING state
and SUSPENDED state (WAITING-SUSPENDED state) after the execution of tk_sus_tsk. Thereafter when the
task wait release conditions are met, the task goes to SUSPENDED state. If tk_rsm_tsk is issued for the task in
WAITING-SUSPENDED state, the task state reverts to WAITING state. (See Figure 2.1, “Task State Transition
Diagram”).

Since SUSPENDED state means task interruption by a system call issued by another task, this system call
cannot be issued for the invoking task. If the invoking task is specified, error code E_OBJ is returned.

When this system call is issued from a task-independent portion, if a task in RUNNING state is specified while
dispatching is disabled, error code E_CTX is returned.

μT-Kernel 3.0 Specification 94 / 502

If tk_sus_tsk is issued more than once for the same task, the task is put in nested SUSPENDED state. This is
called nesting of suspend requests. In this case, the task reverts to its original state only when tk_rsm_tsk has
been issued for the same number of times as tk_sus_tsk (suscnt). Accordingly, nesting of the pair of system
calls tk_sus_tsk and tk_rsm_tsk is possible.

The nesting feature of suspend requests (issuing tk_sus_tsk two or more times for the same task) and upper
limits on nesting count are implementation-dependent.

If tk_sus_tsk is issued multiple times in a system that does not allow suspend request nesting, or if the nesting
count exceeds the allowed limit, error code E_QOVR is returned.

Additional Notes

When a task is in WAITING state for resource acquisition (semaphore wait, etc.) and is also in SUSPENDED
state, the resource allocation (semaphore allocation, etc.) takes place under the same conditions as when the
task is not in SUSPENDED state. Resource allocation is not delayed by the SUSPENDED state, and there
is no change whatsoever in the priority of resource allocation or release from WAITING state. In this way
SUSPENDED state is in an orthogonal relation with other processing and task states.

In order to delay resource allocation to a task in SUSPENDED state (temporarily lowering its priority), the
user can employ tk_sus_tsk and tk_rsm_tsk in combination with tk_chg_pri.

Task suspension is intended only for very limited uses closely related to the OS, such as breakpoint processing
in a debugger. As a rule it should not be used in ordinary applications or in middleware. The reason is as
follows.

Task suspension takes place regardless of the target task running state. If, for example, a task is put in SUS-
PENDED state while it is calling a middleware function, the task will be stopped in the course of middleware
internal processing. In some cases middleware performs resource management or other mutual exclusion
control. If a task stops inside middleware while it has resources allocated, other tasks may not be able to use
that middleware. This situation can cause chain reactions, with other tasks stopping and leading to system-
wide deadlock.

For this reason a task must not be stopped without knowing its status (what it is doing at the time), and
ordinary tasks should not use the task suspension function.

μT-Kernel 3.0 Specification 95 / 502

4.2.7 tk_rsm_tsk - Resumes a task in a SUSPENDED state

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rsm_tsk(ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (the specified task is not in SUSPENDED state (including when

this system call specifies the invoking task or a task in DORMANT state))

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Releases the SUSPENDED state of the task specified in tskid. If the target task was earlier put in SUSPENDED
state by the tk_sus_tsk system call, this system call releases that SUSPENDED state and resumes the task
execution.

When the target task is in a combined WAITING state and SUSPENDED state (WAITING-SUSPENDED state),
executing tk_rsm_tsk releases only the SUSPENDED state, putting the task in WAITING state (see Figure 2.1,
“Task State Transition Diagram”).

This system call cannot be called for the invoking task. If the invoking task is specified, error code E_OBJ is
returned.

Executing tk_rsm_tsk once clears only one nested suspend request (suscnt). If tk_sus_tsk was issued more
than once for the target task (suscnt ≧ 2), the target task remains in SUSPENDED state even after tk_rsm_tsk
is executed.

μT-Kernel 3.0 Specification 96 / 502

Additional Notes

After a task in RUNNING state or READY state is put in SUSPENDED state by tk_sus_tsk and then resumed
by tk_rsm_tsk or tk_frsm_tsk, the task has the lowest precedence among tasks of the same priority.

When, for example, the following system calls are executed for tasks A and B of the same priority, the result
is as indicated below.

tk_sta_tsk (tskid=task_A , stacd_A);
tk_sta_tsk (tskid=task_B , stacd_B);
/* By the rule of FCFS , precedence becomes task_A → task_B. */

tk_sus_tsk (tskid=task_A);
tk_rsm_tsk (tskid=task_A);
/* In this case precedence becomes task_B → task_A. */

μT-Kernel 3.0 Specification 97 / 502

4.2.8 tk_frsm_tsk - Force Resume Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_frsm_tsk(ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (the specified task is not in SUSPENDED state (including when

this system call specifies the invoking task or a task in DORMANT state))

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Releases the SUSPENDED state of the task specified in tskid. If the target task was earlier put in SUSPENDED
state by the tk_sus_tsk system call, this system call releases that SUSPENDED state and resumes the task
execution.

When the target task is in a combined WAITING state and SUSPENDED state (WAITING-SUSPENDED state),
executing tk_frsm_tsk releases only the SUSPENDED state, putting the task in WAITING state (see Figure 2.1,
“Task State Transition Diagram”).

This system call cannot be called for the invoking task. If the invoking task is specified, error code E_OBJ is
returned.

Executing tk_frsm_tsk once clears all the nested suspend requests (suscnt) (suscnt = 0). Therefore, all suspend
requests are released (suscnt is cleared to 0) even if tk_sus_tsk was issued more than once (suscnt ≧ 2).
The SUSPENDED state is always cleared, and unless the task was in the WAITING-SUSPENDED state, its
execution resumes.

μT-Kernel 3.0 Specification 98 / 502

Additional Notes

After a task in RUNNING state or READY state is put in SUSPENDED state by tk_sus_tsk and then resumed
by tk_rsm_tsk or tk_frsm_tsk, the task has the lowest precedence among tasks of the same priority.

When, for example, the following system calls are executed for tasks A and B of the same priority, the result
is as indicated below.

tk_sta_tsk (tskid=task_A , stacd_A);
tk_sta_tsk (tskid=task_B , stacd_B);
/* By the rule of FCFS , precedence becomes task_A → task_B. */

tk_sus_tsk (tskid=task_A);
tk_frsm_tsk (tskid=task_A);
/* In this case precedence becomes task_B → task_A. */

μT-Kernel 3.0 Specification 99 / 502

4.2.9 tk_dly_tsk - Delay Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_dly_tsk(RELTIM dlytim);

Parameter

RELTIM dlytim Delay Time Delay time (ms)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (dlytim is invalid)
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Temporarily stops execution of the invoking task and waits for time dlytim to elapse.

The state while the task waits for the delay time to elapse is a WAITING state and is subject to release by
tk_rel_wai.

If the task issuing this system call goes to SUSPENDED state or WAITING-SUSPENDED state while it is
waiting for the delay time to elapse, the elapsed time continues to be counted in the SUSPENDED state.

The time unit for dlytim (time unit) is the same as that for system time (= 1 ms).

Additional Notes

This system call differs from tk_slp_tsk in that normal completion, not an error code, is returned when the
specified delay time elapses. Moreover, the wait is not released even if tk_wup_tsk is executed during the
delay time. The only way to terminate tk_dly_tsk before the delay time elapses is by calling tk_ter_tsk or
tk_rel_wai.

μT-Kernel 3.0 Specification 100 / 502

4.2.10 tk_dly_tsk_u - Delay Task (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_dly_tsk_u(RELTIM_U dlytim_u);

Parameter

RELTIM_U dlytim_u Delay Time Delay time (microseconds)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (dlytim_u is invalid)
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit dlytim_u in microseconds instead of the parameter dlytim of tk_dly_tsk.

The specification of this system call is same as that of tk_dly_tsk, except that the parameter is replaced with
dlytim_u. For more details, see the description of tk_dly_tsk.

μT-Kernel 3.0 Specification 101 / 502

4.2.11 tk_sig_tev - Signal Task Event

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sig_tev(ID tskid, INT tskevt);

Parameter

ID tskid Task ID Task ID
INT tskevt Task Event Task event number (1 to 8)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for a task in DORMANT state)
E_PAR Parameter error (tskevt is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_TASKEVENT Support of task event

Description

Sends the task event specified in tskevt to the task specified in tskid.

There are eight task event types stored for each task, specified by numbers 1 to 8.

The task event send count is not saved, only whether the event occurs or not.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

Additional Notes

The task event function is used for task synchronization much like tk_slp_tsk and tk_wup_tsk, but differs from
the use of these system calls in the following ways.

μT-Kernel 3.0 Specification 102 / 502

• The wakeup request (task event) count is not kept.

• Wakeup requests can be classified by the eight event types.

Using the same event type for synchronization in two or more places in the same task would cause confusion.
Event type allocation should be clearly defined.

The task event function is intended for use in middleware, and as a rule should not be used in ordinary
applications. Use of tk_slp_tsk and tk_wup_tsk is recommended for applications.

μT-Kernel 3.0 Specification 103 / 502

4.2.12 tk_wai_tev - Wait Task Event

C Language Interface

#include <tk/tkernel.h>

INT tevptn = tk_wai_tev(UINT waiptn, TMO tmout);

Parameter

UINT waiptn Wait Event Pattern Task event pattern
TMO tmout Timeout Timeout (ms)

Return Parameter

INT tevptn Task Event Pattern Task event status when wait released
or Error Code Error code

Error Code

E_PAR Parameter error (waiptn or tmout is invalid)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_TASKEVENT Support of task event

Description

Waits for the occurrence of one of the task events specified in waiptn. When the wait is released by a task
event, the task events specified in waiptn are cleared (raised task event &= ~waiptn). The task event status
when the wait was released (the state before clearing) is passed in the return code (tevptn).

The parameters waiptn and tevptn consist of logical OR values of the bits for each task event in the form 1 <<
(task event number -1).

A maximum wait time (timeout) can be set in tmout. The time unit for tmout is the same as that for system time
(= 1 ms). If the tmout time elapses before the wait release condition is met (tk_sig_tev is not executed), the
system call terminates, returning timeout error code E_TMOUT.

When TMO_POL＝0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned

μT-Kernel 3.0 Specification 104 / 502

without entering WAITING state even if no task event occurs. When TMO_FEVR＝(-1) is set in tmout, this means
infinity was specified as the timeout value, and the task continues to wait for a task event without timing out.

μT-Kernel 3.0 Specification 105 / 502

4.2.13 tk_wai_tev_u - Wait Task Event (Microseconds)

C Language Interface

#include <tk/tkernel.h>

INT tevptn = tk_wai_tev_u(UINT waiptn, TMO_U tmout_u);

Parameter

UINT waiptn Wait Event Pattern Task event pattern
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

INT tevptn Task Event Pattern Task event status when wait released
or Error Code Error code

Error Code

E_PAR Parameter error (waiptn or tmout_u is invalid)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_TASKEVENT Support of task event
TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_wai_tev.

The specification of this system call is same as that of tk_wai_tev, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_wai_tev.

μT-Kernel 3.0 Specification 106 / 502

4.2.14 tk_dis_wai - Disable Task Wait

C Language Interface

#include <tk/tkernel.h>

INT tskwait = tk_dis_wai(ID tskid, UW waitmask);

Parameter

ID tskid Task ID Task ID
UW waitmask Wait Mask Task wait disabled setting

Return Parameter

INT tskwait Task Wait Task state after task wait is disabled
or Error Code Error code

Error Code

E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (waitmask is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DISWAI Support of disabling of wait of a task

Description

Disables waits for the wait factors set in waitmask by the task specified in tskid. If the task is already waiting
for a factor specified in waitmask , that wait is released.

waitmask is specified as the logical OR of any combination of the following wait factors.

#define TTW_SLP 0x00000001 /* Wait caused by sleep */
#define TTW_DLY 0x00000002 /* Wait for task delay */
#define TTW_SEM 0x00000004 /* Wait for semaphore */
#define TTW_FLG 0x00000008 /* Wait for event flag */
#define TTW_MBX 0x00000040 /* Wait for mailbox */
#define TTW_MTX 0x00000080 /* Wait for mutex */
#define TTW_SMBF 0x00000100 /* Wait for message buffer send */
#define TTW_RMBF 0x00000200 /* Wait for message buffer receive */
#define TTW_CAL 0x00000400 /* (reserved) */

μT-Kernel 3.0 Specification 107 / 502

#define TTW_ACP 0x00000800 /* (reserved) */
#define TTW_RDV 0x00001000 /* (reserved) */
#define TTW_MPF 0x00002000 /* Wait for fixed -size memory pool */
#define TTW_MPL 0x00004000 /* Wait for variable -size memory pool */
#define TTW_EV1 0x00010000 /* Wait for task event #1 */
#define TTW_EV2 0x00020000 /* Wait for task event #2 */
#define TTW_EV3 0x00040000 /* Wait for task event #3 */
#define TTW_EV4 0x00080000 /* Wait for task event #4 */
#define TTW_EV5 0x00100000 /* Wait for task event #5 */
#define TTW_EV6 0x00200000 /* Wait for task event #6 */
#define TTW_EV7 0x00400000 /* Wait for task event #7 */
#define TTW_EV8 0x00800000 /* Wait for task event #8 */
#define TTX_SVC 0x80000000 /* Extended SVC disabled */

TTX_SVC is a special value disabling not the task wait but the calling of an extended SVC. If TTX_SVC has been
set when a task attempts to call an extended SVC, E_DISWAI is returned without calling the extended SVC.
This value does not have the effect of terminating an already called extended SVC.

The return value (tskwait) includes the waiting state of a task as a pattern of concatenated bits (bit width
of INT data type - 1) after the waiting states are disabled by tk_dis_wai. If bit width of INT data type is 32,
then this value is the same as the value tskwait returned by tk_ref_tsk. Information concerning TTX_SVC is not
returned in tskwait. A tskwait value of 0 means the task has not entered WAITING state (or the wait was
released). If tskwait is not 0, this means the task is in WAITING state for a cause other than those disabled in
waitmask. If the bit width of INT data type is less than 32, the information represented by upper bits that will
not fit into INT data are not returned. Hence, in this case, even if tskwait is zero, there is a possibility that the
task is waiting for a cause that is not specified in waitmask.

When a task wait is cleared by tk_dis_wai or the task is prevented from entering WAITING state after this
system call has taken effect, E_DISWAI is returned.

When a system call for which there is the possibility of entering the WAITING state is invoked during wait-
disabled state, E_DISWAI is returned even if the processing could be performed without waiting. For example,
when message buffer space is available and it is possible to send message without entering the WAITING state,
and if a message is sent to message buffer (tk_snd_mbf is called), the message is not sent and E_DISWAI is
returned.

Disabling of wait that is set during an extended SVC will be cleared automatically upon return from the ex-
tended SVC to its caller. It is automatically cleared also when an extended SVC is called, reverting to the
original setting upon return from the extended SVC.

Disabling of wait that is set is cleared also when the task reverts to DORMANT state. The setting made while
a task is in DORMANT state, however, is valid and the disabling of wait is applied the next time the task is
started.

In the case of semaphores and most other objects, TA_NODISWAI can be specified when the object is created.
An object created with TA_NODISWAI specified cannot have wait disabled, and rejects any attempt to disable
wait by tk_dis_wai.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

Additional Notes

The function to disable wait is provided for aborting the execution of an extended SVC handler in midway,
but it is not restricted to that purpose only.

Porting Guideline

Note that the data type of return value of tk_dis_wai, (tskwait), is of type INT、and its value range is implementation-
dependent, so care must be taken. For example, you can not receive information concerning waiting task

μT-Kernel 3.0 Specification 108 / 502

events under an implementation on 16-bits CPU. If it is desired to obtain task wait status without regard to
the CPU bit width under μT-Kernel, it is necessary to reference tskwait by invoking tk_ref_tsk. On the other
hand, under T-Kernel, INT is defined to be 32 bits or wider, the return value of tk_dis_wai can show all the
details of the wait status of a task.

μT-Kernel 3.0 Specification 109 / 502

4.2.15 tk_ena_wai - Enable Task Wait

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ena_wai(ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DISWAI Support of disabling of wait of a task

Description

Releases all disabling of waits set by tk_dis_wai for the task specified in tskid.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

μT-Kernel 3.0 Specification 110 / 502

4.3 Task Exception Handling Functions

Task exception handling functions handle exception events that are raised for a task in the context of that
task.

The task exception handler is started when all the following processing has taken place:

1. Register task exception handler by tk_def_tex

2. Enable task exception by tk_ena_tex

3. Raise task exception by tk_ras_tex

A task exception handler is executed as a part of the task where the task exception occurred, in the context of
that task and at the protection level specified when the task was created. The task states in a task exception
handler, except for those states concerning task exceptions, are the same as the states when running an
ordinary task portion; and the same set of system calls are available.

A task exception handler can be started only when the target task is running in a task portion. If the task is
running in any other portion when a task exception is raised, the task exception handler is started only after
the control returns to the task portion. If a quasi-task portion (extended SVC) is being executed when a task
exception is raised, the processing of the extended SVC handler is aborted and the control returns to the task
portion. If it is needed to abort the processing of the extended SVC handler (called ”break processing” for
the extended SVC handler), it is performed before the control returns to the task portion where the extended
SVC handler is called. ”Break processing” is executed by the break function of Subsystem Management
Functions.

Requested task exceptions are cleared when the task exception handler is called (when the task exception
handler starts running).

Task exception is identified by a task exception code: from 1 to (bit width of UINT data type - 1). For example,
if UINT is 16 bits, a number from 0 to 15 can be used as task exception code. 0 corresponds to the highest
priority, and (bit width of UINT data type - 1) corresponds to the lowest priority. Task exception code 0 is
handled differently from the others, as explained below.

Processing of task exception code from 1 to (bit width of UINT data type) - 1:

• These task exception handlers cannot be executed by nesting them. A task exception (other than task
exception code 0) raised while a task exception handler is running will be made pending.

• On return from a task exception handler, the task resumes from the point where processing was inter-
rupted by the exception.

• It is also possible to use longjmp() or the like to jump to any point in the task without returning from
the task exception handler.

Task exception code 0:

• This exception can be executed by nesting even while a task exception handler is executing for an
exception of task exception code from 1 to (bit width of UINT data type - 1). Nesting does not take
place when the task exception handler of task exception code 0 is executed.

• A task exception handler runs after setting the user stack pointer to the initial setting when the task
was started. In a system without a separate user stack and system stack, however, the stack pointer is
not reset to its initial setting.

• A task exception code 0 handler does not return to task processing. The task must be terminated by
calling tk_ext_tsk or tk_exd_tsk.

Porting Guideline
Be warned that the available number of task exception codes is now dependent on the bit width of UINT data
type. For example, task exception code can take the value from 0 to 15 in 16-bit environment.

μT-Kernel 3.0 Specification 111 / 502

4.3.1 tk_def_tex - Define Task Exception Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_def_tex(ID tskid, CONST T_DTEX *pk_dtex);

Parameter

ID tskid Task ID Task ID
CONST T_DTEX* pk_dtex Packet to Define Task

Exception
Task exception handler definition
information

pk_dtex Detail:

ATR texatr Task Exception Attribute Task exception handler attributes
FP texhdr Task Exception Handler Task exception handler address
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (the task specified in tskid runs at protection level 0 (TA_RNG0))
E_RSATR Reserved attribute (texatr is invalid or cannot be used)
E_PAR Parameter error (pk_dtex is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_TASKEXCEPTION Support of task exception handling functions

Description

Defines a task exception handler for the task specified in tskid. Only one task exception handler can be
defined per task; if one is already defined, the last-defined handler is valid. Setting pk_dtex = NULL cancels a

μT-Kernel 3.0 Specification 112 / 502

definition.

Defining or canceling a task exception handler clears pending task exception requests and disables all task
exceptions.

texatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The texatr system attributes are not assigned in the present version of T-Kernel specification, and system
attributes are not used.

A task exception handler takes the following form.

void texhdr(INT texcd)
{

/*
Task exception handling

*/

/* Task exception handler termination */
if (texcd == 0) {

tk_ext_tsk () or tk_exd_tsk ();
} else {

tk_end_tex ();
return or longjmp ();

}
}

A task exception handler behaves like a TA_ASM attribute object and cannot be called via a high-level language
support routine. The entry part of the task exception handler must be written in assembly language. The
kernel vendor must provide the assembly language source code of the entry routine for calling the above C
language task exception handler. That is, source code equivalent to a high-level language support routine
must be provided.

A task set to protection level TA_RNG0 when it is created cannot use task exceptions.

Additional Notes

At the time a task is created, no task exception handler is defined and task exceptions are disabled.

When a task reverts to DORMANT state, the task exception handler definition is canceled and task exceptions
are disabled. Pending task exceptions are cleared. It is possible, however, to define a task exception handler
for a task in DORMANT state.

Task exceptions are software interrupts raised by tk_ras_tex, with no direct relation to CPU exceptions.

μT-Kernel 3.0 Specification 113 / 502

4.3.2 tk_ena_tex - Enable Task Exception

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ena_tex(ID tskid, UINT texptn);

Parameter

ID tskid Task ID Task ID
UINT texptn Task Exception Pattern Task exception pattern

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist or no task exception

handler is defined)
E_PAR Parameter error (texptn is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_TASKEXCEPTION Support of task exception handling functions

Description

Enables task exceptions for the task specified in tskid.

The parameter texptn is a logical OR bit array representing task exception codes in the form 1 << task excep-
tion code.

tk_ena_tex enables the task exceptions specified in texptn. If the current exception enabled status is texmask,
it changes as follows.

enable: texmask |= texptn

If all the bits of texptn are cleared to 0, no operation is made to texmask. No error will result in this case.

Task exceptions cannot be enabled for a task with no task exception handler defined.

This system call can be called to tasks in DORMANT state.

μT-Kernel 3.0 Specification 114 / 502

Porting Guideline

Be warned that the available number of task exception codes is now dependent on the bit width of UINT data
type. For example, task exception code can take the value from 0 to 15 in 16-bit environment.

μT-Kernel 3.0 Specification 115 / 502

4.3.3 tk_dis_tex - Disable Task Exception

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_dis_tex(ID tskid, UINT texptn);

Parameter

ID tskid Task ID Task ID
UINT texptn Task Exception Pattern Task exception pattern

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist or no task exception

handler is defined)
E_PAR Parameter error (texptn is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_TASKEXCEPTION Support of task exception handling functions

Description

Disables task exceptions for the task specified in tskid.

The parameter texptn is a logical OR bit array representing task exception codes in the form 1 << task excep-
tion code.

tk_dis_tex disables the task exceptions specified in texptn. If the current exception enabled status is texmask,
it changes as follows.

disable: texmask &= ~texptn

If all the bits of texptn are cleared to 0, no operation is made to texmask. No error will result in either case.

A disabled task exception is ignored, and is not made pending. If exceptions are disabled for a task while
there are pending task exceptions, the pending task exception requests are discarded (their pending status is
cleared).

μT-Kernel 3.0 Specification 116 / 502

This system call can be called to tasks in DORMANT state.

Porting Guideline

Be warned that the available number of task exception codes is now dependent on the bit width of UINT data
type. For example, task exception code can take the value from 0 to 15 in 16-bit environment.

μT-Kernel 3.0 Specification 117 / 502

4.3.4 tk_ras_tex - Raise Task Exception

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ras_tex(ID tskid, INT texcd);

Parameter

ID tskid Task ID Task ID
INT texcd Task Exception Code Task exception code

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist or no task exception

handler is defined)
E_OBJ Invalid object state (the task specified in tskid is in DORMANT state)
E_PAR Parameter error (texcd is invalid or cannot be used)
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_TASKEXCEPTION Support of task exception handling functions

Description

Raises the task exception specified in texcd for the task specified in tskid. If the task specified in tskid disables
the task exception specified in texcd, the raised task exception is ignored, and is not made pending. In this
case, E_OK is returned to this system call.

If a task exception handler is already running in the task specified in tskid, the newly raised task exception
is made pending. If an exception is pending, the break processing (break function) for the extended SVC
handler is not performed even if the target task is executing an extended SVC.

In the case of texcd = 0, however, exceptions are not made pending even if the target task is executing an
exception handler. If the target task is running a task exception handler for an exception of task exception
codes from 1 to (bit width of UINT data type - 1), the task exception is accepted; and if an extended SVC is

μT-Kernel 3.0 Specification 118 / 502

executing, the break processing (break function) for the extended SVC handler is performed. If the target task
is running a task exception handler for an exception of task exception code 0, task exceptions are ignored.

The invoking task can be specified by setting tskid = TSK_SELF = 0.

If this system call is issued from a task-independent portion, error code E_CTX is returned.

Additional Notes

If the target task is executing an extended SVC, the break processing (break function) corresponding to the
extended SVC runs as a quasi-task portion of the task that issued tk_ras_tex. That is, it is executed in the
context of the quasi-task portion whose requesting task is the task that issued tk_ras_tex.

In such a case tk_ras_tex does not return control until the break processing ends. For this reason, the speci-
fication does not allow tk_ras_tex to be issued from a task-independent portion.

Task exceptions raised in the task that called tk_ras_tex while the break processing is running are held until
the break processing (break function) ends.

Porting Guideline

Be warned that the available number of task exception codes is now dependent on the bit width of UINT data
type. For example, task exception code can take the value from 0 to 15 in 16-bit environment.

μT-Kernel 3.0 Specification 119 / 502

4.3.5 tk_end_tex - end task exception handler

C Language Interface

#include <tk/tkernel.h>

INT texcd = tk_end_tex(BOOL enatex);

Parameter

BOOL enatex Enable Task Exception Task exception handler calling enabled
flag

Return Parameter

INT texcd Task Exception Code Raised exception code
or Error Code Error code

Error Code

E_CTX Context error (called for other than a task exception handler or task exception code
0 (detection is implementation-dependent))

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_TASKEXCEPTION Support of task exception handling functions

Description

Ends a task exception handler and enables the new task exception handler. If there are pending task ex-
ceptions, the highest-priority task exception code among them is passed in the return code. If there are no
pending task exceptions, 0 is returned.

If enatex = FALSE and there are pending task exception, calling the new task exception handler is not al-
lowed. In this case, the exception handler specified in return code texcd is in running state upon return from
tk_end_tex. If there are no pending task exceptions, calling the new task exception handler is allowed.

If enatex = TRUE, calling the new task exception handler is allowed regardless of whether there are pending
task exceptions. Even if there are pending task exceptions, the task exception handler is in terminated status.

There is no way of ending a task exception handler other than by calling tk_end_tex. A task exception handler
continues executing from the time it is started until tk_end_tex is called. Even if return is made from a task
exception handler without calling tk_end_tex, the task exception handler will still be running at the point of

μT-Kernel 3.0 Specification 120 / 502

return. Similarly, even if longjmp is used to get out of a task exception handler without calling tk_end_tex, the
task exception handler will still be running at the jump destination.

Calling tk_end_tex while task exceptions are pending results in a new task exception being accepted. At
this time even when tk_end_tex is called from an extended SVC handler, a break processing (break function)
cannot be called for that extended SVC handler. If extended SVC calls are nested, then when the extended
SVC nesting goes down one level, the break processing (break function) corresponding to the extended SVC
return destination can be called. Calling of a task exception handler takes place upon return to the task
portion.

The tk_end_tex system call cannot be issued in the case of task exception code 0 since the task exception
handler cannot be ended in this case. The task must be terminated by calling tk_ext_tsk or tk_exd_tsk. If
tk_end_tex is called while processing the task exception code 0, the behavior is undefined (implementation-
dependent).

This system call cannot be issued from other than a task exception handler. The behavior when it is called
from other than a task exception handler is undefined (implementation-dependent).

Additional Notes

When tk_end_tex (TRUE) is called and there are pending task exceptions, another task exception handler call
is made immediately following tk_end_tex. In this case, a task exception handler is called without restoring
the stack, giving rise to possible stack overflow.

Ordinarily tk_end_tex (FALSE) can be used, and processing looped as illustrated below while there are task
exceptions pending.

void texhdr(INT texcd)
{
if (texcd == 0){
/*
Processing for task exception 0

*/
tk_exd_tsk ();

}

do {
/*
Processing of task exception: from 1 to (bit width of UINT data type) - 1

*/
} while ((texcd = tk_end_tex(FALSE)) > 0);

}

Strictly speaking, if a task exception were to occur during the interval after 0 is returned by tk_end_tex ending
the loop and before exit from texhdr, the possibility exists of reentering texhdr without restoring the stack.
Since task exceptions are software driven, however, ordinarily they do not occur independently of executing
tasks; so in practice this is not a problem.

Porting Guideline

Be warned that the available number of task exception codes is now dependent on the bit width of UINT data
type. For example, task exception code can take the value from 0 to 15 in 16-bit environment.

μT-Kernel 3.0 Specification 121 / 502

4.3.6 tk_ref_tex - Reference Task Exception Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_tex(ID tskid, T_RTEX *pk_rtex);

Parameter

ID tskid Task ID Task ID
T_RTEX* pk_rtex Packet to Return Task

Exception Status
Pointer to the area to return the task
exception status

Return Parameter

ER ercd Error Code Error code

pk_rtex Detail:

UINT pendtex Pending Task Exception Pending task exceptions
UINT texmask Task Exception Mask Allowed task exceptions
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (invalid pk_rtex)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_TASKEXCEPTION Support of task exception handling functions

Description

Gets the status of task exceptions for the task specified in tskid.

pendtex indicates the currently pending task exceptions. A raised task exception is indicated in pendtex from
the time the task exception is raised until its task exception handler is called.

texmask indicates allowed task exceptions.

μT-Kernel 3.0 Specification 122 / 502

Both pendtex and texmask are bit arrays of the form 1 << task exception code.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

μT-Kernel 3.0 Specification 123 / 502

4.4 Synchronization and Communication Functions

Synchronization and communication functions use objects independent of tasks used to synchronize tasks
and achieve communication between tasks. The objects available for these purposes include semaphores,
event flags, and mailboxes.

μT-Kernel 3.0 Specification 124 / 502

4.4.1 Semaphore

A semaphore is an object indicating the availability of a resource and its quantity as a numerical value. A
semaphore is used to realize mutual exclusion control and synchronization when using a resource. Functions
are provided for creating and deleting a semaphore, acquiring and returning resources corresponding to
semaphores, and referencing semaphore status. A semaphore is an object identified by an ID number. The
ID number for the semaphore is called a semaphore ID.

A semaphore contains a resource count (semaphore resource count) indicating whether the corresponding
resource exists and in what quantity, and a queue of tasks waiting to acquire the resource. When a task (the
task making event notification) returns m resources, it increments the semaphore resource count by m. When
a task (the task waiting for an event) acquires n resources, it decreases the semaphore resource count by n. If
the number of semaphore resources is insufficient (i.e., further reducing the semaphore resource count would
cause it to be negative), a task attempting to acquire resources goes into WAITING state until the next time
resources are returned. A task waiting for semaphore resources is put in the semaphore queue.

To prevent too many resources from being returned to a semaphore, a maximum value of semaphore resource
count can be set for each semaphore. Error is reported if it is attempted to return resources to a semaphore
that would cause this maximum count to be exceeded.

μT-Kernel 3.0 Specification 125 / 502

4.4.1.1 tk_cre_sem - Create Semaphore

C Language Interface

#include <tk/tkernel.h>

ID semid = tk_cre_sem(CONST T_CSEM *pk_csem);

Parameter

CONST T_CSEM* pk_csem Packet to Create
Semaphore

Semaphore creation information

pk_csem Detail:

void* exinf Extended Information Extended information
ATR sematr Semaphore Attribute Semaphore attribute
INT isemcnt Initial Semaphore Count Initial semaphore resource count
INT maxsem Maximum Semaphore

Count
Maximum semaphore resource
count

UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID semid Semaphore ID Semaphore ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Semaphore count exceeds the system limit
E_RSATR Reserved attribute (sematr is invalid or cannot be used)
E_PAR Parameter error (pk_csem is invalid, or isemcnt or maxsem is negative or invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

TK_SUPPORT_DISWAI Support for specifying TA_NODISWAI (reject request to disable
wait) to semaphore attribute

TK_SUPPORT_DSNAME Support for specifying TA_DSNAME for semaphore attribute
TK_SEMAPHORE_MAXCNT Upper limit of maximum number of semaphore resource count

(>= 32767)

μT-Kernel 3.0 Specification 126 / 502

Description

Creates a semaphore, assigning a semaphore ID to it. This system call allocates a control block to the created
semaphore and sets its initial value of semaphore resource count to isemcnt, and its maximum (upper limit)
to maxsem. Note that the lowest number that can be specified to maxsem shall be 32767. Whether a number
larger than 32767 can be set is implementation-dependent.

exinf can be used freely by the user to set miscellaneous information about the created semaphore. The
information set in this parameter can be referenced by tk_ref_sem. If a larger area is needed for indicating
user information, or if the information may need to be changed after the message buffer is created, this can
be done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

sematr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of sematr is as follows.

sematr:= (TA_TFIFO || TA_TPRI) | (TA_FIRST || TA_CNT) | [TA_DSNAME] | [TA_NODISWAI]

TA_TFIFO Tasks are queued in FIFO order
TA_TPRI Tasks are queued in priority order
TA_FIRST The first task in the queue has precedence
TA_CNT Tasks with fewer requests have precedence
TA_DSNAME Specifies DS object name
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

The queuing order of tasks waiting for a semaphore can be specified in TA_TFIFO or TA_TPRI. If the attribute
is TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing of tasks in order of their priority
setting.

TA_FIRST and TA_CNT specify precedence of resource acquisition. TA_FIRST and TA_CNT do not change the order
of the queue, which is determined by TA_TFIFO and TA_TPRI.

When TA_FIRST is specified, resources are allocated starting from the first task in the queue regardless of
requested semaphore resource count. As long as the first task in the queue cannot obtain the requested
number of resources, tasks behind it in the queue are prevented from obtaining resources.

TA_CNT means resources are assigned based on the order in which tasks are able to obtain the requested
semaphore resource count. The requested semaphore resource counts are checked starting from the first
task in the queue, and tasks to which their requested counts can be allocated receive resources. This is not
the same as allocating in order of fewest requests.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

#define TA_TFIFO 0x00000000 /* manage queue by FIFO */
#define TA_TPRI 0x00000001 /* manage queue by priority */
#define TA_FIRST 0x00000000 /* first task in queue has precedence */
#define TA_CNT 0x00000002 /* tasks with fewer requests have precedence */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */

μT-Kernel 3.0 Specification 127 / 502

4.4.1.2 tk_del_sem - Delete Semaphore

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_sem(ID semid);

Parameter

ID semid Semaphore ID Semaphore ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (semid is invalid or cannot be used)
E_NOEXS Object does not exist (the semaphore specified in semid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Deletes the semaphore specified in semid.

The semaphore ID and control block area are released as a result of this system call.

This system call completes normally even if there is a task waiting for condition fulfillment on the semaphore,
but error code E_DLT is returned to the task in WAITING state.

μT-Kernel 3.0 Specification 128 / 502

4.4.1.3 tk_sig_sem - Signal Semaphore

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sig_sem(ID semid, INT cnt);

Parameter

ID semid Semaphore ID Semaphore ID
INT cnt Count Resource return count

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (semid is invalid or cannot be used)
E_NOEXS Object does not exist (the semaphore specified in semid does not exist)
E_QOVR Queuing or nesting overflow (semaphore resource count semcnt over limit)
E_PAR Parameter error (cnt ≦ 0)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

None.

Description

Returns to the semaphore specified in semid the number of resources indicated in cnt. If there is a task waiting
for the semaphore, the requested semaphore resource count is checked and resources allocated if possible.
A task allocated resources goes to READY state. In some conditions more than one task may be allocated
resources and put in READY state.

If the semaphore resource count increases to the point where the maximum semaphore resource count
(maxsem) would be exceeded by the return of more resources, error code E_QOVR is returned. In this case no
resources are returned and the semaphore resource count (semcnt) does not change.

Additional Notes

Error is not returned even if semcnt goes over the initial semaphore resource count (isemcnt). When semaphores
are used not for mutual exclusion control but for synchronization (like tk_wup_tsk and tk_slp_tsk), the semaphore
resource count (semcnt) will sometimes go over the initial setting (isemcnt). The semaphore function can be
used for mutual exclusion control by setting isemcnt and the maximum semaphore resource count (maxsem) to
the same value and checking for the error that is returned when the count increases.

μT-Kernel 3.0 Specification 129 / 502

4.4.1.4 tk_wai_sem - Wait on Semaphore

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_wai_sem(ID semid, INT cnt, TMO tmout);

Parameter

ID semid Semaphore ID Semaphore ID
INT cnt Count Resource request count
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (semid is invalid or cannot be used)
E_NOEXS Object does not exist (the semaphore specified in semid does not exist)
E_PAR Parameter error (tmout ≦ (-2), cnt ≦ 0)
E_DLT The object being waited for was deleted (the specified semaphore was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Obtains from the semaphore specified in semid the number of resources indicated in cnt. If the requested
resources can be allocated, the task issuing this system call does not enter WAITING state but continues
executing. In this case the semaphore resource count (semcnt) is decreased by the size of cnt. If the resources
are not available, the task issuing this system call enters WAITING state, and is put in the queue of tasks
waiting for the semaphore. The semaphore resource count (semcnt) for this semaphore does not change in
this case.

A maximum wait time (timeout) can be set in tmout. The time unit for tmout is the same as that for system time
(= 1 ms). If the tmout time elapses before the wait release condition is met (tk_sig_sem is not executed), the
system call terminates, returning timeout error code E_TMOUT.

μT-Kernel 3.0 Specification 130 / 502

When TMO_POL＝0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state even if no resources are acquired. When TMO_FEVR＝(-1) is set in tmout, this
means infinity was specified as the timeout value, and the task continues to wait for resource acquisition
without timing out.

μT-Kernel 3.0 Specification 131 / 502

4.4.1.5 tk_wai_sem_u - Wait on Semaphore (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_wai_sem_u(ID semid, INT cnt, TMO_U tmout_u);

Parameter

ID semid Semaphore ID Semaphore ID
INT cnt Count Resource request count
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (semid is invalid or cannot be used)
E_NOEXS Object does not exist (the semaphore specified in semid does not exist)
E_PAR Parameter error (tmout_u ≦ (-2), cnt ≦ 0)
E_DLT The object being waited for was deleted (the specified semaphore was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_wai_sem.

The specification of this system call is same as that of tk_wai_sem, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_wai_sem.

μT-Kernel 3.0 Specification 132 / 502

4.4.1.6 tk_ref_sem - Reference Semaphore Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_sem(ID semid, T_RSEM *pk_rsem);

Parameter

ID semid Semaphore ID Semaphore ID
T_RSEM* pk_rsem Packet to Return Semaphore

Status
Pointer to the area to return the
semaphore status

Return Parameter

ER ercd Error Code Error code

pk_rsem Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
INT semcnt Semaphore Count Current semaphore resource count
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (semid is invalid or cannot be used)
E_NOEXS Object does not exist (the semaphore specified in semid does not exist)
E_PAR Parameter error (invalid pk_rsem)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

References the status of the semaphore specified in semid, passing in the return parameters the current
semaphore resource count (semcnt), the waiting task ID (wtsk), and extended information (exinf).

wtsk indicates the ID of a task waiting for the semaphore. If there are two or more such tasks, the ID of the
task at the head of the queue is returned. If there are no waiting tasks, wtsk = 0 is returned.

If the specified semaphore does not exist, error code E_NOEXS is returned.

μT-Kernel 3.0 Specification 133 / 502

4.4.2 Event Flag

An event flag is an object used for synchronization, consisting of a pattern of bits used as flags to indicate
the existence of the corresponding events. Functions are provided for creating and deleting an event flag, for
event flag setting and clearing, event flag waiting, and event flag status reference. An event flag is an object
identified by an ID number. The ID number for the event flag is called an event flag ID.

In addition to the bit pattern indicating the existence of corresponding events, an event flag has a queue of
tasks waiting for the event flag. The event flag bit pattern is sometimes called simply event flag. The event
notifier sets or clears the specified bits of the event flag. A task can be made to wait for all or some of the
event flag bits to be set. A task waiting for an event flag is put in the queue of that event flag.

μT-Kernel 3.0 Specification 134 / 502

4.4.2.1 tk_cre_flg - Create Event Flag

C Language Interface

#include <tk/tkernel.h>

ID flgid = tk_cre_flg(CONST T_CFLG *pk_cflg);

Parameter

CONST T_CFLG* pk_cflg Packet to Create EventFlag Event flag creation information

pk_cflg Detail:

void* exinf Extended Information Extended information
ATR flgatr EventFlag Attribute Event flag attribute
UINT iflgptn Initial EventFlag Pattern Event flag initial value
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID flgid EventFlag ID Event flag ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of event flags exceeds the system limit
E_RSATR Reserved attribute (flgatr is invalid or cannot be used)
E_PAR Parameter error (pk_cflg is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

TK_SUPPORT_DISWAI Support for specifying prohibition of ”disabling wait”
(TA_NODISWAI) to event flag attribute

TK_SUPPORT_DSNAME Support for specifying TA_DSNAME for event flag attribute

Description

Creates an event flag, assigning to it an event flag ID. This system call allocates a control block to the created
event flag and sets its initial value to iflgptn. An event flag handles one word’s worth of bits as a group. All
operations are performed in single word units.

exinf can be used freely by the user to set miscellaneous information about the created event flag. The
information set in this parameter can be referenced by tk_ref_flg. If a larger area is needed for indicating user

μT-Kernel 3.0 Specification 135 / 502

information, or if the information may need to be changed after the message buffer is created, this can be
done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

flgatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of flgatr is as follows.

flgatr:= (TA_TFIFO || TA_TPRI) | (TA_WMUL || TA_WSGL) | [TA_DSNAME] | [TA_NODISWAI]

TA_TFIFO Tasks are queued in FIFO order
TA_TPRI Tasks are queued in priority order
TA_WSGL Waiting by multiple tasks is not allowed (Wait Single Task)
TA_WMUL Waiting by multiple tasks is allowed (Wait Multiple Tasks)
TA_DSNAME Specifies DS object name
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

When TA_WSGL is specified, multiple tasks cannot be in the WAITING state at the same time. Specifying TA_WMUL
allows waiting by multiple tasks at the same time.

The queuing order of tasks waiting for an event flag can be specified in TA_TFIFO or TA_TPRI. If the attribute
is TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing of tasks in order of their priority
setting. When TA_WSGL is specified, however, since tasks cannot be queued, TA_TFIFO or TA_TPRI makes no
difference.

When multiple tasks are waiting for an event flag, tasks are checked in order from the head of the queue,
and the wait is released for tasks meeting the conditions. The first task to have its WAITING state released
is therefore not necessarily the first in the queue. If multiple tasks meet the conditions, wait state is released
for each of them.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

#define TA_TFIFO 0x00000000 /* manage queue by FIFO */
#define TA_TPRI 0x00000001 /* manage queue by priority */
#define TA_WSGL 0x00000000 /* prohibit multiple task waiting */
#define TA_WMUL 0x00000008 /* permit multiple task waiting */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */

Porting Guideline

Note that member, iflgptn, of T_CFLG is UINT type, and its value range is implementation-dependent, so
care must be taken.

μT-Kernel 3.0 Specification 136 / 502

4.4.2.2 tk_del_flg - Delete Event Flag

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_flg(ID flgid);

Parameter

ID flgid EventFlag ID Event flag ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (flgid is invalid or cannot be used)
E_NOEXS Object does not exist (the event flag specified in flgid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Deletes the event flag specified in flgid.

Issuing this system call releases the corresponding event flag ID and control block memory space.

This system call is completed normally even if there are tasks waiting for the event flag, but error code E_DLT
is returned to each task in WAITING state.

μT-Kernel 3.0 Specification 137 / 502

4.4.2.3 tk_set_flg - Set Event Flag

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_flg(ID flgid, UINT setptn);

Parameter

ID flgid EventFlag ID Event flag ID
UINT setptn Set Bit Pattern Bit pattern to be set

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (flgid is invalid or cannot be used)
E_NOEXS Object does not exist (the event flag specified in flgid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

None.

Description

tk_set_flg sets the bits indicated in setptn in a one-word event flag specified in flgid. That is, a logical sum
is taken of the values of the event flag specified in flgid and the values indicated in setptn. (the processing
flgptn |= setptn is executed for the event flag value flgptn)

After event flag values are changed by tk_set_flg, if the condition for releasing the wait state of a task that
called tk_wai_flg is met, the WAITING state of that task is cleared, putting it in RUNNING state or READY
state (or SUSPENDED state if the waiting task was in WAITING-SUSPENDED state).

If all the bits of setptn are cleared to 0 in tk_set_flg, no operation is made to the target event flag. No error
will result in either case.

Multiple tasks can wait for a single event flag if that event flag has the TA_WMUL attribute. The event flag in that
case has a queue for the waiting tasks. A single tk_set_flg call for such an event flag may result in the release
of multiple waiting tasks.

Porting Guideline

Note that setptn is UINT type, and its value range is implementation-dependent, so care must be taken.

μT-Kernel 3.0 Specification 138 / 502

4.4.2.4 tk_clr_flg - Clear Event Flag

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_clr_flg(ID flgid, UINT clrptn);

Parameter

ID flgid EventFlag ID Event flag ID
UINT clrptn Clear Bit Pattern Bit pattern to be cleared

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (flgid is invalid or cannot be used)
E_NOEXS Object does not exist (the event flag specified in flgid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

tk_clr_flg clears the bits of the one-word event flag specified in flgid, based on the corresponding zero bits
of clrptn. That is, a logical product is taken of the values of the event flag specified in flgid and the values
indicated in clrptn.(the processing flgptn &= clrptn is executed for the event flag value flgptn)

Issuing tk_clr_flg never results in wait conditions being released for a task waiting for the specified event flag;
that is, dispatching never occurs with tk_clr_flg.

If all the bits of clrptn are set to 1 in tk_clr_flg, no operation is made to the target event flag. No error will be
returned in either case.

Porting Guideline

Note that clrptn is UINT type, and its value range is implementation-dependent, so care must be taken.

μT-Kernel 3.0 Specification 139 / 502

4.4.2.5 tk_wai_flg - Wait Event Flag

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_wai_flg(ID flgid, UINT waiptn, UINT wfmode, UINT *p_flgptn, TMO tmout);

Parameter

ID flgid EventFlag ID Event flag ID
UINT waiptn Wait Bit Pattern Wait bit pattern
UINT wfmode Wait EventFlag Mode Wait release condition
UINT* p_flgptn Pointer to EventFlag Bit Pattern Pointer to the area to return the return

parameter flgptn
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code
UINT flgptn EventFlag Bit Pattern Event flag bit pattern

Error Code

E_OK Normal completion
E_ID Invalid ID number (flgid is invalid or cannot be used)
E_NOEXS Object does not exist (the event flag specified in flgid does not exist)
E_PAR Parameter error (waiptn = 0, wfmode is invalid, or tmout ≦ (-2))
E_OBJ Invalid object state (multiple tasks are waiting for an event flag with TA_WSGL

attribute)
E_DLT The object being waited for was deleted (the specified event flag was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Waits for the event flag specified in flgid to be set, fulfilling the wait release condition specified in wfmode.

If the event flag specified in flgid already meets the wait release condition set in wfmode, the waiting task
continues executing without going to WAITING state.

μT-Kernel 3.0 Specification 140 / 502

wfmode is specified as follows.

wfmode := (TWF_ANDW || TWF_ORW) | [TWF_CLR || TWF_BITCLR]

TWF_ANDW 0x00 AND wait condition
TWF_ORW 0x01 OR wait condition
TWF_CLR 0x10 Clear all
TWF_BITCLR 0x20 Clear condition bit only

If TWF_ORW is specified, the issuing task waits for any of the bits specified in waiptn to be set for the event flag
specified in flgid (OR wait). If TWF_ANDW is specified, the issuing task will wait for all of the bits specified in
waiptn to be set for the event flag specified in flgid (AND wait).

If TWF_CLR specification is not specified, the event flag values will remain unchanged even after the conditions
have been satisfied and the task has been released from WAITING state. If TWF_CLR is specified, all bits of the
event flag will be cleared to 0 once wait conditions of the waiting task have been met. If TWF_BITCLR is specified,
then when the conditions are met and the task is released from WAITING state, only the bits matching the
event flag wait release conditions are cleared to 0(event flag values &= ~wait release conditions).

The return parameter flgptn returns the value of the event flag after the WAITING state of a task has been
released due to this system call. If TWF_CLR or TWF_BITCLR was specified, the value before event flag bits were
cleared is returned. The value returned by flgptn meets the wait release conditions of this system call. The
contents of flgptn are indeterminate if the wait is released due to timeout or the like.

A maximum wait time (timeout) can be set in tmout. The time unit for tmout is the same as that for system
time (= 1 ms). If the tmout time elapses before the wait release condition is met, the system call terminates,
returning timeout error code E_TMOUT.

When TMO_POL＝0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state even if the condition is not met. When TMO_FEVR＝(-1) is set in tmout, this
means infinity was specified as the timeout value, and the task continues to wait for the condition to be met
without timing out.

In the case of a timeout, the event flag bits are not cleared even if TWF_CLR or TWF_BITCLR was specified.

Setting waiptn to 0 results in Parameter error E_PAR.

A task cannot execute tk_wai_flg for an event flag having the TA_WSGL attribute while another task is waiting
for it. Error code E_OBJ will be returned for the task issuing the subsequent tk_wai_flg, regardless of whether
that task would have gone to WAITING state; i.e., regardless of whether the wait release conditions would be
met.

If an event flag has the TA_WMUL attribute, multiple tasks can wait for it at the same time. The event flag in that
case has a queue for the waiting tasks. A single tk_set_flg call for such an event flag may result in the release
of multiple waiting tasks.

If multiple tasks are queued for an event flag with TA_WMUL attribute, the behavior is as follows.

• Tasks are queued in either FIFO or priority order. (Release of wait state does not always start from the head
of the queue, however, depending on factors such as waiptn and wfmode settings.)

• If TWF_CLR or TWF_BITCLR was specified by a task in the queue, the event flag is cleared when that task
is released from WAITING state.

• Tasks later in the queue than a task specifying TWF_CLR or TWF_BITCLR will see the event flag after it has
already been cleared.

If multiple tasks having the same priority are released from waiting simultaneously as a result of tk_set_flg,
the order of tasks in the ready queue (precedence) after release will continue to be the same as their original
order in the event flag queue.

μT-Kernel 3.0 Specification 141 / 502

Additional Notes

If a logical sum of all bits is specified as the wait release condition when tk_wai_flg is called (waiptn = 0xfff...ff,
wfmode = TWF_ORW), it is possible to transfer messages using one-word bit patterns in combination with tk_set_flg.
However, it is not possible to send a message containing only 0s for all bits. Moreover, if the next message is
sent by tk_set_flg before a previous message has been read by tk_wai_flg, the previous message will be lost;
that is, message queuing is not possible.

Since setting waiptn = 0 will result in an E_PAR error, it is guaranteed that the waiptn of tasks waiting for an
event flag will not be 0. The result is that if tk_set_flg sets all bits of an event flag to 1, the task at the head of
the queue will always be released from waiting no matter what its wait condition is.

The ability to have multiple tasks wait for the same event flag is useful in situations like the following. Suppose,
for example, that Task B and Task C are waiting for tk_wai_flg calls (2) and (3) until Task A issues (1) tk_set_flg.
If multiple tasks are allowed to wait for the event flag, the result will be the same regardless of the order in
which system calls (1)(2)(3) are executed (see Figure 4.1, “Multiple Tasks Waiting for One Event Flag”). On
the other hand, if multiple task waiting is not allowed and system calls are executed in the order (2), (3), (1),
an E_OBJ error will result from the execution of (3) tk_wai_flg.

Figure 4.1: Multiple Tasks Waiting for One Event Flag

Rationale for the Specification

The reason for returning E_PAR error for specifying waiptn = 0 is that if waiptn = 0 were allowed, it would not
be possible to get out of WAITING state regardless of the subsequent event flag values.

Porting Guideline

Note that the data pointed at waiptn and p_flgptn are UINT type, and their value range is implementation-
dependent, so care must be taken.

μT-Kernel 3.0 Specification 142 / 502

4.4.2.6 tk_wai_flg_u - Wait Event Flag (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_wai_flg_u(ID flgid, UINT waiptn, UINT wfmode, UINT *p_flgptn, TMO_U tmout_u);

Parameter

ID flgid EventFlag ID Event flag ID
UINT waiptn Wait Bit Pattern Wait bit pattern
UINT wfmode Wait EventFlag Mode Wait mode
UINT* p_flgptn Pointer to EventFlag Bit Pattern Pointer to the area to return the return

parameter flgptn
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code
UINT flgptn EventFlag Bit Pattern Bit pattern of wait releasing

Error Code

E_OK Normal completion
E_ID Invalid ID number (flgid is invalid or cannot be used)
E_NOEXS Object does not exist (the event flag specified in flgid does not exist)
E_PAR Parameter error (waiptn = 0, wfmode is invalid, or tmout_u ≦ (-2))
E_OBJ Invalid object state (multiple tasks are waiting for an event flag with TA_WSGL

attribute)
E_DLT The object being waited for was deleted (the specified event flag was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_wai_flg.

μT-Kernel 3.0 Specification 143 / 502

The specification of this system call is same as that of tk_wai_flg, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_wai_flg.

Porting Guideline

Note that the data pointed at waiptn and p_flgptn are UINT type, and their value range is implementation-
dependent, so care must be taken.

μT-Kernel 3.0 Specification 144 / 502

4.4.2.7 tk_ref_flg - Reference Event Flag Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_flg(ID flgid, T_RFLG *pk_rflg);

Parameter

ID flgid EventFlag ID Event flag ID
T_RFLG* pk_rflg Packet to Return EventFlag

Status
Pointer to the area to return the event
flag status

Return Parameter

ER ercd Error Code Error code

pk_rflg Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
UINT flgptn EventFlag Bit Pattern The current event flag bit pattern
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (flgid is invalid or cannot be used)
E_NOEXS Object does not exist (the event flag specified in flgid does not exist)
E_PAR Parameter error (invalid pk_rflg)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

References the status of the event flag specified in flgid, passing in the return parameters the current flag
pattern (flgptn), waiting task ID (wtsk), and extended information (exinf).

wtsk returns the ID of a task waiting for this event flag. If more than one task is waiting (only when the TA_WMUL
was specified), the ID of the first task in the queue is returned. If there are no waiting tasks, wtsk = 0 is
returned.

If the specified event flag does not exist, error code E_NOEXS is returned.

μT-Kernel 3.0 Specification 145 / 502

4.4.3 Mailbox

A mailbox is an object used to achieve synchronization and communication by passing messages in system
(shared) memory space. Functions are provided for creating and deleting a mailbox, sending and receiving
messages in a mailbox, and referencing the mailbox status. A mailbox is an object identified by an ID number.
The ID number for the mailbox is called a mailbox ID.

A mailbox has a message queue for sent messages, and a task queue for tasks waiting to receive messages. At
the message sending end (posting event notification), messages to be sent go in the message queue. On the
message receiving end (waiting for event notification), a task fetches one message from the message queue.
If there are no queued messages, the task goes to WAITING state for receipt from the mailbox until the next
message is sent. Tasks waiting for message receipt from a mailbox are put in the task queue of that mailbox.

Since the contents of messages using this function are in memory space shared both by the sending and
receiving sides, only the start address of a message located in this shared space is actually sent and received.
The contents of the messages themselves are not copied. T-Kernel manages messages in the message queue
by means of a linked listed. An application program must allocate space at the beginning of a message to be
sent, for linked list processing by T-Kernel. This area is called the message header. The message header and
the message body together are called a message packet. When a system call sends a message to a mailbox,
the start address of the message packet (pk_msg) is passed in a parameter.

When a system call receives a message from a mailbox, the start address of the message packet is passed in
a return parameter.

If messages are assigned a priority in the message queue, the message priority (msgpri) of each message must
be specified in the message header. [Figure 4.2, “Format of Messages Using a Mailbox”]

The user puts the message contents not at the beginning of the packet but after the header part (the message
contents part in the figure).

Figure 4.2: Format of Messages Using a Mailbox

T-Kernel overwrites the contents of the header when a message is put in the message queue (except for the
message priority area). An application, on the other hand, must not overwrite the header of a message in

μT-Kernel 3.0 Specification 146 / 502

the queue (including the message priority area). The behavior when an application overwrites the message
header is not defined. This specification applies not only to the direct writing of a message header by an
application program, but also to the multiple passing of a header address to T-Kernel and having T-Kernel
overwrite the message header. Accordingly, the behavior when a message already in the message queue is
again sent to a mailbox is undefined.

Additional Notes
Since the application program allocates the message header space for this mailbox function, there is no limit
on the number of messages that can be queued. A system call sending a message does not enter WAITING
state.
Memory blocks allocated dynamically from a fixed-size memory pool or variable-size memory pool, or else a
statically allocated area can be used for message packets.
Generally, a sending task allocates a memory block from a memory pool, sending it as a message packet.
After a task on the receiving end fetches the message, it returns the memory block directly to its memory
pool.
The following sample programs show the above usage:

/* Message type definition */
typedef struct {
T_MSG msgque; /* Message header with T_MFIFO attribute */
UB msgcont[MSG_SIZE]; /* Message content */

} T_MSG_PACKET;

/* Task operation that acquires a memory block and sends a message */

T_MSG_PACKET *pk_msg;
...

/* Acquire a memory block from the fixed -size memory pool. */
/* Fixed -memory block size must be sizeof(T_MSG_PACKET) or more */
tk_get_mpf(mpfid , (void **)&pk_msg , TMO_FEVR);

/* Create a message at pk_msg -> msgcont [] */
...

/* Send a message */
tk_snd_mbx(mbxid , (T_MSG *) pk_msg);

/* Task operation that receives a message and releases a memory block */

T_MSG_PACKET *pk_msg;
...

/* Receive a message */
tk_rcv_mbx(mbxid , (T_MSG **)&pk_msg , TMO_FEVR);

/* Check message content at pk_msg -> msgcont [] and process them accordingly */
...

/* Return the memory block to the fixed -size memory pool. */
tk_rel_mpf(mpfid , (void*) pk_msg);

μT-Kernel 3.0 Specification 147 / 502

4.4.3.1 tk_cre_mbx - Create Mailbox

C Language Interface

#include <tk/tkernel.h>

ID mbxid = tk_cre_mbx(CONST T_CMBX *pk_cmbx);

Parameter

CONST T_CMBX* pk_cmbx Packet to Create Mailbox Mailbox creation information

pk_cmbx Detail:

void* exinf Extended Information Extended information
ATR mbxatr Mailbox Attribute Mailbox attribute
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID mbxid Mailbox ID Mailbox ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of mailboxes exceeds the system limit
E_RSATR Reserved attribute (mbxatr is invalid or cannot be used)
E_PAR Parameter error (pk_cmbx is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

TK_SUPPORT_DISWAI Support for specifying TA_NODISWAI (reject request to disable
wait) to mailbox attribute

TK_SUPPORT_DSNAME Support for specifying TA_DSNAME for mailbox attribute

Description

Creates a mailbox, assigning to it a mailbox ID. This system call allocates a control block, etc. for the created
mailbox.

exinf can be used freely by the user to set miscellaneous information about the created mailbox. The infor-
mation set in this parameter can be referenced by tk_ref_mbx. If a larger area is needed for indicating user
information, or if the information may need to be changed after the message buffer is created, this can be

μT-Kernel 3.0 Specification 148 / 502

done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

mbxatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of mbxatr is as follows.

mbxatr:= (TA_TFIFO || TA_TPRI) | (TA_MFIFO || TA_MPRI) | [TA_DSNAME] | [TA_NODISWAI]

TA_TFIFO Tasks are queued in FIFO order
TA_TPRI Tasks are queued in priority order
TA_MFIFO Messages are queued in FIFO order
TA_MPRI Messages are queued in priority order
TA_DSNAME Specifies DS object name
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

The queuing order of tasks waiting for a mailbox can be specified in TA_TFIFO or TA_TPRI. If the attribute is
TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing of tasks in order of their priority
setting.

TA_MFIFO and TA_MPRI are used to specify the order of messages in the message queue (messages waiting to be
received). If the attribute is TA_MFIFO , messages are ordered by FIFO; TA_MPRI specifies queuing of messages
in priority order. Message priority is set in a special field in the message packet. Message priority is specified
by positive values, with 1 indicating the highest priority and higher numbers indicating successively lower
priority. The largest value that can be expressed in the PRI type is the lowest priority. Messages having the
same priority are ordered as FIFO.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

#define TA_TFIFO 0x00000000 /* manage queue by FIFO */
#define TA_TPRI 0x00000001 /* manage queue by priority */
#define TA_MFIFO 0x00000000 /* manage message queue by FIFO */
#define TA_MPRI 0x00000002 /* manage message queue by priority */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */

Additional Notes

The body of a message passed by the mailbox function is located in memory; only its start address is actually
sent and received.

μT-Kernel 3.0 Specification 149 / 502

4.4.3.2 tk_del_mbx - Delete Mailbox

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_mbx(ID mbxid);

Parameter

ID mbxid Mailbox ID Mailbox ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Deletes the mailbox specified in mbxid.

Issuing this system call releases the mailbox ID and control block memory space, etc., associated with the
mailbox.

This system call completes normally even if there are tasks waiting for messages in the deleted mailbox, but
error code E_DLT is returned to each of the tasks in WAITING state. Even if there are messages still in the
deleted mailbox, the mailbox is deleted without returning an error code.

μT-Kernel 3.0 Specification 150 / 502

4.4.3.3 tk_snd_mbx - Send Message to Mailbox

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_snd_mbx(ID mbxid, T_MSG *pk_msg);

Parameter

ID mbxid Mailbox ID Mailbox ID
T_MSG* pk_msg Packet of Message Start address of message packet

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
E_PAR Parameter error (invalid pk_msg, or msgpri ≦ 0)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Sends the message packet having pk_msg as its start address to the mailbox specified in mbxid.

The message packet contents are not copied; only the start address (pk_msg) is passed at the time of message
receipt. Therefore, the content of the message packet must not be overwritten until it is fetched by the task
that receives this message.

If tasks are already waiting for messages in the same mailbox, the WAITING state of the task at the head of the
queue is released, and the pk_msg specified in tk_snd_mbx is sent to that task, becoming a parameter returned
by tk_rcv_mbx. If there are no tasks waiting for messages in the specified mailbox, the sent message goes in
the message queue of that mailbox. In neither case does the task issuing tk_snd_mbx enter WAITING state.

pk_msg is the start address of the packet containing the message, including header. The message header has
the following format.

typedef struct t_msg {
? ? /* Implementation -dependent content (fixed -size) */

} T_MSG;

typedef struct t_msg_pri {

μT-Kernel 3.0 Specification 151 / 502

T_MSG msgque; /* message queue area */
PRI msgpri; /* message priority */

} T_MSG_PRI;

The message header is T_MSG (if TA_MFIFO attribute is specified) or T_MSG_PRI (if TA_MPRI). In either case the
message header has a fixed-size, which can be obtained by sizeof(T_MSG) or sizeof (T_MSG_PRI).

The actual message must be put in the area after the header. There is no limit on message size, which may be
variable.

Additional Notes

Messages are sent by tk_snd_mbx regardless of the status of the receiving tasks. In other words, message
sending is asynchronous. What waits in the queue is not the sending task itself, but the sent message. So
while there are queues of waiting messages and receiving tasks, the sending task does not go to WAITING
state.

μT-Kernel 3.0 Specification 152 / 502

4.4.3.4 tk_rcv_mbx - Receive Message from Mailbox

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rcv_mbx(ID mbxid, T_MSG **ppk_msg, TMO tmout);

Parameter

ID mbxid Mailbox ID Mailbox ID
T_MSG** ppk_msg Pointer to Packet of Message Pointer to the area to return the return

parameter pk_msg
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code
T_MSG* pk_msg Packet of Message Start address of message packet

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
E_PAR Parameter error (tmout ≦ (-2))
E_DLT The object being waited for was deleted (the mailbox was deleted while waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

tk_rcv_mbx receives a message from the mailbox specified in mbxid.

If no messages have been sent to the mailbox (the message queue is empty), the task issuing this system call
enters WAITING state and is queued for message arrival. If there are messages in the mailbox, the task issuing
this system call fetches the first message in the message queue, passing this in the return parameter pk_msg.

A maximum wait time (timeout) can be set in tmout. The time unit for tmout is the same as that for system
time (= 1 ms). If the tmout time elapses before the wait release condition is met (before a message arrives),
the system call terminates, returning timeout error code E_TMOUT.

μT-Kernel 3.0 Specification 153 / 502

When TMO_POL＝0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state even if no message arrives. When TMO_FEVR＝(-1) is set in tmout, this means
infinity was specified as the timeout value, and the task continues to wait for message arrival without timing
out.

Additional Notes

pk_msg is the start address of the packet containing the message, including header. The message header is
T_MSG (if TA_MFIFO attribute is specified) or T_MSG_PRI (if TA_MPRI).

μT-Kernel 3.0 Specification 154 / 502

4.4.3.5 tk_rcv_mbx_u - Receive Message from Mailbox (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rcv_mbx_u(ID mbxid, T_MSG **ppk_msg, TMO_U tmout_u);

Parameter

ID mbxid Mailbox ID Mailbox ID
T_MSG** ppk_msg Pointer to Packet of Message Pointer to the area to return the return

parameter pk_msg
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code
T_MSG* pk_msg Packet of Message Start address of message packet

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
E_PAR Parameter error (tmout_u ≦ (-2))
E_DLT The object being waited for was deleted (the mailbox was deleted while waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_rcv_mbx.

The specification of this system call is same as that of tk_rcv_mbx, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_rcv_mbx.

μT-Kernel 3.0 Specification 155 / 502

4.4.3.6 tk_ref_mbx - Reference Mailbox Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_mbx(ID mbxid, T_RMBX *pk_rmbx);

Parameter

ID mbxid Mailbox ID Mailbox ID
T_RMBX* pk_rmbx Packet to Refer Mailbox Status Pointer to the area to return the

mailbox status

Return Parameter

ER ercd Error Code Error code

pk_rmbx Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
T_MSG* pk_msg Packet of Message Next message to be received
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
E_PAR Parameter error (invalid pk_rmbx)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

References the status of the mailbox specified in mbxid, passing in the return parameters the next message
to be received (the first message in the message queue), waiting task ID (wtsk), and extended information
(exinf).

wtsk indicates the ID of a task waiting for the mailbox. If there are multiple waiting tasks, the ID of the first
task in the queue is returned. If there are no waiting tasks, wtsk = 0 is returned.

If the specified mailbox does not exist, error code E_NOEXS is returned.

μT-Kernel 3.0 Specification 156 / 502

pk_msg indicates the message that will be received the next time tk_rcv_mbx is issued. If there are no messages
in the message queue, pk_msg = NULL is returned. At least one of pk_msg= NULL and wtsk = 0 is always true for
this system call.

μT-Kernel 3.0 Specification 157 / 502

4.5 Extended Synchronization and Communication Functions

Extended synchronization and communication functions use objects independent of tasks to realize more
sophisticated synchronization and communication between tasks. The functions specified here include mutex
and message buffer functions.

μT-Kernel 3.0 Specification 158 / 502

4.5.1 Mutex

A mutex is an object for mutual exclusion control among tasks that use shared resources. Priority inheritance
mutexes and priority ceiling mutexes are supported, as a mechanism to prevent the problem of unbounded
priority inversion that can occur in mutual exclusion control.

Functions are provided for creating and deleting a mutex, locking and unlocking a mutex, and referencing
mutex status. A mutex is identified by an ID number. The ID number for the mutex is called a mutex ID.

A mutex has a status (locked or unlocked) and a queue for tasks waiting to lock the mutex. For each mutex,
T-Kernel keeps track of the tasks locking it; and for each task, it keeps track of the mutexes it has locked.
Before a task uses a resource, it locks a mutex associated with that resource. If the mutex is already locked
by another task, the task waits for the mutex to become unlocked. Tasks in mutex lock waiting state are put
in the mutex queue. When a task finishes with a resource, it unlocks the mutex.

A mutex with TA_INHERIT (= 0x02) specified as mutex attribute supports priority inheritance protocol while one
with TA_CEILING (= 0x03) specified supports priority ceiling protocol. When a mutex with TA_CEILING attribute
is created, a ceiling priority is assigned to it, indicating the base priority of the task having the highest base
priority among the tasks that will lock that mutex. If a task having a higher base priority than the ceiling
priority of the mutex with TA_CEILING attribute tries to lock it, error code E_ILUSE is returned. If tk_chg_pri
is issued in an attempt to set the base priority of a task having locked a mutex with TA_CEILING attribute to a
value higher than the ceiling priority of that mutex, E_ILUSE is returned by the tk_chg_pri system call.

When these protocols are used, unbounded priority inversion is prevented by automatically changing the
current priority of a task in a mutex operation. Strict adherence to the priority inheritance protocol and
priority ceiling protocol requires that the task current priority must always be changed to match the peak
value of the following priorities. This is called strict priority control.

• Task base priority

• When tasks lock mutexes with TA_INHERIT attribute, the current priority of the task having the highest current
priority of the tasks waiting for those mutexes.

• When tasks lock mutexes with TA_CEILING attribute, the highest ceiling priority of the mutex among those
mutexes.

Note that when the current priority of a task waiting for a mutex with TA_INHERIT attribute changes as the result
of a base priority change brought about by mutex operation or tk_chg_pri, it may become necessary to change
the current priority of the task locking that mutex. This is called dynamic priority inheritance. Further, if
this task is waiting for another mutex with TA_INHERIT attribute, dynamic priority inheritance processing may
become necessary also for the task locking that mutex.

The T-Kernel defines, in addition to the above strict priority control, a simplified priority control limiting the
situations in which the current priority is changed. The choice between the two is implementation-dependent.
In the simplified priority control, whereas all changes in the direction of raising the task current priority are
carried out, changes in the direction of lowering that priority are made only when a task is no longer locking
any mutexes. (In this case the task current priority reverts to the base priority.) More specifically, processing
to change the current priority is needed only in the following circumstances.

• When a task with a higher current priority than that of the task locking a mutex with TA_INHERIT attribute
starts waiting for that mutex.

• When task B is waiting for a mutex with TA_INHERIT attribute being locked by another task called A, and if
the current priority of B is changed to a higher one than that of task A.

• When a task locks a mutex with TA_CEILING attribute having a higher ceiling priority than the task’s current
priority.

• When a task is no longer locking any mutexes.

μT-Kernel 3.0 Specification 159 / 502

When the current priority of a task is changed in connection with a mutex operation, the following processing
is performed.

If the task whose priority changed is in a run state, the task precedence is changed in accordance with the new
priority. Its precedence among other tasks having the same priority is implementation-dependent. Likewise,
if the task whose priority changes is waiting in a queue of some kind, its order in that queue is changed based
on its new priority. Its order among other tasks having the same priority is implementation-dependent. When
a task terminates and there are mutexes still locked by that task, all the mutexes are unlocked. The order in
which multiple locked mutexes are unlocked is implementation-dependent. See the description of tk_unl_mtx
for the specific processing involved.

Additional Notes
TA_TFIFO attribute mutex or TA_TPRI attribute mutex has functionality equivalent to that of a semaphore with
a maximum of one resource (binary semaphore). The main differences are that a mutex can be unlocked only
by the task that locked it, and a mutex is automatically unlocked when the task locking it terminates.
The term ”priority ceiling protocol” is used here in a broad sense. The protocol described here is not the
same as the algorithm originally proposed. Strictly speaking, it is what is otherwise referred to as a highest
locker protocol or by other names.
When the change in current priority of a task due to a mutex operation results in that task’s order being
changed in a priority-based queue, it may be necessary to release the waiting state of other tasks waiting for
that task or for that queue.

Rationale for the Specification
The precedence of tasks having the same priority as the result of a change in task current priority in a mu-
tex operation is left as implementation-dependent, for the following reason. Depending on the application,
the mutex function may lead to frequent changes in current priority. It would not be desirable for this to
result in constant task switching, which is what would happen if the precedence were made the lowest each
time among tasks of the same priority. Ideally task precedence rather than priority should be inherited,
but that results in large overhead in implementation. This aspect of the specification is therefore made an
implementation-dependent matter.

μT-Kernel 3.0 Specification 160 / 502

4.5.1.1 tk_cre_mtx - Create Mutex

C Language Interface

#include <tk/tkernel.h>

ID mtxid = tk_cre_mtx(CONST T_CMTX *pk_cmtx);

Parameter

CONST T_CMTX* pk_cmtx Packet to Create Mutex Information about the mutex to be
created

pk_cmtx Detail:

void* exinf Extended Information Extended information
ATR mtxatr Mutex Attribute Mutex attributes
PRI ceilpri Ceiling Priority of Mutex Mutex ceiling priority
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID mtxid Mutex ID Mutex ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of mutexes exceeds the system limit
E_RSATR Reserved attribute (mtxatr is invalid or cannot be used)
E_PAR Parameter error (pk_cmtx or ceilpri is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

TK_SUPPORT_DISWAI Support for specifying TA_NODISWAI (reject request to disable
wait) to mutex attribute

TK_SUPPORT_DSNAME Support for specifying TA_DSNAME for mutex attribute

Description

Creates a mutex, assigning to it a mutex ID. This system call allocates a control block, etc. for the created
mutex.

exinf can be used freely by the user to set miscellaneous information about the created mutex. The information
set in this parameter can be referenced by tk_ref_mtx. If a larger area is needed for indicating user information,

μT-Kernel 3.0 Specification 161 / 502

or if the information may need to be changed after the message buffer is created, this can be done by allocating
separate memory for this purpose and putting the memory packet address in exinf. The kernel pays no
attention to the contents of exinf.

mtxatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of mtxatr is specified as follows.

mtxatr:= (TA_TFIFO || TA_TPRI || TA_INHERIT || TA_CEILING) | [TA_DSNAME] | [TA_NODISWAI]

TA_TFIFO Tasks are queued in FIFO order
TA_TPRI Tasks are queued in priority order
TA_INHERIT Priority inheritance protocol
TA_CEILING Priority ceiling protocol
TA_DSNAME Specifies DS object name
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

When the TA_TFIFO attribute is specified, the order of the mutex task queue is FIFO. If TA_TPRI, TA_INHERIT,
or TA_CEILING is specified, tasks are ordered by their priority. TA_INHERIT indicates that priority inheritance
protocol is used, and TA_CEILING specifies priority ceiling protocol.

Only when TA_CEILING is specified, ceilpri is valid and specifies the mutex ceiling priority.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

#define TA_TFIFO 0x00000000 /* manage queue by FIFO */
#define TA_TPRI 0x00000001 /* manage queue by priority */
#define TA_INHERIT 0x00000002 /* priority inheritance protocol */
#define TA_CEILING 0x00000003 /* priority ceiling protocol */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */

μT-Kernel 3.0 Specification 162 / 502

4.5.1.2 tk_del_mtx - Delete Mutex

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_mtx(ID mtxid);

Parameter

ID mtxid Mutex ID Mutex ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mtxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Deletes the mutex specified in mtxid.

Issuing this system call releases the mutex ID and control block memory space allocated to the mutex.

This system call completes normally even if there are tasks waiting to lock the deleted mutex, but error code
E_DLT is returned to each of the tasks in WAITING state.

When a mutex is deleted, a task locking the mutex will have one fewer locked mutexes. If the mutex to be
deleted was a priority inheritance mutex (TA_INHERIT) or priority ceiling mutex (TA_CEILING), then deleting the
mutex might change the priority of the task that has locked it.

μT-Kernel 3.0 Specification 163 / 502

4.5.1.3 tk_loc_mtx - Lock Mutex

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_loc_mtx(ID mtxid, TMO tmout);

Parameter

ID mtxid Mutex ID Mutex ID
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mtxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)
E_PAR Parameter error (tmout ≦ (-2))
E_DLT The object being waited for was deleted (the mutex was deleted while waiting for a

lock)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)
E_ILUSE Illegal use (multiple lock, or upper priority limit exceeded)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Locks the mutex specified in mtxid. If the mutex can be locked immediately, the task issuing this system call
continue executing without entering WAITING state, and the mutex goes to locked status. If the mutex cannot
be locked, the task issuing this system call enters WAITING state. That is, the task is put in the queue of this
mutex.

A maximum wait time (timeout) can be set in tmout. The time unit for tmout is the same as that for system
time (= 1 ms). If the tmout time elapses before the wait release condition is met, the system call terminates,
returning timeout error code E_TMOUT.

When TMO_POL＝0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state even if the resource cannot be locked. When TMO_FEVR＝(-1) is set in tmout,

μT-Kernel 3.0 Specification 164 / 502

this means infinity was specified as the timeout value, and the task continues wait to until the resource is
locked.

If the invoking task has already locked the specified mutex, error code E_ILUSE (multiple lock) is returned.

If the specified mutex is a priority ceiling mutex (TA_CEILING) and the base priority1of the invoking task is
higher than the ceiling priority of the mutex, error code E_ILUSE (upper priority limit exceeded) is returned.

Additional Notes

• Priority inheritance mutex (TA_INHERIT attribute)

If the invoking task is waiting to lock a mutex and the current priority of the task currently locking that
mutex is lower than that of the invoking task, the priority of the locking task is raised to the same level
as the invoking task. If the wait ends before the waiting task can obtain a lock (timeout or other reason),
the priority of the task locking that mutex can be lowered to the highest of the following three priorities.
Whether this lowering takes place is implementation-dependent.

a. The highest priority among the current priorities of tasks waiting to lock the mutex.

b. The highest priority among all the other mutexes locked by the task currently locking this mutex.

c. The base priority of the locking task.

• Priority ceiling mutex (TA_CEILING attribute)

If the invoking task obtains a lock and its current priority is lower than the mutex ceiling priority, the priority
of the invoking task is raised to the mutex ceiling priority.

1 Base priority: The task priority before it is automatically raised by the mutex. This is the priority last set by tk_chg_pri (including
while the mutex is locked), or if tk_chg_pri has never been issued, the priority that was set when the task was created.

μT-Kernel 3.0 Specification 165 / 502

4.5.1.4 tk_loc_mtx_u - Lock Mutex (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_loc_mtx_u(ID mtxid, TMO_U tmout_u);

Parameter

ID mtxid Mutex ID Mutex ID
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mtxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)
E_PAR Parameter error (tmout_u ≦ (-2))
E_DLT The object being waited for was deleted (the mutex was deleted while waiting for a

lock)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)
E_ILUSE Illegal use (multiple lock, or upper priority limit exceeded)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_loc_mtx.

The specification of this system call is same as that of tk_loc_mtx, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_loc_mtx.

μT-Kernel 3.0 Specification 166 / 502

4.5.1.5 tk_unl_mtx - Unlock Mutex

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_unl_mtx(ID mtxid);

Parameter

ID mtxid Mutex ID Mutex ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mtxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)
E_ILUSE Illegal use (not a mutex locked by the invoking task)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Unlocks the mutex specified in mtxid.

If there are tasks waiting to lock the mutex, the WAITING state of the task at the head of the queue for that
mutex is released and that task locks the mutex.

If a mutex that was not locked by the invoking task is specified, error code E_ILUSE is returned.

Additional Notes

If the unlocked mutex is a priority inheritance mutex (TA_INHERIT) or priority ceiling mutex (TA_CEILING), task
priority must be lowered as follows.

If as a result of this operation the invoking task no longer has any locked mutexes, the invoking task priority
is lowered to its base priority.

If the invoking task continues to have locked mutexes after the operation above, the invoking task priority is
lowered to whichever of the following priority is highest.

μT-Kernel 3.0 Specification 167 / 502

a. The highest priority among the current priority of the tasks in the queue of the mutex with the TA_INHERIT
attribute locked by the invoking task

b. The highest priority among the ceiling priority of the mutexes with the TA_CEILING attribute locked by the
invoking task

c. Base priority of the invoking task

Note that the lowering of priority when locked mutexes remain is implementation-dependent.

If a task terminates (goes to DORMANT state or NON-EXISTENT state) without explicitly unlocking mutexes,
all its locked mutexes are automatically unlocked by μT-Kernel.

μT-Kernel 3.0 Specification 168 / 502

4.5.1.6 tk_ref_mtx - Refer Mutex Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_mtx(ID mtxid, T_RMTX *pk_rmtx);

Parameter

ID mtxid Mutex ID Mutex ID
T_RMTX* pk_rmtx Packet to Return Mutex Status Pointer to the area to return the mutex

status

Return Parameter

ER ercd Error Code Error code

pk_rmtx Detail:

void* exinf Extended Information Extended information
ID htsk Locking Task ID ID of task locking the mutex
ID wtsk Lock Waiting Task ID ID of tasks waiting to lock the mutex
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (mtxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)
E_PAR Parameter error (invalid pk_rmtx)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

References the status of the mutex specified in mtxid, passing in the return parameters the task currently
locking the mutex (htsk), tasks waiting to lock the mutex (wtsk), and extended information (exinf).

htsk indicates the ID of the task locking the mutex. If no task is locking it, htsk = 0 is returned.

wtsk indicates the ID of a task waiting to lock the mutex. If there are two or more such tasks, the ID of the task
at the head of the queue is returned. If there are no waiting tasks, wtsk = 0 is returned.

If the specified mutex does not exist, error code E_NOEXS is returned.

μT-Kernel 3.0 Specification 169 / 502

4.5.2 Message Buffer

A message buffer is an object for achieving synchronization and communication by the passing of variable-size
messages. Functions are provided for creating and deleting a message buffer, sending and receiving messages
using a message buffer, and referencing message buffer status. A message buffer is an object identified by an
ID number. The ID number for the message buffer is called a message buffer ID.

A message buffer keeps a queue of tasks waiting to send a message (send queue) and a queue of tasks waiting
for receive a message (receive queue). It also has a message buffer space for holding sent messages. The
message sender (the side posting event notification) copies a message it wants to send to the message buffer.
If there is insufficient space in the message buffer area, the task trying to send the message is queued for
sending until enough space is available.

A task waiting to send a message to the message buffer is put in the send queue. On the message receive
side (waiting for event notification), one message is fetched from the message buffer. If the message buffer
has no messages, the task enters WAITING state until the next message is sent. A task waiting for receiving
a message from a message buffer is put in the receive queue of that message buffer.

A synchronous message function can be realized by setting the message buffer space size to 0. In that case
both the sending task and receiving task wait for a system call to be invoked by each other, and the message
is passed when both sides issue system calls.

Additional Notes
The message buffer behavior when the size of the message buffer space is set to 0 is explained here using
the example in Figure 4.3, “Synchronous Communication by Message Buffer”. In this example Task A and
Task B run asynchronously.

• If Task A calls tk_snd_mbf first, it goes to WAITING state until Task B calls tk_rcv_mbf. In this case Task A is
put in the message buffer send queue [Figure 4.3, “Synchronous Communication by Message Buffer” (a)]

• If Task B calls tk_rcv_mbf first, on the other hand, Task B goes to WAITING state until Task A calls tk_snd_mbf.
Task B is put in the message buffer receive queue [Figure 4.3, “Synchronous Communication by Message
Buffer” (b)].

• At the point where both Task A has called tk_snd_mbf and Task B has called tk_rcv_mbf, a message is passed
from Task A to Task B; Thereafter both tasks enter a run state.

Tasks waiting to send to a message buffer send messages in their queued order. Suppose Task A wanting to
send a 40-byte message to a message buffer, and Task B wanting to send a 10-byte message, are queued in
that order. If another task receives a message opening 20 bytes of space in the message buffer, Task B is still
required to wait until Task A sends its message.
A message buffer is used to pass variable-size messages by copying them. It is the copying of messages that
makes this function different from the mailbox function.
It is assumed that the message buffer will be implemented as a ring buffer.

μT-Kernel 3.0 Specification 170 / 502

Figure 4.3: Synchronous Communication by Message Buffer

μT-Kernel 3.0 Specification 171 / 502

4.5.2.1 tk_cre_mbf - Create Message Buffer

C Language Interface

#include <tk/tkernel.h>

ID mbfid = tk_cre_mbf(CONST T_CMBF *pk_cmbf);

Parameter

CONST T_CMBF* pk_cmbf Packet to Create Message
Buffer

Message buffer creation
information

pk_cmbf Detail:

void* exinf Extended Information Extended information
ATR mbfatr Message Buffer Attribute Message buffer attribute
SZ bufsz Buffer Size Message buffer size (in bytes)
INT maxmsz Max Message Size Maximum message size (in bytes)
UB dsname[8] DS Object name DS object name
void* bufptr Buffer Pointer User buffer pointer
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID mbfid Message Buffer ID Message buffer ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block or ring buffer area cannot be
allocated)

E_LIMIT Number of message buffers exceeds the system limit
E_RSATR Reserved attribute (mbfatr is invalid or cannot be used)
E_PAR Parameter error (pk_cmbf is illegal, bufsz, maxmsz is negative or invalid, bufptr is

illegal)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

TK_SUPPORT_USERBUF Support for specifying TA_USERBUF for message buffer attribute
TK_SUPPORT_AUTOBUF Automatic buffer allocation is supported (by not specifying

TA_USERBUF to message buffer attribute)
TK_SUPPORT_DISWAI Support for specifying TA_NODISWAI (reject request to disable

wait) to message buffer attribute
TK_SUPPORT_DSNAME Support for specifying TA_DSNAME for message buffer attribute

μT-Kernel 3.0 Specification 172 / 502

Description

Creates a message buffer, assigning to it a message buffer ID. This system call allocates a control block to the
created message buffer. Based on the information specified in bufsz, it allocates a ring buffer area for message
queue use (for messages waiting to be received).

A message buffer is an object for managing the sending and receiving of variable-size messages. If differs
from a mailbox (mbx) in that the contents of the variable-size messages are copied when the message is sent
and received. It also has a function for putting the sending task in WAITING state when the buffer is full.

exinf can be used freely by the user to set miscellaneous information about the created message buffer. The
information set in this parameter can be referenced by tk_ref_mbf. If a larger area is needed for indicating
user information, or if the information may need to be changed after the message buffer is created, this can
be done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

mbfatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of mbfatr is specified as follows.

mbfatr := (TA_TFIFO || TA_TPRI) | [TA_DSNAME] | [TA_USERBUF] | [TA_NODISWAI]

TA_TFIFO Tasks waiting on call are queued in FIFO order
TA_TPRI Tasks waiting on call are queued in priority order
TA_DSNAME Specifies DS object name
TA_USERBUF Support of user-specified memory area as message buffer area
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

The queuing order of tasks waiting for sending a message when the buffer is full can be specified in TA_TFIFO
or TA_TPRI. If the attribute is TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing of tasks
in order of their priority setting. Messages themselves are queued in FIFO order only.

Tasks waiting for receiving a message from a message buffer are queued in FIFO order only.

When TA_USERBUF is specified, bufptr becomes effective, and the memory area starting at bufptr and containing
bufsz octets is used as message buffer area. In this case, the message buffer area is not provided by he OS,
but must be allocated by the caller. When TA_USERBUF is not specified, bufptr is ineffective、and the message
buffer area is provided by the kernel.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

#define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
#define TA_TPRI 0x00000001 /* manage task queue by priority */
#define TA_USERBUF 0x00000020 /* Use user -specified buffer */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */

Additional Notes

When there are multiple tasks waiting to send messages, the order in which their messages are sent when
buffer space becomes available is always in their queued order.

If, for example, a Task A wanting to send a 30-byte message is queued with a Task B wanting to send a 10-byte
message, in the order A-B, even if 20 bytes of message buffer space becomes available, Task B never sends
its message before Task A.

The ring buffer in which messages are queued also contains information for managing each message. For
this reason the total size of queued messages will ordinarily not be identical to the ring buffer size specified

μT-Kernel 3.0 Specification 173 / 502

in bufsz. Normally the total message size will be smaller than bufsz. In this sense bufsz does not strictly
represent the total message capacity.

It is possible to create a message buffer with bufsz = 0. In this case communication using the message buffer is
completely synchronous between the sending and receiving tasks. That is, if either tk_snd_mbf or tk_rcv_mbf
is executed ahead of the other, the task executing the first system call goes to WAITING state. When the other
system call is executed, the message is passed (copied), then both tasks resume running.

In the case of a bufsz = 0 message buffer, the specific functioning is as follows.

1. In Figure 4.4, “Synchronous Communication Using Message Buffer of bufsz = 0”, Task A and Task
B operate asynchronously. If Task A arrives at point (1) first and executes tk_snd_mbf(mbfid), Task
A goes to send waiting state until Task B arrives at point (2). If tk_ref_tsk is issued for Task A in
this state, tskwait=TTW_SMBF is returned. If, on the other hand, Task B gets to point (2) first and calls
tk_rcv_mbf(mbfid), Task B goes to receive waiting state until Task A gets to point (1). If tk_ref_tsk is
issued for Task B in this state, tskwait=TTW_RMBF is returned.

2. At the point where both Task A has executed tk_snd_mbf(mbfid) and Task B has executed tk_rcv_mbf(mbfid),
a message is passed from Task A to Task B, their wait states are released and both tasks resume running.

Figure 4.4: Synchronous Communication Using Message Buffer of bufsz = 0

Porting Guideline

Note that member, maxmsz, of T_CMBF is INT type, and its value range is implementation-dependent, so care
must be taken.

The T-Kernel 2.0 specification does not define TA_USERBUF and its associated notion of bufptr. So if this feature
is used, a modification is necessary to port the software to T-Kernel 2.0. However, if bufsz is properly set
already, simply removing TA_USERBUF and bufptr will complete the modification for porting.

μT-Kernel 3.0 Specification 174 / 502

4.5.2.2 tk_del_mbf - Delete Message Buffer

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_mbf(ID mbfid);

Parameter

ID mbfid Message Buffer ID Message buffer ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Deletes the message buffer specified in mbfid.

Issuing this system call releases the corresponding message buffer and control block memory space, as well
as the message buffer space.

This system call completes normally even if there were tasks queued in the message buffer for message receipt
or message sending, but error code E_DLT is returned to the tasks in WAITING state. If there are messages
left in the message buffer when it is deleted, the message buffer is deleted anyway. No error code is returned
and the messages are discarded.

μT-Kernel 3.0 Specification 175 / 502

4.5.2.3 tk_snd_mbf - Send Message to Message Buffer

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_snd_mbf(ID mbfid, CONST void *msg, INT msgsz, TMO tmout);

Parameter

ID mbfid Message Buffer ID Message buffer ID
CONST void* msg Send Message Start address of send message
INT msgsz Send Message Size Send message size (in bytes)
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
E_PAR Parameter error (msgsz ≦ 0, msgsz > maxmsz, invalid msg, or tmout ≦ (-2))
E_DLT The object being waited for was deleted (message buffer was deleted while waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO(* Available in some

circumstances)

Related Service Profile Items

None.

Description

tk_snd_mbf sends the message at the address specified in msg to the message buffer indicated in mbfid. The
message size is specified in msgsz. This system call copies msgsz bytes starting from msg to the message queue
of message buffer mbfid. The message queue is assumed to be implemented as a ring buffer.

If msgsz is larger than the maxmsz specified in tk_cre_mbf, error code E_PAR is returned.

If there is not enough available buffer space to accommodate message msg in the message queue, the task
issuing this system call goes to send waiting state and is put in the send queue of the message buffer waiting
for buffer space to become available. Waiting tasks are queued in either FIFO or priority order, depending on
the attribute specified in tk_cre_mbf.

μT-Kernel 3.0 Specification 176 / 502

A maximum wait time (timeout) can be set in tmout. The time unit for tmout is the same as that for system time
(= 1 ms). If the tmout time elapses before the wait release condition is met (before there is sufficient buffer
space), the system call terminates, returning timeout error code E_TMOUT.

When TMO_POL＝0 is specified in tmout, it means 0 is specified as the timeout value, and if there is not enough
buffer space, then E_TMOUT is returned without entering WAITING state. When TMO_FEVR＝(-1) is specified
in tmout, this means infinity was specified as the timeout value, and the task continues to wait for buffer space
to become available, without timing out.

A message of size 0 cannot be sent. When msgsz ≦ 0, error code E_PAR is returned.

When this system call is invoked from a task-independent portion or in dispatch disabled state, error code
E_CTX is returned; but in the case of tmout = TMO_POL, there may be implementations where execution from a
task-independent portion or in dispatch disabled state is possible.

Porting Guideline

Note that msgsz is INT type, and its value range is implementation-dependent, so care must be taken. For
example, there is a chance that the message size that can sent at once might be limited to 32767 octets on
16-bit CPU.

μT-Kernel 3.0 Specification 177 / 502

4.5.2.4 tk_snd_mbf_u - Send Message to Message Buffer (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_snd_mbf_u(ID mbfid, CONST void *msg, INT msgsz, TMO_U tmout_u);

Parameter

ID mbfid Message Buffer ID Message buffer ID
CONST void* msg Send Message Start address of send message
INT msgsz Send Message Size Send message size (in bytes)
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
E_PAR Parameter error (msgsz ≦ 0, msgsz > maxmsz, invalid msg, or tmout_u ≦ (-2))
E_DLT The object being waited for was deleted (message buffer was deleted while waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO(* Available in certain

circumstance)

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_snd_mbf.

The specification of this system call is same as that of tk_snd_mbf, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_snd_mbf.

μT-Kernel 3.0 Specification 178 / 502

Porting Guideline

Note that msgsz is INT type, and its value range is implementation-dependent, so care must be taken. For
example, there is a chance that the message size that can sent at once might be limited to 32767 octets on
16-bit CPU.

μT-Kernel 3.0 Specification 179 / 502

4.5.2.5 tk_rcv_mbf - Receive Message from Message Buffer

C Language Interface

#include <tk/tkernel.h>

INT msgsz = tk_rcv_mbf(ID mbfid, void *msg, TMO tmout);

Parameter

ID mbfid Message Buffer ID Message buffer ID
void* msg Receive Message Address of the receive message
TMO tmout Timeout Timeout (ms)

Return Parameter

INT msgsz Receive Message Size Received message size (in bytes)
or Error Code Error code

Error Code

E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
E_PAR Parameter error (invalid msg, or tmout ≦ (-2))
E_DLT The object being waited for was deleted (message buffer was deleted while waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

tk_rcv_mbf receives a message from the message buffer specified in mbfid, copying it in the location specified
in msg. This system call copies the contents of the first queued message in the message buffer specified in
mbfid, and copies it to an area of msgsz bytes starting at address msg.

If no message has been sent to the message buffer specified in mbfid (the message queue is empty), the task
issuing this system call goes to WAITING state and is put in the receive queue of the message buffer to wait
for message arrival. Tasks in the receive queue are ordered by FIFO only.

A maximum wait time (timeout) can be set in tmout. The time unit for tmout is the same as that for system
time (= 1 ms). If the tmout time elapses before the wait release condition is met (before a message arrives),
the system call terminates, returning timeout error code E_TMOUT.

μT-Kernel 3.0 Specification 180 / 502

When TMO_POL＝0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state even if there is no message. When TMO_FEVR＝(-1) is set in tmout, this means
infinity was specified as the timeout value, and the task continues to wait for message arrival without timing
out.

μT-Kernel 3.0 Specification 181 / 502

4.5.2.6 tk_rcv_mbf_u - Receive Message from Message Buffer (Microseconds)

C Language Interface

#include <tk/tkernel.h>

INT msgsz = tk_rcv_mbf_u(ID mbfid, void *msg, TMO_U tmout_u);

Parameter

ID mbfid Message Buffer ID Message buffer ID
void* msg Receive Message Address of the receive message
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

INT msgsz Receive Message Size Received message size (in bytes)
or Error Code Error code

Error Code

E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
E_PAR Parameter error (invalid msg, or tmout_u ≦ (-2))
E_DLT The object being waited for was deleted (message buffer was deleted while waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_rcv_mbf.

The specification of this system call is same as that of tk_rcv_mbf, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_rcv_mbf.

μT-Kernel 3.0 Specification 182 / 502

4.5.2.7 tk_ref_mbf - Reference Message Buffer Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_mbf(ID mbfid, T_RMBF *pk_rmbf);

Parameter

ID mbfid Message Buffer ID Message buffer ID
T_RMBF* pk_rmbf Packet to Return Message Buffer

Status
Pointer to the area to return the
message buffer status

Return Parameter

ER ercd Error Code Error code

pk_rmbf Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Receive waiting task ID
ID stsk Send Waiting Task ID Send waiting task ID
INT msgsz Message Size Size of the next message to be

received (in bytes)
SZ frbufsz Free Buffer Size Free buffer size (in bytes)
INT maxmsz Maximum Message Size Maximum message size (in bytes)
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
E_PAR Parameter error (invalid pk_rmbf)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

References the status of the message buffer specified in mbfid, passing in the return parameters the send
waiting task ID(stsk), the size of the next message to be received (msgsz), free buffer size (frbufsz), maximum
message size (maxmsz), receive waiting task ID (wtsk), and extended information (exinf).

μT-Kernel 3.0 Specification 183 / 502

wtsk indicates the ID of a task waiting to receive a message from the message buffer. stsk indicates the ID
of a task waiting to send a message to the message buffer. If multiple tasks are waiting in the message buffer
queues, the ID of the task at the head of the queue is returned. If no tasks are waiting, 0 is returned.

If the specified message buffer does not exist, error code E_NOEXS is returned.

The size of the message at the head of the queue (the next message to be received) is returned in msgsz. If
there are no queued messages, msgsz = 0 is returned. A message of size 0 cannot be sent.

At least one of msgsz = 0 and wtsk = 0 is always true for this system call.

frbufsz indicates the free space in the ring buffer of which the message queue consists. This value indicates
the approximate size of messages that can be sent.

The maximum message size as specified in tk_cre_mbf is returned to maxmsz.

μT-Kernel 3.0 Specification 184 / 502

4.6 Memory Pool Management Functions

Memory pool management functions are for managing memory pools and allocating memory blocks by using
software.

There are fixed-size memory pools and variable-size memory pools, which are considered separate objects and
require separate sets of system calls for their operation. Memory blocks allocated from a fixed-size memory
pool are all of one fixed size, whereas memory blocks from a variable-size memory pool can be of various
sizes.

μT-Kernel 3.0 Specification 185 / 502

4.6.1 Fixed-size Memory Pool

A fixed-size memory pool is an object used for dynamic management of fixed-size memory blocks. Functions
are provided for creating and deleting a fixed-size memory pool, getting and returning memory blocks in a
fixed-size memory pool, and referencing the status of a fixed-size memory pool. A fixed-size memory pool is
an object identified by an ID number. The ID number for the fixed-size memory pool is called a fixed-size
memory pool ID.

A fixed-size memory pool has a memory space used as the fixed-size memory pool (called a fixed-size memory
pool area or simply memory pool area), and a queue for tasks waiting for memory block allocation. A task
wanting to allocate a memory block from a fixed-size memory pool that lacks sufficient available memory
space goes to WAITING state for fixed-size memory block until memory blocks are returned to the pool. A
task in this state is put in the task queue of the fixed-size memory pool.

Additional Notes
When memory blocks of various sizes are needed from fixed-size memory pools, it is necessary to provide
multiple memory pools of different sizes.

μT-Kernel 3.0 Specification 186 / 502

4.6.1.1 tk_cre_mpf - Create Fixed-size Memory Pool

C Language Interface

#include <tk/tkernel.h>

ID mpfid = tk_cre_mpf(CONST T_CMPF *pk_cmpf);

Parameter

CONST T_CMBX* pk_cmpf Packet to Create Memory
Pool

Information about the fixed-size
memory pool to be created

pk_cmpf Detail:

void* exinf Extended Information Extended information
ATR mpfatr Memory Pool Attribute Memory pool attribute
SZ mpfcnt Memory Pool Block Count Memory pool block count
SZ blfsz Memory Block Size Fixed-size memory block size (in

bytes)
UB dsname[8] DS Object name DS object name
void* bufptr Buffer Pointer User buffer pointer
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID mpfid Memory Pool ID Fixed-size memory pool ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block or memory pool area cannot be
allocated)

E_LIMIT Number of fixed-size memory pools exceeds the system limit
E_RSATR Reserved attribute (mpfatr is invalid or cannot be used)
E_PAR Parameter error (pk_cmpf is illegal, mpfcnt, blfsz is negative or invalid, or bufptr is

illegal)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

TK_SUPPORT_USERBUF Support for specifying TA_USERBUF for fixed-size memory pool
attribute

TK_SUPPORT_AUTOBUF Automatic buffer allocation is supported (by not specifying
TA_USERBUF to fixed-size memory pool attribute)

TK_SUPPORT_DISWAI Support for specifying TA_NODISWAI (reject request to disable
wait) to fixed-size memory pool attribute

μT-Kernel 3.0 Specification 187 / 502

TK_SUPPORT_DSNAME Support for specifying TA_DSNAME for fixed-size memory pool
attribute

Description

Creates a fixed-size memory pool, assigning to it a fixed-size memory pool ID. This system call allocates a
memory space for use as a memory pool based on the information specified in parameters mpfcnt and blfsz,
and assigns a control block to the memory pool. A memory block of size blfsz can be allocated from the
created memory pool by calling the tk_get_mpf system call.

exinf can be used freely by the user to set miscellaneous information about the created memory pool. The
information set in this parameter can be referenced by tk_ref_mpf. If a larger area is needed for indicating
user information, or if the information may need to be changed after the message buffer is created, this can
be done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

mpfatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of mpfatr is as follows.

mbxatr:= (TA_TFIFO || TA_TPRI) | [TA_DSNAME] | [TA_USERBUF] | [TA_NODISWAI]
| (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3)

TA_TFIFO Tasks waiting for memory allocation are queued in FIFO order
TA_TPRI Tasks waiting for memory allocation are queued in priority order
TA_RNGn Memory access privilege is set to protection level n
TA_DSNAME Specifies DS object name
TA_USERBUF Support of user-specified memory area as memory pool area
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

#define TA_TFIFO 0x00000000 /* manage queue by FIFO */
#define TA_TPRI 0x00000001 /* manage queue by priority */
#define TA_USERBUF 0x00000020 /* Use user -specified buffer */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */
#define TA_RNG0 0x00000000 /* Protection level 0 */
#define TA_RNG1 0x00000100 /* Protection level 1 */
#define TA_RNG2 0x00000200 /* Protection level 2 */
#define TA_RNG3 0x00000300 /* Protection level 3 */

The queuing order of tasks waiting for memory block allocation from a memory pool can be specified in
TA_TFIFO or TA_TPRI. If the attribute is TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing
of tasks in order of their priority setting.

TA_RNGn is specified to limit the protection levels from which memory can be accessed. Only tasks running at
the same or higher protection level than the one specified can access the allocated memory. If a task running at
a lower protection level attempts an access, a CPU protection fault exception is raised. For example, memory
allocated from a memory pool specified as TA_RNG1 can be accessed by tasks running at levels TA_RNG0 or
TA_RNG1, but not by tasks running at levels TA_RNG2 or TA_RNG3.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

Additional Notes

In the case of a fixed-size memory pool, separate memory pools must be provided for different block sizes.
That is, if various memory block sizes are required, memory pools must be created for each block size.

μT-Kernel 3.0 Specification 188 / 502

For the sake of portability, the TA_RNGn attribute must be accepted even by a system with a single CPU’s
operating mode. It is possible, for example, to handle all TA_RNGn as equivalent to TA_RNG0, but error must not
be returned.

Porting Guideline

The T-Kernel 2.0 specification does not define TA_USERBUF and its associated notion of bufptr. So if this feature
is used, a modification is necessary to port the software to T-Kernel 2.0. However, if mpfcnt and blfsz is
properly set already, simply removing TA_USERBUF and bufptr will complete the modification for porting.

μT-Kernel 3.0 Specification 189 / 502

4.6.1.2 tk_del_mpf - Delete Fixed-size Memory Pool

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_mpf(ID mpfid);

Parameter

ID mpfid Memory Pool ID Fixed-size memory pool ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mpfid is invalid or cannot be used)
E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Deletes the fixed-size memory pool specified in mpfid.

No check or notification is made as to whether there are tasks using memory allocated from this memory pool.
The system call completes normally even if not all blocks have been returned to the pool.

Issuing this system call releases the memory pool ID number, the control block memory space and the memory
pool space itself.

This system call completes normally even if there are tasks waiting for memory block allocation from the
deleted memory pool, but error code E_DLT is returned to the tasks in WAITING state.

μT-Kernel 3.0 Specification 190 / 502

4.6.1.3 tk_get_mpf - Get Fixed-size Memory Block

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_mpf(ID mpfid, void **p_blf, TMO tmout);

Parameter

ID mpfid Memory Pool ID Fixed-size memory pool ID
void** p_blf Pointer to Block Start Address Pointer to the area to return the block

start address blf
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code
void* blf Block Start Address Memory block start address

Error Code

E_OK Normal completion
E_ID Invalid ID number (mpfid is invalid or cannot be used)
E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
E_PAR Parameter error (tmout ≦ (-2))
E_DLT The object being waited for was deleted (the memory pool was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Gets a memory block from the fixed-size memory pool specified in mpfid. The start address of the allocated
memory block is returned in blf. The size of the allocated memory block is the value specified in the blfsz
parameter when the fixed-size memory pool was created.

The allocated memory is not cleared to zero, and the memory block contents are indeterminate.

If a block cannot be allocated from the specified memory pool, the task that issued tk_get_mpf is put in the
queue of tasks waiting for memory allocation from that memory pool, and waits until memory can be allocated.

μT-Kernel 3.0 Specification 191 / 502

A maximum wait time (timeout) can be set in tmout. The time unit for tmout is the same as that for system time
(= 1 ms). If the tmout time elapses before the wait release condition is met (memory space does not become
available), the system call terminates, returning timeout error code E_TMOUT.

When TMO_POL＝0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITInG state even if memory cannot be allocated.

When TMO_FEVR＝(-1) is set in tmout, this means infinity was specified as the timeout value, and the task con-
tinues to wait for memory allocation without timing out.

The queuing order of tasks waiting for memory block allocation is either FIFO or task priority order, depending
on the memory pool attribute.

μT-Kernel 3.0 Specification 192 / 502

4.6.1.4 tk_get_mpf_u - Get Fixed-size Memory Block (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_mpf_u(ID mpfid, void **p_blf, TMO_U tmout_u);

Parameter

ID mpfid Memory Pool ID Fixed-size memory pool ID
void** p_blf Pointer to Block Start Address Pointer to the area to return the block

start address blf
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code
void* blf Block Start Address Memory block start address

Error Code

E_OK Normal completion
E_ID Invalid ID number (mpfid is invalid or cannot be used)
E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
E_PAR Parameter error (tmout_u ≦ (-2))
E_DLT The object being waited for was deleted (the memory pool was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_get_mpf.

The specification of this system call is same as that of tk_get_mpf, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_get_mpf.

μT-Kernel 3.0 Specification 193 / 502

4.6.1.5 tk_rel_mpf - Release Fixed-size Memory Block

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rel_mpf(ID mpfid, void *blf);

Parameter

ID mpfid Memory Pool ID Fixed-size memory pool ID
void* blf Block Start Address Memory block start address

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mpfid is invalid or cannot be used)
E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
E_PAR Parameter error (blf is invalid, or block returned to wrong memory pool)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Returns the memory block specified in blf to the fixed-size memory pool specified in mpfid.

Executing tk_rel_mpf may enable memory block acquisition by another task waiting to allocate memory from
the memory pool specified in mpfid, releasing the WAITING state of that task.

When a memory block is returned to a fixed-size memory pool, it must be the same fixed-size memory pool from
which the block was allocated. If an attempt to return a memory block to a different memory pool is detected,
error code E_PAR is returned. Whether this error detection is performed or not is implementation-dependent.

μT-Kernel 3.0 Specification 194 / 502

4.6.1.6 tk_ref_mpf - Reference Fixed-size Memory Pool Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_mpf(ID mpfid, T_RMPF *pk_rmpf);

Parameter

ID mpfid Memory Pool ID Fixed-size memory pool ID
T_RMPF* pk_rmpf Packet to Return Memory Pool

Status
Pointer to the area to return the
memory pool status

Return Parameter

ER ercd Error Code Error code

pk_rmpf Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
SZ frbcnt Free Block Count Free block count
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (mpfid is invalid or cannot be used)
E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
E_PAR Parameter error (invalid pk_rmpf)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

References the status of the fixed-size memory pool specified in mpfid, passing in return parameters the current
free block count (frbcnt), waiting task ID (wtsk), and extended information (exinf).

wtsk indicates the ID of a task waiting for memory block allocation from this fixed-size memory pool. If multiple
tasks are waiting for the fixed-size memory pool, the ID of the task at the head of the queue is returned. If
there are no waiting tasks, wtsk = 0 is returned.

If the fixed-size memory pool specified with tk_ref_mpf does not exist, error code E_NOEXS is returned.

At least one of frbcnt = 0 and wtsk = 0 is always true for this system call.

μT-Kernel 3.0 Specification 195 / 502

Additional Notes

Whereas frsz returned by tk_ref_mpl gives the total free memory size in bytes, frbcnt returned by tk_ref_mpf
gives the number of unused memory blocks.

μT-Kernel 3.0 Specification 196 / 502

4.6.2 Variable-size Memory Pool

A variable-size memory pool is an object for dynamically managing memory blocks of any size. Functions are
provided for creating and deleting a variable-size memory pool, allocating and returning memory blocks in a
variable-size memory pool, and referencing the status of a variable-size memory pool. A variable-size memory
pool is an object identified by an ID number. The ID number for the variable-size memory pool is called a
variable-size memory pool ID.

A variable-size memory pool has a memory space used as the variable-size memory pool (called a variable-size
memory pool area or simply memory pool area), and a queue for tasks waiting for memory block allocation.
A task wanting to allocate a memory block from a variable-size memory pool that lacks sufficient available
memory space goes to WAITING state for variable-size memory block until memory blocks are returned to
the pool. A task in this state is put in the task queue of the variable-size memory pool.

Additional Notes
When tasks are waiting for memory block allocation from a variable-size memory pool, they are served in
queued order. If, for example, Task A requesting a 400-byte memory block from a variable-size memory pool
is queued along with Task B requesting a 100-byte block, in A-B order, then even if 200-byte block of space
are free, Task B is made to wait until Task A has acquired the requested memory block.

μT-Kernel 3.0 Specification 197 / 502

4.6.2.1 tk_cre_mpl - Create Variable-size Memory Pool

C Language Interface

#include <tk/tkernel.h>

ID mplid = tk_cre_mpl(CONST T_CMPL *pk_cmpl);

Parameter

CONST T_CMPL* pk_cmpl Packet to Create Memory
Pool

Information about the
variable-size memory pool to be
created

pk_cmpl Detail:

void* exinf Extended Information Extended information
ATR mplatr Memory Pool Attribute Memory pool attribute
SZ mplsz Memory Pool Size Memory pool size (in bytes)
UB dsname[8] DS Object name DS object name
void* bufptr Buffer Pointer User buffer pointer
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID mplid Memory Pool ID Variable-size memory pool ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block or memory pool area cannot be
allocated)

E_LIMIT Number of variable-size memory pools exceeds the system limit
E_RSATR Reserved attribute (mplatr is invalid or cannot be used)
E_PAR Parameter error :(pk_cmpl is invalid, mplsz is negative or invalid, or bufptr is illegal)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

TK_SUPPORT_USERBUF Support for specifying TA_USERBUF for variable-size memory
pool attribute

TK_SUPPORT_AUTOBUF Automatic buffer allocation is supported (by not specifying
TA_USERBUF to variable-size memory pool attribute)

TK_SUPPORT_DISWAI Support for specifying TA_NODISWAI (reject request to disable
wait) to variable-size memory pool attribute

TK_SUPPORT_DSNAME Support for specifying TA_DSNAME for variable-size memory pool
attribute

μT-Kernel 3.0 Specification 198 / 502

Description

Creates a variable-size memory pool, assigning to it a variable-size memory pool ID. This system call allocates
a memory space for use as a memory pool, based on the information in parameter mplsz, and assigns a control
block to the memory pool.

exinf can be used freely by the user to set miscellaneous information about the created memory pool. The
information set in this parameter can be referenced by tk_ref_mpl. If a larger area is needed for indicating
user information, or if the information may need to be changed after the message buffer is created, this can
be done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

mplatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of mplatr is as follows.

mplatr := (TA_TFIFO || TA_TPRI) | [TA_DSNAME] | [TA_USERBUF] | [TA_NODISWAI]
| (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3)

TA_TFIFO Tasks waiting for memory allocation are queued in FIFO order
TA_TPRI Tasks waiting for memory allocation are queued in priority order
TA_RNGn Memory access privilege is set to protection level n
TA_DSNAME Specifies DS object name
TA_USERBUF Support of user-specified memory area as memory pool area
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

#define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
#define TA_TPRI 0x00000001 /* manage task queue by priority */
#define TA_USERBUF 0x00000020 /* Use user -specified buffer */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */
#define TA_RNG0 0x00000000 /* protection level 0 */
#define TA_RNG1 0x00000100 /* protection level 1 */
#define TA_RNG2 0x00000200 /* protection level 2 */
#define TA_RNG3 0x00000300 /* protection level 3 */

The queuing order of tasks waiting for memory block allocation from a memory pool can be specified in
TA_TFIFO or TA_TPRI. If the attribute is TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing
of tasks in order of their priority setting.

When tasks are queued waiting for memory allocation, memory is allocated in the order of queuing. Even if
other tasks in the queue are requesting smaller amounts of memory than the task at the head of the queue,
they do not acquire memory blocks before the first task. If, for example, Task A requesting a 400-byte memory
block from a variable-size memory pool is queued along with Task B requesting a 100-byte block, in A-B order,
then even if 200-byte block of space are freed by tk_rel_mpl of another task, Task B is made to wait until Task
A has acquired the requested memory block.

TA_RNGn is specified to limit the protection levels from which memory can be accessed. Only tasks running at
the same or higher protection level than the one specified can access the allocated memory. If a task running at
a lower protection level attempts an access, a CPU protection fault exception is raised. For example, memory
allocated from a memory pool specified as TA_RNG1 can be accessed by tasks running at levels TA_RNG0 or
TA_RNG1, but not by tasks running at levels TA_RNG2 or TA_RNG3.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

μT-Kernel 3.0 Specification 199 / 502

Additional Notes

If the task at the head of the queue waiting for memory allocation has its WAITING state forcibly released, or
if a different task becomes the first in the queue as a result of a change in task priority, memory allocation is
attempted to that task. If memory can be allocated, the WAITInG state of that task is released. In this way
it is possible under some circumstances for memory allocation to take place and task WAITING state to be
released even when memory is not released by tk_rel_mpl.

For the sake of portability, the TA_RNGn attribute must be accepted even by a system with a single CPU’s
operating mode. It is possible, for example, to handle all TA_RNGn as equivalent to TA_RNG0, but error must not
be returned.

Rationale for the Specification

The capability of creating multiple variable-size memory pools can be used for memory allocation as needed
for error handling or in emergent situations in programming, etc.

Porting Guideline

The T-Kernel 2.0 specification does not define TA_USERBUF and its associated notion of bufptr. So if this feature
is used, a modification is necessary to port the software to T-Kernel 2.0. However, if mplsz is properly set
already, simply removing TA_USERBUF and bufptr will complete the modification for porting.

μT-Kernel 3.0 Specification 200 / 502

4.6.2.2 tk_del_mpl - Delete Variable-size Memory Pool

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_mpl(ID mplid);

Parameter

ID mplid Memory Pool ID Variable-size memory pool ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mplid is invalid or cannot be used)
E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not

exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Deletes the variable-size memory pool specified in mplid.

No check or notification is made as to whether there are tasks using memory allocated from this memory pool.
The system call completes normally even if not all blocks have been returned to the pool.

Issuing this system call releases the memory pool ID number, the control block memory space and the memory
pool space itself.

This system call completes normally even if there are tasks waiting for memory block allocation from the
deleted memory pool, but error code E_DLT is returned to the tasks in WAITING state.

μT-Kernel 3.0 Specification 201 / 502

4.6.2.3 tk_get_mpl - Get Variable-size Memory Block

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_mpl(ID mplid, SZ blksz, void **p_blk, TMO tmout);

Parameter

ID mplid Memory Pool ID Variable-size memory pool ID
SZ blksz Memory Block Size Memory block size (in bytes)
void** p_blk Pointer to Block Start Address Pointer to the area to return the block

start address blk
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code
void* blk Block Start Address Memory block start address

Error Code

E_OK Normal completion
E_ID Invalid ID number (mplid is invalid or cannot be used)
E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not

exist)
E_PAR Parameter error (tmout ≦ (-2))
E_DLT The object being waited for was deleted (the memory pool was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Gets a memory block of size blksz (bytes) from the variable-size memory pool specified in mplid. The start
address of the allocated memory block is returned in blk.

The allocated memory is not cleared to zero, and the memory block contents are indeterminate.

If memory cannot be allocated, the task issuing this system call enters WAITING state.

μT-Kernel 3.0 Specification 202 / 502

A maximum wait time (timeout) can be set in tmout. The time unit for tmout is the same as that for system time
(= 1 ms). If the tmout time elapses before the wait release condition is met (memory space does not become
available), the system call terminates, returning timeout error code E_TMOUT.

When TMO_POL＝0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state even if memory cannot be allocated.

When TMO_FEVR＝(-1) is set in tmout, this means infinity was specified as the timeout value, and the task con-
tinues to wait for memory allocation without timing out.

The queuing order of tasks waiting for memory block allocation is either FIFO or task priority order, depending
on the memory pool attribute.

μT-Kernel 3.0 Specification 203 / 502

4.6.2.4 tk_get_mpl_u - Get Variable-size Memory Block (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_mpl_u(ID mplid, SZ blksz, void **p_blk, TMO_U tmout_u);

Parameter

ID mplid Memory Pool ID Variable-size memory pool ID
SZ blksz Memory Block Size Memory block size (in bytes)
void** p_blk Pointer to Block Start Address Pointer to the area to return the block

start address blk
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code
void* blk Block Start Address Memory block start address

Error Code

E_OK Normal completion
E_ID Invalid ID number (mplid is invalid or cannot be used)
E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not

exist)
E_PAR Parameter error (tmout_u ≦ (-2))
E_DLT The object being waited for was deleted (the memory pool was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_get_mpl.

The specification of this system call is same as that of tk_get_mpl, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_get_mpl.

μT-Kernel 3.0 Specification 204 / 502

4.6.2.5 tk_rel_mpl - Release Variable-size Memory Block

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rel_mpl(ID mplid, void *blk);

Parameter

ID mplid Memory Pool ID Variable-size memory pool ID
void* blk Block Start Address Memory block start address

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mplid is invalid or cannot be used)
E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not

exist)
E_PAR Parameter error (blk is invalid, or block returned to wrong memory pool)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Returns the memory block specified in blk to the variable-size memory pool specified in mplid.

Executing tk_rel_mpl may enable memory block acquisition by another task waiting to allocate memory from
the memory pool specified in mplid, releasing the WAITING state of that task.

When a memory block is returned to a variable-size memory pool, it must be the same variable-size memory
pool from which the block was allocated. If an attempt to return a memory block to a different memory pool is
detected, error code E_PAR is returned. Whether this error detection is performed or not is implementation-
dependent.

Additional Notes

When memory is returned to a variable-size memory pool in which multiple tasks are queued, multiple tasks
may be released at the same time depending on the amount of memory returned and their requested memory
size. The task precedence among tasks of the same priority after their WAITING state is released in such a
case is the order in which they were queued.

μT-Kernel 3.0 Specification 205 / 502

4.6.2.6 tk_ref_mpl - Reference Variable-size Memory Pool Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_mpl(ID mplid, T_RMPL *pk_rmpl);

Parameter

ID mplid Memory Pool ID Variable-size memory pool ID
T_RMPL* pk_rmpl Packet to Return Memory Pool

Status
Pointer to the area to return the
memory pool status

Return Parameter

ER ercd Error Code Error code

pk_rmpl Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
SZ frsz Free Memory Size Free memory size (in bytes)
SZ maxsz Max Memory Size Maximum memory space size (in bytes)
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (mplid is invalid or cannot be used)
E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not

exist)
E_PAR Parameter error (invalid pk_rmpl)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

References the status of the variable-size memory pool specified in mplid, passing in return parameters the
total size of free space (frsz), the maximum size of memory immediately available (maxsz), the waiting task ID
(wtsk), and extended information (exinf).

wtsk indicates the ID of a task waiting for memory block allocation from this variable-size memory pool. If
multiple tasks are waiting for the variable-size memory pool, the ID of the task at the head of the queue is
returned. If there are no waiting tasks, wtsk = 0 is returned.

μT-Kernel 3.0 Specification 206 / 502

If the variable-size memory pool specified with tk_ref_mpl does not exist, error code E_NOEXS is returned.

μT-Kernel 3.0 Specification 207 / 502

4.7 Time Management Functions

Time management functions perform time-dependent processing. They include functions for system time
management, cyclic handlers, and alarm handlers.

The generic name used in the following for cyclic handlers and alarm handlers is time event handlers.

μT-Kernel 3.0 Specification 208 / 502

4.7.1 System Time Management

System time is the time which a system that runs μT-Kernel uses as timing reference for its operation. Func-
tions are provided for system clock setting and reference, and for referencing system operating time.

System time of μT-Kernel 3.0 starts from the epoch, January 1st 1970, 0:00:00 (UTC). It is represented either
in the elapsed milliseconds or in microseconds. System time is set using tk_set_utc or tk_set_utc_u. It can be
referenced by tk_get_utc or tk_get_utc_u.

Additional Notes
System time epoch in μT-Kernel 3.0 is 0:00:00, January 1, 1970 (UTC). The epoch, 0:00:00, January 1, 1970
(UTC), is the same epoch used by UNIX operating systems that conform to the POSIX standard.

μT-Kernel 3.0 Specification 209 / 502

4.7.1.1 tk_set_utc - Set System Time

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_utc(CONST SYSTIM *pk_tim);

Parameter

CONST SYSTIM* pk_tim Packet of Current Time Packet indicating current
time (ms)

pk_tim Detail:

W hi High 32 bits Higher 32 bits of current time
for setting the system time

UW lo Low 32 bits Lower 32 bits of current time
for setting the system time

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (pk_tim is invalid, or time setting is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_UTC Support of UNIX time

Description

Sets the system clock to the value specified in pk_tim.

System time is expressed as cumulative milliseconds from 0:00:00, January 1, 1970 (UTC).

Additional Notes

The relative time specified in RELTIM or TMO does not change even if the system clock is changed by calling
tk_set_utc during system operation. For example, if a timeout is set to elapse in 60 seconds and the system

μT-Kernel 3.0 Specification 210 / 502

clock is advanced by 60 seconds by tk_set_utc while waiting for the timeout, the timeout occurs not imme-
diately but 60 seconds after it was set. Instead, tk_set_utc changes the system time at which the timeout
occurs.

The time specified in pk_tim for tk_set_utc is not restricted to the resolution of the timer interrupt cycle. But
the time that is read later by tk_get_utc changes according to the time resolution of the timer interrupt cycle.
For example, in the system where the timer interrupt cycle is 10 milliseconds, if the time of 10005 (ms) is
specified in tk_set_utc, then the time obtained later by tk_get_utc changes as follows: 10005 (ms) → 10015
(ms) → 10025 (ms).

μT-Kernel 3.0 Specification 211 / 502

4.7.1.2 tk_set_utc_u - Set Time (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_utc_u(SYSTIM_U tim_u);

Parameter

SYSTIM_U tim_u Current Time Current time (in microseconds)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (tim_u is invalid, or time setting is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_UTC Support of UNIX time
TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tim_u in microseconds instead of the parameter pk_tim of tk_set_utc. In the
parameter tim_u of this API, system time is expressed as cumulative microseconds from 0:00:00, January 1,
1970 (UTC).

Whereas the parameter pk_tim of tk_set_utc is passed in packet using the structure SYSTIM, the parameter
tim_u of tk_set_utc_u is passed by value (not packet) using the 64-bit signed integer SYSTIM_U.

The specification of this system call is same as that of tk_set_utc, except the above-mentioned point. For more
details, see the description of tk_set_utc.

μT-Kernel 3.0 Specification 212 / 502

4.7.1.3 tk_set_tim - Set System Time (TRON)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_tim(CONST SYSTIM *pk_tim);

Parameter

CONST SYSTIM* pk_tim Packet of Current Time Packet indicating current
time (ms)

pk_tim Detail:

W hi High 32 bits Higher 32 bits of current time
for setting the system time

UW lo Low 32 bits Lower 32 bits of current time
for setting the system time

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (pk_tim is invalid, or time setting is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_TRONTIME Support of TRON time

Description

Sets the system clock to the value specified in pk_tim. In the parameter hi and lo of this API, system time is
expressed as cumulative milliseconds from 0:00:00 (GMT), January 1, 1985.

Additional Notes

tk_set_tim is very similar to tk_set_utc. However, it uses the time system with a different epoch. tk_set_tim is
an API to keep compatibility with legacy μT-Kernel or T-Kernel specifications.

μT-Kernel 3.0 Specification 213 / 502

4.7.1.4 tk_set_tim_u - Set Time (TRON, Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_tim_u(SYSTIM_U tim_u);

Parameter

SYSTIM_U tim_u Current Time Current time (in microseconds)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (tim_u is invalid, or time setting is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_TRONTIME Support of TRON time
TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tim_u in microseconds instead of the parameter pk_tim of tk_set_tim. In the pa-
rameter tim_u of this API, system time is expressed as cumulative microseconds from 0:00:00 (GMT), January
1, 1985.

Whereas the parameter pk_tim of tk_set_tim is passed in packet using the structure SYSTIM, the parameter
tim_u of tk_set_tim_u is passed by value (not packet) using the 64-bit signed integer SYSTIM_U.

The specification of this system call is same as that of tk_set_tim, except the above-mentioned point. For more
details, see the description of tk_set_tim.

Additional Notes

tk_set_tim_u is very similar to tk_set_utc_u. However, it uses the time system with a different epoch. tk_set_tim_u
is an API to keep compatibility with legacy μT-Kernel or T-Kernel specifications.

μT-Kernel 3.0 Specification 214 / 502

4.7.1.5 tk_get_utc - Get System Time

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_utc(SYSTIM *pk_tim);

Parameter

SYSTIM* pk_tim Packet of Current Time Pointer to the area to return the current
time (ms)

Return Parameter

ER ercd Error Code Error code

pk_tim Detail:

W hi High 32 bits Higher 32 bits of current time of the
system time

UW lo Low 32 bits Lower 32 bits of current time of the
system time

Error Code

E_OK Normal completion
E_PAR Parameter error (pk_tim is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_UTC Support of UNIX time

Description

Reads the current value of the system clock and returns in it pk_tim.

System time is expressed as cumulative milliseconds from 0:00:00, January 1, 1970 (UTC).

Additional Notes

The resolution of the current system time read by this API varies depending on the time resolution of the
timer interrupt interval (cycle). Hence, this API cannot be used to get the elapsed time that is shorter than

μT-Kernel 3.0 Specification 215 / 502

the timer interrupt interval (cycle). For more details, see the Additional Notes of tk_set_utc. To find out the
elapsed time shorter than the timer interrupt interval (cycle), use the return parameter ofs of tk_get_utc_u or
td_get_utc.

μT-Kernel 3.0 Specification 216 / 502

4.7.1.6 tk_get_utc_u - Get System Time (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_utc_u(SYSTIM_U *tim_u, UW *ofs);

Parameter

SYSTIM_U* tim_u Time Pointer to the area to return the
current time (in microseconds)

UW* ofs Offset Pointer to the area to return the
return parameter ofs

Return Parameter

ER ercd Error Code Error code
SYSTIM_U tim_u Time Current time (in microseconds)
UW ofs Offset Relative elapsed time from tim_u (in

nanoseconds)

Error Code

E_OK Normal completion
E_PAR Parameter error (invalid tim_u or ofs)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_UTC Support of UNIX time
TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tim_u in microseconds instead of the return parameter pk_tim of tk_get_utc.
System time is expressed as cumulative microseconds from 0:00:00 (UTC), January 1, 1970. It also includes
the return parameter ofs that returns the relative time in nanoseconds.

tim_u has the resolution of time interrupt interval (cycle), but even more precise time information is obtained
in ofs as the elapsed time from tim_u in nanoseconds. The resolution of ofs is implementation-dependent,
but generally is the resolution of hardware timer.

If ofs = NULL, the information of ofs is not stored.

The specification of this system call is same as that of tk_get_utc, except the above-mentioned point. In
addition, the specification of this system call is the same as that of td_get_utc, except that the data type of

μT-Kernel 3.0 Specification 217 / 502

tim_u is SYSTIM_U. For more details, see the description of tk_get_utc and td_get_utc.

μT-Kernel 3.0 Specification 218 / 502

4.7.1.7 tk_get_tim - Get System Time (TRON)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_tim(SYSTIM *pk_tim);

Parameter

SYSTIM* pk_tim Packet of Current Time Pointer to the area to return the current
time (ms)

Return Parameter

ER ercd Error Code Error code

pk_tim Detail:

W hi High 32 bits Higher 32 bits of current time of the
system time

UW lo Low 32 bits Lower 32 bits of current time of the
system time

Error Code

E_OK Normal completion
E_PAR Parameter error (pk_tim is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_TRONTIME Support of TRON time

Description

Reads the current value of the system clock and returns in it pk_tim. In the return parameter hi and lo of this
API, system time is expressed as cumulative milliseconds from 0:00:00 (GMT), January 1, 1985.

Additional Notes

The resolution of the current system time read by this API varies depending on the time resolution of the
timer interrupt interval (cycle). Hence, this API cannot be used to get the elapsed time that is shorter than

μT-Kernel 3.0 Specification 219 / 502

the timer interrupt interval (cycle). For more details, see the Additional Notes of tk_set_utc. To find out the
elapsed time shorter than the timer interrupt interval (cycle), use the return parameter ofs of tk_get_tim_u or
td_get_tim.

tk_get_tim is very similar to tk_get_utc. However, it uses the time system with a different epoch. tk_get_tim is
an API to keep compatibility with legacy μT-Kernel or T-Kernel specifications.

μT-Kernel 3.0 Specification 220 / 502

4.7.1.8 tk_get_tim_u - Get System Time (TRON, Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_tim_u(SYSTIM_U *tim_u, UW *ofs);

Parameter

SYSTIM_U* tim_u Time Pointer to the area to return the
current time (in microseconds)

UW* ofs Offset Pointer to the area to return the
return parameter ofs

Return Parameter

ER ercd Error Code Error code
SYSTIM_U tim_u Time Current time (in microseconds)
UW ofs Offset Relative elapsed time from tim_u (in

nanoseconds)

Error Code

E_OK Normal completion
E_PAR Parameter error (invalid tim_u or ofs)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_TRONTIME Support of TRON time
TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tim_u in microseconds instead of the return parameter pk_tim of tk_get_tim. In the
return parameter tim_u of this API, system time is expressed as cumulative microseconds from 0:00:00 (GMT),
January 1, 1985. It also includes the return parameter ofs that returns the relative time in nanoseconds.

tim_u has the resolution of time interrupt interval (cycle), but even more precise time information is obtained
in ofs as the elapsed time from tim_u in nanoseconds. The resolution of ofs is implementation-dependent,
but generally is the resolution of hardware timer.

If ofs = NULL, the information of ofs is not stored.

The specification of this system call is same as that of tk_get_tim, except the above-mentioned point. In
addition, the specification of this system call is the same as that of td_get_tim, except that the data type of

μT-Kernel 3.0 Specification 221 / 502

tim_u is SYSTIM_U. For more details, see the description of tk_get_tim and td_get_tim.

Additional Notes

tk_get_tim_u is very similar to tk_get_utc_u. However, it uses the time system with a different epoch. tk_get_tim_u
is an API to keep compatibility with legacy μT-Kernel or T-Kernel specifications.

μT-Kernel 3.0 Specification 222 / 502

4.7.1.9 tk_get_otm - Get Operating Time

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_otm(SYSTIM *pk_tim);

Parameter

SYSTIM* pk_tim Packet of Operating Time Pointer to the area to return the
operating time (ms)

Return Parameter

ER ercd Error Code Error code

pk_tim Detail:

W hi High 32 bits Higher 32 bits of the system operating
time

UW lo Low 32 bits Lower 32 bits of the system operating
time

Error Code

E_OK Normal completion
E_PAR Parameter error (pk_tim is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Gets the system operating time (up time).

System operating time, unlike system time, indicates the length of time elapsed linearly since the system was
started. It is not affected by clock settings made by tk_set_utc or tk_set_tim.

System operating time must have the same precision as system time.

μT-Kernel 3.0 Specification 223 / 502

4.7.1.10 tk_get_otm_u - Get Operating Time (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_otm_u(SYSTIM_U *tim_u, UW *ofs);

Parameter

SYSTIM_U* tim_u Time Pointer to the area to return the
operating time (in microseconds)

UW* ofs Offset Pointer to the area to return the
return parameter ofs

Return Parameter

ER ercd Error Code Error Codes
SYSTIM_U tim_u Time Operating time (in microseconds)
UW ofs Offset Relative elapsed time from tim_u (in

nanoseconds)

Error Code

E_OK Normal completion
E_PAR Parameter error (invalid tim_u or ofs)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tim_u in microseconds instead of the return parameter pk_tim of tk_get_otm. It
also includes the return parameter ofs that returns the relative time in nanoseconds.

tim_u has the resolution of time interrupt interval (cycle), but even more precise time information is obtained
in ofs as the elapsed time from tim_u in nanoseconds. The resolution of ofs is implementation-dependent,
but generally is the resolution of hardware timer.

If ofs = NULL is set, the information of ofs is not stored.

The specification of this system call is same as that of tk_get_otm, except the above-mentioned point. In
addition, the specification of this system call is the same as that of td_get_otm, except that the data type of
tim_u is SYSTIM_U. For more details, see the description of tk_get_otm and td_get_otm.

μT-Kernel 3.0 Specification 224 / 502

4.7.2 Cyclic Handler

A cyclic handler is a time event handler started at regular intervals. Cyclic handler functions are provided for
creating and deleting a cyclic handler, activating and deactivating a cyclic handler operation, and referencing
cyclic handler status. A cyclic handler is an object identified by an ID number. The ID number for the cyclic
handler is called a cyclic handler ID.

The time interval at which a cyclic handler is started (cycle time) and the cycle phase are specified for each
cyclic handler when it is created. When a cyclic handler operation is requested, T-Kernel determines the
time at which the cyclic handler should next be started based on the cycle time and cycle phase set for it.
When a cyclic handler is created, the time when it is to be started next is the time of its creation plus the cycle
phase. When the time comes to start a cyclic handler, exinf, containing extended information about the cyclic
handler, is passed to it as a starting parameter. The time when the cyclic handler is started plus its cycle time
becomes the next start time. Sometimes when a cyclic handler is activated, the next start time will be newly
set.

In principle the cycle phase of a cyclic handler is no longer than its cycle time. The behavior is implementation-
dependent when the cycle phase is made longer than the cycle time.

A cyclic handler has two activation states, active and inactive. While a cyclic handler is inactive, it is not
started even when its start time arrives, although calculation of the next start time does take place. When a
system call for activating a cyclic handler is called (tk_sta_cyc), the cyclic handler goes to active state, and
the next start time is decided if necessary. When a system call for deactivating a cyclic handler is called
(tk_stp_cyc), the cyclic handler goes to inactive state. Whether a cyclic handler upon creation is active or
inactive is decided by a cyclic handler attribute.

The cycle phase of a cyclic handler is a relative time specifying the first time the cyclic handler is to be
started, in relation to the time when the system call creating it was invoked. The cycle time of a cyclic handler
is likewise a relative time, specifying the next time the cyclic handler is to be started in relation to the time it
should have started (not the time it started). For this reason, the intervals between times the cyclic handler
is started will individually be shorter than the cycle time in some cases, but their average over a longer time
span will match the cycle time.

Additional Notes
Actual time resolution in μT-Kernel time management functions processing uses one that is specified by the
”timer interrupt interval” (TTimPeriod) in Section 5.6.2, “Standard System Configuration Information”. It also
means that a cyclic handler or an alarm handler is actually started at the time according to the time resolution
provided by the timer interrupt interval (TTimPeriod). For this reason, the cyclic handler is actually started at
the time of timer interrupt occurrence immediately after the time when the cyclic handler should be started.
A general μT-Kernel implementation checks if a cyclic handler or an alarm handler that is to be started within
the processing of timer interrupt exists, and then starts them as necessary.

μT-Kernel 3.0 Specification 225 / 502

4.7.2.1 tk_cre_cyc - Create Cyclic Handler

C Language Interface

#include <tk/tkernel.h>

ID cycid = tk_cre_cyc(CONST T_CCYC *pk_ccyc);

Parameter

CONST T_CCYC* pk_ccyc Packet to Create Cyclic
Handler

Cyclic handler definition
information

pk_ccyc Detail:

void* exinf Extended Information Extended information
ATR cycatr Cyclic Handler Attribute Cyclic handler attribute
FP cychdr Cyclic Handler Address Cyclic handler address
RELTIM cyctim Cycle Time Interval of cyclic start (ms)
RELTIM cycphs Cycle Phase Cycle phase (ms)
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID cycid Cyclic Handler ID Cyclic handler ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of cyclic handlers exceeds the system limit
E_RSATR Reserved attribute (cycatr is invalid or cannot be used)
E_PAR Parameter error (pk_ccyc, cychdr, cyctim, or cycphs is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

TK_SUPPORT_ASM Support for specifying TA_ASM for cyclic handler attribute
TK_SUPPORT_DSNAME Support for specifying TA_DSNAME for cyclic handler attribute

Description

Creates a cyclic handler, assigning to it a cyclic handler ID. This is performed by assigning a control block for
the generated cyclic handler.

A cyclic handler is a handler running at specified intervals as a task-independent portion.

μT-Kernel 3.0 Specification 226 / 502

exinf can be used freely by the user to set miscellaneous information about the created cyclic handler. The
information set in this parameter can be referenced by tk_ref_cyc. If a larger area is needed for indicating
user information, or if the information may need to be changed after the message buffer is created, this can
be done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

cycatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of cycatr is as follows.

cycatr := (TA_ASM || TA_HLNG) | [TA_STA] | [TA_PHS] | [TA_DSNAME]

TA_ASM The handler is written in assembly language
TA_HLNG The handler is written in high-level language
TA_STA Activate immediately upon cyclic handler creation
TA_PHS Save the cycle phase
TA_DSNAME Specifies DS object name

#define TA_ASM 0x00000000 /* assembly language program */
#define TA_HLNG 0x00000001 /* high -level language program */
#define TA_STA 0x00000002 /* activate cyclic handler */
#define TA_PHS 0x00000004 /* save cyclic handler cycle phase */
#define TA_DSNAME 0x00000040 /* DS object name */

cychdr specifies the cyclic handler start address, cyctim the cycle time, and cycphs the cycle phase.

When the TA_HLNG attribute is specified, the cyclic handler is started via a high-level language support routine.
The high-level language support routine takes care of saving and restoring register values. The cyclic handler
terminates by a simple return from a function. The cyclic handler takes the following format when the TA_HLNG
attribute is specified.

void cychdr(void *exinf)
{

/*
(processing)

*/

return; /* Exit cyclic handler */
}

The cyclic handler format when the TA_ASM attribute is specified is implementation-dependent, but exinfmust
be passed in a starting parameter.

cycphs indicates the length of time until the cyclic handler is initially started after being created by tk_cre_cyc.
Thereafter it is started periodically at the interval set in cyctim. If zero is specified in cycphs, the cyclic handler
starts immediately after it is created. Zero cannot be specified in cyctim.

The starting of the cyclic handler for the nth time occurs after at least cycphs + cyctim * (n - 1) time has elapsed
from the cyclic handler creation.

When TA_STA is specified, the cyclic handler goes to active state immediately on creation, and starts at the
intervals noted above. If TA_STA is not specified, the cycle time is calculated but the cyclic handler is not
actually started.

When TA_PHS is specified, then even if tk_sta_cyc is called activating the cyclic handler, the cycle time is not
reset, and the cycle time calculated as above from the time of cyclic handler creation continues to apply.
If TA_PHS is not specified, calling tk_sta_cyc resets the cycle time and the cyclic handler is started at cyctim
intervals measured from the time tk_sta_cyc was called. Note that the resetting of cycle time by tk_sta_cyc
does not affect cycphs. In this case the starting of the cyclic handler for the nth time occurs after at least cyctim
* n has elapsed from the calling of tk_sta_cyc.

μT-Kernel 3.0 Specification 227 / 502

Even if a system call is invoked from a cyclic handler and this causes the task in RUNNING state up to that
time to go to another state, with a different task going to RUNNING state, dispatching (task switching) does not
occur while the cyclic handler is running. Completion of execution by the cyclic handler has precedence even
if dispatching is necessary; only when the cyclic handler terminates does the dispatch take place. In other
words, a dispatch request that is generated while a cyclic handler is running is not processed immediately,
but is delayed until the cyclic handler terminates. This is called delayed dispatching.

A cyclic handler runs as a task-independent portion. As such, it is not possible to call in a cyclic handler a
system call that can enter WAITING state, or one that is intended for the invoking task.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

Additional Notes

Once a cyclic handler is defined, it continues to run at the specified cycles either until tk_stp_cyc is called to
deactivate it or until it is deleted. There is no parameter to specify the number of cycles in tk_cre_cyc.

When multiple time event handlers or interrupt handlers operate at the same time, it is implementation-
dependent whether to have them run serially (after one handler exits, another starts) or in a nested manner
(one handler operation is suspended, another runs, and when that one finishes the previous one resumes). In
either case, since time event handlers and interrupt handlers run as task-independent portion, the principle
of delayed dispatching applies.

If 0 is specified in cycphs, the first startup of the cyclic handler is executed immediately after this system call
execution. However, depending on the implementation, the first startup (execution) of the cyclic handler may
be executed while processing this system call, instead of immediately after the completion of this system call
execution. In such case, the interrupt disabled or other state in the cyclic handler may differ from the state at
the second and subsequent ordinary startups. In addition, when 0 is set to cycphs, the first startup of the cyclic
handler is executed without waiting for a timer interrupt, that is, regardless of the timer interrupt interval. This
behavior also differs from the second and subsequent startups of the cyclic handler, and from the startup of
the cyclic handler with cycphs set to other than 0.

μT-Kernel 3.0 Specification 228 / 502

4.7.2.2 tk_cre_cyc_u - Create Cyclic Handler (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ID cycid = tk_cre_cyc_u(CONST T_CCYC_U *pk_ccyc_u);

Parameter

CONST T_CCYC_U* pk_ccyc_u Packet to Create Cyclic
Handler

Cyclic handler definition
information

pk_ccyc_u Detail:

void* exinf Extended Information Extended information
ATR cycatr Cyclic Handler Attribute Cyclic handler attribute
FP cychdr Cyclic Handler Address Cyclic handler address
RELTIM_U cyctim_u Cycle Time Interval of cyclic start (in

microseconds)
RELTIM_U cycphs_u Cycle Phase Cycle phase (in microseconds)
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID cycid Cyclic Handler ID Cyclic handler ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of cyclic handlers exceeds the system limit
E_RSATR Reserved attribute (cycatr is invalid or cannot be used)
E_PAR Parameter error (pk_ccyc_u, cychdr, cyctim_u, or cycphs_u is invalid or cannot be

used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Additionally, the following service profile items are related to this system call.

TK_SUPPORT_ASM Support for specifying TA_ASM for cyclic handler attribute

μT-Kernel 3.0 Specification 229 / 502

TK_SUPPORT_DSNAME Support for specifying TA_DSNAME for cyclic handler attribute

Description

This system call takes 64-bit cyctim_u and cycphs_u in microseconds instead of the parameters cyctim and
cycphs of tk_cre_cyc.

The specification of this system call is same as that of tk_cre_cyc, except that the parameter is replaced with
cyctim_u and cycphs_u. For more details, see the description of tk_cre_cyc.

μT-Kernel 3.0 Specification 230 / 502

4.7.2.3 tk_del_cyc - Delete Cyclic Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_cyc(ID cycid);

Parameter

ID cycid Cyclic Handler ID Cyclic handler ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (cycid is invalid or cannot be used)
E_NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Deletes a cyclic handler.

μT-Kernel 3.0 Specification 231 / 502

4.7.2.4 tk_sta_cyc - Start Cyclic Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sta_cyc(ID cycid);

Parameter

ID cycid Cyclic Handler ID Cyclic handler ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (cycid is invalid or cannot be used)
E_NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

None.

Description

Activates a cyclic handler, putting it in active state.

If the TA_PHS attribute was specified, the cycle time of the cyclic handler is not reset when the cyclic handler
goes to active state. If it was already in active state when this system call was executed, it continues unchanged
in active state.

If the TA_PHS attribute was not specified, the cycle time is reset when the cyclic handler goes to active state. If
it was already in active state, it continues in active state but its cycle time is reset. In this case, the next time
the cyclic handler starts is after cyctim has elapsed.

μT-Kernel 3.0 Specification 232 / 502

4.7.2.5 tk_stp_cyc - Stop Cyclic Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_stp_cyc(ID cycid);

Parameter

ID cycid Cyclic Handler ID Cyclic handler ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (cycid is invalid or cannot be used)
E_NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

None.

Description

Deactivates a cyclic handler, putting it in inactive state. It the cyclic handler was already in inactive state, this
system call has no effect (no operation).

μT-Kernel 3.0 Specification 233 / 502

4.7.2.6 tk_ref_cyc - Reference Cyclic Handler Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_cyc(ID cycid, T_RCYC *pk_rcyc);

Parameter

ID cycid Cyclic Handler ID Cyclic handler ID
T_RCYC* pk_rcyc Packet to Return Cyclic

Handler Status
Pointer to the area to return the cyclic
handler status

Return Parameter

ER ercd Error Code Error code

pk_rcyc Detail:

void* exinf Extended Information Extended information
RELTIM lfttim Left Time Time remaining until the next handler

starts (ms)
UINT cycstat Cyclic Handler Status Cyclic handler activation state
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (cycid is invalid or cannot be used)
E_NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)
E_PAR Parameter error (invalid pk_rcyc)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

None.

Description

References the status of the cyclic handler specified in cycid, passing in return parameters the cyclic handler
activation state (cycstat), the time remaining until the next start (lfttim), and extended information (exinf).

The following information is returned in cycstat.

cycstat := (TCYC_STP | TCYC_STA)

μT-Kernel 3.0 Specification 234 / 502

#define TCYC_STP 0x00 /* cyclic handler is inactive */
#define TCYC_STA 0x01 /* cyclic handler is active */

lfttim returns the remaining time (milliseconds) until the next time when the cyclic handler is invoked. It
does not matter whether the cyclic handler is currently running or stopped.

exinf returns the extended information specified as a parameter when the cyclic handler is generated.exinf
is passed to the cyclic handler as a parameter.

If the cyclic handler specified in cycid does not exist for, error code E_NOEXS is returned.

The time remaining lfttim returned in the cyclic handler status information (T_RCYC) is a value rounded to
milliseconds. To know the value in microseconds, call tk_ref_cyc_u.

μT-Kernel 3.0 Specification 235 / 502

4.7.2.7 tk_ref_cyc_u - Reference Cyclic Handler Status (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_cyc_u(ID cycid, T_RCYC_U *pk_rcyc_u);

Parameter

ID cycid Cyclic Handler ID Cyclic handler ID
T_RCYC_U* pk_rcyc_u Packet to Return Cyclic

Handler Status
Pointer to the area to return the
cyclic handler status

Return Parameter

ER ercd Error Code Error code

pk_rcyc_u Detail:

void* exinf Extended Information Extended information
RELTIM_U lfttim_u Left Time Time remaining until the next

handler starts (in microseconds)
UINT cycstat Cyclic Handler Status Cyclic handler activation state
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (cycid is invalid or cannot be used)
E_NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)
E_PAR Parameter error (invalid pk_rcyc_u)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit lfttim_u in microseconds instead of the return parameter lfttim of tk_ref_cyc.

The specification of this system call is same as that of tk_ref_cyc, except that the return parameter is replaced
with lfttim_u. For more details, see the description of tk_ref_cyc.

μT-Kernel 3.0 Specification 236 / 502

4.7.3 Alarm Handler

An alarm handler is a time event handler that starts at a specified time. Functions are provided for creating and
deleting an alarm handler, activating and deactivating the alarm handler, and referencing the alarm handler
status. An alarm handler is an object identified by an ID number. The ID number for an alarm handler is
called an alarm handler ID.

The time at which an alarm handler starts (called the alarm time) can be set independently for each alarm
handler. When the alarm time arrives, exinf, containing extended information about the alarm handler, is
passed to it as a starting parameter.

After an alarm handler is created, initially it has no alarm time set and is in inactive state. The alarm time is
set when the alarm handler is activated by calling tk_sta_alm, as relative time from the time that system call
is executed. When tk_stp_alm is called deactivating the alarm handler, the alarm time setting is canceled.
Likewise, when an alarm time arrives and the alarm handler runs, the alarm time is canceled and the alarm
handler becomes inactive.

Additional Notes
An alarm handler is actually started at the time according to the time resolution provided by the timer interrupt
interval (TTimPeriod). For more details, see the additional notes for Section 4.7.2, “Cyclic Handler”.

μT-Kernel 3.0 Specification 237 / 502

4.7.3.1 tk_cre_alm - Create Alarm Handler

C Language Interface

#include <tk/tkernel.h>

ID almid = tk_cre_alm(CONST T_CALM *pk_calm);

Parameter

CONST T_CALM* pk_calm Packet to Create Alarm
Handler

Alarm handler definition
information

pk_calm Detail:

void* exinf Extended Information Extended information
ATR almatr Alarm Handler Attribute Alarm handler attributes
FP almhdr Alarm Handler Address Alarm handler address
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID almid Alarm Handler ID Alarm handler ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of alarm handlers exceeds the system limit
E_RSATR Reserved attribute (almatr is invalid or cannot be used)
E_PAR Parameter error (pk_calm or almhdr is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

TK_SUPPORT_ASM Support for specifying TA_ASM for alarm handler attribute
TK_SUPPORT_DSNAME Support for specifying TA_DSNAME for alarm handler attribute

Description

Creates an alarm handler, assigning to it an alarm handler ID. This is performed by assigning a control block
for the generated alarm handler.

An alarm handler is a handler running at the specified time as a task-independent portion.

exinf can be used freely by the user to set miscellaneous information about the created alarm handler. The
information set in this parameter can be referenced by tk_ref_alm. If a larger area is needed for indicating

μT-Kernel 3.0 Specification 238 / 502

user information, or if the information may need to be changed after the message buffer is created, this can
be done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

almatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of almatr is as follows.

almatr := (TA_ASM || TA_HLNG) | [TA_DSNAME]

TA_ASM The handler is written in assembly language
TA_HLNG The handler is written in high-level language
TA_DSNAME Specifies DS object name

#define TA_ASM 0x00000000 /* assembly language program */
#define TA_HLNG 0x00000001 /* high -level language program */
#define TA_DSNAME 0x00000040 /* DS object name */

almhdr specifies the alarm handler start address.

When the TA_HLNG attribute is specified, the alarm handler is started via a high-level language support routine.
The high-level language support routine takes care of saving and restoring register values. The alarm handler
terminates by a simple return from a function. The alarm handler takes the following format when the TA_HLNG
attribute is specified.

void almhdr(void *exinf)
{

/*
(processing)

*/

return; /* exit alarm handler */
}

The alarm handler format when the TA_ASM attribute is specified is implementation-dependent, but exinfmust
be passed in a starting parameter.

Even if a system call is invoked from an alarm handler and this causes the task in RUNNING state up to that
time to go to another state, with a different task going to RUNNING state, dispatching (task switching) does not
occur while the alarm handler is running. Completion of execution by the alarm handler has precedence even
if dispatching is necessary; only when the alarm handler terminates does the dispatch take place. In other
words, a dispatch request that is generated while an alarm handler is running is not processed immediately,
but is delayed until the alarm handler terminates. This is called delayed dispatching.

An alarm handler runs as a task-independent portion. As such, it is not possible to call in an alarm handler a
system call that can enter WAITING state, or one that is intended for the invoking task.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

Additional Notes

When multiple time event handlers or interrupt handlers operate at the same time, it is an implementation-
dependent whether to have them run serially (after one handler exits, another starts) or in a nested manner
(one handler operation is suspended, another runs, and when that one finishes the previous one resumes). In
either case, since time event handlers and interrupt handlers run as task-independent portion, the principle
of delayed dispatching applies.

μT-Kernel 3.0 Specification 239 / 502

4.7.3.2 tk_del_alm - Delete Alarm Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_alm(ID almid);

Parameter

ID almid Alarm Handler ID Alarm handler ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (almid is invalid or cannot be used)
E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Deletes an alarm handler.

μT-Kernel 3.0 Specification 240 / 502

4.7.3.3 tk_sta_alm - Start Alarm Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sta_alm(ID almid, RELTIM almtim);

Parameter

ID almid Alarm Handler ID Alarm handler ID
RELTIM almtim Alarm Time Alarm handler start relative time (ms)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (almid is invalid or cannot be used)
E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

None.

Description

Sets the alarm time of the alarm handler specified in almid to the time given in almtim, putting the alarm
handler in active state. almtim is specified as relative time from the time of calling tk_sta_alm. After the time
specified in almtim has elapsed, the alarm handler starts. If the alarm handler is already active when this
system call is invoked, the existing almtim setting is canceled and the alarm handler is activated anew with
the alarm time specified here.

If almtim = 0 is set, the alarm handler starts as soon as it is activated.

μT-Kernel 3.0 Specification 241 / 502

4.7.3.4 tk_sta_alm_u - Start Alarm Handler (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sta_alm_u(ID almid, RELTIM_U almtim_u);

Parameter

ID almid Alarm Handler ID Alarm handler ID
RELTIM_U almtim_u Alarm Time Alarm handler start relative time (in

microseconds)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (almid is invalid or cannot be used)
E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit almtim_u in microseconds instead of the parameter almtim of tk_sta_alm.

The specification of this system call is same as that of tk_sta_alm, except that the parameter is replaced with
almtim_u. For more details, see the description of tk_sta_alm.

μT-Kernel 3.0 Specification 242 / 502

4.7.3.5 tk_stp_alm - Stop Alarm Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_stp_alm(ID almid);

Parameter

ID almid Alarm Handler ID Alarm handler ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (almid is invalid or cannot be used)
E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

None.

Description

Cancels the alarm time of the alarm handler specified in almid, putting it in inactive state. It the cyclic handler
was already in inactive state, this system call has no effect (no operation).

μT-Kernel 3.0 Specification 243 / 502

4.7.3.6 tk_ref_alm - Reference Alarm Handler Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_alm(ID almid, T_RALM *pk_ralm);

Parameter

ID almid Alarm Handler ID Alarm handler ID
T_RALM* pk_ralm Packet to Return Alarm

Handler Status
Pointer to the area to return the alarm
handler status

Return Parameter

ER ercd Error Code Error code

pk_ralm Detail:

void* exinf Extended Information Extended information
RELTIM lfttim Left Time Time remaining until the handler starts

(ms)
UINT almstat Alarm Handler Status Alarm handler activation state
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (almid is invalid or cannot be used)
E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)
E_PAR Parameter error (invalid pk_ralm)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

None.

Description

References the status of the alarm handler specified in almid, passing in return parameters the time remaining
until the handler starts (lfttim), and extended information (exinf).

The following information is returned in almstat.

almstat:= (TALM_STP | TALM_STA)

μT-Kernel 3.0 Specification 244 / 502

#define TALM_STP 0x00 0x00 /* alarm handler is inactive */
#define TALM_STA 0x01 0x01 /* alarm handler is active */

If the alarm handler is active (TALM_STA), the relative time until the alarm handler is scheduled to be started
next time is returned to lfttim. This value is within the range almtim ≧ lfttim ≧ 0 specified with tk_sta_alm.
Since lfttim is decremented with each timer interrupt, lfttim = 0 means the alarm handler will start at the
next timer interrupt.

exinf returns the extended information specified as a parameter when the alarm handler is generated. exinf
is passed to the alarm handler as a parameter.

If the alarm handler is inactive (TALM_STP), lfttim is indeterminate.

If the alarm handler specified with tk_ref_alm in almid does not exist, error code E_NOEXS is returned.

The time remaining lfttim returned in the alarm handler status information (T_RALM) is a value rounded to
milliseconds. To know the value in microseconds, call tk_ref_alm_u.

μT-Kernel 3.0 Specification 245 / 502

4.7.3.7 tk_ref_alm_u - Reference Alarm Handler Status (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_alm_u(ID almid, T_RALM_U *pk_ralm_u);

Parameter

ID almid Alarm Handler ID Alarm handler ID
T_RALM_U* pk_ralm_u Packet to Return Alarm

Handler Status
Pointer to the area to return the
alarm handler status

Return Parameter

ER ercd Error Code Error code

pk_ralm_u Detail:

void* exinf Extended Information Extended information
RELTIM_U lfttim_u Left Time Time remaining until the handler

starts (in microseconds)
UINT almstat Alarm Handler Status Alarm handler activation state
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (almid is invalid or cannot be used)
E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)
E_PAR Parameter error (invalid pk_ralm_u)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit lfttim_u in microseconds instead of the return parameter lfttim of tk_ref_alm.

The specification of this system call is same as that of tk_ref_alm, except that the return parameter is replaced
with lfttim_u. For more details, see the description of tk_ref_alm.

μT-Kernel 3.0 Specification 246 / 502

4.8 Interrupt Management Functions

Interrupt management functions are for defining and manipulating handlers for external interrupts and CPU
exceptions.

An interrupt handler runs as a task-independent portion. System calls can be invoked in a task-independent
portion in the same way as in a task portion, but the following restriction applies to system call issuing in a
task-independent portion.

• A system call that implicitly specifies the invoking task, or one that may put the invoking task in WAITING
state cannot be issued. Error code E_CTX is returned in such cases.

During task-independent portion execution, task switching (dispatching) does not occur. If system call pro-
cessing results in a dispatch request, the dispatch is delayed until processing leaves the task-independent
portion. This is called delayed dispatching.

μT-Kernel 3.0 Specification 247 / 502

4.8.1 tk_def_int - Define Interrupt Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_def_int(UINT intno, CONST T_DINT *pk_dint);

Parameter

UINT intno Interrupt Number Interrupt number
CONST T_DINT* pk_dint Packet to Define Interrupt

Handler
Interrupt handler definition
information

pk_dint Detail:

ATR intatr Interrupt Handler Attribute Interrupt handler attribute
FP inthdr Interrupt Handler Address Interrupt handler address
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_RSATR Reserved attribute (intatr is invalid or cannot be used)
E_PAR Parameter error (intno, pk_dint, or inthdr is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

TK_SUPPORT_ASM Support for specifying TA_ASM for alarm handler attribute

Description

”Interrupts” include both external interrupts from devices and interrupts due to CPU exceptions.

Defines an interrupt handler for the interrupt number intno to enable use of the interrupt handler. This system
call maps the interrupt number specified by intno to the address and attributes of the interrupt handler.

intno is the number used to distinguish different interrupts. Its specific meaning is defined for each imple-
mentation, but generally the interrupt number used by the interrupt mechanism of the CPU hardware (such
as IRQ number) is used as it is, or any number that can be mapped to such number is used.

μT-Kernel 3.0 Specification 248 / 502

intatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of intatr is specified as follows.

intatr := (TA_ASM || TA_HLNG)

TA_ASM The handler is written in assembly language
TA_HLNG The handler is written in high-level language

#define TA_ASM 0x00000000 /* assembly language program */
#define TA_HLNG 0x00000001 /* high -level language program */

As a rule, the kernel is not involved in the starting of a TA_ASM attribute interrupt handler. When an interrupt
is raised, the interrupt handling function in the CPU hardware directly starts the interrupt handler defined by
this system call (depending on the implementation, processing by program may be included). Accordingly,
processing for saving and restoring registers used by the interrupt handler is necessary at the beginning and
end of the interrupt handler. An interrupt handler is terminated by execution of the tk_ret_int system call or
by the CPU interrupt return instruction (or an equivalent mechanism).

Support of a mechanism for return from an interrupt handler without using tk_ret_int and hence without
kernel intervention is mandatory. Note that if tk_ret_int is not used, delayed dispatching does not need to be
performed.

Support for return from an interrupt handler using tk_ret_int is also mandatory, and in this case delayed
dispatching must be performed.

When the TA_HLNG attribute is specified, the interrupt handler is started via a high-level language support
routine. The high-level language support routine takes care of saving and restoring register values. The
interrupt handler terminates by a return from a C language function. The interrupt handler takes the following
format when the TA_HLNG attribute is specified.

void inthdr(UINT intno)
{

/*
Interrupt Handling

*/

return; /* Exit interrupt handler */
}

The parameter intno passed to an interrupt handler is the interrupt number identifying the interrupt that was
raised, and is the same as that specified with tk_def_int. Depending on the implementation, other information
about the interrupt may be passed in addition to intno. If such information is used, it must be defined for each
implementation in the second parameter or subsequent parameters passed to the interrupt handler.

If the TA_HLNG attribute is specified, it is assumed that the CPU interrupt flag will be set to interrupts disabled
state from the time the interrupt is raised until the interrupt handler is called. In other words, as soon as
an interrupt is raised, multiple interrupts are disabled, and this state remains when the interrupt handler is
called. If multiple interrupts are to be allowed, the interrupt handler must include processing that handles
multiple interrupts by manipulating the CPU interrupt flag.

Also in the case of the TA_HLNG attribute, upon entry into the interrupt handler, issuing system call must be
possible. Note, however, that assuming standard provision of the functionality described above, extensions
are allowed such as adding a function for entering an interrupt handler with multiple interrupts enabled.

When the TA_ASM attribute is specified, the state upon entry into the interrupt handler shall be defined for each
implementation. Such matters as the stack and register status upon interrupt handler entry, whether system
calls can be made, the method of invoking system calls, and the method of returning from the interrupt handler
without kernel intervention must all be defined explicitly.

μT-Kernel 3.0 Specification 249 / 502

In the case of the TA_ASM attribute, depending on the implementation there may be cases where interrupt
handler execution is not considered to be a task-independent portion. In such a case the following points
need to be noted carefully.

• If interrupts are enabled, there is a possibility that task dispatching will occur.

• When a system call is invoked, it will be processed as having been called from a task portion or quasi-task
portion.

If a method is provided for performing some kind of operation in an interrupt handler to detected whether it
runs as task-independent portion, that method shall be announced for each implementation.

Even if a system call is invoked from an interrupt handler and this causes the task in RUNNING state up to that
time to go to another state, with a different task going to RUNNING state, dispatching (task switching) does not
occur while the interrupt handler is running. Completion of execution of the interrupt handler has precedence
even if dispatching is necessary; only when the interrupt handler terminates does the dispatch take place.
In other words, a dispatch request that is generated while an interrupt handler is running is not processed
immediately, but is delayed until the interrupt handler terminates. This is called delayed dispatching.

An interrupt handler runs as a task-independent portion. As such, it is not possible to call in an interrupt
handler a system call that can enter WAITING state, or one that is intended for the invoking task.

When pk_dint = NULL is set, a previously defined interrupt handler is canceled. When the handler definitions
are canceled, the default handler defined by the system is used.

It is possible to redefine an interrupt handler for an interrupt number for which a handler is already defined.
It is not necessary first to cancel the definition for that number. Defining a new handler for a intno already
having an interrupt handler defined does not return error.

Additional Notes

The various specifications governing the TA_ASM attribute are mainly concerned with realizing an interrupt
hook. For example, when an exception is raised due to illegal address access, ordinarily an interrupt handler
defined in a higher-level program detects this and performs the error processing; but in the case of debugging,
in place of error processing by a higher-level program, the default interrupt handler defined by the system may
perform the processing and starts a debugger. In this case, the interrupt handler defined by high-level program
hooks the default interrupt handler defined by the system. And, according to the situation, the handler either
passes the interrupt handling to a system program such as a debugger, or it just processes it for itself.

μT-Kernel 3.0 Specification 250 / 502

4.8.2 tk_ret_int - Return from Interrupt Handler

C Language Interface

#include <tk/tkernel.h>

void tk_ret_int(void);

Although this system call is defined in the form of a C language interface, it will not be called in this format if
a high-level language support routine is used.

Parameter

None.

Return Parameter

Does not return to the context issuing the system call.

Error Codes

The following kind of error may be detected, but no return is made to the context issuing the system call
even if the error is detected. For this reason the error code cannot be passed directly as a system call return
parameter. The behavior in case an error occurs is implementation-dependent.

E_CTX Context error (issued from other than an interrupt handler
(implementation-dependent error))

Valid Context

Task portion Quasi-task portion Task-independent portion
NO NO YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_ASM Support for specifying TA_ASM for interrupt handler attribute

Description

Exits from an interrupt handler.

System calls invoked from an interrupt handler do not result in dispatching while the handler is running;
instead, the dispatching is delayed until tk_ret_int is called ending the interrupt handler processing(delayed
dispatching). Accordingly, tk_ret_int results in the processing of all dispatch requests made while the interrupt
handler was running.

tk_ret_int is invoked only if the interrupt handler was defined specifying the TA_ASM attribute. In the case of
a TA_HLNG attribute interrupt handler, the functionality equivalent to tk_ret_int is executed implicitly in the
high-level language support routine, so tk_ret_int is not (must not be) called explicitly.

μT-Kernel 3.0 Specification 251 / 502

As a rule, the kernel is not involved in the starting of a TA_ASM attribute interrupt handler. When an interrupt
is raised, the defined interrupt handler is started directly by the CPU hardware interrupt processing function.
The saving and restoring of registers used by the interrupt handler must therefore be taken care of in the
interrupt handler.

For the same reason, the stack and register states at the time tk_ret_int is issued must be the same as those
at the time of entry into the interrupt handler. Because of this, in some cases function codes cannot be used
in tk_ret_int, in which case tk_ret_int can be implemented using a trap instruction of another vector separate
from that used for other system calls.

Additional Notes

tk_ret_int is a system call that does not return to the context from which it was called. Even if an error code
is returned when an error of some kind is detected, normally no error checking is performed in the context
from which the system call was invoked, leaving the possibility that the program will hang. For this reason
these system calls do not return even if error is detected.

Using an assembly language return-from-interrupt instruction instead of tk_ret_int to exit the interrupt handler
is possible if it is clear no dispatching will take place on return from the handler (the same task is guaranteed
to continue executing), or if there is no need for dispatching to take place.

Depending on the CPU architecture and method of implementing the kernel, it may be possible to perform
delayed dispatching even when an interrupt handler exits using an assembly language return-from-interrupt
instruction. In such cases, it is permissible for the assembly language return-from-interrupt instruction to be
interpreted as if it were a tk_ret_int system call.

Performing of E_CTX error checking when tk_ret_int is called from a time event handler is implementation-
dependent. Depending on implementation, control may return from a different type of handler immediately.

μT-Kernel 3.0 Specification 252 / 502

4.9 System Management Functions

System management functions sets and references system states. Functions are provided for rotating task
precedence in a queue, getting the ID of the task in RUNNING state, disabling and enabling task dispatching,
referencing context and system states, setting low-power mode, and referencing the T-Kernel version.

μT-Kernel 3.0 Specification 253 / 502

4.9.1 tk_rot_rdq - Rotate Ready Queue

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rot_rdq(PRI tskpri);

Parameter

PRI tskpri Task Priority Task priority

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (tskpri is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

None.

Description

Rotates the precedence among tasks having the priority specified in tskpri. This system call changes the
precedence of tasks in RUN or READY state having the specified priority, so that the task with the highest
precedence among those tasks is given the lowest precedence.

By setting tskpri = TPRI_RUN = 0, this system call rotates the precedence of tasks having the priority level of the
task currently in RUNNING state. When tk_rot_rdq is called from an ordinary task, it rotates the precedence
of tasks having the same priority as the invoking task. When calling from a cyclic handler or other task-
independent portion, it is also possible to call tk_rot_rdq (tskpri = TPRI_RUN).

Additional Notes

If there are no tasks in a run state having the specified priority, or only one such task, the system call completes
normally with no operation (no error code is returned).

When this system call is issued in dispatch enabled state, specifying as the priority either TPRI_RUN or the
current priority of the invoking task, the precedence of the invoking task will be the lowest among tasks of
the same priority. This system call can therefore be used to relinquish execution privilege.

μT-Kernel 3.0 Specification 254 / 502

In dispatch disabled state, the task with highest precedence among tasks of the same priority is not always
the currently executing task. The precedence of the invoking task will therefore not always become the lowest
among tasks having the same priority when the above method is used in dispatch disabled state.

Examples of tk_rot_rdq execution are given in Figure 4.5, “Precedence Before Issuing tk_rot_rdq” and Fig-
ure 4.6, “Precedence After Issuing tk_rot_rdq (tskpri = 2)”. When this system call is issued in the state
shown in Figure 4.5, “Precedence Before Issuing tk_rot_rdq” specifying tskpri = 2, the new precedence or-
der becomes that in Figure 4.6, “Precedence After Issuing tk_rot_rdq (tskpri = 2)”, and Task C becomes the
executing task.

Figure 4.5: Precedence Before Issuing tk_rot_rdq

Figure 4.6: Precedence After Issuing tk_rot_rdq (tskpri = 2)

μT-Kernel 3.0 Specification 255 / 502

4.9.2 tk_get_tid - Get Task Identifier

C Language Interface

#include <tk/tkernel.h>

ID tskid = tk_get_tid(void);

Parameter

None.

Return Parameter

ID tskid Task ID ID of the task in RUNNING state

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

None.

Description

Gets the ID number of the task currently in RUNNING state. Unless the task-independent portion is executing,
the current RUNNING state task will be the invoking task.

If there is no task currently in RUNNING state, 0 is returned.

Additional Notes

The task ID returned by tk_get_tid is identical to runtskid returned by tk_ref_sys.

μT-Kernel 3.0 Specification 256 / 502

4.9.3 tk_dis_dsp - Disable Dispatch

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_dis_dsp(void);

Parameter

None.

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_CTX Context error (issued from task-independent portion)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Disables task dispatching. Dispatch disabled state remains in effect until tk_ena_dsp is called enabling task
dispatching. While dispatching is disabled, the invoking task does not change from RUNNING state to READY
state or to WAITING state. External interrupts, however, are still enabled, so even in dispatch disabled state
an interrupt handler can be started. In dispatch disabled state, the running task can be preempted by an
interrupt handler, but not by another task.

The specific operations during dispatch disabled state are as follows.

• Even if a system call issued from an interrupt handler or by the task that called tk_dis_dsp results in a
task going to READY state with a higher priority than the task that called tk_dis_dsp, that task will not be
dispatched. Dispatching of the higher-priority task is delayed until dispatch disabled state ends.

• If the task that called tk_dis_dsp issues a system call that may cause the invoking task to be put in WAITING
state (e.g., tk_slp_tsk or tk_wai_sem), error code E_CTX is returned.

• When system status is referenced by tk_ref_sys, TSS_DDSP is returned in sysstat.

If tk_dis_dsp is called for a task already in dispatch disabled state, that state continues with no error code
returned. No matter how many times tk_dis_dsp is called, calling tk_ena_dsp just one time is enough to enable
dispatching again. The sophisticated operation when the pair of system calls tk_dis_dsp and tk_ena_dsp are
used in a nested manner must therefore be managed by the user as necessary.

μT-Kernel 3.0 Specification 257 / 502

Additional Notes

A task in RUNNING state cannot go to DORMANT state or NON-EXISTENT state while dispatching is disabled.
If tk_ext_tsk or tk_exd_tsk is called for a task in RUNNING state while interrupts or dispatching is disabled,
error code E_CTX is detected. Since, however, tk_ext_tsk and tk_exd_tsk are system calls that do not return
to their original context, such errors are not passed in return parameters by these system calls.

μT-Kernel 3.0 Specification 258 / 502

4.9.4 tk_ena_dsp - Enable Dispatch

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ena_dsp(void);

Parameter

None.

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_CTX Context error (issued from task-independent portion)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Enables task dispatching. This system call cancels the disabling of dispatching by the tk_dis_dsp system call.

If tk_ena_dsp is called from a task not in dispatch disabled state, the dispatch enabled state continues and no
error code is returned.

μT-Kernel 3.0 Specification 259 / 502

4.9.5 tk_ref_sys - Reference System Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_sys(T_RSYS *pk_rsys);

Parameter

T_RSYS* pk_rsys Packet to Refer System Status Pointer to the area to return the system
status

Return Parameter

ER ercd Error Code Error code

pk_rsys Detail:

UINT sysstat System State System State
ID runtskid Running Task ID ID of the task currently in RUNNING

state
ID schedtskid Scheduled Task ID ID of the task scheduled to run next
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_PAR Parameter error (invalid pk_rsys)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

None.

Description

Gets the current system execution status, passing in return parameters such information as the dispatch
disabled state and whether a task-independent portion is executing.

The following values are returned in sysstat.

sysstat := (TSS_TSK | [TSS_DDSP] | [TSS_DINT])
|| (TSS_QTSK | [TSS_DDSP] | [TSS_DINT])
|| (TSS_INDP)

μT-Kernel 3.0 Specification 260 / 502

TSS_TSK 0 Task portion is running
TSS_DDSP 1 Dispatch disabled
TSS_DINT 2 Interrupts disabled
TSS_INDP 4 Task-independent portion is running
TSS_QTSK 8 Quasi-task portion is running

The ID of the task currently in RUNNING state is returned in runtskid, while schedtskid indicates the ID of
the next task scheduled to go to RUNNING state. Normally runtskid = schedtskid, but this is not necessarily
true if, for example, a higher-priority task was wakened during dispatch disabled state. If there is no such task,
0 is returned.

It must be possible to invoke this system call from an interrupt handler or time event handler.

Additional Notes

Depending on the kernel implementation, the information returned by tk_ref_sys is not necessarily guaranteed
to be accurate at all times.

μT-Kernel 3.0 Specification 261 / 502

4.9.6 tk_set_pow - Set Power Mode

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_pow(UINT powmode);

Parameter

UINT powmode Power Mode Low-power mode

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (value that cannot be used in powmode)
E_QOVR Low-power mode disable count overflow
E_OBJ TPW_ENALOWPOW was requested with low-power mode disable count at 0

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_LOWPOWER Support of power management functions

Description

The following two power-saving functions are supported.

● Switching to low-power mode when the system is idle
When there are no tasks to be executed, the system switches to a low-power mode provided in hardware.

Low-power mode is a function for reducing power use during very short intervals, such as from one
timer interrupt to the next. This is accomplished, for example, by lowering the CPU clock frequency.
It does not require complicated mode-switching in software but is implemented mainly using hardware
functionality.

● Automatic power-off
When the operator performs no operations for a certain length of time, the system automatically cuts the
power and goes to suspended state. If there is a start request (interrupt, etc.) from a peripheral device
or if the operator turns on the power, the system resumes from the state when the power was cut.

μT-Kernel 3.0 Specification 262 / 502

In the case of a power supply problem such as low battery, the system likewise cuts the power and goes
to suspended state.

In suspended state, the power is cut to peripheral devices and circuits as well as to the CPU, but the
main memory contents are retained.

tk_set_pow sets the low-power mode.

powmode:= (TPW_DOSUSPEND || TPW_DISLOWPOW || TPW_ENALOWPOW)

#define TPW_DOSUSPEND 1 Suspended state
#define TPW_DISLOWPOW 2 Switching to low -power mode disabled
#define TPW_ENALOWPOW 3 Switching to low -power mode enabled (default)

• TPW_DOSUSPEND

Execution of all tasks and handlers is stopped, peripheral circuits (timers, interrupt controllers, etc.) are
stopped, and the power is cut (suspended). (off_pow is called.)

When power is turned back on, peripheral circuits are restarted, execution of all tasks and handlers is
resumed, operations resume from the point before power was cut, and the system call returns.

If for some reason the resume processing fails, normal startup processing (for reset) is performed and the
system boots fresh.

• TPW_DISLOWPOW

Switching to low-power mode in the dispatcher is disabled.(low_pow is not called.)

• TPW_ENALOWPOW

Switching to low-power mode in the dispatcher is enabled (low_pow is called).

The default at system startup is low-power mode enabled (TPW_ENALOWPOW).

Each time TPW_DISLOWPOW is specified, the request count is incremented. Low-power mode is enabled only
when TPW_ENALOWPOW is requested for as many times as TPW_DISLOWPOW was requested. The maximum request
count is implementation-dependent, but a count of at least 255 times must be possible.

Additional Notes

off_pow and low_pow are μT-Kernel/SM functions. For more details, see Section 5.5, “Power Management
Functions”.

μT-Kernel does not detect power supply problems or other factors for suspending the system. Actual suspen-
sion requires suspend processing in each of the peripheral devices (device drivers). The system is suspended
not by calling tk_set_pow directly but by use of the μT-Kernel/SM suspend function.

μT-Kernel 3.0 Specification 263 / 502

4.9.7 tk_ref_ver - Reference Version Information

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_ver(T_RVER *pk_rver);

Parameter

T_RVER* pk_rver Packet to Return Version
Information

Pointer to the area to return the version
information

Return Parameter

ER ercd Error Code Error code

pk_rver Detail:

UH maker Maker Code T-Kernel maker code
UH prid Product ID T-Kernel identification number
UH spver Specification Version Specification version
UH prver Product Version T-Kernel version
UH prno[4] Product Number T-Kernel products management

information

Error Code

E_OK Normal completion
E_PAR Parameter error (invalid pk_rver)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Gets information about the T-Kernel version in use, returning that information in the packet specified in
pk_rver. The following information can be obtained.

maker is the maker code assigned to the developer who has implemented the version of μT-Kernel. maker
format is described in [Figure 4.7, “maker Format”].

μT-Kernel 3.0 Specification 264 / 502

Figure 4.7: maker Format

prid is a number indicating the T-Kernel type. The prid field has the format shown in Figure 4.8, “prid For-
mat”.

Assignment of values to prid is left to the vendor who has implemented this version of μT-Kernel. Note,
however, that this is the only number distinguishing product types, and that vendors should give careful
thought to how they assign these numbers, doing so in a systematic way. In this way, the combination of
maker and prid becomes a unique identifier of the kernel version.

The reference source code of μT-Kernel is provided from TRON Forum, and its maker and prid are as follows.

maker = 0x0000
prid = 0x0000

Figure 4.8: prid Format

The upper 4 bits of spver give the TRON specification series. The lower 12 bits indicate the T-Kernel specifi-
cation version implemented. The spver field has the format shown in Figure 4.9, “spver Format”.

If, for example, a product conforms to the μT-Kernel specification Ver 3.01.xx, spver is as follows.

MAGIC = 0x6 (μT-Kernel)
SpecVer = 0x301 (Ver 3.01)
spver = 0x6301

If a product implements the draft version of μT-Kernel specification, that is,Ver 3.B0.xx draft specification,
spver is as follows.

MAGIC = 0x6 (μT-Kernel)
SpecVer = 0x3B0 (Ver 3.B0)
spver = 0x63B0

Figure 4.9: spver Format

MAGIC:
Type of OS specification

μT-Kernel 3.0 Specification 265 / 502

0x0 TRON common (TAD, etc.)
0x1 reserved
0x2 reserved
0x3 reserved
0x4 reserved
0x5 reserved
0x6 μT-Kernel
0x7 T-Kernel

SpecVer:
The version of the specification that the kernel complies with. This is given as a three-digit packed-format
BCD code. In the case of a draft version, the letter A, B, or C may appear in the second digit. In this case
the corresponding hexadecimal form of A, B, or C is inserted.

prver is the version number of the T-Kernel implementation. The specific values assigned to prver are left to
the T-Kernel implementing vendor to decide.

prno is a return parameter for use in indicating T-Kernel product management information, product number
or the like. The specific meaning of values set in prno is left to the T-Kernel implementing vendor to decide.

Additional Notes

The format of the packet and structure members for getting version information is mostly uniform across each
version of T-Kernel or μT-Kernel specification.

The value obtained by tk_ref_ver in SpecVer is the first three digits of the specification version number. The
numbers after that indicate minor revisions such as those issued to correct misprints and the like, and are not
obtained by tk_ref_ver. For the purpose of matching to the specification contents, the first three numbers of
the specification version are sufficient.

A kernel implementing a draft version may have A, B, or C as the second number of SpecVer. It must be noted
that in such cases the specification order of release may not correspond exactly to higher and lower SpecVer
values. For example, specifications may be released in the following order: Ver 2.A1 → Ver 2.A2 → Ver 2.B1
→ Ver 2.C1 → Ver 2.00 → Ver 2.01... In this example, when going from Ver 2.Cx to Ver 2.00, SpecVer goes
from a higher to a lower value.

μT-Kernel 3.0 Specification 266 / 502

4.10 Subsystem Management Functions

Subsystem management functions extends the functions of μT-Kernel itself by adding a user-defined function
called ”subsystem” to the kernel in order to implement middleware and others running on the μT-Kernel.
Some functions provided by μT-Kernel/SM are also implemented by utilizing the subsystem management
functions.

A subsystem consists of extended SVC handlers to execute user-defined system calls (called ”extended
SVCs”), a break function that performs the required processing when any exception occurs, and an event
handling function that performs the required processing when any event is raised from devices, etc. (Fig-
ure 4.10, “μT-Kernel Subsystems”)

Figure 4.10: μT-Kernel Subsystems

The extended SVC handler directly accepts requests from applications and others. A break function and event
processing function are so-called callback type functions and accept requests from the kernel.

Additional Notes
Generally speaking, upper layer middleware including the process management functions and the file man-
agement functions are also implemented by utilizing the subsystem management functions. Other examples
of middleware that are implemented by utilizing the subsystem management functions include TCP/IP man-
ager, USB manager, and PC card manager.
Though subsystem management functions are meant to allow users to add custom system calls (SVC: Super-
Visor Calls) as the primary purpose, they can be used to build complex and advanced middleware through
not only the addition of just user-defined system calls but also through provision of exception processing
functions to handle the exceptions, which are required for the added system calls.
In addition to the subsystem management functions, μT-Kernel also provides the device driver functions in
order to extend itself. Both subsystems and device drivers are function modules independent from μT-Kernel
itself. They can be used by loading their corresponding binary programs and then calling them from a task
on μT-Kernel. Both run at the protection level 0. While API is limited to using open/close and read/write
type when calling a device driver, API for calling a subsystem can be defined without any restriction.
Subsystems are identified by subsystem IDs (ssid), more than one subsystem can be defined and used at the
same time. One subsystem can be called and used from within another subsystem.

μT-Kernel 3.0 Specification 267 / 502

4.10.1 tk_def_ssy - Define Subsystem

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_def_ssy(ID ssid, CONST T_DSSY *pk_dssy);

Parameter

ID ssid Subsystem ID Subsystem ID
CONST T_DSSY* pk_dssy Packet to Define

Subsystem
Subsystem definition information

pk_dssy Detail:

ATR ssyatr Subsystem Attributes Subsystem attributes
PRI ssypri Subsystem Priority Subsystem priority
FP svchdr Extended SVC Handler

Address
Extended SVC handler address

FP breakfn Break Function Address Break function address
FP eventfn Event Handling Function

Address
Event handling function address

(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (ssid is invalid or cannot be used)
E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_RSATR Reserved attribute (ssyatr is invalid or cannot be used)
E_PAR Parameter error (pk_dssy is invalid or cannot be used)
E_OBJ ssid is already defined (when pk_dssy ≠ NULL)
E_NOEXS ssid is not defined (when pk_dssy = NULL)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_SUBSYSTEM Support of subsystem management functions

μT-Kernel 3.0 Specification 268 / 502

When the service profile items below is set to be effective, subsystem priority (ssypri) can be specified.

TK_SUPPORT_SSYEVENT Support of event processing of subsystems

Only when the service profile items below are set to be effective, break function can be specified.

TK_SUPPORT_TASKEXCEPTION Support of task exception handling functions

Description

Defines subsystem specified in ssid.

One subsystem ID must be assigned to one subsystem without overlapping with other subsystems. The kernel
does not have a function for assigning subsystem IDs automatically.

Subsystem IDs 1 to 9 are reserved for μT-Kernel use. 10 to 255 are numbers used by middleware, etc.
The maximum usable subsystem ID value is implementation-dependent and may be lower than 255 in some
implementations.

ssyatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute in ssyatr are not assigned in this version, and no system attributes are used.

ssypri indicates the subsystem priority. The startup function, cleanup function, and event handling function
are called in order of priority. The calling order is undefined when these subsystems have the same priority.
Subsystem priority 1 is the highest priority, with larger numbers indicating lower priorities. The range of
priorities that can be specified is implementation-dependent, but it must be possible to assign at least priorities
1 to 16.

NULL can be specified in breakfn and eventfn, in which case the corresponding function will not be called.

Specifying pk_dssy = NULL deletes a subsystem definition.

• Extended SVC handler

An extended SVC handler accepts requests from applications and other programs as an application pro-
gramming interface (API) for a subsystem. It can be called in the same way as an ordinary system call, and
is normally invoked using a trap instruction or the like.

The format of an extended SVC handler is as follows.

INT svchdr(void *pk_para , FN fncd)
{

/*
branching by fncd

*/

return retcode; /* exit extended SVC handler */
}

fncd is a function code. The lower 8 bits of the instruction code are the subsystem ID. The remaining higher
bits can be used in any way by the subsystem. Ordinarily they are used as a function code inside the
subsystem. A function code must be a positive value, so the most significant bit is always 0.

pk_para points to a packet of parameters passed to this system call. The packet format can be decided by
the subsystem. Generally a format like the stack passed to a C language function is used, which in many
cases is the same format as a C language structure.

The return code passed from an extended SVC handler is passed to the caller transparently as the function
return code. As a rule, negative values are error codes and 0 or positive values are the return code for
normal completion. If an extended SVC call fails for some reason, the error code (negative value) set by
T-Kernel is returned to the caller without invoking the extended SVC handler, so it is best to avoid confusion
with these values.

μT-Kernel 3.0 Specification 269 / 502

The format by which an extended SVC is called is dependent on the kernel implementation. As a subsystem
API, however, it must be specified in a C language function format independent of the kernel implementa-
tion. The subsystem must provide an interface library for converting from the C language function format
to the kernel-dependent extended SVC calling format.

An extended SVC handler runs as a quasi-task portion.

It can be called from a task-independent portion, and in this case the extended SVC handler also runs as a
task-independent portion.

• Break function

A break function is a function called when a task exception is raised for a task while an extended SVC
handler is executing.

When a break function is called, the processing by the extended SVC handler running at the time the task
exception was raised must be stopped promptly and control must be returned from the extended SVC han-
dler to its caller. The role of a break function is to abort the processing of the currently running extended
SVC handler.

The format of a break function is as follows.

void breakfn(ID tskid)
{

/*
stop the running extended SVC handler

*/
}

tskid is the ID of the task in which the task exception was raised.

A break function is called when a task exception is raised by tk_ras_tex. If extended SVC handler calls are
nested, then when the nesting level of the extended SVC handler is decreased by the return from the latest
extended SVC handler, the break function corresponding to the former extended SVC handler to which the
control will be returned next, is called.

A break function is called only once for one extended SVC handler per one task exception.

If another nested extended SVC call is made while a task exception is raised, no break function is called for
the called extended SVC handler.

A break function runs as a quasi-task portion. Its requesting task is identified as follows: If a break function
is called by tk_ras_tex, it runs as a quasi-task portion of the task that issued tk_ras_tex. On the other hand,
when the nesting level of extended SVC handler is decreased, the break function runs as a quasi-task portion
of the task that raised the task exception (the task running the extended SVC handler). This means that the
task executing the break function may be different from the task executing the extended SVC handler. In
such a case, the break function and extended SVC handler run concurrently as controlled by task scheduling.

It is thus conceivable that the extended SVC handler will return to its caller before the break function
finished executing, but in that case the extended SVC handler waits at the point right before returning, until
the break function completes. How this waiting state maps to the task state transitions is implementation-
dependent, but preferably it should remain in READY state (a READY state that does not go to RUNNING
state). The precedence of a task may change while it is waiting for a break function to complete, but how
task precedence is treated is implementation-dependent.

Similarly, an extended SVC handler cannot call an extended SVC until break function execution completes.

In other words, during the time from the raising of a task interrupt until the break function completes, the
affected task must stay in the extended SVC handler that was executing at the time of the task exception.

In the case where the requesting task of the break function differs from that of the extended SVC handler,
that is, where the break function and the extended SVC handler run in different task contexts, the task
priority of the break function is raised to the same as that of the extended SVC handler only while the break
handler is executing if the former is lower than the latter. On the other hand, if the break function task
priority is the same as or higher than that of the extended SVC handler, the priority does not change. The
priority that gets changed is the current priority; the base priority stays the same.

μT-Kernel 3.0 Specification 270 / 502

The change in priority occurs only immediately before entry into the break function; any changes after
that of the extended SVC handler task priority are not followed by further changes in priority of the break
function task. In no case does a change in the break function priority while a break function is running
results in a priority change in the extended SVC handler task. At the same time, there is no restriction on
priority changes due to a running break function.

When the break function completes, the current priority of its task reverts to base priority. If a mutex was
locked, however, the priority reverts to that as adjusted by the mutex. (In other words, the ability is provided
to adjust the current priority at the entry and exit of the break function only; other than that, the priority is
the same as when an ordinary task is running.)

• Event handling function

An event handling function is called by issuing the tk_evt_ssy system call.

It processes various requests made to a subsystem.

Note that it has to process all requests for all subsystems. If processing is not required, it can simply return
E_OK without performing any operation.

The format of an event handling function is as follows.

ER eventfn(INT evttyp , INT info)
{

/*
event processing

*/

return ercd;
}

evttyp indicates the request type and info is a parameter that can be used freely. These parameters are
specified in tk_evt_ssy.

If processing completes normally, E_OK is passed in the return code; otherwise an error code (negative
value) is returned.

The following event types evttyp are defined. For more details, see Section 5.2, “Device Management Func-
tions”.

#define TSEVT_SUSPEND_BEGIN 1 /* before suspending device */
#define TSEVT_SUSPEND_DONE 2 /* after suspending device */
#define TSEVT_RESUME_BEGIN 3 /* before resuming device */
#define TSEVT_RESUME_DONE 4 /* after resuming device */
#define TSEVT_DEVICE_REGIST 5 /* device registration notice */
#define TSEVT_DEVICE_DELETE 6 /* device deletion notice */

An event handling function runs as a quasi-task portion of the task that issued tk_evt_ssy.

Additional Notes

Extended SVC handlers as well as break functions and event handling functions all have the equivalent of the
TA_HLNG attribute only. There is no means of specifying the TA_ASM attribute.

It is possible to issue a system call that enters WAITING state in the extended SVC handler, but in that case
the program must be designed so that it can be stopped by calling a break function. The specific processing
flow is as follows: If tk_ras_tex is issued for the caller task while an extended SVC handler is executing, it
is necessary to stop the running extended SVC handler as soon as possible and return a stop error to the
caller task. For this purpose the break function is used. In order to stop the running extended SVC handler
immediately, the break function must forcibly release the WAITING state, even if the system call is in WAITING
state during processing the extended SVC handler. For this purpose, the tk_dis_wai system call is generally
used. tk_dis_wai can prevent the system call from entering WAITING state until the control returns from the
extended SVC handler to the caller task, but the implementor should also make it possible to stop the program

μT-Kernel 3.0 Specification 271 / 502

of the extended SVC handler by calling a break function. For example, leaving from WAITING state with the
error code E_DISWAI can mean that the execution is stopped by a break function. So it is best to stop the
extended SVC handler immediately and return a stop error to the caller task, without continuing to execute
the subsequent processing.

An extended SVC handler may be called concurrently by multiple tasks. If the tasks share same resources,
the mutual exclusion control must be performed in the extended SVC handler.

Porting Guideline

Note that, in an environment where INT data type is 16 bits, part of function code that can be used for
subsystem function code is only 7 bits wide (0-127), and care must be taken.

μT-Kernel 3.0 Specification 272 / 502

4.10.2 tk_evt_ssy - Call Event Function

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_evt_ssy(ID ssid, INT evttyp, ID resid, INT info);

Parameter

ID ssid Subsystem ID Subsystem ID
INT evttyp Event Type Event request type
INT info Information Any parameter

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (ssid is invalid or cannot be used)
E_NOEXS Object does not exist (the subsystem specified in ssid is not defined)
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)
Other Error code returned by the event handling function

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_SUBSYSTEM Support of subsystem management functions
TK_SUPPORT_SSYEVENT Support of event processing of subsystems

Description

Calls the event handling function of the subsystem specified in ssid.

Specifying ssid = 0 makes the system call applied to all currently defined subsystems. In this case the event
handling function of each subsystem is called in sequence.

When evttyp is an odd number:
Calls subsystems in descending order of priority.

When evttyp is an even number:
Calls subsystems in ascending order of priority.

μT-Kernel 3.0 Specification 273 / 502

The calling order is undefined wheren these subsystems have the same priority.

If this system call is issued for a subsystem with no event handling function defined, the function is simply
not called; no error results.

If the event handling function returns an error, the error code is passed transparently in the system call
return code. When ssid = 0 and an event handler returns an error, the event handling functions of all other
subsystems continue to be called. In the system call return code, only one error code is returned even if
more than one event handling function returned an error. It is not possible to know which subsystem’s event
handling function returned the error.

If a task exception is raised for the task that called tk_evt_ssy, during the execution of event handling function,
the task exception is held until the event handling function completes its processing.

Additional Notes

An example of using an event handling function is to perform the suspend/resume processing for the power
management functions. Specifically, when the system enters the power-off state (device suspended state) due
to power failure or other reason, it notifies each subsystem of its transition to suspended state. Then the event
handling function of each subsystem is called to perform the appropriate processing for it. In μT-Kernel/SM,
tk_evt_ssy is executed for this purpose during the processing of tk_sus_dev. The event handling function of
each subsystem performs any necessary operations before going to suspended state, such as saving the data.
On the other hand, when the system returns (resumes) from the suspended state due to power on or other
reason, it notifies each subsystem of its return from suspended state. Then the event handling function of each
subsystem is called again to perform the appropriate processing for it. For more details, see the description
of tk_sus_dev.

For another example, when a new device is registered by tk_def_dev, the system notifies each subsystem of the
registration, and the event handling function of each subsystem is called to perform the appropriate processing
for it. In μT-Kernel/SM, tk_evt_ssy is executed for this purpose during the processing of tk_def_dev.

Porting Guideline

Note that info is INT type, and its value range is implementation-dependent, so care must be taken.

μT-Kernel 3.0 Specification 274 / 502

4.10.3 tk_ref_ssy - Reference Subsystem Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_ssy(ID ssid, T_RSSY *pk_rssy);

Parameter

ID ssid Subsystem ID Subsystem ID
T_RSSY* pk_rssy Packet to Return Subsystem Status Pointer to the area to return the

subsystem definition information

Return Parameter

ER ercd Error Code Error code

pk_rssy Detail:

PRI ssypri Subsystem Priority Subsystem priority
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (ssid is invalid or cannot be used)
E_NOEXS Object does not exist (the subsystem specified in ssid is not defined)
E_PAR Parameter error (invalid pk_rssy)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_SUBSYSTEM Support of subsystem management functions

When the service profile items below is set to be effective, subsystem priority (ssypri) can be acquired.

TK_SUPPORT_SSYEVENT Support of event processing of subsystems

Description

References information about the subsystem specified in ssid.

μT-Kernel 3.0 Specification 275 / 502

ssypri returns the subsystem priority specified in tk_def_ssy.

If the subsystem specified in ssid is not defined, E_NOEXS is returned.

μT-Kernel 3.0 Specification 276 / 502

Chapter 5

μT-Kernel/SM Functions

This chapter describes details of the functions provided by μT-Kernel/SM (System Manager).

Overall Note and Supplement

• There are two types of API names that are defined in μT-Kernel/SM specification: ones beginning with
’tk_’ and others. It is generally assumed that APIs with a name beginning with ’tk_’ are implemented using
extended SVC (a Subsystem Management Function), and other APIs are implemented as library functions
(including in-line functions) or macros of the C language. However, μT-Kernel specification does not define
the implementation of these APIs. So the developers are free to adopt different implementation methods.
API implemented by libraries and macros may call extended SVCs or system calls indirectly.

• Error codes such as E_PAR, E_MACV, and E_NOMEM that can be returned in many situations are not de-
scribed here always unless there is some special reason for doing so.

• Except where otherwise noted, extended SVC and libraries of μT-Kernel/SM cannot be called from a task-
independent portion and while dispatching and interrupts are disabled. There may be some limitations,
however, imposed by particular implementations (E_CTX).

• Extended SVC and libraries of μT-Kernel/SM cannot be invoked from a lower protection level than that at
which T-Kernel/OS system calls can be invoked (lower than TSVCLimit)(E_OACV).

• Extended SVC and libraries of μT-Kernel/SM are reentrant except when a special explanation is given.
Note that some functions perform mutual exclusion internally.

μT-Kernel 3.0 Specification 277 / 502

5.1 System Memory Management Functions

The system memory management functions manage all the memory (system memory) allocated dynamically
by μT-Kernel. This includes memory used internally by μT-Kernel as well as task stacks, message buffers,
and memory pools.

System memory management functions include memory allocation libraries that manage memory through
subdividing system memory into smaller blocks.

The system memory management functions are for use not only within μT-Kernel but also used by applica-
tions, subsystems, and device drivers.

μT-Kernel 3.0 Specification 278 / 502

5.1.1 Memory Allocation Library Functions

Memory allocation library provides functions equivalent to malloc/calloc/realloc/free provided by C stan-
dard library.

These memories are all allocated as memory with a protection level specified in TSVCLimit.

μT-Kernel 3.0 Specification 279 / 502

5.1.1.1 Kmalloc - Allocate Memory

C Language Interface

#include <tk/tkernel.h>

void* Kmalloc(size_t size);

Parameter

size_t size Size Memory size to be allocated (in bytes)

Return Parameter

void* addr Memory Start Address Start address of the allocated memory

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_MEMLIB Support of memory allocation library

Description

Allocates the memory of bytes specified in size and returns the start address of the allocated memory in addr.

When the specified size of memory cannot be allocated or 0 is specified in size, NULL is returned in addr.

APIs in the memory allocation library, including Kmalloc, cannot be called from a task-independent portion
and while dispatch or interrupt is disabled. Such a call may lead to an undefined behavior including possible
system failure, and the caller is responsible for guaranteeing the state on the call.

Additional Notes

Any value can be specified in size. Note that a larger memory size than the number of bytes specified in size
may be allocated internally due to allocating the management space, aligning the allocated memory address,
or other reasons. For example, when the implementation specifies that the least allocatable memory size is
16 bytes and the alignment is an 8-byte unit, 16-byte memory is allocated internally even if a value less than
16 bytes is specified in size. Similarly, 24-byte memory is allocated even if 20 bytes is specified in size.

μT-Kernel 3.0 Specification 280 / 502

5.1.1.2 Kcalloc - Allocate Memory and Clear

C Language Interface

#include <tk/tkernel.h>

void* Kcalloc(size_t nmemb, size_t size);

Parameter

size_t nmemb Number of Memory Blocks Number of memory blocks to be
allocated

size_t size Size Memory block size to be allocated (in
bytes)

Return Parameter

void* addr Memory Start Address Start address of the allocated memory

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_MEMLIB Support of memory allocation library

Description

Allocates the specified number (nmemb) of contiguous memory blocks of the specified bytes (size), clears them
with 0, then returns the start address of them in addr. This memory allocation operation is identical to allo-
cating one memory block of the number of size * nmemb bytes.

When the specified number of memory blocks cannot be allocated or 0 is specified in nmemb or size, NULL is
returned in addr.

APIs in the memory allocation libraries, including Kcalloc, cannot be called from a task-independent portion
and while dispatch or interrupt is disabled. Such a call may lead to an undefined behavior including possible
system failure, and the caller is responsible for guaranteeing the state on the call.

Additional Notes

A larger memory size than the number of size * nmemb bytes may be allocated internally. For more details, see
the additional note for Kmalloc.

μT-Kernel 3.0 Specification 281 / 502

5.1.1.3 Krealloc - Reallocate Memory

C Language Interface

#include <tk/tkernel.h>

void* Krealloc(void *ptr, size_t size);

Parameter

void* ptr Pointer to Memory Memory address to be reallocated
size_t size Size Reallocated memory size (in bytes)

Return Parameter

void* addr Memory Start Address Start address of the reallocated memory

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_MEMLIB Support of memory allocation library

Description

Changes the size of the previously allocated memory specified in ptr to the size specified in size. At that time,
reallocates the memory and returns the start address of the reallocated memory in addr.

Generally, addr results in different value from ptr because the memory start address is moved by reallocating
the memory with resizing. The content of the reallocated memory is retained. To do so, the memory content
is copied during the Krealloc processing. The memory that becomes free by reallocation will be released.

The start address of the memory allocated previously by Kmalloc, Kcalloc, or Krealloc must be specified in
ptr. The caller must guarantee the validity of ptr.

If NULL is specified in ptr, only the new memory allocation is performed. This operation is identical to Kmalloc.

When the specified size of memory cannot be reallocated or 0 is specified in size, NULL is returned in addr.
In this case, the memory specified by ptr is only released if a value other than NULL is specified in ptr. This
operation is identical to Kfree.

APIs in the memory allocation library, including Krealloc, cannot be called from a task-independent portion
and while dispatch or interrupt is disabled. Such a call may lead to an undefined behavior including possible
system failure, and the caller is responsible for guaranteeing the state on the call.

μT-Kernel 3.0 Specification 282 / 502

Additional Notes

The memory address returned in addr may be the same as ptr in some cases, for example, when the memory
size becomes smaller than before by reallocation or when the reallocation is performed without moving the
memory start address because an unallocated memory area was around the memory specified in ptr.

A larger memory size than the number of bytes specified in sizemay be allocated internally. For more details,
see the additional note for Kmalloc.

μT-Kernel 3.0 Specification 283 / 502

5.1.1.4 Kfree - Release Memory

C Language Interface

#include <tk/tkernel.h>

void Kfree(void *ptr);

Parameter

void* ptr Pointer to Memory Start address of memory to be released

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_MEMLIB Support of memory allocation library

Description

Releases the memory specified in ptr.

The start address of the memory allocated previously by Kmalloc, Kcalloc, or Krealloc must be specified in
ptr. The caller must guarantee the validity of ptr.

APIs in the memory allocation library, including Kfree, cannot be called from a task-independent portion and
while dispatch or interrupt is disabled. Such a call may lead to an undefined behavior including possible
system failure, and the caller is responsible for guaranteeing the state on the call.

μT-Kernel 3.0 Specification 284 / 502

5.2 Device Management Functions

Device management functions manage device drivers running on μT-Kernel.

A device driver is a program that is implemented independent from μT-Kernel itself to control a hardware
device or perform I/O processing with the hardware device. Since the difference of specifications among
individual devices is absorbed by the device driver when an application or middleware operates a device or
performs I/O processing with the device via the device driver, the application or middleware can enhance its
hardware independence and compatibility.

Device management functions include a function to define a device driver, or to register the device driver to
μT-Kernel, and a function to use the registered device driver from an application or middleware.

While this registration of device drivers is mostly performed in the initialization at system startup, it can also
be performed dynamically during the normal operation of the system. A device driver is registered in the
device registration information (ddev) that is one of parameters for the API, tk_def_dev, by specifying the
set of functions (driver processing functions) of a program that actually implements device driver. These
functions include the open function (openfn) that is called when a device is opened, the execute function
(execfn) that is called when read or write processing starts, wait-for-completion function (waitfn) that waits
for completion of read or write processing, etc. The actual operation of a device or I/O processing with the
devices are performed in these driver processing functions.

As these driver execute functions are executed at protection level 0 as quasi-task portion, they can also access
hardware directly. I/O processing with a device may be performed directly in these driver execute functions
or may be performed in another task that runs based on the request from one of these driver execute functions.
The specification of parameters, etc. when these driver execute functions are called is defined as part of the
device driver interface. The device driver interface is an interface between a device driver and the μT-Kernel
device management functions.

When a device driver program is implemented, it is recommended to separate three layers of interface, logical,
and physical layers carefully in order to enhance their maintainability and portability. The interface layer is
responsible for implementing an interface between the μT-Kernel device management functions and a device
driver. The logical layer is responsible for performing a common processing according to the type of device.
The physical layer is responsible for performing an operation dependent on the actual hardware or control
chip. The interface specification, however, among the interface layer, logical layer, and physical layer is not
specified in the μT-Kernel, so that the actual layer separation can be implemented appropriately in each
device driver. Programs that process the interface layer may be provided as libraries since there are many
common processing steps that are independent of individual devices in the physical layer.

APIs are provided such as open (tk_opn_dev), close (tk_cls_dev), read (tk_rea_dev), write (tk_wri_dev), etc.
to use the registered device driver from an application or middleware. The specification of these APIs is
called an application interface. For example, when an application executes tk_opn_dev to open a device, the
μT-Kernel calls the open function (openfn) for the corresponding device driver to request the device open
processing.

The positioning and structure of μT-Kernel device management functions are shown in Figure 5.1, “Device
Management Functions”.

μT-Kernel 3.0 Specification 285 / 502

Figure 5.1: Device Management Functions

Additional Notes
The device drivers have common features with the subsystems as being implemented independent from μT-
Kernel itself and also being a system program to add or extend functions for μT-Kernel. Additionally, both
are also same in that they operate at protection level 0, and can access a hardware. Notable differences
between the two, is that while API for calling a device driver is limited to using open/close and read/write
type, API for calling a subsystem can be defined without any restriction.
Though μT-Kernel device drivers managed by device management functions are assumed to be drivers for
physical devices or hardware, they are not necessarily required to handle real physical devices or hardware.
Also, system program for operating a device could be implemented as a subsystem rather than a device driver
if it is not compatible with open/close or read/write type APIs.

μT-Kernel 3.0 Specification 286 / 502

5.2.1 Common Notes Related to Device Drivers

5.2.1.1 Basic Concepts

In addition to a physical device that represents a device as a physical hardware, there is a logical device that
represents a perceived unit of a device from the viewpoint of software.

Although both devices match for most devices, when partitions were created on a hard disk or any other
storage type device (SD card, USB storage, etc.), entire device represents a physical device and each partition
represents a logical device.

The physical devices of same type are identified by ”unit” while logical devices in one physical device are
identified by ”subunit.” For example, the information that distinguishes the first hard disk from the second is
called ”unit,” and the information that distinguishes the first partition from the second within that first hard
disk is called ”subunit.”

The data definitions used in device management functions are explained in the subsequent subsections.

In the following description, the references and mentions are made to particular types of devices and their
names. These are not meant to be the part of μT-Kernel specification, but rather are offered as a common
guideline for defining device driver specifications. Each device driver does not have to implement all the
functions described here. However, each driver should be designed so that their behavior is compliant with
the description in the following if applicable.

5.2.1.1.1 Device Name (UB* type)

A device name is a string of up to eight characters that is given to each device. US-ASCII is the used character
code. It consists of the following elements:

#define L_DEVNM 8 /* Device name length */

Type
Name indicating the device type

Characters a to z and A to Z can be used.

Unit
One letter indicating a physical device

Each unit is assigned a letter from a to z in order starting from a.

Subunit
One to three digits indicating a logical device

Each subunit is assigned a number from 0 to 254 in order starting from 0.

Device names take the format of type + unit + subunit. Some devices may not have a unit or subunit, in which
case the corresponding field is omitted.

The subunit is usually used to distinguish partitions in a hard disk. In other devices also, it can be used to
create multiple logical devices in one physical device.

A name consisting of type + unit is called a physical device name. A name consisting of type + unit + subunit
is called a logical device name. If there is no subunit, the physical device name and logical device name are
identical. The term ”device name” by itself means the logical device name.

μT-Kernel 3.0 Specification 287 / 502

Device name Target device
Example of Device Name

Device name Target device
hda Hard disk (entire disk)
hda0 Hard disk (1st partition)
fda Floppy disk
rsa Serial port
kbpd Keyboard/pointing device
fla Flash memory
neta Network

5.2.1.1.2 Device ID (ID type)

By registering a device (device driver) with μT-Kernel/SM, a device ID (> 0) is assigned to the device (physical
device name). Device IDs are assigned to each physical device. The device ID of a logical device consists of
the device ID assigned to the physical device to which is appended the subunit number + 1 (1 to 255).

devid: The device ID assigned at device registration

devid Physical device
devid + n+1 The nth subunit (logical device)

Example of Device ID

Device name Device ID Summary description
hda devid Hard disk (entire disk)
hda0 devid + 1 1st partition of hard disk
hda1 devid + 2 2nd partition of hard disk

5.2.1.1.3 Device Attribute (ATR type)

Device attributes are defined in order to represent a feature for each device and classify a device for each
type. Device attributes should be specified when registering a device driver.

The specification method of device attributes is as follows:

IIII IIII IIII IIII PRxx xxxx KKKK KKKK

The high 16 bits are device-dependent attributes defined for each device. The low 16 bits are standard
attributes defined as follows.

#define TD_PROTECT 0x8000 /* P: Write protected */
#define TD_REMOVABLE 0x4000 /* R: removable media */

#define TD_DEVKIND 0x00ff /* K: device/media kind */
#define TD_DEVTYPE 0x00f0 /* device type */

/* device type */
#define TDK_UNDEF 0x0000 /* undefined/unknown */
#define TDK_DISK 0x0010 /* disk device */

μT-Kernel 3.0 Specification 288 / 502

Within the realm of μT-Kernel, the device type other than disk type is not defined. Defining the device type
other than disk type does not affect the behavior of μT-Kernel. Other devices are assigned to undefined type
(TDK_UNDEF).

For the disk device, the disk kinds are additionally defined. The typical disk kinds are as follows:

/* disk kind */
#define TDK_DISK_UNDEF 0x0010 /* miscellaneous disk */
#define TDK_DISK_RAM 0x0011 /* RAM disk (used as main memory) */
#define TDK_DISK_ROM 0x0012 /* ROM disk (used as main memory) */
#define TDK_DISK_FLA 0x0013 /* Flash ROM or other silicon disk */
#define TDK_DISK_FD 0x0014 /* Floppy disk */
#define TDK_DISK_HD 0x0015 /* hard disk */
#define TDK_DISK_CDROM 0x0016 /* CD -ROM */

The definition of disk kinds does not affect the μT-Kernel behavior. These definitions are used only when
they are required in a device driver or an application. For example, when an application must change its
processing according to the kind of devices or media, the disk kind information is used. Devices or media
that do not need such distinctions do not have to be assigned a device type.

5.2.1.1.4 Device Descriptor (ID type)

A device descriptor is an identifier used to access a device.

The device descriptor is assigned a positive value (> 0) by the μT-Kernel/SM when a device is opened.

5.2.1.1.5 Request ID (ID type)

When an I/O request is made to a device, a request ID (> 0) is assigned identifying the request. This ID can
be used to wait for I/O completion.

5.2.1.1.6 Data Number (W type, D type)

Data input/output from/to device is specified by a data number. Data is roughly classified into device-specific
data and attribute data.

Device-specific data: Data number ≧ 0
As device-specific data, the data numbers are defined separately for each device.

Example of Device-specific Data

device Data number
Disk Data number = physical block number
Serial port Data number = 0 only

Attribute data: Data number < 0
Attribute data specifies driver or device state acquisition and setting modes, and special functions, etc.

Data numbers common to devices are defined, but device-dependent attribute data can also be defined.
For more details, see Section 5.2.1.2, “Attribute Data”.

μT-Kernel 3.0 Specification 289 / 502

5.2.1.2 Attribute Data

Attribute data are classified broadly into the following three types of data.

Common attributes
Attributes defined in common for all devices (device drivers).

Device kind attributes
Attributes defined in common for devices (device drivers) of the same kind.

Device-specific attributes
Attributes defined individually for each device (device driver).

Device kind attributes and device-specific attributes are out of scope of this specification and defined in device
driver’s specifications. Only the common attributes are defined here.

Common attributes are assigned attribute data numbers in the range from -1 to -99. While common attribute
data numbers are the same for all devices, not all devices necessarily support all the common attributes. If
an unsupported data number is specified, error code E_PAR is returned.

The definition of common attributes is as follows:

#define TDN_EVENT (-1) /* RW: event notification message buffer ID */
#define TDN_DISKINFO (-2) /* R: disk information */
#define TDN_DISPSPEC (-3) /* reserved */
#define TDN_PCMCIAINFO (-4) /* reserved */
#define TDN_DISKINFO_D (-5) /* R: disk information (64-bit device) */

RW: read (tk_rea_dev)/write (tk_wri_dev) enabled
R-: read (tk_rea_dev) only

TDN_EVENT
Event notification message buffer ID

Data type ID

The ID of the message buffer used for device event notification.

As a device is registered by tk_def_dev when a device driver is started and the system default event
notification message buffer ID (evtmbfid) is returned as this API return parameter, the value is held in
the device driver and is used as the initial value of this attribute data.

If 0 is set, device events are not notified. For device event notification, see Section 5.2.3.3, “Device
Event Notification”.

TDN_DISKINFO
32-bit device and disk information

Data type DiskInfo

typedef enum {
DiskFmt_STD = 0, /* standard (HD , etc.) */
DiskFmt_CDROM = 4 /* CD -ROM 640MB */

} DiskFormat;

typedef struct {
DiskFormat format; /* format */
UW protect :1; /* protected status */
UW removable :1; /* removable */
UW rsv :30; /* reserved (always 0) */

μT-Kernel 3.0 Specification 290 / 502

W blocksize; /* block size in bytes */
W blockcont; /* total block count */

} DiskInfo;

For definition of DiskFormat other than the above description, see the specification related to device
drivers.

TDN_DISPSPEC
Display Device Specification

Data type DEV_SPEC

For the definition of DEV_SPEC, see the specification related to device drivers.

TDN_DISKINFO_D
64-bit device and disk information

Data type DiskInfo_D

typedef struct diskinfo_d {
DiskFormat format; /* format */
BOOL protect :1; /* protected status */
BOOL removable :1; /* removable */
UW rsv :30; /* reserved (0) */
W blocksize; /* block size in bytes */
D blockcont_d; /* total number of blocks in 64-bit */

} DiskInfo_D;

Difference between DiskInfo_D and DiskInfo is only the part of their names being blockcont or blockcont_d,
and the data type.

μT-Kernel/SM does not convert a data between DiskInfo and DiskInfo_D. TDN_DISKINFO and TDN_DISKINFO_D
just pass the request to device driver without any modification.

The disk device driver must support one of TDN_DISKINFO and TDN_DISKINFO_D, or both. It is recommended
that TDN_DISKINFO is supported wherever possible.

Even if the total number of blocks of entire disk exceeds W, the number of blocks of individual partition
may fit within W. In that case, the preferable implementation is such that a partitions fitting within W
correspond to TDN_DISKINFO and partitions not fitting within W are determined to be an error (E_PAR) by
TDN_DISKINFO. It is also preferable that TDN_DISKINFO_D is supported even if the number of blocks fit within
W.

There is no direct dependency between the support for TDN_DISKINFO_D and the device driver attribute
TDA_DEV_D. A device driver does not always have TDA_DEV_D attribute even if TDN_DISKINFO_D is supported.
Also, TDN_DISKINFO_D is not always supported even if the device driver has TDA_DEV_D attribute.

As the definition of common attributes described above is a part of the specification of device driver rather
than μT-Kernel, it does not directly affect the μT-Kernel behavior. Each device driver does not need to
implement all the functions defined in the common attributes. However, as the definition of common attributes
is applicable to all the device drivers, the specification of each device driver must be specified in a way that
does not conflict with these definitions.

μT-Kernel 3.0 Specification 291 / 502

5.2.2 Device Input/Output Operations

The application interface is used to make use of the registered device drivers from an application or mid-
dleware. API of μT-Kernel provides the following functions. These functions cannot be called from a task-
independent portion or while dispatch or interrupts are disabled (E_CTX).

ID tk_opn_dev(CONST UB *devnm , UINT omode)
ER tk_cls_dev(ID dd , UINT option)
ID tk_rea_dev(ID dd , W start , void *buf , SZ size , TMO tmout)
ID tk_rea_dev_du(ID dd , D start_d , void *buf , SZ size , TMO_U tmout_u)
ER tk_srea_dev(ID dd , W start , void *buf , SZ size , SZ *asize)
ER tk_srea_dev_d(ID dd , D start_d , void *buf , SZ size , SZ *asize)
ID tk_wri_dev(ID dd , W start , CONST void *buf , SZ size , TMO tmout)
ID tk_wri_dev_du(ID dd , D start_d , CONST void *buf , SZ size , TMO_U tmout_u)
ER tk_swri_dev(ID dd , W start , CONST void *buf , SZ size , SZ *asize)
ER tk_swri_dev_d(ID dd , D start_d , CONST void *buf , SZ size , SZ *asize)
ID tk_wai_dev(ID dd , ID reqid , SZ *asize , ER *ioer , TMO tmout)
ID tk_wai_dev_u(ID dd , ID reqid , SZ *asize , ER *ioer , TMO_U tmout_u)
INT tk_sus_dev(UINT mode)
ID tk_get_dev(ID devid , UB *devnm)
ID tk_ref_dev(CONST UB *devnm , T_RDEV *rdev)
ID tk_oref_dev(ID dd , T_RDEV *rdev)
INT tk_lst_dev(T_LDEV *ldev , INT start , INT ndev)
INT tk_evt_dev(ID devid , INT evttyp , void *evtinf)

μT-Kernel 3.0 Specification 292 / 502

5.2.2.1 tk_opn_dev - Open Device

C Language Interface

#include <tk/tkernel.h>

ID dd = tk_opn_dev(CONST UB *devnm, UINT omode);

Parameter

CONST UB* devnm Device Name Device name
UINT omode Open Mode Open mode

Return Parameter

ID dd Device Descriptor Device descriptor
or Error Code Error code

Error Code

E_BUSY Device BUSY (exclusive open)
E_NOEXS Device does not exist
E_LIMIT Open count exceeds the limit
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Opens the device specified in devnm in the mode specified in omode, and prepares for device access. The device
descriptor is passed in the return code.

omode := (TD_READ || TD_WRITE || TD_UPDATE) | [TD_EXCL || TD_WEXCL || TD_REXCL]

#define TD_READ 0x0001 /* read only */
#define TD_WRITE 0x0002 /* write only */
#define TD_UPDATE 0x0003 /* read/write */
#define TD_EXCL 0x0100 /* exclusive */
#define TD_WEXCL 0x0200 /* exclusive write */
#define TD_REXCL 0x0400 /* exclusive read */

TD_READ
read only

μT-Kernel 3.0 Specification 293 / 502

TD_WRITE
Write only

TD_UPDATE
Read/write

Sets the access mode.

When TD_READ is set, tk_wri_dev cannot be used.

When TD_WRITE is set, tk_rea_dev cannot be used.

TD_EXCL
Exclusive

TD_WEXCL
Exclusive write

TD_REXCL
Exclusive read

Sets the exclusive mode.

When TD_EXCL is set, all concurrent opening is prohibited.

When TD_WEXCL is set, concurrent opening in write mode (TD_WRITE or TD_UPDATE) is prohibited.

When TD_REXCL is set, concurrent opening in read mode (TD_READ or TD_UPDATE) is prohibited.

Present Open Mode
Concurrent Open Mode

No exclusive
mode

TD_WEXCL TD_REXCL TD_EXCL

R U W R U W R U W R U W

No exclusive
mode

R YES YES YES YES YES YES NO NO NO NO NO NO
U YES YES YES NO NO NO NO NO NO NO NO NO
W YES YES YES NO NO NO YES YES YES NO NO NO

TD_WEXCL
R YES NO NO YES NO NO NO NO NO NO NO NO
U YES NO NO NO NO NO NO NO NO NO NO NO
W YES NO NO NO NO NO YES NO NO NO NO NO

TD_REXCL
R NO NO YES NO NO YES NO NO NO NO NO NO
U NO NO YES NO NO NO NO NO NO NO NO NO
W NO NO YES NO NO NO NO NO YES NO NO NO

TD_EXCL
R NO NO NO NO NO NO NO NO NO NO NO NO
U NO NO NO NO NO NO NO NO NO NO NO NO
W NO NO NO NO NO NO NO NO NO NO NO NO

Table 5.1: Whether Concurrent Open of Same Device is Allowed or NOT

R = TD_READ
W = TD_WRITE
U = TD_UPDATE
YES = Yes, can be opened
NO = No, cannot be opened (E_BUSY)

When a physical device is opened, the logical devices belonging to it are all treated as having been opened
in the same mode, and are processed as exclusive open.

μT-Kernel 3.0 Specification 294 / 502

5.2.2.2 tk_cls_dev - Close Device

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_cls_dev(ID dd, UINT option);

Parameter

ID dd Device Descriptor Device descriptor
UINT option Close Option Close option

Return Parameter

ER ercd Error Code Error code

Error Code

E_ID dd is invalid or not open
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Closes device descriptor dd. If a request is being processed, the processing is aborted and the device is closed.

option := [TD_EJECT]

#define TD_EJECT 0x0001 /* Eject media */

TD_EJECT
Eject media

If the same device has not been opened by another task, the media is ejected. In the case of devices
that cannot eject their media, the request is ignored.

μT-Kernel 3.0 Specification 295 / 502

5.2.2.3 tk_rea_dev - Start Read Device

C Language Interface

#include <tk/tkernel.h>

ID reqid = tk_rea_dev(ID dd, W start, void *buf, SZ size, TMO tmout);

Parameter

ID dd Device Descriptor Device descriptor
W start Start Location Read start location (≧ 0:

Device-specific data, < 0: Attribute
data)

void* buf Buffer Buffer location for putting the read data
SZ size Read Size Read size
TMO tmout Timeout Request acceptance timeout (ms)

Return Parameter

ID reqid Request ID Request ID
or Error Code Error code

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (read not permitted)
E_LIMIT Number of requests exceeds the limit
E_TMOUT Busy processing other requests
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Initiates reading device-specific data or attribute data from the specified device. This function initiates reading
only, returning to its caller without waiting for the read operation to finish. The space specified in bufmust be
retained until the read operation completes. Read completion is waited for by tk_wai_dev. The time required
for initiating read operation differs among device drivers; return of control is not necessarily immediate.

In the case of device-specific data, the start and size units are defined for each device. With attribute data,
start is an attribute data number and size is in bytes. The attribute data of the data number specified in start
is read. Normally sizemust be at least as large as the size of the attribute data to be read. Reading of multiple

μT-Kernel 3.0 Specification 296 / 502

attribute data in one operation is not possible. When size = 0 is specified, actual reading does not take place
but the current size of data that can be read is checked.

Whether or not a new request can be accepted while a read or write operation is in progress depends on the
device driver. If a new request cannot be accepted, the request is queued. The timeout for request waiting is
set in tmout. The TMO_POL or TMO_FEVR attribute can be specified in tmout. Note that the timeout applies to the
request acceptance. Once a request has been accepted, this function does not time out.

It is permissible to call this API to a driver that has TDA_DEV_D or TDA_TMO_U attribute. In that case, the parameters
are converted appropriately by μT-Kernel/SM. For example, if the device driver has TDA_TMO_U attribute, the
timeout interval (milliseconds) specified in tmout of this API is converted to time in microseconds, and then
passed to the driver with TDA_TMO_U attribute.

μT-Kernel 3.0 Specification 297 / 502

5.2.2.4 tk_rea_dev_du - Read Device (64-bit, Microseconds)

C Language Interface

#include <tk/tkernel.h>

ID reqid = tk_rea_dev_du(ID dd, D start_d, void *buf, SZ size, TMO_U tmout_u);

Parameter

ID dd Device Descriptor Device descriptor
D start_d Start Location Read start location (64 bit, ≧ 0:

Device-specific data, < 0: Attribute
data)

void* buf Buffer Buffer location for putting the read data
SZ size Read Size Read size
TMO_U tmout_u Timeout Request acceptance timeout (in

microseconds)

Return Parameter

ID reqid Request ID Request ID
or Error Code Error code

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (read not permitted)
E_LIMIT Number of requests exceeds the limit
E_TMOUT Busy processing other requests
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_LARGEDEV Support of large mass-storage devices (64-bit)
TK_SUPPORT_USEC Support of microsecond

Description

This API takes the parameters start_d (64 bits) and tmout_u (64-bit microseconds), instead of the parameters
start and tmout of tk_rea_dev.

Its specification is the same as that of tk_rea_dev, except that the parameters are changed to start_d and
tmout_u. For more details, see the description of tk_rea_dev.

μT-Kernel 3.0 Specification 298 / 502

Additional Notes

If the corresponding device driver does not have the TDA_DEV_D attribute, the error code E_PAR is returned
when specifying a value that is out of the range of W for the start position start_d.

If the corresponding device driver does not have the TDA_TMO_U attribute (does not supports microseconds), it
cannot handle the timeout in microseconds. In that case, the timeout (in microseconds) specified by this API
in tmout_u is rounded to the time in milliseconds and passed to the device driver.

Thus, the appropriate conversion of parameters is executed by μT-Kernel/SM. The application does not have
to know whether the device driver has the TDA_DEV_D attribute or not, i.e. whether the device driver supports
64 bits or not.

μT-Kernel 3.0 Specification 299 / 502

5.2.2.5 tk_srea_dev - Synchronous Read

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_srea_dev(ID dd, W start, void *buf, SZ size, SZ *asize);

Parameter

ID dd Device Descriptor Device descriptor
W start Start Location Read start location (≧ 0:

Device-specific data, < 0: Attribute
data)

void* buf Buffer Buffer location for putting the read data
SZ size Read Size Read size
SZ* asize Actual Size Pointer to the area to return the read

size

Return Parameter

ER ercd Error Code Error code
SZ asize Actual Size Actually read size

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (read not permitted)
E_LIMIT Number of requests exceeds the limit
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Synchronous read. This is equivalent to the following.

ER tk_srea_dev(ID dd , W start , void *buf , SZ size , SZ *asize)
{

ER er , ioer;

er = tk_rea_dev(dd , start , buf , size , TMO_FEVR);
if (er > 0) {

er = tk_wai_dev(dd , er , asize , &ioer , TMO_FEVR);

μT-Kernel 3.0 Specification 300 / 502

if (er > 0) er = ioer;
}

return er;
}

This API can be used for a device driver that has the TDA_DEV_D attribute. In that case, the parameters are
converted appropriately by μT-Kernel/SM.

μT-Kernel 3.0 Specification 301 / 502

5.2.2.6 tk_srea_dev_d - Synchronous Read (64-bit)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_srea_dev_d(ID dd, D start_d, void *buf, SZ size, SZ *asize);

Parameter

ID dd Device Descriptor Device descriptor
D start_d Start Location Read start location (64 bit, ≧ 0:

Device-specific data, < 0: Attribute
data)

void* buf Buffer Buffer location for putting the read data
SZ size Read Size Read size
SZ* asize Actual Size Pointer to the area to return the read

size

Return Parameter

ER ercd Error Code Error code
SZ asize Actual Size Actually read size

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (read not permitted)
E_LIMIT Number of requests exceeds the limit
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_LARGEDEV Support of large mass-storage devices (64-bit)

Description

This API takes the 64-bit parameter start_d, instead of the parameter start of tk_srea_dev.

Its specification is the same as that of tk_srea_dev, except that the parameter is changed to start_d. For more
details, see the description of tk_srea_dev.

μT-Kernel 3.0 Specification 302 / 502

Additional Notes

If the corresponding device driver does not have the TDA_DEV_D attribute, the error code E_PAR is returned
when specifying a value that is out of the range of W for the start position start_d.

Thus, the appropriate conversion of parameters is executed by μT-Kernel/SM. The application does not have
to know whether the device driver has the TDA_DEV_D attribute or not, i.e. whether the device driver supports
64 bits or not.

μT-Kernel 3.0 Specification 303 / 502

5.2.2.7 tk_wri_dev - Start Write Device

C Language Interface

#include <tk/tkernel.h>

ID reqid = tk_wri_dev(ID dd, W start, CONST void *buf, SZ size, TMO tmout);

Parameter

ID dd Device Descriptor Device descriptor
W start Start Location write start location (≧ 0:

Device-specific data, < 0: Attribute
data)

CONST void* buf Buffer Buffer holding data to be written
SZ size Write Size Size of data to be written
TMO tmout Timeout Request acceptance timeout (ms)

Return Parameter

ID reqid Request ID Request ID
or Error Code Error code

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (write not permitted)
E_RONLY Read-only device
E_LIMIT Number of requests exceeds the limit
E_TMOUT Busy processing other requests
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Initiates writing device-specific data or attribute data to a device. This function initiates writing only, returning
to its caller without waiting for the write operation to finish. The space specified in buf must be retained until
the write operation completes. Write completion is waited for by tk_wai_dev. The time required for initiating
write operation differs among device drivers; return of control is not necessarily immediate.

In the case of device-specific data, the start and size units are defined for each device. With attribute data,
start is an attribute data number and size is in bytes. The attribute data of the data number specified in start
is written. Normally size must be at least as large as the size of the attribute data to be written. Multiple

μT-Kernel 3.0 Specification 304 / 502

attribute data cannot be written in one operation. When size = 0 is specified, actual writing does not take
place but the current size of data that can be written is checked.

Whether or not a new request can be accepted while a read or write operation is in progress depends on the
device driver. If a new request cannot be accepted, the request is queued. The timeout for request waiting is
set in tmout. The TMO_POL or TMO_FEVR attribute can be specified in tmout. Note that the timeout applies to the
request acceptance. Once a request has been accepted, this function does not time out.

It is permissible to call this API to a driver that has TDA_DEV_D or TDA_TMO_U attribute. In that case, the parameters
are converted appropriately by μT-Kernel/SM. For example, if the device driver has TDA_TMO_U attribute, the
timeout interval (milliseconds) specified in tmout of this API is converted to time in microseconds, and then
passed to the driver with TDA_TMO_U attribute.

μT-Kernel 3.0 Specification 305 / 502

5.2.2.8 tk_wri_dev_du - Write Device (64-bit, Microseconds)

C Language Interface

#include <tk/tkernel.h>

ID reqid = tk_wri_dev_du(ID dd, D start_d, CONST void *buf, SZ size, TMO_U tmout_u);

Parameter

ID dd Device Descriptor Device descriptor
D start_d Start Location Write start location (64 bit, ≧ 0:

Device-specific data, < 0: Attribute
data)

CONST void* buf Buffer Buffer holding data to be written
SZ size Write Size Size of data to be written
TMO_U tmout_u Timeout Request acceptance timeout (in

microseconds)

Return Parameter

ID reqid Request ID Request ID
or Error Code Error code

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (write not permitted)
E_RONLY Read-only device
E_LIMIT Number of requests exceeds the limit
E_TMOUT Busy processing other requests
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_LARGEDEV Support of large mass-storage devices (64-bit)
TK_SUPPORT_USEC Support of microsecond

Description

This API takes the parameters start_d (64 bits) and tmout_u (64-bit microseconds), instead of the parameters
start and tmout of tk_wri_dev.

Its specification is the same as that of tk_wri_dev, except that the parameters are changed to start_d and

μT-Kernel 3.0 Specification 306 / 502

tmout_u. For more details, see the description of tk_wri_dev.

Additional Notes

If the corresponding device driver does not have the TDA_DEV_D attribute, the error code E_PAR is returned
when specifying a value that is out of the range of W for the start position start_d.

If the corresponding device driver does not have the TDA_TMO_U attribute (does not supports microseconds), it
cannot handle the timeout in microseconds. In that case, the timeout (in microseconds) specified by this API
in tmout_u is rounded to the time in milliseconds and passed to the device driver.

Thus, the appropriate conversion of parameters is executed by μT-Kernel/SM. The application does not have
to know whether the device driver has the TDA_DEV_D attribute or not, i.e. whether the device driver supports
64 bits or not.

μT-Kernel 3.0 Specification 307 / 502

5.2.2.9 tk_swri_dev - Synchronous Write

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_swri_dev(ID dd, W start, CONST void *buf, SZ size, SZ *asize);

Parameter

ID dd Device Descriptor Device descriptor
W start Start Location Write start location (≧ 0:

Device-specific data, < 0: Attribute
data)

CONST void* buf Buffer Buffer holding data to be written
SZ size Write Size Size of data to be written
SZ* asize Actual Size Pointer to the area to return the

written size

Return Parameter

ER ercd Error Code Error code
SZ asize Actual Size Actually written size

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (write not permitted)
E_RONLY Read-only device
E_LIMIT Number of requests exceeds the limit
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Synchronous write. This is equivalent to the following.

ER tk_swri_dev(ID dd , W start , void *buf , SZ size , SZ *asize)
{

ER er , ioer;

er = tk_wri_dev(dd , start , buf , size , TMO_FEVR);
if (er > 0) {

μT-Kernel 3.0 Specification 308 / 502

er = tk_wai_dev(dd , er , asize , &ioer , TMO_FEVR);
if (er > 0) er = ioer;

}

return er;
}

This API can be used for a device driver that has the TDA_DEV_D attribute. In that case, the parameters are
converted appropriately by μT-Kernel/SM.

μT-Kernel 3.0 Specification 309 / 502

5.2.2.10 tk_swri_dev_d - Synchronous Write (64-bit)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_swri_dev_d(ID dd, D start_d, CONST void *buf, SZ size, SZ *asize);

Parameter

ID dd Device Descriptor Device descriptor
D start_d Start Location Write start location (64 bit, ≧ 0:

Device-specific data, < 0: Attribute
data)

CONST void* buf Buffer Buffer holding data to be written
SZ size Write Size Size of data to be written
SZ* asize Actual Size Pointer to the area to return the

written size

Return Parameter

ER ercd Error Code Error code
SZ asize Actual Size Actually written size

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (write not permitted)
E_RONLY Read-only device
E_LIMIT Number of requests exceeds the limit
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_LARGEDEV Support of large mass-storage devices (64-bit)

Description

This API takes the 64-bit parameter start_d, instead of the parameter start of tk_swri_dev.

Its specification is the same as that of tk_swri_dev, except that the parameter is changed to start_d. For more
details, see the description of tk_swri_dev.

μT-Kernel 3.0 Specification 310 / 502

Additional Notes

If the corresponding device driver does not have the TDA_DEV_D attribute, the error code E_PAR is returned
when specifying a value that is out of the range of W for the start position start_d.

Thus, the appropriate conversion of parameters is executed by μT-Kernel/SM. The application does not have
to know whether the device driver has the TDA_DEV_D attribute or not, i.e. whether the device driver supports
64 bits or not.

μT-Kernel 3.0 Specification 311 / 502

5.2.2.11 tk_wai_dev - Wait for Request Completion for Device

C Language Interface

#include <tk/tkernel.h>

ID creqid = tk_wai_dev(ID dd, ID reqid, SZ *asize, ER *ioer, TMO tmout);

Parameter

ID dd Device Descriptor Device descriptor
ID reqid Request ID Request ID
SZ* asize Actually Read/Written Size Pointer to the area to return the

read/written size
ER* ioer I/O Error Pointer to the area to return I/O error
TMO tmout Timeout Timeout (ms)

Return Parameter

ID creqid Completed Request ID Completed request ID
or Error Code Error code

SZ asize Actually Read/Written Size Actually read/written size
ER ioer I/O Error I/O error

Error Code

E_ID dd is invalid or not opened, or reqid is invalid or not a request for dd
E_OBJ Another task is already waiting for request reqid
E_NOEXS No requests are being processed (only when reqid = 0)
E_TMOUT Timeout (processing continues)
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Waits for completion of request reqid for device dd. If reqid = 0 is set, this function waits for completion of
any pending request to dd. This function waits for completion only of requests currently processing when the
function is called. A request issued after tk_wai_dev was called is not waited for.

When multiple requests are being processed concurrently, the order of their completion is not necessarily the
same as the order of request but is dependent on the device driver. Processing is, however, guaranteed to be
performed in a sequence such that the result is consistent with the order of requesting. When processing a
read operation from a disk, for example, the sequence might be changed as follows.

μT-Kernel 3.0 Specification 312 / 502

Block number request sequence
1 4 3 2 5

Block number processing sequence
1 2 3 4 5

Disk access can be made more efficient by changing the sequence as above with the aim of reducing seek
time and spin wait time.

The timeout for waiting for completion is set in tmout. The TMO_POL or TMO_FEVR attribute can be specified for
tmout. If a timeout error is returned (E_TMOUT), tk_wai_dev must be called again to wait for completion since
the request processing is still ongoing. When reqid > 0 and tmout = TMO_FEVR are both set, the processing must
be completed without timing out.

If the device driver returns a processing result error (such as I/O error) for the requested processing, the error
code is stored in ioer instead of the return code. Specifically, the error code, which is stored in error of the
request packet T_DEVREQ by the wait-for-completion function (waitfn) called for processing tk_wai_dev, is
returned to ioer as the processing result error.

On the other hand, the return code is used for errors when the wait request itself was not handled properly.
When error is passed in the return code, ioer has no meaning. Note also that if an error is passed in the return
code, tk_wai_dev must be called again to wait for completion since the processing is still ongoing. For more
details, see Section 5.2.3.2.4, “waitfn - Wait-for-completion function”.

If a task exception is raised during completion waiting by tk_wai_dev, the request in reqid is aborted and
processing is completed. The result of aborting the requested processing is dependent on the device driver.
When reqid = 0 was set, however, requests are not aborted but are treated as timeout. In this case E_ABORT
rather than E_TMOUT is returned.

It is not possible for multiple tasks to wait for completion of the same request ID at the same time. If there is
a task waiting for request completion with reqid = 0 set, another task cannot wait for completion for the same
dd. Similarly, if there is a task waiting for request completion with reqid > 0 set, another task cannot wait for
completion specifying reqid = 0.

It is permissible to call this API to a driver with TDA_TMO_U attribute In such instances, μT-Kernel/SM converts
the parameter(s) appropriately. For example, if the device driver has TDA_TMO_Uattribute, the timeout in mil-
liseconds specified in tmout of this API is converted to timeout value in microseconds, and is passed to the
driver with TDA_TMO_U.

μT-Kernel 3.0 Specification 313 / 502

5.2.2.12 tk_wai_dev_u - Wait Device (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ID creqid = tk_wai_dev_u(ID dd, ID reqid, SZ *asize, ER *ioer, TMO_U tmout_u);

Parameter

ID dd Device Descriptor Device descriptor
ID reqid Request ID Request ID
SZ* asize Actually Read/Written Size Pointer to the area to return the

read/written size
ER* ioer I/O Error Pointer to the area to return I/O error
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ID creqid Completed Request ID Completed request ID
or Error Code Error code

SZ asize Actually Read/Written Size Actually read/written size
ER ioer I/O Error I/O error

Error Code

E_ID dd is invalid or not opened, or reqid is invalid or not a request for dd
E_OBJ Another task is already waiting for request reqid
E_NOEXS No requests are being processed (only when reqid = 0)
E_TMOUT Timeout (processing continues)
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_USEC Support of microsecond

Description

This API takes the parameter tmout_u (64-bit microseconds), instead of the parameter tmout of tk_wai_dev.

Its specification is the same as that of tk_wai_dev, except that the parameter changed to tmout_u. For more
details, see the description of tk_wai_dev.

μT-Kernel 3.0 Specification 314 / 502

Additional Notes

If the corresponding device driver does not have the TDA_TMO_U attribute (does not supports microseconds), it
cannot handle the timeout in microseconds. In that case, the timeout (in microseconds) specified by this API
in tmout_u is rounded to the time in milliseconds and passed to the device driver.

Thus, the appropriate conversion of parameters is executed by μT-Kernel/SM. The application does not have
to know whether the device driver has the TDA_TMO_U attribute or not, i.e., whether the device driver supports
microseconds or not.

μT-Kernel 3.0 Specification 315 / 502

5.2.2.13 tk_sus_dev - Suspends Device

C Language Interface

#include <tk/tkernel.h>

INT dissus = tk_sus_dev(UINT mode);

Parameter

UINT mode Mode Mode

Return Parameter

INT dissus Suspend Disable Request
Count

Suspend disable request count

or Error Code Error code

Error Code

E_BUSY Suspend already disabled
E_QOVR Suspend disable request count limit exceeded

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_LOWPOWER Support of power management functions

Description

Performs the processing specified in mode, then passes the resulting suspend disable request count in the
return code.

mode := ((TD_SUSPEND | [TD_FORCE]) || TD_DISSUS || TD_ENASUS || TD_CHECK)

#define TD_SUSPEND 0x0001 /* suspend */
#define TD_DISSUS 0x0002 /* disable suspension */
#define TD_ENASUS 0x0003 /* enable suspension */
#define TD_CHECK 0x0004 /* get suspend disable request count */
#define TD_FORCE 0x8000 /* forced suspend specification */

TD_SUSPEND
Suspend

If suspending is enabled, suspends processing.

If suspending is disabled, returns E_BUSY.

μT-Kernel 3.0 Specification 316 / 502

TD_SUSPEND|TD_FORCE
Forcibly suspend

Suspends even in suspend disabled state.

TD_DISSUS
Disable suspension

Disables suspension.

TD_ENASUS
Enable suspension

Enables suspension.

TD_CHECK
Get suspend disable count

Gets only the number of times suspend disable has been requested.

Suspension is performed in the following steps.

1. Processing prior to start of suspension in each subsystem

tk_evt_ssy(0, TSEVT_SUSPEND_BEGIN, 0)

2. Suspension processing in devices

3. Processing after completion of suspension in each subsystem

tk_evt_ssy(0, TSEVT_SUSPEND_DONE, 0)

4. Suspended state

tk_set_pow(TPW_DOSUSPEND)

Resumption from SUSPEND state is performed in the following steps.

1. Return from SUSPEND state

Return from tk_set_pow(TPW_DOSUSPEND)

2. Processing prior to start of resumption in each subsystem

tk_evt_ssy(0, TSEVT_RESUME_BEGIN, 0)

3. Resumption processing in devices

4. Processing after completion of resumption in each subsystem

tk_evt_ssy(0, TSEVT_RESUME_DONE, 0)

The number of suspend disable requests is counted. Suspension is enabled only if the same number of
suspend enable requests is made. At system boot, the suspend disable count is 0 and suspension is enabled.
The maximum suspend disable request count is implementation-dependent, but must be at least 255. When
the upper limit is exceeded, E_QOVR is returned.

μT-Kernel 3.0 Specification 317 / 502

5.2.2.14 tk_get_dev - Get Device Name

C Language Interface

#include <tk/tkernel.h>

ID pdevid = tk_get_dev(ID devid, UB *devnm);

Parameter

ID devid Device ID Device ID
UB* devnm Device Name Pointer to the device name storage

location

Return Parameter

ID pdevid Device ID of Physical Device Device ID of the physical device
or Error Code Error code

UB devnm Device Name Device name

Error Code

E_NOEXS The device specified in devid does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Gets the device name of the device specified in devid and puts the result in devnm.

devid is the device ID of either a physical device or a logical device.

If devid is a physical device, the physical device name is put in devnm.

If devid is a logical device, the logical device name is put in devnm.

devnm requires a space of L_DEVNM + 1 bytes or larger.

The device ID of the physical device to which device devid belongs is passed in the return code.

μT-Kernel 3.0 Specification 318 / 502

5.2.2.15 tk_ref_dev - Get Device Information

C Language Interface

#include <tk/tkernel.h>

ID devid = tk_ref_dev(CONST UB *devnm, T_RDEV *rdev);

Parameter

CONST UB* devnm Device Name Device name
T_RDEV* rdev Packet to Return Device

Information
Pointer to the area to return the
device information

Return Parameter

ID devid Device ID Device ID
or Error Code Error code

rdev Detail:

ATR devatr Device Attribute Device attributes
SZ blksz Block Size of Device-specific

Data
Block size of device-specific data (-1:
unknown)

INT nsub Subunit Count Number of subunits
INT subno Subunit Number 0: Physical device, 1 to nsub:

Subunit number+1
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_NOEXS The device specified in devnm does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Gets device information about the device specified in devnm, and puts the result in rdev. If rdev = NULL is set,
the device information is not stored.

nsub indicates the number of physical device subunits belonging to the device specified in devnm.

The device ID of the device specified in devnm is passed in the return code.

μT-Kernel 3.0 Specification 319 / 502

5.2.2.16 tk_oref_dev - Get Device Information

C Language Interface

#include <tk/tkernel.h>

ID devid = tk_oref_dev(ID dd, T_RDEV *rdev);

Parameter

ID dd Device Descriptor Device descriptor
T_RDEV* rdev Packet to Return Device

Information
Pointer to the area to return the device
information

Return Parameter

ID devid Device ID Device ID
or Error Code Error code

rdev Detail:

ATR devatr Device Attribute Device attributes
SZ blksz Block Size of Device-specific

Data
Block size of device-specific data (-1:
unknown)

INT nsub Subunit Count Number of subunits
INT subno Subunit Number 0: Physical device, 1 to nsub: Subunit

number+1
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_ID dd is invalid or not open

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Gets device information about the device specified in dd, and puts the result in rdev. If rdev = NULL is set, the
device information is not stored.

nsub indicates the number of physical device subunits belonging to the device specified in dd.

The device ID of the device specified in dd is passed in the return code.

μT-Kernel 3.0 Specification 320 / 502

5.2.2.17 tk_lst_dev - Get Registered Device Information

C Language Interface

#include <tk/tkernel.h>

INT remcnt = tk_lst_dev(T_LDEV *ldev, INT start, INT ndev);

Parameter

T_LDEV* ldev List of Devices Location of registered device
information (array)

INT start Starting Number Starting number
INT ndev Number of Devices Number to acquire

Return Parameter

INT remcnt Remaining Device Count Number of remaining registrations
or Error Code Error code

ldev Detail:

ATR devatr Device Attribute Device attributes
SZ blksz Block Size of Device-specific

Data
Block size of device-specific data (-1:
unknown)

INT nsub Subunit Count Number of subunits
UB devnm[L_DEVNM] Physical Device Name Physical device name
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_NOEXS start exceeds the registered number

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Gets information about registered devices. Registered devices are managed per physical device. The regis-
tered device information is therefore also obtained per physical device.

When the number of registered devices is N, number are assigned serially to devices from 0 to N - 1. Starting
from the number specified in start in accordance with this scheme, the number of registrations specified in
ndev is acquired and put in ldev. The space specified in ldev must be large enough to hold ndev registration
information. The number of remaining registrations after start (N-start) is passed in the return code.

μT-Kernel 3.0 Specification 321 / 502

If the number of registrations from start is fewer than ndev, all remaining registrations are stored. A value
passed in return code less than or equal to ndev means all remaining registrations were obtained. Note that
this numbering changes as devices are registered and deleted. For this reason, accurate information may not
be always obtained if the acquisition is carried out over multiple operations.

μT-Kernel 3.0 Specification 322 / 502

5.2.2.18 tk_evt_dev - Send Driver Request Event to Device

C Language Interface

#include <tk/tkernel.h>

INT retcode = tk_evt_dev(ID devid, INT evttyp, void *evtinf);

Parameter

ID devid Device ID Event destination device ID
INT evttyp Event Type Driver request event type
void* evtinf Event Information Information for each event type

Return Parameter

INT retcode Return Code from eventfn Return code passed by eventfn
or Error Code Error code

Error Code

E_NOEXS The device specified in devid does not exist
E_PAR Internal device manager events (evttyp < 0) cannot be specified
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Sends a driver request event to the device (device driver) specified in devid.

The functioning of driver request events and the contents of evtinf are defined for each event type. For details
on driver request event, see Section 5.2.3.2.6, “eventfn - Event function”.

μT-Kernel 3.0 Specification 323 / 502

5.2.3 Registration of Device Driver

5.2.3.1 Registration Method of Device Driver

Device driver registration is performed for each physical device.

μT-Kernel 3.0 Specification 324 / 502

5.2.3.1.1 tk_def_dev - Register Device

C Language Interface

#include <tk/tkernel.h>

ID devid = tk_def_dev(CONST UB *devnm, CONST T_DDEV *ddev, T_IDEV *idev);

Parameter

CONST UB* devnm Physical Device Name Physical device name
CONST T_DDEV* ddev Define Device Device registration information
T_IDEV* idev Initial Device Information Device initial information

Return Parameter

ID devid Device ID Device ID
or Error Code Error code

idev Detail:

ID evtmbfid Event Notification
Message Buffer ID

Event notification message buffer
ID

(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_LIMIT Number of registrations exceeds the system limit
E_NOEXS The device specified in devnm does not exist (when ddev = NULL)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Registers a device (device driver) with the device name set in devnm, and passes the device ID of the registered
device in the return code. If a device with device name devnm is already registered, the registration is updated
with new information, in which case the device ID does not change.

ddev specifies the device registration information. When ddev = NULL is specified, device devnm registration is
deleted.

ddev is a structure in the following format:

typedef struct t_ddev {
void *exinf; /* extended information */

μT-Kernel 3.0 Specification 325 / 502

ATR drvatr; /* driver attributes */
ATR devatr; /* device attributes */
INT nsub; /* number of subunits */
SZ blksz; /* block size of device -specific data (-1: unknown) */
FP openfn; /* open function */
FP closefn; /* close function */
FP execfn; /* execute function */
FP waitfn; /* wait -for -completion function */
FP abortfn; /* abort function */
FP eventfn; /* event function */
/* Implementation -dependent information may be added beyond this point .*/

} T_DDEV;

exinf is used to store any desired information. The value is passed to the processing functions. Device
management pays no attention to the contents.

drvatr sets device driver attribute information. The lower bits indicate system attributes, and the high bits are
used for implementation-dependent attributes. The implementation-dependent attribute portion is used, for
example, to define validity flags when implementation-dependent data is added to T_DDEV.

drvatr := [TDA_OPENREQ] | [TDA_TMO_U] | [TDA_DEV_D]

#define TDA_OPENREQ 0x0001 /* open/close each time */
#define TDA_TMO_U 0x0002 /* timeout in microseconds is used */
#define TDA_DEV_D 0x0004 /* 64 bit device */

drvatr can be specified by combining the following driver attributes.

TDA_OPENREQ

When a device is opened multiple times, normally openfn is called only the first time it is opened and closefn
the last time it is closed. If TDA_OPENREQ is specified, then openfn/closefn will be called for all open/close
operations even in case of multiple openings.

TDA_TMO_U

Indicates that timeout in microseconds is used.

In this case, the timeout tmout of driver processing functions is specified in the TMO_U format (microseconds).

TDA_DEV_D

Indicates that a 64-bit device is used. In this case, the type of the request packet devreq of driver processing
functions is T_DEVREQ_D.

If TDA_TMO_U or TDA_DEV_D is specified, type of some parameters of driver processing functions is changed. If a
combination of multiple driver attributes that change the type of parameters is specified in a driver processing
function, the type of all specified parameters of that function is changed.

Device attributes are specified in devatr. The details of device attribute setting are as noted above.

The number of subunits is set in nsub. If there are no subunits, 0 is specified.

blksz sets the block size of device-specific data in bytes. In the case of a disk device, this is the physical block
size. It is set to 1 byte for a serial port, etc. For a device with no device-specific data, it is set to 0. For an
unformatted disk or other device whose block size is unknown, -1 is set. If blksz ≦ 0, device-specific data
cannot be accessed. When device-specific data is accessed by tk_rea_dev or tk_wri_dev, size * blksz must be
the size of the area being accessed, that is, the size of buf.

openfn, closefn, execfn, waitfn, abortfn, and eventfn set the entry address of driver processing functions. For
more details on driver processing functions, see Section 5.2.3.2, “Device Driver Interface”.

The device initialization information is returned in idev. This includes information set by default when the
device driver is started, and can be used as necessary. When idev = NULL is set, device initialization information
is not stored.

μT-Kernel 3.0 Specification 326 / 502

evtmbfid specifies the system default message buffer ID for event notification. If there is no system default
event notification message buffer, 0 is set.

Notification like the following is made to each subsystem when a device is registered or deleted. devid is the
device ID of the registered or deleted physical device.

Device registration or update:
tk_evt_ssy(0, TSEVT_DEVICE_REGIST, devid)

Device deletion:
tk_evt_ssy(0, TSEVT_DEVICE_DELETE, devid)

μT-Kernel 3.0 Specification 327 / 502

5.2.3.1.2 tk_ref_idv - Reference Device Initialization Information

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_idv(T_IDEV *idev);

Parameter

T_IDEV* idev Packet to Return Initial Device
Information

Pointer to the area to return the device
initialization information

Return Parameter

ER ercd Error Code Error code

idev Detail:

ID evtmbfid Event Notification Message
Buffer ID

Event notification message buffer ID

(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_MACV Memory access privilege error

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Gets device initialization information. The contents are the same as the information obtained by tk_def_dev.

Additional Notes

The error code E_MACV is common to many system calls, and usually not included in the error code list of
each system call. However, for this API, E_MACV is included in this error code list because it is the only
typical error.

μT-Kernel 3.0 Specification 328 / 502

5.2.3.2 Device Driver Interface

The device driver interface consists of processing functions (driver processing functions) specified when
registering a device.

Open function
ER openfn(ID devid, UINT omode, void *exinf);

Close function
ER closefn(ID devid, UINT option, void *exinf);

Execute function
ER execfn(T_DEVREQ *devreq, TMO tmout, void *exinf);

Wait-for-completion function
INT waitfn(T_DEVREQ *devreq, INT nreq, TMO tmout, void *exinf);

Abort function
ER abortfn(ID tskid, T_DEVREQ *devreq, INT nreq, void *exinf);

Event function
INT eventfn(INT evttyp, void *evtinf, void *exinf);

If TDA_TMO_U is specified for a driver attribute, the timeout specification tmout for the following driver processing
functions is set to TMO_U type (in microseconds).

Execute function
ER execfn(T_DEVREQ *devreq, TMO_U tmout_u, void *exinf);

Wait-for-completion function
INT waitfn(T_DEVREQ *devreq, INT nreq, TMO_U tmout_u, void *exinf);

If TDA_DEV_D is specified for a driver attribute, the type of request packet devreq for the following driver pro-
cessing functions is set to T_DEVREQ_D.

Execute function
ER execfn(T_DEVREQ_D *devreq_d, TMO tmout, void *exinf);

Wait-for-completion function
INT waitfn(T_DEVREQ_D *devreq_d, INT nreq, TMO tmout, void *exinf);

Abort function
ER abortfn(ID tskid, T_DEVREQ_D *devreq_d, INT nreq, void *exinf);

If TDA_TMO_U and TDA_DEV_D are specified set a driver attribute, a driver processing function is set to the one
that has parameters with all the specified types of changes were applied.

Execute function
ER execfn(T_DEVREQ_D *devreq_d, TMO_U tmout_u, void *exinf);

Wait-for-completion function
INT waitfn(T_DEVREQ_D *devreq_d, INT nreq, TMO_U tmout_u, void *exinf);

Driver processing functions are called by device management and run as a quasi-task portion. These driver
processing functions must be reentrant. Calling of these driver processing functions in a mutually exclusive
manner is not guaranteed. If, for example, there are simultaneous requests from multiple devices for the same
device, different tasks might call the same driver processing function at the same time. The device driver must
perform mutual exclusion control in such cases as necessary.

I/O requests to a device driver are made by means of the following request packet associated with a request
ID.

μT-Kernel 3.0 Specification 329 / 502

/*
* Device request packet: For 32-bit
* In: Input parameter to driver processing function (set in μT-Kernel/SM device ←↩

management)
* Out: Output parameter from driver processing function (set in driver processing function ←↩

)
* X: Parameters other than input and output
*/
typedef struct t_devreq {

struct t_devreq *next; /* In: Link to request packet (NULL: termination) */
void *exinf; /* X: Extended information */
ID devid; /* In: Target device ID */
INT cmd :4; /* In: Request command */
BOOL abort :1; /* In: TRUE if abort request */
W start; /* In: Starting data number */
SZ size; /* In: Request size */
void *buf; /* In: IO buffer address */
SZ asize; /* Out: Size of result */
ER error; /* Out: Error result */
/* Implementation -dependent information may be added beyond this point .*/

} T_DEVREQ;

/*
* Device request packet: For 64-bit
* In: Input parameter to driver processing function (set in μT-Kernel/SM device ←↩

management)
* Out: Output parameter from driver processing function (set in driver processing function ←↩

)
* X: Parameters other than input and output
*/
typedef struct t_devreq_d {

struct t_devreq_d *next; /* In: Link to request packet (NULL: termination) */
void *exinf; /* X: Extended information */
ID devid; /* In: Target device ID */
INT cmd :4; /* In: Request command */
BOOL abort :1; /* In: TRUE if abort request */
D start_d; /* In: Starting data number , 64-bit */
SZ size; /* In: Request size */
void *buf; /* In: IO buffer address */
SZ asize; /* Out: Size of result */
ER error; /* Out: Error result */
/* Implementation -dependent information may be added beyond this point .*/

} T_DEVREQ_D;

In: Input parameter to the driver processing function is set in μT-Kernel/SM device management. Should
not be changed on the device driver side. Parameters other than input parameters (In) are initially cleared to
0 by the device management. After that, device management does not modify them. Out: Output parameter
returned from the driver execute function is set in the driver processing function.

next is used to link the request packet. In addition to usage for keeping track of request packets in device
management, it is used also by the completion wait function (waitfn) and abort function (abortfn).

exinf can be used freely by the device driver. Device management does not pay attention to the contents.

The device ID of the device to which the request is issued is specified in devid.

The request command is specified in cmd as follows.

cmd := (TDC_READ || TDC_WRITE)

μT-Kernel 3.0 Specification 330 / 502

#define TDC_READ 1 /* read request */
#define TDC_WRITE 2 /* write request */

If abort processing is to be carried out, abort is set to TRUE right before calling the abort function (abortfn).
abort is a flag indicating whether abort processing was requested, and does not indicate that processing
was aborted. In some cases abort is set to TRUE even when the abort function (abortfn) is not called. Abort
processing is performed when a request with abort set to TRUE is actually passed to the device driver.

start, start_d, and size are just set as start, start_d, and size specified in tk_rea_dev, tk_rea_dev_du, tk_wri_dev,
and tk_wri_dev_du.

buf is just set as buf specified in tk_rea_dev, tk_rea_dev_du, tk_wri_dev, and tk_wri_dev_du. On systems that
support virtual memory, the memory space specified in buf may be nonresident or belong to task space, so
care must be taken to handle such cases.

The device driver sets in asize the value returned in asize by tk_wai_dev.

The device driver sets in error the error code passed by tk_wai_dev in its return code. E_OK indicates a
normal result.

Difference between T_DEVREQ and T_DEVREQ_D is only the part of their names being start or start_d, and
the data type.

The type of device request packet (T_DEVREQ or T_DEVREQ_D) is selected based on the driver attribute
(TDA_DEV_D) at device registration. For this reason, T_DEVREQ and T_DEVRE do not co-exist in the request
packet for one driver.

μT-Kernel 3.0 Specification 331 / 502

5.2.3.2.1 openfn - Open function

C Language Interface

ER ercd = openfn(ID devid, UINT omode, void *exinf);

Parameter

ID devid Device ID Device ID of the device to open
UINT omode Open Mode Open mode (same as tk_opn_dev)
void* exinf Extended Information Extended information set at device

registration

Return Parameter

ER ercd Error Code Error code

Error Code

Other Error code returned by the device driver

Description

The open function openfn is called when tk_opn_dev is invoked.

The function openfn performs processing to enable use of a device. Details of the processing are device-
dependent; if no processing is needed, it does nothing. The device driver does not need to remember whether
a device is open or not, nor is it necessary to treat as error the calling of another processing function simply
because the device was not opened (openfn had not been called). If another processing function is called for
a device that is not open, the necessary processing can be performed so long as there is no problem in device
driver operation.

When openfn is used to perform device initialization or the like, in principle no processing should be per-
formed that causes a wait. The processing and return from openfn must be as prompt as possible. In the case
of a device such as a serial port for which it is necessary to set the communication mode, for example, the
device can be initialized when the communication mode is set by tk_wri_dev. There is no need for openfn to
initialize the device.

When the same device is opened multiple times, normally this function is called only for the first time. If,
however, the driver attribute TDA_OPENREQ is specified in device registration, this function is called each time
the device is opened.

The openfn function does not need to perform any processing with regard to multiple opening or open mode,
which are handled by device management. Likewise, omode is simply passed as reference information; no
processing relating to omode is required.

openfn runs as a quasi-task portion of the task that issued tk_opn_dev. That is, it is executed in the context of
the quasi-task portion whose requesting task is the task that issued tk_opn_dev.

μT-Kernel 3.0 Specification 332 / 502

5.2.3.2.2 closefn - Close function

C Language Interface

ER ercd = closefn(ID devid, UINT option, void *exinf);

Parameter

ID devid Device ID Device ID of the device to close
UINT option Close Option Close option (same as tk_cls_dev)
void* exinf Extended Information Extended information set at device

registration

Return Parameter

ER ercd Error Code Error code

Error Code

Other Error code returned by the device driver

Description

The close function closefn is called when tk_cls_dev is invoked.

The closefn function performs processing to end use of a device. Details of the processing are device-
dependent; if no processing is needed, it does nothing.

If the device is capable of ejecting media and TD_EJECT is set in option, media ejection is performed.

When closefn is used to perform device shutdown processing or media ejection, in principle no processing
should be performed that causes a wait. The processing and return from closefn must be as prompt as possible.
If media ejection takes time, it is permissible to return from closefn without waiting for the ejection to complete.

When the same device is opened multiple times, normally this function is called only the last time it is closed.
If, however, the driver attribute TDA_OPENREQ is specified in device registration, this function is called each time
the device is closed. In this case TD_EJECT is specified in option only for the last time.

The closefn function does not need to perform any processing with regard to multiple opening or open mode,
which are handled by device management.

closefn runs as a quasi-task portion of the task that issued tk_cls_dev.

μT-Kernel 3.0 Specification 333 / 502

5.2.3.2.3 execfn - Execute function

C Language Interface

/* Execute function (32-bit request packet, millisecond timeout) */

ER ercd = execfn(T_DEVREQ *devreq, TMO tmout, void *exinf);

/* execute function (64-bit request packet, millisecond timeout) */

ER ercd = execfn(T_DEVREQ_D *devreq_d, TMO tmout, void *exinf);

/* execute function (32-bit request packet, microsecond timeout) */

ER ercd = execfn(T_DEVREQ *devreq, TMO_U tmout_u, void *exinf);

/* execute function (64-bit request packet, microsecond timeout) */

ER ercd = execfn(T_DEVREQ_D *devreq_d, TMO_U tmout_u, void *exinf);

Parameter

T_DEVREQ* devreq Device Request Packet Request packet (32-bit)
T_DEVREQ_D* devreq_d Device Request Packet Request packet (64-bit)
TMO tmout Timeout Request acceptance timeout (ms)
TMO_U tmout_u Timeout Request acceptance timeout (in

microseconds)
void* exinf Extended Information Extended information set at device

registration

Return Parameter

ER ercd Error Code Error code

Error Code

Other Error code returned by the device driver

Description

The execute function execfn is called when tk_rea_dev or tk_wri_dev is invoked.

Initiates the processing requested in devreq. This function initiates the requested processing only, returning
to its caller without waiting for the processing to complete. The time required to initiate processing depends
on the device driver; this function does not necessarily complete immediately.

When new processing cannot be accepted, this function goes to WAITING state for request acceptance. If
the new request cannot be accepted within the time specified in tmout, the function times out. The TMO_POL or
TMO_FEVR attribute can be specified in tmout. If the function times out, E_TMOUT is passed in the execfn return
code. The request packet error parameter does not change. Timeout applies to the request acceptance, not
to the processing after acceptance.

When error is passed in the execfn return code, the request is considered not to have been accepted and the
request packet is discarded.

μT-Kernel 3.0 Specification 334 / 502

If processing is aborted before the request is accepted (before the requested processing starts), E_ABORT is
passed in the execfn return code. In this case, the request packet is discarded. If the abort occurs after the
processing has been accepted, E_OK is returned for this function. The request packet is not discarded until
waitfn is executed and processing completes.

When abort occurs, the important thing is to return from execfn as quickly as possible. If processing will end
soon anyway without aborting, it is not necessary to abort.

execfn runs as a quasi-task portion of the task that issued tk_rea_dev, tk_wri_dev, tk_srea_dev, or tk_swri_dev.

In a device driver for which TDA_DEV_D is specified as an attribute at the time of registering the device, the
execute function (64-bit request packet, millisecond timeout) execfn is called when tk_rea_dev or tk_wri_dev
is invoked. In this case, the function specification is the same as that of 32-bit request packet, millisecond
timeout execfn, except that the parameter request packet is a 64-bit T_DEVREQ_D* devreq_d.

In a device driver for which TDA_TMO_U is specified as an attribute at the time of registering the device, the
execute function (32-bit request packet, microsecond timeout) execfn is called when tk_rea_dev or tk_wri_dev
is invoked. In this case, the function specification is the same as that of 32-bit request packet, millisecond
timeout execfn, except that the parameter timeout specification is a microsecond TMO_U tmout_u.

In a device driver for which both TDA_DEV_D and TDA_TMO_U are specified as an attribute at the time of regis-
tering the device, the execute function (64-bit request packet, microsecond timeout) execfn is called when
tk_rea_dev or tk_wri_dev is invoked. In this case, the function specification is the same as that of 32-bit re-
quest packet, millisecond timeout execfn, except that the parameter request packet is a 64-bit T_DEVREQ_D*
devreq_d and the parameter timeout specification is a microsecond TMO_U tmout_u.

μT-Kernel 3.0 Specification 335 / 502

5.2.3.2.4 waitfn - Wait-for-completion function

C Language Interface

/* wait-for-completion function (32-bit request packet, millisecond timeout) */

INT creqno = waitfn(T_DEVREQ *devreq, INT nreq, TMO tmout, void *exinf);

/* wait-for-completion function (64-bit request packet, millisecond timeout) */

INT creqno = waitfn(T_DEVREQ_D *devreq_d, INT nreq, TMO tmout, void *exinf);

/* wait-for-completion function (32-bit request packet, microsecond timeout) */

INT creqno = waitfn(T_DEVREQ *devreq, INT nreq, TMO_U tmout_u, void *exinf);

/* wait-for-completion function (64-bit request packet, microsecond timeout) */

INT creqno = waitfn(T_DEVREQ_D *devreq_d, INT nreq, TMO_U tmout_u, void *exinf);

Parameter

T_DEVREQ* devreq Device Request Packet Request packet list (32-bit)
T_DEVREQ_D* devreq_d Device Request Packet Request packet list (64-bit)
INT nreq Number of Requests Request packet count
TMO tmout Timeout Timeout (ms)
TMO_U tmout_u Timeout Timeout (in microseconds)
void* exinf Extended Information Extended information set at device

registration

Return Parameter

INT creqno Completed Request Packet
Number

Completed request packet number

or Error Code Error code

Error Code

Other Error code returned by the device driver

Description

The wait-for-completion function waitfn is called when tk_wai_dev is invoked.

devreq is a list of request packets in a chain linked by devreq->next. This function waits for completion of
any of the nreq request packets starting from devreq. The final next is not necessarily NULL, so the nreq must
always be followed. The number of the completed request packet (which one after devreq) is passed in the
return code. The first one is numbered 0 and the last one is numbered nreq - 1. Here completion means any
of normal completion, abnormal (error) termination, or abort.

The timeout for waiting for completion is set in tmout. The TMO_POL or TMO_FEVR attribute can be specified for
tmout. If the wait times out, the requested processing continues. The waitfn return code in case of timeout is

μT-Kernel 3.0 Specification 336 / 502

E_TMOUT. The request packet error parameter does not change. Note that if return from waitfn occurs while
the requested processing continues, error must be returned in the waitfn return code; but the processing must
not be completed when error is passed in the return code, and a value other than error must not be returned
if processing is ongoing. As long as error is passed in the waitfn return code, the request is considered to be
pending and no request packet is discarded. When the number of a request packet whose processing was
completed is passed in the waitfn return code, the processing of that request is considered to be completed
and that request packet is discarded.

I/O error and other device-related errors are stored in the request packet error parameter. Error is passed in
the waitfn return code when completion waiting did not take place properly. The waitfn return code is set in
the tk_wai_dev return code, whereas the request packet error value is returned in ioer.

The abort processing when the abort function abortfn was executed during completion waiting by waitfn differs
depending on whether to wait for completion of a single request (waitfn, nreq = 1) or multiple requests (waitfn,
nreq > 1). When waiting for completion of a single request, the request currently processing is aborted. On
the other hand, when waiting for completion of multiple requests, as a special handling, only the completion
waiting by waitfn is released and the processing for the request itself is not aborted. It means that, even if
the abort function abortfn is executed, the request packets’ abort remains FALSE and the processing for the
requests continues. E_ABORT is passed in the return code from the released waitfn.

During a wait for request completion, an abort request may be set in the abort parameter of a request packet.
In such a case, if it is a single request, the request abort processing must be performed. If the wait is for
multiple requests it is also preferable that abort processing be executed, but it is also possible to ignore the
abort flag.

When abort occurs, the important thing is to return from waitfn as quickly as possible. If processing will end
soon anyway without aborting, it is not necessary to abort.

As a rule, E_ABORT is returned in the request packet error parameter when processing is aborted; but a
different error code than E_ABORT may be returned as appropriate based on the device properties. It is
also permissible to return E_OK on the basis that the processing right up to the abort is valid. If processing
completes normally to the end, E_OK is returned even if there was an abort request.

waitfn runs as a quasi-task portion of the task that issued tk_wai_dev, tk_srea_dev, or tk_swri_dev.

In a device driver for which TDA_DEV_D is specified as an attribute at the time of registering the device, the
wait-for-completion function (64-bit request packet, millisecond timeout) waitfn is called when tk_wai_dev
is invoked. In this case, the function specification is the same as that of 32-bit request packet, millisecond
timeout waitfn, except that the parameter request packet is a 64-bit T_DEVREQ_D* devreq_d.

In a device driver for which TDA_TMO_U is specified as an attribute at the time of registering the device, the
wait-for-completion function (32-bit request packet, microsecond timeout) waitfn is called when tk_wai_dev
is invoked. In this case, the function specification is the same as that of 32-bit request packet, millisecond
timeout waitfn, except that the parameter timeout specification is a microsecond TMO_U tmout_u.

In a device driver for which TDA_DEV_D and TDA_TMO_U are specified as an attribute at the time of registering the
device, the wait-for-completion function (64-bit request packet, microsecond timeout) waitfn is called when
tk_wai_dev is invoked. In this case, the function specification is the same as that of 32-bit request packet,
millisecond timeout waitfn, except that the parameter request packet is a 64-bit T_DEVREQ_D* devreq_d and
the parameter timeout specification is a microsecond TMO_U tmout_u.

μT-Kernel 3.0 Specification 337 / 502

5.2.3.2.5 abortfn - Abort function

C Language Interface

/* abort function (32-bit request packet) */

ER ercd = abortfn(ID tskid, T_DEVREQ *devreq, INT nreq, void *exinf);

/* abort function (64-bit request packet) */

ER ercd = abortfn(ID tskid, T_DEVREQ_D *devreq_d, INT nreq, void *exinf);

Parameter

ID tskid Task ID Task ID of the task executing execfn
or waitfn

T_DEVREQ* devreq Device Request Packet Request packet list (32-bit)
T_DEVREQ_D* devreq_d Device Request Packet Request packet list (64-bit)
INT nreq Number of Requests Request packet count
void* exinf Extended Information Extended information set at device

registration

Return Parameter

ER ercd Error Code Error code

Error Code

Other Error code returned by the device driver

Description

The abort function abortfn is called when you want to promptly return from the currently running execute
function execfn or wait-for-completion function waitfn. Normally this means the request being processed is
aborted. If, however, the processing can be completed soon without aborting, it may not have to be aborted.
The important thing is to return as quickly as possible from execfn or waitfn.

abortfn is called in the following cases.

• When a break function is executing after a task exception and the task that raised the exception requests
abort processing, abortfn is used to abort the request being processed by that task.

• When a device is being closed by tk_cls_dev, and the device descriptor was processing a request, abortfn is
used to abort the request being processed by the device descriptor.

tskid indicates the task executing the request specified in devreq. In other words, it is the task executing
execfn or waitfn. devreq and nreq are the same as the parameters that were passed to execfn or waitfn. In the
case of execfn , nreq is always 1.

abortfn is called by a different task from the one executing execfn or waitfn. Since both tasks run concurrently,
mutual exclusion control must be performed as necessary. It is possible that the abortfn function will be called
immediately before calling execfn or waitfn, or during return from these functions. Measures must be taken
to ensure proper operation in such cases. Before abortfn is called, the abort flag in the request packet whose

μT-Kernel 3.0 Specification 338 / 502

processing is to be aborted is set to TRUE, enabling execfn or waitfn to know whether there is going to be an
abort request. Note also that abortfn can use tk_dis_wai for any object.

When waitfn is executing for multiple requests (nreq > 1), this is treated as a special case differing as follows
from other cases.

• Only the completion wait is aborted (waited is released), not the requested processing.

• The abort flag is not set in the request packet (remains as abort = FALSE).

Aborting a request when execfn and waitfn are not executing is done not by calling abortfn but by setting the
request packet abort flag. If execfn is called when the abort flag is set, the request is not accepted. If waitfn
is called, abort processing is the same as if abortfn is called.

If a request for which processing was started by execfn is aborted before waitfn was called to wait for its
completion, the completion of the aborted processing is notified when waitfn is called later. Even though
processing was aborted, the request itself is not discarded until its completion has been checked by waitfn.

abortfn initiates abort processing only, returning promptly without waiting for the abort to complete.

The abortfn that is executed on a task exception runs as a quasi-task portion of the task issuing tk_ras_tex that
raised the task exception. The abortfn that is executed on a device close runs as a quasi-task portion of the
task that issued tk_cls_dev.

In a device driver for which TDA_DEV_D is specified as an attribute at the time of registering the device, the
abort function (64-bit request packet) abortfn is called when you want to promptly return from the currently
running execute function execfn or wait-for-completion function waitfn. In this case, the function specification
is the same as that of 32-bit request packet abortfn, except that the parameter request packet is a 64-bit
T_DEVREQ_D* devreq_d.

μT-Kernel 3.0 Specification 339 / 502

5.2.3.2.6 eventfn - Event function

C Language Interface

INT retcode = eventfn(INT evttyp, void *evtinf, void *exinf);

Parameter

INT evttyp Event Type Driver request event type
void* evtinf Event Information Information for each event type
void* exinf Extended Information Extended information set at device

registration

Return Parameter

INT retcode Return Code Return code defined for each event type
or Error Code Error code

Error Code

Other Error code returned by the device driver

Description

When a state change occurs in the device or system which is caused by a factor other than normal device I/O
processing by an application interface, requiring some processing by the device driver, a driver request event
is raised and then the event function eventfn is called.

The driver request event is raised when suspending or resuming a device for power control (see tk_sus_dev)
or when connecting a removable device such as USB.

For example, when the system is suspended by tk_sus_dev, the driver request event for the suspend (TDV_SUSPEND)
is raised in the μT-Kernel (during tk_sus_dev processing) and the event function for each device is called with
evttyp = TDV_SUSPEND. The event function called for each device performs necessary operations for suspend
such as saving the state on receiving this driver request event.

The following driver request events are defined.

#define TDV_SUSPEND (-1) /* suspend */
#define TDV_RESUME (-2) /* resume */
#define TDV_CARDEVT 1 /* reserved */
#define TDV_USBEVT 2 /* USB event */

The driver request events with a negative value are called internally from the device management in the
μT-Kernel/SM, for suspend or resume processing.

On the other hand, the driver request events with a positive value (TDV_USBEVT) are reference specifications
which are not directly related to the μT-Kernel operation, and raised by calling tk_evt_dev. These driver
request events are used as needed to implement a bus driver for USB or other device.

The processing performed by the event function is defined for each event type. For suspend and resume
processings, see Section 5.2.3.4, “Device Suspend/Resume Processing”.

When a device event is called by tk_evt_dev, the eventfn return code is set transparently as the tk_evt_dev
return code.

Requests to event functions must be accepted even if another request is processed, and must be processed
as quickly as possible.

The eventfn runs as a quasi-task portion of the task that issued tk_evt_dev or tk_sus_dev that caused the event.

μT-Kernel 3.0 Specification 340 / 502

Additional Notes

The following behaviors are assumed for USB event.

Note that they describe implementation examples of device drivers that handle a device such as USB and are
not part of the μT-Kernel specification.

When a USB device is connected, a class driver should dynamically be mapped to the USB device to perform
an actual I/O processing.

For example, when a storage such as USB memory is connected, a device driver for the mass storage class
handles the I/O for the device, or when a USB camera is connected, a device driver for the video class
handles the I/O for the device. Which device driver should be used cannot be determined until the USB
device is connected.

In this case, the driver request event for the USB connection and the event function for each device driver are
used in order to map a class driver to the USB device. Specifically, when the USB bus driver (USB manager)
monitoring the USB ports detects a newly connected USB device, it sends the driver request event for the
USB connection (TDV_USBEVT) to each device driver which will be candidate of the class driver and then calls
the event function for each device.

The event function for each device returns whether or not it can support the newly connected USB device in
response to this TDV_USBEVT. The USB bus driver receives the return codes and determines the mapping to the
actual class driver.

μT-Kernel 3.0 Specification 341 / 502

5.2.3.3 Device Event Notification

A device driver sends events that occur on each device to the specific message buffer (event notification
message buffer) as device event notification messages. The event notification message buffer ID is referenced
or set as an attribute data of TDN_EVENT for each device.

The system default event notification message buffer is used immediately after device registration. As a device
is registered by tk_def_dev when a device driver is started, the system default event notification message buffer
ID value is returned as this API’s return parameter, the value is held in the device driver and is used as the
initial value of this attribute data, TDN_EVENT.

The system default event notification message buffer is created at system startup. Its size and maximum
message length are defined by TDEvtMbfSz in the system configuration information.

The message formats used in device event notification are as follows: The content and size of the event
notification message vary depending on the event type.

◇Basic format of device event notification

typedef struct t_devevt {
TDEvtTyp evttyp; /* event type */
/* Information specific to each event type is appended here. */

} T_DEVEVT;

◇Format of device event notification with device ID

typedef struct t_devevt_id {
TDEvtTyp evttyp; /* event type */
ID devid; /* Device ID */
/* Information specific to each event type is appended here. */

} T_DEVEVT_ID;

◇Format of device event notification with extended information

typedef struct t_devevt_ex {
TDEvtTyp evttyp; /* event type */
ID devid; /* Device ID */
UB exdat [16]; /* Extended information */
/* Information specific to each event type is appended here. */

} T_DEVEVT_EX;

The event type of a device event notification is classified as follows:

a. Basic event notification (event type: 0x0001 to 0x002F)

Basic event notification from a device

b. System event notification (event type: 0x0030 to 0x007F)

Event notification related to entire system such as power supply control

c. Event notification with extended information (event type: 0x0080 to 0x00FF)

Event notification from a device with extended information

d. User-defined event notification (event type: 0x0100 to 0xFFFF)

Notification of event that users can arbitrarily define

Typical event types are as follows:

μT-Kernel 3.0 Specification 342 / 502

typedef enum tdevttyp {
TDE_unknown = 0, /* undefined */
TDE_MOUNT = 0x01 , /* media insert */
TDE_EJECT = 0x02 , /* Eject media */
TDE_POWEROFF = 0x31 , /* power switch off */
TDE_POWERLOW = 0x32 , /* low power alarm */
TDE_POWERFAIL = 0x33 , /* abnormal power */
TDE_POWERSUS = 0x34 /* auto suspend */

} TDEvtTyp;

Measures must be taken so that if event notification cannot be sent because the message buffer is full, the lack
of notification will not adversely affect operation on the receiving end. One option is to hold the notification
until space becomes available in the message buffer, but in that case other device driver processing should
not, as a rule, be allowed to fall behind as a result. Processing on the receiving end should be designed to
avoid message buffer overflow as much as possible.

μT-Kernel 3.0 Specification 343 / 502

5.2.3.4 Device Suspend/Resume Processing

Device drivers perform suspend and resume operations in response to the issuing of suspend/resume events
(TDV_SUSPEND/TDV_RESUME) to the event handling function (eventfn). Suspend and resume events are issued
only to physical devices.

5.2.3.4.1 Device suspend processing

The event for starting suspend processing is as follows:

evttyp = TDV_SUSPEND
evtinf = NULL (none)

By issuing suspend event (TDV_SUSPEND), suspend processing takes place as follows.

1. If there is a request being processed at the time, the device driver waits for it to complete, pauses it or
aborts it. Which of these options to take depends on the device driver implementation. Since the sus-
pension must be effected as quickly as possible, however, pause or abort should be chosen if completion
of the request will take time.

Suspend events can be issued only for physical devices, but the same processing is applied to all logical
devices included in the physical device.

Pause: Processing is suspended, then continues after the device resumes operation.
Abort: Processing is aborted just as when the abort function (abortfn) is executed, and is not continued after the device resumes operation.

2. New requests other than a resume event are not accepted.

3. The device power is cut off and other suspend operation is performed.

Abort should be avoided if possible because of its effects on applications. It should be used only in such
cases as long input wait from a serial port, or when pause would be difficult. Normally it is best to wait for
completion of a request or, if possible, choose pause (suspend and resume).

Requests arriving at the device driver in suspend state are made to wait until operation resumes, after which
they are accepted for processing. If the request does not involve access to the device, however, or otherwise
can be processed even during suspension, a request may be accepted without waiting for resumption.

5.2.3.4.2 Device resume processing

The event for starting resume processing is as follows:

evttyp = TDV_RESUME
evtinf = NULL (none)

By issuing resume event (TDV_RESUME), resume processing takes place as follows.

1. The device power is turned back on, the device states are restored and other device resume processing
is performed.

2. Paused processing is resumed.

3. Accepting request is resumed.

μT-Kernel 3.0 Specification 344 / 502

5.3 Interrupt Management Functions

μT-Kernel/SM interrupt management functions are functions for disabling or enabling external interrupt,
retrieving interrupt disable status, controlling interrupt controller, etc.

Interrupt handling is largely hardware-dependent, different on each system, and therefore difficult to stan-
dardize. The following are given as standard specification, but it may not be possible to follow these exactly
on all systems. Implementors should comply with these specifications as much as possible; but where imple-
mentation is not feasible, full compliance is not mandatory. If functions not in the standard specification are
added, however, the function names must be different from those given here. In any case, DI, EI, and isDI
must be implemented in accordance with the standard specification.

Interrupt management functions are provided as library functions or C language macros. These can be called
from a task-independent portion and while dispatching and interrupts are disabled.

μT-Kernel 3.0 Specification 345 / 502

5.3.1 CPU Interrupt Control

These functions control the external interrupt mask flag or interrupt mask level in the CPU. Generally speaking,
interrupt controller is not touched.

DI disables all the external interrupts and EI enables them. After DI is issued and until EI is issued, the
system is in external interrupt disabled state. In this state, an indivisible processing can be performed since
no interruption occurs and no dispatching takes place.

There are a few restrictions about the API to control CPU interrupt and the external interrupt disabled state.

• CPU interrupt control API is usually implemented as C language compile time macro to set the external inter-
rupt mask flag or interrupt mask level inside the CPU. Hence, this API can be invoked only in the privileged
level that can access and control hardware directly. The precise meaning of the level is implementation-
dependent.

• CPU interrupt control API only sets CPU’s external interrupt mask flag or interrupt mask level only. Hence,
generally speaking, except for some implementations, the execution of these APIs will not cause delayed
dispatching.

• There are restrictions on the available APIs in the external interrupt disabled state. API that puts the calling
task into waiting state cannot be invoked. The system should return E_CTX. However, the proper error
checking to return E_CTX is implementation-dependent. The following APIs of μT-Kernel/SM, Interrupt
Management Functions and I/O Port Access Support Functions, can be invoked even when external inter-
rupt is disabled. Whether other APIs can be invoked when external interrupt is disabled is implementation-
dependent.

• System timer interrupt is disabled in the external interrupt disabled state. Hence, no timeout occurs, and
no time event handler processing occurs.

Additional Notes
The APIs for controlling CPU interrupt is meant for device drivers to perform indivisible execution for low-level
control such as hardware by disabling external interrupt temporarily. However, the disabling of external inter-
rupt reduces the system responsiveness and the real-time performance suffers. So the indivisible operation
should be finished quickly and external interrupt disabled state should be exited soon.
External interrupt disabled state entered by DI is very similar to task-independent portion. Even if an API that
would usually cause dispatch such as tk_wup_tsk is invoked, dispatching does not occur. Afterward, when
EI is issued to return to external interrupt enabled state, the delayed dispatching associated with EI do not
occur generally (except for some implementations). As a result, after EI is issued, we may have an unexpected
situation where a lower priority task continues to run even though a higher priority task in READY state exists.
To avoid the unexpected situation, when a program needs to issue an API that causes dispatching during
the time interval that starts with DI and ends with EI, it is recommended to surround the interval of external
interrupt disabled state by a pair of tk_dis_dsp and tk_ena_dsp. Namely, the APIs should be issued in the
following order: tk_dis_dsp → DI → API that causes dispatching → EI → tk_ena_dsp. With this order of issuing
the APIs, external interrupt and dispatching are disabled between DI and EI. Only dispatching is disabled
bewteen tk_dis_dsp and tk_ena_dsp. And at the timing of the last tk_ena_dsp, delayed dispatching does take
place. Hence, the unexpected situation mentioned in the preceding sentences is corrected after all. Issueing
the APIs in this order guarantees the same system behavior that is not implementation-dependent.

μT-Kernel 3.0 Specification 346 / 502

5.3.1.1 DI - Disable External Interrupts

C Language Interface

#include <tk/tkernel.h>

DI (UINT intsts);

Parameter

UINT intsts Interrupt Status Variable that stores the CPU external
interrupt flag

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Controls the external interrupt flag in the CPU and disables all external interrupts. Also stores the flag state
in intsts before disabling interrupt.

intsts is not a pointer. Write a variable directly. Generally, this API is defined as a C language macro.

Regarding the APIs that can be issued during external interrupt disabled state, see the explanation at the
beginning of Section 5.3.1, “CPU Interrupt Control”.

μT-Kernel 3.0 Specification 347 / 502

5.3.1.2 EI - Enable External Interrupt

C Language Interface

#include <tk/tkernel.h>

EI (UINT intsts);

Parameter

UINT intsts Interrupt Status Variable that stores the CPU external
interrupt flag

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Controls the external interrupt flag in the CPU and reverts the flag state to intsts. That is, this API reverts the
flag state to the state before disabling external interrupts by the previously executed DI(intsts).

If the state before executing DI(intsts) was the external-interrupt-enabled, the subsequent EI(intsts) enables
external interrupts. On the other hand, if the state was already interrupt-disabled at the time DI(intsts) was
executed, interrupt is not enabled by EI(intsts). However, if 0 is specified in intsts, the external interrupt flag
in the CPU is set to the interrupt-enable state.

intsts must be either the value saved by DI or 0. If any other value is specified, the subsequent correct
behavior is not guaranteed.

The specifications pays attention to the execution efficiency to minimize overhead. Therefore, this API is
usually implemented using assembly language or C language macro. This API controls the external inter-
rupt mask flag in the CPU only and does nothing else. No error result is returned. Hence, except for some
implementations, the execution of this API will not cause delayed dispatching, generally speaking.

μT-Kernel 3.0 Specification 348 / 502

5.3.1.3 isDI - Get Interrupt Disable Status

C Language Interface

#include <tk/tkernel.h>

BOOL disint = isDI(UINT intsts);

Parameter

UINT intsts Interrupt Status Variable that stores the CPU external
interrupt flag

Return Parameter

BOOL disint Interrupt Disabled Status External interrupt disabled status

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Checks the external interrupt flag in the CPU that was stored in intsts by the previously executed DI, and
returns TRUE(a non-zero value) if the flag status is determined as the interrupt-disabled, or FALSE otherwise.

intsts must be the value saved by DI. If any other value is specified, the subsequent correct behavior is not
guaranteed.

This specification pay attention to the execution efficiency to minimize overhead. Therefore, this API is usually
implemented using assembly language or C language macro.

Sample Usage of isDI

void foo()
{

UINT intsts;

DI(intsts);

if (isDI(intsts)) {
/* Interrupt was already disabled at the time the above DI() was called */

} else {
/* Interrupt was enabled at the time the above DI() was called */

}

EI(intsts);
}

μT-Kernel 3.0 Specification 349 / 502

5.3.1.4 SetCpuIntLevel - Set Interrupt Mask Level in CPU

C Language Interface

#include <tk/tkernel.h>

void SetCpuIntLevel(INT level);

Parameter

INT level Interrupt Mask Level Interrupt mask level

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_CPUINTLEVEL Support of CPU interrupt mask level

Description

Set interrupt mask level of CPU and disable interrupts that have lower interrupt priority than level. Interrupts
that have interrupt priority that is equal to level or higher are enabled.

When INTLEVEL_DI is specified to level, the interrupt mask level within the interrupt controller is set to disable
all external interrupts at all priority levels. Generally speaking, this is the same state of the system after DI is
called.

When INTLEVEL_EI is specified to level, the mask level within the interrupt controller is set to enable all external
interrupts at all priority levels. Generally speaking, this is the same state of the system after EI(0) is called.

While interrupts are disabled due to the execution of this API, dispatch may be delayed, as in the case of the
interrupt handler’s being executed, until the interrupts are enabled again.

The range of value that can be specified by level and the concrete value of INTLEVEL_DI are implementation-
dependent. The ordering relation of the interrupt level as numeric value and the interrupt priority is implementation-
dependent. Generally speaking, the specification about these is decided based on the CPU architecture.

The specifications pays attention to the execution efficiency to minimize overhead. Therefore, this API is
usually implemented using assembly language or C language macro. This API controls the interrupt mask level
in the CPU only and does nothing else. No error result is returned. Hence, except for some implementations,
the execution of this API will not cause delayed dispatching, generally speaking.

μT-Kernel 3.0 Specification 350 / 502

Additional Notes

”Interrupt mask level” is defined to be the lower bound of interrupt priority level (interrupt level) for external
interrupts that are enabled (masked). External interrupts with priorities equal to or higher than the interrupt
mask level are enabled.

This API sets the interrupt mask level within CPU, and has a similar function as that of SetCtrlIntLevel which
sets the interrupt mask level within the interrupt controller. The former affects the result of interrupt en-
able/disable setting done by DI, EI. The latter has nothing to do with this.

This API sets the interrupt mask level within CPU without regard to the previous setting. Note that there are
both cases of either the increase of the disabled interrupts, or the decrease of disabled interrupts after the
execution of this API.

μT-Kernel 3.0 Specification 351 / 502

5.3.1.5 GetCpuIntLevel - Get Interrupt Mask Level in CPU

C Language Interface

#include <tk/tkernel.h>

INT level = GetCpuIntLevel(void);

Parameter

None.

Return Parameter

INT level Interrupt Mask Level Interrupt mask level

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_CPUINTLEVEL Support of CPU interrupt mask level

Description

Get the current value of interrupt mask level in CPU, and return it as the value of return parameter level.

The range of value that can be specified by level is implementation-dependent.

Additional Notes

See the explanation and additional notes in SetCpuIntLevel.

μT-Kernel 3.0 Specification 352 / 502

5.3.2 Control of Interrupt Controller

These functions control the interrupt controller. Generally they do not perform any operation with respect to
the CPU interrupt flag.

μT-Kernel 3.0 Specification 353 / 502

5.3.2.1 EnableInt - Enable Interrupts

C Language Interface

#include <tk/tkernel.h>

void EnableInt(UINT intno);
void EnableInt(UINT intno, INT level);

Parameter

UINT intno Interrupt Number Interrupt number
INT level Interrupt Priority Level Interrupt priority level

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_INTCTRL Support of interrupt controller management

Additionally, the following service profile items are related to this API.

TK_HAS_ENAINTLEVEL Interrupt priority level (level) can be specified as the 2nd
argument

Description

Enable interrupt with interrupt number, intno. On a system where interrupt priority level can be specified,
level is used to specify the interrupt priority level.

The interrupt number that can be specified in intno is limited to a number that can be usable by tk_def_int and
at the same time, an interrupt number that is controlled by the interrupt controller. The subsequent correct
behavior of the system as a whole when an invalid intno is specified is not guaranteed.

Either the support of level or the support without level is provided.

Additional Notes

This API does not check for error just as other interrupt-related APIs do not.

μT-Kernel 3.0 Specification 354 / 502

5.3.2.2 DisableInt - Disable Interrupts

C Language Interface

#include <tk/tkernel.h>

void DisableInt(UINT intno);

Parameter

UINT intno Interrupt Number Interrupt number

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_INTCTRL Support of interrupt controller management

Description

Disable interrupt with the interrupt number, intno. Generally speaking, an interrupt that is disabled will
become pending and, once it is enabled by EnableInt, an interrupt is generated. If it is desired to cancel an
interrupt condition that became pending because the interrupt was disabled, ClearInt must be called.

The interrupt number that can be specified in intno is limited to a number that can be usable by tk_def_int and
at the same time, an interrupt number that is controlled by the interrupt controller. The subsequent correct
behavior of the system as a whole when an invalid intno is specified is not guaranteed.

Additional Notes

This API does not check for error just as other interrupt-related APIs do not.

μT-Kernel 3.0 Specification 355 / 502

5.3.2.3 ClearInt - Clear Interrupt

C Language Interface

#include <tk/tkernel.h>

void ClearInt(UINT intno);

Parameter

UINT intno Interrupt Number Interrupt number

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_INTCTRL Support of interrupt controller management

Description

If an interrupt with interrupt number, intno, has been generated, it is cleared.

The interrupt number that can be specified in intno is limited to a number that can be usable by tk_def_int and
at the same time, an interrupt number that is controlled by the interrupt controller. The subsequent correct
behavior of the system as a whole when an invalid intno is specified is not guaranteed.

Additional Notes

This API does not check for errors since it focuses on the execution efficiency to minimize overhead.

μT-Kernel 3.0 Specification 356 / 502

5.3.2.4 EndOfInt - Issue EOI to Interrupt Controller

C Language Interface

#include <tk/tkernel.h>

void EndOfInt(UINT intno);

Parameter

UINT intno Interrupt Number Interrupt number

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_INTCTRL Support of interrupt controller management

Description

Issue EOI to Interrupt Controller. intnomust identify an interrupt that is the target of EOI. Generally this must
be executed at the end of an interrupt handler.

The interrupt number that can be specified in intno is limited to a number that can be usable by tk_def_int and
at the same time, an interrupt number that is controlled by the interrupt controller. The subsequent correct
behavior of the system as a whole when an invalid intno is specified is not guaranteed.

Additional Notes

This API does not check for errors since it focuses on the execution efficiency to minimize overhead.

μT-Kernel 3.0 Specification 357 / 502

5.3.2.5 CheckInt - Check Interrupt

C Language Interface

#include <tk/tkernel.h>

BOOL rasint = CheckInt(UINT intno);

Parameter

UINT intno Interrupt Number Interrupt number

Return Parameter

BOOL rasint Interrupt Raised Status External interrupt raised status

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_INTCTRL Support of interrupt controller management

Description

Check to see if an interrupt with interrupt number, intno, has been generated. If an interrupt with the interrupt
number, intno, has been generated, TRUE (a non-zero value) is returned, and if it has not, then FALSE is returned.

μT-Kernel 3.0 Specification 358 / 502

5.3.2.6 SetIntMode - Set Interrupt Mode

C Language Interface

#include <tk/tkernel.h>

void SetIntMode(UINT intno, UINT mode);

Parameter

UINT intno Interrupt Number Interrupt number
UINT mode Mode Interrupt mode

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_INTMODE Support of setting interrupt mode

Description

Set the interrupt mode of interrupt specified by intno to mode.

The interrupt number that can be specified in intno is limited to a number that can be usable by tk_def_int and
at the same time, an interrupt number that is controlled by the interrupt controller. The subsequent correct
behavior of the system as a whole when an invalid intno is specified is not guaranteed.

The settable modes and how to specify mode are implementation-dependent. The following is an example of
settable modes:

mode := (IM_LEVEL || IM_EDGE) | (IM_HI || IM_LOW)

#define IM_LEVEL 0x0002 /* Level trigger */
#define IM_EDGE 0x0000 /* Edge trigger */
#define IM_HI 0x0000 /* H level/Interrupt at rising edge */
#define IM_LOW 0x0001 /* L level/Interrupt at falling edge */

If invalid mode is specified, the subsequent correct behavior is not guaranteed.

μT-Kernel 3.0 Specification 359 / 502

Additional Notes

This API does not check for error just as other interrupt-related APIs do not.

μT-Kernel 3.0 Specification 360 / 502

5.3.2.7 SetCtrlIntLevel - Set Interrupt Mask Level in Interrupt Controller

C Language Interface

#include <tk/tkernel.h>

void SetCtrlIntLevel(INT level);

Parameter

INT level Interrupt Mask Level Interrupt mask level

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_CTRLINTLEVEL Support of interrupt controller mask level

Description

Set interrupt mask level of the interrupt controller and disable interrupts that have lower interrupt priority
than level. Interrupts that have interrupt priority that is equal to level or higher are enabled.

When INTLEVEL_DI is specified to level, the interrupt mask level within the interrupt controller is set to disable
all external interrupts at all priority levels.

When INTLEVEL_EI is specified to level, the mask level within the interrupt controller is set to enable all external
interrupts at all priority levels.

While interrupts are disabled due to the execution of this API, dispatch may be delayed, as in the case of the
interrupt handler’s being executed, until the interrupts are enabled again.

The range of value that can be specified by level and the concrete value of INTLEVEL_DI are implementation-
dependent. The ordering relation of the interrupt level as numeric value and the interrupt priority is implementation-
dependent. Generally speaking, the specification about these is decided based on the CPU architecture.

Additional Notes

See the additional notes for SetCpuIntLevel.

μT-Kernel 3.0 Specification 361 / 502

This API sets the interrupt mask level within interrupt controller without regard to the previous setting. Note
that there are both cases of either the increase of the disabled interrupts, or the decrease of disabled interrupts
after the execution of this API.

This API does not check for errors since it focuses on the execution efficiency to minimize overhead.

μT-Kernel 3.0 Specification 362 / 502

5.3.2.8 GetCtrlIntLevel - Get Interrupt Mask Level in Interrupt Controller

C Language Interface

#include <tk/tkernel.h>

INT level = GetCtrlIntLevel(void);

Parameter

None.

Return Parameter

INT level Interrupt Mask Level Interrupt mask level

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_CTRLINTLEVEL Support of interrupt controller mask level

Description

This returns the current interrupt mask level configured inside the interrupt controller, and return it in the
return parameter level.

The range of value that can be specified by level is implementation-dependent.

Additional Notes

See the additional notes for SetCpuIntLevel.

μT-Kernel 3.0 Specification 363 / 502

5.4 I/O Port Access Support Functions

I/O port access support functions support accesses or operations to the I/O devices. These include functions
that read from or write to the I/O port of the specified address using the unit of byte or word, and a function
that realizes a wait for a short time (micro wait) which is used for I/O device operations.

I/O port access support functions are provided as library functions or C language macros. These can be called
from a task-independent portion or while task dispatching and interrupts are disabled.

5.4.1 I/O Port Access

In a system with separate I/O space and memory space, I/O port access functions access I/O space. In a
system with memory-mapped I/O only, I/O port access functions access memory space. Using these functions
will improve software portability and readability even in a memory-mapped I/O system.

μT-Kernel 3.0 Specification 364 / 502

5.4.1.1 out_b - Write to I/O Port (In Unit of Byte)

C Language Interface

#include <tk/tkernel.h>

void out_b(INT port, UB data);

Parameter

INT port I/O Port Address I/O port address
UB data Write Data Data to be written (in unit of byte)

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_IOPORT Support of I/O port access

Description

Writes data in byte (8-bit) to the I/O port pointed by the address port.

μT-Kernel 3.0 Specification 365 / 502

5.4.1.2 out_h - Write to I/O Port (In Unit of Half-word)

C Language Interface

#include <tk/tkernel.h>

void out_h(INT port, UH data);

Parameter

INT port I/O Port Address I/O port address
UH data Write Data Data to be written (in unit of half-word)

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_IOPORT Support of I/O port access

Description

Writes data in a half-word (16-bit) to the I/O port pointed by the address port.

μT-Kernel 3.0 Specification 366 / 502

5.4.1.3 out_w - Write to I/O Port (In Unit of Word)

C Language Interface

#include <tk/tkernel.h>

void out_w(INT port, UW data);

Parameter

INT port I/O Port Address I/O port address
UW data Write Data Data to be written (in unit of word)

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_IOPORT Support of I/O port access

Description

Writes data in a word (32-bit) to the I/O port pointed by the address port.

μT-Kernel 3.0 Specification 367 / 502

5.4.1.4 out_d - Write to I/O Port (In Unit of Double-word)

C Language Interface

#include <tk/tkernel.h>

void out_d(INT port, UD data);

Parameter

INT port I/O Port Address I/O port address
UD data Write Data Data to be written (in unit of

double-word)

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_IOPORT Support of I/O port access
TK_HAS_DOUBLEWORD Support of 64-bit data types (D, UD, VD)

Description

Writes data in a double-word (64-bit) to the I/O port pointed by the address port.

Note that, in a system where I/O port cannot be accessed in double-word (64-bit) due to hardware constraint,
data is separated into shorter units than double-word (64-bit) before they are written.

Rationale for the Specification

There are many systems where I/O port cannot be accessed in double-word (64-bit) due to hardware con-
straint such as 32-bit or less I/O data bus. In such systems, the strict specification of out_d and in_d cannot
be implemented; that is, they cannot process data in one chunk of the specified bit width. In terms of the
original purpose of this API, it is preferable not to implement the out_d and in_d or return an error at runtime.
However, it is not practical to detect an error by determining the bus configuration at runtime, and it is often
harmless to separate 64-bit data into 32-bit or narrower units before writing.

This is why the specification of out_d and in_d allow for the case where 64-bit data cannot be processed in one
chunk. Therefore, whether out_d and in_d support the block access to 64-bit I/O port or not is implementation-

μT-Kernel 3.0 Specification 368 / 502

dependent. If the block access to 64-bit I/O port is needed, the system hardware configuration and handling
of out_d and in_d should be checked.

μT-Kernel 3.0 Specification 369 / 502

5.4.1.5 in_b - Read from I/O Port (In Unit of Byte)

C Language Interface

#include <tk/tkernel.h>

UB data = in_b(INT port);

Parameter

INT port I/O Port Address I/O port address

Return Parameter

UB data Read Data Data to be read (in unit of byte)

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_IOPORT Support of I/O port access

Description

Reads data in a byte (8-bit) from the I/O port pointed by the address port and returns it in the return parameter
data.

μT-Kernel 3.0 Specification 370 / 502

5.4.1.6 in_h - Read from I/O Port (In Unit of Half-word)

C Language Interface

#include <tk/tkernel.h>

UH data = in_h(INT port);

Parameter

INT port I/O Port Address I/O port address

Return Parameter

UH data Read Data Data to be read (in unit of half-word)

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_IOPORT Support of I/O port access

Description

Reads data in a half-word (16-bit) from the I/O port pointed by the address port and returns it in the return
parameter data.

μT-Kernel 3.0 Specification 371 / 502

5.4.1.7 in_w - Read from I/O Port (In Unit of Word)

C Language Interface

#include <tk/tkernel.h>

UW data = in_w(INT port);

Parameter

INT port I/O Port Address I/O port address

Return Parameter

UW data Read Data Data to be read (in unit of word)

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_IOPORT Support of I/O port access

Description

Reads data in a word (32-bit) from the I/O port pointed by the address port and returns it in the return
parameter data.

μT-Kernel 3.0 Specification 372 / 502

5.4.1.8 in_d - Read from I/O Port (In Unit of Double-word)

C Language Interface

#include <tk/tkernel.h>

UD data = in_d(INT port);

Parameter

INT port I/O Port Address I/O port address

Return Parameter

UD data Read Data Data to be read (in unit of double-word)

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_IOPORT Support of I/O port access
TK_HAS_DOUBLEWORD Support of 64-bit data types (D, UD, VD)

Description

Reads data in a double-word (64-bit) from the I/O port pointed by the address port and returns it in the return
parameter data.

Note that, in a system where I/O port cannot be accessed in one chunk of double-word (64-bit) due to hardware
constraint, data is separated into shorter units than double-word (64-bit) before reading.

Rationale for the Specification

See Section 5.4.1.4, “out_d - Write to I/O Port (In Unit of Double-word)”.

μT-Kernel 3.0 Specification 373 / 502

5.4.2 Micro Wait

5.4.2.1 WaitUsec - Micro Wait (Microseconds)

C Language Interface

#include <tk/tkernel.h>

void WaitUsec(UW usec);

Parameter

UW usec Micro Seconds Wait time (in microseconds)

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_MICROWAIT Support of micro wait

Description

Performs a micro wait for the specified interval (in microseconds).

This wait is usually implemented as a busy loop. This means that the micro wait occurs in the task RUNNING
state rather than WAITING state.

The micro wait is easily influenced by the runtime environment, such as execution in RAM, execution in ROM,
memory cache on or off, etc. The wait time is therefore not very accurate.

μT-Kernel 3.0 Specification 374 / 502

5.4.2.2 WaitNsec - Micro Wait (Nanoseconds)

C Language Interface

#include <tk/tkernel.h>

void WaitNsec(UW nsec);

Parameter

UW nsec Nanoseconds Wait time (in nanoseconds)

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_MICROWAIT Support of micro wait

Description

Performs a micro wait for the specified interval (in nanoseconds).

This wait is usually implemented as a busy loop. This means that the micro wait occurs in the task RUNNING
state rather than WAITING state.

The micro wait is easily influenced by the runtime environment, such as execution in RAM, execution in ROM,
memory cache on or off, etc. The wait time is therefore not very accurate.

μT-Kernel 3.0 Specification 375 / 502

5.5 Power Management Functions

Power management functions are used to realize system power saving. Power management functions are
called as a callback type function from within μT-Kernel/OS.

Though low_pow and off_pow exist as part of APIs that are defined in the power management function, they
are INTERNAL reference specification and should be used only internally inside the μT-Kernel. Since device
drivers, middleware, and applications do not call these APIs directly, it is allowed to modify the functions or
their APIs in the original specification to realize more advanced power management function. If, however,
the new functions implemented have only the equivalent or similar performance as the APIs being defined as
the INTERNAL reference specification here, it is preferable to follow this INTERNAL reference specification
in order to enhance the program reusability.

Calling method of APIs for these functions is also implementation-dependent. Simple system calls are possi-
ble, as is the use of a trap. These functions may be provided in programs other than the μT-Kernel. Use of
an extended SVC or other means that makes use of μT-Kernel function is not possible, however.

μT-Kernel 3.0 Specification 376 / 502

5.5.1 low_pow - Move System to Low-power Mode

C Language Interface

void low_pow(void);

Parameter

None.

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
NO NO NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_LOWPOWER Support of power management functions

Description

It is called within the μT-Kernel task dispatcher, and performs processing that will put CPU hardware into
low-power consumption mode.

After moving CPU to the low-power mode, low_pow waits for an external interrupt. When an external interrupt
occurs, low_pow moves the CPU and its associated hardware back to the normal mode (non low-power mode)
and then returns to the caller of it.

The detailed processing procedure for low_pow is as follows:

1. Move CPU to the low-power mode. For example, lower the clock frequency.

2. Stop CPU, waiting for an external interrupt. For example, execute such a CPU instruction.

3. Resume CPU after an external interrupt (by hardware).

4. Move the CPU back to the normal mode. For example, restore the normal clock frequency.

5. Return to the caller. Caller is actually the internal dispatcher within μT-Kernel.

When implementing low_pow, the following points need to be noted:

• This function is called in interrupts disabled state.

μT-Kernel 3.0 Specification 377 / 502

• Interrupts must not be enabled.

• Since the processing speed affects the speed of response to an interrupt, it should be as fast as possible.

Additional Notes

The task dispatcher calls low_pow to lower the power consumption when it has no tasks to be executed.

μT-Kernel 3.0 Specification 378 / 502

5.5.2 off_pow - Move System to Suspend State

C Language Interface

void off_pow(void);

Parameter

None.

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
NO NO NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_LOWPOWER Support of power management functions

Description

This is called during the processing of tk_set_pow with powmode = TPW_DOSUSPEND within μT-Kernel, and it will
move the CPU hardware and its peripherals to suspend state (state where the applied power is off).

After moving the hardware to the suspend state, off_pow waits for a resume factor (power on, etc.). When a
resume factor occurs, off_pow releases the suspend state and then returns to the caller of it.

The detailed processing procedure for off_pow is as follows:

1. Move CPU to the suspend state and wait for a resume factor. For example, stop the clock.

2. Resume CPU on the occurrence of a resume factor (by hardware).

3. Move CPU or other hardware back to the normal state, if necessary. Release the suspend state.(may be
processed by hardware together with the previous step)

4. Return to the caller. Caller is actually the processing portion of tk_set_pow in μT-Kernel.

When implementing off_pow, the following points need to be noted:

• This function is called in interrupts disabled state.

• Interrupts must not be enabled.

μT-Kernel 3.0 Specification 379 / 502

Note that the device drivers perform the suspending and resuming of peripherals and other devices. For more
details, see the description of tk_sus_dev.

μT-Kernel 3.0 Specification 380 / 502

5.6 System Configuration Information Management Functions

System configuration information management functions maintain and manage various information related
to system configuration.

A part of system configuration information including the information on the maximum number of tasks, timer
interrupt intervals, etc. are defined as the standard definition. Other than these, any information arbitrarily
defined in applications, subsystems, or device drivers can be used by adding it to the system configuration
information.

The format of system configuration information consists of a name and defined data as a pair.

Name
The name is a string of up to 16 characters. A character encoding is US-ASCII.

Characters that can be used (UB) are a to z, A to Z, 0 to 9 and ’_’ (underscore).

Defined Data
Data consists of numbers (integers) or character strings.

Characters that can be used (UB) are any characters other than 0x00 to 0x1F, 0x7F, or 0xFF (in character
code).

Example of Format of System Configuration Information

Name Defined Data
SysVer 3 0
SysName microT-Kernel Version 3.00

How the system configuration information is to be stored is not specified here, but it is generally put in memory
(ROM/RAM). This functionality is therefore not intended for storing large amounts of information.

System configuration information can be retrieved by tk_get_cfn and tk_get_cfs.

However, system configuration information cannot be added or changed during system execution.

μT-Kernel 3.0 Specification 381 / 502

5.6.1 System Configuration Information Acquisition

There are tk_get_cfn and tk_get_cfs as API to retrieve system configuration information. These are callable
from applications, subsystems, device drivers, etc. and are also used internally in the μT-Kernel.

μT-Kernel 3.0 Specification 382 / 502

5.6.1.1 tk_get_cfn - Get Numbers

C Language Interface

#include <tk/tkernel.h>

INT ct = tk_get_cfn(CONST UB *name, W *val, INT max);

Parameter

CONST UB* name Name Name
W* val Value Array storing numbers
INT max Maximum Count Number of elements in val array

Return Parameter

INT ct Defined Numeric
Information Count

Number of defined numeric
information

or Error Code Error code

Error Code

E_NOEXS No information is defined for the name specified in the name parameter

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_SYSCONF Support of system configuration information management
functions

Description

Gets numeric information from system configuration information. This function gets up to max items of nu-
merical information defined for the name specified in the name parameter and stores the acquired information
in val. The number of defined numeric information is passed in the return code. If return code > max, this
indicates that not all the information could be stored. By specifying max = 0, the number of defined numeric
values can be found out without actually storing them in val.

E_NOEXS is returned if no information is defined for the name specified in the name parameter. The behavior
if the information defined for name is a character string is indeterminate.

This function can be invoked from any protection level, without being limited to the protection level from
which μT-Kernel/OS system call can be invoked.

μT-Kernel 3.0 Specification 383 / 502

5.6.1.2 tk_get_cfs - Get Character String

C Language Interface

#include <tk/tkernel.h>

INT rlen = tk_get_cfs(CONST UB *name, UB *buf, INT max);

Parameter

CONST UB* name Name Name
UB* buf Buffer Array storing character string
INT max Maximum Length Maximum size of buf (in bytes)

Return Parameter

INT rlen Size of Defined Character
String Information

Size of defined character string
information (in bytes)

or Error Code Error code

Error Code

E_NOEXS No information is defined for the name specified in the name parameter

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_SYSCONF Support of system configuration information management
functions

Description

Gets character string information from system configuration information. This function gets up to max char-
acters of character string information defined for the name specified in the name parameter and stores the
acquired information in buf. If the acquired character string is shorter than max characters, it is terminated by
’\0’ when stored. The length of the defined character string information (not including ’\0’) is passed in the
return code. If return code > max, this indicates that not all the information could be stored. By specifying max
= 0, the character string length can be found out without actually storing anything in buf .

E_NOEXS is returned if no information is defined for the name specified in the name parameter. The behavior
if the information defined for name is a numeric string is indeterminate.

This function can be invoked from any protection level, without being limited to the protection level from
which μT-Kernel/OS system call can be invoked.

μT-Kernel 3.0 Specification 384 / 502

5.6.2 Standard System Configuration Information

The following information is defined as standard system configuration information. A standard information
name is prefixed by T.

character string Summary description
N Numeric string information
S Character string information

• Product information

character string Name of standard definition Summary description
S TSysName System name (product name)

• Maximum number of objects

character string Name of standard definition Summary description
N TMaxTskId Maximum number of tasks
N TMaxSemId Maximum number of

semaphores
N TMaxFlgId Maximum number of event flags
N TMaxMbxId Maximum number of mailboxes
N TMaxMtxId Maximum number of mutexes
N TMaxMbfId Maximum number of message

buffers
N TMaxMpfId Maximum number of fixed-size

memory pools
N TMaxMplId Maximum number of

variable-size memory pools
N TMaxCycId Maximum number of cyclic

handlers
N TMaxAlmId Maximum number of alarm

handlers
N TMaxSsyId Maximum number of

subsystems
N TMaxSsyPri Maximum number of subsystem

priorities

• Other

character string Name of standard definition Summary description
N TSysStkSz Default system stack size (in

bytes)
N TSVCLimit Lowest protection level for

system call invoking
N TTimPeriod Timer interrupt interval (in

milliseconds)Timer interrupt
interval (in microseconds)

The actual length of timer interrupt interval is a sum of time in milliseconds and time in microseconds. The
interval in microseconds is assumed to be 0 when omitted.

For example, when timer interrupt interval should be 5 milliseconds, describe as ”TTimPeriod 5” or ”TTimPeriod
0 5000”. When timer interrupt interval should be 1.5 milliseconds (1,500 microseconds), describe as
”TTimPeriod 1 500” or ”TTimPeriod 0 1500”.

μT-Kernel 3.0 Specification 385 / 502

• device management function

character string Name of standard definition Summary description
N TMaxRegDev Maximum number of device

registrations
N TMaxOpnDev Maximum device open count
N TMaxReqDev Maximum number of device

requests
N TDEvtMbfSz Event notification message

buffer size (in bytes)Maximum
event notification message
length (in bytes)

If TDEvtMbfSz is not defined or if the message buffer size is a negative value, an event notification message
buffer is not used.

When multiple values are defined for any of the above numeric strings, they are stored in the same order as
in the explanation.

Example of Storage Order of More than One Numeric Value

tk_get_cfn (" TDEvtMbfSz", val , 2)

val[0] = Event notification message buffer size
val[1] = Maximum event notification message length

μT-Kernel 3.0 Specification 386 / 502

5.7 Memory Cache Control Functions

Memory cache control functions perform a cache control or mode setting.

The approach of cache control in μT-Kernel is as follows:

Basically, even if application and device driver programs are created without paying attention to the existence
of cache, the appropriate cache control should be automatically performed during their execution. Especially,
in consideration of program portability, functions with strong dependency on system including cache are
better to be handled separately from application programs wherever possible. For this reason, it is the policy
of individual systems based on μT-Kernel to make the μT-Kernel itself control the cache automatically.

Specifically, μT-Kernel sets the cache so that it is turned ON for space like memory to store usual programs or
data, and OFF for space such as I/O. For this reason, ordinary application programs do not need to explicitly
call a function for cache control. Appropriate cache control is automatically performed even if cache control
is not explicitly performed from the program.

However, the cache control by μT-Kernel only (cache control by default setting) may not be enough for
particular situations. For example, for I/O processing with DMA transfer or using memory space outside
the kernel management, explicit cache control may be required. When executing a program by dynamically
loading or generating (compiling) it, such cache control may be required so that data cache and instruction
cache are appropriately synchronized. Memory cache control functions are assumed to be used in these
situations.

μT-Kernel 3.0 Specification 387 / 502

5.7.1 SetCacheMode - Set Cache Mode

C Language Interface

#include <tk/tkernel.h>

SZ rlen = SetCacheMode(void *addr, SZ len, UINT mode);

Parameter

void* addr Start Address Start address
SZ len Length memory area size (in bytes)
UINT mode Mode Cache mode

Return Parameter

SZ rlen Result Length Size of the area for which the cache
mode was set (in bytes)

or Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (addr, len, or mode is invalid or cannot be used)
E_NOSPT Unsupported function (function specified in mode is unsupported)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_CACHECTRL Support of memory cache control functions
TK_SUPPORT_SETCACHEMODE Support of set cache mode function

Additionally, the following service profile items are related to this API.

TK_SUPPORT_WBCACHE Support for specifying write-back mode for cache mode(CM_WB)
TK_SUPPORT_WTCACHE Support for specifying write-through mode for cache

mode(CM_WT)

Description

Sets the cache mode for a memory area. Specifically, performs the setting specified in mode for the cache of
the len bytes memory area from the address addr.

μT-Kernel 3.0 Specification 388 / 502

mode := (CM_OFF || CM_WB || CM_WT) | [CM_CONT]
CM_OFF Cache off
CM_WB Cache on (write back)
CM_WT Cache on (write through)
CM_CONT Applies the cache setting only for the contiguous address space

(physical address)
...

/* Implementation-dependent mode may be added */

Specify CM_OFF in mode to flush (writes back) the cache, invalidate it, and turn it off.

Specify CM_WT in mode to flush the cache and then set the write through cache mode.

Specify CM_WB in mode to set the write back cache mode. In this case, whether or not to flush the cache is
implementation-dependent.

Specify CM_CONT in mode to apply the cache mode setting only for the contiguous address (physical address)
space area starting from addr. If non-allocated area exists within the specified space, the processing is aborted
immediately before the area and the size of the processed space is returned. If CM_CONT is not specified, then
the all area is the target of the cache mode processing, and the size of the area for which the processing has
been performed is returned.

Some or all of the cache mode settings may be unusable depending on CPU or implementation. If an unusable
mode is specified, E_NOSPT is returned without any processing.

len must be 1 or more. If a value of 0 or less is specified, the error code E_PAR is returned.

Additional Notes

Generally speaking, because the cache mode setting is performed in page units, the start address of the page
including addr and subsequent addresses is taken as the setting target when addr is not at the start of the
specified area. Note that unintended cache access may occur to an adjacent area when using this API. Care
should be taken.

When you want more detailed cache mode settings depending on the hardware configuration or the cache
function of CPU, add and use an implementation-dependent mode. For example, NORMAL CACHE OFF (Weakly
Order), DEVICE CACHE OFF (Weakly Order), STRONG ORDER, or other cache mode may be specified.

When an unavailable mode is specified, it is implementation-dependent whether to generate an error as E_NOSPT
or E_PAR.

μT-Kernel 3.0 Specification 389 / 502

5.7.2 ControlCache - Control Cache

C Language Interface

#include <tk/tkernel.h>

SZ rlen = ControlCache(void *addr, SZ len, UINT mode);

Parameter

void* addr Start Address Start address
SZ len Length Memory area size (in bytes)
UINT mode Mode Control mode

Return Parameter

SZ rlen Result Length Size of the area for which the cache
mode was set (in bytes)

or Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (invalid addr, len or mode)
E_NOSPT Unsupported function (function specified in mode is unsupported)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_CACHECTRL Support of memory cache control functions

Description

Control the cache (flush or invalidate) of a memory area. Specifically, performs the control specified in mode
for the cache of the len bytes memory area from the logical address addr.

mode := (CC_FLUSH | CC_INVALIDATE)
CC_FLUSH Flush (write back) cache
CC_INVALIDATE Invalidate cache

...
/* Implementation-dependent mode values may be added */

Both CC_FLUSH and CC_INVALIDATE can be set at the same time. This combination flushes the cache and then
invalidates it.

μT-Kernel 3.0 Specification 390 / 502

If the processing is successful, the size of the processed space is returned.

A range that spans areas with different cache modes or attributes must not be specified. For example, a range
that spans areas with cache on and cache off, or areas with different protection levels must not be specified.
If such a range is specified, the subsequent correct behavior is not guaranteed.

The detail of the function varies depending on CPU, hardware, or implementation because the cache control
depends heavily on the hardware. The cache control is basically applied on the specified area using the
specified mode, but it may affect more area including the specified area. For example, there are the following
cases:

• Only the exactly specified range is not always controlled (flushed or invalidated). An area including the
specified range is controlled, but it is also possible to flush or invalidate the cache for other areas (for
example, entire memory) depending on CPU, hardware, or implementation.

• Normally, no operation is performed when a cache-off area is specified. Even in this case, it is possible to
flush or invalidate the cache for areas other than the specified range.(always flush the entire space, etc.)

• No operation is performed in a system without cache.

Generally, the cache control is performed in cache line size units. For this reason, note that unintended cache
access may occur to adjacent area when using this API.

μT-Kernel 3.0 Specification 391 / 502

5.8 Physical Timer Functions

Physical timer functions are useful in the system equipped with more than one hardware timer when process-
ing should be performed based on smaller unit of elapsed time than the timer interrupt interval (TTimPeriod).

A physical timer means a hardware counter that is monotonically incremented by one from 0 at a constant
time interval. When a count value reaches a certain value (upper limit) specified for each physical timer, the
handler (physical timer handler) specified for each physical timer is started and the count value is reset to 0.

More than one physical timer can be used depending on the number of hardware timers available in the
system. The number of available physical timers is implementation-dependent. In the usual μT-Kernel im-
plementation, one hardware timer is used to realize the time management functions. Therefore it is assumed
that remaining hardware timers are used for the physical timers.

Positive integer of ascending order like 1, 2, ... is used as a physical timer number. For example, when there
are four hardware timers, as one of them is used for the μT-Kernel time management functions, remaining
three hardware timers are available with physical timer numbers assigned as 1, 2, and 3, respectively.

μT-Kernel/SM physical timer functions do not manage coordination between an individual physical timer and
tasks that use the timer. If more than one task share one physical timer, coordination like mutual exclusion
control must be performed on the application side.

Additional Notes
For the μT-Kernel time management functions, the kernel starts alarm handler or cyclic handler, processes
timeout, and processes these requests, all in the handler that is started on the time interval specified by ”timer
interrupt interval” (TTimPeriod) in Section 5.6.2, “Standard System Configuration Information”. On the other
hand, the physical timer functions only standardize the primitive functions such as setting a hardware timer,
reading a count value, and triggering interrupt. They do not handle simultaneous multiple requests like the
time management functions do. Based on this observation, the physical timer functions carry the name of
”physical timer” since they have lower abstraction level than conventional time management functions, and
are closer to hardware layer.
Due to the above positioning, the physical timer functions are made to be as simple as possible and limited
to a small specification, and are assumed to be realized by library functions which have small overhead. This
policy is reflected in the specification of using the statically fixed physical timer numbers rather than dynam-
ical ID numbers, and the specification of never performing the management of mapping with the requesting
task or the requests from more than one task.
Physical timer functions standardize APIs that operate the timer (counter) device. However, the timer devices
have direct relation with time related behaviors such as calling interrupt handler based on a small elapsed
time, making such devises more closely connected with the kernel than other devices (storage and com-
munication). For this reason, the physical timer is provided as more generic function by standardizing its
specification as a part of the μT-Kernel/SM instead of standardizing it as part of device driver specification.
Since the physical timer functions belong to the μT-Kernel/SM [Overall Note and Supplement] is applicable.
Hardware timer counter used as a physical timer is assumed to be 32-bit or less. Therefore, 32-bit UW is
used for the data type that represents the count values or upper limits. In the future, 64-bit functions can be
added.

μT-Kernel 3.0 Specification 392 / 502

5.8.1 Use Case of Physical Timer

Examples of effective use of physical timer functions are as follows:

(a)Example of processing to be realized
Assume that there are a cyclic processing X to be run every 2,500 microseconds and a cyclic processing
Y to be run every 1,800 microseconds. Physical timers can achieve this efficiently.

(b)Implementation with physical timer functions
Two physical timers are used, and one is set to start a physical timer handler every 2,500 microseconds.

For example, if the physical timer clock frequency is 10 MHz, as 1 clock corresponds to 0.1 microseconds
(= 100 nanoseconds), set a physical timer upper limit (limit) to 24,999 (= 25,000 - 1) to make the physical
timer handler start when the count value is changed from 24,999 to 0.

As this is a cyclic processing, mode of StartPhysicalTimer should be set to TA_CYC_PTMR.

Processing X is performed within this physical timer handler.

Similarly using another physical timer, the physical timer handler is set to start every 1,800 microseconds
to perform the processing Y within this physical timer handler.

The timer interrupt interval (TTimPeriod) used by the μT-Kernel time management functions can be left
at the default value (10 milliseconds) since it has no relationship with the physical timer functions.

(c)Implementation without physical timer functions
Instead of the physical timer handler, the μT-Kernel 3.0 system call (tk_cre_cyc_u) that can specify
time in microseconds is used to define the cyclic handler that is invoked every 2,500 microseconds to
perform the processing X within this cyclic handler. Similarly using another physical timer, a physical
timer handler is invoked every 1,800 microseconds to perform the processing Y within this physical
timer handler.

However, in this case, the timer interrupt interval used by μT-Kernel Time Management Function must
be set with small enough interval so that the time of every 2,500 microseconds and every 1,800 mi-
croseconds can be processed precisely. Specifically, both processing every 2,500 microseconds and
processing every 1,800 microseconds can be achieved with almost exact timing by using the timer
interrupt interval of 100 microseconds which is a common divisor of 2,500 microseconds and 1,800
microseconds.

With the method (b) which uses the physical timer functions, the timer interrupt interval can be left as the
default value (every 10 milliseconds) since the μT-Kernel time management functions are not used. Interrupts
by the physical timer will occur every 2,500 and 1,800 microseconds, from which the physical timer handler
is called to perform the processing X and Processing Y. No unnecessary interrupt related to timer will occur
other than these.

On the other hand, for the method of (c) which does not use a physical timer, because the timer interrupt
interval must be shortened, the overhead increases accordingly as the number of timer interrupts increases.
For example, when comparing (b) and (c) in terms of the number of timer related interrupts that occur in
10 milliseconds period, (b) will have a total interrupt number of 10; 1 (= 10 milliseconds/10 milliseconds)
for time management functions, 4 (= 10 milliseconds/2,500 microseconds) as physical timer interrupt for
processing X, and 5 (= 10 milliseconds/1,800 microseconds) as physical timer interrupt for processing Y. For
(c), timer interrupt number is 100 (10 milliseconds/100 microseconds) for time management functions. This
is a trade-off situation with the accuracy of time. The smaller timer interval may be required depending on
the difference between cycles or phases of processing X and processing Y, resulting in even larger overhead.
In these cases, the physical timer functions are clearly effective.

However, the physical timer functions are highly effective only when the number of processings that depend
on time is small and statically fixed, and enough number of hardware timers exist for them. Because the phys-
ical timer functions are, as its name shows, subject to the constraints of physical hardware resources, physical
timer functions cannot be used effectively when the number of hardware timers is too small. Additionally,
it will experience difficulty with the case where the number of time-dependent processings dynamically in-
creases. In these cases, using the conventional time management functions such as the cyclic handler and
alarm handler will achieve more flexible handling.

μT-Kernel 3.0 Specification 393 / 502

Though the application area of physical timer functions and time management functions in microseconds may
overlap, they have different characteristics shown above. Therefore, it is recommended to use appropriate one
depending on the hardware configuration and applications. The physical timer functions have been added
for this reason.

μT-Kernel 3.0 Specification 394 / 502

5.8.2 StartPhysicalTimer - Start Physical Timer

C Language Interface

#include <tk/tkernel.h>

ER ercd = StartPhysicalTimer(UINT ptmrno, UW limit, UINT mode);

Parameter

UINT ptmrno Physical Timer Number Physical timer number
UW limit Limit Upper limit
UINT mode Mode Operation mode

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (ptmrno, limit, or mode is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_PTIMER Support of physical timer function

Additionally, the following service profile items are related to this API.

TK_MAX_PTIMER Maximum number of physical timers

Description

Sets the count value of the physical timer specified by ptmrno to 0, and then starts counting. After this function
is executed, the count value is incremented by one at a constant time interval that is the inverse of the timer
clock frequency.

limit specifies the upper limit of the count value. When a time period equal to the inverse of the clock
frequency has elapsed after the count value reaches the upper limit, the count value is reset to 0. At that
timing, if a physical timer handler is defined for this physical timer, that handler will be started. The duration
between when the counting is started by StartPhysicalTimer call and when the counter is reset to zero is
(inverse of timer clock frequency) x (upper limit + 1).

μT-Kernel 3.0 Specification 395 / 502

If limit is set to 0, an E_PAR error will occur.

mode specifies the following modes:

TA_ALM_PTMR 0 The counting is stopped when the count value is reset
to 0 from the upper limit value. Afterward, the count
value remains as 0.

TA_CYC_PTMR 1 The count value starts to increase again, after it is reset
to 0 from the upper limit value. Therefore, the cycle of
increasing and resetting the count value repeats
periodically.

μT-Kernel 3.0 Specification 396 / 502

5.8.3 StopPhysicalTimer - Stop Physical Timer

C Language Interface

#include <tk/tkernel.h>

ER ercd = StopPhysicalTimer(UINT ptmrno);

Parameter

UINT ptmrno Physical Timer Number Physical timer number

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (ptmrno is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_PTIMER Support of physical timer function

Additionally, the following service profile items are related to this API.

TK_MAX_PTIMER Maximum number of physical timers

Description

Stops the counting operation of the physical timer specified by ptmrno.

After executing this function, the last count value of the physical timer is retained. Therefore, if GetPhysical-
TimerCount is executed after this function is executed, that function will return the physical timer count value
just before this function is executed.

Executing this function for the physical timer that has already stopped counting does nothing. It does not
generate any error.

μT-Kernel 3.0 Specification 397 / 502

Additional Notes

If the physical timer that is no longer used is kept running, it may not adversely affect the program operation,
but clock signals will be used unnecessarily, which may not be desirable in terms of electric power saving.
So, it is recommended to stop the physical timer no longer used by executing this function.

Use of this function is effective for the case TA_CYC_PTMR is specified for the physical timer and its use is
ended. If TA_ALM_PTMR is specified as the mode, the physical timer automatically stopped counting after the
count value is reset to 0 from the upper limit value, which results in the same state as that after this function
being executed. In this case, it is not necessary to issue this function additionally. Issuing this function does
not cause any problem, but nothing is changed.

μT-Kernel 3.0 Specification 398 / 502

5.8.4 GetPhysicalTimerCount - Get Physical Timer Count

C Language Interface

#include <tk/tkernel.h>

ER ercd = GetPhysicalTimerCount(UINT ptmrno, UW *p_count);

Parameter

UINT ptmrno Physical Timer Number Physical timer number
UW* p_count Pointer to Physical Timer Count Pointer to the area to return the current

physical timer count

Return Parameter

ER ercd Error Code Error code
UW count Physical Timer Count Current count value

Error Code

E_OK Normal completion
E_PAR Parameter error (ptmrno is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_PTIMER Support of physical timer function

Additionally, the following service profile items are related to this API.

TK_MAX_PTIMER Maximum number of physical timers

Description

Gets the current count value of the physical timer specified by ptmrno, and returns it as the return parameter
count.

μT-Kernel 3.0 Specification 399 / 502

5.8.5 DefinePhysicalTimerHandler - Define Physical Timer Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = DefinePhysicalTimerHandler(UINT ptmrno, CONST T_DPTMR *pk_dptmr);

Parameter

UINT ptmrno Physical Timer Number Physical timer number
CONST T_DPTMR* pk_dptmr Packet to Define Physical

Timer Handler
Physical timer handler definition
information

pk_dptmr Detail

void* exinf Extended Information Extended information
ATR ptmratr Physical Timer Attribute Physical timer handler attribute

(TA_ASM || TA_HLNG)
FP ptmrhdr Physical Timer Handler

Address
Physical timer handler address

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_RSATR Reserved attribute (ptmratr is invalid or cannot be used)
E_PAR Parameter error (ptmrno, pk_dptmr, or ptmrhdr is invalid or cannot be used, or the

physical timer handler for ptmrno cannot be defined)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_PTIMER Support of physical timer function

Additionally, the following service profile items are related to this API.

TK_MAX_PTIMER Maximum number of physical timers

μT-Kernel 3.0 Specification 400 / 502

Description

If pk_dptmr is not NULL, this function defines the physical timer handler for the physical timer specified by
ptmrno. The physical timer handler is a handler running as a task-independent portion, and is started when
the physical timer count is reset to 0 from the upper limit value specified by limit of StartPhysicalTimer.

The programming format of physical timer handler is similar to that of cyclic handler or alarm handler. This
means that if the TA_HLNG attribute is specified, the physical timer handler is started via a high-level language
support routine and terminated by a return from the function. If the TA_ASM attribute is specified, the physical
timer handler format is implementation-dependent. Regardless of which attribute is specified, exinf is passed
as a startup parameter of physical timer handler.

If pk_dptmr is NULL, this function cancels the definition of the physical timer handler for the physical timer
specified by ptmrno. The physical timer handlers for all the physical timers are undefined right after the
system startup.

If the physical timer handler for the physical timer specified by ptmrno cannot be defined (if the pk_rptmr-
>defhdr in GetPhysicalTimerConfig returns FALSE), the E_PAR error occurs. If the physical timer specified by
ptmrno does not exist or cannot be used, the E_PAR error also occurs.

Additional Notes

In a typical implementation, an interrupt handler to implement the function of physical timer is defined within
μT-Kernel/SM, and is configured so that an interrupt to be raised when the physical timer counter value wraps
around from the upper limit to zero. In this interrupt handler, the physical timer handler which is defined in
this function is called as well as other processing for implementation of physical timer such as the support
for TA_ALM_PTMR and TA_CYC_PTMR.

μT-Kernel 3.0 Specification 401 / 502

5.8.6 GetPhysicalTimerConfig - Get Physical Timer Configuration Information

C Language Interface

#include <tk/tkernel.h>

ER ercd = GetPhysicalTimerConfig(UINT ptmrno, T_RPTMR *pk_rptmr);

Parameter

UINT ptmrno Physical Timer Number Physical timer number
T_RPTMR* pk_rptmr Packet to Return Physical

Timer Configuration
Information

Pointer to the area to return the
configuration information of the
physical timer

Return Parameter

ER ercd Error Code Error code

pk_rptmr Detail

UW ptmrclk Physical Timer Clock
Frequency

Physical timer clock frequency

UW maxcount Maximum Count Maximum count value
BOOL defhdr Handler Support Whether physical timer handler is

supported or not

Error Code

E_OK Normal completion
E_PAR Parameter error (ptmrno or pk_rptmr is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_PTIMER Support of physical timer function

Additionally, the following service profile items are related to this API.

TK_MAX_PTIMER Maximum number of physical timers

μT-Kernel 3.0 Specification 402 / 502

Description

Gets the configuration information of the physical timer specified by ptmrno.

The retrievable configuration information includes the physical timer clock frequency ptmrclk, the maximum
count value maxcount, and whether the support for physical timer handler exists defhdr.

ptmrclk indicates the clock frequency used to count up the target physical timer. If ptmrclk is set to 1, the
clock is 1 Hz, and if it is set to MATH: 232 - 1, then the clock is MATH: 232 - 1 Hz (approximately 4 GHz). If
the clock is long (less than 1 Hz), then ptmrclk is 0. If ptmrclk is other than 0, the physical timer count value
is monotonically incremented by 1, from 0 to the upper limit value limit, at a constant time interval that is
the inverse of ptmrclk.

maxcount is the maximum value that can be counted by the target physical timer, and also the maximum value
that can be set as the upper limit value. Generally, maxcount is MATH: 216 - 1 for a 16-bit timer counter, and
MATH: 232 - 1 for a 32-bit timer counter, but it may be other value depending on the hardware or system
configuration.

If defhdr is TRUE, the physical timer handler, which is started when the target physical timer count reaches the
upper limit value, can be defined. If defhdr is FALSE, the physical timer handler for this physical timer cannot
be defined.

If the physical timer specified by ptmrno does not exist or cannot be used, the E_PAR error occurs. For the
physical timer number, a positive integer value is assigned in ascending order, so if the system has N physical
timers, the E_PAR error occurs when ptmrno is 0 or larger than N.

Additional Notes

As the substring ”configuration” of this function name suggests, the values acquired by this function, ptmrclk,
maxcount, and defhdr are assumed to be statically fixed by hardware or by the initialization done during the
startup processing of the system, and are not expected to change during the subsequent execution of the
system. Note, however, that there is a chance of adding dynamical reconfiguration feature to the core speci-
fication or implementation-defined feature: for example, changing the clock frequency of the physical timer.
When such modifications are introduced, the information acquired by this function can be a value dynami-
cally changed during the execution of the system. Such changes of use cases depend heavily on the operation
methods or applications, and it was considered better to handle such differences in the upper library that use
physical timer rather than in the base μT-Kernel specification. Hence, μT-Kernel specification does not
define the possibility of dynamically changing nature of the configuration information acquired by this func-
tion. In a nutshell, whether the information acquired by this function may change during the execution of the
system is implementation-dependent.

μT-Kernel 3.0 Specification 403 / 502

5.9 Utility Functions

Utility functions are used commonly from general programs such as applications, middleware, and device
drivers on the μT-Kernel.

Utility functions are provided as library functions or C language macros.

μT-Kernel 3.0 Specification 404 / 502

5.9.1 Set Object Name

API for setting object name is provided as C language macros. It can be called from a task-independent
portion and while task dispatching and interrupts are disabled.

μT-Kernel 3.0 Specification 405 / 502

5.9.1.1 SetOBJNAME - Set Object Name

C Language Interface

#include <tk/tkernel.h>

void SetOBJNAME(void *exinf, CONST UB *name);

Parameter

void* exinf Extended Information Variable to set as extended
information

CONST UB* name Object Name Object name to be set

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

None.

Description

Interprets the ASCII string of four or less characters specified in name as a single 32-bit data to store it in exinf.

This API is defined as a C language macro and exinf is not a pointer. Write a variable directly.

Additional Notes

This API can assign the ASCII string names (such as task name) to the kernel objects, and the names are
stored in the extended information exinf of the kernel objects. It is possible to list the object names set by
this API by printing the information in exinf as ASCII string using the debugger, etc. to investigate the state
of the kernel objects.

Sample Usage of SetOBJNAME

T_CTSK ctsk;
...
/* Set the object name "TEST" for the task ctsk */
SetOBJNAME(ctsk.exinf , "TEST");
task_id = tk_cre_tsk (&ctsk);

μT-Kernel 3.0 Specification 406 / 502

Note that you need to add ’\0’ which indicates the end of the string if you would like to manipulate the string
by C language functions.

5.9.2 Fast Lock and Multi-lock Libraries

Fast lock and multi-lock libraries are for performing exclusion control faster between multiple tasks in the
device drivers or subsystems. In order to perform the exclusion control, while semaphore or mutex can be
used, fast lock is implemented as the μT-Kernel/SM library functions that processes the lock acquisition
operation with specially higher speed when the task is not queued.

Fast lock and multi-lock libraries are for performing exclusion control quicker than semaphore and mutexes
between multiple tasks in the device drivers or subsystems. Fast multi-lock is one object built by combining
independent binary semaphores for mutual exclusion control. The number of binary semaphores is the num-
ber of the bits in UINT data type, and each binary semaphore is distinguished by the number from 0 to (bit
width of UINT) - 1.

For example, when exclusion control is performed at ten locations, one fast multi-lock can be created and
then the binary semaphores with lock numbers from 0 to 9 can be used to perform exclusion control while
ten fast locks can be used. While using ten fast locks bring faster result, the total required resources is lower
when the fast multi-lock is used.

Additional Notes
Fast lock function is implemented by using counters that show the lock states and a semaphore. Fast multi-
lock function is implemented by using a counter that shows the lock states and event flags. When the invoking
task is not queued at the lock acquisition, it performs faster than the usual semaphores or event flags because
only counter operation is performed. On the other hand, when the invoking task is queued at lock acquisition,
it is not necessarily faster than the usual semaphores or event flags because it uses usual semaphores and
event flags to manage transitions to waiting state or queues. Fast lock and multi-lock are effective when
possibility of being queued is low due to mutual exclusion control.

μT-Kernel 3.0 Specification 407 / 502

5.9.2.1 CreateLock - Create Fast Lock

C Language Interface

#include <tk/tkernel.h>

ER ercd = CreateLock(FastLock *lock, CONST UB *name);

Parameter

FastLock* lock Control Block of FastLock Control block of fast lock
CONST UB* name Name of FastLock Name of fast lock

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of fast locks exceeds the system limit

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Creates a fast lock.

lock is a structure to control a fast lock. name is the name of the fast lock and can be NULL.

Fast lock is a binary semaphore used for mutual exclusion control and is implemented to be operated as fast
as possible.

μT-Kernel 3.0 Specification 408 / 502

5.9.2.2 DeleteLock - Delete Fast Lock

C Language Interface

#include <tk/tkernel.h>

void DeleteLock(FastLock *lock);

Parameter

FastLock* lock Control Block of FastLock Control block of fast lock

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Deletes a fast lock.

Error detection is omitted for faster operation.

μT-Kernel 3.0 Specification 409 / 502

5.9.2.3 Lock - Lock Fast Lock

C Language Interface

#include <tk/tkernel.h>

void Lock(FastLock *lock);

Parameter

FastLock* lock Control Block of FastLock Control block of fast lock

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Locks a fast lock.

If the lock is already locked, the invoking task goes to the waiting state and is put in the task queue until it is
unlocked. Tasks are queued in the priority order.

Error detection is omitted for faster operation.

μT-Kernel 3.0 Specification 410 / 502

5.9.2.4 Unlock - Unlock Fast Lock

C Language Interface

#include <tk/tkernel.h>

void Unlock(FastLock *lock);

Parameter

FastLock* lock Control Block of FastLock Control block of fast lock

Return Parameter

None.

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Unlocks a fast lock.

If there are tasks waiting for the fast lock, the first task in the task queue newly acquires the lock.

Error detection is omitted for faster operation.

μT-Kernel 3.0 Specification 411 / 502

5.9.2.5 CreateMLock - Create Fast Multi-lock

C Language Interface

#include <tk/tkernel.h>

ER ercd = CreateMLock(FastMLock *lock, CONST UB *name);

Parameter

FastMLock* lock Control Block of FastMLock Control block of fast multi-lock
CONST UB* name Name of FastMLock Name of fast multi-lock

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of fast multi-locks exceeds the system limit

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Creates a fast multi-lock.

lock is a structure to control a fast multi-lock. name is the name of the fast multi-lock and can be NULL.

Fast multi-lock is one object built by combining independent binary semaphores for mutual exclusion control,
and is implemented for very fast execution. The number of binary semaphores is the number of the bits in
UINT data type, and each binary semaphore is distinguished by the number from 0 to (bit width of UINT data
type) - 1. For example, if UINT is 16 bits, a number from 0 to 15 can be used as lock number.

Porting Guideline

Be warned that the number of available lock numbers is now dependent on the bit width of UINT data type.
For example, the number of binary semaphores can take the value from 0 to 15 in 16-bit environment.

μT-Kernel 3.0 Specification 412 / 502

5.9.2.6 DeleteMLock - Delete Fast Multi-lock

C Language Interface

#include <tk/tkernel.h>

ER ercd = DeleteMLock(FastMLock *lock);

Parameter

FastMLock* lock Control Block of FastMLock Control block of fast multi-lock

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Deletes a fast multi-lock.

μT-Kernel 3.0 Specification 413 / 502

5.9.2.7 MLock - Lock Fast Multi-lock

C Language Interface

#include <tk/tkernel.h>

ER ercd = MLock(FastMLock *lock, INT no);

Parameter

FastMLock* lock Control Block of FastMLock Control block of fast multi-lock
INT no Lock Number Lock number

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error
E_DLT Waiting object was deleted
E_RLWAI Waiting state was forcibly released
E_CTX Context error

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Locks a fast multi-lock.

no is the lock number and is from 0 to (the bit width of UINT data type) - 1. For example, if UINT is 16 bits, a
number from 0 to 15 can be used as lock number.

If the lock is already locked with the same lock number, the invoking task goes to the waiting state and is put
in the task queue until it is unlocked with the same lock number. Tasks are queued in the priority order.

Porting Guideline

Be warned that the number of available lock numbers is now dependent on the bit width of UINT data type.
For example, the number of binary semaphores can take the value from 0 to 15 in 16-bit environment.

μT-Kernel 3.0 Specification 414 / 502

5.9.2.8 MLockTmo - Lock Fast Multi-lock (with Timeout)

C Language Interface

#include <tk/tkernel.h>

ER ercd = MLockTmo(FastMLock *lock, INT no, TMO tmout);

Parameter

FastMLock* lock Control Block of FastMLock Control block of fast multi-lock
INT no Lock Number Lock number
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error
E_DLT Waiting object was deleted
E_RLWAI Waiting state was forcibly released
E_TMOUT Timeout
E_CTX Context error

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Locks a fast multi-lock with timeout.

This API is identical to MLock, except that it can specify the timeout interval in tmout. If the lock cannot be
acquired before the timeout interval specified in tmout has elapsed, E_TMOUT is returned.

Porting Guideline

Be warned that the number of available lock numbers is now dependent on the bit width of UINT data type.
For example, the number of binary semaphores can take the value from 0 to 15 in 16-bit environment.

μT-Kernel 3.0 Specification 415 / 502

5.9.2.9 MLockTmo_u - Lock Fast Multi-lock (with Timeout, Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = MLockTmo_u(FastMLock *lock, INT no, TMO_U tmout_u);

Parameter

FastMLock* lock Control Block of FastMLock Control block of fast multi-lock
INT no Lock Number Lock number
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error
E_DLT Waiting object was deleted
E_RLWAI Waiting state was forcibly released
E_TMOUT Timeout
E_CTX Context error

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

Only when all the service profile items below are set to be effective, this API can be used.

TK_SUPPORT_USEC Support of microsecond

Description

Locks a fast multi-lock with timeout in microseconds.

This API is identical to MLockTmo, except that the timeout interval is specified with a 64-bit value in mi-
croseconds.

Porting Guideline

Be warned that the number of available lock numbers is now dependent on the bit width of UINT data type.
For example, the number of binary semaphores can take the value from 0 to 15 in 16-bit environment.

μT-Kernel 3.0 Specification 416 / 502

5.9.2.10 MUnlock - Unlock Fast Multi-lock

C Language Interface

#include <tk/tkernel.h>

ER ercd = MUnlock(FastMLock *lock, INT no);

Parameter

FastMLock* lock Control Block of FastMLock Control block of fast multi-lock
INT no Lock Number Lock number

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Related Service Profile Items

None.

Description

Unlocks a fast multi-lock.

no is the lock number and is from 0 to (the bit width of UINT data type) - 1. For example, if UINT is 16 bits, a
number from 0 to 15 can be used as lock number.

If there are tasks in the waiting state for the same lock number, the first task in the task queue newly acquires
the lock.

Porting Guideline

Be warned that the number of available lock numbers is now dependent on the bit width of UINT data type.
For example, the number of binary semaphores can take the value from 0 to 15 in 16-bit environment.

μT-Kernel 3.0 Specification 417 / 502

Chapter 6

μT-Kernel/DS Functions

This chapter describes details of the functions provided by μT-Kernel/DS (Debugger Support).

μT-Kernel/DS provides functions enabling a debugger to reference μT-Kernel internal states and run a trace.
The functions provided by μT-Kernel/DS are only for debugger use and not for use by applications or other
programs.

Overall Note and Supplement

• Except where otherwise noted, μT-Kernel/DS system calls (td_...) can be called from a task independent
portion and while dispatching and interrupts are disabled.

There may be some limitations, however, imposed by particular implementations.

• When μT-Kernel/DS system calls (td_...) are invoked in interrupts disabled state, they are processed with-
out enabling interrupts. Other kernel states likewise remain unchanged during this processing. Changes
in kernel states may occur if a service call is invoked while interrupts or dispatching are enabled, since the
kernel continues operating.

• μT-Kernel/DS system calls (td_...) cannot be invoked from a lower protection level than that at which
μT-Kernel/OS system calls can be invoked (lower than TSVCLimit)(E_OACV).

• Error codes such as E_PAR, E_MACV, and E_CTX that can be returned in many situations are not described
here always unless there is some special reason for doing so.

μT-Kernel 3.0 Specification 418 / 502

6.1 Kernel Internal State Acquisition Functions

Kernel internal state reference functions are functions for enabling a debugger to get T-Kernel internal states.
They include functions for getting a list of objects, getting task precedence, getting the order in which tasks
are queued, getting the status of objects, system, and task registers, and getting time.

μT-Kernel 3.0 Specification 419 / 502

6.1.1 td_lst_tsk - Reference Task ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_tsk(ID list[], INT nent);

Parameter

ID list[] List Location of task ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used tasks
or Error Code Error code

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the currently used tasks, and puts in list up to nent IDs. The number of the used
tasks is passed in the return code. If return code > nent, this means not all task IDs could be retrieved.

μT-Kernel 3.0 Specification 420 / 502

6.1.2 td_lst_sem - Reference Semaphore ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_sem(ID list[], INT nent);

Parameter

ID list[] List Location of semaphore ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used semaphores
or Error Code Error code

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the currently used semaphores, and puts in list up to nent IDs. The number of the
used semaphores is passed in the return code. If return code > nent, this means not all semaphore IDs could
be retrieved.

μT-Kernel 3.0 Specification 421 / 502

6.1.3 td_lst_flg - Reference Event Flag ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_flg(ID list[], INT nent);

Parameter

ID list[] List Location of event flag ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used event flags
or Error Code Error code

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the currently used event flags, and puts in list up to nent IDs. The number of the
used event flags is passed in the return code. If return code > nent, this means not all event flag IDs could be
retrieved.

μT-Kernel 3.0 Specification 422 / 502

6.1.4 td_lst_mbx - Reference Mailbox ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_mbx(ID list[], INT nent);

Parameter

ID list[] List Location of mailbox ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used mailboxes
or Error Code Error code

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the currently used mailboxes, and puts in list up to nent IDs. The number of the
used mailboxes is passed in the return code. If return code > nent, this means not all mailbox IDs could be
retrieved.

μT-Kernel 3.0 Specification 423 / 502

6.1.5 td_lst_mtx - Reference Mutex ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_mtx(ID list[], INT nent);

Parameter

ID list[] List Location of mutex ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used mutexes
or Error Code Error code

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the currently used mutexes, and puts in list up to nent IDs. The number of the used
mutexes is passed in the return code. If return code > nent, this means not all mutex IDs could be retrieved.

μT-Kernel 3.0 Specification 424 / 502

6.1.6 td_lst_mbf - Reference Message Buffer ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_mbf(ID list[], INT nent);

Parameter

ID list[] List Location of message buffer ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used message buffers
or Error Code Error code

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the currently used message buffers, and puts in list up to nent IDs. The number
of the used message buffers is passed in the return code. If return code > nent, this means not all message
buffer IDs could be retrieved.

μT-Kernel 3.0 Specification 425 / 502

6.1.7 td_lst_mpf - Reference Fixed-size Memory Pool ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_mpf(ID list[], INT nent);

Parameter

ID list[] List Location of fixed-size memory pool ID
list

INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used fixed-size memory
pools

or Error Code Error code

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the currently used fixed-size memory pools, and puts in list up to nent IDs. The
number of the used fixed-size memory pools is passed in the return code. If return code > nent, this means
not all fixed-size memory pool IDs could be retrieved.

μT-Kernel 3.0 Specification 426 / 502

6.1.8 td_lst_mpl - Reference Variable-size Memory Pool ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_mpl(ID list[], INT nent);

Parameter

ID list[] List Location of variable-size memory pool
ID list

INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used variable-size memory
pools

or Error Code Error code

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the currently used variable-size memory pools, and puts in list up to nent IDs. The
number of the used variable-size memory pools is passed in the return code. If return code > nent, this means
not all variable-size memory pool IDs could be retrieved.

μT-Kernel 3.0 Specification 427 / 502

6.1.9 td_lst_cyc - Reference Cyclic Handler ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_cyc(ID list[], INT nent);

Parameter

ID list[] List Location of cyclic handler ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used cyclic handlers
or Error Code Error code

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the currently used cyclic handlers, and puts in list up to nent IDs. The number of
the used cyclic handlers is passed in the return code. If return code > nent, this means not all cyclic handler
IDs could be retrieved.

μT-Kernel 3.0 Specification 428 / 502

6.1.10 td_lst_alm - Reference Alarm Handler ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_alm(ID list[], INT nent);

Parameter

ID list[] List Location of alarm handler ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used alarm handlers
or Error Code Error code

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the currently used alarm handlers, and puts in list up to nent IDs. The number of
the used alarm handlers is passed in the return code. If return code > nent, this means not all alarm handler
IDs could be retrieved.

μT-Kernel 3.0 Specification 429 / 502

6.1.11 td_lst_ssy - Reference Subsystem ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_ssy(ID list[], INT nent);

Parameter

ID list[] List Location of subsystem ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used subsystems
or Error Code Error code

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS
TK_SUPPORT_SUBSYSTEM Support of subsystem management functions

Description

Gets the list of the IDs of the currently used subsystems, and puts in list up to nent IDs. The number of the
used subsystems is passed in the return code. If return code > nent, this means not all subsystem IDs could
be retrieved.

μT-Kernel 3.0 Specification 430 / 502

6.1.12 td_rdy_que - Reference Task Precedence

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_rdy_que(PRI pri, ID list[], INT nent);

Parameter

PRI pri Task Priority Task priority
ID list[] Task ID List Location of task ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of tasks with priority pri in a
run state

or Error Code Error code

Error Code

E_PAR Parameter error (pri is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets a list of IDs of the tasks in a run state (READY state or RUNNING state) whose task priority is pri,
arranged in the order from the highest to the lowest precedence.

This function stores in list up to nent task IDs, arranged in the order of precedence starting from the highest-
precedence task ID at the head of the list.

The number of tasks in a run state with priority pri is passed in the return code. If return code > nent, this
means not all task IDs could be retrieved.

μT-Kernel 3.0 Specification 431 / 502

6.1.13 td_sem_que - Reference Semaphore Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_sem_que(ID semid, ID list[], INT nent);

Parameter

ID semid Semaphore ID Target semaphore ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (semid is invalid or cannot be used)
E_NOEXS Object does not exist (the semaphore specified in semid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the queued tasks waiting for a semaphore specified in semid. This function stores
in list up to nent task IDs, arranged in the order in which tasks are queued, starting from the first task in the
semaphore queue. The number of the tasks in the semaphore queue is passed in the return code. If return
code > nent, this means not all task IDs could be retrieved.

μT-Kernel 3.0 Specification 432 / 502

6.1.14 td_flg_que - Reference Event Flag Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_flg_que(ID flgid, ID list[], INT nent);

Parameter

ID flgid EventFlag ID Target event flag ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (flgid is invalid or cannot be used)
E_NOEXS Object does not exist (the event flag specified in flgid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the queued tasks waiting for an event flag specified in flgid. This function stores
in list up to nent task IDs, arranged in the order in which tasks are queued, starting from the first task in the
event flag queue. The number of the tasks in the event flag queue is passed in the return code. If return code
> nent, this means not all task IDs could be retrieved.

μT-Kernel 3.0 Specification 433 / 502

6.1.15 td_mbx_que - Reference Mailbox Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_mbx_que(ID mbxid, ID list[], INT nent);

Parameter

ID mbxid Mailbox ID Target mailbox ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (mbxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the queued tasks waiting for a mailbox specified in mbxid. This function stores in
list up to nent task IDs, arranged in the order in which tasks are queued, starting from the first task in the
mailbox queue. The number of the tasks in the mailbox queue is passed in the return code. If return code >
nent, this means not all task IDs could be retrieved.

μT-Kernel 3.0 Specification 434 / 502

6.1.16 td_mtx_que - Reference Mutex Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_mtx_que(ID mtxid, ID list[], INT nent);

Parameter

ID mtxid Mutex ID Target mutex ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (mtxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the queued tasks waiting for a mutex specified in mtxid. This function stores in list
up to nent task IDs, arranged in the order in which tasks are queued, starting from the first task in the mutex
queue. The number of the tasks in the mutex queue is passed in the return code. If return code > nent, this
means not all task IDs could be retrieved.

μT-Kernel 3.0 Specification 435 / 502

6.1.17 td_smbf_que - Reference Message Buffer Send Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_smbf_que(ID mbfid, ID list[], INT nent);

Parameter

ID mbfid Message Buffer ID Target message buffer ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the queued tasks waiting for sending a message to a message buffer specified in
mbfid. This function stores in list up to nent task IDs, arranged in the order in which tasks are queued,
starting from the first task in the message buffer send queue. The number of the tasks in the message buffer
send queue is passed in the return code. If return code > nent, this means not all task IDs could be retrieved.

μT-Kernel 3.0 Specification 436 / 502

6.1.18 td_rmbf_que - Reference Message Buffer Receive Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_rmbf_que(ID mbfid, ID list[], INT nent);

Parameter

ID mbfid Message Buffer ID Target message buffer ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the queued tasks waiting for receiving a message from a message buffer specified in
mbfid. This function stores in list up to nent task IDs, arranged in the order in which tasks are queued, starting
from the first task in the message buffer receive queue. The number of the tasks in the message buffer receive
queue is passed in the return code. If return code > nent, this means not all task IDs could be retrieved.

μT-Kernel 3.0 Specification 437 / 502

6.1.19 td_mpf_que - Reference Fixed-size Memory Pool Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_mpf_que(ID mpfid, ID list[], INT nent);

Parameter

ID mpfid Memory Pool ID Target fixed-size memory pool ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (mpfid is invalid or cannot be used)
E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the queued tasks waiting for allocation in a fixed-size memory pool specified in mpfid.
This function stores in list up to nent task IDs, arranged in the order in which tasks are queued, starting from
the first task in the fixed-size memory pool queue. The number of the tasks in the fixed-size memory pool
queue is passed in the return code. If return code > nent, this means not all task IDs could be retrieved.

μT-Kernel 3.0 Specification 438 / 502

6.1.20 td_mpl_que - Reference Variable-size Memory Pool Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_mpl_que(ID mplid, ID list[], INT nent);

Parameter

ID mplid Memory Pool ID Target variable-size memory pool ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (mplid is invalid or cannot be used)
E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not

exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the list of the IDs of the queued tasks waiting for allocation in a variable-size memory pool specified
in mplid. This function stores in list up to nent task IDs, arranged in the order in which tasks are queued,
starting from the first task in the variable-size memory pool queue. The number of the tasks in the variable-size
memory pool queue is passed in the return code. If return code > nent, this means not all task IDs could be
retrieved.

μT-Kernel 3.0 Specification 439 / 502

6.1.21 td_ref_tsk - Reference Task Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_tsk(ID tskid, TD_RTSK *rtsk);

Parameter

ID tskid Task ID Target task ID (TSK_SELF can be
specified)

TD_RTSK* rtsk Packet to Return Task Status Pointer to the area to return the task
status

Return Parameter

ER ercd Error Code Error code

rtsk Detail:

void* exinf Extended Information Extended information
PRI tskpri Task Priority Current priority
PRI tskbpri Task Base Priority Base priority
UINT tskstat Task State Task States
UW tskwait Task Wait Factor Wait factor
ID wid Waiting Object ID Waiting object ID
INT wupcnt Wakeup Count Wakeup request queuing count
INT suscnt Suspend Count Suspend request nesting count
UW waitmask Wait Mask Disabled wait factors
UINT texmask Task Exception Mask Allowed task exceptions
UINT tskevent Task Event Raised task event
FP task Task Start Address Task start address
SZ stksz User Stack Size User stack size (in bytes)
SZ sstksz System Stack Size System stack size (in bytes)
void* istack Initial User Stack Pointer User stack pointer initial value
void* isstack Initial System Stack Pointer System stack pointer initial value

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

μT-Kernel 3.0 Specification 440 / 502

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Additionally, the following service profile items are related to this system call.

TK_SUPPORT_DISWAI Information about disabled wait factors (waitmask) is obtainable
TK_SUPPORT_TASKEXCEPTION Task exception information (texmask) can be acquired.
TK_SUPPORT_TASKEVENT Generated task event(tskevent)can be acquired
TK_HAS_SYSSTACK Task can have a system stack independent of user-stack, and

information can be acquired of the system stack as well as user
stack(sstksz and isstack)

Description

Gets the state of the task designated in tskid. This function is similar to tk_ref_tsk, with the task start address
and stack information added to the state information obtained.

The stack area extends from the stack pointer initial value toward the low addresses for the number of bytes
designated as the stack size.

• istack - stksz ≦ user stack area < istack

• isstack - sstksz ≦ system stack area < isstack

Note that the stack pointer initial value (istack, isstack) is not the same as its current position. The stack area
may be used even before a task is started. Calling td_get_reg gets the stack pointer current position.

μT-Kernel 3.0 Specification 441 / 502

6.1.22 td_ref_tex - Reference Task Exception Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_tex(ID tskid, TD_RTEX *pk_rtex);

Parameter

ID tskid Task ID Target task ID (TSK_SELF can be
specified)

TD_RTEX* pk_rtex Packet to Return Task
Exception Status

Pointer to the area to return the task
exception status

Return Parameter

ER ercd Error Code Error code

pk_rtex Detail:

UINT pendtex Pending Task Exception Pending task exceptions
UINT texmask Task Exception Mask Allowed task exceptions

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS
TK_SUPPORT_TASKEXCEPTION Support of task exception handling functions

Description

Gets the task exception status. This is similar to tk_ref_tex.

μT-Kernel 3.0 Specification 442 / 502

6.1.23 td_ref_sem - Reference Semaphore Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_sem(ID semid, TD_RSEM *rsem);

Parameter

ID semid Semaphore ID Target semaphore ID
TD_RSEM* rsem Packet to Return Semaphore

Status
Pointer to the area to return the
semaphore status

Return Parameter

ER ercd Error Code Error code

rsem Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
INT semcnt Semaphore Count Current semaphore resource count

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

References the semaphore status. This is similar to tk_ref_sem.

μT-Kernel 3.0 Specification 443 / 502

6.1.24 td_ref_flg - Reference Event Flag Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_flg(ID flgid, TD_RFLG *rflg);

Parameter

ID flgid EventFlag ID Target event flag ID
TD_RFLG* rflg Packet to Return EventFlag

Status
Pointer to the area to return the
event flag status

Return Parameter

ER ercd Error Code Error code

rflg Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
UINT flgptn EventFlag Bit Pattern The current event flag bit

pattern

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

References the event flag status. This is similar to tk_ref_flg.

μT-Kernel 3.0 Specification 444 / 502

6.1.25 td_ref_mbx - Reference Mailbox Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_mbx(ID mbxid, TD_RMBX *rmbx);

Parameter

ID mbxid Mailbox ID Target mailbox ID
TD_RMBX* rmbx Packet to Return Mailbox Status Pointer to the area to return the

mailbox status

Return Parameter

ER ercd Error Code Error code

rmbx Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
T_MSG* pk_msg Packet of Message Next message to be received

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

References the mailbox status. This is similar to tk_ref_mbx.

μT-Kernel 3.0 Specification 445 / 502

6.1.26 td_ref_mtx - Refer Mutex Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_mtx(ID mtxid, TD_RMTX *rmtx);

Parameter

ID mtxid Mutex ID Target mutex ID
TD_RMTX* rmtx Packet to Return Mutex Status Pointer to the area to return the

mutex status

Return Parameter

ER ercd Error Code Error code

rmtx Detail:

void* exinf Extended Information Extended information
ID htsk Locking Task ID ID of task locking the mutex
ID wtsk Lock Waiting Task ID ID of tasks waiting to lock the

mutex

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

References the mutex status. This is similar to tk_ref_mtx.

μT-Kernel 3.0 Specification 446 / 502

6.1.27 td_ref_mbf - Reference Message Buffer Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_mbf(ID mbfid, TD_RMBF *rmbf);

Parameter

ID mbfid Message Buffer ID Target message buffer ID
TD_RMBF* rmbf Packet to Return Message

Buffer Status
Pointer to the area to return the
message buffer status

Return Parameter

ER ercd Error Code Error code

rmbf Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Receive waiting task ID
ID stsk Send Waiting Task ID Send waiting task ID
INT msgsz Message Size Size of the next message to be

received (in bytes)
SZ frbufsz Free Buffer Size Free buffer size (in bytes)
INT maxmsz Maximum Message Size Maximum message size (in bytes)

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

References the message buffer status. This is similar to tk_ref_mbf.

μT-Kernel 3.0 Specification 447 / 502

6.1.28 td_ref_mpf - Reference Fixed-size Memory Pool Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_mpf(ID mpfid, TD_RMPF *rmpf);

Parameter

ID mpfid Memory Pool ID Target fixed-size memory pool ID
TD_RMPF* rmpf Packet to Return Memory

Pool Status
Pointer to the area to return the
memory pool status

Return Parameter

ER ercd Error Code Error code

rmpf Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
SZ frbcnt Free Block Count Free block count

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

References the fixed-size memory pool status. This is similar to tk_ref_mpf.

μT-Kernel 3.0 Specification 448 / 502

6.1.29 td_ref_mpl - Reference Variable-size Memory Pool Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_mpl(ID mplid, TD_RMPL *rmpl);

Parameter

ID mplid Memory Pool ID Target variable-size memory pool ID
TD_RMPL* rmpl Packet to Return Memory

Pool Status
Pointer to the area to return the
memory pool status

Return Parameter

ER ercd Error Code Error code

rmpl Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
SZ frsz Free Memory Size Free memory size (in bytes)
SZ maxsz Max Memory Size Maximum memory space size (in

bytes)

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

References the variable-size memory pool status. This is similar to tk_ref_mpl.

μT-Kernel 3.0 Specification 449 / 502

6.1.30 td_ref_cyc - Reference Cyclic Handler Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_cyc(ID cycid, TD_RCYC *rcyc);

Parameter

ID cycid Cyclic Handler ID Target cyclic handler ID
TD_RCYC* rcyc Packet to Return Cyclic

Handler Status
Pointer to the area to return the
cyclic handler status

Return Parameter

ER ercd Error Code Error code

rcyc Detail:

void* exinf Extended Information Extended information
RELTIM lfttim Left Time Time remaining until the next

handler starts (ms)
UINT cycstat Cyclic Handler Status Cyclic handler activation state

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

References the cyclic handler status. This is similar to tk_ref_cyc.

The time remaining lfttim returned in the cyclic handler status information (TD_RCYC) obtained by td_ref_cyc
is a value rounded to milliseconds. To know the value in microseconds, call td_ref_cyc_u.

μT-Kernel 3.0 Specification 450 / 502

6.1.31 td_ref_cyc_u - Reference Cyclic Handler Status (Microseconds)

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_cyc_u(ID cycid, TD_RCYC_U *rcyc_u);

Parameter

ID cycid Cyclic Handler ID Target cyclic handler ID
TD_RCYC_U* rcyc_u Packet to Return Cyclic

Handler Status
Pointer to the area to return the
cyclic handler status

Return Parameter

ER ercd Error Code Error code

rcyc_u Detail:

void* exinf Extended Information Extended information
RELTIM_U lfttim_u Left Time Time remaining until the next

handler starts (in microseconds)
UINT cycstat Cyclic Handler Status Cyclic handler activation state

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS
TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit lfttim_u in microseconds instead of the return parameter lfttim of td_ref_cyc.

The specification of this system call is same as that of td_ref_cyc, except that the return parameter is replaced
with lfttim_u. For more details, see the description of td_ref_cyc.

μT-Kernel 3.0 Specification 451 / 502

6.1.32 td_ref_alm - Reference Alarm Handler Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_alm(ID almid, TD_RALM *ralm);

Parameter

ID almid Alarm Handler ID Target alarm handler ID
TD_RALM* ralm Packet to Return Alarm

Handler Status
Pointer to the area to return the
alarm handler status

Return Parameter

ER ercd Error Code Error code

ralm Detail:

void* exinf Extended Information Extended information
RELTIM lfttim Left Time Time remaining until the handler

starts (ms)
UINT almstat Alarm Handler Status Alarm handler activation state

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

References the alarm handler status. This is similar to tk_ref_alm.

The time remaining lfttim returned in the alarm handler status information (TD_RALM) obtained by td_ref_alm
is a value rounded to milliseconds. To know the value in microseconds, call td_ref_alm_u.

μT-Kernel 3.0 Specification 452 / 502

6.1.33 td_ref_alm_u - Reference Alarm Handler Status (Microseconds)

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_alm_u(ID almid, TD_RALM_U *ralm_u);

Parameter

ID almid Alarm Handler ID Target alarm handler ID
TD_RALM_U* ralm_u Packet to Return Alarm

Handler Status
Pointer to the area to return the
alarm handler status

Return Parameter

ER ercd Error Code Error code

ralm_u Detail:

void* exinf Extended Information Extended information
RELTIM_U lfttim_u Left Time Time remaining until the handler

starts (in microseconds)
UINT almstat Alarm Handler Status Alarm handler activation state

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS
TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit lfttim_u in microseconds instead of the return parameter lfttim of td_ref_alm.

The specification of this system call is same as that of td_ref_alm, except that the return parameter is replaced
with lfttim_u. For more details, see the description of td_ref_alm.

μT-Kernel 3.0 Specification 453 / 502

6.1.34 td_ref_sys - Reference System Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_sys(TD_RSYS *pk_rsys);

Parameter

TD_RSYS* pk_rsys Packet to Return System
Status

Pointer to the area to return the
system status

Return Parameter

ER ercd Error Code Error code

pk_rsys Detail:

UINT sysstat System State System State
ID runtskid Running Task ID ID of the task currently in

RUNNING state
ID schedtskid Scheduled Task ID ID of the task scheduled to run next

Error Code

E_OK Normal completion

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the system status. This is similar to tk_ref_sys.

μT-Kernel 3.0 Specification 454 / 502

6.1.35 td_ref_ssy - Reference Subsystem Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_ssy(ID ssid, TD_RSSY *rssy);

Parameter

ID ssid Subsystem ID Target subsystem ID
TD_RSSY* rssy Packet to Return Subsystem

Status
Pointer to the area to return the
subsystem definition information

Return Parameter

ER ercd Error Code Error code

rssy Detail:

PRI ssypri Subsystem Priority Subsystem priority

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS
TK_SUPPORT_SUBSYSTEM Support of subsystem management functions

Description

References the subsystem status. This is similar to tk_ref_ssy.

μT-Kernel 3.0 Specification 455 / 502

6.1.36 td_get_reg - Get Task Register

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_get_reg(ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs);

Parameter

ID tskid Task ID Target task ID (TSK_SELF cannot be
specified)

T_REGS* pk_regs Packet of Registers Pointer to the area to return the
general register values

T_EIT* pk_eit Packet of EIT Registers Pointer to the area to return the
values of registers saved when an
exception occurs

T_CREGS* pk_cregs Packet of Control Registers Pointer to the area to return the
control register values

Return Parameter

ER ercd Error Code Error code

The contents of T_REGS, T_EIT, and T_CREGS are defined for each CPU and implementation.

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (issued for a RUNNING state task)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS
TK_SUPPORT_REGOPS Support for task-register manipulation functions

Description

Gets the register values of the task designated in tskid. This is similar to tk_get_reg.

μT-Kernel 3.0 Specification 456 / 502

Registers cannot be referenced for the task currently in RUNNING state. Except when a task-independent
portion is executing, the current RUNNING state task is the invoking task.

If NULL is set in pk_regs, pk_eit, or pk_cregs, the corresponding registers are not referenced.

The contents of T_REGS, T_EIT, and T_CREGS are implementation-dependent.

μT-Kernel 3.0 Specification 457 / 502

6.1.37 td_set_reg - Set Task Registers

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_set_reg(ID tskid, CONST T_REGS *pk_regs, CONST T_EIT *pk_eit, CONST T_CREGS *pk_cregs);

Parameter

ID tskid Task ID Target task ID (TSK_SELF cannot
be specified)

CONST T_REGS* pk_regs Packet of Registers General registers
CONST T_EIT* pk_eit Packet of EIT Registers Registers saved when EIT occurs
CONST T_CREGS* pk_cregs Packet of Control Registers Control registers

The contents of T_REGS, T_EIT, and T_CREGS are defined for each CPU and implementation.

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (issued for a RUNNING state task)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS
TK_SUPPORT_REGOPS Support for task-register manipulation functions

Description

Sets registers of the task designated in tskid. This is similar to tk_set_reg.

Registers cannot be set for the task currently in RUNNING state. Except when a task-independent portion is
executing, the current RUNNING state task is the invoking task.

If NULL is set in pk_regs, pk_eit, or pk_cregs, the corresponding registers are not set.

The contents of T_REGS, T_EIT, and T_CREGS are implementation-dependent.

μT-Kernel 3.0 Specification 458 / 502

6.1.38 td_get_utc - Get System Time

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_get_utc(SYSTIM *tim, UW *ofs);

Parameter

SYSTIM* tim Time Pointer to the area to return the current
time (ms)

UW* ofs Offset Pointer to the area to return the return
parameter ofs

Return Parameter

ER ercd Error Code Error code
SYSTIM tim Time Current time (in milliseconds)
UW ofs Offset Elapsed time from tim (in nanoseconds)

tim Detail:

W hi High 32 bits Higher 32 bits of current time of the
system time

UW lo Low 32 bits Lower 32 bits of current time of the
system time

Error Code

E_OK Normal completion

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS
TK_SUPPORT_UTC Support of UNIX time

Description

Gets the current time as total elapsed milliseconds since 0:00:00, January 1, 1970 (UTC). The value returned
in tim is the same as that obtained by tk_get_utc. tim is the resolution of timer interrupt intervals (cycles),

μT-Kernel 3.0 Specification 459 / 502

but even more precise time information is obtained in ofs as the elapsed time from tim in nanoseconds. The
resolution of ofs is implementation-dependent, but generally is the resolution of hardware timer.

Since tim is a cumulative time counted based on timer interrupts, in some cases time is not refreshed, when
a timer interrupt cycle arrives while interrupts are disabled and the timer interrupt handler is not started (is
delayed). In such cases, the time as updated by the previous timer interrupt is returned in tim, and the elapsed
time from the previous timer interrupt is returned in ofs. Accordingly, in some cases ofs will be longer than
the timer interrupt cycle. The length of elapsed time that can be measured by ofs depends on the hardware,
but preferably it should be possible to measure at least up to twice the timer interrupt cycle (0 ≦ ofs < twice
the timer interrupt cycle).

Note that the time returned in tim and ofs is the time at some point between the calling of and return from
td_get_utc. It is neither the time at which td_get_utc was called nor the time of return from td_get_utc. In
order to obtain more accurate information, this function should be called in interrupts disabled state.

μT-Kernel 3.0 Specification 460 / 502

6.1.39 td_get_utc_u - Get System Time (Microseconds)

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_get_utc_u(SYSTIM_U *tim_u, UW *ofs);

Parameter

SYSTIM_U* tim_u Time Pointer to the area to return the
current time (in microseconds)

UW* ofs Offset Pointer to the area to return the
return parameter ofs

Return Parameter

ER ercd Error Code Error code
SYSTIM_U tim_u Time Current time (in microseconds)
UW ofs Offset Elapsed time from tim_u (in

nanoseconds)

Error Code

E_OK Normal completion

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS
TK_SUPPORT_UTC Support of UNIX time
TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tim_u in microseconds instead of the return parameter tim of td_get_utc.

The specification of this system call is same as that of td_get_utc, except that the return parameter is replaced
with tim_u. For more details, see the description of td_get_utc.

μT-Kernel 3.0 Specification 461 / 502

6.1.40 td_get_tim - Get System Time (TRON)

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_get_tim(SYSTIM *tim, UW *ofs);

Parameter

SYSTIM* tim Time Pointer to the area to return the current
time (ms)

UW* ofs Offset Pointer to the area to return the return
parameter ofs

Return Parameter

ER ercd Error Code Error code
SYSTIM tim Time Current time (in milliseconds)
UW ofs Offset Elapsed time from tim (in nanoseconds)

tim Detail:

W hi High 32 bits Higher 32 bits of current time of the
system time

UW lo Low 32 bits Lower 32 bits of current time of the
system time

Error Code

E_OK Normal completion

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS
TK_SUPPORT_TRONTIME Support of TRON time

Description

Gets the current time as total elapsed milliseconds since 0:00:00 (GMT), January 1, 1985. The value returned
in tim is the same as that obtained by tk_get_tim. tim is the resolution of timer interrupt intervals (cycles),

μT-Kernel 3.0 Specification 462 / 502

but even more precise time information is obtained in ofs as the elapsed time from tim in nanoseconds. The
resolution of ofs is implementation-dependent, but generally is the resolution of hardware timer.

Since tim is a cumulative time counted based on timer interrupts, in some cases time is not refreshed, when
a timer interrupt cycle arrives while interrupts are disabled and the timer interrupt handler is not started (is
delayed). In such cases, the time as updated by the previous timer interrupt is returned in tim, and the elapsed
time from the previous timer interrupt is returned in ofs. Accordingly, in some cases ofs will be longer than
the timer interrupt cycle. The length of elapsed time that can be measured by ofs depends on the hardware,
but preferably it should be possible to measure at least up to twice the timer interrupt cycle (0 ≦ ofs < twice
the timer interrupt cycle).

Note that the time returned in tim and ofs is the time at some point between the calling of and return from
td_get_tim. It is neither the time at which td_get_tim was called nor the time of return from td_get_tim. In
order to obtain more accurate information, this function should be called in interrupts disabled state.

Additional Notes

td_get_tim is very similar to td_get_utc. However, it uses the time system with a different epoch. td_get_tim
is an API to keep compatibility with legacy μT-Kernel or T-Kernel specifications.

μT-Kernel 3.0 Specification 463 / 502

6.1.41 td_get_tim_u - Get System Time (TRON, Microseconds)

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_get_tim_u(SYSTIM_U *tim_u, UW *ofs);

Parameter

SYSTIM_U* tim_u Time Pointer to the area to return the
current time (in microseconds)

UW* ofs Offset Pointer to the area to return the
return parameter ofs

Return Parameter

ER ercd Error Code Error code
SYSTIM_U tim_u Time Current time (in microseconds)
UW ofs Offset Elapsed time from tim_u (in

nanoseconds)

Error Code

E_OK Normal completion

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS
TK_SUPPORT_TRONTIME Support of TRON time
TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tim_u in microseconds instead of the return parameter tim of td_get_tim.

The specification of this system call is same as that of td_get_tim, except that the return parameter is replaced
with tim_u. For more details, see the description of td_get_tim.

Additional Notes

td_get_tim_u is very similar to td_get_utc_u. However, it uses the time system with a different epoch. td_get_tim_u
is an API to keep compatibility with legacy μT-Kernel or T-Kernel specifications.

μT-Kernel 3.0 Specification 464 / 502

6.1.42 td_get_otm - Get Operating Time

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_get_otm(SYSTIM *tim, UW *ofs);

Parameter

SYSTIM* tim Time Pointer to the area to return the
operating time (ms)

UW* ofs Offset Pointer to the area to return the return
parameter ofs

Return Parameter

ER ercd Error Code Error code
SYSTIM tim Time Operating time (in milliseconds)
UW ofs Offset Elapsed time from tim (in nanoseconds)

tim Detail:

W hi High 32 bits Higher 32 bits of the system operating
time

UW lo Low 32 bits Lower 32 bits of the system operating
time

Error Code

E_OK Normal completion

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Gets the system operating time (uptime, as elapsed milliseconds since the system was booted). The value
returned in tim is the same as that obtained by tk_get_otm. tim is the resolution of timer interrupt intervals
(cycles), but even more precise time information is obtained in ofs as the elapsed time from tim in nanosec-
onds. The resolution of ofs is implementation-dependent, but generally is the resolution of hardware timer.

μT-Kernel 3.0 Specification 465 / 502

Since tim is a cumulative time counted based on timer interrupts, in some cases time is not refreshed, when
a timer interrupt cycle arrives while interrupts are disabled and the timer interrupt handler is not started (is
delayed). In such cases, the time as updated by the previous timer interrupt is returned in tim, and the elapsed
time from the previous timer interrupt is returned in ofs. Accordingly, in some cases ofs will be longer than
the timer interrupt cycle. The length of elapsed time that can be measured by ofs depends on the hardware,
but preferably it should be possible to measure at least up to twice the timer interrupt cycle (0 ≦ ofs < twice
the timer interrupt cycle).

Note that the time returned in tim and ofs is the time at some point between the calling of and return from
td_get_otm. It is neither the time at which td_get_otm was called nor the time of return from td_get_otm. In
order to obtain more accurate information, this function should be called in interrupts disabled state.

μT-Kernel 3.0 Specification 466 / 502

6.1.43 td_get_otm_u - Get Operating Time (Microseconds)

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_get_otm_u(SYSTIM_U *tim_u, UW *ofs);

Parameter

SYSTIM_U* tim_u Time Pointer to the area to return the
operating time (in microseconds)

UW* ofs Offset Pointer to the area to return the
return parameter ofs

Return Parameter

ER ercd Error Code Error code
SYSTIM_U tim_u Time Operating time (in microseconds)
UW ofs Offset Elapsed time from tim_u (in

nanoseconds)

Error Code

E_OK Normal completion

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS
TK_SUPPORT_USEC Support of microsecond

Description

This system call takes 64-bit tim_u in microseconds instead of the return parameter tim of td_get_otm.

The specification of this system call is same as that of td_get_otm, except that the return parameter is replaced
with tim_u. For more details, see the description of td_get_otm.

μT-Kernel 3.0 Specification 467 / 502

6.1.44 td_ref_dsname - Refer to DS Object Name

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_dsname(UINT type, ID id, UB *dsname);

Parameter

UINT type Object Type Target object type
ID id Object ID Object ID
UB* dsname DS Object Name Pointer to the area to return the DS

object name

Return Parameter

ER ercd Error Code Error code

dsname Detail:
DS object name, set at object creation or by td_set_dsname

Error Code

E_OK Normal completion
E_PAR Invalid object type
E_NOEXS Object does not exist
E_OBJ DS object name is not used

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DSNAME Support for DS object name

Description

References the DS object name (dsname), which is set at object creation. The object is specified by object type
(type) and object ID (id).

Object types (type) are as follows:

TN_TSK 0x01 Task
TN_SEM 0x02 Semaphore

μT-Kernel 3.0 Specification 468 / 502

TN_FLG 0x03 Event Flag
TN_MBX 0x04 Mailbox
TN_MBF 0x05 Message Buffer
TN_POR 0x06 (reserved)
TN_MTX 0x07 Mutex
TN_MPL 0x08 Variable-size Memory Pool
TN_MPF 0x09 Fixed-size Memory Pool
TN_CYC 0x0a Cyclic Handler
TN_ALM 0x0b Alarm Handler

DS object name is valid if TA_DSNAME is set as object attribute. If DS object name is changed by td_set_dsname,
then td_ref_dsname references the new name.

DS object name needs to satisfy the following conditions. However, character code range is not checked by
μT-Kernel.

Available characters (UB)
a to z, A to Z, 0 to 9, _

Name length
Up to 8 bytes (not including ’\0’)

Additional Notes

The DS object name that is read is terminated with a ’\0’ character. Hence, dsname must have a area of 9 or
more bytes.

μT-Kernel 3.0 Specification 469 / 502

6.1.45 td_set_dsname - Set DS Object Name

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_set_dsname(UINT type, ID id, CONST UB *dsname);

Parameter

UINT type Object Type Target object type
ID id Object ID Object ID
CONST UB* dsname DS Object Name DS object name to be set

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Invalid object type
E_NOEXS Object does not exist
E_OBJ DS object name is not used

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DSNAME Support for DS object name

Description

Re-sets DS object name (dsname), which is set at object creation. The object is specified by object type (type)
and object ID (id).

Object types (type) are as same as that of td_ref_dsname.

DS object name needs to satisfy the following conditions. However, character code range is not checked by
μT-Kernel.

Available characters (UB)
a to z, A to Z, 0 to 9, _

Name length
Up to 8 bytes (not including ’\0’)

μT-Kernel 3.0 Specification 470 / 502

DS object name is valid if TA_DSNAME is set as object attribute. td_set_dsname returns E_OBJ error if TA_DSNAME
attribute is not specified.

μT-Kernel 3.0 Specification 471 / 502

6.2 Trace Functions

Trace functions are functions for enabling a debugger to trace program execution. Execution trace is per-
formed by setting hook routines.

• Return from a hook routine must be made after states have returned to where they were when the hook
routine was called. Restoring of registers, however, can be done in accordance with the C language function
saving rules.

• In a hook routine, limitations on states must not be loosened to make them less restrictive than when the
routine was called. For example, if the hook routine was called during interrupts disabled state, interrupts
must not be enabled.

• A hook routine was called at protection level 0.

• A hook routine inherits the stack at the time of the hook. Using too much stack may therefore cause a stack
overflow. The extent to which the stack can be used is not definite, since it differs with the situation at the
time of the hook. Switching to a separate stack in the hook routine is a safer option.

μT-Kernel 3.0 Specification 472 / 502

6.2.1 td_hok_svc - Define System Call/Extended SVC Hook Routine

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_hok_svc(CONST TD_HSVC *hsvc);

Parameter

CONST TD_HSVC* hsvc SVC Hook Routine Hook routine definition
information

hsvc Detail:

FP enter Hook Routine before
Calling

Hook routine before calling

FP leave Hook Routine after Calling Hook routine after calling

Return Parameter

ER ercd Error Code Error code

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Sets hook routines before and after the issuing of a system call or extended SVC. Setting NULL in hsvc cancels
a hook routine.

The target of trace functions are the system calls of μT-Kernel/OS (tk_〜) and extended SVCs. Note, however,
generally speaking tk_ret_int is not the target of trace function. This is implementation-dependent.

System calls of μT-Kernel/DS (td_〜) are not the target of trace functions.

A hook routine runs as a quasi-task portion of the task that called a system call or extended SVC for which a
hook routine is set. Therefore, for example, the invoking task in a hook routine is the same as the task that
invoked the system call or extended SVC.

μT-Kernel 3.0 Specification 473 / 502

Since task dispatching and interrupts can occur inside system call processing, enter() and leave() are not
necessarily called in succession as a pair in every case. If a system call is one that does not return, leave()
will not be called.

void *enter(FN fncd, TD_CALINF *calinf, ...);

FN fncd Function Codes< 0 System call
≧ 0 Extended SVC

TD_CALINF* calinf Caller information
... Parameters (variable number)

Return Any value passed to leave()

typedef struct td_calinf {
Information to determine the caller for the system call or extended SVC;
it is preferable to include the information for the stack back -trace.
The contents are implementation -dependent ,
but generally consist of register values such as stack pointer and program counter.

} TD_CALINF;

enter is called right before a system call or extended SVC.

The value passed in the return code is passed transparently to the corresponding leave(). This makes it
possible to pair enter() and leave() calls or to pass any other information.

exinf = enter(fncd , &calinf , ...)
ret = system call or extended SVC execution
leave(fncd , ret , exinf)

• For system call

The parameters are the same as the system call parameters.

tk_wai_sem(ID semid, INT cnt, TMO tmout)

enter(TFN_WAI_SEM , &calinf , semid , cnt , tmout)

• For extended SVC

The parameters are as in the packet passed to the extended SVC handler.

fncd is likewise the same as that passed to the extended SVC handler.

enter (FN fncd, TD_CALINF *calinf, void *pk_para);
void leave(FN fncd, INT ret, void *exinf);

FN fncd Function Codes
INT ret Return code of the system call or

extended SVC
void* exinf Any value returned by enter()

enter is called right after returning from a system call or extended SVC.

When a hook routine is set after a system call or extended SVC is called (while the system call or extended
SVC is executing), in some cases leave() only may be called without calling enter() . In such a case NULL is
passed in exinf.

If, on the other hand, a hook routine is canceled after a system call or extended SVC is called, there may be
cases when enter() is called but not leave().

μT-Kernel 3.0 Specification 474 / 502

6.2.2 td_hok_dsp - Define Task Dispatch Hook Routine

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_hok_dsp(CONST TD_HDSP *hdsp);

Parameter

CONST TD_HDSP* hdsp Dispatcher Hook Routine Hook routine definition
information

hdsp Detail:

FP exec Hook Routine when
Execution Starts

Hook routine when execution
starts

FP stop Hook Routine when
Execution Stops

Hook routine when execution
stops

Return Parameter

ER ercd Error Code Error code

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Sets hook routines in the task dispatcher. Setting NULL in hdsp cancels a hook routine.

A hook routine is called while dispatching is disabled. A hook routine shall not invoke system calls of μT-
Kernel/OS (tk_〜) and extended SVCs. A hook routine can invoke system calls of μT-Kernel/DS (td_〜).

void exec(ID tskid);

ID tskid Task ID of the started or resumed task

μT-Kernel 3.0 Specification 475 / 502

exec() is called when the designated task starts execution or resumes. At the time exec() is called, the task
designated in tskid is already in RUNNING state. However, execution of the tskid task program code occurs
after the return from exec().

void stop(ID tskid, UINT tskstat);

ID tskid Task ID of the executed or stopped task
UINT tskstat State of the task designated in tskid

stop() is called when the designated task executes or stops. tskstat indicates the task state after stopping, as
one of the following states:

TTS_RDY READY state
TTS_WAI WAITING state
TTS_SUS SUSPENDED state
TTS_WAS WAITING-SUSPENDED state
TTS_DMT DORMANT state
0 NON-EXISTENT state

At the time stop() is called, the task designated in tskid has already entered the state indicated in tskstat.

μT-Kernel 3.0 Specification 476 / 502

6.2.3 td_hok_int - Define Interrupt Handler Hook Routine

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_hok_int(CONST TD_HINT *hint);

Parameter

CONST TD_HINT* hint Interrupt Handler Hook
Routine

Hook routine definition
information

hint Detail:

FP enter Hook Routine before
Calling Handler

Hook routine before calling
handler

FP leave Hook Routine after Calling
Handler

Hook routine after calling handler

Return Parameter

ER ercd Error Code Error code

Error Codes

None.

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Related Service Profile Items

Only when all the service profile items below are set to be effective, this system call can be used.

TK_SUPPORT_DBGSPT Support of μT-Kernel/DS

Description

Sets hook routines before and after an interrupt handler is called. Hook routine setting cannot be done
individually for different exception or interrupt factors. One pair of hook routines is set in common for all
exception and interrupt factors.

Setting hint to NULL cancels the hook routines.

The hook routines are called as task-independent portion (part of the interrupt handler). Accordingly, the
hook routines can call only those system calls that can be invoked from a task-independent portion.

μT-Kernel 3.0 Specification 477 / 502

Note that hook routines can be set only for interrupt handlers defined by tk_def_int with the TA_HLNG attribute.
A TA_ASM attribute interrupt handler cannot be hooked by a hook routine. Hooking of a TA_ASM attribute in-
terrupt handler is possible only by directly manipulating the exception/interrupt vector table. The actual
methods are implementation-dependent.

void *enter(UINT intno);
void *leave(UINT intno);

UINT intno Interrupt number

Parameters passed to enter() and leave() are the same as those of exception handler and interrupt handler.
Depending on the implementation, other information about the interrupt may be passed in addition to intno.

A hook routine is called as follows from a high-level language support routine.

enter(intno);
inthdr(intno); /* Interrupt or exception handler */
leave(intno);

enter() is called in interrupts disabled state, and interrupts must not be enabled. Since leave() assumes the
status on return from inthdr(), the interrupts disabled or enabled status is indeterminate.

enter() can obtain the same amount of information which the function inthdr() can obtain. If the function
inthdr() cannot obtain a piece of information, that information cannot be acquired by enter(). either. The
specification guarantees that enter() and inthdr() can access information by means of intno, but whether
other information can be acquired is implementation dependent. Note that during the execution of the func-
tion leave(), the states such as interrupt mask status may have changed, it may be impossible to obtain the
same amount of information obtained by enter() or inthdr().

μT-Kernel 3.0 Specification 478 / 502

Chapter 7

Appendix

μT-Kernel 3.0 Specification 479 / 502

7.1 System Configuration

It is permitted to change μT-Kernel or remove unnecessary functions from it when an implementation of
μT-Kernel is embedded into a real-world product, etc. The reference implementation of μT-Kernel 3.0 con-
tains features to change and set the parameters such as the number of resources and limit values of certain
parameters. Changing and setting system parameters is called system configuration.

This section lists the system configuration items that are provided by the μT-Kernel 3.0 reference implemen-
tation.

Name Explanations
CFN_MAX_PRI Maximum task priority (it is reflected in service

profile item, TK_MAX_TSKPRI)
CFN_SYSTEMAREA_TOP Lowest address of a region dynamically managed

by the memory management function of
μT-Kernel

CFN_SYSTEMAREA_END Highest address of a region dynamically managed
by the memory management function of
μT-Kernel

CFN_TIMER_PERIOD Timer interrupt interval (in milliseconds)
CFN_MAX_TSKID Maximum number of tasks
CFN_MAX_SEMID Maximum number of semaphores
CFN_MAX_FLGID Maximum number of event flags
CFN_MAX_MBXID Maximum number of mailboxes
CFN_MAX_MTXID Maximum number of mutexes
CFN_MAX_MBFID Maximum number of messages buffers.
CFN_MAX_MPFID Maximum number of fixed-size memory pools
CFN_MAX_MPLID Maximum number of variable-size memory pools
CFN_MAX_CYCID Maximum number of cyclic handlers
CFN_MAX_ALMID Maximum number of alarm handlers
CFN_MAX_SSYID Maximum number of subsystems
CFN_MAX_SSYPRI Maximum number of subsystem priorities
CFN_MAX_REGDEV Maximum number of registered devices
CFN_MAX_OPNDEV Maximum number of open devices
CFN_MAX_REQDEV Maximum number of pending device requests

Additional Notes
System configuration is not within the scope of μT-Kernel 3.0. But if similar function is to be provided, it is
desirable to use naming conventions that are compatible with these item names.

μT-Kernel 3.0 Specification 480 / 502

7.2 Keywords

1. Keywords related to the name of the OS

• μT-Kernel
• TRON
• IEEE 2050-2018

2. Keywords related to the application of the OS

• embedded
• real time
• IoT edgenode
• small scale
• 16-bit CPU
• single chip microcomputer
• single chip MicroController Unit (MCU)
• power saving

3. Keywords related to the fundamental concepts used in the OS

• real-time operating system (RTOS)
• Application Programming Interface (API)
• system call
• kernel
• task
• dispatching (task dispatching)
• scheduling (task scheduling)
• priority-based
• task portion
• non-task portion
• taskindependent portion
• quasi-task portion
• service profile

4. Keywords related to the individual functions of OS

• semaphore
• event flag
• mailbox
• message buffer
• mutex
• memory pool
• interrupt handler
• cyclic handler
• alarm handler
• device management
• power management
• physical timer
• fast lock
• fast multi-lock

μT-Kernel 3.0 Specification 481 / 502

Chapter 8

Reference

μT-Kernel 3.0 Specification 482 / 502

8.1 List of C Language Interface

8.1.1 μT-Kernel/OS

8.1.1.1 Task Management Functions

• ID tskid = tk_cre_tsk (CONST T_CTSK *pk_ctsk);

• ER ercd = tk_del_tsk (ID tskid);

• ER ercd = tk_sta_tsk (ID tskid, INT stacd);

• void tk_ext_tsk (void);

• void tk_exd_tsk (void);

• ER ercd = tk_ter_tsk (ID tskid);

• ER ercd = tk_chg_pri (ID tskid, PRI tskpri);

• ER ercd = tk_get_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs);

• ER ercd = tk_set_reg (ID tskid, CONST T_REGS *pk_regs, CONST T_EIT *pk_eit, CONST T_CREGS *pk_cregs
);

• ER ercd = tk_get_cpr (ID tskid, INT copno, T_COPREGS *pk_copregs);

• ER ercd = tk_set_cpr (ID tskid, INT copno, CONST T_COPREGS *pk_copregs);

• ER ercd = tk_ref_tsk (ID tskid, T_RTSK *pk_rtsk);

8.1.1.2 Task Synchronization Functions

• ER ercd = tk_slp_tsk (TMO tmout);

• ER ercd = tk_slp_tsk_u (TMO_U tmout_u);

• ER ercd = tk_wup_tsk (ID tskid);

• INT wupcnt = tk_can_wup (ID tskid);

• ER ercd = tk_rel_wai (ID tskid);

• ER ercd = tk_sus_tsk (ID tskid);

• ER ercd = tk_rsm_tsk (ID tskid);

• ER ercd = tk_frsm_tsk (ID tskid);

• ER ercd = tk_dly_tsk (RELTIM dlytim);

• ER ercd = tk_dly_tsk_u (RELTIM_U dlytim_u);

• ER ercd = tk_sig_tev (ID tskid, INT tskevt);

• INT tevptn = tk_wai_tev (INT waiptn, TMO tmout);

• INT tevptn = tk_wai_tev_u (INT waiptn, TMO_U tmout_u);

• INT tskwait = tk_dis_wai (ID tskid, UW waitmask);

• ER ercd = tk_ena_wai (ID tskid);

μT-Kernel 3.0 Specification 483 / 502

8.1.1.3 Task Exception Handling Functions

• ER ercd = tk_def_tex (ID tskid, CONST T_DTEX *pk_dtex);

• ER ercd = tk_ena_tex (ID tskid, UINT texptn);

• ER ercd = tk_dis_tex (ID tskid, UINT texptn);

• ER ercd = tk_ras_tex (ID tskid, INT texcd);

• INT texcd = tk_end_tex (BOOL enatex);

• ER ercd = tk_ref_tex (ID tskid, T_RTEX *pk_rtex);

8.1.1.4 Synchronization and Communication Functions

• ID semid = tk_cre_sem (CONST T_CSEM *pk_csem);

• ER ercd = tk_del_sem (ID semid);

• ER ercd = tk_sig_sem (ID semid, INT cnt);

• ER ercd = tk_wai_sem (ID semid, INT cnt, TMO tmout);

• ER ercd = tk_wai_sem_u (ID semid, INT cnt, TMO_U tmout_u);

• ER ercd = tk_ref_sem (ID semid, T_RSEM *pk_rsem);

• ID flgid = tk_cre_flg (CONST T_CFLG *pk_cflg);

• ER ercd = tk_del_flg (ID flgid);

• ER ercd = tk_set_flg (ID flgid, UINT setptn);

• ER ercd = tk_clr_flg (ID flgid, UINT clrptn);

• ER ercd = tk_wai_flg (ID flgid, UINT waiptn, UINT wfmode, UINT *p_flgptn, TMO tmout);

• ER ercd = tk_wai_flg_u (ID flgid, UINT waiptn, UINT wfmode, UINT *p_flgptn, TMO_U tmout_u);

• ER ercd = tk_ref_flg (ID flgid, T_RFLG *pk_rflg);

• ID mbxid = tk_cre_mbx (CONST T_CMBX* pk_cmbx);

• ER ercd = tk_del_mbx (ID mbxid);

• ER ercd = tk_snd_mbx (ID mbxid, T_MSG *pk_msg);

• ER ercd = tk_rcv_mbx (ID mbxid, T_MSG **ppk_msg, TMO tmout);

• ER ercd = tk_rcv_mbx_u (ID mbxid, T_MSG **ppk_msg, TMO_U tmout_u);

• ER ercd = tk_ref_mbx (ID mbxid, T_RMBX *pk_rmbx);

μT-Kernel 3.0 Specification 484 / 502

8.1.1.5 Extended Synchronization and Communication Functions

• ID mtxid = tk_cre_mtx (CONST T_CMTX *pk_cmtx);

• ER ercd = tk_del_mtx (ID mtxid);

• ER ercd = tk_loc_mtx (ID mtxid, TMO tmout);

• ER ercd = tk_loc_mtx_u (ID mtxid, TMO_U tmout_u);

• ER ercd = tk_unl_mtx (ID mtxid);

• ER ercd = tk_ref_mtx (ID mtxid, T_RMTX *pk_rmtx);

• ID mbfid = tk_cre_mbf (CONST T_CMBF *pk_cmbf);

• ER ercd = tk_del_mbf (ID mbfid);

• ER ercd = tk_snd_mbf (ID mbfid, CONST void *msg, INT msgsz, TMO tmout);

• ER ercd = tk_snd_mbf_u (ID mbfid, CONST void *msg, INT msgsz, TMO_U tmout_u);

• INT msgsz = tk_rcv_mbf (ID mbfid, void *msg, TMO tmout);

• INT msgsz = tk_rcv_mbf_u (ID mbfid, void *msg, TMO_U tmout_u);

• ER ercd = tk_ref_mbf (ID mbfid, T_RMBF *pk_rmbf);

8.1.1.6 Memory Pool Management Functions

• ID mpfid = tk_cre_mpf (CONST T_CMPF *pk_cmpf);

• ER ercd = tk_del_mpf (ID mpfid);

• ER ercd = tk_get_mpf (ID mpfid, void **p_blf, TMO tmout);

• ER ercd = tk_get_mpf_u (ID mpfid, void **p_blf, TMO_U tmout_u);

• ER ercd = tk_rel_mpf (ID mpfid, void *blf);

• ER ercd = tk_ref_mpf (ID mpfid, T_RMPF *pk_rmpf);

• ID mplid = tk_cre_mpl (CONST T_CMPL *pk_cmpl);

• ER ercd = tk_del_mpl (ID mplid);

• ER ercd = tk_get_mpl (ID mplid, SZ blksz, void **p_blk, TMO tmout);

• ER ercd = tk_get_mpl_u (ID mplid, SZ blksz, void **p_blk, TMO_U tmout_u);

• ER ercd = tk_rel_mpl (ID mplid, void *blk);

• ER ercd = tk_ref_mpl (ID mplid, T_RMPL *pk_rmpl);

μT-Kernel 3.0 Specification 485 / 502

8.1.1.7 Time Management Functions

• ER ercd = tk_set_utc (CONST SYSTIM *pk_tim);

• ER ercd = tk_set_utc_u (SYSTIM_U tim_u);

• ER ercd = tk_set_tim (CONST SYSTIM *pk_tim);

• ER ercd = tk_set_tim_u (SYSTIM_U tim_u);

• ER ercd = tk_get_utc (SYSTIM *pk_tim);

• ER ercd = tk_get_utc_u (SYSTIM_U *tim_u, UW *ofs);

• ER ercd = tk_get_tim (SYSTIM *pk_tim);

• ER ercd = tk_get_tim_u (SYSTIM_U *tim_u, UW *ofs);

• ER ercd = tk_get_otm (SYSTIM *pk_tim);

• ER ercd = tk_get_otm_u (SYSTIM_U *tim_u, UW *ofs);

• ID cycid = tk_cre_cyc (CONST T_CCYC *pk_ccyc);

• ID cycid = tk_cre_cyc_u (CONST T_CCYC_U *pk_ccyc_u);

• ER ercd = tk_del_cyc (ID cycid);

• ER ercd = tk_sta_cyc (ID cycid);

• ER ercd = tk_stp_cyc (ID cycid);

• ER ercd = tk_ref_cyc (ID cycid, T_RCYC *pk_rcyc);

• ER ercd = tk_ref_cyc_u (ID cycid, T_RCYC_U *pk_rcyc_u);

• ID almid = tk_cre_alm (CONST T_CALM *pk_calm);

• ER ercd = tk_del_alm (ID almid);

• ER ercd = tk_sta_alm (ID almid, RELTIM almtim);

• ER ercd = tk_sta_alm_u (ID almid, RELTIM_U almtim_u);

• ER ercd = tk_stp_alm (ID almid);

• ER ercd = tk_ref_alm (ID almid, T_RALM *pk_ralm);

• ER ercd = tk_ref_alm_u (ID almid, T_RALM_U *pk_ralm_u);

8.1.1.8 Interrupt Management Functions

• ER ercd = tk_def_int (UINT intno, CONST T_DINT *pk_dint);

• void tk_ret_int (void);

8.1.1.9 System Management Functions

• ER ercd = tk_rot_rdq (PRI tskpri);

• ID tskid = tk_get_tid (void);

• ER ercd = tk_dis_dsp (void);

• ER ercd = tk_ena_dsp (void);

• ER ercd = tk_ref_sys (T_RSYS *pk_rsys);

• ER ercd = tk_set_pow (UINT powmode);

• ER ercd = tk_ref_ver (T_RVER *pk_rver);

μT-Kernel 3.0 Specification 486 / 502

8.1.1.10 Subsystem Management Functions

• ER ercd = tk_def_ssy (ID ssid, CONST T_DSSY *pk_dssy);

• ER ercd = tk_evt_ssy (ID ssid, INT evttyp, ID resid, INT info);

• ER ercd = tk_ref_ssy (ID ssid, T_RSSY *pk_rssy);

8.1.2 μT-Kernel/SM

8.1.2.1 System Memory Management Functions

• void* Kmalloc (size_t size);

• void* Kcalloc (size_t nmemb, size_t size);

• void* Krealloc (void *ptr, size_t size);

• void Kfree (void *ptr);

8.1.2.2 Device Management Functions

• ID dd = tk_opn_dev (CONST UB *devnm, UINT omode);

• ER ercd = tk_cls_dev (ID dd, UINT option);

• ID reqid = tk_rea_dev (ID dd, W start, void *buf, SZ size, TMO tmout);

• ID reqid = tk_rea_dev_du (ID dd, D start_d, void *buf, SZ size, TMO_U tmout_u);

• ER ercd = tk_srea_dev (ID dd, W start, void *buf, SZ size, SZ *asize);

• ER ercd = tk_srea_dev_d (ID dd, D start_d, void *buf, SZ size, SZ *asize);

• ID reqid = tk_wri_dev (ID dd, W start, CONST void *buf, SZ size, TMO tmout);

• ID reqid = tk_wri_dev_du (ID dd, D start_d, CONST void *buf, SZ size, TMO_U tmout_u);

• ER ercd = tk_swri_dev (ID dd, W start, CONST void *buf, SZ size, SZ *asize);

• ER ercd = tk_swri_dev_d (ID dd, D start_d, CONST void *buf, W size, W *asize);

• ID creqid = tk_wai_dev (ID dd, ID reqid, SZ *asize, ER *ioer, TMO tmout);

• ID creqid = tk_wai_dev_u (ID dd, ID reqid, SZ *asize, ER *ioer, TMO_U tmout_u);

• INT dissus = tk_sus_dev (UINT mode);

• ID pdevid = tk_get_dev (ID devid, UB *devnm);

• ID devid = tk_ref_dev (CONST UB *devnm, T_RDEV *rdev);

• ID devid = tk_oref_dev (ID dd, T_RDEV *rdev);

• INT remcnt = tk_lst_dev (T_LDEV *ldev, INT start, INT ndev);

• INT retcode = tk_evt_dev (ID devid, INT evttyp, void *evtinf);

• ID devid = tk_def_dev (CONST UB *devnm, CONST T_DDEV *ddev, T_IDEV *idev);

• ER ercd = tk_ref_idv (T_IDEV *idev);

• ER ercd = openfn (IDdevid, UINTomode, void * exinf);

μT-Kernel 3.0 Specification 487 / 502

• ER ercd = closefn (IDdevid, UINToption, void * exinf);

• ER ercd = execfn (T_DEVREQ * devreq, TMOtmout, void * exinf);

• ER ercd = execfn (T_DEVREQ_D * devreq_d, TMOtmout, void * exinf);

• ER ercd = execfn (T_DEVREQ * devreq, TMO_Utmout_u, void * exinf);

• ER ercd = execfn (T_DEVREQ_D * devreq_d, TMO_Utmout_u, void * exinf);

• INT creqno = waitfn (T_DEVREQ * devreq, INTnreq, TMOtmout * exinf);

• INT creqno = waitfn (T_DEVREQ_D * devreq_d, INTnreq, TMOtmout * exinf);

• INT creqno = waitfn (T_DEVREQ * devreq, INTnreq, TMO_Utmout_u * exinf);

• INT creqno = waitfn (T_DEVREQ_D * devreq_d, INTnreq, TMO_Utmout_u * exinf);

• ER ercd = abortfn (IDtskid, T_DEVRQ * devreq, INTnreq, void * exinf);

• ER ercd = abortfn (IDtskid, T_DEVRQ_D * devreq_d, INTnreq, void * exinf);

• INT retcode = eventfn (INTevttyp, void * evtinf, void * exinf);

8.1.2.3 Interrupt Management Functions

• DI (UINT intsts);

• EI (UINT intsts);

• BOOL disint = isDI (UINT intsts);

• void SetCpuIntLevel (INT level);

• INT level = GetCpuIntLevel (void);

• void EnableInt (UINT intno);

• void EnableInt (UINT intno, INT level);

• void DisableInt (UINT intno);

• void ClearInt (UINT intno);

• void EndOfInt (UINT intno);

• BOOL rasint = CheckInt (UINT intno);

• void SetIntMode (UINT intno, UINT mode);

• void SetCtrlIntLevel (INT level);

• INT level = GetCtrlIntLevel (void);

μT-Kernel 3.0 Specification 488 / 502

8.1.2.4 I/O Port Access Support Functions

• void out_b (INT port, UB data);

• void out_h (INT port, UH data);

• void out_w (INT port, UW data);

• void out_d (INT port, UD data);

• UB data = in_b (INT port);

• UH data = in_h (INT port);

• UW data = in_w (INT port);

• UD data = in_d (INT port);

• void WaitUsec (UW usec);

• void WaitNsec (UW nsec);

8.1.2.5 Power Management Functions

• void low_pow (void);

• void off_pow (void);

8.1.2.6 System Configuration Information Management Functions

• INT ct = tk_get_cfn (CONST UB *name, W *val, INT max);

• INT rlen = tk_get_cfs (CONST UB *name, UB *buf, INT max);

8.1.2.7 Memory Cache Control Functions

• SZ rlen = SetCacheMode (void *addr, SZ len, UINT mode);

• SZ rlen = ControlCache (void *addr, SZ len, UINT mode);

8.1.2.8 Physical Timer Functions

• ER ercd = StartPhysicalTimer (UINT ptmrno, UW limit, UINT mode);

• ER ercd = StopPhysicalTimer (UINT ptmrno);

• ER ercd = GetPhysicalTimerCount (UINT ptmrno, UW *p_count);

• ER ercd = DefinePhysicalTimerHandler (UINT ptmrno, CONST T_DPTMR *pk_dptmr);

• ER ercd = GetPhysicalTimerConfig (UINT ptmrno, T_RPTMR *pk_rptmr);

μT-Kernel 3.0 Specification 489 / 502

8.1.2.9 Utility Functions

• void SetOBJNAME (void *exinf, CONST UB *name);

• ER ercd = CreateLock (FastLock *lock, CONST UB *name);

• void DeleteLock (FastLock *lock);

• void Lock (FastLock *lock);

• void Unlock (FastLock *lock);

• ER ercd = CreateMLock (FastMLock *lock, CONST UB *name);

• ER ercd = DeleteMLock (FastMLock *lock);

• ER ercd = MLock (FastMLock *lock, INT no);

• ER ercd = MLockTmo (FastMLock *lock, INT no, TMO tmout);

• ER ercd = MLockTmo_u (FastMLock *lock, INT no, TMO_U tmout_u);

• ER ercd = MUnlock (FastMLock *lock, INT no);

8.1.3 μT-Kernel/DS

8.1.3.1 Kernel Internal State Acquisition Functions

• INT ct = td_lst_tsk (ID list[], INT nent);

• INT ct = td_lst_sem (ID list[], INT nent);

• INT ct = td_lst_flg (ID list[], INT nent);

• INT ct = td_lst_mbx (ID list[], INT nent);

• INT ct = td_lst_mtx (ID list[], INT nent);

• INT ct = td_lst_mbf (ID list[], INT nent);

• INT ct = td_lst_mpf (ID list[], INT nent);

• INT ct = td_lst_mpl (ID list[], INT nent);

• INT ct = td_lst_cyc (ID list[], INT nent);

• INT ct = td_lst_alm (ID list[], INT nent);

• INT ct = td_lst_ssy (ID list[], INT nent);

• INT ct = td_rdy_que (PRI pri, ID list[], INT nent);

• INT ct = td_sem_que (ID semid, ID list[], INT nent);

• INT ct = td_flg_que (ID flgid, ID list[], INT nent);

• INT ct = td_mbx_que (ID mbxid, ID list[], INT nent);

• INT ct = td_mtx_que (ID mtxid, ID list[], INT nent);

• INT ct = td_smbf_que (ID mbfid, ID list[], INT nent);

• INT ct = td_rmbf_que (ID mbfid, ID list[], INT nent);

• INT ct = td_mpf_que (ID mpfid, ID list[], INT nent);

μT-Kernel 3.0 Specification 490 / 502

• INT ct = td_mpl_que (ID mplid, ID list[], INT nent);

• ER ercd = td_ref_tsk (ID tskid, TD_RTSK *rtsk);

• ER ercd = td_ref_tex (ID tskid, TD_RTEX *pk_rtex);

• ER ercd = td_ref_sem (ID semid, TD_RSEM *rsem);

• ER ercd = td_ref_flg (ID flgid, TD_RFLG *rflg);

• ER ercd = td_ref_mbx (ID mbxid, TD_RMBX *rmbx);

• ER ercd = td_ref_mtx (ID mtxid, TD_RMTX *rmtx);

• ER ercd = td_ref_mbf (ID mbfid, TD_RMBF *rmbf);

• ER ercd = td_ref_mpf (ID mpfid, TD_RMPF *rmpf);

• ER ercd = td_ref_mpl (ID mplid, TD_RMPL *rmpl);

• ER ercd = td_ref_cyc (ID cycid, TD_RCYC *rcyc);

• ER ercd = td_ref_cyc_u (ID cycid, TD_RCYC_U *rcyc_u);

• ER ercd = td_ref_alm (ID almid, TD_RALM *ralm);

• ER ercd = td_ref_alm_u (ID almid, TD_RALM_U *ralm_u);

• ER ercd = td_ref_sys (TD_RSYS *pk_rsys);

• ER ercd = td_ref_ssy (ID ssid, TD_RSSY *rssy);

• ER ercd = td_get_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs);

• ER ercd = td_set_reg (ID tskid, CONST T_REGS *pk_regs, CONST T_EIT *pk_eit, CONST T_CREGS *pk_cregs
);

• ER ercd = td_get_utc (SYSTIM *tim, UW *ofs);

• ER ercd = td_get_utc_u (SYSTIM_U *tim_u, UW *ofs);

• ER ercd = td_get_tim (SYSTIM *tim, UW *ofs);

• ER ercd = td_get_tim_u (SYSTIM_U *tim_u, UW *ofs);

• ER ercd = td_get_otm (SYSTIM *tim, UW *ofs);

• ER ercd = td_get_otm_u (SYSTIM_U *tim_u, UW *ofs);

• ER ercd = td_ref_dsname (UINT type, ID id, UB *dsname);

• ER ercd = td_set_dsname (UINT type, ID id, CONST UB *dsname);

8.1.3.2 Trace Functions

• ER ercd = td_hok_svc (CONST TD_HSVC *hsvc);

• ER ercd = td_hok_dsp (CONST TD_HDSP *hdsp);

• ER ercd = td_hok_int (CONST TD_HINT *hint);

μT-Kernel 3.0 Specification 491 / 502

8.2 List of Error Codes

8.2.1 Normal Completion Error Class (0)

Error code name Error Codes Summary description
E_OK 0 Normal completion

8.2.2 Normal completion Internal Error Class (5 to 8)

Error code name Error Codes Summary description
E_SYS ERCD(-5, 0) System error

An error of unknown cause affecting the system as a whole.

Error code name Error Codes Summary description
E_NOCOP ERCD(-6, 0) Unavailable co-processor

This error code is returned when the specified co-processor is not installed in the currently running hardware,
or abnormal co-processor condition was detected.

8.2.3 Unsupported Error Class (9 to 16)

Error code name Error Codes Summary description
E_NOSPT ERCD(-9, 0) Unsupported function

When some system call functions are not supported and such a function is invoked, error code E_RSATR or
E_NOSPT is returned. If E_RSATR does not apply, error code E_NOSPT is returned.

Error code name Error Codes Summary description
E_RSFN ERCD(-10, 0) Reserved function code number

This error code is returned when it is attempted to execute a system call specifying a reserved function code
(undefined function code), and also when it is attempted to execute an undefined extended SVC handler (a
positive function code).

Error code name Error Codes Summary description
E_RSATR ERCD(-11, 0) Reserved attribute

This error code is returned when an undefined or unsupported object attribute is specified.

Checking for this error may be omitted if system-dependent optimization is implemented.

8.2.4 Parameter Error Class (17 to 24)

Error code name Error Codes Summary description
E_PAR ERCD(-17, 0) Parameter error

μT-Kernel 3.0 Specification 492 / 502

Checking for this error may be omitted if system-dependent optimization is implemented.

Error code name Error Codes Summary description
E_ID ERCD(-18, 0) Invalid ID number

E_ID is an error that is returned only for objects having an ID number.

Error code E_PAR is returned when a static error is detected for such as reserved number or out of range in
the case of interrupt number.

8.2.5 Call Context Error Class (25 to 32)

Error code name Error Codes Summary description
E_CTX ERCD(-25, 0) Context error

This error indicates that the specified system call cannot be issued in the current context (task portion/task-
independent portion or handler RUNNING state).

This error must be returned whenever there is a semantic context error in issuing a system call, such as
calling from a task-independent portion a system call that may put the invoking task in WAITING state. Due
to implementation limitations, there may be other system calls that, when called from a given context (such
as an interrupt handler), will cause this error to be returned.

Error code name Error Codes Summary description
E_MACV ERCD(-26, 0) Memory cannot be accessed;

memory access privilege error

Error detection is implementation-dependent.

Error code name Error Codes Summary description
E_OACV ERCD(-27, 0) Object access privilege error

This error code is returned when a user task tries to manipulate a system object.

The definition of system objects and error detection are implementation-dependent.

Error code name Error Codes Summary description
E_ILUSE ERCD(-28, 0) System call illegal use

8.2.6 Resource Constraint Error Class (33 to 40)

Error code name Error Codes Summary description
E_NOMEM ERCD(-33, 0) Insufficient memory

This error code is returned when there is insufficient memory (no memory) for allocating an object control
block space, user stack area, memory pool area, message buffer area or the like.

Error code name Error Codes Summary description
E_LIMIT ERCD(-34, 0) System limit exceeded

μT-Kernel 3.0 Specification 493 / 502

This error code is returned, for example, when it is attempted to create more object(s) than the system allows.

8.2.7 Object State Error Class (41 to 48)

Error code name Error Codes Summary description
E_OBJ ERCD(-41, 0) Invalid object state
E_NOEXS ERCD(-42, 0) Object does not exist
E_QOVR ERCD(-43, 0) Queuing or nesting overflow

8.2.8 Wait Error Class (49 to 56)

Error code name Error Codes Summary description
E_RLWAI ERCD(-49, 0) Waiting state was forcibly

released
E_TMOUT ERCD(-50, 0) Polling failed or timeout
E_DLT ERCD(-51, 0) Waiting object was deleted
E_DISWAI ERCD(-52, 0) Wait released due to disabling of

wait

8.2.9 Device Error Class (57 to 64) (μT-Kernel/SM)

Error code name Error Codes Summary description
E_IO ERCD(-57, 0) I/O error

※ Error information specific to individual devices may be defined in E_IO sub-codes.

Error code name Error Codes Summary description
E_NOMDA ERCD(-58, 0) No media

8.2.10 Status Error Class (65 to 72) (μT-Kernel/SM)

Error code name Error Codes Summary description
E_BUSY ERCD(-65, 0) Busy
E_ABORT ERCD(-66, 0) Processing was aborted
E_RONLY ERCD(-67, 0) Write protected

μT-Kernel 3.0 Specification 494 / 502

8.3 List of APIs and Service Profile Items

8.3.1 μT-Kernel/OS

8.3.1.1 Task Management Functions

API name Availability
Other related service profile
items

tk_cre_tsk Always
TK_SUPPORT_ASM
TK_SUPPORT_USERBUF
TK_SUPPORT_AUTOBUF
TK_SUPPORT_FPU
TK_SUPPORT_COPn
TK_HAS_SYSSTACK
TK_SUPPORT_DSNAME
TK_MAX_TSKPRI

tk_del_tsk Always None
tk_sta_tsk Always None
tk_ext_tsk Always None
tk_exd_tsk Always None
tk_ter_tsk Always None
tk_chg_pri Always

TK_MAX_TSKPRI
tk_get_reg TK_SUPPORT_REGOPS None
tk_set_reg TK_SUPPORT_REGOPS None
tk_get_cpr TK_SUPPORT_COPn None
tk_set_cpr TK_SUPPORT_COPn None
tk_ref_tsk Always

TK_SUPPORT_DISWAI
TK_SUPPORT_TASKEXCEPTION
TK_SUPPORT_TASKEVENT

8.3.1.2 Task Synchronization Functions

API name Availability
Other related service profile
items

tk_slp_tsk Always None
tk_slp_tsk_u TK_SUPPORT_USEC None
tk_wup_tsk Always

TK_WAKEUP_MAXCNT
tk_can_wup Always None
tk_rel_wai Always None
tk_sus_tsk Always

TK_SUSPEND_MAXCNT
tk_rsm_tsk Always None
tk_frsm_tsk Always None
tk_dly_tsk Always None
tk_dly_tsk_u TK_SUPPORT_USEC None
tk_sig_tev TK_SUPPORT_TASKEVENT None
tk_wai_tev TK_SUPPORT_TASKEVENT None
tk_wai_tev_u TK_SUPPORT_TASKEVENT &&

TK_SUPPORT_USEC
None

tk_dis_wai TK_SUPPORT_DISWAI None

μT-Kernel 3.0 Specification 495 / 502

API name Availability
Other related service profile
items

tk_ena_wai TK_SUPPORT_DISWAI None

8.3.1.3 Task Exception Handling Functions

API name Availability
Other related service profile
items

tk_def_tex TK_SUPPORT_TASKEXCEPTION None
tk_ena_tex TK_SUPPORT_TASKEXCEPTION None
tk_dis_tex TK_SUPPORT_TASKEXCEPTION None
tk_ras_tex TK_SUPPORT_TASKEXCEPTION None
tk_end_tex TK_SUPPORT_TASKEXCEPTION None
tk_ref_tex TK_SUPPORT_TASKEXCEPTION None

8.3.1.4 Synchronization and Communication Functions

API name Availability
Other related service profile
items

tk_cre_sem Always
TK_SUPPORT_DISWAI
TK_SUPPORT_DSNAME
TK_SEMAPHORE_MAXCNT

tk_del_sem Always None
tk_sig_sem Always None
tk_wai_sem Always None
tk_wai_sem_u TK_SUPPORT_USEC None
tk_ref_sem Always None
tk_cre_flg Always

TK_SUPPORT_DISWAI
TK_SUPPORT_DSNAME

tk_del_flg Always None
tk_set_flg Always None
tk_clr_flg Always None
tk_wai_flg Always None
tk_wai_flg_u TK_SUPPORT_USEC None
tk_ref_flg Always None
tk_cre_mbx Always

TK_SUPPORT_DISWAI
TK_SUPPORT_DSNAME

tk_del_mbx Always None
tk_snd_mbx Always None
tk_rcv_mbx Always None
tk_rcv_mbx_u TK_SUPPORT_USEC None
tk_ref_mbx Always None

8.3.1.5 Extended Synchronization and Communication Functions

API name Availability
Other related service profile
items

tk_cre_mtx Always
TK_SUPPORT_DISWAI
TK_SUPPORT_DSNAME

μT-Kernel 3.0 Specification 496 / 502

API name Availability
Other related service profile
items

tk_del_mtx Always None
tk_loc_mtx Always None
tk_loc_mtx_u TK_SUPPORT_USEC None
tk_unl_mtx Always None
tk_ref_mtx Always None
tk_cre_mbf Always

TK_SUPPORT_USERBUF
TK_SUPPORT_AUTOBUF
TK_SUPPORT_DISWAI
TK_SUPPORT_DSNAME

tk_del_mbf Always None
tk_snd_mbf Always None
tk_snd_mbf_u TK_SUPPORT_USEC None
tk_rcv_mbf Always None
tk_rcv_mbf_u TK_SUPPORT_USEC None
tk_ref_mbf Always None

8.3.1.6 Memory Pool Management Functions

API name Availability
Other related service profile
items

tk_cre_mpf Always
TK_SUPPORT_USERBUF
TK_SUPPORT_AUTOBUF
TK_SUPPORT_DISWAI
TK_SUPPORT_DSNAME

tk_del_mpf Always None
tk_get_mpf Always None
tk_get_mpf_u TK_SUPPORT_USEC None
tk_rel_mpf Always None
tk_ref_mpf Always None
tk_cre_mpl Always

TK_SUPPORT_USERBUF
TK_SUPPORT_AUTOBUF
TK_SUPPORT_DISWAI
TK_SUPPORT_DSNAME

tk_del_mpl Always None
tk_get_mpl Always None
tk_get_mpl_u TK_SUPPORT_USEC None
tk_rel_mpl Always None
tk_ref_mpl Always None

8.3.1.7 Time Management Functions

API name Availability
Other related service profile
items

tk_set_utc TK_SUPPORT_UTC None
tk_set_utc_u TK_SUPPORT_UTC &&

TK_SUPPORT_USEC
None

tk_set_tim TK_SUPPORT_TRONTIME None
tk_set_tim_u TK_SUPPORT_TRONTIME &&

TK_SUPPORT_USEC
None

tk_get_utc TK_SUPPORT_UTC None

μT-Kernel 3.0 Specification 497 / 502

API name Availability
Other related service profile
items

tk_get_utc_u TK_SUPPORT_UTC &&
TK_SUPPORT_USEC

None

tk_get_tim TK_SUPPORT_TRONTIME None
tk_get_tim_u TK_SUPPORT_TRONTIME &&

TK_SUPPORT_USEC
None

tk_get_otm Always None
tk_get_otm_u TK_SUPPORT_USEC None
tk_cre_cyc Always

TK_SUPPORT_ASM
TK_SUPPORT_DSNAME

tk_cre_cyc_u TK_SUPPORT_USEC
TK_SUPPORT_ASM
TK_SUPPORT_DSNAME

tk_del_cyc Always None
tk_sta_cyc Always None
tk_stp_cyc Always None
tk_ref_cyc Always None
tk_ref_cyc_u TK_SUPPORT_USEC None
tk_cre_alm Always

TK_SUPPORT_ASM
TK_SUPPORT_DSNAME

tk_del_alm Always None
tk_sta_alm Always None
tk_sta_alm_u TK_SUPPORT_USEC None
tk_stp_alm Always None
tk_ref_alm Always None
tk_ref_alm_u TK_SUPPORT_USEC None

8.3.1.8 Interrupt Management Functions

API name Availability
Other related service profile
items

tk_def_int Always TK_SUPPORT_ASM
tk_ret_int Always TK_SUPPORT_ASM

8.3.1.9 System Management Functions

API name Availability
Other related service profile
items

tk_rot_rdq Always None
tk_get_tid Always None
tk_dis_dsp Always None
tk_ena_dsp Always None
tk_ref_sys Always None
tk_set_pow TK_SUPPORT_LOWPOWER None
tk_ref_ver Always None

8.3.1.10 Subsystem Management Functions

μT-Kernel 3.0 Specification 498 / 502

API name Availability
Other related service profile
items

tk_def_ssy TK_SUPPORT_SUBSYSTEM
TK_SUPPORT_SSYEVENT
TK_SUPPORT_TASKEXCEPTION

tk_evt_ssy TK_SUPPORT_SUBSYSTEM &&
TK_SUPPORT_SSYEVENT

None

tk_ref_ssy TK_SUPPORT_SUBSYSTEM TK_SUPPORT_SSYEVENT

8.3.2 μT-Kernel/SM

8.3.2.1 System Memory Management Functions

API name Availability
Other related service profile
items

Kmalloc TK_SUPPORT_MEMLIB None
Kcalloc TK_SUPPORT_MEMLIB None
Krealloc TK_SUPPORT_MEMLIB None
Kfree TK_SUPPORT_MEMLIB None

8.3.2.2 Device Management Functions

API name Availability
Other related service profile
items

tk_opn_dev Always None
tk_cls_dev Always None
tk_rea_dev Always None
tk_rea_dev_du TK_SUPPORT_LARGEDEV &&

TK_SUPPORT_USEC
None

tk_srea_dev Always None
tk_srea_dev_d TK_SUPPORT_LARGEDEV None
tk_wri_dev Always None
tk_wri_dev_du TK_SUPPORT_LARGEDEV &&

TK_SUPPORT_USEC
None

tk_swri_dev Always None
tk_swri_dev_d TK_SUPPORT_LARGEDEV None
tk_wai_dev Always None
tk_wai_dev_u TK_SUPPORT_USEC None
tk_sus_dev TK_SUPPORT_LOWPOWER None
tk_get_dev Always None
tk_ref_dev Always None
tk_oref_dev Always None
tk_lst_dev Always None
tk_evt_dev Always None
tk_def_dev Always None
tk_ref_idv Always None
openfn Always None
closefn Always None
execfn Always

TK_SUPPORT_LARGEDEV
TK_SUPPORT_USEC

waitfn Always
TK_SUPPORT_LARGEDEV
TK_SUPPORT_USEC

μT-Kernel 3.0 Specification 499 / 502

API name Availability
Other related service profile
items

abortfn Always
TK_SUPPORT_LARGEDEV

eventfn Always None

8.3.2.3 Interrupt Management Functions

API name Availability
Other related service profile
items

DI Always None
EI Always None
isDI Always None
SetCpuIntLevel TK_SUPPORT_CPUINTLEVEL None
GetCpuIntLevel TK_SUPPORT_CPUINTLEVEL None
EnableInt TK_SUPPORT_INTCTRL

TK_HAS_ENAINTLEVEL
DisableInt TK_SUPPORT_INTCTRL None
ClearInt TK_SUPPORT_INTCTRL None
EndOfInt TK_SUPPORT_INTCTRL None
CheckInt TK_SUPPORT_INTCTRL None
SetIntMode TK_SUPPORT_INTMODE None
SetCtrlIntLevel TK_SUPPORT_CTRLINTLEVEL None
GetCtrlIntLevel TK_SUPPORT_CTRLINTLEVEL None

μT-Kernel 3.0 Specification 500 / 502

8.3.2.4 I/O Port Access Support Functions

API name Availability
Other related service profile
items

out_b TK_SUPPORT_IOPORT None
out_h TK_SUPPORT_IOPORT None
out_w TK_SUPPORT_IOPORT None
out_d TK_SUPPORT_IOPORT &&

TK_HAS_DOUBLEWORD
None

in_b TK_SUPPORT_IOPORT None
in_h TK_SUPPORT_IOPORT None
in_w TK_SUPPORT_IOPORT None
in_d TK_SUPPORT_IOPORT &&

TK_HAS_DOUBLEWORD
None

WaitUsec TK_SUPPORT_MICROWAIT None
WaitNsec TK_SUPPORT_MICROWAIT None

8.3.2.5 Power Management Functions

API name Availability
Other related service profile
items

low_pow TK_SUPPORT_LOWPOWER None
off_pow TK_SUPPORT_LOWPOWER None

8.3.2.6 System Configuration Information Management Functions

API name Availability
Other related service profile
items

tk_get_cfn TK_SUPPORT_SYSCONF None
tk_get_cfs TK_SUPPORT_SYSCONF None

8.3.2.7 Memory Cache Control Functions

API name Availability
Other related service profile
items

SetCacheMode TK_SUPPORT_CACHECTRL &&
TK_SUPPORT_SETCACHEMODE TK_SUPPORT_WBCACHE

TK_SUPPORT_WTCACHE
ControlCache TK_SUPPORT_CACHECTRL None

8.3.2.8 Physical Timer Functions

API name Availability
Other related service profile
items

StartPhysicalTimer TK_SUPPORT_PTIMER
TK_MAX_PTIMER

StopPhysicalTimer TK_SUPPORT_PTIMER
TK_MAX_PTIMER

GetPhysicalTimerCount TK_SUPPORT_PTIMER
TK_MAX_PTIMER

μT-Kernel 3.0 Specification 501 / 502

API name Availability
Other related service profile
items

DefinePhysicalTimerHandler TK_SUPPORT_PTIMER
TK_MAX_PTIMER

GetPhysicalTimerConfig TK_SUPPORT_PTIMER
TK_MAX_PTIMER

8.3.2.9 Utility Functions

API name Availability
Other related service profile
items

SetOBJNAME Always None
CreateLock Always None
DeleteLock Always None
Lock Always None
Unlock Always None
CreateMLock Always None
DeleteMLock Always None
MLock Always None
MLockTmo Always None
MLockTmo_u TK_SUPPORT_USEC None
MUnlock Always None

8.3.3 μT-Kernel/DS

8.3.3.1 Kernel Internal State Acquisition Functions

API name Availability
Other related service profile
items

td_lst_tsk TK_SUPPORT_DBGSPT None
td_lst_sem TK_SUPPORT_DBGSPT None
td_lst_flg TK_SUPPORT_DBGSPT None
td_lst_mbx TK_SUPPORT_DBGSPT None
td_lst_mtx TK_SUPPORT_DBGSPT None
td_lst_mbf TK_SUPPORT_DBGSPT None
td_lst_mpf TK_SUPPORT_DBGSPT None
td_lst_mpl TK_SUPPORT_DBGSPT None
td_lst_cyc TK_SUPPORT_DBGSPT None
td_lst_alm TK_SUPPORT_DBGSPT None
td_lst_ssy TK_SUPPORT_SUBSYSTEM &&

TK_SUPPORT_DBGSPT
None

td_rdy_que TK_SUPPORT_DBGSPT None
td_sem_que TK_SUPPORT_DBGSPT None
td_flg_que TK_SUPPORT_DBGSPT None
td_mbx_que TK_SUPPORT_DBGSPT None
td_mtx_que TK_SUPPORT_DBGSPT None
td_smbf_que TK_SUPPORT_DBGSPT None
td_rmbf_que TK_SUPPORT_DBGSPT None
td_mpf_que TK_SUPPORT_DBGSPT None
td_mpl_que TK_SUPPORT_DBGSPT None
td_ref_tsk TK_SUPPORT_DBGSPT

TK_SUPPORT_DISWAI
TK_SUPPORT_TASKEXCEPTION
TK_SUPPORT_TASKEVENT
TK_HAS_SYSSTACK

μT-Kernel 3.0 Specification 502 / 502

API name Availability
Other related service profile
items

td_ref_tex TK_SUPPORT_DBGSPT &&
TK_SUPPORT_TASKEXCEPTION

None

td_ref_sem TK_SUPPORT_DBGSPT None
td_ref_flg TK_SUPPORT_DBGSPT None
td_ref_mbx TK_SUPPORT_DBGSPT None
td_ref_mtx TK_SUPPORT_DBGSPT None
td_ref_mbf TK_SUPPORT_DBGSPT None
td_ref_mpf TK_SUPPORT_DBGSPT None
td_ref_mpl TK_SUPPORT_DBGSPT None
td_ref_cyc TK_SUPPORT_DBGSPT None
td_ref_cyc_u TK_SUPPORT_DBGSPT &&

TK_SUPPORT_USEC
None

td_ref_alm TK_SUPPORT_DBGSPT None
td_ref_alm_u TK_SUPPORT_DBGSPT &&

TK_SUPPORT_USEC
None

td_ref_sys TK_SUPPORT_DBGSPT None
td_ref_ssy TK_SUPPORT_SUBSYSTEM &&

TK_SUPPORT_DBGSPT
None

td_get_reg TK_SUPPORT_DBGSPT &&
TK_SUPPORT_REGOPS

None

td_set_reg TK_SUPPORT_DBGSPT &&
TK_SUPPORT_REGOPS

None

td_get_utc TK_SUPPORT_DBGSPT &&
TK_SUPPORT_UTC

None

td_get_utc_u TK_SUPPORT_DBGSPT &&
TK_SUPPORT_UTC &&
TK_SUPPORT_USEC

None

td_get_tim TK_SUPPORT_DBGSPT &&
TK_SUPPORT_TRONTIME

None

td_get_tim_u TK_SUPPORT_DBGSPT &&
TK_SUPPORT_TRONTIME &&
TK_SUPPORT_USEC

None

td_get_otm TK_SUPPORT_DBGSPT None
td_get_otm_u TK_SUPPORT_DBGSPT &&

TK_SUPPORT_USEC
None

td_ref_dsname TK_SUPPORT_DSNAME None
td_set_dsname TK_SUPPORT_DSNAME None

8.3.3.2 Trace Functions

API name Availability
Other related service profile
items

td_hok_svc TK_SUPPORT_DBGSPT None
td_hok_dsp TK_SUPPORT_DBGSPT None
td_hok_int TK_SUPPORT_DBGSPT None

	API Notation
	Index of μT-Kernel/OS APIs
	Index of μT-Kernel/SM APIs
	Index of μT-Kernel/DS APIs
	Overview of μT-Kernel 3.0
	TRON Project and μT-Kernel 3.0
	Design Policy of μT-Kernel 3.0
	Structure of μT-Kernel 3.0
	Reference Code
	Adaptability and Service Profile
	Implementation Specification Document
	Relation with Existing RTOS Specifications
	Relation with μT-Kernel 2.0
	Relation with T-Kernel 2.0
	Relation with IEEE 2050-2018

	μT-Kernel Concepts
	Meaning of Basic Terminology
	Task States and Scheduling Rules
	Task States
	Task Scheduling Rules

	Interrupt Handling
	Task Exception Handling
	System States
	System States While Non-task Portion Is Executing
	Task-Independent Portion and Quasi-Task Portion

	Objects
	Protection Levels
	Service Profile

	Common Rules of μT-Kernel
	Data Types
	General Data Types
	Other Defined Data Types

	System Calls
	System Call Format
	APIs Possible from Task-Independent Portion
	Restricting System Call Invocation
	Modifying a Parameter Packet Format
	Function Codes
	Error Codes
	Timeout
	Relative Time and System Time

	High-Level Language Support Routines
	Service Profile
	Service Profile Items that Represent Function Availability
	Device Driver Functions
	Power Management Functions
	Static/dynamic Memory Management Functions
	Task Exception Handling Functions
	Subsystem Management Functions
	System Configuration Information Acquisition Functions
	Supporting 64-bit and 16-bit CPUs
	Functions that Depend on CPU, Hardware, System, and Compiler
	Interrupt Management Functions
	Memory Cache Control Functions
	FPU(COP) Support Functions
	Miscellaneous Functions

	Debugger Support Functions
	Check Method of Service Profile

	Service Profile Items that Represent Values
	Examples of Service Profile Items
	Service Profile Items for a Very Small-scale System using 16-bit CPU
	Service Profile Items for a Relatively Large-scale System

	μT-Kernel/OS Functions
	Task Management Functions
	tk_cre_tsk - Create Task
	tk_del_tsk - Delete Task
	tk_sta_tsk - Start Task
	tk_ext_tsk - Exit Task
	tk_exd_tsk - Exit and Delete Task
	tk_ter_tsk - Terminate Task
	tk_chg_pri - Change Task Priority
	tk_get_reg - Get Task Registers
	tk_set_reg - Set Task Registers
	tk_get_cpr - Get Task Coprocessor Registers
	tk_set_cpr - Set Task Coprocessor Registers
	tk_ref_tsk - Reference Task Status

	Task Synchronization Functions
	tk_slp_tsk - Sleep Task
	tk_slp_tsk_u - Sleep Task (Microseconds)
	tk_wup_tsk - Wakeup Task
	tk_can_wup - Cancel Wakeup Task
	tk_rel_wai - Release Wait
	tk_sus_tsk - Suspend Task
	tk_rsm_tsk - Resumes a task in a SUSPENDED state
	tk_frsm_tsk - Force Resume Task
	tk_dly_tsk - Delay Task
	tk_dly_tsk_u - Delay Task (Microseconds)
	tk_sig_tev - Signal Task Event
	tk_wai_tev - Wait Task Event
	tk_wai_tev_u - Wait Task Event (Microseconds)
	tk_dis_wai - Disable Task Wait
	tk_ena_wai - Enable Task Wait

	Task Exception Handling Functions
	tk_def_tex - Define Task Exception Handler
	tk_ena_tex - Enable Task Exception
	tk_dis_tex - Disable Task Exception
	tk_ras_tex - Raise Task Exception
	tk_end_tex - end task exception handler
	tk_ref_tex - Reference Task Exception Status

	Synchronization and Communication Functions
	Semaphore
	tk_cre_sem - Create Semaphore
	tk_del_sem - Delete Semaphore
	tk_sig_sem - Signal Semaphore
	tk_wai_sem - Wait on Semaphore
	tk_wai_sem_u - Wait on Semaphore (Microseconds)
	tk_ref_sem - Reference Semaphore Status

	Event Flag
	tk_cre_flg - Create Event Flag
	tk_del_flg - Delete Event Flag
	tk_set_flg - Set Event Flag
	tk_clr_flg - Clear Event Flag
	tk_wai_flg - Wait Event Flag
	tk_wai_flg_u - Wait Event Flag (Microseconds)
	tk_ref_flg - Reference Event Flag Status

	Mailbox
	tk_cre_mbx - Create Mailbox
	tk_del_mbx - Delete Mailbox
	tk_snd_mbx - Send Message to Mailbox
	tk_rcv_mbx - Receive Message from Mailbox
	tk_rcv_mbx_u - Receive Message from Mailbox (Microseconds)
	tk_ref_mbx - Reference Mailbox Status

	Extended Synchronization and Communication Functions
	Mutex
	tk_cre_mtx - Create Mutex
	tk_del_mtx - Delete Mutex
	tk_loc_mtx - Lock Mutex
	tk_loc_mtx_u - Lock Mutex (Microseconds)
	tk_unl_mtx - Unlock Mutex
	tk_ref_mtx - Refer Mutex Status

	Message Buffer
	tk_cre_mbf - Create Message Buffer
	tk_del_mbf - Delete Message Buffer
	tk_snd_mbf - Send Message to Message Buffer
	tk_snd_mbf_u - Send Message to Message Buffer (Microseconds)
	tk_rcv_mbf - Receive Message from Message Buffer
	tk_rcv_mbf_u - Receive Message from Message Buffer (Microseconds)
	tk_ref_mbf - Reference Message Buffer Status

	Memory Pool Management Functions
	Fixed-size Memory Pool
	tk_cre_mpf - Create Fixed-size Memory Pool
	tk_del_mpf - Delete Fixed-size Memory Pool
	tk_get_mpf - Get Fixed-size Memory Block
	tk_get_mpf_u - Get Fixed-size Memory Block (Microseconds)
	tk_rel_mpf - Release Fixed-size Memory Block
	tk_ref_mpf - Reference Fixed-size Memory Pool Status

	Variable-size Memory Pool
	tk_cre_mpl - Create Variable-size Memory Pool
	tk_del_mpl - Delete Variable-size Memory Pool
	tk_get_mpl - Get Variable-size Memory Block
	tk_get_mpl_u - Get Variable-size Memory Block (Microseconds)
	tk_rel_mpl - Release Variable-size Memory Block
	tk_ref_mpl - Reference Variable-size Memory Pool Status

	Time Management Functions
	System Time Management
	tk_set_utc - Set System Time
	tk_set_utc_u - Set Time (Microseconds)
	tk_set_tim - Set System Time (TRON)
	tk_set_tim_u - Set Time (TRON, Microseconds)
	tk_get_utc - Get System Time
	tk_get_utc_u - Get System Time (Microseconds)
	tk_get_tim - Get System Time (TRON)
	tk_get_tim_u - Get System Time (TRON, Microseconds)
	tk_get_otm - Get Operating Time
	tk_get_otm_u - Get Operating Time (Microseconds)

	Cyclic Handler
	tk_cre_cyc - Create Cyclic Handler
	tk_cre_cyc_u - Create Cyclic Handler (Microseconds)
	tk_del_cyc - Delete Cyclic Handler
	tk_sta_cyc - Start Cyclic Handler
	tk_stp_cyc - Stop Cyclic Handler
	tk_ref_cyc - Reference Cyclic Handler Status
	tk_ref_cyc_u - Reference Cyclic Handler Status (Microseconds)

	Alarm Handler
	tk_cre_alm - Create Alarm Handler
	tk_del_alm - Delete Alarm Handler
	tk_sta_alm - Start Alarm Handler
	tk_sta_alm_u - Start Alarm Handler (Microseconds)
	tk_stp_alm - Stop Alarm Handler
	tk_ref_alm - Reference Alarm Handler Status
	tk_ref_alm_u - Reference Alarm Handler Status (Microseconds)

	Interrupt Management Functions
	tk_def_int - Define Interrupt Handler
	tk_ret_int - Return from Interrupt Handler

	System Management Functions
	tk_rot_rdq - Rotate Ready Queue
	tk_get_tid - Get Task Identifier
	tk_dis_dsp - Disable Dispatch
	tk_ena_dsp - Enable Dispatch
	tk_ref_sys - Reference System Status
	tk_set_pow - Set Power Mode
	tk_ref_ver - Reference Version Information

	Subsystem Management Functions
	tk_def_ssy - Define Subsystem
	tk_evt_ssy - Call Event Function
	tk_ref_ssy - Reference Subsystem Status

	μT-Kernel/SM Functions
	System Memory Management Functions
	Memory Allocation Library Functions
	Kmalloc - Allocate Memory
	Kcalloc - Allocate Memory and Clear
	Krealloc - Reallocate Memory
	Kfree - Release Memory

	Device Management Functions
	Common Notes Related to Device Drivers
	Basic Concepts
	Device Name (UB* type)
	Device ID (ID type)
	Device Attribute (ATR type)
	Device Descriptor (ID type)
	Request ID (ID type)
	Data Number (W type, D type)

	Attribute Data

	Device Input/Output Operations
	tk_opn_dev - Open Device
	tk_cls_dev - Close Device
	tk_rea_dev - Start Read Device
	tk_rea_dev_du - Read Device (64-bit, Microseconds)
	tk_srea_dev - Synchronous Read
	tk_srea_dev_d - Synchronous Read (64-bit)
	tk_wri_dev - Start Write Device
	tk_wri_dev_du - Write Device (64-bit, Microseconds)
	tk_swri_dev - Synchronous Write
	tk_swri_dev_d - Synchronous Write (64-bit)
	tk_wai_dev - Wait for Request Completion for Device
	tk_wai_dev_u - Wait Device (Microseconds)
	tk_sus_dev - Suspends Device
	tk_get_dev - Get Device Name
	tk_ref_dev - Get Device Information
	tk_oref_dev - Get Device Information
	tk_lst_dev - Get Registered Device Information
	tk_evt_dev - Send Driver Request Event to Device

	Registration of Device Driver
	Registration Method of Device Driver
	tk_def_dev - Register Device
	tk_ref_idv - Reference Device Initialization Information

	Device Driver Interface
	openfn - Open function
	closefn - Close function
	execfn - Execute function
	waitfn - Wait-for-completion function
	abortfn - Abort function
	eventfn - Event function

	Device Event Notification
	Device Suspend/Resume Processing
	Device suspend processing
	Device resume processing

	Interrupt Management Functions
	CPU Interrupt Control
	DI - Disable External Interrupts
	EI - Enable External Interrupt
	isDI - Get Interrupt Disable Status
	SetCpuIntLevel - Set Interrupt Mask Level in CPU
	GetCpuIntLevel - Get Interrupt Mask Level in CPU

	Control of Interrupt Controller
	EnableInt - Enable Interrupts
	DisableInt - Disable Interrupts
	ClearInt - Clear Interrupt
	EndOfInt - Issue EOI to Interrupt Controller
	CheckInt - Check Interrupt
	SetIntMode - Set Interrupt Mode
	SetCtrlIntLevel - Set Interrupt Mask Level in Interrupt Controller
	GetCtrlIntLevel - Get Interrupt Mask Level in Interrupt Controller

	I/O Port Access Support Functions
	I/O Port Access
	out_b - Write to I/O Port (In Unit of Byte)
	out_h - Write to I/O Port (In Unit of Half-word)
	out_w - Write to I/O Port (In Unit of Word)
	out_d - Write to I/O Port (In Unit of Double-word)
	in_b - Read from I/O Port (In Unit of Byte)
	in_h - Read from I/O Port (In Unit of Half-word)
	in_w - Read from I/O Port (In Unit of Word)
	in_d - Read from I/O Port (In Unit of Double-word)

	Micro Wait
	WaitUsec - Micro Wait (Microseconds)
	WaitNsec - Micro Wait (Nanoseconds)

	Power Management Functions
	low_pow - Move System to Low-power Mode
	off_pow - Move System to Suspend State

	System Configuration Information Management Functions
	System Configuration Information Acquisition
	tk_get_cfn - Get Numbers
	tk_get_cfs - Get Character String

	Standard System Configuration Information

	Memory Cache Control Functions
	SetCacheMode - Set Cache Mode
	ControlCache - Control Cache

	Physical Timer Functions
	Use Case of Physical Timer
	StartPhysicalTimer - Start Physical Timer
	StopPhysicalTimer - Stop Physical Timer
	GetPhysicalTimerCount - Get Physical Timer Count
	DefinePhysicalTimerHandler - Define Physical Timer Handler
	GetPhysicalTimerConfig - Get Physical Timer Configuration Information

	Utility Functions
	Set Object Name
	SetOBJNAME - Set Object Name

	Fast Lock and Multi-lock Libraries
	CreateLock - Create Fast Lock
	DeleteLock - Delete Fast Lock
	Lock - Lock Fast Lock
	Unlock - Unlock Fast Lock
	CreateMLock - Create Fast Multi-lock
	DeleteMLock - Delete Fast Multi-lock
	MLock - Lock Fast Multi-lock
	MLockTmo - Lock Fast Multi-lock (with Timeout)
	MLockTmo_u - Lock Fast Multi-lock (with Timeout, Microseconds)
	MUnlock - Unlock Fast Multi-lock

	μT-Kernel/DS Functions
	Kernel Internal State Acquisition Functions
	td_lst_tsk - Reference Task ID List
	td_lst_sem - Reference Semaphore ID List
	td_lst_flg - Reference Event Flag ID List
	td_lst_mbx - Reference Mailbox ID List
	td_lst_mtx - Reference Mutex ID List
	td_lst_mbf - Reference Message Buffer ID List
	td_lst_mpf - Reference Fixed-size Memory Pool ID List
	td_lst_mpl - Reference Variable-size Memory Pool ID List
	td_lst_cyc - Reference Cyclic Handler ID List
	td_lst_alm - Reference Alarm Handler ID List
	td_lst_ssy - Reference Subsystem ID List
	td_rdy_que - Reference Task Precedence
	td_sem_que - Reference Semaphore Queue
	td_flg_que - Reference Event Flag Queue
	td_mbx_que - Reference Mailbox Queue
	td_mtx_que - Reference Mutex Queue
	td_smbf_que - Reference Message Buffer Send Queue
	td_rmbf_que - Reference Message Buffer Receive Queue
	td_mpf_que - Reference Fixed-size Memory Pool Queue
	td_mpl_que - Reference Variable-size Memory Pool Queue
	td_ref_tsk - Reference Task Status
	td_ref_tex - Reference Task Exception Status
	td_ref_sem - Reference Semaphore Status
	td_ref_flg - Reference Event Flag Status
	td_ref_mbx - Reference Mailbox Status
	td_ref_mtx - Refer Mutex Status
	td_ref_mbf - Reference Message Buffer Status
	td_ref_mpf - Reference Fixed-size Memory Pool Status
	td_ref_mpl - Reference Variable-size Memory Pool Status
	td_ref_cyc - Reference Cyclic Handler Status
	td_ref_cyc_u - Reference Cyclic Handler Status (Microseconds)
	td_ref_alm - Reference Alarm Handler Status
	td_ref_alm_u - Reference Alarm Handler Status (Microseconds)
	td_ref_sys - Reference System Status
	td_ref_ssy - Reference Subsystem Status
	td_get_reg - Get Task Register
	td_set_reg - Set Task Registers
	td_get_utc - Get System Time
	td_get_utc_u - Get System Time (Microseconds)
	td_get_tim - Get System Time (TRON)
	td_get_tim_u - Get System Time (TRON, Microseconds)
	td_get_otm - Get Operating Time
	td_get_otm_u - Get Operating Time (Microseconds)
	td_ref_dsname - Refer to DS Object Name
	td_set_dsname - Set DS Object Name

	Trace Functions
	td_hok_svc - Define System Call/Extended SVC Hook Routine
	td_hok_dsp - Define Task Dispatch Hook Routine
	td_hok_int - Define Interrupt Handler Hook Routine

	Appendix
	System Configuration
	Keywords

	Reference
	List of C Language Interface
	μT-Kernel/OS
	Task Management Functions
	Task Synchronization Functions
	Task Exception Handling Functions
	Synchronization and Communication Functions
	Extended Synchronization and Communication Functions
	Memory Pool Management Functions
	Time Management Functions
	Interrupt Management Functions
	System Management Functions
	Subsystem Management Functions

	μT-Kernel/SM
	System Memory Management Functions
	Device Management Functions
	Interrupt Management Functions
	I/O Port Access Support Functions
	Power Management Functions
	System Configuration Information Management Functions
	Memory Cache Control Functions
	Physical Timer Functions
	Utility Functions

	μT-Kernel/DS
	Kernel Internal State Acquisition Functions
	Trace Functions

	List of Error Codes
	Normal Completion Error Class (0)
	Normal completion Internal Error Class (5 to 8)
	Unsupported Error Class (9 to 16)
	Parameter Error Class (17 to 24)
	Call Context Error Class (25 to 32)
	Resource Constraint Error Class (33 to 40)
	Object State Error Class (41 to 48)
	Wait Error Class (49 to 56)
	Device Error Class (57 to 64) (μT-Kernel/SM)
	Status Error Class (65 to 72) (μT-Kernel/SM)

	List of APIs and Service Profile Items
	μT-Kernel/OS
	Task Management Functions
	Task Synchronization Functions
	Task Exception Handling Functions
	Synchronization and Communication Functions
	Extended Synchronization and Communication Functions
	Memory Pool Management Functions
	Time Management Functions
	Interrupt Management Functions
	System Management Functions
	Subsystem Management Functions

	μT-Kernel/SM
	System Memory Management Functions
	Device Management Functions
	Interrupt Management Functions
	I/O Port Access Support Functions
	Power Management Functions
	System Configuration Information Management Functions
	Memory Cache Control Functions
	Physical Timer Functions
	Utility Functions

	μT-Kernel/DS
	Kernel Internal State Acquisition Functions
	Trace Functions

