	μT-Kernel 2.0 Specification
	Prev		Next

μT-Kernel/OS Functions
This chapter describes details of the system calls provided by T-Kernel Operating System (T-Kernel/OS).
Task Management Functions
Task management functions are functions that directly manipulate or reference task states. Functions are provided for creating and deleting a task, for task starting and exit, changing task priority, and referencing task state. A task is an object identified by an ID number called a task ID. Task states and scheduling rules are explained in the Section called Task States and Scheduling Rules in the Chapter called μT-Kernel Concepts.
For control of execution order, a task has a base priority and current priority. When simply "task priority" is mentioned, this means the current priority. The base priority of a task is initialized to the startup priority when a task is started. If the mutex function is not used, the task current priority is always identical to its base priority. For this reason, the current priority immediately after a task is started is the task startup priority. When the mutex function is used, the current priority is set as discussed in the Section called Mutex.
The kernel does not perform processing for freeing of resources acquired by a task (semaphore resources, memory blocks, etc.) upon task exit, other than mutex unlocking. Freeing of task resources is the responsibility of the application.
tk_cre_tsk - Create Task
C Language Interface

#include <tk/tkernel.h>
ID tskid = tk_cre_tsk
 (CONST T_CTSK *pk_ctsk
);

Parameter

	CONST T_CTSK*	 pk_ctsk
 	Packet to Create Task	Information about task creation

 pk_ctsk Detail:

	void*	 exinf
 	Extended Information	Extended information
	ATR	 tskatr
 	Task Attribute	Task attribute
	FP	 task
 	Task Start Address	Task start address
	PRI	 itskpri
 	Initial Task Priority	Initial task priority
	SZ	 stksz
 	Stack Size	Stack size (in bytes)
	SZ	 sstksz
 	System Stack Size	System stack size (in bytes)
	void*	 stkptr
 	User Stack Pointer	User stack pointer
	void*	 uatb
 	Address of Task Space Page Table	Task space page table
	INT	 lsid
 	Logical Space ID	Logical space ID
	ID	 resid
 	Resource ID	Resource ID
	UB	 dsname[8]
 	DS Object name	DS object name
	void*	 bufptr
 	Buffer Pointer	User buffer pointer
	(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

	ID	 tskid
 	Task ID	Task ID
	or	Error Code	Error code

Error Code

	 E_NOMEM
 	Insufficient memory (memory for control block or user stack cannot be allocated)
	 E_LIMIT
 	Number of tasks exceeds the system limit
	 E_RSATR
 	Reserved attribute (tskatr is invalid or cannot be used), or the specified coprocessor does not exist
	 E_NOSPT
 	Unsupported functions(when the specification of TA_ASM, TA_USERSTACK, TA_TASKSPACE, or TA_USERBUF is not supported.)
	 E_PAR
 	Parameter error
	 E_ID
 	Invalid resource ID (resid)
	 E_NOCOP
 	The specified coprocessor cannot be used (not installed, or abnormal operation detected)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items

	 TK_SUPPORT_ASM
 	Support for specifying TA_ASM for task attribute
	 TK_SUPPORT_USERBUF
 	Support for specifying TA_USERBUF for task attribute
	 TK_SUPPORT_AUTOBUF
 	Automatic buffer allocation is supported (by not specifying TA_USERBUF to task attribute)
	 TK_SUPPORT_FPU
 	Support for specifying TA_FPU for task attribute
	 TK_SUPPORT_COPn
 	Support for specifying TA_COPn for task attribute
	 TK_SUPPORT_RESOURCE
 	Support of specifying resource group (resid) to which an object belongs
	 TK_SUPPORT_TASKSPACE
 	Support for task space attribute using (uatb and lsid)
	 TK_HAS_SYSSTACK
 	Task can have a system stack independent of user-stack, and each can be specified separately using (TA_USERSTACK, TA_SSTKSZ)
	 TK_SUPPORT_DSNAME
 	Support for specifying TA_DSNAME for task attribute
	 TK_MAX_TSKPRI
 	Maximum task priority that can be specified (must be 16 or higher)

Description
Creates a task, assigning to it a task ID number. This system call allocates a TCB (Task Control Block) to the created task and initializes it based on itskpri, task, stksz and other parameters.
After the task is created, it is initially in DORMANT state.
 itskpri is used to specify the startup priority when a task is started. Task priority level can be specified by a positive integer, and the smaller the value, higher priority the task has. The largest task priority level is defined by TK_MAX_TSKPRI.
 exinf can be used freely by the user to insert miscellaneous information about the task. The information set here is passed to the task as startup parameter information and can be referred to by calling tk_ref_tsk. If a larger area is needed for indicating user information, or if the information may need to be changed after the task is created, this can be done by allocating separate memory for this purpose and putting the memory packet address in exinf. The kernel pays no attention to the contents of exinf.
 tskatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits. The system attribute part of tskatr is as follows.
tskatr := (TA_ASM || TA_HLNG)
 | [TA_SSTKSZ] | [TA_USERSTACK] | [TA_TASKSPACE] | [TA_RESID] | [TA_USERBUF] | [TA_DSNAME]
 | (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3)
 | [TA_COP0] | [TA_COP1] | [TA_COP2] | [TA_COP3] | [TA_FPU]

	 TA_ASM
 	Indicates that the task is written in assembly language
	 TA_HLNG
 	Indicates that the task is written in high-level language
	 TA_SSTKSZ
 	Specifies the system stack size
	 TA_USERSTACK
 	Points to the user stack
	 TA_TASKSPACE
 	Points to the task space
	 TA_RESID
 	Specifies the resource group to which the task belongs
	 TA_USERBUF
 	Use of user-specified memory area as stack
	 TA_DSNAME
 	Specifies DS object name
	 TA_RNGn
 	Indicates that the task runs at protection level n
	 TA_COPn
 	Specifies use of the nth coprocessor (including floating point coprocessor or DSP)
	 TA_FPU
 	Specifies use of a floating point coprocessor (when a coprocessor specified in TA_COPn is a general-purpose FPU particularly for floating point processing and not dependent on the CPU)

The function for specifying implementation-dependent attributes can be used, for example, to specify that a task is subject to debugging. One use of the remaining system attribute fields is for indicating multiprocessor attributes in the future.
#define TA_ASM 0x00000000 /* Task in Assembly Language */
#define TA_HLNG 0x00000001 /* Task in High-level language */
#define TA_SSTKSZ 0x00000002 /* System stack size */
#define TA_USERSTACK 0x00000004 /* User stack pointer */
#define TA_TASKSPACE 0x00000008 /* Task space */
#define TA_RESID 0x00000010 /* Task resource group */
#define TA_USERBUF 0x00000020 /* Use user-specified buffer */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_RNG0 0x00000000 /* Run at protection level 0 */
#define TA_RNG1 0x00000100 /* Run at protection level 1 */
#define TA_RNG2 0x00000200 /* Run at protection level 2 */
#define TA_RNG3 0x00000300 /* Run at protection level 3 */
#define TA_COP0 0x00001000 /* Use ID=0 coprocessor */
#define TA_COP1 0x00002000 /* Use ID=1 coprocessor */
#define TA_COP2 0x00004000 /* Use ID=2 coprocessor */
#define TA_COP3 0x00008000 /* Use ID=3 coprocessor */
 When TA_HLNG is specified, starting the task jumps to the task address not directly but by going through a high-level language environment configuration program (high-level language support routine). The task takes the following form in this case.
void task(INT stacd, void *exinf)
{
 /*
 (processing)
 */

 tk_ext_tsk(); or tk_exd_tsk(); /* Exit task */
}
The startup parameters passed to the task include the task startup code stacd specified in tk_sta_tsk, and the extended information exinf specified in tk_cre_tsk.
The task cannot (must not) be terminated by a simple return from the function, otherwise the operation will be indeterminate (implementation-dependent).
 The form of the task when the TA_ASM attribute is specified in implementation-dependent, but stacd and exinf must be passed as startup parameters.
The task runs at the protection level specified in the TA_RNGn attribute. When a system call or extended SVC is called, the protection level goes to 0, then goes back to its original level upon return from the system call or extended SVC.
Each task has two stack areas, a system stack and user stack. The user stack is used at the protection level specified in TA_RNGn while the system stack is used at protection level 0. When the calling of a system call or extended SVC causes the protection level to change, the stack is also switched.
Note that a task running at TA_RNG0 does not switch protection levels, so there is no stack switching either. When TA_RNG0 is specified, the combined total of the user stack size and system stack size is the size of one stack, employed as both a user stack and system stack.
 When TA_SSTKSZ is specified, sstksz is valid. If TA_SSTKSZ is not specified, sstksz is ignored and the default size applies.
 When TA_USERSTACK is specified, stkptr is valid. In this case a user stack is not provided by the OS, but must be allocated by the caller. stksz must be set to 0. If TA_USERSTACK is not specified, stkptr is ignored. Note that if TA_RNG0 is set, TA_USERSTACK cannot be specified. E_PAR occurs if TA_RNG0 and TA_USERSTACK are specified at the same time.
 When TA_TASKSPACE is specified, uatb and lsid are valid and are set as task space. If TA_TASKSPACE is not specified, uatb and lsid are ignored and task space is undefined. During the time task space is undefined, only system space can be accessed; access to task (user) space is not allowed. Irrespective of TA_TASKSPACE specification, task space can be changed after a task is created. Note that when task space is changed, in no case does it revert to the task space set at task creation, even when the task returns to DORMANT state, but the task always uses the most recently set task space.
 When TA_RESID is specified, resid is valid and its resource group (see the Section called Subsystem Management Functions) is specified as the resource group to which the task belongs. If TA_RESID is not specified, resid is ignored and the task belongs to the system resource group. Note that if the resource group of a task is changed, in no case does it revert to the resource group set at task creation, even when the task returns to DORMANT state, but the task always retains the most recently set resource group (See tk_cre_res).
 TA_USERBUF can be specified for implementation where there is no distinction of user stack and system stack and there is only one unified stack for a task. When this attribute is specified, bufptr becomes effective, and the memory area starting at bufptr containing stksz octets is used as the unified user and system stack area. In this case, the kernel does not provide the stack area.
 When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname. For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

Additional Notes
A task runs either at the protection level set in TA_RNGn or at protection level 0. For example, a task for which TA_RNG3 is specified in no case runs at protection level 1 or 2.
In a system with separate interrupt stack, interrupt handlers also use the system stack. An interrupt handler runs at protection level 0.
The system stack default size is decided taking into account the amount taken up by system call execution and, in a system with separate interrupt stack, the amount used by interrupt handlers.
The system stack is system space resident memory used at protection level 0. If TA_USERSTACK is not specified, the user stack is system space resident memory used at the protection level specified in the TA_RNGn attribute. If TA_USERSTACK is specified, the user stack memory attributes are as specified by the caller of this system call. Task space may be made nonresident memory.
 The definition of TA_COPn is dependent on the CPU and other hardware and is not portable.
 TA_FPU is provided as a portable notation method only for the definition in TA_COPn of a floating point coprocessor. If, for example, the floating point coprocessor is TA_COP0, then TA_FPU = TA_COP0. If there is no particular need to specify the use of a coprocessor for floating point operations, TA_FPU = 0 is set.
Even in a system without an MMU, for the sake of portability all attributes including TA_RNGn must be accepted. It is possible, for example, to handle all TA_RNGn as equivalent to TA_RNG0, but error must not be returned.
In the case of TA_USERSTACK and TA_TASKSPACE, however, E_NOSPT may be returned, since there are many implementations where these cannot be supported without an MMU.

Difference from T-Kernel 2.0
The data type of members, stksz and sstksz, of T_CTSK has been changed from INT to SZ. The specification of TA_USERBUF and bufptr have been added.
The largest task priority is changed from 140 to TK_MAX_TSKPRI.

Difference from μT-Kernel 1.0
Introduction of service profile has made it possible to use the following features, which had been removed from μT-Kernel before, within the restrictions described by the profile: Setting system stack size(sstksz), task space page table(uatb), logical space ID(lsid) and resource ID(resid). The following items can now also be used similarly: TA_TASKSPACE, TA_SSTKSZ, TA_USERSTACK, TA_TASKSPACE, TA_RESID, TA_DSNAME, and TA_COPn.
The data type of members, stksz and sstksz, of T_CTSK has been changed from INT to SZ.
The largest task priority is changed from 140 to TK_MAX_TSKPRI.

Porting Guideline
The T-Kernel 2.0 specification does not define TA_USERBUF and its associated notion of bufptr. So if this feature is used, a modification is necessary to port the software to T-Kernel 2.0. However, if stksz is properly set already, simply removing TA_USERBUF and bufptr will complete the modification for porting.
The largest task priority is changed from 140 to TK_MAX_TSKPRI. Although TK_MAX_TSKPRI is variable, but is guaranteed to be equal to or larger than 16, and so by restricting the used task priorities only to the range from 1 to 16, there shall be no need for modifying the task priorities during porting.

tk_del_tsk - Delete Task
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_del_tsk
 (ID tskid
);

Parameter

	ID	 tskid
 	Task ID	Task ID

Return Parameter

	ER	 ercd
 	Error Code	Error Code

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_OBJ
 	Invalid object state (the task is not in DORMANT state)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items
None.

Description
 Deletes the task specified in tskid.
This system call changes the state of the task specified in tskid from DORMANT state to NONEXISTENT state (no longer exists in the system), releasing the TCB and stack area that were assigned to the task. The task ID number is also released. When this system call is issued for a task not in DORMANT state, error code E_OBJ is returned.
This system call cannot specify the invoking task. If the invoking task is specified, error code E_OBJ is returned since the invoking task is not in DORMANT state. The invoking task is deleted not by this system call but by the tk_exd_tsk system call.

tk_sta_tsk - Start Task
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_sta_tsk
 (ID tskid
 , INT stacd
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	INT	 stacd
 	Task Start Code	Task start code

Return Parameter

	ER	 ercd
 	Error Code	Error code

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_OBJ
 	Invalid object state (the task is not in DORMANT state)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	YES

Related Service Profile Items
None.

Description
 Starts the task specified in tskid. This system call changes the state of the specified task from DORMANT state to READY state.
 Parameters to be passed to the task when it starts can be set in stacd. These parameters can be referred to from the started task, enabling use of this feature for simple message passing.
The task priority when it starts is the task startup priority (itskpri) specified when the started task was created.
Start requests by this system call are not queued. If this system call is issued while the target task is in a state other than DORMANT state, the system call is ignored and error code E_OBJ is returned to the calling task.

Porting Guideline
 Note that stacd is INT type, and its value range is implementation-dependent, so care must be taken.

tk_ext_tsk - Exit Task
C Language Interface

#include <tk/tkernel.h>
void tk_ext_tsk
 (void);

Parameter
None.

Return Parameter
Does not return to the context issuing the system call.

Error Code
The following kind of error may be detected, but no return is made to the context issuing the system call even if the error is detected. For this reason the error code cannot be passed directly as a system call return parameter. The behavior in case an error occurs is implementation-dependent.

	 E_CTX
 	Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items
None.

Description
Exits the invoking task normally and changes its state to DORMANT state.

Additional Notes
 When a task terminates by tk_ext_tsk, the resources acquired by the task up to that time (memory blocks, semaphores, etc.) are not automatically freed. The user is responsible for releasing such resources before the task exits.
 tk_ext_tsk is a system call that does not return to the context from which it was called. Even if an error code is returned when an error of some kind is detected, normally no error checking is performed in the context from which the system call was invoked, leaving the possibility that the program will behave in an unexpected manner. For this reason these system calls do not return even if error is detected.
As a rule, the task priority and other information included in the TCB is reset when the task returns to DORMANT state. If, for example, the task priority is changed by tk_chg_pri and later terminated by tk_ext_tsk, the task priority reverts to the startup priority (itskpri) specified by tk_cre_tsk at startup. It does not keep the task priority in effect at the time tk_ext_tsk was executed.
System calls that do not return to the calling context are those named tk_ret_??? or tk_ext_??? (tk_exd_???).

tk_exd_tsk - Exit and Delete Task
C Language Interface

#include <tk/tkernel.h>
void tk_exd_tsk
 (void);

Parameter
None.

Return Parameter
Does not return to the context issuing the system call.

Error Code
The following kind of error may be detected, but no return is made to the context issuing the system call even if the error is detected. For this reason the error code cannot be passed directly as a system call return parameter. The behavior in case an error occurs is implementation-dependent.

	 E_CTX
 	Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items
None.

Description
Terminates the invoking task normally and also deletes it. This system call changes the state of the invoking task to NON-EXISTENT state (no longer exists in the system).

Additional Notes
 When a task terminates by tk_exd_tsk, the resources acquired by the task up to that time (memory blocks, semaphores, etc.) are not automatically freed. The user is responsible for releasing such resources before the task exits.
 tk_exd_tsk is a system call that does not return to the context from which it was called. Even if an error code is returned when an error of some kind is detected, normally no error checking is performed in the context from which the system call was invoked, leaving the possibility that the program will behave in an unexpected manner. For this reason these system calls do not return even if error is detected.

tk_ter_tsk - Terminate Task
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_ter_tsk
 (ID tskid
);

Parameter

	ID	 tskid
 	Task ID	Task ID

Return Parameter

	ER	 ercd
 	Error Code	Error code

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_OBJ
 	Invalid object state (the target task is in DORMANT state or is the invoking task)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items
None.

Description
 Forcibly terminates the task specified in tskid. This system call changes the state of the target task specified in tskid to DORMANT state.
Even if the target task was in the waiting state (including SUSPENDED state), the waiting state is released and the task is terminated. If the target task was in some kind of queue (semaphore wait, etc.), executing tk_ter_tsk results in its removal from the queue.
This system call cannot specify the invoking task. If the invoking task is specified, error code E_OBJ is returned.
 The relationships between target task states and the results of executing tk_ter_tsk are summarized in Table 1.
Table 1. Target Task State and Execution Result (tk_ter_tsk)
	Target Task State	 tk_ter_tsk ercd Return Value
 	(processing)
	Run state (RUNNING or READY) (not for invoking task)	 E_OK
 	Forced termination
	Running state (RUNNING) (invoking task)	 E_OBJ
 	No operation
	Waiting state (WAITING)	 E_OK
 	Forced termination
	Suspended state (SUSPENDED)	 E_OK
 	Forced termination
	Waiting-suspended state (WAITING-SUSPENDED)	 E_OK
 	Forced termination
	Dormant state (DORMANT)	 E_OBJ
 	No operation
	Non-existent state (NON-EXISTENT)	 E_NOEXS
 	No operation

Additional Notes
 When a task is terminated by tk_ter_tsk, the resources acquired by the task up to that time (memory blocks, semaphores, etc.) are not automatically freed. The user is responsible for releasing such resources before the task is terminated.
As a rule, the task priority and other information included in the TCB is reset when the task returns to DORMANT state. If, for example, the task priority is changed by tk_chg_pri and later terminated by tk_ter_tsk, the task priority reverts to the startup priority (itskpri) that is specified by tk_cre_tsk at startup. The task priority at task termination by tk_ter_tsk is not used after the task is restarted by tk_sta_tsk.
Forcible termination of another task is intended for use only by a debugger or a few other tasks closely related to the OS. As a rule, this system call is not to be used by ordinary applications or middleware, for the following reason.
Forced termination occurs regardless of the running state of the target task. If, for example, a task were forcibly terminated while the task was calling a middleware function, the task would terminate right while the middleware was executing. If such a situation were allowed, normal operation of the middleware could not be guaranteed.
This is an example of how task termination should not be allowed when the task status (what it is executing) is unknown. Ordinary applications therefore must not use the forcible termination function.

tk_chg_pri - Change Task Priority
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_chg_pri
 (ID tskid
 , PRI tskpri
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	PRI	 tskpri
 	Task Priority	Task priority

Return Parameter

	ER	 ercd
 	Error Code	Error code

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_PAR
 	Parameter error (tskpri is invalid or cannot be used)
	 E_ILUSE
 	Illegal use (upper priority limit exceeded)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items

			TK_MAX_TSKPRI
 	Maximum task priority that can be specified (must be 16 or higher)

Description
 Changes the base priority of the task specified in tskid to the value specified in tskpri. The current priority of the task also changes as a result.
Task priority values are specified from 1 to 140, with the smaller numbers indicating higher priority.
 When TSK_SELF (= 0) is specified in tskid, the invoking task is the target task. Note, however, that when tskid=TSK_SELF is specified in a system call issued from a task-independent portion, error code E_ID is returned. When TPRI_INI (= 0) is specified as tskpri, the target task base priority is changed to the initial priority when the task was started (itskpri).
A priority changed by this system call remains valid until the task is terminated. When the task reverts to DORMANT state, the task priority before its exit is discarded, with the task again assigned to the initial priority when the task was started (itskpri). However, the priority changed in DORMANT state is valid. The next time the task is started, it has the new initial priority.
If as a result of this system call execution the target task current priority matches the base priority (this condition is always met when the mutex function is not used), processing is as follows.
If the target task is in a run state, the task precedence changes according to its priority. The target task has the lowest precedence among tasks of the same priority after the change.
If the target task is in some kind of priority-based queue, the order in that queue changes in accordance with the new task priority. Among tasks of the same priority after the change, the target task is queued at the end.
If the target task has locked a TA_CEILING attribute mutex or is waiting for a lock, and the base priority specified in tskpri is higher than any of the ceiling priorities, error code E_ILUSE is returned.

Additional Notes
In some cases when this system call results in a change in the queued order of the target task in a task priority-based queue, it may be necessary to release the wait state of another task waiting in that queue (in a message buffer send queue, or in a queue waiting to acquire a variable-size memory pool).
In some cases when this system call results in a base priority change while the target task is waiting for a mutex lock with TA_INHERIT dynamic priority inheritance processing may be necessary.
When a mutex function is not used and the system call is issued specifying the invoking task as the target task, setting the new priority to the base priority of the invoking task, the order of execution of the invoking task becomes the lowest among tasks of the same priority. This system call can therefore be used to relinquish execution privilege.

Difference from T-Kernel 2.0
The largest task priority is changed from 140 to TK_MAX_TSKPRI.

Difference from μT-Kernel 1.0
The largest task priority is changed from 140 to TK_MAX_TSKPRI.

Porting Guideline
The largest task priority is changed from 140 to TK_MAX_TSKPRI. Although TK_MAX_TSKPRI is variable, but is guaranteed to be equal to or larger than 16, and so by restricting the used task priorities only to the range from 1 to 16, there shall be no need for modifying the task priorities during porting.

tk_chg_slt - Change Task Slice Time
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_chg_slt
 (ID tskid
 , RELTIM slicetime
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	RELTIM	 slicetime
 	Slice Time	Slice Time (in ms)

Return Parameter

	ER	 ercd
 	Error Code	Error code

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_PAR
 	Parameter error (invalid slicetime)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items
Only when all the service profile items below are set to be effective, this system call can be used.

	 TK_SUPPORT_SLICETIME
 	Support for specifying slice time

Description
 Changes the slice time of the task specified in tskid to the value specified in slicetime.
The slice time function is used for round robin scheduling of tasks. When a task runs continuously for the length of time specified in slicetime or longer, its precedence is switched to the lowest among tasks of the same priority, automatically yielding the execution privilege to the next task.
 Setting slicetime = 0 indicates unlimited time, and the task does not automatically yield execution privilege. When a task is created, by default it is set to slicetime = 0.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF = 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.
The slice time as changed by this system call remains valid until the task is terminated. When the task reverts to DORMANT state, the slice time before termination is discarded, and the value at the time of task creation (slicetime = 0) is assigned. However, the slice time changed in DORMANT state is valid. The next time the task is started, the new slice time is applied.

Additional Notes
The time duration while execution privilege is preempted by a higher-priority task does not count in the continuous run time; moreover, even if execution privilege is preempted by a higher-priority task, the run time is not regarded as disrupted. In other words, the time duration while execution privilege is preempted by a higher-priority task is ignored for the purposes of counting run time.
If the specified task is the only one running at its priority, the slice time is effectively meaningless and the task runs continuously.
If a task of slicetime = 0 is included in tasks of the same priority, as soon as that task obtains execution right, round robin scheduling is stopped.
The method of counting run time is implementation-dependent, but does not need to be especially precise. In fact, applications should not expect very high precision.

Difference from μT-Kernel 1.0
This API was not in the older μT-Kernel specification, but, with the introduction of service profile mechanism, this API can now be used when the profile permits it.

tk_chg_slt_u - Change Task Slice Time (in microseconds)
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_chg_slt_u
 (ID tskid
 , RELTIM_U slicetime_u
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	RELTIM_U	 slicetime_u
 	Slice Time	Slice Time (in microseconds)

Return Parameter

	ER	 ercd
 	Error Code	Error code

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_PAR
 	Parameter error (invalid slicetime_u)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items
Only when all the service profile items below are set to be effective, this system call can be used.

	 TK_SUPPORT_SLICETIME
 	Support for specifying slice time
	 TK_SUPPORT_USEC
 	Support instructions that can handle time in microsecond resolutions

Description
 This system call takes 64-bit slicetime_u in microseconds instead of the parameter slicetime of tk_chg_slt.
The specification of this system call is same as that of tk_chg_slt, except that the parameter is replaced with slicetime_u. For more details, see the description of tk_chg_slt.

Difference from μT-Kernel 1.0
New API introduced based on T-Kernel 2.0 specification

tk_get_tsp - Get Task Space
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_get_tsp
 (ID tskid
 , T_TSKSPC *pk_tskspc
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	T_TSKSPC*	 pk_tskspc
 	Packet of Task Space	Pointer to the area to return the task space information

Return Parameter

	ER	 ercd
 	Error Code	Error code

 pk_tskspc Detail:

	void*	 uatb
 	Address of Task Space Page Table	Task space page table address
	INT	 lsid
 	Logical Space ID	Task space ID (logical space ID)

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_PAR
 	Parameter error (invalid pk_tskspc)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items
Only when all the service profile items below are set to be effective, this system call can be used.

	 TK_SUPPORT_TASKSPACE
 	Support for functions related to task space

Description
 Gets the current task space information for the task specified in tskid.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF = 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

Additional Notes
 The precise meaning of pk_tskspc (uatb, lsid) is implementation-dependent, but the above definitions should be followed as much as possible.

Difference from μT-Kernel 1.0
This API was not in the older μT-Kernel specification, but, with the introduction of service profile mechanism, this API can now be used when the profile permits it.

tk_set_tsp - Set Task Space
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_set_tsp
 (ID tskid
 , CONST T_TSKSPC *pk_tskspc
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	CONST T_TSKSPC*	 pk_tskspc
 	Packet of Task Space	Task space information

 pk_tskspc Detail:

	void*	 uatb
 	Address of Task Space Page Table	Task space page table address
	INT	 lsid
 	Logical Space ID	Task space ID (logical space ID)

Return Parameter

	ER	 ercd
 	Error Code	Error code

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_PAR
 	Parameter error (invalid pk_tskspc)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items
Only when all the service profile items below are set to be effective, this system call can be used.

	 TK_SUPPORT_TASKSPACE
 	Support for functions related to task space

Description
 Sets the task space of the task specified in tskid.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF = 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.
The kernel is not responsible for handling the side-effects of task space changes. If, for example, a task space is changed while a task is using it for its execution, the task may hang or encounter other problems. The caller is responsible for avoiding such problems.

Additional Notes
 The accuracy of pk_tskspc (uatb, lsid) is implementation-dependent, but the above definitions should be followed as much as possible.

Difference from μT-Kernel 1.0
This API was not in the older μT-Kernel specification, but, with the introduction of service profile mechanism, this API can now be used when the profile permits it.

tk_get_rid - Refers to resource group to which task belongs
C Language Interface

#include <tk/tkernel.h>
ID resid = tk_get_rid
 (ID tskid
);

Parameter

	ID	 tskid
 	Task ID	Task ID

Return Parameter

	ID	 resid
 	Resource ID	Resource ID
	or	Error Code	Error code

Error Code

	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_OBJ
 	Task does not belong to a resource group

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items
Only when all the service profile items below are set to be effective, this system call can be used.

	 TK_SUPPORT_RESOURCE
 	Support of resource groups

Description
 Returns the resource group to which the task specified in tskid currently belongs.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF = 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

Additional Notes
For details of resource group, see the Section called Subsystem Management Functions.
If a resource group is deleted, this system call may return the Resource ID of the deleted resource group. Whether or not an error code (E_OBJ) is returned is implementation-dependent(See tk_cre_res and tk_del_res).
This system call is used by a subsystem. The subsystem recognizes the process by the resource ID. However, the resource ID cannot be specified when the application issues an extended SVC to make the subsystem. For this reason, the subsystem uses this system call to obtain the resource ID.

Difference from μT-Kernel 1.0
This API was not in the older μT-Kernel specification, but, with the introduction of service profile mechanism, this API can now be used when the profile permits it.

tk_set_rid - Set Task Resource ID
C Language Interface

#include <tk/tkernel.h>
ID oldid = tk_set_rid
 (ID tskid
 , ID resid
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	ID	 resid
 	Resource ID	New resource ID

Return Parameter

	ID	 oldid
 	Old Resource ID	Old resource ID
	or	Error Code	Error code

Error Code

	 E_ID
 	Invalid ID number (tskid or resid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the object specified in tskid or resid does not exist)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items
Only when all the service profile items below are set to be effective, this system call can be used.

	 TK_SUPPORT_RESOURCE
 	Support of resource groups

Description
 Changes the current resource group of the task specified in tskid to the resource group specified in resid. The Resource ID of the old resource group before the change is passed in a return parameter.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF = 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

Additional Notes
For details of resource group, see the Section called Subsystem Management Functions.
 In some cases error is not returned even if resid was previously deleted. Whether or not an error code (E_NOEXS) is returned is implementation-dependent. In principle it is the responsibility of the caller not to specify a deleted resource group.

Difference from μT-Kernel 1.0
This API was not in the older μT-Kernel specification, but, with the introduction of service profile mechanism, this API can now be used when the profile permits it.

tk_get_reg - Get Task Registers
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_get_reg
 (ID tskid
 , T_REGS *pk_regs
 , T_EIT *pk_eit
 , T_CREGS *pk_cregs
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	T_REGS*	 pk_regs
 	Packet of Registers	Pointer to the area to return the general register values
	T_EIT*	 pk_eit
 	Packet of EIT Registers	Pointer to the area to return the values of registers saved when an exception occurs
	T_CREGS*	 pk_cregs
 	Packet of Control Registers	Pointer to the area to return the control register values

Return Parameter

	ER	 ercd
 	Error Code	Error code

The contents of T_REGS, T_EIT, and T_CREGS are defined for each CPU and implementation.

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_OBJ
 	Invalid object state (called for the invoking task)
	 E_CTX
 	Context error (called from task-independent portion)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items
Only when all the service profile items below are set to be effective, this system call can be used.

	 TK_SUPPORT_REGOPS
 	Support for task-register manipulation functions

Description
 Gets the current register contents of the task specified in tskid.
 If NULL is set in pk_regs, pk_eit, or pk_cregs, the corresponding registers are not referenced.
The referenced register values are not necessarily the values at the time the task portion was executing.
If this system call is issued for the invoking task, error code E_OBJ is returned.

Additional Notes
In principle, all registers in the task context can be referenced. This includes not only physical CPU registers but also those treated by the kernel as virtual registers.

tk_set_reg - Set Task Registers
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_set_reg
 (ID tskid
 , CONST T_REGS *pk_regs
 , CONST T_EIT *pk_eit
 , CONST T_CREGS *pk_cregs
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	CONST T_REGS*	 pk_regs
 	Packet of Registers	General registers
	CONST T_EIT*	 pk_eit
 	Packet of EIT Registers	Registers saved when EIT occurs
	CONST T_CREGS*	 pk_cregs
 	Packet of Control Registers	Control registers

The contents of T_REGS, T_EIT, and T_CREGS are defined for each CPU and implementation.

Return Parameter

	ER	 ercd
 	Error Code	Error code

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_OBJ
 	Invalid object state (called for the invoking task)
	 E_CTX
 	Context error (called from task-independent portion)
	 E_PAR
 	Invalid register value (implementation-dependent)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items
Only when all the service profile items below are set to be effective, this system call can be used.

	 TK_SUPPORT_REGOPS
 	Support for task-register manipulation functions

Description
 Sets the current register contents of the task specified in tskid.
 If NULL is set in pk_regs, pk_eit, or pk_cregs, the corresponding registers are not set.
The set register values are not necessarily the values while the task portion is executing. The kernel is not responsible for handling the side-effects of register value changes.
It is possible, however, that some registers or register bits cannot be changed if the kernel does not allow such changes.(Implementation-dependent)
If this system call is issued for the invoking task, error code E_OBJ is returned.

tk_get_cpr - Get Task Coprocessor Registers
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_get_cpr
 (ID tskid
 , INT copno
 , T_COPREGS *pk_copregs
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	INT	 copno
 	Coprocessor Number	Coprocessor number (0 to 3)
	T_COPREGS*	 pk_copregs
 	Packet of Coprocessor Registers	Pointer to the area to return coprocessor register values

Return Parameter

	ER	 ercd
 	Error Code	Error code

 pk_copregs Detail:

	T_COP0REG	 cop0
 	Coprocessor Number 0 Register	Coprocessor number 0 register
	T_COP1REG	 cop1
 	Coprocessor Number 1 Register	Coprocessor number 1 register
	T_COP2REG	 cop2
 	Coprocessor Number 2 Register	Coprocessor number 2 register
	T_COP3REG	 cop3
 	Coprocessor Number 3 Register	Coprocessor number 3 register

The contents of T_COPnREG are defined for each CPU and implementation.

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_OBJ
 	Invalid object state (called for the invoking task)
	 E_CTX
 	Context error (called from task-independent portion)
	 E_PAR
 	Parameter error (copno is invalid or the specified coprocessor does not exist)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items

	 TK_SUPPORT_COPn
 	Co-processor (No. n) is available

If TK_SUPPORT_COPn is ineffective for all n, this API is unsupported.

Description
 Gets the current contents of the register specified in copno of the task specified in tskid.
The referenced register values are not necessarily the values at the time the task portion was executing.
If this system call is issued for the invoking task, error code E_OBJ is returned.

Additional Notes
In principle, all registers in the task context can be referenced. This includes not only physical CPU registers but also those treated by the kernel as virtual registers.

Difference from μT-Kernel 1.0
This API was not in the older μT-Kernel specification, but, with the introduction of service profile mechanism, this API can now be used when the profile permits it.

tk_set_cpr - Set Task Coprocessor Registers
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_set_cpr
 (ID tskid
 , INT copno
 , CONST T_COPREGS *pk_copregs
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	INT	 copno
 	Coprocessor Number	Coprocessor number (0 to 3)
	CONST T_COPREGS*	 pk_copregs
 	Packet of Coprocessor Registers	Coprocessor register

 pk_copregs Detail:

	T_COP0REG	 cop0
 	Coprocessor Number 0 Register	Coprocessor number 0 register
	T_COP1REG	 cop1
 	Coprocessor Number 1 Register	Coprocessor number 1 register
	T_COP2REG	 cop2
 	Coprocessor Number 2 Register	Coprocessor number 2 register
	T_COP3REG	 cop3
 	Coprocessor Number 3 Register	Coprocessor number 3 register

Return Parameter

	ER	 ercd
 	Error Code	Error code

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_OBJ
 	Invalid object state (called for the invoking task)
	 E_CTX
 	Context error (called from task-independent portion)
	 E_PAR
 	Parameter error (copno is invalid or the specified coprocessor does not exist), or the set register value is invalid (implementation-dependent)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items

	 TK_SUPPORT_COPn
 	Co-processor (No. n) is available

If TK_SUPPORT_COPn is ineffective for all n, this API is unsupported.

Description
 Sets the contents of the register specified in copno of the task specified in tskid.
The set register values are not necessarily the values while the task portion is executing. The kernel is not responsible for handling the side-effects of register value changes.
It is possible, however, that some registers or register bits cannot be changed if the kernel does not allow such changes.(Implementation-dependent)
If this system call is issued for the invoking task, error code E_OBJ is returned.

Difference from μT-Kernel 1.0
This API was not in the older μT-Kernel specification, but, with the introduction of service profile mechanism, this API can now be used when the profile permits it.

tk_inf_tsk - Reference Task Statistics
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_inf_tsk
 (ID tskid
 , T_ITSK *pk_itsk
 , BOOL clr
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	T_ITSK*	 pk_itsk
 	Packet to Return Task Statistics	Pointer to the area to return the task statistics
	BOOL	 clr
 	Clear	Task statistics clear flag

Return Parameter

	ER	 ercd
 	Error Code	Error code

 pk_itsk Detail:

	RELTIM	 stime
 	System Time	Cumulative system-level run time (ms)
	RELTIM	 utime
 	User Time	Cumulative user-level run time (ms)
	(Other implementation-dependent parameters may be added beyond this point.)

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_PAR
 	Parameter error (invalid pk_itsk)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items
Only when all the service profile items below are set to be effective, this system call can be used.

	 TK_SUPPORT_TASKINF
 	Support for acquiring task-related statistics

Description
 Gets statistical information for the task specified in tskid.
 If clr=TRUE≠0, the cumulative information is reset (cleared to 0) after getting the information.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF = 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.
stime and utime in the task statistics (T_ITSK) return values rounded to milliseconds. To know the value in microseconds, call tk_inf_tsk_u.

Additional Notes
The system-level run time is accumulated while the task runs at TA_RNG0, and the user-level run time is accumulated while the task runs at protection levels other than TA_RNG0. The execution time of a task created to run at TA_RNG0 is therefore counted entirely as system-level run time.
The method of counting run time is implementation-dependent, but does not need to be especially precise. In fact, applications should not expect very high precision.

Difference from μT-Kernel 1.0
This API was not in the older μT-Kernel specification, but, with the introduction of service profile mechanism, this API can now be used when the profile permits it.

tk_inf_tsk_u - Reference Task Statistics (Microseconds)
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_inf_tsk_u
 (ID tskid
 , T_ITSK_U *pk_itsk_u
 , BOOL clr
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	T_ITSK_U*	 pk_itsk_u
 	Packet to ReturnTask Statistics	Pointer to the area to return the task statistics
	BOOL	 clr
 	Clear	Task statistics clear flag

Return Parameter

	ER	 ercd
 	Error Code	Error code

 pk_itsk_u Detail:

	RELTIM_U	 stime_u
 	System Time	Cumulative system-level run time (in microseconds)
	RELTIM_U	 utime_u
 	User Time	Cumulative user-level run time (in microseconds)
	(Other implementation-dependent parameters may be added beyond this point.)

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_PAR
 	Parameter error (invalid pk_itsk_u)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	NO

Related Service Profile Items
Only when all the service profile items below are set to be effective, this system call can be used.

	 TK_SUPPORT_TASKINF
 	Support for acquiring task-related statistics
	 TK_SUPPORT_USEC
 	Support instructions that can handle time in microsecond resolutions

Description
 This system call takes 64-bit stime_u and utime_u in microseconds instead of the return parameters stime and utime of tk_inf_tsk.
The specification of this system call is same as that of tk_inf_tsk, except that the return parameters are replaced with stime_u and utime_u. For more details, see the description of tk_inf_tsk.

Difference from μT-Kernel 1.0
New API introduced based on T-Kernel 2.0 specification

tk_ref_tsk - Reference Task Status
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_ref_tsk
 (ID tskid
 , T_RTSK *pk_rtsk
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	T_RTSK*	 pk_rtsk
 	Packet to Return Task Status	Pointer to the area to return the task status

Return Parameter

	ER	 ercd
 	Error Code	Error code

 pk_rtsk Detail:

	void*	 exinf
 	Extended Information	Extended information
	PRI	 tskpri
 	Task Priority	Current priority
	PRI	 tskbpri
 	Task Base Priority	Base priority
	UINT	 tskstat
 	Task State	Task State
	UW	 tskwait
 	Task Wait Factor	Wait factor
	ID	 wid
 	Waiting Object ID	Waiting object ID
	INT	 wupcnt
 	Wakeup Count	Wakeup request queuing count
	INT	 suscnt
 	Suspend Count	Suspend request nesting count
	RELTIM	 slicetime
 	Slice Time	Maximum continuous run time (in ms)
	UW	 waitmask
 	Wait Mask	Disabled wait factors
	UINT	 texmask
 	Task Exception Mask	Allowed task exceptions
	UINT	 tskevent
 	Task Event	Raised task event
	(Other implementation-dependent parameters may be added beyond this point.)

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_PAR
 	Parameter error (invalid pk_rtsk)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	YES

Related Service Profile Items

	 TK_SUPPORT_SLICETIME
 	Support for obtaining (slicetime)
	 TK_SUPPORT_DISWAI
 	Information about disabled wait factors (waitmask) is obtainable
	 TK_SUPPORT_TASKEXCEPTION
 	Task exception information (texmask) can be acquired.
	 TK_SUPPORT_TASKEVENT
 	Generated task event(tskevent)can be acquired

Description
 Gets the state of the task specified in tskid.
 tskstat takes the following values.

	 TTS_RUN
 	0x0001	RUNNING state
	 TTS_RDY
 	0x0002	READY state
	 TTS_WAI
 	0x0004	WAITING state
	 TTS_SUS
 	0x0008	SUSPENDED state
	 TTS_WAS
 	0x000c	WAITING-SUSPENDED state
	 TTS_DMT
 	0x0010	DORMANT state
	 TTS_NODISWAI
 	0x0080	Disabling of wait by tk_dis_wai is prohibited

 Task states such as TTS_RUN and TTS_WAI are expressed by corresponding bits, which is useful when making a complex state decision (e.g., deciding that the state is one of either RUNNING or READY state). Note that of the above states, TTS_WAS is a combination of TTS_SUS and TTS_WAI but TTS_SUS is never combined with other states (TTS_RUN, TTS_RDY, TTS_DMT).
 In the case of TTS_WAI (including TTS_WAS), disabling of wait by the tk_dis_wai is prohibited, TTS_NODISWAI is set. TTS NODISWAI is never combined with states other than TTS WAI.
When tk_ref_tsk is executed for an interrupted task from an interrupt handler, RUNNING (TTS_RUN) is returned as tskstat.
 When tskstat is TTS_WAI (including TTS_WAS), the values of tskwait and wid are as shown in Table 2.
Table 2.
 Values of tskwait and wid
	 tskwait
 	Value	Description	 wid

	 TTW_SLP
 	0x00000001	 Wait caused by tk_slp_tsk	0
	 TTW_DLY
 	0x00000002	 Wait caused by tk_dly_tsk	0
	 TTW_SEM
 	0x00000004	 Wait caused by tk_wai_sem	semid

	 TTW_FLG
 	0x00000008	 Wait caused by tk_wai_flg	flgid

	 TTW_MBX
 	0x00000040	 Wait caused by tk_rcv_mbx	mbxid

	 TTW_MTX
 	0x00000080	 Wait caused by tk_loc_mtx	mtxid

	 TTW_SMBF
 	0x00000100	 Wait caused by tk_snd_mbf	mbfid

	 TTW_RMBF
 	0x00000200	 Wait caused by tk_rcv_mbf	mbfid

	 TTW_CAL
 	0x00000400	Wait on rendezvous call	porid

	 TTW_ACP
 	0x00000800	Wait for rendezvous acceptance	porid

	 TTW_RDV
 	0x00001000	Wait for rendezvous completion	0
	(TTW_CAL | TTW_RDV)	0x00001400	Wait on rendezvous call or wait for rendezvous completion	0
	 TTW_MPF
 	0x00002000	 Wait caused by tk_get_mpf	mpfid

	 TTW_MPL
 	0x00004000	 Wait caused by tk_get_mpl	mplid

	 TTW_EV1
 	0x00010000	Wait for task event #1	0
	 TTW_EV2
 	0x00020000	Wait for task event #2	0
	 TTW_EV3
 	0x00040000	Wait for task event #3	0
	 TTW_EV4
 	0x00080000	Wait for task event #4	0
	 TTW_EV5
 	0x00100000	Wait for task event #5	0
	 TTW_EV6
 	0x00200000	Wait for task event #6	0
	 TTW_EV7
 	0x00400000	Wait for task event #7	0
	 TTW_EV8
 	0x00800000	Wait for task event #8	0

 When tskstat is not TTS_WAI (including TTS_WAS), both tskwait and wid are 0.
 waitmask is the same bit array as tskwait.
 texmask is a logical OR bit array representing permitted task exception codes in the form 1<< task exception code for each code.
 tskevent shows the list of generated and pending task events by representing each event as 1<< (task event number - 1) and calculating the logical OR of the bit values.
For a task in DORMANT state, wupcnt = 0, suscnt = 0, and tskevent = 0.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid=TSK_SELF=0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.
 When the task specified with tk_ref_tsk does not exist, error code E_NOEXS is returned.
slicetime in the task status information (T_RTSK) returns a value rounded to milliseconds. To know the value in microseconds, call tk_ref_tsk_u.

Additional Notes
Even when tskid = TSK_SELF is specified with this system call, the ID of the invoking task is not known. Use tk_get_tid to find out the ID of the invoking task.

Difference from T-Kernel 2.0
The data type of members, tskwait and waitmask, of T_RTSK has been changed from UINT to UW.

Difference from μT-Kernel 1.0
Introduction of service profile has made it possible to use the following features, which had been removed from μT-Kernel before, within the restrictions described by the profile: acquiring of the following information about slice time (slicetime), disabled wait factors (waitmask), task exception (texmask), and task event (tskevent).

tk_ref_tsk_u - Reference Task Status (Microseconds)
C Language Interface

#include <tk/tkernel.h>
ER ercd = tk_ref_tsk_u
 (ID tskid
 , T_RTSK_U *pk_rtsk_u
);

Parameter

	ID	 tskid
 	Task ID	Task ID
	T_RTSK_U*	 pk_rtsk_u
 	Packet to Refer Task Status	Pointer to the area to return the task status

Return Parameter

	ER	 ercd
 	Error Code	Error code

 pk_rtsk_u Detail:

	void*	 exinf
 	Extended Information	Extended information
	PRI	 tskpri
 	Task Priority	Current priority
	PRI	 tskbpri
 	Task Base Priority	Base priority
	UINT	 tskstat
 	Task State	Task State
	UW	 tskwait
 	Task Wait Factor	Wait factor
	ID	 wid
 	Waiting Object ID	Waiting object ID
	INT	 wupcnt
 	Wakeup Count	Wakeup request queuing count
	INT	 suscnt
 	Suspend Count	Suspend request nesting count
	RELTIM_U	 slicetime_u
 	Slice Time	Maximum continuous run time (in microseconds)
	UW	 waitmask
 	Wait Mask	Disabled wait factors
	UINT	 texmask
 	Task Exception Mask	Allowed task exceptions
	UINT	 tskevent
 	Task Event	Raised task event
	(Other implementation-dependent parameters may be added beyond this point.)

Error Code

	 E_OK
 	Normal completion
	 E_ID
 	Invalid ID number (tskid is invalid or cannot be used)
	 E_NOEXS
 	Object does not exist (the task specified in tskid does not exist)
	 E_PAR
 	Parameter error (invalid pk_rtsk_u)

Valid Context

	Task portion	Quasi-task portion	Task-independent portion
	YES	YES	YES

Related Service Profile Items
Only when all the service profile items below are set to be effective, this system call can be used.

	 TK_SUPPORT_USEC
 	Support instructions that can handle time in microsecond resolutions

Other service profile items related to tk_ref_tsk are also related to this system call.

Description
 This system call takes 64-bit slicetime_u in microseconds instead of the return parameter slicetime of tk_ref_tsk.
The specification of this system call is same as that of tk_ref_tsk, except that the return parameter is replaced with slicetime_u. For more details, see the description of tk_ref_tsk.

Difference from T-Kernel 2.0
The data type of members, tskwait and waitmask, of T_RTSK has been changed from UINT to UW.

Difference from μT-Kernel 1.0
New API introduced based on T-Kernel 2.0 specification

	Prev	Home	Next
	Service Profile	 	Task Synchronization Functions

