

µITRON4.0 Specification
Ver. 4.00.00

ITRON Committee, TRON ASSOCIATION

Supervised by Ken Sakamura

Edited by Hiroaki Takada

Copyright (C) 1999, 2002 by TRON ASSOCIATION, JAPAN

µITRON4.0 Specification (Ver. 4.00.00)

The copyright of this specification document belongs to the ITRON Committee of the

TRON Association.

The ITRON Committee of the TRON Association grants the permission to copy the

whole or a part of this specification document and to redistribute it intact without

charge or with a distribution fee. However, when a part of this specification document

is redistributed, it must clearly state (1) that it is a part of the µITRON4.0 Specification

document, (2) which part it was taken, and (3) the method to obtain the whole specifi-

cation document. See Section 6.1 for more information on the conditions for using this

specification and this specification document.

Any questions regarding this specification and this specification document should be

directed to the following:

ITRON Committee, TRON Association

Katsuta Building 5F

3-39, Mita 1-chome, Minato-ku,

Tokyo 108-0073, JAPAN

TEL: +81-3-3454-3191

FAX: +81-3-3454-3224

§ TRON is the abbreviation of “The Real-time Operating system Nucleus.”
§ ITRON is the abbreviation of “Industrial TRON.”
§ µITRON is the abbreviation of “Micro Industrial TRON.”
§ BTRON is the abbreviation of “Business TRON.”
§ CTRON is the abbreviation of “Central and Communication TRON.”
§ TRON, ITRON, µITRON, BTRON, and CTRON do not refer to any specific product or products.

µITRON4.0 Specification Ver. 4.00.00

A Word from the Project Leader

Fifteen years have passed since the ITRON Sub-Project started as a part of the TRON

Project: a real-time operating system specification for embedded equipment control.

During this time, there has been a high degree of technological innovation on micro-

processors, and the range of applications the ITRON Specifications cover has broad-

ened considerably. The range of applications includes industrial usage such as control

of robots and manufacturing equipment in factories, and consumer usage such as office

automation (OA) and home appliances. The application range has even extended to

new areas such as new information and communication tools and advanced digital con-

sumer appliances. There is no doubt that the technological advantages of the ITRON

Specifications such as real-time response, compactness to maximize usage of system

resources, and flexible adaptability in specification has greatly contributed to the steady

expansion of the ITRON Specifications adaptable applications. The open architecture

policy of the TRON Project has also contributed to achieve a high degree of actual use

of the ITRON Specifications.

The µITRON4.0 Specification, which is based on the µITRON3.0 Specification, has

been developed to reorganize concepts and terms, to improve compatibility and con-

formance level, to increase productivity in software development, to allow reuse of

application software, and to achieve more portability.

The increasing cases where communication and GUI focusing on modern network

applications, internet and intranet equipments, and debugging related middleware are

used on the ITRON-Specification operating system serves as the background of the

µITRON4.0 Specification. This trend created a demand for more rigorous compatibil-

ity and higher conformance level. The ITRON Specifications are designed on a con-

cept called loose standardization and level for allowing applicability to low-end CPUs

with relatively scarce resources. However, strict standardization is required for soft-

ware portability purposes. The specification satisfying these two contradictory

demands is the µITRON4.0 Specification. The µITRON4.0 Specification maintains the

loose standardization, but develops the level concept to introduce a new property called

the Standard Profile. The Standard Profile supports strict standardization to facilitate

software portability. Profiles other than the Standard Profile is allowed to increase

compatibility in each application field.

The terms and concepts in the specification have been reorganized, defined, and

explained in more details, reducing as much implementation-dependent portion as pos-

sible in an effort to achieve completeness of the specification.

The µITRON4.0 Specification reflects the rich experience on the ITRON Specifications

and meets the actual users’ demands for new applications. Introduction and effective

utilization of the µITRON4.0 Specification in many fields including newly created

fields and applications is expected.
i

µITRON4.0 Specification Ver. 4.00.00

June, 1999

Ken Sakamura

Project Leader, TRON Project
ii

µITRON4.0 Specification Ver. 4.00.00

Preface

Fifteen years have elapsed since the ITRON Project started in 1984. By the efforts of

those involved, the µITRON Specifications have developed into de-facto standards for

the real-time kernel for embedded systems. Based on this achievement, sometime

around 1996 the ITRON Project started working towards a second phase of standard-

ization to expand the specification from real-time kernel to related specifications such

as software components.

The µITRON4.0 Specification is the result of two years of intensive effort by both the

Kernel Specification WG of the Hard Real-Time Support Study Group (from April

1997 to March 1998) and its successor, the Kernel Specification WG of the

µITRON4.0 Specification Study Group (from April 1998 to June 1999). The specifica-

tion study held by both WGs was proceeded with monthly meetings and discussions

through email. Eventually, more than 1,000 emails regarding the discussion of the

specification were exchanged. Other standardization activities in the ITRON Project,

especially those done by the RTOS Automotive Application Technical Committee and

the Device Driver Design Guideline WG of the µITRON4.0 Specification Study

Group, produced an important part of the µITRON4.0 Specification.

During the second phase of the standardization, a new approach was adopted by the

ITRON Project. The ITRON Project opened the discussion of the µITRON4.0 Specifi-

cation. In other words, anyone could participate in the discussion regardless of qualifi-

cation. This approach was a major factor in enabling many engineers to participate in

the project. Prior to this, most of the engineers did not formerly participate in the dis-

cussion. The participation of application engineers as well as the participation of ker-

nel engineers was very significant in organizing the specification.

Another new attempt of the µITRON4.0 Specification is defining the Standard Profile

in order to insure the portability of the software. Under conventional loose standard-

ization policy, there is no enforced implementation agreement among members. Com-

promises are adopted, and it is up to the implementors to choose specific

implementation options. However, when defining the Standard Profile specification,

standardizing each and every feature of the µITRON Specifications was necessary and

this caused many disagreements among the members. Most disagreements were based

on the difference between application requirements rather than on the difference

between company interests. Nevertheless, members shared a common vision to create

a better specification.

Through the process outlined above, the µITRON4.0 Specification was completed

reflecting variety of ideas from a variety of point of views. I am personally proud of

the level of accomplishment of the µITRON4.0 Specification. I believe that this level

of accomplishment could not have been achieved by a single man or company.

To the readers of the µITRON4.0 Specification, I would like to remark that in the inter-
iii

µITRON4.0 Specification Ver. 4.00.00
ests of adhering to strictness in the specification, some readability was sacrificed. The

previous µITRON Specifications included tutorial-like contents for engineers who are

unfamiliar with a real-time operating system. On the other hand, the µITRON4.0

Specification is written seeking strictness rather than easiness in reading in order to

secure software portability. Hence, a criticism on a lesser understandability than the

previous specifications is considered to be unavoidable. Therefore we would like to

work on some complementary documents such as a reference or a guide book for this

specification. However, the editor’s responsibility still spans to statements which are

unnecessarily difficult to understand.

As a roadmap for the ITRON Specifications, the µITRON4.0 Specification Study

Group is working on the standardization of the debugging interface and creating guide-

lines for device driver designs. The creation of a certification system for the

µITRON4.0 Standard Profile is also under consideration in the near future. We are sure

that these activities will increase the acceptance of the ITRON Specifications as

de-facto real-time operating system standards.

Finally, I would like to express my gratitude to those who contributed to the standard-

ization of the µITRON4.0 Specification. This includes those who participated in the

Kernel Specification WG of the µITRON4.0 Specification Study Group, those involved

in the ITRON Project, and those who directly or indirectly supported the process to

develop the µITRON4.0 Specification. I would also appreciate your continuous sup-

port for the standardization activities of the ITRON Project.

June 1999

Hiroaki Takada

Secretary of the the µITRON4.0 Spefication Study Group
Department of Information and Computer Sciences,

Toyohashi University of Technology
iv

µITRON4.0 Specification Ver. 4.00.00

Organization of the Specification Document

This document is the specification of the µITRON4.0 (or the µITRON4.0 Real-Time

Kernel) C-Language API Specification. The version number of specification is printed

on the cover and the top-right of each page.

The organization of this document is as follows.

In Chapter 1, a summary of the TRON Project and the ITRON Project and a design pol-

icy of ITRON Specifications are introduced. The position of the µITRON4.0 Specifi-

cation is also described. This chapter describes the background information of the

µITRON4.0 Specification and is not the main body of the µITRON4.0 Specification.

In Chapter 2, the common rule of the µITRON4.0 Specification and the software com-

ponents that are standardized to be consistent with the µITRON4.0 Specification is

described. In Chapter 3, the various concepts and the common definitions for various

features of the µITRON4.0 Specification are shown. In Chapter 4, each feature of the

µITRON4.0 Specification is described. In Chapter 5, the additional specifications are

described.

In Chapter 6, the reference information, such as the maintenance of specification and

reference documents, is described. In Chapter 7, the lists and other information that

may be helpful in reading this specification is shown. These lists are the contents of

Chapter 2 to Chapter 5, as seen from a different point of view. Chapter 6 and Chapter 7

are not the main body of the µITRON4.0 Specification.
v

µITRON4.0 Specification Ver. 4.00.00

Description Format of the Specification Document

The following description format is used in this specification document.

[Standard Profile]

The specifications of the Standard Profile of the µITRON4.0 Specification are

described here. The scope of functionalities that the Standard Profile requires support,

the rule that is not applied to the Standard Profile but is included in the functional

descriptions of the services calls and static APIs which the Standard Profile requires to

support, and the rule that is not described in the µITRON4.0 Specification but applied

to the Standard Profile are described here.

[Supplemental Information]

Supplemental explanations of items difficult to understand to avoid misunderstanding

are described here. This is not the main body of the µITRON4.0 Specification.

[Differences from the µITRON3.0 Specification]

The differences of the µITRON4.0 Specification from the µITRON3.0 Specification

and their reasons are described here. The major differences and modifications from the

µITRON3.0 Specification is mainly described, but not the additions or clarification

made in the µITRON4.0 Specification. This is not the main body of the µITRON4.0

Specification.

[Rationale]

The reasons for the specification decision are described here, when further explana-

tions are necessary. This is not the main body of the µITRON4.0 Specification.

The functional descriptions of service calls and static APIs in Chapter 4 uses the format

described below.

The description of each service call or static API is started with the following header.

API Name

API Description Profile

“API Name” is a service call or a static API name. “API description” is a simple state-

ment about the functionality of this service call or static API. If

[S]

 is placed at the

“Profile” field, the Standard Profile requires support for the service call or static API.

[Static API]

This shows the description format of a static API in the system configuration file.

[C Language API]

This shows the invocation format of a service call from the C Language.
vi

µITRON4.0 Specification Ver. 4.00.00

[Parameter]

This lists all of the parameters for this service call or static API. It also includes a sim-

ple description, the data type, and the name of each parameter.

[Return Parameter]

This lists all of the return parameters for this service call. It also includes a simple

description, the data type, and the name of each return parameter.

[Error Code]

This lists all the main error codes that this service call returns. It also includes a simply

description of the cause of each error code. However, the main error codes that many

service calls may return due to the same cause are not described for each service call

(see Section 2.1.6).

[Functional Description]

This describes the functionality of this service call or static API.

Italic characters within the names of service calls and constants represent other charac-

ters. For example,

cre_

yyy (yyy are italic characters) can be cre_tsk, cre_sem,

cre_flg, and so on.

For some parameters, such as object attributes or service call operational modes where

specific values are chosen, the following format is used:

[x] x may or may not be specified

x | y either x or y or both (bit-wise OR of x and y) may be speci-

fied

x

 || y one of x and y must be specified

For example, ((TA_HLNG || TA_ASM) | [TA_ACT]) can take one of the following

four values.

TA_HLNG
TA_ASM
(TA_HLNG | TA_ACT)

(TA_ASM | TA_ACT)
vii

µITRON4.0 Specification Ver. 4.00.00
Table of Contents

A Word from the Project Leader ...i
Preface .. iii
Organization of the Specification Document..v
Description Format of the Specification Document ..vi
Table of Contents.. viii
Service Call Index ..xii
Static API Index...xvi

Chapter 1 Background of µITRON4.0 Specification 1
1.1 TRON Project ...1

1.1.1 What is the TRON Project?..1
1.1.2 Basic Sub-Projects ...3
1.1.3 Application Sub-Projects ...5

1.2 History and Current Status of the ITRON Specifications6
1.2.1 Current State and Features of Embedded System..................................6
1.2.2 Requirements for RTOS on Embedded System.....................................7
1.2.3 Current Status of the ITRON Specifications..9

1.3 ITRON Specification Design Policy ..11
1.4 Position of the µITRON4.0 Specification ..12

1.4.1 Second Phase Standardization Activities of the ITRON Project12
1.4.2 Necessity of the µITRON4.0 Specification..14
1.4.3 Introduction of the Standard Profile...15
1.4.4 Realization of a Wider Scalability ...16
1.4.5 New Functions in the µITRON4.0 Specification17

Chapter 2 ITRON General Concepts, Rule, and Guidelines 23
2.1 ITRON General Concepts ..23

2.1.1 Terminologies ..23
2.1.2 Elements of an API ..24
2.1.3 Object ID Numbers and Object Numbers ..26
2.1.4 Priorities...27
2.1.5 Function Codes ..28
2.1.6 Return Values of Service Calls and Error Codes28
2.1.7 Object Attributes and Extended Information30
2.1.8 Timeout and Non-Blocking ...30
2.1.9 Relative Time and System Time ..32
2.1.10 System Configuration File ...32
2.1.11 Syntax and Parameters of Static APIs..34

2.2 API Naming Convention ..36
2.2.1 Software Component Identifiers ..36
2.2.2 Service Calls ..37
2.2.3 Callbacks..37
2.2.4 Static APIs..37
2.2.5 Parameter and Return Parameter..39
viii

µITRON4.0 Specification Ver. 4.00.00
2.2.6 Data Types..39
2.2.7 Constants ..40
2.2.8 Macros..41
2.2.9 Header Files ...41
2.2.10 Kernel and Software Component Internal Identifiers...........................41

2.3 ITRON General Definitions..41
2.3.1 ITRON General Data Types ...41
2.3.2 ITRON General Constants ...44
2.3.3 ITRON General Macros ...48
2.3.4 ITRON General Static APIs ...48

Chapter 3 Concepts and Common Definitions in µITRON4.0 51
3.1 Glossary of Basic Terms...51
3.2 Task States and Scheduling Rule..52

3.2.1 Task States..52
3.2.2 Task Scheduling Rules ...55

3.3 Interrupt Process Model..57
3.3.1 Interrupt Handlers and Interrupt Service Routines57
3.3.2 Ways to Designate an Interrupt ..59

3.4 Exception Process Model ...60
3.4.1 Exception Processing Framework ..60
3.4.2 Operations within a CPU Exception Handler60

3.5 Context and System State ...61
3.5.1 Processing Units and Their Contexts ...61
3.5.2 Task Contexts and Non-Task Contexts...62
3.5.3 Execution Precedence and Service Call Atomicity63
3.5.4 CPU Locked State ..64
3.5.5 Dispatching Disabled State ..66
3.5.6 Task State during Dispatch Pending State..67

3.6 Service Call Invocation from Non-Task Contexts ..69
3.6.1 Service Calls that can be Invoked from Non-Task Contexts................69
3.6.2 Delayed Execution of Service Calls...70
3.6.3 Adding Service Calls that can be Invoked from Non-Task Contexts...71

3.7 System Initialization Procedure..72
3.8 Object Registration and Release...73
3.9 Description Format for Processing Unit ...74
3.10 Kernel Configuration Constants and Macros..75
3.11 Kernel Common Definitions...75

3.11.1 Kernel Common Constants ..75
3.11.2 Kernel Common Configuration Constants ...77

Chapter 4 µITRON4.0 Functions 79
4.1 Task Management Functions ..79
4.2 Task Dependent Synchronization Functions ..101
4.3 Task Exception Handling Functions...112
4.4 Synchronization and Communication Functions..125

4.4.1 Semaphores ..125
ix

µITRON4.0 Specification Ver. 4.00.00
4.4.2 Eventflags...134
4.4.3 Data Queues ...145
4.4.4 Mailboxes..158

4.5 Extended Synchronization and Communication Functions170
4.5.1 Mutexes..170
4.5.2 Message Buffers...181
4.5.3 Rendezvous ..193

4.6 Memory Pool Management Functions ...214
4.6.1 Fixed-Sized Memory Pools..214
4.6.2 Variable-Sized Memory Pools ...224

4.7 Time Management Functions ...235
4.7.1 System Time Management...235
4.7.2 Cyclic Handlers..240
4.7.3 Alarm Handlers..250
4.7.4 Overrun Handler ..258

4.8 System State Management Functions ..266
4.9 Interrupt Management Functions ...279
4.10 Service Call Management Functions..292
4.11 System Configuration Management Functions ..297

Chapter 5 Additional Specifications 305
5.1 The Specification Requirements for the µITRON4.0 Specification.............305

5.1.1 Basic Concept ..305
5.1.2 Minimum Required Functionalities ...306
5.1.3 Extension of the µITRON4.0 Specification307

5.2 Automotive Control Profile ..308
5.2.1 Restricted Tasks ...308
5.2.2 Functionalities Included in the Automotive Control Profile309

5.3 Version Number of the Specifications ..311
5.4 Maker Codes...312

Chapter 6 Appendix 315
6.1 Conditions for Using the Specification and the Specification Document315
6.2 Maintenance of the Specification and Related Information316
6.3 Background and Development Process of the Specification........................318
6.4 Version History...322

Chapter 7 References 323
7.1 Service Call List ...323
7.2 Static API List ..328
7.3 Static APIs and Service Calls in the Standard Profile329
7.4 Data Types ..331
7.5 Packet Formats ...334
7.6 Constants and Macros ..341
7.7 Kernel Configuration Constants and Macros ...343
7.8 Error Code List...344
7.9 Function Code List ...345
x

µITRON4.0 Specification Ver. 4.00.00
Index ...349
xi

µITRON4.0 Specification Ver. 4.00.00
Service Call Index

This is an index of the service calls defined in the µITRON4.0 Specification.

acp_por Accept Rendezvous..203
acre_alm Create Alarm Handler (ID Number Automatic Assignment)...........252
acre_cyc Create Cyclic Handler (ID Number Automatic Assignment)243
acre_dtq Create Data Queue (ID Number Automatic Assignment)................148
acre_flg Create Eventflag (ID Number Automatic Assignment)136
acre_isr Create Interrupt Service Routine..284
acre_mbf Create Message Buffer (ID Number Automatic Assignment)184
acre_mbx Create Mailbox (ID Number Automatic Assignment)161
acre_mpf Create Fixed-Sized Memory Pool (ID Number Automatic Assignment)....216
acre_mpl Create Variable-Sized Memory Pool (ID Number Automatic Assignment) 226
acre_mtx Create Mutex (ID Number Automatic Assignment)174
acre_por Create Rendezvous Port (ID Number Automatic Assignment)........197
acre_sem Create Semaphore (ID Number Automatic Assignment).................127
acre_tsk Create Task (ID Number Automatic Assignment)83
act_tsk Activate Task..87
cal_por Call Rendezvous...200
cal_svc Invoke Service Call ..296
can_act Cancel Task Activation Requests ...88
can_wup Cancel Task Wakeup Requests...105
chg_ixx Change Interrupt Mask...290
chg_pri Change Task Priority..94
clr_flg Clear Eventflag...141
cre_alm Create Alarm Handler ..252
cre_cyc Create Cyclic Handler ..243
cre_dtq Create Data Queue ...148
cre_flg Create Eventflag ...136
cre_isr Create Interrupt Service Routine..284
cre_mbf Create Message Buffer ...184
cre_mbx Create Mailbox...161
cre_mpf Create Fixed-Sized Memory Pool..216
cre_mpl Create Variable-Sized Memory Pool..226
cre_mtx Create Mutex..174
cre_por Create Rendezvous Port ...197
cre_sem Create Semaphore ..127
cre_tsk Create Task...83
def_exc Define CPU Exception Handler ...299
def_inh Define Interrupt Handler ..282
def_ovr Define Overrun Handler...260
def_svc Define Extended Service Call ..294
def_tex Define Task Exception Handling Routine..117
xii

µITRON4.0 Specification Ver. 4.00.00
del_alm Delete Alarm Handler...254
del_cyc Delete Cyclic Handler ..246
del_dtq Delete Data Queue ...150
del_flg Delete Eventflag ...138
del_isr Delete Interrupt Service Routine..286
del_mbf Delete Message Buffer ...186
del_mbx Delete Mailbox...164
del_mpf Delete Fixed-Sized Memory Pool ..218
del_mpl Delete Variable-Sized Memory Pool ..228
del_mtx Delete Mutex ..176
del_por Delete Rendezvous Port ...199
del_sem Delete Semaphore ..129
del_tsk Delete Task ...86
dis_dsp Disable Dispatching ...272
dis_int Disable Interrupt...288
dis_tex Disable Task Exceptions...121
dly_tsk Delay Task ..111
ena_dsp Enable Dispatching ..273
ena_int Enable Interrupt..289
ena_tex Enable Task Exceptions..122
exd_tsk Terminate and Delete Invoking Task ..91
ext_tsk Terminate Invoking Task ..90
frsm_tsk Forcibly Resume Suspended Task..109
fsnd_dtq Forced Send to Data Queue..153
fwd_por Forward Rendezvous ..206
get_ixx Reference Interrupt Mask...291
get_mpf Acquire Fixed-Sized Memory Block ...219
get_mpl Acquire Variable-Sized Memory Block ...229
get_pri Reference Task Priority ..96
get_tid Reference Task ID in the RUNNING State......................................269
get_tim Reference System Time..238
iact_tsk Activate Task ..87
ifsnd_dtq Forced Send to Data Queue..153
iget_tid Reference Task ID in the RUNNING State......................................269
iloc_cpu Lock the CPU ...270
ipsnd_dtq Send to Data Queue (Polling)...151
iras_tex Raise Task Exception Handling..119
irel_wai Release Task from Waiting...106
irot_rdq Rotate Task Precedence..267
iset_flg Set Eventflag...139
isig_sem Release Semaphore Resource...130
isig_tim Supply Time Tick ...239
iunl_cpu Unlock the CPU ...271
iwup_tsk Wakeup Task...104
xiii

µITRON4.0 Specification Ver. 4.00.00
loc_cpu Lock the CPU...270
loc_mtx Lock Mutex ..177
pacp_por Accept Rendezvous (Polling)...203
pget_mpf Acquire Fixed-Sized Memory Block (Polling)219
pget_mpl Acquire Variable-Sized Memory Block (Polling)............................229
ploc_mtx Lock Mutex (Polling)...177
pol_flg Wait for Eventflag (Polling) ...142
pol_sem Acquire Semaphore Resource (Polling)...131
prcv_dtq Receive from Data Queue (Polling) ...155
prcv_mbf Receive from Message Buffer (Polling)...189
prcv_mbx Receive from Mailbox (Polling) ..166
psnd_dtq Send to Data Queue (Polling) ..151
psnd_mbf Send to Message buffer (Polling)...187
ras_tex Raise Task Exception Handling ...119
rcv_dtq Receive from Data Queue ..155
rcv_mbf Receive from Message Buffer..189
rcv_mbx Receive from Mailbox..166
ref_alm Reference Alarm Handler State..257
ref_cfg Reference Configuration Information ..301
ref_cyc Reference Cyclic Handler State ...249
ref_dtq Reference Data Queue State ..157
ref_flg Reference Eventflag Status ..144
ref_isr Reference Interrupt Service Routine State.......................................287
ref_mbf Reference Message Buffer State ..191
ref_mbx Reference Mailbox State..168
ref_mpf Reference Fixed-Sized Memory Pool State222
ref_mpl Reference Variable-Sized Memory Pool State233
ref_ovr Reference Overrun Handler State ..264
ref_por Reference Rendezvous Port State ..212
ref_rdv Reference Rendezvous State ..213
ref_sem Reference Semaphore State ...133
ref_sys Reference System State..278
ref_tex Reference Task Exception Handling State124
ref_tsk Reference Task State ..97
ref_tst Reference Task State (Simplified Version).......................................100
ref_ver Reference Version Information ..302
rel_mpf Release Fixed-Sized Memory Block..221
rel_mpl Release Variable-Sized Memory Block..231
rel_wai Release Task from Waiting...106
rot_rdq Rotate Task Precedence..267
rpl_rdv Terminate Rendezvous ...210
rsm_tsk Resume Suspended Task ..109
set_flg Set Eventflag ..139
set_tim Set System Time...237
xiv

µITRON4.0 Specification Ver. 4.00.00
sig_sem Release Semaphore Resource...130
slp_tsk Put Task to Sleep ..103
snd_dtq Send to Data Queue..151
snd_mbf Send to Message buffer ..187
snd_mbx Send to Mailbox ...165
sns_ctx Reference Contexts...274
sns_dpn Reference Dispatch Pending State ...277
sns_dsp Reference Dispatching State ..276
sns_loc Reference CPU State ..275
sns_tex Reference Task Exception Handling State123
sta_alm Start Alarm Handler Operation ..255
sta_cyc Start Cyclic Handler Operation ..247
sta_ovr Start Overrun Handler Operation ...262
sta_tsk Activate Task (with a Start Code)...89
stp_alm Stop Alarm Handler Operation...256
stp_cyc Stop Cyclic Handler Operation ..248
stp_ovr Stop Overrun Handler Operation ...263
sus_tsk Suspend Task ..108
tacp_por Accept Rendezvous (with Timeout) ...203
tcal_por Call Rendezvous (with Timeout)..200
ter_tsk Terminate Task ...92
tget_mpf Acquire Fixed-Sized Memory Block (with Timeout)219
tget_mpl Acquire Variable-Sized Memory Block (with Timeout)229
tloc_mtx Lock Mutex (with Timeout) ...177
trcv_dtq Receive from Data Queue (with Timeout)155
trcv_mbf Receive from Message Buffer (with Timeout)189
trcv_mbx Receive from Mailbox (with Timeout)...166
tslp_tsk Put Task to Sleep (with Timeout) ...103
tsnd_dtq Send to Data Queue (with Timeout)...151
tsnd_mbf Send to Message buffer (with Timeout) ...187
twai_flg Wait for Eventflag (with Timeout) ...142
twai_sem Acquire Semaphore Resource (with Timeout)131
unl_cpu Unlock the CPU ...271
unl_mtx Unlock Mutex...179
wai_flg Wait for Eventflag...142
wai_sem Acquire Semaphore Resource ..131
wup_tsk Wakeup Task...104
xv

µITRON4.0 Specification Ver. 4.00.00

xvi

Static API Index

This is an index of the static APIs defined in the µITRON4.0 Specification.

ATT_INI Attach Initialization Routine..304
ATT_ISR Attach Interrupt Service Routine ...284
CRE_ALM Create Alarm Handler ..252
CRE_CYC Create Cyclic Handler ..243
CRE_DTQ Create Data Queue ...148
CRE_FLG Create Eventflag ...136
CRE_MBF Create Message Buffer ...184
CRE_MBX Create Mailbox...161
CRE_MPF Create Fixed-Sized Memory Pool..216
CRE_MPL Create Variable-Sized Memory Pool..226
CRE_MTX Create Mutex..174
CRE_POR Create Rendezvous Port ...197
CRE_SEM Create Semaphore ..127
CRE_TSK Create Task...83
DEF_EXC Define CPU Exception Handler ...299
DEF_INH Define Interrupt Handler ..282
DEF_OVR Define Overrun Handler...260
DEF_SVC Define Extended Service Call ..294
DEF_TEX Define Task Exception Handling Routine..117

µITRON4.0 Specification Ver. 4.00.00
Chapter 1 Background of µITRON4.0
Specification

1.1 TRON Project

1.1.1 What is the TRON Project?

TRON, which stands for “The Real-time Operating system Nucleus,” is a project

started by Dr. Sakamura of University of Tokyo in 1984 in an aim to establish an ideal

computer architecture. Through collaboration between industrial world and universi-

ties, the TRON Project is aiming to produce an entirely new concept computer archi-

tecture.

In an effort to reconstruct the computer architecture, the TRON Project envisions the

future to be a highly computerized society: a cyber society. In a cyber society, micro-

computers are embedded in a majority of equipments, facilities, and tools that we

encounter in our daily life. These devices are connected through a computer network

and they work together in order to support our activities in various situations. Equip-

ments with built-in computer and connected to the network are called “Intelligent

Objects” while the overall system where intelligent objects are connected and work

together is called “Highly Functional Distributed System” (HFDS). The realization of

the HFDS is the most important goal of the TRON Project.

The TRON Project, divided into basic sub-projects and application sub-projects, is cur-

rently in progress. In the basic sub-projects, research is being conducted on the com-

puter system, a component of HFDS. Specifically, the following sub-projects are

currently in progress: ITRON (specifications of real-time OS for embedded systems

and the related specifications), BTRON (specifications of OS for personal computers

and workstations and the related specifications), CTRON (OS interface specification

for communication control and information processing), and TRON HMI (standard

guidelines for a human-machine interface of various products).

In the application sub-projects, analysis and evaluation are currently being conducted

to solve problems associated with establishing a realistic application system in HFDS.

A simulation of the future computerized society is also conducted as a basis for evalua-

tion of the architecture developed in the basic sub-projects. The application

sub-projects use the results of the basic sub-projects to solve the said problems while

the basic sub-projects, in turn, make use of the feedback coming from the application

sub-projects to further its research.
1

µITRON4.0 Specification Ver. 4.00.00

Toward the 21st Century

The TRON Project aims to establish an ideal computer architecture based on the tech-

nology of the 21st century. Our goal is to implement a top of the von Neumann-type

architecture using VLSI technology, while giving utmost importance to real-time oper-

ations and cost performance. We adapt a new integrated design approach to a wide

range of applications such as home electronics, industrial robots, personal computers,

work stations, main frames, and private branch exchange (PBX).

Open Architecture

The basic policy of the TRON Project is to make the results of its research available

through open specifications. Everyone can then freely develop and market his or her

own products based on these specifications. This policy is essential in achieving the

goal of developing HDFS. The TRON Association was established as the central orga-

nization to develop the TRON Specifications and to certify conformance to the specifi-

cations. Anyone can be a member of the TRON Association if they are in agreement

with the concept of TRON and operate within the rules of the TRON Association.

Loose Standardization

The TRON Specifications define the interface of a computer, not the hardware or soft-

ware it is founded on. It also defines the interface of the OS, but not the OS itself. The

specifications are geared towards minimizing the development cost and upgrading the

educational effects on users and programmers by implementing program and data com-

patibility. Thus, the TRON Association adapts the loose standardization, where only

the design concept is defined. A developer can then freely implement a specific system

that conforms to the design concept standard. Using a loose standard is a compromise

between implementing the compatibility between HFDS components and allowing for

the adaptation of new technologies.

The interface is defined in a layered structure, consisting of: the microprocessor

instruction set, OS kernel, OS outer kernel, data formats, communication interface

between objects, programmable interface, and the human-machine interface (HMI).

With the layered structure of the specifications, various developers can independently

implement different layers. Even in one system, different layers can be developed by

different companies, and under free competition, same layers can be developed by dif-

ferent companies.

Future Compatibility

In order to realize the upward compatibilities in the future, the TRON Project is not

affected by the compatibilities with the past. Many existing computer systems today

are an enhancement of their early architectures. In other words, they are like houses

renovated several times to make them larger. TRON, based on advanced VLSI technol-
2

µITRON4.0 Specification Ver. 4.00.00

ogy, is an all-new architecture. TRON defines the standard data format, TAD (TRON

Application Databus) to ensure compatibility for data that are transmitted between

applications. The TAD format provides a means for TRON and other OS to coexist.

Standardization of Operation

Another goal of the TRON Project is to design computers anyone can operate, just like

cars. Anyone can drive cars regardless of their manufacturer or model. The standard-

ization of the HMI, just like in cars, is especially important for personal computers as it

makes further knowledge unnecessary when a change or a revision in hardware and/or

software components occur.

1.1.2 Basic Sub-Projects

ITRON (Industrial TRON) and JTRON

ITRON is an architecture for real-time operating systems (RTOS) for embedded sys-

tems. Details of the ITRON Specifications are provided in the following sections.

The JTRON Specification is a merger of the ITRON Specifications, which have been

around for over 10 years, and the Java run-time environment, which excels in portabil-

ity and network transparency. In application systems with the JTRON Specifications, it

is easy to develop programs that uses the strengths of both ITRON and Java. More

concretely, ITRON functions can be used to implement real-time control programs that

have severe timing constraints, while Java functions can be used to manage GUI and

other network-related functionalities. The JTRON Specifications have the following

advantages. A real-time system with network functionalities can be constructed with

the ITRON Specifications and Java. Components that need performance tuning can be

coded with the RTOS’s native code. On the other hand, components where portability

is significant can be coded with the Java language. Thus, these components can be

developed and debugged on a personal computer or a workstation.

The JTRON1.0 Specification was released in 1997, and the conforming products have

already been released. The JTRON2.0 Specification strengthens the communication

functionalities between the ITRON-Specification RTOS and the Java run-time environ-

ment.

BTRON (Business TRON)

BTRON refers to the architecture of personal computers and workstations that

smoothly exchange information between humans and machines. It is important to

guarantee data compatibility using a uniform HMI and TRON Application Database

(TAD).

The main feature of the BTRON HMI is the GUI that supports keyboards and elec-

tronic pens as input devices. A touch panel can also be used instead of an electronic
3

µITRON4.0 Specification Ver. 4.00.00
pen. BTRON is currently developing an HMI guideline that only supports pens.

TAD implements data compatibility between computers designed under the TRON

architecture. It is a generic data format that can handle documents, graphics, and other

real-time data (e.g. audio and video) for various environments.

BTRON1, BTRON2, BTRON3, and µBTRON Specifications have been released to

meet our goals mentioned above. BTRON1 is designed to be implemented on a limited

hardware resource. On the other hand, BTRON2 and BTRON3 are designed to make

full use of the hardware resources of powerful computer systems. µBTRON is a

BTRON Specification for PDAs and it provides power management function.

The BTRON1-Specification OS, which runs on a notebook type computer, was first

released in 1991. TRON-Specification keyboards have also been developed for

BTRON-Specification computers. They are designed for easier use and are less fatigu-

ing than previous keyboard models. Electronic digitized pens are also used as a point-

ing device because they are more capable for handwritten character inputs and picture

drawings compared to mice.

TRON-Specification keyboards were first sold in 1991. Now research is being con-

ducted on the following areas: a new window system architecture for BTRON, TRON

Application Control Language (TACL) which implements batch processing of graphi-

cal applications under BTRON, multi-media TAD specification, and TRON code that

has a multi-language and multi-lingual support.

CTRON (Communication and Central TRON)

CTRON is an operating system interface that can be commonly applied to every

exchange, communication, and information processing node on a communication net-

work. Since the 1980s, which is said to be the start of the information society era, eval-

uation experiments have been conducted on CTRON interface specification, software

portability and real time features.

The first version of CTRON Interface Specification was released in 1988. Since then,

various works have been done to enhance and decrease the size of the specification, and

in 1993, it was published as the new edition of “Original CTRON Specification Series.”

The certification system of the CTRON-Specification OS was started in 1989, and up

to this date more than 20 products have been certified.

From 1990 to 1992, an experiment on software portability was thoroughly executed.

The objective of this experiment was to quantitatively evaluate the portability of the

products conforming to the CTRON Interface Specifications. As a result, software

portability was proven to be high, although some problems regarding software portabil-

ity were also found. These problems have been reflected to the CTRON Specifications.

As mentioned above, CTRON was established as the basic software platform for com-

munication networks in the 1990s. Now it is being considered as the core of communi-

cation networks essential to the multi-media generation of the 21st century.
4

µITRON4.0 Specification Ver. 4.00.00

TRON HMI

The HFDS is intended to help humans cope with daily lives by having multiple intelli-

gent objects work together to provide support for humans. The TRON Project needs a

uniform HMI in all HFDS environments. The purpose of this sub-project is to create

an HMI guideline for intelligent objects, such as personal computers, electronic prod-

ucts, and automotive components.

The TRON HMI Guidelines describe the physical interactive parts that can be handled

by users or used in applications such as buttons, switches, and handles. Enableware

specification, and multi-language specifications are also available for a wide range of

users. Enableware specification is for handicapped users while multi-language specifi-

cation is for users who want to be able to control the computer in their own language.

With an HMI made according to this guideline, a user can switch to other systems eas-

ily without worrying about system differences such as compatibility.

The result of this sub-project was presented as “TRON Human-Machine Interface

Specifications.” In 1992 and 1993, the sub-project held competitions on HMI design in

order to evaluate its usefulness.

1.1.3 Application Sub-Projects

Up to this date, experiments and research have been conducted on various application

sub-projects, with the results taken as feedbacks to the basic sub-projects. Examples of

application sub-projects are the TRON-Concept Intelligent House, the TRON-Concept

Intelligent Building, and the TRON-Based Autotraffic Information System. The fol-

lowing sections introduce the four most recent application sub-projects being con-

ducted.

Computer Augmented Environment

The computer augmented environment refers to an environment where computers are

embedded in every machine, and each machine, in turn, is connected to a network, thus

expanding the functionalities of the real environment. It is being studied by many

researchers throughout the world. The term HFDS discussed above actually refers to

the computer augmented environment, and its construction is the TRON Project’s final

objective.

In order to realize the computer augmented environment, we are currently developing a

“Computer Augmented Environment Control Script” designed to handle the control

embedded devices from personal computers and servers.

Multi-Media Network Service Platform (MNP)

The rapid spread of the internet and intranet provides an opportunity for networked

multi-media services.
5

µITRON4.0 Specification Ver. 4.00.00

Since 1994, much work has been done to adapt CTRON to multi-media network ser-

vices. CTRON is focusing on the usage flexible resources and implementation of

real-time control functions on a network and its peripherals (such as nodes and routers

for gateway functions, servers and multi-media terminals.) New OS interface rules

have been added and technical problems regarding control functions required by the

focus mentioned above are being continuously examined since 1994.

Digital Museum

The digital museum is a futuristic museum that uses digital technology in every opera-

tion phase, including exhibits and presentations. The digital museum is not a virtual

exhibit on the web. Virtual exhibition, itself, is a part of a digital museum. The con-

cept of the digital museum is to extend and strengthened the real space of a physical

museum using cyberspace tools, such as computers and the Internet, thereby overcom-

ing the limitations imposed on a real museum and at the same time increasing its

appeal.

The digital museum is an example of an HFDS application. The required computer

technology in constructing the digital museum is actually BTRON’s goal. This fact

shows the exclusiveness of BTRON technology and at the same time indicates that the

direction of the hypermedia technology developed under BTRON sub-project is cor-

rect.

Distributed Software Platform for Information Home Electronics

The digitalization of home electronics and the use of home networking have rapidly

advanced in the recent years while software is needed to control information home

electronics are getting more and more complex. On the other hand, much shorter time

for the development of devices are being imposed, thus heightening the need for soft-

ware platforms to increase software development efficiency.

Middleware groups have been built to connect information home electronics to net-

works, using µITRON-Specification RTOS. The µITRON Specifications provide a

foundation for efficient software development while ensuring the connectivity and

operability of embedded products.

1.2 History and Current Status of the ITRON
Specifications

1.2.1 Current State and Features of Embedded System

With the progress in microprocessor technology, the range of applications in which

embedded systems are practically used has significantly increased. During the early

days, embedded systems were mainly limited to industrial applications such as produc-
6

µITRON4.0 Specification Ver. 4.00.00

tion line control. Now, embedded systems are rapidly spreading to office electronics,

communication products, and most recently, to consumer products like automobiles,

audio/video systems, televisions, cellular phones, electronic instruments, games, laun-

dry machines, air conditioners, and lighting systems. The term embedded system now

applies to most of the electronic products we encounter in our daily lives.

With the increased range of applications for embedded systems, the functions that

these systems must perform become more complex. In addition, the recent trend

towards digitalization and the increase in number of software-implemented process on

highly functional microprocessors makes embedded systems more significant.

In general, small-scale embedded systems, usually consumer products, are produced in

large quantities compared to large-scale embedded systems typically found in indus-

trial products, making the cost per product comparatively cheaper. While decreasing

the development costs for large embedded systems is given importance, decreasing the

manufacturing costs of small-scale embedded systems is significant. In particular,

because of the tight competition on product development, attempts are made to shorten

the development time of consumer products. In addition, sold softwares are rarely

redesigned, which results in a very short life cycle for system development.

In most small-scale embedded systems, the core processor, ROM and RAM, general I/

O devices, and some other devices are all in a chip called MCU (Micro Controller Unit,

sometime called “one chip micro processor.”) Since the development cost of the final

product is to be kept as low as possible, hardware resources on a MCU, especially the

memory, are very limited. This limitation becomes a problem when developing soft-

wares on a MCU. The highly efficient MCU has various kinds of processors optimized

and designed for applications.

In small scale embedded systems, improving software productivity is important in han-

dling largely scaled and highly complex softwares. It is also significant in reducing the

software development time. It is often to use a high-level language like C, and an

RTOS, like a µITRON-Specification RTOS.

1.2.2 Requirements for RTOS on Embedded System

To keep up with the progress of high performance microprocessors technology, it is

very important for embedded systems to be cost-effective, especially since they are

now widely applied to consumer products. Also the number of software engineers

working on RTOS is also increasing as embedded systems are being applied to more

and more areas, making their education a lot more significant.

In a survey conducted by the TRON association every year from 1996, the survey

shows the greatest problem encountered by most engineers using an RTOS in an

embedded system is regarding education and standardization. The survey shows that

there are very few engineers who can handle RTOS and that the specifications of differ-

ent operating systems are so large that switching to another OS would take a lot of
7

µITRON4.0 Specification Ver. 4.00.00
work. The survey also shows that the OS size and resources are too large, and most of

its features and functions do not meet actual requirements, leading to problems in

matching an OS with an application.

The TRON Project, giving importance to education from aspect that standardization of

concept and technical-term, has decided to provide a standardized RTOS specification

that can easily be applied in many embedded systems.

The most difficult problem encountered in providing a standardized RTOS specifica-

tion for embedded systems is finding the balance between providing the highest perfor-

mance that the hardware allows and upgrading software development productivity. On

MCU based systems with tight limitations on hardware resources, reaching the maxi-

mum hardware performance will only be achieved by carefully selecting the appropri-

ate RTOS. On the other hand, improving software development productivity involves

increasing the abstraction of OS services and guaranteeing software portability regard-

less of the hardware in use would increase the gap between OS services and the hard-

ware architecture. This gap would cause significant overhead and getting a high

performance from hardware would be a lot more difficult.

The compromise between these two goals highly depends on the performance of

embedded products. Particularly, it is meaningless to lower the runtime performance

of small scale embedded systems just to keep the final product’s cost low and improve

its portability. On the contrary, since large scale systems are often recycled, portability

is a very important issue. The optimal solution to this problem is not well defined and

the optimal balance point changes with the progress of microprocessors.

Small and large scale embedded systems often require different RTOS features. Small

scale systems would often suffer decreased performance and increased program size

from using an RTOS with many high-level features that are really unnecessary. On the

other hand, an OS with many high-level features is useful for large-scale embedded

systems, as it helps improve software development productivity.

As seen from above, the requirements for an RTOS differ depending on the scale and

the necessary features of each embedded system. It would be possible to define an

RTOS specification for each application scale or required feature sets. However, in

considering the education of software engineers, the software circulation, and the sup-

port for development tools, defining a scalable OS specification that can adapt to the

needs of a variety of embedded systems, would be very useful.

The following is a summary of the requirements for the specification of an RTOS on

embedded systems:

 • To be able to get the maximum performance from the hardware.

 • To be useful in increasing productivity for software.

 • To be able to adapt to any system scale (scalability).

In addition to the above technical requirements, it is also important that the specifica-

tion be open. Because embedded systems are involved in all the electronics products
8

µITRON4.0 Specification Ver. 4.00.00

that we encounter daily, it is necessary not only to make the specification available to

every one, but also to make it royalty free so that anyone can implement and sell prod-

ucts based on the specification.

1.2.3 Current Status of the ITRON Specifications

The ITRON Project started in 1984, and it has developed and released a series of

ITRON Real-Time Kernel Specifications. The project gave utmost importance to the

standardization of kernel specifications because small scale systems often only use just

the kernel functions.

The first ITRON specification was developed in 1987 as the ITRON1 Specification.

Many real-time kernels were developed based on the ITRON1 Specification, and they

served to be useful in verifying the specification’s usability. Later, in 1989, the ITRON

Project released two specifications: the µITRON Specification (ver. 2.0) and the

ITRON2 Specification. The µITRON Specification is for small systems on an 8 or

16-bit MCUs. One of its characteristics is limited the kernel functionality. The

ITRON2 Specification, on the other hand, is designed for larger systems on 32-bit

MCUs. The µITRON Specifications have been implemented on many different MCUs

with limited memory and limited computational resources. It is also used on a wide

variety of embedded systems and it provides practical functionality without large mem-

ory requirements. In fact, µITRON-Specification kernels have been developed on most

major MCUs used in embedded systems.

In order to apply the µITRON Specifications to a wide range of fields, functionality and

performance are necessary. Even though the µITRON Specifications was not designed

for 32-bit processors, the µITRON-Specification kernel is now being implemented on

32-bit MCUs since the kernel does not consume significant memory. Because of this,

the specification was revised to make it scalable on MCUs ranging from 8-bits to

32-bits. The revised edition was the µITRON3.0 Specification, released in 1993. The

µITRON3.0 Specification includes connection functions that allow a single embedded

system to be implemented over a network. IEEE CS Press published the English ver-

sion of the µITRON3.0 Specification under the title “µITRON3.0: An Open and Porta -

ble Real-Time Operating System for Embedded Systems.”

At present, there are approximately 50 ITRON real-time kernel products for 35 proces-

sors registered to the TRON association. There is also a U. S. software vendor that has

developed a µITRON-Specification kernel. Since the µITRON-Specification kernel is

small and is easy to implement, many users have developed their own versions for

in-house use. There are also several implementations that besides products, and some

versions of the µITRON kernel are distributed as free software.

The reason that µITRON kernels are used in so many instances is that it supports a

wide range of applications. Table 1-1 shows examples of some devices that use

ITRON kernels. From the survey mentioned in the previous section, the ITRON Spec-
9

µITRON4.0 Specification Ver. 4.00.00
ifications are used often in consumer products and it has become the standard among

industrial companies. Many companies develop their own ITRON-Specification ker-

nel, which indicates that the ITRON Specifications are truly open standards.

In addition to the real-time kernel specifications, the ITRON Project also provides the

ITRON/FILE Specification that provides file management features compatible with the

BTRON-Specification file system.

Many widely used products use processors with the ITRON Real-Time Kernel Specifi-

cation. The µITRON-Specification kernel has been especially useful on MCUs, which

were not previously used on RTOS due to memory and speed restrictions. The

µITRON Specification brings us closer to achieving the standard real-time kernel spec-

ification possible.

The object of standardization is now widened to include, not just the kernel, but also

software components, development tools, and related specifications. Also, research

and standardization on each application field is in progress (see Section 1.4.1). The

research and studies conducted by the TRON Project are all directed to realizing its

ultimate goal: the HFDS.

Table 1-1. Major Fields where ITRON-Specification Kernels are Applied

Audio/Visual Equipment, Home Appliance

TVs, VCRs, digital cameras, STBs, audio components, micro-

wave ovens, rice cookers, air-conditioners, washing machines

Personal Information Appliance, Entertainment/Education

PDAs (Personal Digital Assistants), personal organizers, car navi-

gation systems, game gear, electronic musical instruments

PC Peripheral, Office Equipment

printers, scanners, disk drives, CD-ROM drives, copiers, FAX,

word processors

Communication Equipment

answer phones, ISDN telephones, cellular phones, PCS terminals,

ATM switches, broadcasting equipment, wireless systems, satel-

lites

Transportation, Industrial Control, and Others

automobiles, plant control, industrial robots, elevators, vending

machines, medical equipment, data terminals
10

µITRON4.0 Specification Ver. 4.00.00

1.3 ITRON Specification Design Policy

The following policies are adapted in designing the ITRON Specifications. These pol-

icies satisfy the requirements for an RTOS given in Section 1.2.2.

 • Excessive hardware virtualization should be avoided in order to increase adaptability

to the hardware.

In order to maximize the performance of the hardware and thus, acquire high

real-time efficiency, excessive hardware virtualization should be avoided. The

phrase “adaptability to hardware” refers to improving the performance of the whole

system by modifying the RTOS specifications and/or RTOS internal implementation

according to the hardware’s performance and characteristics.

More specifically in the ITRON Specifications, items that should be standardized

regardless of the hardware structure are clearly divided from the items that can be

optimized according to the hardware’s performance and characteristics. Standard-

ized items includes task-scheduling rules, system call names, system call functional-

ities, names, order, and meanings of system call parameters, and names and

meanings of error codes. On the other hand, items that would cause a decline in per-

formance are not forcibly standardized, instead, standardization and virtualization

are purposely avoided. For instance, bit width of parameters and methods for invok-

ing interrupt handlers are decided on each implementation.

 • Adaptability to applications should be considered.

Adaptability to application refers to the approach to improve the over all system per-

formance by modifying the kernel specifications and internal implementation meth-

ods in response to the kernel functionalities performance required by applications.

Since the object code for the OS is created for each application, adaptability to

applications approach works well in embedded systems.

The specification is designed in such a way that each kernel function is kept inde-

pendent to each other as possible so that only the required function for each applica-

tion are actually used. Providing a single functionality to each system call makes

incorporating of only the required functions easier. Most µITRON-specification

kernels are provided as libraries and only the required modules are extracted and

linked with application programs.

 • Education of software engineers should be given importance.

Compatibility and portability are not of a great concern to softwares developed for

small embedded systems because the software is not likely to be reused. However,

standardizing the kernel specification is more important because it helps to educate

software engineers. It also make communications between software engineers eas-

ier because by unifying technical terms and concepts.

In the ITRON Specification, the education of software engineers is given impor-
11

µITRON4.0 Specification Ver. 4.00.00

tance. By standardization, an engineer can widely apply what he learns once. The

usage of terms and naming of system calls, for example, are made as consistent as

possible. Educational text books for engineers are also in progress.

 • A series of specifications should be developed and support levels should be defined

in a specification.

In order for applications to adapt to various hardwares, a series of specifications that

allow different scalable levels of support are created. The series of real-time kernel

specifications made up to this date includes µITRON Specification (Ver. 2.0) for 8 to

16 bit MCUs and ITRON2 for 32 bit processors. With these specifications, the user

can scale each functionality as needed and include only those functionalities when

implementing the kernel. The µITRON3.0 specification separates the systems calls

into different levels of support to cover both small-scale and big-scale processors

within one specification.

Specifications for distributed systems over a network, and multi-processor systems

are also being considered for standardization under the ITRON Specification series.

 • Various functionalities should be provided.

The ITRON Specifications provide a large set of primitives with different properties

to cover a wide range of functionality instead of limiting the number of primitives.

Using the primitives according to the natures and characteristics of the application

and hardwares, improve performance during execution and makes program coding

easier.

The common concept among the above design policies is “loose standardization.”

Loose standardization means that some parts of the specification that would reduce the

hardware performance are not forcibly standardized and are left to the developer to

implement on hardware and/or application. With loose standardization, maximum per-

formance for various hardware platforms is achieved as shown in Figure 1-1.

1.4 Position of the µITRON4.0 Specification

1.4.1 Second Phase Standardization Activities of the ITRON
Project

As mentioned previously, the ITRON Project has been focusing on standardization of

real-time kernel specifications. As the embedded systems become larger and more

complex, the need for standardization on the surrounding environments of the real-time

kernel is increasing. In 1996, the ITRON Project started its second phase: expanding

standardization from kernel specification to the kernel’s related specifications, espe-

cially on software components for embedded systems.

In standardizing software components, not only the conditions for advancing the devel-

opment and distribution of software components but also the interface for different
12

µITRON4.0 Specification Ver. 4.00.00

fields are being considered.

The following two issues are being discussed to prepare the conditions for advancing

the development and distribution of the components. The first problem is regarding the

distribution of software components. The difference in implementation among

µITRON kernels makes it difficult to ensure the distribution of software components.

To solve this problem, it is necessary to raise the level of kernel standardization while

keeping the advantages of loose standardization. The second problem is regarding the

support for software components with real-time capability. Many software compo-

nents are required to have real-time capabilities and a framework is needed to allow the

coexistence of software components and application while satisfying software compo-

nents’ real-time restrictions. The framework also allows multiple software compo-

nents to be used together.

The discussion results regarding these two problems are reflected in the µITRON4.0

Specification. A standard method for designing embedded systems with real-time ker-

nel is also proposed. A guideline for designing applications supporting software com-

ponents with hard real-time capability is being created.

Standardization of software component interface in every field currently in progress

includes API (Application Program Interface) for TCP/IP protocol stacks and standard

interface for Java execution environments.

The TCP/IP protocol stack has taken an increasing significance in the field of embed-

ded systems, recently. Though the socket interface is in wide use today as a TCP/IP

API, it is not appropriate for embedded systems (particularly small-scale ones) because

of such problems as its large overhead and the necessity of dynamic memory manage-

Figure 1-1. Adaptation according the µITRON Specifications

Functions defined in the µITRON Specification

AAA

AAAAAAA

semaphore

AAAAAAAAA

µITRON-Specification kernel adapted to Processor X

µITRON-Specification kernel adapted to Application A

management
task

flag
event

queue
data mailbox others...

semaphoremanagement
task

queue
data mailbox others specific

implementation-

semaphoremgmt.
task

queue
data

specific
impl.-

Adaptation to the processor architecture
Adaptation to application domains

Adaptation to the application requirements
13

µITRON4.0 Specification Ver. 4.00.00
ment within the protocol stack. The ITRON TCP/IP API Specification, which is a stan-

dard TCP/IP API for embedded systems, has been designed to solve these problems of

the socket interface and to enable a compact and efficient implementation of the TCP/

IP protocol stack. The ITRON TCP/IP API Specification has been published on May,

1998.

Java technology is also drawing interest these days. A practical approach for applying

Java technology to embedded real-time systems is to implement the Java runtime envi-

ronment on an ITRON-specification kernel. Then, build an application system

whereby the parts for which Java is best suited are implemented as Java programs, and

the parts taking advantage of the ITRON-specification kernel strengths are imple-

mented as ITRON tasks. A key issue here is the standardization of the communication

interface between Java programs and ITRON tasks. The JTRON2.0 Specification has

been designed to define this interface standard and published on Oct., 1998.

Besides software component support, defining the requirements for ITRON kernels

designed for automotive control and gathering proposals for the standard specification

were also conducted. The results are included in the µITRON4.0 Specification.

Works on standardizing interface between ITRON-Specification kernels and debugging

environments, and guidelines for designing device drivers are currently in progress.

Furthermore, C++ language bindings for the ITRON kernel are also being surveyed.

1.4.2 Necessity of the µITRON4.0 Specification

The need for reconsidering the real-time kernel specification arose during the ITRON

Project’s second phase mentioned in the last section and as a result, the µITRON4.0

Specification was created. This specification is considered as the 4th generation of

ITRON Specifications. The four main reasons why it was necessary to design the

µITRON4.0 Specification is outlined below.

(a) To improve software portability

Embedded software continues to grow in complexity and size. The need for appli-

cations to easily switch to different kernels is increasing. Portability of softwares

developed on an ITRON kernel is also an important issue in the distribution of soft-

ware components.

(b) To add functionality for supporting software components

The original µITRON Specifications left out some functionality to create software

components that are intended for the market. For example, the functionality to find

the context where a service routine of a software component is called was only

available on the extension level.

(c) To include new requirements and results of studies

From November 1996 to March 1998 a research group on hard real-time support

studied functionalities needed by a real-time kernel to make it easier to build a hard
14

µITRON4.0 Specification Ver. 4.00.00

real-time system. The RTOS automotive application technique committee, from

June 1997 to March 1998, sorted out the requirements for real time kernels on auto-

motive control applications. The results of these new requirements and studies

must be included in real time kernel specification.

(d) To include enhancements allowed by improved semi-conductor technology

Six years after the release of the µITRON3.0 Specification, the semi-conductor

technology has dramatically progressed and so is the performance of embedded

processors. The available memory size on processors has also drastically increased.

Some useful kernel functions that were left pending on the release of the

µITRON3.0 Specification due to their overhead, can now be implemented with the

current technology.

1.4.3 Introduction of the Standard Profile

In order to improve software portability, the set of functions required for implementa-

tion and the functional specification of each service call should be strictly regulated. In

other words, the grade of specification standardization must be made stronger.

The standardization of µITRON Specifications has been done along the “loose stan-

dardization” policy which gives more importance to adaptability on hardwares and pro-

cessors rather than software portability by reducing overheads and memory size during

execution time. “Loose standardization” policy has made µITRON Specifications scal-

able and acceptable across a wide range of processors ranging from 8bits to 64bits.

This is one of the important reasons why the µITRON Specifications are widely

accepted. However, improving software portability and realizing scalability have many

contradicting aspects. It is difficult to realize both requirements at the same time

within one specification.

To address the issue of portability while maintaining the “loose standardization” policy,

the µITRON4.0 Specification strictly defines the set of standard functions and their

specifications. This set of standard functions is called the “Standard Profile.” A

large-scale system was assumed when defining the Standard Profile for the µITRON4.0

Kernel Specification. This is because larger systems require a more portable software.

Defining the Standard Profile leads to encouraging the building of softwares using only

functions provided by the Standard Profile, in cases where the portability of software

components is significant. It also leads to encouraging the implementation of kernels,

where the portability of software components are important, based on the Standard

Profile.

Within the Standard Profile, the specification is made to maximize software portability

while maintaining scalability. As an example, a mechanism for improving the portabil-

ity of interrupt handlers while keeping overheads small, has been introduced. Previous

µITRON Specifications did not provide a way to maintain portability in prohibiting the
15

µITRON4.0 Specification Ver. 4.00.00
nesting of higher priority interrupts from within an interrupt handler. However, the

µITRON4.0 Specification does.

In realizing scalability, service calls are made as independent to each other as possible,

and many sets of functions are made available, but only the necessary functions are

actually linked using the library link mechanism. This method is the same as that of

previous µITRON Specifications. When it is difficult to link only the necessary func-

tions using the library link mechanism, then the kernel is supposed to provide, only the

necessary primitives required to support more complex functions. This enables the

support of complex function without modifying the kernel, while minimizing the over-

head in an application requiring no complex functions.

The Standard Profile assumes the following system image.

 • The Standard Profile assumes the following system image.

 • High-end 16 or 32-bit processor is used.

 • The kernel code size is about 10 to 20KB when all functions are included.

 • The whole system is linked into one module.

 • The kernel object is statically generated.

Since the whole system is linked into a single module, service calls are invoked using

subroutine calls. The system does not have any particular protection mechanism.

The functions to be supported in Standard Profile includes all the level S functions

(with modifications and expansions in some functions) and a part of level E functions

(such as service calls with timeout, fixed-sized memory pool, cyclic handlers with

specification sorted out) of the µITRON3.0 Specification, and newly introduced func-

tions (task exception handling, data queues, system state reference function, and so

on). The static API used to state object creation information (to be described later) is

also supported.

1.4.4 Realization of a Wider Scalability

As described in the previous sections, the µITRON4.0 Specification maintains a policy

of “loose standardization” and at the same time aims to provide a wider scalability than

the previous ones.

It defines a minimum function set that can be made more compact than the previous

µITRON Specifications and more adaptable to small systems. Specifically the waiting

state that was mandatory in the µITRON3.0 is no longer required. It is, however,

replaced by the dormant state, which is mandatory. A kernel without the waiting state

allows tasks to operate within the same stack space. This reduces required memory

area and overhead on context switches.

In order to support the requirements over the Standard Profile, the full set of

µITRON4.0 Specification provides more functions than the full set of the previous

specifications. Specifically it includes almost all the functions of the µITRON3.0
16

µITRON4.0 Specification Ver. 4.00.00

Specification excluding the connection functions. Newly introduced functions in

µITRON4.0 Specification includes: the new functions in the Standard Profile (task

exception handling, data queue, system state reference function), object creation func-

tions for automatic assignment of ID number, interrupt service routine functions

enabling interrupt handling written while keeping portability, mutex to support priority

inheritance/ceiling protocols, overrun handler to detect the time left assigned to a task.

The full set of µITRON4.0 Specification is no less than the full set of ITRON2 Specifi-

cation in terms of functionality.

In addition to the Standard Profile, an “Automotive Control Profile” is also defined.

The Automotive Control Profile targets automotive control applications. It is also con-

sidered as a function set that increases the software portability for systems smaller than

those targeted by the Standard Profile. Specifically, Standard Profile functionalities,

such as functions with timeouts, suspended states, task exception handling, mail boxes,

and fixed-sized memory pools are unnecessary and therefore was omitted. On the

other hands, a task called a restricted task, is uniquely defined in the Automotive Con-

trol Profile. Restricted tasks do not enter the waiting state so restricted tasks with equal

priority can share the same stack area, reducing memory use. Unless there is no depen-

dency on errors occurring from invoking a service call that enters the waiting state,

restricted tasks can be replaced by normal tasks, and the resulting behavior does not

change. The Automotive Control Profile is backward compatible with the Standard

Profile, even with the specific functionality of restricted tasks.

Figure 1-2 illustrates the µITRON4.0 supported function levels relative to the

µITRON3.0 Specification. Compared to previous specifications, the µITRON4.0

Specification is more applicable to smaller and larger systems.

1.4.5 New Functions in the µITRON4.0 Specification

New functions were added to the µITRON4.0 Specification are described below.

Figure 1-2. Function Levels of µITRON4.0 Compared to µITRON3.0

Full set

Standard
Profile

Automotive
Control Profile

Minimum set

Level E

Level S

Level R

 µITRON3.0 Spec.

 µITRON4.0 Spec.
17

µITRON4.0 Specification Ver. 4.00.00

Exception Handling Functions

The µITRON4.0 Specification defines the frame for exception handling, which was left

as implementation-dependent under the previous µITRON Specifications.

When the processor detects an exception condition, the processor starts a CPU excep-

tion handler. CPU exception handlers can be defined for each type of exception in the

application. Since a CPU exception handler is global in the overall system, it is possi-

ble to check the context or the situation where an exception occurs, from within the

Task exception handling function is like a simplified version of a UNIX signal function

and is similar to the ITRON2 compulsion exception. The following is a list of typical

applications using task exception handling functions:

 • Signal CPU exception, such as division by zero error, to a task.

 • Send a task termination request to another task.

 • Notify a task that the deadline has been reached.

Functionalities defined by the µITRON4.0 Specification for exception handling are

designed so that they can be used as primitives in implementing more complicated

exception handlers.

Data Queues

A data queue is a mechanism to communicate with a single word data message. The

µITRON3.0 Specification permitted use of either a linked list or a ring buffer to imple-

ment a mailbox. However, in the µITRON4.0 Specification, the implementation of a

mailbox is limited to a linked list. In addition, a data queue, which is equivalent to a

mailbox implemented with a ring buffer, is introduced as a separate object.

Data queue feature was strongly required by the Automotive Control Profile and was at

first, introduced as a unique feature of the Automotive Control Profile. However, since

data queues are useful to other application areas and programs not requiring data

queues can be implemented without linking them to data queues, the date queue feature

was included in the Standard Profile.

System State Reference Functions

When creating software components assuming they are called by applications devel-

oped elsewhere, each service routine in each software component should work regard-

less of the context where it is called. However, in the µITRON3.0 Specification, only

the level E system call,

ref_sys

, was able to look at the present system state. Many

implementations do not support ref_sys, and even in cases where ref_sys is sup-

ported, the large overhead caused by reference to unnecessary information was a prob-

lem.

In response to this problem, 5 new service calls of the form

sns_

yyy have been intro-

duced in the µITRON4.0 Specification. These service calls can refer the current state
18

µITRON4.0 Specification Ver. 4.00.00

of the system with small overheads. They can be invoked from any context and will

return a Boolean value (They will never return an error.) As an example, it is possible

to check, without worrying about overheads, whether a service call that enters waiting

state can be invoked or not.

Also, to handle processing that requires mutual exclusion, these service calls facilitate

the locking CPU (or disabling dispatch) temporarily, and then restore the system back

to the original state after the processing is finished. The µITRON3.0 Specification has

no feature to restore the system to its original state once

loc_cpu

 was invoked during

the dispatching disabled state. In the µITRON4.0 Specification, on the other hand, dis-

patching disabled state and CPU locked state are independent from each other so no

problems arise in locking the CPU.

Object Creation Functions for Automatic ID Number Assignment

In the µITRON3.0 Specification, the ID number must be provided in creating an object

dynamically. In large-scale systems, managing unused ID numbers is tedious. In the

µITRON4.0 Specification, service calls are introduced to create an object using the ID

number assigned by the kernel instead of the ID number specified by the application.

The service calls return the assigned ID number.

Interrupt Service Routines

The interrupt handling architecture depends on processors and systems, and is a diffi-

cult part to standardize. The previous µITRON Specifications did not standardize the

coding of interrupt handlers and was determined and optimized for each processor and

system. However in order to improve portability of device drivers, a method to write

portable device drivers is required.

The µITRON4.0 Specification introduced an interrupt service routine functions to

write interrupt handling while preserving the portability as well as the interrupt handler

functions in the previous specifications. The specification of interrupt service routine

is being designed with the goal of writing interrupt routines that depend only on inter-

rupt generating devices.

Mutexes

Priority inheritance protocols and priority ceiling protocols are necessary to prevent

priority inversions in a system with severe real-time constraints. Mutex is a mutual

exclusion mechanism that supports priority inheritance protocols and priority ceiling

protocols. It is a new feature of µITRON4.0 Specification. The mutex feature in the

real-time extension of POSIX real-time was referred to when designing the mutex for

the µITRON4.0 Specification.
19

µITRON4.0 Specification Ver. 4.00.00

Overrun Handler

Overrun handler is another feature required in building a system with severe real-time

constraints. Overrun handler detects whether the amount of processing time assigned

to a task has been used up.

The simplest method to detect that a timing constraint has not been met in a system is

by checking if the processing does not finish by the designated deadline. This can be

done using an alarm handler. However, this method do not prevent higher priority tasks

from continuing to run until its deadline, and as a chain reaction result, lower priority

tasks may not meet their deadlines. To solve this problem, a mechanism to detect when

a task has used up given amount of time is required.

Standard Configuration Method

The Standard Profile assumes that the kernel objects, such as tasks and semaphores, are

created statically. In order to port the application software written on a kernel con-

forming to the Standard Profile to another conforming kernel, in addition to the appli-

cation program itself, object creation information must also be ported to the new

kernel.

Previous µITRON Specifications did not standardize descriptions for the creation of

information in the kernel causing incompatibility in between kernels. For example,

one product may write the object information using C data structures, while another

product may write the object information statically through a GUI configuration utility.

When porting a large scaled application to another kernel under such conditions, the

amount of work on the porting of creation information can no longer be ignored.

Although the actual work of rewriting itself is not big, attention should be paid to the

fact that the amount of time required to learn a different way of writing for different

products must be included in the total amount of work.

The µITRON4.0 Specification standardizes the coding of object creation information

and the way to configure the kernel or software components based on those informa-

tion. The method of writing object creation information in the system configuration

file is called static API. The names of static APIs are the same as names of the service

calls with the corresponding function, but they are written in upper case letter. Static

APIs and service calls share the same parameters except that each element of a packet

is written within “

{

” and “}” instead of passing a pointer to the packet. Because of this,

learning either the static API or the service call means learning the other. This is

intended for educational purposes.

The configurator which processes static APIs must have a function to automatically

assign ID number to the object with no ID number given. This allows omission of han-

dling of automatic ID assignment, even when building an application with separately

developed modules and is very useful for large scale application development.

Static APIs for software components as well as static APIs for the kernel can be
20

µITRON4.0 Specification Ver. 4.00.00

described in one system configuration file. This is another feature of the configuration

method of the µITRON4.0 Specification. By having the system configuration file pro-

cessed by the software component configurator first, and then by the kernel configura-

tor, complicated situations, such as the case where software components require

different kernel objects on their configuration, can be handled.

In addition to the new features introduced above, the µITRON4.0 Specification also

reduces implementation-dependency by defining those items that were left ambiguous

or implementation-dependent in each service call function under the µITRON3.0 Spec-

ification in order to improve the software portability. Also many improvements have

been made over the µITRON3.0 Specification, such as sorting out terms and concepts,

sorting out data types of parameters, sorting out error codes, reassigning function codes

to service calls, standardizing constants and macros to retrieve kernel configuration,

and standardizing system initialization process.
21

µITRON4.0 Specification Ver. 4.00.00
22

µITRON4.0 Specification Ver. 4.00.00

Chapter 2 ITRON General Concepts,
Rule, and Guidelines

The ITRON general concepts, rules, and guidelines stated in this chapter are common

to the µITRON4.0 Specification and the software component specifications standard-

ized to be consistent with µITRON4.0. These specifications are referred to as the

ITRON Specifications. In the ITRON general concepts, rules and guidelines, the “ker-

nel specification” refers to the µITRON4.0 Specification and the “Standard Profile”

refers to the Standard Profile of the µITRON4.0 Specification.

[Supplemental Information]

As mentioned above, the concepts, rules, and guidelines in this chapter are applicable

to software component specifications as well. However, to make the µITRON4.0 Spec-

ification more understandable, we refer to certain areas specific to the µITRON4.0

Specification and its Standard Profile when necessary.

2.1 ITRON General Concepts

2.1.1 Terminologies

Terminologies used in this specification are defined below.

 • Implementation-Defined: Items that are covered in the functional description of the

ITRON Specifications but are not standardized by the specifications. All implemen-

tation-defined items should be defined and described by the implementation’s docu-

mentation, such as the product manuals. The portability of any part of an application

program that depends on implementation-defined items is not guaranteed.

 • Implementation-Dependent: Items covered in the functional description of the

ITRON Specifications, but whose behavior varies depending on the implementation

and on the system operating conditions. The specifications do not guarantee the

behavior of an application program that relies on implementation-dependent items.

 • Undefined: Situations with no guaranteed behavior. That is, a system failure might

occur in any undefined situation. Items not mentioned in the specifications are gen-

erally undefined. There is no guarantee in the specification for the behavior of an

application program that generates an undefined situation.

 • Implementation-Specific: Functionalities, which are beyond the scope of the ITRON

Specifications and are defined by the implementation.

[Supplemental Information]

Features defined by the implementation do not need to be internally consistent within
23

µITRON4.0 Specification Ver. 4.00.00
the implementation and may vary according to the kernel or software component con-

figurations. In the case where variations in feature definitions exists due to the kernel

or software system configuration, implementation documents such as product manuals,

should describe the feature definitions for each configuration, as well the steps in con-

figuring the kernel or the software component.

2.1.2 Elements of an API

An API (Application Program Interface) is a method used by an application program to

interface to the kernel or a software component. An API consists of the following ele-

ments:

(A) Service Calls

The interface used by an application program to call a kernel or a software component

is referred to as a service call. The ITRON Specifications standardize the names and

functions of service calls, as well as the types, orders, names, and data types of their

parameters and return parameters.

In a C language API, a service call is defined as a function call. However, it may be

implemented in other forms such as a preprocessor macro as long as it has the same

functionality.

[Differences from the µITRON3.0 Specification]

In the µITRON3.0 Specification, the service call concept was referred to as a system

call. The concept name has changed to service call in order to include software compo-
nents as well as kernel functionalities. The term system call may still be used to refer

to a kernel service call.

(B) Callbacks

The interface used by a software component to call a routine registered by an applica-

tion program is referred to as a callback. The registered routine is called a callback

routine. The ITRON Specifications standardize the names and functionality of call-

back routines, as well as the types, order, names, and data types of their parameters and

return parameters.

The context in which a callback routine is executed is defined in each software compo-

nent specification.

[Supplemental Information]

Callbacks are not used in the kernel specification.

(C) Static APIs

Static API refers to the interface used in both determining the kernel or software com-
ponent configuration and defining the initial states of objects within a system configu-
24

µITRON4.0 Specification Ver. 4.00.00

ration file. The ITRON Specifications standardize the names and functionalities of

static APIs as well as the types and order of their parameters.

Service calls, such as those used to register objects, may have a corresponding static

API. The functionality of a static API is equivalent to executing the corresponding ser-

vice calls during system initialization, in the order listed in the system configuration

file. Some static APIs, like the ITRON general static APIs commonly used by kernel

and software components, do not correspond to any service call at all.

(D) Parameters and Return Parameters

Parameters are data passed to service calls, callback routines, and static APIs. Return

parameters, on the other hand, are data returned by service calls or callback routines.

The ITRON Specifications standardize the names and data types of parameters and

return parameters.

In a C language API, the return parameters, except the return value of a function, are

returned either through a pointer passed as an argument to a C language function, or as

a data structure containing multiple parameters or return parameters. This type of

structure is called a packet. The pointer that points to the area holding the return

parameters is not listed as a parameter. In the case where a pointer is pointing to a sin-
gle return parameter, that pointer is not listed as a parameter, while a pointer to a

packet, on the other hand, is listed as a parameter. In a C language API, an argument

pointing to an area holding a certain return parameter is named by prefixing the return

parameter’s name with “

p_

.” If the return parameter’s name starts with “pk_,” the

pointer to the return parameter starts with “ppk_.” When parameters are too large to

pass as an argument, a pointer to the data area holding the parameter may be passed

instead. The naming convention for return parameters applies for parameters as well.

As a general rule, the data areas used to hold the parameters and return parameters of a

service call can be reused by the application once the service call returns. Also, data

areas used to hold callback routine parameters and return parameters for a software

component can be reused by the software component once the callback routine returns.

Exceptions to these rules are explicitly mentioned in the functional descriptions of ser-
vice calls and callbacks.

[Rationale]

Standardizing the argument and return value names of functions is actually not neces-
sary since they do not affect any kernel or software component API functionality.

However, the names of C language function arguments and function return values are

standardized in the ITRON Specifications because they are used frequently throughout

the specification and product manuals.

(E) Data Types

The ITRON Specifications standardize the names and meanings of parameter and
25

µITRON4.0 Specification Ver. 4.00.00

return parameter data types. Some data type definitions are standardized in the ITRON

Specifications.

(F) Constants

The ITRON Specifications standardize the names, meanings, and values of the con-
stants used as parameters, return parameters, and function codes for service calls. In a

C language API, constants are defined using preprocessor macros.

(G) Macros

A macro is an interface to convert values which are not bound to the system state with-

out calling the kernel or software components. The ITRON Specifications standardize

the names and meanings of macros. In a C language API, macros are defined using

preprocessor macros.

(H) Header Files

There is one or more header files for each kernel and each software component contain-

ing declarations of service calls and definitions of data types, constants, and macros.

The ITRON Specifications standardize the names of these header files. If there are

more than one header file, the standardization also covers which header files contain

which declarations and definitions.

A header file containing the definitions of data types, constants, and macros specified

in the ITRON General Definitions section should be included in header files prepared

for each kernel and software component.

The configurator automatically assigning object ID numbers generates an automatic

assignment header file to contain the generated IDs. ITRON Specifications standardize

the names of these header files.

The header files standardized in the ITRON Specifications can be divided into more

than one file depending on the implementation. Care should be taken so that no error

arises even when the same header file is included multiple of times.

[Supplemental Information]

To prevent errors due to multiple inclusion of the same header file, define a specific

header identifier, for instance “KERNEL_H_,” as a preprocessor macro (“#define
_KERNEL_H_”) at the top of the header file, and then enclose the whole header file

with “#ifndef _KERNEL_H_” and “#endif.”

2.1.3 Object ID Numbers and Object Numbers

The resources on which a kernel or a software component operates are generally

referred to as objects. Objects of each type are uniquely identified by numbers. In the

case where only a kernel or a software component API uses the object identifier and the

application is allowed to freely assign numbers, the identifier numbers are called ID
26

µITRON4.0 Specification Ver. 4.00.00

numbers. On the other hand, identifier numbers are called object numbers if they are

assigned according to an internal or external condition of the kernel or a software com-

ponent.

Objects identified by ID numbers are registered to the kernel or a software component

when the application creates them. Objects identified with object numbers, however,

cannot be created since their characteristics are determined by the internal and external

condition of the kernel or a software component. Registering these objects to the ker-

nel or a software component is referred to as defining objects.

In general, positive serial numbers starting from 1 are used as object IDs. When the

objects are classified for protection mechanism reasons into user objects and system

objects, increasing positive serial numbers starting from 1 are used for user object ID

numbers, and decreasing negative serial numbers starting from (–5) are used for system

object ID numbers. In this case, only user objects are subject to automatic ID assign-

ment. ID numbers from (–4) to 0 are reserved for special purposes.

[Standard Profile]

The Standard Profile does not require object classification nor does it require support

for negative ID numbers. At the very least, positive ID numbers from 1 to 255 must be

supported.

[Supplemental Information]

Interrupt handlers and rendezvous are examples of objects identified by object num-

bers. Object numbers are assigned to interrupt handlers according to hardware require-

ments while for rendezvous, object numbers are assigned based on the kernel’s internal

requirements. For these two types of objects, the application cannot freely assign num-

bers.

2.1.4 Priorities

Priorities are parameters determined by applications to control the processing order of

tasks, messages, and so on. Positive serial numbers starting from 1 are used to repre-

sent priorities, where a smaller number indicates a higher precedence.

[Standard Profile]

In the Standard Profile, the kernel must support at least 16 different levels of task prior-

ity (from 1 through 16). The number of message priority levels must be equal to or

greater than the number of task priority levels.

[Differences from the µITRON3.0 Specification]

The µITRON3.0 Specification allowed negative numbers to be used for system priori-

ties; however, since negative values were seldom used, system priorities are limited to

positive numbers in the µITRON4.0 Specification. Negative priorities are allowed but

they are implementation-specific. µITRON3.0 requires at least 8 priority levels (1–8).
27

µITRON4.0 Specification Ver. 4.00.00

While the µITRON4.0 Specification does not specify the minimum number of priority

levels, the Standard Profile requires it to support at least 16 priority levels (1–16).

2.1.5 Function Codes

Function codes are numbers assigned to identify service calls. Invoking a service call

from a software interrupt, for instance, makes use of a function code. However func-

tion codes are not necessary in invoking a service call from a subroutine.

In the ITRON Specifications, each service call of a kernel or a software component is

assigned a unique negative number as a function code. However, (–4) to 0 are reserved

for special purposes. Positive function codes represent extended service calls.

2.1.6 Return Values of Service Calls and Error Codes

In principle, the return value of a service call is a signed integer. If an error occurs dur-

ing the execution of a service call, an error code with a negative value is returned. A

service call returns

E_OK

 (= 0) or a positive integer if it completes its execution nor-

mally. Each service call specifies the meaning of its return value during normal com-

pletion. However service calls returning boolean values (

BOOL

 type) and service

calls that never return are exceptions. A service call that never returns should be

declared as a function without a return value (i.e. a void type function) in a C language

API.

An error code is divided into two parts, the main error code represented by the lower 8

bits, and the sub error code represented by the remaining bits. Both the main error

code and the sub error code are negative, where the value of the sub error code is the

result of arithmetically shifting the error code to the right by 8 bits. The resulting com-

bined error code is also negative. The names, meanings, and values of the main error

codes, defined under the ITRON General Definitions section, are common among the

kernel and software components. Main error codes are classified into error classes,

according to the situations in which they occur and also according to the need for error

detection.

In the functional descriptions of service calls in the ITRON Specifications, only the

main error codes returned by service calls are described, while sub error codes are

implementation-defined. Sub error codes are also specified in some software compo-

nent specifications. Descriptions, such as “an

E_

XXXXX error is returned” or “an

E_XXXXX error occurs,” included within the functional descriptions of service calls

indicate that the service call returns an error code with a main error code of

E_XXXXX.

In principle, unless the main error code is classified as a warning class error, side

effects due to a service call that returns an error code do not arise. In other words, the

invocation of a service call does not change the system state. However, service calls
28

µITRON4.0 Specification Ver. 4.00.00

with unavoidable side effects are exceptions to the above principle. Side effects due to

a service call must be explicitly specified in the service call’s functional description.

The ITRON Specifications allows an implementation to omit detection of some errors

in order to reduce kernel overhead. In principle, the main error code’s class determines

if the error detection can be omitted. Each error class explicitly mentions if the detec-

tion of its errors can be omitted. Exceptions to this principle are explicitly described in

the service call’s functional description. In the case where an error that should have

been detected but was not because the error detection was omitted, the resulting system

behavior is undefined.

The following main error codes occur in many, or almost all, of the service calls, thus

they are not described in every service call.

E_SYS

System error

E_NOSPT Unsupported function

E_RSFN Reserved function code

E_CTX Context error

E_MACV Memory access violation

E_OACV Object access violation

E_NOMEM Insufficient memory

However, if these errors occur as a result unique to a service call, they are listed in the

service call’s description.

The error code returned by a service call that detects multiple errors is implementa-

tion-dependent.

[Supplemental Information]

The return value of

E_OK (= 0) represents normal completion and is not an error code.

However, for convince reasons, there are cases where it is described as an error code

returned from a service call.

It is insufficient to simply examine the lower 8 bits of a return value for a negative num-

ber to determine whether the service call returned an error or not. This is because the

lower 8 bits can be negative even when the service call completes normally and returns

a positive value.

[Differences from the µITRON3.0 Specification]

In the µITRON4.0 Specification, an error code now consists of two parts, the main

error code and the sub error code. Main error codes are shared between the kernel and

software components. Sub error codes are intended to report the detailed cause of

errors, and to be used mainly for debugging purposes. For example, when the main

error code is

E_PAR (parameter error), the sub error code can be used to indicate

which parameter has an incorrect value. E_OK is not regarded as an error code.

Omitting error detection is explicitly permitted depending on the error class. Error

codes which are not listed in each service call have been revised.
29

µITRON4.0 Specification Ver. 4.00.00

The µITRON3.0 Specification assumed the case where the return value of a service call

is positive even though there were no service calls with a positive returned value. In

the µITRON4.0 Specification, however, kernel service calls with positive return values

exist. Also service calls that return boolean values have been introduced.

2.1.7 Object Attributes and Extended Information

Objects identified with ID numbers have object attributes while objects identified with

object numbers, on the other hand, may or may not have object attributes. Object

attributes that determine the operational mode and initial state of an object are defined

when an object is registered. An object with an attribute value TA_XXXXX is called

“an object with the TA_XXXXX attribute.” There is no interface available to read the

object attributes after the object is registered.

The values and meanings of available object attributes are defined in the functional

descriptions of the service calls or static APIs that register the objects. TA_NULL
(= 0) is used when there is no need to specify the object attribute.

A processing unit object may have extended information. The extended information is

specified at registration and is passed as a parameter when the object starts to execute.

Extended information does not have any effects on the operation of the kernel or a soft-

ware component. There is no interface available to read the extended information from

a specific object.

[Supplemental Information]

Examples of processing unit objects with extended information are tasks, interrupt ser-

vice routines, and time event handlers such as cyclic handlers.

[Differences from the µITRON3.0 Specification]

In the µITRON3.0 Specification, objects identified with ID numbers must have

extended information, whereas in the µITRON4.0 Specification extended information

is only provided when necessary. Extended information is now passed as a parameter

when the object starts to execute and it cannot be read by object state reference service

calls.

2.1.8 Timeout and Non-Blocking

Timeout or non-blocking features, when necessary, can be made available to service

calls that might enter the WAITING state.

When a service call’s process is not completed within a specified time, the timeout fea-

ture cancels any further processing and returns from the service call immediately. In

this case, the service call returns an

E_TMOUT

 error. Since there are no side effects

due to service calls returning an error, the system state, upon returning from the

timed-out service call remains unchanged. However, some service calls due to their
30

µITRON4.0 Specification Ver. 4.00.00

natures might prevent the system from proper restoration after the timeout cancellation.

These exceptional cases should be explicitly specified in the service call’s functional

description.

When the timeout duration of a service call is set to 0, the service call does not enter

the WAITING state even though it should. Setting the timeout duration of a service

call to 0 is called polling. Service calls that execute polling never enter the WAITING

state. The polling feature differs from the non-blocking feature described below in that

polling cancels processing of the service call while non-blocking continues processing

the service call.

In the non-blocking feature, a service call that enters the WAITING state returns imme-

diately with an

E_WBLK

 error but the processing still continues. The application pro-

gram is notified by some means when the process completes or when it is canceled.

Since the service call continues operating even after returning from its call, packets and

data areas used for parameters and return parameters should not be used for other pur-

poses until the process completes.

Processing of a service call is referred to as “pending” when it is in the WAITING state

within the service call or when it continues operation due to a non-blocking service

call.

The functional descriptions of the service calls in the ITRON Specifications describes

the behavior when the service calls have no timeout, that is the behavior when the ser-

vice calls wait forever. The description “entering the WAITING state” or “moved to

the WAITING state” in the functional descriptions of the service calls do not imply any

specific waiting duration. When a service call is invoked with a timeout duration, the

service call returns with

E_TMOUT

 as the main error code when the duration expires.

In the case of polling, the service call does not enter the WAITING state and returns

immediately with E_TMOUT as the main error code. With the non-blocking feature,

the service call does not enter the WAITING state and returns E_WBLK as the main

error code.

When specifying the timeout duration, TMO type, a positive value specifies the length

of the timeout duration, TMO_POL (= 0) specifies polling, and TMO_FEVR (= –1)

specifies the timeout duration should be forever.

TMO_NBLK

 (= –2) can also be

specified to indicate the non-blocking feature, depending on the service call. When the

timeout duration is specified, it must be guaranteed that the timeout action occurs after

at least the timeout duration has elapsed from the time the service call is invoked.

[Supplemental Information]

Kernel service calls do not have the non-blocking feature. Since a service call that exe-

cutes polling never enters the WAITING state, the precedence of the invoking task

remains unchanged.

In typical implementations, if the timeout duration is set to 1, the timeout action will

occur at the second time tick after the service call is invoked. Since the timeout dura-
31

µITRON4.0 Specification Ver. 4.00.00

tion cannot be set to 0 (because 0 is assigned to TMO_POL), the system never times

out on the first time tick after the service call is invoked.

2.1.9 Relative Time and System Time

Relative time of RELTIM type is used when specifying the time for an event to occur

with respect to a certain time such as the time when a service call is invoked. When

relative time is used, it must be guaranteed that the event occurs after at least the speci-

fied duration time elapsed.

Relative time can also be used to specify time-related actions other than event times,

such as time intervals between events, where the meaning of relative time is define for

each case.

System time of

SYSTIM

 type is used when specifying absolute time. A function to set

the current system time is available in the kernel specification. Changing the system

time using this kernel function will not change the time in the real world (called real

time) when an event specified using relative time is to occur. However, the system time

when an event occurs will change.

[Supplemental Information]

In typical implementations, if the relative time is set to 1, the event will take place on

the second time tick after the service call is invoked. If the relative time is set to 0, the

event will take place on the first time tick after the service call is invoked.

2.1.10 System Configuration File

A system configuration file defines the configuration of the kernel and software compo-

nents as well as the initial state of objects. It can contain static APIs for the kernel and

software components, ITRON general static APIs (called general static APIs hereafter)

and also C language preprocessor directives. A tool that interprets static APIs in a sys-

tem configuration file and configures the kernel or a software component is called a

configurator.

The steps in processing a system configuration file is as follows (see Figure 2-1). The

system configuration file is first passed to the C language preprocessor. Then, it is

passed on to each of the software component configurators and then, finally to the ker-

nel configurator.

The software component configurator interprets the static APIs pertaining to itself and

other general static APIs included in the file passed from the C preprocessor or from

other previous configurators. The configurator then generates a source file, written in C

language, that is necessary for configuring and initializing the software component

itself. The software component configurator then adds static APIs for the next configu-

rators when needed and removes the static APIs pertaining to itself to and from the

passed files, before passing it on to the next configurator.
32

µITRON4.0 Specification Ver. 4.00.00

The kernel configurator interprets all static APIs included in the passed file and then

generates a C language source file required for configuring and initializing the kernel.

If it detects statements that cannot be interpreted either as a static API for the kernel or

a general static API, the kernel configurator reports an error.

Kernel and software component configurators ignore any lines starting with a “

#

” sign.

Software component configurators pass any lines starting with a “

#

” unchanged on to

the next configurator.

[Supplemental Information]

Static APIs added by a software component configurator for the next configurators

should not use preprocessor macros that are defined in the system configuration file and

other files included through the preprocessor directive “#include.” The reason is that

these preprocessor macros are already expanded after going through the C language

preprocessor.

[Rationale]

The steps in processing a system configuration file is standardized to effectively deal

with cases where the kernel and software components are developed independently.

Figure 2-1. Processing Procedure for a System Configuration File

C laguage preprocessor

system.cfg

System configuration file

Software component
configurator

Kernel configurator

www_id.h

Automatic assignment
header file

www_cfg.c

Configuration file for
the software component

kernel_cfg.c

Configuration file
for the kernel

kernel_id.h

Automatic assignment
header file

A
A
A

33

µITRON4.0 Specification Ver. 4.00.00

Passing the system configuration file first to the C language preprocessor makes the fol-

lowing things possible.

 • It allows a system configuration file to be divided into multiple files through the use

of the “

#include

” directive. For example, when embedding a software component

into a system, the necessary static APIs can be written in independent files. Those

files can then be included in the system configuration file.

 • It allows macros to be used instead of raw integers to define object ID numbers and

object numbers.

 • It allows conditional inclusion of configuration statements through the use of direc-

tives such as “

#ifdef

.” In turn, it makes the changing of kernel and software compo-

nent configurations and the initial states of objects possible.

Configurators ignore lines starting with “

#

” because these lines usually pertain to

information generated by the preprocessor regarding the source file. However, config-

urators can still use these lines for informational purposes, such as generating error

messages.

2.1.11 Syntax and Parameters of Static APIs

The syntax of the static APIs is based on the syntax of the C language function call.

The parameters of a static API is based on the parameters of the corresponding service

call in the C language API. However, if a parameter is a pointer to a packet, the ele-

ments of the packet should be separated with a comma “

,

” and enclosed with braces “{”
and “}.”

The static API parameters are classified into the following four classes, according to

available expressions:

(a) Integer Parameters with Automatic Assignment

A parameters of this class can be an integer (including a negative integer), an iden-

tifier, or a preprocessor macro (other than the restrictions mentioned below) which

expands to either an integer or an identifier. Example parameters of this class are

object ID numbers that are automatically assigned.

When a parameter of this class takes on the form of an identifier, the configurator

responsible for processing the static API containing that identifier assigns an integer

to that identifier. This assignment is called automatic ID number assignment by a

configurator. The configurator generates a header file containing the macro defini-

tions assigning integers to each identifier. Once the configurator assigns an integer

to an identifier, the identifier can be used in the same manner as a preprocessor

macro which expands to the assigned integer within static APIs that are processed

by the configurator itself and by the following configurators.

(b) Integer Parameters without Automatic Assignment

A parameter of this class can only be an integer (including a negative integer) or a
34

µITRON4.0 Specification Ver. 4.00.00

preprocessor macro (other than the restrictions mentioned below) which expands to

an integer. Example parameters of this class are object ID numbers that cannot be

automatically assigned and object numbers.

(c) Preprocessor Constant Expression Parameters

A parameter of this class is a constant expression that can be interpreted by a pre-

processor. Only constants, macros, and operators that can be interpreted by a pre-

processor can be used. Example parameters of this class are object attributes.

(d) General Constant Expression Parameters

A parameter of this class is any constant expression allowable in the C language.

Most parameters belong to this class.

Each static API defines the class of its parameters. Integer parameters with or without

automatic assignment and preprocessor constant expression parameters should be

explicitly mentioned in the functional descriptions of static APIs. Other parameters not

mentioned are assumed to be general constant expression parameters.

An ITRON general static API exists to include a file. Thus, there are two methods of

including a file in a system configuration file: using the preprocessor directive

“

#include

” or using the general static API. The differences between these two meth-

ods are described below:

 • If preprocessor macros are used to define integer parameters with or without auto-

matic assignment (hereafter, simply called integer parameters), only preprocessor

macros defined in the system configuration file or other files included through a pre-

processor directive can be used.

 • Files included using preprocessor directives can contain only static APIs and prepro-

cessor directives. In contrast, files included using general static APIs can only con-

tain preprocessor directives and declarations and definitions in the C language.

NULL

, which is often used to indicate that the kernel must allocate a memory area, is

recognized as a symbol for static API parameters. A constant expression with a value 0

is not always interpreted as NULL. The behavior of such constant expression is imple-

mentation-dependent. Therefore, a

NULL

 must not be macro-expanded by a prepro-

cessor before a configurator processes it. In other words,

NULL

 should not be defined

as a preprocessor macro in a system configuration file or other files included through

preprocessor directives.

The configurator reports errors when it detects syntax errors or incorrect number of

parameters in static APIs. The method of handling errors found during the processing

of static APIs is implementation-defined.

[Standard Profile]

In most static APIs, implementation-specific parameters can be added. In order for

such implementations to conform to the Standard Profile, the configurator must cor-

rectly process the static APIs even when no implementation-specific parameters appear
35

µITRON4.0 Specification Ver. 4.00.00

in the system configuration file. One of the methods to realize this is by supplying

default values for implementation-specific parameters.

[Supplemental Information]

Static APIs can be written in free format inside a system configuration file. There may

be white spaces, new lines and comments between words. The semicolon “;” is

required at the end of each static API statement.

Since C language enumerated constants and “sizeof” cannot be interpreted by a pre-

processor, they cannot be used in preprocessor constant expression parameters.

Removing a

NULL

 preprocessor macro definition from a file that is included into the

system configuration file through a preprocessor directive is sometimes difficult

because of the file’s structure. This problem can be solved in the following way.

Define a specific identifier (for example, “CONFIGURATOR”) as a preprocessor

macro (“#define CONFIGURATOR”) at the top of the system configuration file.

Then, enclose the NULL preprocessor macro definition within “#ifndef CONFIGU-
RATOR

” and “

#endif” directives.

[Rationale]

In order to simplify configurator implementations, static API parameters are classified

into four classes. A configurator must be able to determine object ID numbers and

object numbers properly so, excluding those that can be automatically assigned, object

ID numbers and object numbers are limited to those expanded to integers after prepro-

cessing (integer value parameter). Some parameters, such as object attributes, may

have an effect on a registered object’s structure depending on its value. To be able to

use conditional directives based on these parameters in a C source file generated by a

configurator, only expressions whose values can be determined by the preprocessor are

allowed (preprocessor constant expression parameters). For other parameters, any con-

stant expression in the C language is allowed (general constant expression parameters).

If a configurator is implemented in this manner, it would not be able to determine all

parameter values. Thus, its error checking capability is limited. Determining all the

parameter values are possible by calling a compiler from the configurator and convert-

ing the constant expressions to values. However, since this approach requires modify-

ing the configurator for each compiler, it has not been adopted as the standard method.

2.2 API Naming Convention

2.2.1 Software Component Identifiers

Software component identifiers are used to distinguish one set of standardized software

component APIs from another. The software component identifier is made up of two to

four characters. If a software component contains more than one functional unit, each
36

µITRON4.0 Specification Ver. 4.00.00

individual unit may have a software component identifier. Software component identi-

fiers are defined in the software component specification.

Software components that define their own APIs are not subject to this convention.

However, to avoid naming conflicts with standardized software components, making

the software component identifiers 5 or more characters long, or prefixing the identifier

with “

v

” is recommended.

Hereafter, software component identifiers in lowercase are described as www, and

those in uppercase as WWW.

2.2.2 Service Calls

The standard form of a kernel service call name takes the form of xxx_yyy, where xxx

represents an operational procedure and yyy represents the target object of the opera-

tion. A service call derived from an

xxx

_yyy service call should be prefixed with the

letter z resulting in a name of zxxx_yyy. If a service call is derived from a previously

derived service call zxxx_yyy, the name becomes zzxxx_yyy.

Names of service calls for software components take the form of www_xxx_yyy or

www_zxxx_yyy.

For naming implementation-specific service calls, the convention is to prefix “v”

before xxx or zxxx. This creates standard names of the form vxxx_yyy, vzxxx_yyy,

www_vxxx_yyy, or www_vzxxx_yyy. However, in the kernel specification, when

a service call begins with an “i”, which indicates that the service call can be invoked

from interrupt handlers, the service call’s name takes the form ivxxx_yyy instead of

vixxx_yyy.

[Supplemental Information]

Table 2-1 shows the abbreviations of the form xxx, yyy, and z used in the µITRON4.0

Specification and their English origin.

2.2.3 Callbacks

Since callback names are used as parameters, the naming convention for callbacks is

the same as that of parameters.

2.2.4 Static APIs

Generally, static APIs are named by capitalizing all the letters of the corresponding ser-
vice call names. The names of static APIs that have no corresponding service call fol-
low the naming convention of service calls, with the names still capitalized.

The names and meanings of ITRON general static APIs that are used both by the kernel

and software components are specified in the ITRON General Definitions section.
37

µITRON4.0 Specification Ver. 4.00.00

Table 2-1. Abbreviations used in the µITRON4.0 Specification and English origin

xxx English origin yyy English origin
acp accept alm alarm handler
act* activate cfg configuration
att attach cpu CPU
cal call ctx context
can cancel cyc cyclic handler
chg change dpn dispatch pending
clr clear dsp dispatch
cre create dtq data queue
def define exc exception
del delete flg eventflag
dis disable inh interrupt handler
dly delay ini initialization
ena enable int interrupt
exd exit and delete isr interrupt service routine
ext exit mbf message buffer
fwd forward mbx mail box
get get mpf fixed-sized memory pool
loc* lock mpl memory pool
pol poll mtx mutex
ras raise ovr overrun handler
rcv receive por port
ref refer pri priority
rel release rdq ready queue
rot rotate rdv rendezvous
rpl reply sem semaphore
rsm resume sys system
set set svc service call
sig signal tex task exception
slp sleep tid task ID
snd send tim time
sns sense tsk task
sta start tst task status
stp stop ver version
sus suspend

ter terminate z English origin
unl unlock a auto ID assign
wai* wait f force
wup* wake up i interrupt

p poll
t timeout

 * Abbreviations with asterisks (*) are also used as a yyy abbreviation.
38

µITRON4.0 Specification Ver. 4.00.00

2.2.5 Parameter and Return Parameter

The names of parameters and return parameters are all lowercase and are four to seven

characters in length. The following conventions apply to parameter and return parame-

ter names:

–

id

– ID (object ID number, ID type)

–no – number (object number)

–atr – attribute (object attribute, ATR type)

–stat – state (object state, STAT type)

–mode – mode (service call operational mode, MODE type)

–pri – priority (priority, PRI type)

–sz – size (in bytes, SIZE type or UINT type)

–cnt – count (in units, UINT type)

–ptn – pattern

–tim – time

–cd – code

i– initial value of –

max– maximum –

min– minimum –

left– quantity left of –

p_– pointer to the memory area of a return parameter (or a param-

eter)

pk_

– pointer to a packet

pk_cyyy pointer to a packet passed to cre_yyy

pk_dyyy pointer to a packet passed to def_yyy

pk_ryyy pointer to a packet passed to ref_yyy

pk_www_cyyy pointer to a packet passed to www_cre_yyy

pk_www_dyyy pointer to a packet passed to www_def_yyy

pk_www_ryyy pointer to a packet passed to www_ref_yyy

ppk_– pointer to the memory area of a pointer to a packet

If the names of the parameters and return parameters are identical, they are generally

the same data type.

2.2.6 Data Types

The names of data types are all uppercase and are two to ten characters in length. The

following conventions apply to data type names:

–P Pointer data type

T_– Packet (data structure) type

T_CYYY Packet type passed to cre_yyy

T_RYYY Packet type passed to ref_yyy
39

µITRON4.0 Specification Ver. 4.00.00

T_WWW_– Data structure used by software components

T_WWW_CYYY Packet type passed to www_cre_yyy

T_WWW_RYYY Packet type passed to www_ref_yyy

The names and meanings of ITRON general data types that are used by both the kernel

and software components are specified in the ITRON General Definitions section.

2.2.7 Constants

The names of constants are all uppercase and follow the convention described below.

(A) ITRON General Constants

The names of ITRON general constants that are used both by the kernel and software

components have no particular naming convention. The names and their respective

meanings and values are specified in the ITRON General Definitions section.

(B) Error Codes

Main error codes defined in the ITRON Specifications take the form E_XXXXX,

where XXXXX is approximately two to five characters in length. The form

EV_XXXXX is used for implementation-specific main error codes.

Sub error codes have no particular naming convention.

Error classes take the form EC_XXXXX, where XXXXX is approximately two to five

characters.

(C) Other Constants

Other constants take the form TUU_XXXXX or TUU_WWW_XXXXX, where UU is

approximately one to three characters in length, and XXXXX is approximately two to

seven characters in length. Constants used for the same type of parameters or return

parameters should have the same identifier UU. TUU can be omitted for software com-
ponent constants that are frequently used in many service calls and callbacks. In this

case, such constants take the form

WWW_XXXXX

.

In addition to the above conventions, the following conventions apply to other constant

names:

TA_– Object attribute

TFN_– Service call function code

TFN_XXX_YYY Function code of xxx_yyy

TFN_WWW_XXX_YYY Function code of www_xxx_yyy

TSZ_– size of –

TBIT_– bit size of –

TMAX_– maximum –

TMIN_– minimum –
40

µITRON4.0 Specification Ver. 4.00.00

2.2.8 Macros

The names of macros are all uppercase and conform to the naming convention for con-

stants. The names and meanings of ITRON general macros that are used by both the

kernel and software components are specified in the ITRON General Definitions sec-

tion.

2.2.9 Header Files

The header file containing the definitions of data types, constants and macros, and

other definitions specified in ITRON General Definitions section is named “itron.h.”

The header file containing all the service call declarations, data types, constants, and

macro definitions specified in the kernel specification are named “kernel.h.” The

automatic assignment header file generated by the kernel configurator is named

“kernel_id.h.”

Header files containing service call declarations and other definitions specified in a

software component specification are generally named beginning with the software

component identifier. The automatic assignment header file generated by the software

component configurator is named in a similar manner. The names of these header files

are specified in the software component specification.

2.2.10 Kernel and Software Component Internal Identifiers

Internal identifiers are symbols registered to an object file’s symbol table for external

access. They are used within the kernel or a software component usually to refer to

routines and memory areas. Kernel and software component internal identifiers should

adhere to the naming convention defined below to avoid conflicts with other identifiers

of an application program.

The names of kernel internal identifiers should begin with _kernel_ or _KERNEL_ at

the C language level. The names of software component internal identifiers should

begin with _www_ or _WWW_ at the C language level.

2.3 ITRON General Definitions

2.3.1 ITRON General Data Types

The ITRON general data types are as follows:

B Signed 8-bit integer

H Signed 16-bit integer

W Signed 32-bit integer

D Signed 64-bit integer
41

µITRON4.0 Specification Ver. 4.00.00

UB Unsigned 8-bit integer

UH Unsigned 16-bit integer

UW Unsigned 32-bit integer

UD Unsigned 64-bit integer

VB 8-bit value with unknown data type

VH 16-bit value with unknown data type

VW 32-bit value with unknown data type

VD 64-bit value with unknown data type

VP Pointer to an unknown data type

FP Processing unit start address (pointer to a function)

INT Signed integer for the processor

UINT Unsigned integer for the processor

BOOL Boolean value (TRUE or FALSE)

FN Function code (signed integer)

ER Error code (signed integer)

ID Object ID number (signed integer)

ATR Object attribute (unsigned integer)

STAT Object state (unsigned integer)

MODE Service call operational mode (unsigned integer)

PRI Priority (signed integer)

SIZE Memory area size (unsigned integer)

TMO Timeout (signed integer, unit of time is implementa-

tion-defined)

RELTIM

Relative time (unsigned integer, unit of time is implementa-

tion-defined)

SYSTIM

System time (unsigned integer, unit of time is implementa-

tion-defined)

VP_INT

Pointer to an unknown data type, or a signed integer for the

processor

ER_BOOL Error code or a boolean value (signed integer)

ER_ID Error code or an object ID number (signed integers and nega-

tive ID numbers cannot be represented)

ER_UINT

Error code or an unsigned integer (the number of available

bits for an unsigned integer is one bit shorter than UINT)

VB, VH, VW, VD, and VP_INT types are implementation-defined. Explicit type cast

is necessary during access or assignment of values to variables of these data types.

In the case where the number of bits needed to represent the system time exceeds the

number of bits of an integer, SYSTIM can be defined as a data structure where the
42

µITRON4.0 Specification Ver. 4.00.00

structure’s contents are implementation-defined.

[Standard Profile]

In the Standard Profile, 64-bit integer data types (D, UD, and VD) included in the

ITRON general data types need not be supported.

In addition, the Standard Profile defines the minimum number of bits and the unit of

time of the ITRON general data types as follows:

INT 16 or more bits

UINT 16 or more bits

FN 16 or more bits

ER 8 or more bits

ID 16 or more bits

ATR 8 or more bits

STAT 16 or more bits

MODE 8 or more bits

PRI 16 or more bits

SIZE equal to the number of bits in a pointer

TMO 16 or more bits, unit of time is 1 msec

RELTIM 16 or more bits, unit of time is 1 msec

SYSTIM 16 or more bits, unit of time is 1 msec

[Supplemental Information]

SIZE is used to refer to the size of a large memory area, such as the stack size of a task

or an entire variable memory pool size. UINT is used to refer to the size of a smaller

memory area like a message length.

When SYSTIM is defined as a structure, variables of SYSTIM type cannot be manip-

ulated by operators such as “

+

” and “–.” In order to maintain the portability of an

application program even in this case, operations on SYSTIM variables should be done

using C language function calls and an operation module compatible with the defini-

tion of

SYSTIM

 should be made available for each implementation.

[Differences from the µITRON3.0 Specification]

CYCTIME, ALMTIME, and DLYTIME are replaced by RELTIM. SYSTIME has

been renamed to SYSTIM. STAT, MODE, and SIZE have been added. Complex

data types VP_INT, ER_BOOL, ER_ID, and ER_UINT have been added while

BOOL_ID has been removed. The size of a memory area is now handled using

unsigned integers.
43

µITRON4.0 Specification Ver. 4.00.00

2.3.2 ITRON General Constants

(1) General Constants

The ITRON general constants are as follows:

NULL 0 Invalid pointer

TRUE 1 True

FALSE 0 False

E_OK 0 Normal completion

[Differences from the µITRON3.0 Specification]

The invalid pointer has been changed from NADR (= –1) to NULL (= 0) for compati-
bility with the C language.

(2) Main Error Codes

There are ten classes of main error codes as defined below:

(A) Internal Error Class (EC_SYS, from –5 to –8)

This class represents internal errors occurring inside the kernel or a software compo-
nent. Omission of error detection of this class is implementation-defined.

E_SYS

–5 System error

This error code indicates an internal error of unknown cause occurred inside the

kernel or a software component.

(B) Unsupported Error Class (EC_NOSPT, from –9 to –16)

This class represents errors due to functions that are either not specified in the ITRON

Specifications or are not supported by the implementation. Omission of error detection

of this class is implementation-defined.

E_NOSPT –9 Unsupported function

This error code indicates that the function is specified in the ITRON Specifica-

tions but is not supported by the implementation. This error is returned if a part

of or all of the service call functionality is not supported. Errors falling under

E_RSFN

 and E_RSATR are not covered by this error code.

E_RSFN –10 Reserved function code

This error code indicates that a specified function code is not supported either in

the ITRON Specifications or by the implementation. This error occurs when a

service call is invoked from a software interrupt.

E_RSATR –11 Reserved attribute

This error code indicates that an attribute value is not supported either in the
44

µITRON4.0 Specification Ver. 4.00.00

ITRON Specifications or by the implementation.

(C) Parameter Error Class (EC_PAR, from –17 to –24)

This class represents errors due to parameters assigned with incorrect values. These

errors can usually be detected statically. Omission of error detection of this class is

implementation-defined.

E_PAR –17 Parameter error

This error code indicates that a parameter has an incorrect value that is usually

statically detected. Errors falling under E_ID are not covered by this error

code.

E_ID –18 Invalid ID number

This error code indicates that an object ID number is invalid. This error only

occurs for objects identified by an ID numbers.

(D) Invoking Context Error Class (EC_CTX, from –25 to –32)

This class represents errors due to invocation of service calls from incorrect contexts.

Omission of error detection of this class is implementation-defined.

E_CTX –25 Context error

This error code indicates that the context in which the service call is invoked is

incorrect. Errors falling under E_MACV, E_OACV or E_ILUSE are not cov-

ered by this error code.

E_MACV

–26 Memory access violation

This error code indicates that the specified memory area cannot be accessed

from the context where the service call is invoked. This error is also returned if

the specified memory area does not exist.

E_OACV –27 Object access violation

This error code indicates that the specified object cannot be accessed from the

context where the service call is invoked. When the objects are classified into

user objects and system objects, this error is returned if a system object is

accessed from a context where access to system objects is prohibited.

E_ILUSE –28 Illegal service call use

This error code indicates that the use of the service call is incorrect. Occurrence

of this error depends on the context from which the service call is invoked or on

the state of the target object.

(E) Insufficient Resource Error Class (EC_NOMEM, from –33 to –40)

This class represents errors due to insufficient resources needed to execute the service

call. Detection of errors of this class cannot be omitted.
45

µITRON4.0 Specification Ver. 4.00.00

E_NOMEM –33 Insufficient memory

This error code indicates that the service call failed to dynamically allocate

enough memory for a memory area.

E_NOID –34 No ID number available

This error code indicates that there is no ID number available for the target

object. This error is returned by the service call creating an object with an auto-

matically assigned ID number.

(F) Object State Error Class (

EC_OBJ

, from –41 to –48)

This class represents errors due to the service call failing to execute because of the state

of the target object. Since the occurrence of these errors depends on the state of the tar-
get object, they do not necessarily occur every time the same service call is invoked.

Thus, dynamically checking for these errors is necessary. Error detection of this class

cannot be omitted.

E_OBJ

–41 Object state error

This error code indicates that the service call cannot be executed due to the state

of the target object. Errors falling under E_NOEXS and E_QOVR are not

covered by this error code.

E_NOEXS –42 Non-existent object

This error code indicates that the service call is not able to access the target

object because the object does not exist. Since this error is returned only when

the specified object ID number is within a valid range, the object can be created

by specifying the same ID number that caused the error.

E_QOVR –43 Queue overflow

This error code indicates that the maximum queue limit or nesting level has

been exceeded.

(G) Waiting Released Error Class (EC_RLWAI, from –49 to –56)

This class represents errors due to a waiting task being released from the WAITING

state before its release condition is met. Detection of errors of this class cannot be

omitted.

E_RLWAI –49 Forced release from waiting

This error code indicates that the waiting task is forcibly released from waiting

or that the waiting process is cancelled.

E_TMOUT –50 Polling failure or timeout

This error code indicates that the polling service call has failed or that the ser-

vice call made with a timeout has expired.
46

µITRON4.0 Specification Ver. 4.00.00

E_DLT

–51 Waiting object deleted

This error code indicates that the object the task is waiting for has been deleted.

E_CLS

–52 Waiting object state changed

This error code indicates that the service call cannot be executed due to a

change in the state of the object the service call is waiting for. When the state

change happened before the service call is invoked, the invoking task immedi-

ately returns with this error without moving into the WAITING state.

[Supplemental Information]

An example of the

E_CLS error usage is in a service call that receives data through a

communication line. E_CLS can be used to indicate that the connection is abnormally

disconnected while the service call is waiting to receive data. The same error code can

also be used even when the abnormal disconnection occurred before the service call

was invoked.

(H) Warning Class (EC_WARN, from –57 to –64)

This class represents errors indicating that there are warnings associated with the ser-
vice call’s execution. Errors in this class are exceptions to the general rule stating that

there are no side effects on the system state when a service call returns an error. That

is, execution of service calls returning errors of this class can cause side effects on the

system state. Detection of errors of this class cannot be omitted.

E_WBLK

–57 Non-blocking call accepted

This error code indicates that the non-blocking service call is currently being

executed.

E_BOVR –58 Buffer overflow

This error code indicates that a part of the received data was discarded due to

buffer overflow.

(I) Reserved Error Codes (from –5 to –96 except those defined above)

These main error codes are reserved for future versions of the ITRON Specifications.

(J) Implementation-Specific Error Codes (from –97 to –128)

These main error codes are used for implementation-specific errors. The names of

these main error codes must be of the form EV_XXXXX.

[Differences from the µITRON3.0 Specification]

Main error codes E_ILUSE and E_NOID have been added for new functionalities of

the kernel specification, and E_CLS, E_WBLK, and E_BOVR have been added for

software component specifications. Connection function errors of the form

EN_XXXXX, and E_INOSPT, which were exclusive to ITRON/FILE Specification,

have been removed. Some of the main error codes were reclassified and their values
47

µITRON4.0 Specification Ver. 4.00.00

reassigned. Because the main error code is in the lower 8-bits of the error code, the

assigned value is designed so that its value as an 8-bit signed integer remains negative.

The error number (errno) has been removed.

(3) Object Attribute

The ITRON general object attribute is:

TA_NULL 0 Object attribute unspecified

(4) Timeout Specification

The ITRON timeout specifications are as follows:

TMO_POL 0 Polling

TMO_FEVR –1 Waiting forever

TMO_NBLK –2 Non-blocking

2.3.3 ITRON General Macros

(1) Error Code Retrieving Macros

ER mercd = MERCD (ER ercd)

This macro retrieves the main error code from an error code.

ER sercd = SERCD (ER ercd)

This macro retrieves the sub error code from an error code.

2.3.4 ITRON General Static APIs

(1) File Inclusion

INCLUDE (string) ;

This static API includes the file containing preprocessor macro definitions, the C lan-

guage declarations, and the definitions necessary to interpret preprocessor constant

expressions and general constant expression parameters. The

INCLUDE

 static API

must be specified in a system configuration file. The parameter string must be of a

form that can be placed after the preprocessor directive “#include” once the

INCLUDE static API is processed.

[Supplemental Information]

Examples of file inclusion using the static API are as follows:

INCLUDE ("<itron.h>") ;
INCLUDE ("\"memory.h\"") ;
48

µITRON4.0 Specification Ver. 4.00.00

[Rationale]

The reason string parameters are used is to prevent the file name from being expanded

by the preprocessor before the system configuration file is passed to the configurator.
49

µITRON4.0 Specification Ver. 4.00.00
50

µITRON4.0 Specification Ver. 4.00.00

Chapter 3 Concepts and Common
Definitions in µITRON4.0

3.1 Glossary of Basic Terms

(1) Task and Invoking Task

The term “task” refers to a unit of concurrent processing. While program statements

inside a single task are executed sequentially, statements of different tasks are executed

concurrently. Multiple tasks are executed concurrently when seen from an applica-

tion’s point of view. However, the tasks do not actually run in parallel but rather, they

are executed one by one under the control of the kernel, using time-sharing techniques.

The task that invokes a service call is called the “invoking task.”

(2) Dispatching and Dispatcher

The act of switching the currently executing task on a processor with another, non-exe-
cuting task is called “dispatching” (or “task dispatching”). The mechanism in the ker-
nel that performs dispatching is called the “dispatcher” (or the “task dispatcher”).

(3) Scheduling and Scheduler

The process that determines which task is to be executed next is called “scheduling” (or

“task scheduling”). The mechanism in the kernel that executes scheduling is called the

“scheduler” (or the “task scheduler”). In typical implementations, the scheduler is

included in service call routines and/or in the dispatcher.

(4) Context

The environment in which a program executes is generally called the program’s “con-

text.” When two programs have the same context, then at least the processor mode and

stack space should be the same. The term context, however, is from an application’s

point of view and there can be tasks which execute in independent contexts but actually

run in the same processor mode and the same stack space.

(5) Precedence

The criterion used to determine the order of program execution is called “precedence.”

In principle, when a higher precedence program becomes executable, it will begin exe-

cuting in place of the currently executing lower precedence program.
51

µITRON4.0 Specification Ver. 4.00.00

[Supplemental Information]

A “priority” is a parameter given by an application to control the order of task execu-

tion and the order of message delivery, while precedence is used to clarify the order of

program execution in this specification. The precedence between tasks is determined

by the task priorities.

3.2 Task States and Scheduling Rule

3.2.1 Task States

Task states are classified into five broad categories. The blocked state category can be

further broken down into three sub-states. The RUNNING state and the READY state

are both generically referred to as the runnable state.

(a) RUNNING state

When a task is in the RUNNING state, the task is currently executing. When

non-task contexts, such as interrupt handlers, take over execution, the task that was

executing remains in the RUNNING state unless otherwise specified.

(b) READY state

When a task is in the READY state, the task is ready to execute but it cannot,

because a task with higher precedence is already executing. In other words, the

task can execute at any time once its precedence becomes the highest among the

tasks in the runnable state.

(c) Blocked state

When a task is in the blocked state, the task cannot execute because the conditions

necessary for its execution have not yet been met. The task is waiting for specific

conditions to be met before it can continue execution. When a task enters the

blocked state, the task’s execution environment including the program counter and

registers are saved. When the task resumes executing from the blocked state, the

program counter and registers are restored to their previous values. The blocked

state can be further classified into three sub-states:

(c.1) WAITING state

When a task is in the WAITING state, the execution is blocked due to the invocation

of a service call. The service call specifies the conditions that must be met before

the task continues execution.

(c.2) SUSPENDED state

When a task is in the SUSPENDED state, the task has been forcibly made to halt

execution by another task. However, the invoking task can also suspend itself in the

µITRON4.0 Specification.

(c.3) WAITING-SUSPENDED state
52

µITRON4.0 Specification Ver. 4.00.00

When a task is in the WAITING-SUSPENDED state, the task is both waiting for a

condition to be met and suspended. A task in the WAITING state will be moved to

the WAITING-SUSPENDED state if there is a request to move it to the SUS-

PENDED state.

(d) DORMANT state

When a task is in the DORMANT state, the task is either not yet executing or has

already finished. The context information of a task will not be saved while the task

is in the DORMANT state. When a task is activated from the DORMANT state, it

will begin executing from the task’s start address. The contents of the registers

when the task begins executing are not guaranteed unless otherwise specified.

(e) NON-EXISTENT state

This indicates a virtual state where the task in question does not exist in the system,

either because it has not yet been created or because it has already been deleted.

There may be other transitional states, depending on the implementation, that cannot

be classified into any states listed above. (see Section 3.5.6).

If a task which has been moved to the READY state has higher precedence than the

task in the RUNNING state, the lower precedence task will be moved to the READY

state and the higher precedence task will be dispatched and moved to the RUNNING

state. In this case, we say that the task that was in the RUNNING state has been pre-

empted by the task that was moved to the RUNNING state. Even if the functional

description of a service call mentions that “a task is moved to the READY state,” it

may be moved directly to the RUNNING state depending on the task precedence.

Task activation means that a task in the DORMANT state is moved to the READY

state. All states other than the DORMANT state and the NON-EXISTENT state are

generically referred to as active states. Task termination means that a task in the active

state is moved to the DORMANT state.

Releasing a task from waiting means that if the task is in the WAITING state, it will be

moved to the READY state, and if the task is in the WAITING-SUSPENDED state, the

task will be moved to the SUSPENDED state. Resuming a suspended task mean that if

the task is in the SUSPENDED state, it will be moved to the READY state, and if the

task is in the WAITING-SUSPENDED state, it will be moved to the WAITING state.

Figure 3-1 shows the task state transitions for typical implementations. There may be

other state transitions, depending on the implementation, that are not shown in this fig-

ure.

[Supplemental Information]

The WAITING state and the SUSPENDED state are independent of each other. There-

fore a request to move a task to the SUSPENDED state does not affect the release con-

dition of the task. In other words, a waiting task’s release condition does not change

whether or not the task is in the WAITING state or in the WAITING-SUSPENDED
53

µITRON4.0 Specification Ver. 4.00.00
state. Therefore, if a task that is waiting for a resource (such as a semaphore resource

or a memory block) is suspended and moved to the WAITING-SUSPENDED state, the

task will still acquire the resource under the same conditions as it would in the WAIT-

ING state.

[Differences from the µITRON3.0 Specification]

The task state names are now in the adjective form. They have been renamed from

RUN to RUNNING, from WAIT to WAITING, from SUSPEND to SUSPENDED, and

from WAIT-SUSPEND to WAITING-SUSPENDED.

An invoking task can now move itself to the SUSPENDED state. This feature facili-

tates implementing APIs that do not distinguish self-suspension from suspension of

other tasks (such as those for POSIX and Java threads) on µITRON4.0 Specification

kernels

Figure 3-1. Task State Transitions

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

NON-EXISTENT

AAAAA
AAAAA
AAAAA

SUSPENDED

DORMANT

WAITING-
SUSPENDED

WAITING

READY RUNNING

release from
waiting

preempted

dispatch

suspend

release from
waiting

wait

create
delete

exit and delete

exit

forcibly
terminate

forcibly terminate

activate

resume

suspend suspend

resume
54

µITRON4.0 Specification Ver. 4.00.00

[Rationale]

The ITRON Specifications distinguishes the WAITING state from the SUSPENDED

state because a task can exist in both states at the same time. Defining the overlapped

state as the WAITING-SUSPENDED state makes the task state transition clearer and

makes the understanding of service calls easier. Because tasks in the WAITING state

cannot invoke service calls, they will never be in more than one kind of WAITING

state, e.g. sleeping while waiting for a semaphore resource. In the ITRON Specifica-

tions, the SUSPENDED state is the only blocked state that can be caused by other

tasks. Tasks may be suspended multiple times by other tasks. This is handled through

nesting of the suspend requests.

3.2.2 Task Scheduling Rules

In the ITRON Specification, the preemptive, priority-based task scheduling is con-

ducted based on the priorities assigned to tasks. If there are a number of tasks with the

same priority, scheduling is conducted on a “first come, first served” (FCFS) basis.

This task scheduling rule is defined using the precedence between tasks based on task

priorities as described below.

If more than one runnable task exists, the highest precedence task will be in the RUN-

NING state, and the rest in the READY state. Among the tasks with different priori-

ties, the task with the higher priority has higher precedence. Among tasks of the same

priority, the task that entered the runnable (RUNNING or READY) state earlier has

higher precedence. However, the precedence between tasks of the same priority may

change due to the invocation of some service calls.

When a task is given precedence over any other runnable tasks, a dispatch will occur

immediately, and the task in the RUNNING state will be switched with the new task.

However, when the system is in a state where dispatching does not occur, the switch of

the task in the RUNNING state will wait until dispatching is allowed.

[Supplemental Information]

In the ITRON Specifications, as long as the highest precedence task is in the runnable

state, no lower precedence tasks are allowed to execute. No other tasks will execute

unless the highest precedence task cannot be executed for some reason, such as being

placed in the WAITING state. In this respect, the scheduling rule of the ITRON Speci-

fications differs entirely from TSS (Time-Sharing Systems), which attempts to execute

multiple tasks as equally as possible. However, the precedence between tasks with the

same priority may be modified through service calls. Applications can execute in a

round-robin fashion, a common scheduling system for TSS, by using those service

calls.

Figure 3-2 shows that among tasks of the same priority, the task that becomes runnable

first has the highest precedence. Figure 3-2 (a) shows the precedence between tasks
55

µITRON4.0 Specification Ver. 4.00.00
after Task A (priority 1), Task E (priority 3), and Task B, C and D (priority 2), have

been activated in this order. Task A, with the highest precedence, is in the RUNNING

state.

When Task A terminates, Task B, the task with the second highest precedence, moves

to the RUNNING state (Figure 3-2 (b)). If Task A is reactivated, Task B will be pre-

empted and return to the READY state. However, since Task B will be in the runnable

state before Task C and Task D, it will have the highest precedence among the tasks

Figure 3-2. Precedence between Tasks

(a) Precedence in the first state

priority 1

priority 2

priority 3

Task A

Task B

Task E

Task C

precedence

Task D

(b) Precedence after Task B becomes the RUNNING state

priority 2

priority 3

Task B

Task E

Task C Task D

precedence

priority 2

priority 3

Task C

Task E

Task D

precedence

(c) Precedence after Task B becomes the blocked state

priority 2

priority 3

Task C

Task E

Task D Task B

precedence

(d) Precedence after Task B is released from waiting
56

µITRON4.0 Specification Ver. 4.00.00

with the same priority. This means that the priorities between tasks will go back to the

state shown in Figure 3-2 (a).

When Task B changes from the runnable state to the WAITING state, the organization

of the tasks will change from Figure 3-2 (b) to Figure 3-2 (c). If Task B is released

from waiting, the priority of Task B will be the lowest among tasks of the same priority

because Task B becomes runnable after Task C and Task D. This state is illustrated in

Figure 3-2 (d).

To summarize, if a task in the READY state moves to the RUNNING state and then

goes back to the READY state, it will have the highest precedence among tasks of the

same priority. On the other hand, when a task in the RUNNING state moves to the

WAITING state, and then back to the READY state, the task will have the lowest pre-

cedence among the tasks of the same priority.

[Differences from the µITRON3.0 Specification]

The ready queue is a concept related to the implementation, so in the specification

“precedence” is used instead of “ready queue” to describe the scheduling rule.

To reduce implementation dependencies, a task that is moved from the SUSPENDED

state to the READY state, will have the lowest precedence among the tasks of the same

priority.

3.3 Interrupt Process Model

3.3.1 Interrupt Handlers and Interrupt Service Routines

In the µITRON4.0 Specification, interrupt handlers and interrupt service routines are

processing units started by external interrupts (simply called as interrupts below).

Basically, execution of an interrupt handler depend on the processor architecture.

Therefore, the interrupt handler, not the kernel, should be the one to control the Inter-

rupt Request Controller (IRC). The implementation of an interrupt handler is imple-

mentation-defined because it generally depends on the processor interrupt architecture

and the IRC. An interrupt handler cannot be ported as is to a different system.

An interrupt service routine is a routine started by an interrupt handler. It can be imple-

mented independently from the processor architecture and the IRC used. This means

that there is no need for the interrupt service routine to control the IRC since the inter-

rupt handler starting the interrupt service routine already controls the IRC.

The µITRON4.0 Specification defines the APIs to register an interrupt handler pre-

pared by the application, such as

DEF_INH

, and the APIs to register an interrupt ser-

vice routine, such as

ATT_ISR

. An implementation should provide either one set of

APIs or both sets. If the APIs for registering an interrupt handler are provided, the ker-

nel can provide a glue routine for the interrupt handler that includes processes to be
57

µITRON4.0 Specification Ver. 4.00.00
done before and after the interrupt handler executes. Depending on the interrupt han-

dler attribute, the interrupt handler can be started through the provided glue routine. If

only the APIs for registering an interrupt service routine are provided, the kernel must

provide the interrupt handler that starts the interrupt service routine. Although both

APIs are allowed at the same time, the behavior when both APIs are used is implemen-

tation-defined.

Depending on the implementation, the kernel does not control interrupts with higher

priorities than a threshold priority level, including non-maskable interrupts. These

kinds of interrupts are called non-kernel interrupts. The method for defining the

threshold priority level is implementation-defined. No kernel service calls can be

invoked from interrupt handlers started by non-kernel interrupts. In this specification

document, the term “interrupt” and “interrupt handler” do not include non-kernel inter-

rupts and interrupt handlers started by non-kernel interrupts, respectively.

Figure 3-3 shows the interrupt processing model in the µITRON4.0 Specification. This

figure only outlines a conceptual model. The actual method used to realize interrupt

processing depends on the application and implementation.

[Supplemental Information]

The responsibilities of the interrupt handler glue routine include saving and restoring

registers used within the handler, switching stack space, task dispatching, and returning

from the interrupt. The operations actually performed by the glue routine depend on

the implementation. The operations that are included in the glue routine and those that

Figure 3-3. Interrupt Processing Model

Interrupt
handler

Interrupt handler
glue routine

Interrupt service
routine

A

External
interrupt

Control of IRC

return

task dispatch

B

58

µITRON4.0 Specification Ver. 4.00.00

are included in the interrupt handler prepared by the application are implementa-

tion-defined and determined by the interrupt handler attributes.

The responsibilities of the interrupt handler that starts interrupt service routines include

reading the cause of the interrupt from the IRC, branching based on the cause, clearing

the edge trigger, and clearing the in-service flag of the IRC. In addition, the CPU must

be unlocked before starting an interrupt service routine.

In order to reduce the overhead associated with an interrupt service routine, the inter-

rupt handler glue routine and the interrupt handler can be merged. Interrupt service

routines can be directly embedded in-line within the interrupt handler.

[Standard Profile]

The Standard Profile requires support for either the APIs to register an interrupt handler

or the APIs to register an interrupt service routine.

[Rationale]

Interrupt service routines are introduced to improve the portability of an application’s

interrupt processing. Interrupt handlers, which are less portable, remain so that a ker-

nel can be provided that is independent of an IRC.

3.3.2 Ways to Designate an Interrupt

In the µITRON4.0 Specification, there are two ways to designate an interrupt: by using

an interrupt number and by using an interrupt handler number. In addition, an interrupt

service routine is identified by an ID number.

The interrupt handler number, INHNO type, is used to designate the interrupt that is

handled by an interrupt handler registered with the kernel. The designated interrupt

should be able to be determined without referencing the IRC. The interrupt handler

number corresponds to the interrupt vector number of the processor in typical imple-

mentations. When the processor does not have interrupt vectors, there may be only one

available interrupt handler number.

The interrupt number,

INTNO

 type, is used to designate the interrupt that is handled by

an interrupt service routine registered with the kernel. The interrupt number is also

used as a parameter to some service calls, such as dis_int and ena_int, to disable and

enable each interrupt individually. Because starting an interrupt service routine and

individually disabling/enabling interrupts are executed by controlling the IRC, the

interrupt number corresponds to the interrupt request line of the IRC.

An interrupt service routine is bound to a specific interrupt request line from a device.

Since the interrupt request line to the IRC can be connected to more than one device,

more than one interrupt service routine can be registered to a single interrupt number.

If the interrupt designated by the interrupt number occurs, all interrupt service routines

bound to the interrupt number will be called one by one. The order in which the inter-

rupt service routines are called is implementation-dependent. Multiple interrupt ser-
59

µITRON4.0 Specification Ver. 4.00.00

vice routines bound to a single interrupt number are distinguished by interrupt service

routine ID numbers.

[Supplemental Information]

For the case when multiple devices are connected to a single interrupt request line to

the IRC, the devices may supply an interrupt vector number used by the processor to

determine the actual source of the interrupt. In this case, interrupt sources supplying

different vector numbers can have different interrupt numbers.

3.4 Exception Process Model

3.4.1 Exception Processing Framework

The µITRON4.0 Specification defines the CPU exception handling and the task excep-

tion handling functions.

A CPU exception handler is started when the processor detects an exception. A CPU

exception handler can be registered by the application for each kind of CPU exception.

The kernel can provide a glue routine for the CPU exception handler that includes pro-

cesses to be done before and after the CPU exception handler executes. Depending on

the CPU exception handler attribute, the CPU exception handler can be started through

the provided glue routine.

Because the CPU exception handlers are common to the whole system, the context and

the state at the point when the CPU exception occurred can be probed by the CPU

exception handler. When a CPU exception occurs within a task, the CPU exception

handler can let the task’s exception handling routine handle the exception if desired.

The task exception handling functions are used to stop the normal execution of the

specified task and to start the task’s exception handling routine. The task’s exception

handling routine is executed within the same context as the task. When returning from

the task exception handling routine, the execution of the interrupted execution will con-

tinue. The application can register one task exception handling routine for each task.

The task exception handling functions will be explained in Section 4.3.

[Standard Profile]

The CPU exception handling routine and the task exception handler must be supported

in the Standard Profile.

3.4.2 Operations within a CPU Exception Handler

The implementation method of a CPU exception handler is implementation-defined,

because it generally depends on the processor exception handling architecture and the

kernel implementation. A CPU exception handler cannot be ported to a different sys-
60

µITRON4.0 Specification Ver. 4.00.00

tem without changes.

The service calls that can be invoked in a CPU exception handler are implementa-

tion-defined. However, a CPU exception handler must be able to perform the opera-

t i ons de sc r i bed be low. The me thod t o pe r fo rm the se ope ra t i ons i s

implementation-defined.

A CPU exception handler must be able to:

(a) Read the context and system state when the CPU exception occurred. The kernel

must provide a method to reference the system state information when the CPU

exception occurred that would normally be obtained through

sns_

yyy service

calls invoked just prior to the CPU exception.

(b) Read the task ID of the task in which the CPU exception occurred, if the exception

occurred while a task was executing.

(c) Request task exception handling. This operation is equivalent to invoking ras_tex
within the CPU exception handler.

If the exception occurs while the CPU is locked, it is not necessary to support (b) and

(c).

3.5 Context and System State

3.5.1 Processing Units and Their Contexts

In the µITRON4.0 Specification, the kernel controls the execution of the following pro-

cessing units:

(a) Interrupt handlers

(a.1) Interrupt service routines

(b) Time event handlers

(c) CPU exception handlers

(d) Extended service call routines

(e) Tasks

(e.1) Task exception handling routines

Interrupt handlers and interrupt service routines execute in their own independent con-

texts. For the remainder of this section, the descriptions about interrupt handlers apply

to interrupt service routines as well, unless a specific description about interrupt service

routines is provided.

Time event handlers are started by a time trigger. There are three kinds of time event

handlers: cyclic handlers, alarm handlers, and overrun handlers. Time event handlers

execute in their own independent contexts. Cyclic handlers are explained in Section

4.7.2, alarm handlers are explained in Section 4.7.3, and overrun handlers are

explained in Section 4.7.4.
61

µITRON4.0 Specification Ver. 4.00.00

A CPU exception handler executes in an independent context determined by the CPU

exception and by the context in which the CPU exception occurred.

Extended service call routines are registered by the application and are started by

invoking extended service calls. An extended service call routine executes in an inde-

pendent context determined by the extended service call and by the context from which

the extended service call is invoked. Extended service call routines are explained in

Section 4.10.

Tasks execute in their own independent contexts. A task exception handling routine

executes in the associated task’s context. In the remainder of this section, the descrip-

tions about tasks apply to task exception handling routines as well, unless a specific

description about task exception handling routines is provided.

Kernel processes are not classified into the processing units mentioned above. The ker-

nel processes include service call execution, the dispatcher, glue routines for interrupt

handlers (or interrupt service routines), and glue routines for CPU exception handlers.

The context in which the kernel processes execute is not specified because it does not

affect the behavior of the application.

[Differences from the µITRON3.0 Specification]

The term “time event handler” is now used instead of “timer handler.” The term

“extended service call routine” is now used instead of “extended SVC handler.”

3.5.2 Task Contexts and Non-Task Contexts

Contexts that can be regarded as a part of a task are generically called task contexts,

while other contexts are generically called non-task contexts.

Contexts in which tasks execute are classified as task contexts. Contexts in which

interrupt handlers and time event handlers execute are classified as non-task contexts.

Contexts for CPU exception handlers and for extended service call routines depend on

the contexts where they occur or where they are invoked. These contexts are defined

below.

When CPU exceptions occur in task contexts, the CPU exception handlers can execute

either in task contexts or in non-task contexts. In this case, the context in which a CPU

exception handler executes is implementation-defined. When CPU exceptions occur in

non-task contexts, the CPU exception handlers execute in non-task contexts.

When extended service calls are invoked from task contexts, the extended service rou-

tines execute in task contexts. When extended service calls are invoked from non-task

contexts, the extended service routines execute in non-task contexts.

In the µITRON4.0 Specification, service calls that can be invoked in task contexts and

service calls that can be invoked in non-task contexts are distinguished from each other.

The invocation of service calls in non-task contexts is described in Section 3.6.

The service calls that can move the invoking task to the blocked state and the service
62

µITRON4.0 Specification Ver. 4.00.00

calls where the invoking task are implicitly specified may not be invoked from non-task

contexts. If such service calls are invoked, an

E_CTX

 error is returned. Using the

parameter

TSK_SELF

 (= 0), which designates the invoking task as a parameter of the

service call, is also prohibited from non-task contexts. If

TSK_SELF

 is used from

non-task contexts, an

E_ID

 error is returned.

[Supplemental Information]

As mentioned in Section 3.5.3, dispatching does not occur during a CPU exception

handler execution, because the precedence of the CPU exception handler is higher than

the precedence of the dispatcher. Therefore, in implementations where the CPU excep-

tion handler executes within task contexts, the behavior of service calls that may move

the task to the blocked state is undefined in this specification. If an error should be

reported under these conditions, an

E_CTX

 error is returned.

[Differences from the µITRON3.0 Specification]

The terms “task contexts” and “non-task contexts” are now used instead of “task por-

tions” and “task-independent portions.” The term “transitional state” has been

removed because the context in which the kernel is executed is not specified. In the

µITRON4.0 Specification, the concept of quasi-task portions is undefined and is

included in task contexts, because the processor mode is not specified.

3.5.3 Execution Precedence and Service Call Atomicity

In the µITRON4.0 Specification, the precedence for executing each processing unit and

the dispatcher is specified as follows:

(1) Interrupt handlers, time event handlers, CPU exception handlers

(2) Dispatcher (one of the kernel processes)

(3) Tasks

The precedence of interrupt handlers is higher than the precedence of the dispatcher.

The precedence between interrupt handlers and interrupt service routines is implemen-

tation-defined, depending on interrupt priorities.

The precedence of time event handlers is implementation-defined. However, time

event handlers cannot have higher precedence than interrupt handlers invoking

isig_tim

, and it must be higher than the precedence of the dispatcher.

The precedence of CPU exception handlers is higher than the precedence of the pro-

cessing unit where the CPU exception occurs and higher than the precedence of the

dispatcher. The precedence of CPU exception handlers relative to the precedence of

interrupt handlers and time event handlers is implementation-defined.

The precedence of extended service call routines is higher than the precedence of the

processing unit that invokes the extended service calls and is lower than the precedence

of any processing unit that has a higher precedence than the invoking processing unit.
63

µITRON4.0 Specification Ver. 4.00.00

The precedence of tasks is lower than the precedence of the dispatcher. The relative

precedence of tasks is defined by the task scheduling rule.

Basically, kernel service calls are executed atomically and the state of ongoing service

call processes is invisible. However, the implementation may choose to modify this

behavior to improve system response. In this case, service call operation must still

appear to be executed atomically as far as the application can determine using service

calls. This behavior is called the service call atomicity guarantee. Service call atomic-

ity may be difficult to guarantee while maintaining a high level of response with imple-

mentation-specific functions not covered in this specification. If this is so, then

loosening the principle of service call atomicity is permitted.

When kernel service calls are executed atomically, their precedence is highest. When

the atomicity is loosened as described above, the precedence of service call processes

is implementation-dependent as long as their precedence is higher than the processing

unit invoking the service calls.

Other kernel processes than service call processes such as the dispatcher, glue routines

for interrupt and exception handler are treated similarly.

[Standard Profile]

The Standard Profile requires service calls that are part of the Standard Profile must be

guaranteed to operate atomically.

[Supplemental Information]

Since the precedence of the dispatcher is lower than the precedence of interrupt han-

dlers, dispatching does not occur until all activated interrupt handlers are processed.

This was called the “delayed dispatching” rule. The same applies to time event han-

dlers and CPU exception handlers.

3.5.4 CPU Locked State

The CPU state of the system is in either the locked or unlocked state. In the CPU

locked state, interrupt handlers (except for those started by a non-kernel interrupt) and

time event handlers are not started and dispatching does not occur. The CPU locked

state can be considered as the state in which the precedence of the executing processing

unit is highest. There might be a transitional state that is neither the CPU locked state

nor the CPU unlocked state, depending on the implementation.

The transition to the CPU locked state is called “locking the CPU,” while the transition

to the CPU unlocked state is called “unlocking the CPU.”

In the CPU locked state, the following service calls can be invoked:

loc_cpu / iloc_cpu lock the CPU

unl_cpu / iunl_cpu unlock the CPU

sns_ctx reference contexts
64

µITRON4.0 Specification Ver. 4.00.00

sns_loc reference CPU state

sns_dsp reference dispatching state

sns_dpn reference dispatch pending state

sns_tex reference task exception handling state

where loc_cpu/iloc_cpu means that loc_cpu may be called from task contexts and

iloc_cpu from non-task contexts (the same rule applies to unl_cpu/iunl_cpu). The

behavior of other service calls invoked from a CPU locked state is undefined. When an

error should be reported, an E_CTX error will be returned.

The CPU state is implementation-dependent after an interrupt handler starts (either in

the CPU locked state, in the CPU unlocked state, or in a transitional state). However, it

is implementation-defined how to enter the CPU unlocked state in interrupt handlers.

It is also implementation-defined how to return correctly from interrupt handlers after

the system has entered the CPU unlocked state. The behavior is undefined when inter-

rupt handlers do not return according to the method specified by the implementation.

The system is in the CPU unlocked state after interrupt service routines and time event

handlers start. When returning from these routines/handlers, the system must be in the

CPU unlocked state. The behavior is undefined when returning from these routines/

handlers in the CPU locked state.

The start of and the return from CPU exception handlers do not change the CPU state.

In other words, after CPU exception handlers start, the system is in the CPU locked

(unlocked) state when the CPU exception occurs in the CPU locked (unlocked) state.

When the CPU state is changed in CPU exception handlers, it should be returned to the

previous state before returning from the CPU exception handlers. The behavior is

undefined when returning from CPU exception handlers without returning to the previ-

ous state.

The start of and the return from extended service call routines do not change the CPU

state. In other words, after extended service call routines start, the system is in the

CPU locked (unlocked) state when the extended service calls are invoked in the CPU

locked (unlocked) state. After returning from the extended call routines, the CPU state

remains the same as set by the routines.

After tasks start, the system is in the CPU unlocked state. When tasks exit, the system

must be in the CPU unlocked state. The behavior is undefined when tasks exit while in

the CPU locked state.

The start of and the return from task exception handling routines do not change the

CPU state. However, it is not specified whether task exception handling routines are

started in the CPU locked state. After returning from the task exception handling rou-

tines, the CPU state remains the same as set by the routines.

[Supplemental Information]

Interrupts are usually, but not always, allowed in the CPU unlocked state.
65

µITRON4.0 Specification Ver. 4.00.00

[Differences from the µITRON3.0 Specification]

The meaning of the CPU state has changed. In the µITRON3.0 Specification, the CPU

locked state was considered the state where interrupts and task dispatching were dis-

abled. However, in the µITRON4.0 Specification, the CPU locked state is treated con-

ceptually as a state independent of interrupts and task dispatching. In the CPU locked

state only a few service calls can be invoked.

3.5.5 Dispatching Disabled State

The dispatching state of the system is either disabled or enabled. Dispatching does not

occur in the dispatching disabled state. The dispatching disabled state can be consid-

ered as the state in which the precedence of the executing processing unit is higher than

that of the dispatcher. There might be a transitional state that is neither the dispatching

disabled state nor the dispatching enabled state, depending on the implementation.

The transition to the dispatching disabled state is called “disabling dispatching,” while

the transition to dispatching enabled state is called “enabling dispatching.”

In the dispatching disabled state, service calls that can be invoked from task contexts

have the following restrictions. While in the dispatching disabled state, the behavior

caused by invoking service calls that can move the invoking task to the blocked state is

undefined, unless otherwise specified. When an error should be reported, an

E_CTX

error will be returned. On the other hand, service calls that can be invoked from

non-task contexts do not have restrictions even in the dispatching disabled state.

The start of and the return from interrupt handlers, interrupt service routines, time

event handlers, and CPU exception handlers do not change the dispatching state. In

other words, after these handlers/routines start, the system is in the dispatching dis-

abled (enabled) state when these handlers/routines start in the dispatching disabled

(enabled) state. When the dispatching state is changed in these handlers/routines, it

should be returned to the previous state before returning from these handlers/routines.

The behavior is undefined when returning from these handlers/routines without return-

ing to the previous state.

The start of and the return from the extended service call routines do not change the

dispatching state. In other words, after the extended service call routines start, the sys-

tem is in the dispatching disabled (enabled) state when the extended service call rou-

tines are invoked from the dispatching disabled (enabled) state. After returning from

the extended call routines, the dispatching state remains the same as set by the routines.

After tasks start, the system is in the dispatching enabled state. When tasks exit, the

system must be in the dispatching enabled state. The behavior is undefined when tasks

exit in the dispatching disabled state.

The start of and the return from the task exception handling routines do not change the

dispatching state. In other words, after task exception handling routines start, the sys-
66

µITRON4.0 Specification Ver. 4.00.00

tem is in the dispatching disabled (enabled) state when the task exception handling rou-

tines start from the dispatching disabled (enabled) state. After returning from the task

exception handling routines, the dispatching state remains the same as set by the rou-

tines.

The dispatching state is treated independent of the CPU state.

[Supplemental Information]

The restriction that behavior is undefined when service calls that can move the invok-

ing task to the blocked state are invoked while in the dispatching disabled state applies

to a service call as a whole, unless otherwise specified. For example, service calls for

polling, e.g.

pol_sem

, can be invoked in the dispatching disabled state because there

is no possibility that the invoking task will enter the WAITING state. On the other

hand, the behavior of service calls that may cause a task to enter the WAITING state,

e.g. twai_sem, is undefined even if they are invoked with TMO_POL (polling) in the

timeout parameter.

There are no service calls that change the dispatching state in non-task contexts in the

µITRON4.0 Specification. Therefore, it is impossible to change the dispatching state

within interrupt handlers and time event handlers unless an implementation-specific

extension is provided. The same rule applies to CPU exception handlers when they are

executed in non-task contexts.

The dispatching state is treated independently from the CPU state. Therefore, for

example, if the system is in the dispatching disabled state and the CPU state changes

from the locked state to the unlocked state, the system remains in the dispatching dis-

abled state. The dispatching state can still be sensed while the system is in the CPU

locked state.

[Differences from the µITRON3.0 Specification]

The meaning of the dispatching disabled state has been changed. The dispatching state

is defined as a state treated independently of the CPU state.

3.5.6 Task State during Dispatch Pending State

Dispatching does not occur during execution of processing units with higher prece-

dence than that of the dispatcher, and while in the CPU locked state or in the dispatch-

ing disabled state. These three conditions are collectively called the dispatch pending

state. The task states in the dispatch pending state are defined below.

In the dispatch pending state, even in the situation where the task in the RUNNING

state should be preempted, the task that should run will not be dispatched. The dis-

patch for the task that should run will be pending until the system is in a state where

dispatching can occur. While dispatching is pending, the task that has been running

remains in the RUNNING state, while the task waiting for dispatching remains in the

READY state.
67

µITRON4.0 Specification Ver. 4.00.00
Task states during the dispatch pending state can be affected by implementation-spe-

cific extensions. More precisely, extensions may allow non-task contexts to invoke ser-

vice calls that move the task in the RUNNING state to the SUSPENDED state or the

DORMANT state. In addition, extensions may allow the service calls to move the

invoking task to the SUSPENDED state while in the dispatching disabled state. Task

states for these cases are described below.

When the task in the RUNNING state is to be moved to the SUSPENDED state or the

DORMANT state, the transition is pending until the system state allows dispatching to

occur. While the state transition is pending, the task that has been in the RUNNING

state is considered to be in a transitional state. The treatment of a task in this transi-

tional state is implementation-dependent. The task that should be in the RUNNING

state remains in the READY state until the dispatch occurs.

[Supplemental Information]

Figure 3-4 explains the task state during the dispatch pending state. Suppose that Task

B is activated from the interrupt handler that was invoked by the interrupt that occurred

during execution of Task A when the priority of Task B is higher than the priority of

Task A. Since the precedence of the interrupt handler is higher than that of the dis-

patcher, the system is in the dispatch pending state while the interrupt handler is exe-

cuting. Therefore dispatching does not occur. When the interrupt handler execution

terminates, the dispatcher is executed and the task that should run switches from Task

A to Task B.

Even after Task B is activated, Task A is in the RUNNING state and Task B is in the

READY state until the dispatcher is started. After the dispatcher executes, Task B is in

Figure 3-4. Dispatch Pending State and Task States

Dispatcher
Task A

(low priority)
Task B

(high priority)
Interrupt
handler

iact_tsk(Task B)

R
U

N
N

IN
G

R
E

A
D

Y

R
E

A
D

Y
R

U
N

N
IN

G

68

µITRON4.0 Specification Ver. 4.00.00

the RUNNING state, and Task A is in the READY state. Because the dispatcher should

be executed atomically, task states during the dispatcher execution are not specified in

this specification.

3.6 Service Call Invocation from Non-Task Contexts

3.6.1 Service Calls that can be Invoked from Non-Task Contexts

Service calls that can be invoked from non-task contexts have the letter “

i” added to the

beginning of their names so they can be distinguished from service calls that can be

invoked from task context. Service calls that can be invoked from both non-task con-

texts and task contexts have a different naming convention as described below. In other

words, the service calls are classified into the following three categories:

(a) Service calls for non-task contexts

Service calls whose names begin with “

i

” are called service calls for non-task contexts.

They may be invoked from non-task contexts.

[Supplemental Information]

The following service calls belong to this category:

iact_tsk activate task

iwup_tsk wakeup task

irel_wai release task from waiting

iras_tex raise task exception handling

isig_sem release semaphore resource

iset_flg set eventflag

ipsnd_dtq send to data queue (polling)

ifsnd_dtq forced send to data queue

isig_tim supply time tick

irot_rdq rotate task precedence

iget_tid reference task ID in the RUNNING state

iloc_cpu lock the CPU

iunl_cpu unlock the CPU

The behavior of the service calls for non-task contexts invoked from task contexts is

undefined. When an error should be reported, an E_CTX error is returned.

(b) Service calls that can be invoked from any contexts

Service calls whose names are of the form sns_yyy can be invoked from any con-

texts. They may be invoked from both task contexts and non-task contexts.

[Supplemental Information]

The following service calls belong to this category:

sns_ctx reference contexts
69

µITRON4.0 Specification Ver. 4.00.00

sns_loc reference CPU state

sns_dsp reference dispatching state

sns_dpn reference dispatch pending state

sns_tex reference task exception handling state

(c) Service calls for task contexts

The remaining service calls are called service calls for task contexts. They may be

invoked from task contexts.

The behavior of the service calls for task contexts invoked from non-task contexts is

undefined. When an error should be reported, an E_CTX error is returned.

[Differences from the µITRON3.0 Specification]

Service calls for non-task contexts are specified to have names that begin with “i.”
Invoking service calls for task contexts from non-task contexts is permitted as an

implementation-specific extension.

3.6.2 Delayed Execution of Service Calls

The execution of service calls invoked from non-task contexts may be delayed at most

until the processing units that have higher precedence than the dispatcher have termi-

nated. This makes it possible to guarantee the atomicity of service calls without dis-

abling interrupts for too long. This is called delayed execution of service calls.

However, the following service calls are not allowed to have their execution delayed:

iget_tid

reference task ID in the RUNNING state

iloc_cpu lock the CPU

iunl_cpu unlock the CPU

sns_ctx reference contexts

sns_loc reference CPU state

sns_dsp reference dispatching state

sns_dpn reference dispatch pending state

sns_tex reference task exception handling state

When the service calls have their execution delayed, the processing order of the service

calls must correspond to the order in which the service calls were invoked, excluding

those service calls that are not allowed to have their execution delayed.

There are situations in which the service calls that are invoked from non-task contexts

and that have their execution delayed cannot return some error codes. This is because

the detection of some errors depends on the target object’s state and the object’s state

cannot be referenced when the service call’s execution is delayed. In these situations,

E_OK can be returned instead of the error code that would be returned for non-delayed

execution. The error codes that may not be returned when execution is delayed are

defined for each service call.

The kernel must store service calls that have their execution delayed. If there is insuffi-
70

µITRON4.0 Specification Ver. 4.00.00

cient memory to store a service call for delayed execution, the service call must return

an

E_NOMEM

 error.

[Supplemental Information]

The point at which the service call executes after having its execution delayed is up to

the implementation as long as the behavior of the delayed execution is the same as

described by the specification. A specific case is where service calls invoked during the

dispatch pending state may be delayed until the system enters a state where dispatching

can occur. Note that there are situations in which

iras_tex

 must be executed even in

the dispatching disabled state. See the supplemental information of iras_tex for more

details.

When service calls that have their execution delayed return E_OK, it must be guaran-

teed that those service calls will be executed later.

[Differences from the µITRON3.0 Specification]

The specification regarding delayed execution of service calls has been clarified.

3.6.3 Adding Service Calls that can be Invoked from Non-Task
Contexts

When a service call for task contexts with the name xxx_yyy (or zxxx_yyy) is

defined in the µITRON4.0 Specification, an implementation may add a service call for

non-task contexts which has the same functionality. In this case the name of the new

service call should be ixxx_yyy (or izxxx_yyy) regardless of the rule that the names

of implementation-specific service calls should begin with the letter “v.” The new ser-

vice call is still considered to have the same functionality even when some error codes

are not returned due to delayed execution of the service call invoked from non-task

contexts.

When a service call for task contexts is made invokable from non-task contexts using

its original name as an implementation-specific extension, the implementation must

also provide a service call where the letter “

i

” is added at the beginning of its name that

is invokable from non-task contexts. On the other hand, when a service call for

non-task contexts is made invokable from task contexts using its original name as an

implementation-specific extension, the implementation must also provide a service call

where the letter “i” is removed from the beginning of its name that is invokable from

task contexts.

These rules apply to implementation-specific service calls as well. When there is an

implementation-specific service call with the name vxxx_yyy and a service call with

the same functionality can be invoked from non-task contexts, it must be invokable

with the name ivxxx_yyy.
71

µITRON4.0 Specification Ver. 4.00.00

3.7 System Initialization Procedure

System initialize procedure is modeled as follows (Figure 3-5):

The hardware-dependent initialization process is executed after the system is reset.

The application prepares the hardware-dependent initialization process, which is out-

side of the kernel’s control. The kernel initialization process is called at the end of the

hardware-dependent initialization process. The method used to call the kernel initial-

ization process is implementation-defined.

Once the kernel initialization process is called, the kernel itself, such as the kernel’s

internal data structures, is initialized. Then, the static APIs, such as object registra-

tions, are processed. The static APIs, except for

ATT_INI

, are processed in the order

described in the system configuration file. The method used to handle errors detected

during the static API processes is implementation-defined.

The processing of the static APIs includes the execution of initialization routines. The

initialization routines are prepared by the application and registered with the kernel by

using ATT_INI. The initialization routines are executed with all interrupts disabled

except for non-kernel interrupts. Disabling non-kernel interrupts is implementa-

tion-defined. Allowing initialization routines to invoke service calls and which service

calls are invokable are implementation-defined. The initialization routines are exe-

cuted in the order described with

ATT_INI

 in the system configuration file. The rela-

Figure 3-5. System Initialization Procedure

Hardware-dependent
initialization process

Kernel initialization
process

Start of kernel operation
– System time initialization
– Enabling interrupts
– Beginning task executions

Reset

Static API process
– Object registrations
– Execution of initialization routines
72

µITRON4.0 Specification Ver. 4.00.00

tive order between the execution of initialization routines and the processing of other

static APIs is implementation-defined.

After the processing of the static APIs, the kernel operation is started. Specifically,

tasks begin execution. At this point interrupts are enabled for the first time and the sys-

tem time is initialized to 0.

The above description provides only a conceptual model. The real system initialization

procedure may be optimized in an implementation-dependent manner as long as the

behavior conforms to this conceptual model.

3.8 Object Registration and Release

An object identified by an ID number is registered to the kernel by a static API

(CRE_YYY) or by a service call (cre_yyy) that creates the object. An object is

released from the kernel by a service call (del_yyy) that deletes the object. After an

object is deleted, a new object can be created with the same ID number. When an

object is created, the ID number and the necessary information for creating the object

are specified. When an object is deleted, the ID number for the object is specified.

The maximum number of objects and the range of the ID numbers that can be regis-

tered are implementation-defined. The maximum number of objects that can be cre-

ated by using service calls and the procedure to designate the range of ID numbers are

also implementation-defined.

When a static API (

ATT_

YYY) attaches an object to the kernel, it creates and registers

the object without specifying an ID number. Objects registered in this way cannot be

referred by ID numbers because the created objects do not have ID numbers, which

means that objects created in this way cannot be deleted.

The service call that creates an object and assigns an ID number automatically

(acre_yyy) assigns the object ID number by selecting an ID number that is not

already associated with an object. The ID number assigned to the created object is

returned to the application as the return value. The ID number assigned in this way is

limited to a positive number because a negative return value from a service call indi-

cates an error occurred. If there is no ID number that can be assigned, the service call

returns an

E_NOID

 error.

The method an implementation employs to designate the range of ID numbers avail-

able for automatic assignment is implementation-defined. The method used to auto-

matically assign available ID numbers to objects is implementation-dependent.

A synchronization and communication object can be deleted even if there is a task

waiting for a condition to be met associated with the object. In this case, the task that is

waiting for the condition associated with the deleted object is released from waiting.

The service call that placed the task in the WAITING state returns an

E_DLT

 error to
73

µITRON4.0 Specification Ver. 4.00.00

the released task. If more than one task is waiting, the tasks are released from waiting

in the order in which they reside in the wait queue for the synchronization and commu-

nication object. Therefore, among tasks with the same priority that are moved into the

READY state, tasks closer to the head of the wait queue have higher precedence. In

case the synchronization and communication object has multiple wait queues, the order

that tasks are released from different wait queues is implementation-dependent.

[Standard Profile]

The Standard Profile requires an implementation to support at least ID numbers from 1

to 255. Also, the Standard Profile requires that at least 255 objects can be registered for

objects that are referenced by ID numbers and are part of the Standard Profile.

3.9 Description Format for Processing Unit

The µITRON4.0 Specification specifies the format for writing each of the following

processing units in the C language: interrupt service routines, time event handlers

(cyclic handlers, alarm handlers, overrun handlers), extended service call routines,

tasks, and task exception handling routines. If TA_HLNG (processing unit started

through a high-level language interface) is specified as the object attribute when the

processing unit is registered with the kernel, the processing unit is started assuming it is

written in the specified format.

On the other hand, the µITRON4.0 Specification does not specify the format for writ-

ing processing units in assembly language. If

TA_ASM

 (processing unit started

through an assembly language interface) is specified as the object attribute when the

processing unit is registered with the kernel, the processing unit is started assuming it is

written in the format specified by the implementation.

The format for writing interrupt handlers and CPU exception handlers and the object

attributes used to register them with the kernel are implementation-defined and are not

specified in the µITRON4.0 Specification.

[Supplemental Information]

The µITRON4.0 Specification does not specify the service call that returns from inter-

rupt handlers (

ret_int

 in the previous specifications). This is not because the process

executed by ret_int in the previous specifications is no longer needed, but rather

because how to write interrupt handlers is now implementation-defined. There may be

a case where a service call corresponding to ret_int may be provided by an implemen-

tation. This also applies to returning from CPU exception handlers.

The µITRON4.0 Specification does not specify the service call that returns from time

event handlers (

ret_tmr

 in the previous specifications). This is not because the process

executed by ret_tmr in the previous specifications is no longer needed, but rather

because it is now possible to return simply from time event handlers written in the C
74

µITRON4.0 Specification Ver. 4.00.00

language. There may be a case where a service call corresponding to

ret_tmr is pro-

vided by an implementation in order to return from time event handlers written in

assembly language. This also applies to returning from interrupt service routines,

extended service call routines, and task exception handling routines.

[Differences from the µITRON3.0 Specification]

The µITRON4.0 Specification specifies the format for writing each processing unit in

the C language, but does not specify service calls (

ret_yyy) for returning from pro-

cessing units, because they are only needed when the processing units are written in

assembly language.

3.10 Kernel Configuration Constants and Macros

Applications use kernel configuration constants and macros to reference the kernel

configuration in order to improve application program portability. The method used to

define kernel configuration constants and macros is implementation-dependent as long

as they can be referenced from an application program

Kernel configuration constants and macros are not defined when functions related to

them are not supported.

[Supplemental Information]

Kernel configuration constants and macros may be defined as fixed values in kernel

header files or may be generated by a configurator. Alternatively they may be defined

in header files prepared by the application and then used to configure the kernel.

[Differences from the µITRON3.0 Specification]

The µITRON4.0 Specification newly introduces kernel configuration constants and

macros.

3.11 Kernel Common Definitions

3.11.1 Kernel Common Constants

(1) Object Attributes

TA_HLNG 0x00 Start a processing unit through a high-level language

interface

TA_ASM 0x01 Start a processing unit through an assembly language

interface

TA_TFIFO 0x00 Task wait queue is in FIFO order

TA_TPRI 0x01 Task wait queue is in task priority order
75

µITRON4.0 Specification Ver. 4.00.00
TA_MFIFO 0x00 Message queue is in FIFO order

TA_MPRI 0x02 Message queue is in message priority order

[Differences from the µITRON3.0 Specification]

The values of TA_HLNG and TA_ASM have been exchanged.

(2) Main Error Codes Used in Kernel

The kernel uses the main error codes specified in Section 2.3.2, except for the three

codes, E_CLS, E_WBLK, and E_BOVR.

[Standard Profile]

In the Standard Profile the following main error codes are generated and must be

detected:

E_OBJ Object state error

E_QOVR Queue overflow

E_RLWAI Forced release from waiting

E_TMOUT Polling failure or timeout

Applications that need to be portable across kernels adhering to the Standard Profile

must not depend on detecting errors beyond those listed above.

[Supplemental Information]

In the Standard Profile the following main error codes are not generated or need not be

detected:

(a) Error codes not used by the kernel

E_CLS, E_WBLK, E_BOVR

(b) Error codes not generated by Standard Profile functions

E_OACV, E_NOID, E_NOEXS, E_DLT

(c) Error codes that are implementation-dependent

E_SYS, E_RSFN, E_NOMEM

(d) Error codes whose detection can be omitted

E_NOSPT, E_RSATR, E_PAR, E_ID, E_CTX, E_MACV, E_ILUSE

(3) Service Call Function Codes

Function codes ranging from (–0xe0) to (–0x05) are assigned to kernel service calls.

However, a function code is not assigned to cal_svc. The assignment of function

codes is specified in each function in Chapter 4.

Function codes within the range from (–0xe0) to (–0x05) that are not assigned in the

specification are reserved for the kernel function extensions in the future. Function

codes ranging from (–0x100) to (–0xe1) can be used for implementation-specific ser-

vice calls. Function codes ranging from (–0x200) to (–0x101) are reserved for kernel
76

µITRON4.0 Specification Ver. 4.00.00

function extensions in the future. However, they can be used for implementation-spe-

cific service calls if needed.

[Differences from the µITRON3.0 Specification]

The values of function codes have been reassigned.

[Rationale]

Function codes of service calls included in the Standard Profile range from (–0x80) to

(–0x05) in order to fit within 8 bits.

(4) Other Kernel Common Constants

TSK_SELF 0 Specifying invoking task

TSK_NONE 0 No applicable task

[Differences from the µITRON3.0 Specification]

TSK_NONE has been added. In the µITRON3.0 Specification, FALSE (= 0) was

used when there was no applicable task available.

3.11.2 Kernel Common Configuration Constants

(1) Priority Range

TMIN_TPRI

Minimum task priority (= 1)
TMAX_TPRI

Maximum task priority

TMIN_MPRI

Minimum message priority (= 1)
TMAX_MPRI

Maximum message priority

[Standard Profile]

These kernel configuration constants must be defined in the Standard Profile.

TMAX_TPRI

 must not be less than 16 and

TMAX_MPRI

 must not be less than

TMAX_TPRI

.

[Supplemental Information]

Although

TMIN_TPRI

 and

TMIN_MRI

 are fixed as 1 in this specification, implemen-

tation-specific extensions may configure the kernel to use a value other than 1.

(2) Version Information

TKERNEL_MAKER Kernel maker code

TKERNEL_PRID Identification number of the kernel

TKERNEL_SPVER Version number of the ITRON Specification

TKERNEL_PRVER Version number of the kernel

[Standard Profile]

These kernel configuration constants must be defined in the Standard Profile.
77

µITRON4.0 Specification Ver. 4.00.00

[Supplemental Information]

See the functional description of ref_ver for the constant values that represent version

information.
78

µITRON4.0 Specification Ver. 4.00.00

Chapter 4 µITRON4.0 Functions

4.1 Task Management Functions

Task management functions provide direct control of task states and reference to the

task states. Task management functions include the ability to create and delete a task,

to activate and terminate a task, to cancel activation requests, and to reference the state

of a task. A task is an object identified by an ID number. The ID number of a task is

called the task ID. See Section 3.2 for rules governing task scheduling and state transi-
tions.

A task has a base priority and a current priority for controlling the order of task execu-
tion. In this specification, the words “task priority” refer to the task’s current priority.

When the task is activated, the base priority is set to the task’s initial priority as defined

when the task is created. If mutexes are not used, the current priority and the base pri-
ority are always equal. Therefore, the current priority of a task is set to its initial prior-
ity when the task is activated. For more information about how mutexes change the

current priority, see Section 4.5.1.

Activation requests for a task are queued. In other words, if a task has already been

activated and an activation request is made for the task, the new request is recorded.

When the task terminates under this situation, the task will be automatically activated

again. However, activation requests will not be queued when the service call that acti-
vates a task with the specified start code (

sta_tsk

) is used. A task includes an activa-

tion request count to realize the activation request queuing. This count is cleared to 0

when the task is created.

When a task is activated, its extended information (

exinf

) is passed as a parameter.

However, when a task is activated by the service call with a start code (sta_tsk), the

specified start code is passed through the parameter instead of the extended informa-
tion.

When a task terminates, the kernel does not release resources that the task acquired

such as semaphore resources and memory blocks. However, the kernel unlocks

mutexes acquired by the task. The application program is responsible for releasing

resources acquired by the task when the task terminates.

The following actions must be taken when creating, activating, terminating, and delet-
ing a task. When a task is created, the activation request count is cleared, the task’s

exception handling routine is set to undefined (see Section 4.3), and the task’s proces-
sor time limit is set to undefined (see Section 4.7.4). When a task is activated, the

task’s base priority and current priority are initialized, the task’s wakeup request count

is cleared (see Section 4.2), the task’s suspension count is cleared (see Section 4.2), the

task’s pending exception code is cleared (see Section 4.3), and the task’s exception
79

µITRON4.0 Specification Ver. 4.00.00
handling is disabled (see Section 4.3). When a task is terminated, all mutexes locked

by the task are unlocked (see Section 4.5.1) and the processor time limit is set to unde-

fined (see Section 4.7.4). When a task is deleted, the task’s stack space is released if

the stack space was allocated by the kernel when the task was created.

The format to write a task in the C language is shown below:

void task (VP_INT exinf)
{

/* Body of the task */
ext_tsk () ;

}

The behavior of a task returning from its main routine is identical to invoking

ext_tsk

,

i.e. the task terminates.

exd_tsk

 deletes the invoking task in addition to terminating

the task.

The following kernel configuration constant is defined for use with task management

functions:

TMAX_ACTCNT

Maximum activation request count

The following data type packets are defined for creating and referencing tasks:

typedef struct t_ctsk {
ATR tskatr ; /* Task attribute */
VP_INT exinf ; /* Task extended information */
FP task ; /* Task start address */
PRI itskpri ; /* Task initial priority */
SIZE stksz ; /* Task stack size (in bytes) */
VP stk ; /* Base address of task stack space */
/* Other implementation specific fields may be added. */

} T_CTSK ;

typedef struct t_rtsk {
STAT tskstat ; /* Task state */
PRI tskpri ; /* Task current priority */
PRI tskbpri ; /* Task base priority */
STAT tskwait ; /* Reason for waiting */
ID wobjid ; /* Object ID number for which the task is

waiting */
TMO lefttmo ; /* Remaining time until timeout */
UINT actcnt ; /* Activation request count */
UINT wupcnt ; /* Wakeup request count */
UINT suscnt ; /* Suspension count */
/* Other implementation specific fields may be added. */

} T_RTSK ;

typedef struct t_rtst {
STAT tskstat ; /* Task state */
STAT tskwait ; /* Reason for waiting */
/* Other implementation specific fields may be added. */

} T_RTST ;
80

µITRON4.0 Specification Ver. 4.00.00

The following represents the function codes for the task management service calls:

TFN_CRE_TSK

–0x05 Function code of

cre_tsk
TFN_ACRE_TSK

–0xc1 Function code of

acre_tsk
TFN_DEL_TSK

–0x06 Function code of

del_tsk
TFN_ACT_TSK

–0x07 Function code of

act_tsk
TFN_IACT_TSK

–0x71 Function code of

iact_tsk
TFN_CAN_ACT

–0x08 Function code of

can_act
TFN_STA_TSK

–0x09 Function code of

sta_tsk
TFN_EXT_TSK

–0x0a Function code of

ext_tsk
TFN_EXD_TSK

–0x0b Function code of

exd_tsk
TFN_TER_TSK

–0x0c Function code of

ter_tsk
TFN_CHG_PRI

–0x0d Function code of

chg_pri
TFN_GET_PRI

–0x0e Function code of

get_pri
TFN_REF_TSK

–0x0f Function code of

ref_tsk
TFN_REF_TST

–0x10 Function code of

ref_tst

[Standard Profile]

The Standard Profile requires support for task management functions except for

dynamic creation and deletion of a task (cre_tsk, acre_tsk, del_tsk), activation of a

task with the specified start code (sta_tsk), termination and deletion of a task

(exd_tsk), and reference of a task state (ref_tsk, ref_tst).

The Standard Profile requires support for an activation request count of one or more.

Therefore, TMAX_ACTCNT must be at least 1.

[Supplemental Information]

The contexts and states under which tasks execute are summarized as follows:

TMAX_ACTCNT must be 0 if activation request queuing of a task is not supported.

 • Tasks execute in their own independent contexts (see Section 3.5.1). The contexts in

which tasks execute are classified as task contexts (see Section 3.5.2).

 • Tasks execute at lower precedence than the dispatcher (see Section 3.5.3).

 • After tasks start, the system is both in the CPU unlocked state and in the dispatching

enabled state. When tasks exit, the system must be both in the CPU unlocked state

and in the dispatching enabled state (see Sections 3.5.4 and 3.5.5).

TMAX_ACTCNT must be 0 if activation request queuing of a task is not supported.

[Differences from the µITRON3.0 Specification]

Functions that directly operate on tasks and that have no relation with waiting states are

classified as task management functions. Functions that change task precedence

(rot_rdq), reference the ID of the task in the RUNNING state (get_tid), and enable or

disable task dispatching (ena_dsp, dis_dsp) are now classified as system state man-

agement functions. The function releasing a task from a waiting state (

rel_wai

) is now
81

µITRON4.0 Specification Ver. 4.00.00

classified as a task dependent synchronization function.

Service calls for requesting task activation and canceling the activation requests have

been added (act_tsk, can_tsk). The service call for starting a task with the specified

start code (sta_tsk) has not been removed to maintain backward compatibility with

µITRON3.0; however, this service call is not required in the Standard Profile.

The concept of task base priorities is introduced due to the addition of mutexes. If

mutexes are not used, the behavior is the same as in µITRON3.0 because the base pri-

ority is always equal to the current priority.

Returning from a task’s main routine now terminates the task.
82

µITRON4.0 Specification Ver. 4.00.00

CRE_TSK

Create Task (Static API)

[S]

cre_tsk

Create Task

acre_tsk Create Task (ID Number Automatic Assignment)

[Static API]
CRE_TSK (ID tskid, { ATR tskatr, VP_INT exinf, FP task,

PRI itskpri, SIZE stksz, VP stk }) ;

[C Language API]
ER ercd = cre_tsk (ID tskid, T_CTSK *pk_ctsk) ;
ER_ID tskid = acre_tsk (T_CTSK *pk_ctsk) ;

[Parameter]
ID tskid ID number of the task to be created (except

acre_tsk)

T_CTSK * pk_ctsk Pointer to the packet containing the task creation

information (In

CRE_TSK

, the contents must be

directly specified.)

pk_ctsk

 includes (

T_CTSK

 type)

ATR tskatr

Task attribute

VP_INT exinf

Task extend information

FP task

Task start address

PRI itskpri

Task initial priority

SIZE stksz

Task stack size (in bytes)

VP stk

Base address of task stack space

(Other implementation specific information may be added.)

[Return Parameter]

cre_tsk

:

ER ercd E_OK

 for normal completion or error code

acre_tsk

:

ER_ID tskid

ID number (positive value) of the created task or

error code

[Error Code]

E_ID

Invalid ID number (

tskid

 is invalid or unusable; only

cre_tsk

)

E_NOID

No ID number available (there is no task ID assignable; only

acre_tsk

)

E_NOMEM

Insufficient memory (stack space or other memory cannot be

allocated)

E_RSATR

Reserved attribute (

tskatr

 is invalid or unusable)
83

µITRON4.0 Specification Ver. 4.00.00

E_PAR

Parameter error (

pk_ctsk

,

task

,

itskpri

,

stksz

, or

stk

 is

invalid)

E_OBJ

Object state error (task is already registered; only

cre_tsk

)

[Functional Description]

These service calls create a task with an ID number specified by

tskid

 based on the

information contained in the packet pointed to by

pk_ctsk

. The task is moved from

the NON-EXISTENT state to either the DORMANT state or the READY state. In

addition, the actions that must be taken at task creation time are performed.

tskatr

 is

the attribute of the task.

exinf

 is the extended information passed as a parameter to the

task when the task is started.

task

 is the start address of the task.

itskpri

 is the initial

value of the task’s base priority when the task is activated.

stksz

 is the stack size in

bytes of the task.

stk

 is the base address of the task’s stack space.

In

CRE_TSK

,

tskid

 is an integer parameter with automatic assignment.

tskatr

 is a

preprocessor constant expression.

acre_tsk

 assigns a task ID from the pool of unassigned task IDs and returns the

assigned task ID.

tskatr

 can be specified as ((

TA_HLNG

 ||

TA_ASM

) | [

TA_ACT]). If TA_HLNG
(= 0x00) is specified, the task is started through the C language interface. If TA_ASM

(= 0x01) is specified, the task is started through the assembler language interface.

After the creation, the task is moved to the READY state if

TA_ACT

 (= 0x02) is spec-

ified, and is moved to the DORMANT state otherwise.

The memory area defined by the base address

stk

 and the size stksz is used by the

task for its stack space during execution. If stk is NULL (= 0), the kernel allocates a

memory area with size

stksz

 for use as the task’s stack space.

[Standard Profile]

The Standard Profile does not require support for when

TA_ASM

 is specified in

tskatr

. It also does not require support for when other values than

NULL

 are speci-

fied in

stk

.

[Supplemental Information]

Several processing units besides the task, such as service calls invoked by the task and

interrupt handlers started during the task’s execution, may use the task’s stack space

depending on the implementation. The implementation’s documentation, such as the

product manuals, should describe how to calculate the necessary stack size.

The base address of the task stack’s space indicates the lowest address of the memory

area used as the task stack space. Therefore, in general, the initial value of the task’s

stack pointer does not correspond to the base address of the stack.

A task cannot specify its own task ID in tskid. If a task does specify its own task ID,

cre_tsk returns an E_OBJ error because the task is already registered.
84

µITRON4.0 Specification Ver. 4.00.00

[Differences from the µITRON3.0 Specification]

The base address of the task’s stack space, stk, has been added. stk should be set to

NULL if compatibility is required with µITRON3.0.

The order of tskatr and exinf in the task’s creation information packet has been

exchanged. The data type of exinf has been changed from VP to VP_INT. The data

type of stksz has been changed from INT to SIZE.

The ability to move a task directly to the READY state has been added through the use

of the added task attribute TA_ACT. This is useful for the case when a task is statically

created. The task attributes indicating the task uses co-processors have been removed.

When necessary, such attributes can be added as implementation-specific.

acre_tsk has been newly added.
85

µITRON4.0 Specification Ver. 4.00.00
del_tsk Delete Task

[C Language API]
ER ercd = del_tsk (ID tskid) ;

[Parameter]
ID tskid ID number of the task to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (tskid is invalid or unusable)

E_NOEXS Non-existent object (specified task is not registered)

E_OBJ Object state error (specified task is not in the DORMANT

state)

[Functional Description]

This service call deletes the task specified by tskid. The deleted task is moved from

the DORMANT state to the NON-EXISTENT state and the actions that must be taken

at task deletion time are performed.

If the task is not in the DORMANT state, an E_OBJ error is returned. However, if the

task is not registered, an E_NOEXS error is returned.

[Supplemental Information]

A task cannot specify its own task ID in tskid. If a task does specify its own task ID,

del_tsk returns an E_OBJ error because the task is not in the DORMANT state.

exd_tsk can be used by a task to terminate and delete itself.
86

µITRON4.0 Specification Ver. 4.00.00

act_tsk Activate Task [S]

iact_tsk [S]

[C Language API]
ER ercd = act_tsk (ID tskid) ;
ER ercd = iact_tsk (ID tskid) ;

[Parameter]
ID tskid ID number of the task to be activated

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (tskid is invalid or unusable)

E_NOEXS Non-existent object (specified task is not registered)

E_QOVR Queue overflow (overflow of activate request queuing count)

[Functional Description]

These service calls activate the task specified by tskid. The task is moved from the

DORMANT state to the READY state and the actions that must be taken at task activa-
tion time are performed. The extended information of the task is passed to the task as a

parameter.

If the task is not in the DORMANT state, the activation request for the task is queued.

(However, if the task in the NON-EXISTENT state, an

E_NOEXS

 error is returned.)

Specifically, the activation request count is incremented by 1. If the count then exceeds

the maximum possible count, an E_QOVR error is returned.

If the service call is invoked from non-task contexts and has its execution delayed, an

E_QOVR error may not be returned.

If tskid is TSK_SELF (= 0), the invoking task is specified. If TSK_SELF is speci-
fied when this service call is invoked from non-task contexts, an

E_ID

 error is

returned.

[Supplemental Information]

The Standard Profile requires the maximum activation request count to be at least 1.

This implies that a kernel that is compatible with the Standard Profile may not always

return an E_QOVR error even if these service calls are invoked on a task with queued

activation requests.

[Differences from the µITRON3.0 Specification]

These service calls have been newly added.
87

µITRON4.0 Specification Ver. 4.00.00

can_act Cancel Task Activation Requests [S]

[C Language API]
ER_UINT actcnt = can_act (ID tskid) ;

[Parameter]
ID tskid ID number of the task for cancelling activation

requests

[Return Parameter]
ER_UINT actcnt Activation request count (positive value or 0) or

error code

[Error Code]
E_ID Invalid ID number (tskid is invalid or unusable)

E_NOEXS Non-existent object (specified task is not registered)

[Functional Description]

This service call cancels all queued activation requests for the task specified by tskid
and returns the cancelled request count for the task. Specifically, the activation request

count for the task is cleared to 0. The value returned is the count before it was cleared.

If tskid is TSK_SELF (= 0), the invoking task is specified.

[Supplemental Information]

This service call may specify a task in the DORMANT state. In this case, the service

call returns a count of 0 because activation requests are not queued for the task.

This service call can be used to check if a task completes a process within a cycle cor-

rectly when the task is activated cyclically. Specifically,

can_act

 should be invoked

when the task completes the process. A return value of 1 or more from can_act indi-

cates that the next activation is requested before the task completes the process in the

previous cycle. The task can take measures for this case.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.
88

µITRON4.0 Specification Ver. 4.00.00

sta_tsk

Activate Task (with a Start Code)

[C Language API]

ER ercd = sta_tsk (ID tskid, VP_INT stacd) ;

[Parameter]
ID tskid ID number of the task to be activated

VP_INT stacd Start code of the task

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (tskid is invalid or unusable)

E_NOEXS Non-existent object (specified task is not registered)

E_OBJ Object state error (specified task is not in the DORMANT

state)

[Functional Description]

This service call activates the task specified by tskid. The task is moved from the

DORMANT state to the READY state and the actions that must be taken at task activa-

tion time are performed. The start code,

stacd

, is passed to the task as a parameter.

If the task is not in the DORMANT state, the service call does not queue a request for

activation and returns an E_OBJ error. If the task is in the NON-EXISTENT state, it

returns an E_NOEXS error.

[Supplemental Information]

A task cannot specify its own task ID in tskid. If a task does specify its own task ID,

sta_tsk returns an E_OBJ error because the task is not in the DORMANT state.

[Differences from the µITRON3.0 Specification]

The data type for stacd has been changed from INT to VP_INT.
89

µITRON4.0 Specification Ver. 4.00.00

ext_tsk Terminate Invoking Task [S]

[C Language API]
void ext_tsk () ;

[Parameter]
None

[Return Parameter]
This service call does not return.

[Functional Description]

This service call terminates the invoking task. The invoking task is moved from the

RUNNING state to the DORMANT state and the actions that must be taken at task ter-

mination time are performed.

If activation requests are queued, that is, if the activation request count for the invoking

task is 1 or more, the count is decremented by 1 and the task is moved to the READY

state. In this case, the actions that must be taken at task activation time are performed.

The extended information of the task is passed to the task as a parameter.

This service call never returns; therefore, no error code is returned even if an error is

encountered in the service call. The behavior of the service call when an error is

detected is implementation-defined.

[Supplemental Information]

When activation requests are queued for the invoking task, this service call will reacti-

vate the task after it has been terminated. This implies that all mutexes locked by the

task are unlocked and the processing time limit is set to undefined. In addition the base

priority, the current priority, the wakeup request count, the suspension count, the pend-

ing exception code, and the task exception handling state are all reset to their initial val-

ues. The task has the lowest precedence among all tasks with the same priority in the

READY state.

When an error is detected in the service call, the information regarding the error can be

logged.

The behavior of a task returning from its main routine is identical to invoking

ext_tsk

.

[Differences from the µITRON3.0 Specification]

Tasks that invoke ext_tsk may be reactivated due to the addition of the activation

request count.
90

µITRON4.0 Specification Ver. 4.00.00

exd_tsk Terminate and Delete Invoking Task

[C Language API]
void exd_tsk () ;

[Parameter]
None

[Return Parameter]
This service call does not return.

[Functional Description]

This service call terminates and deletes the invoking task. The task is moved from the

RUNNING state to the NON-EXISTENT state and the actions that must be taken at

task termination and deletion time are performed.

This service call never returns; therefore, no error code is returned even if an error is

encountered in the service call. The behavior of the service call when an error is

detected is implementation-defined.

[Supplemental Information]

This service call terminates and deletes the invoking task even if activation requests are

queued for the invoking task. The activation request count has no meaning when the

task is in the NON-EXISTENT state.

When an error is detected in the service call, the information regarding the error can be

logged.
91

µITRON4.0 Specification Ver. 4.00.00

ter_tsk Terminate Task [S]

[C Language API]
ER ercd = ter_tsk (ID tskid) ;

[Parameter]
ID tskid ID number of the task to be terminated

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (tskid is invalid or unusable)

E_NOEXS Non-existent object (specified task is not registered)

E_ILUSE Illegal service call use (specified task is an invoking task)

E_OBJ Object state error (specified task is in the DORMANT state)

[Functional Description]

This service call terminates the task specified by tskid. The task is moved to the

DORMANT state and the actions that must be taken at task termination time are per-

formed.

If activate requests are queued, that is, if the activation request count for the specified

task is 1 or more, the count is decremented by 1 and the task is moved to the READY

state. In this case, the actions that must be taken at task activation time are performed.

The extended information of the task is passed to the task as a parameter.

If the task is in the DORMANT state, an

E_OBJ

 error is returned. A task cannot ter-

minate itself with this service call. If a task specifies its own task ID in tskid, an

E_ILUSE

 error is returned.

[Supplemental Information]

This service call forces the specified task to terminate even if the task is in the blocked

state. When the task is waiting in a wait queue, the task is removed from the queue. In

this case, some other tasks that are in the wait queue may need to be released from

waiting. See the functional descriptions of snd_mbf and get_mpl.

When activation requests are queued for the specified task, this service call will reacti-

vate the task after it has been terminated. This implies that all mutexes locked by the

task are unlocked and the processing time limit is set to undefined. In addition the base

priority, the current priority, the wakeup request count, the suspension count, the pend-

ing exception code, and the task exception handling state are all reset to their initial val-

ues. The task has the lowest precedence among all tasks with the same priority in the

READY state.
92

µITRON4.0 Specification Ver. 4.00.00

[Differences from the µITRON3.0 Specification]

The main error code when the invoking task is specified has been changed from

E_OBJ

 to

E_ILUSE

.

This service call may reactivate the specified task due to the addition of the activation

request count.
93

µITRON4.0 Specification Ver. 4.00.00

chg_pri Change Task Priority [S]

[C Language API]
ER ercd = chg_pri (ID tskid, PRI tskpri) ;

[Parameter]
ID tskid ID number of the task whose priority is to be

changed

PRI tskpri New base priority of the task

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (tskid is invalid or unusable)

E_NOEXS Non-existent object (specified task is not registered)

E_PAR Parameter error (tskpri is invalid)

E_ILUSE Illegal service call use (priority ceiling violation)

E_OBJ Object state error (specified task is in the DORMANT state)

[Functional Description]

This service call changes the base priority of the task specified by tskid to the priority

value specified by tskpri. The current priority can also be changed.

If tskid is TSK_SELF (= 0), the priority of the invoking task is changed. If tskpri is

TPRI_INI

 (= 0), the base priority is changed to the task’s initial priority.

If the invocation of this service call results in equal base and current priorities, which is

always the case if mutexes are not used, the following actions are performed. If the

task is runnable, the task’s precedence is changed to reflect the new priority. The task

will have the lowest precedence among tasks with the same priority. If the task is wait-

ing in a wait queue, the task’s position in the queue is changed to reflect the new prior-

ity. The task will be placed last among tasks with the same priority.

If the task locked mutexes with the

TA_CEILING

 attribute and the new base priority,

tskpri, is higher than one of the ceilings of the mutexes, an E_ILUSE error is

returned.

[Supplemental Information]

When the task is waiting in a wait queue, this service call may change the task’s order

in the wait queue. In this case, some other tasks that are in the wait queue may need to

be released from waiting. See the functional descriptions of snd_mbf and get_mpl.

If the specified task is waiting for a mutex with the TA_INHERIT attribute, transitive

priority inheritance needs to be applied as the result of changing the base priority of the

task.
94

µITRON4.0 Specification Ver. 4.00.00

When mutexes are not used and when this service call is invoked with the invoking task

in tskid and its base priority in tskpri, the task will have the lowest precedence among

all tasks with the same priority. Therefore, this service call can be used to yield the

execution privilege to another task.

[Differences from the µITRON3.0 Specification]

chg_pri now changes the base priority of a task due to the addition of mutexes.

Allowing tskpri to be set to TPRI_INI is now standard.
95

µITRON4.0 Specification Ver. 4.00.00

get_pri Reference Task Priority [S]

[C Language API]
ER ercd = get_pri (ID tskid, PRI *p_tskpri) ;

[Parameter]
ID tskid ID number of the task to reference

[Return Parameter]
ER ercd E_OK for normal completion or error code

PRI tskpri Current priority of specified task

[Error Code]
E_ID Invalid ID number (tskid is invalid or unusable)

E_NOEXS Non-existent object (specified task is not registered)

E_OBJ Object state error (specified task is in the DORMANT state)

[Functional Description]

This service call returns the current priority of the task specified by tskid through

tskpri.

If tskid is TSK_SELF (= 0), the current priority of the invoking task is returned.

[Supplemental Information]

get_pri

 refers to the task’s current priority while

chg_pri

 changes the task’s base pri-

ority.

[Differences from the µITRON3.0 Specification]

This service call has been newly added, because a method is required to obtain an

invoking task’s priority with minimal overhead when the priority of a message to be

sent should be set to the task’s priority.

[Rationale]

The priority is returned through tskpri as opposed to a return value in order for the

service call to be consistent with other similar service calls (get_yyy) and in order to

allow an implementation-specific extension to use negative values for priorities.
96

µITRON4.0 Specification Ver. 4.00.00

ref_tsk Reference Task State

[C Language API]
ER ercd = ref_tsk (ID tskid, T_RTSK *pk_rtsk) ;

[Parameter]
ID tskid ID number of the task to be referenced

T_RTSK * pk_rtsk Pointer to the packet returning the task state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rtsk

 includes (

T_RTSK

 type)

STAT tskstat

Task state

PRI tskpri

Task current priority

PRI tskbpri

Task base priority

STAT tskwait

Reason for waiting

ID wobjid

Object ID number for which the task is waiting

TMO lefttmo

Remaining time until timeout

UINT actcnt

Activation request count

UINT wupcnt

Wakeup request count

UINT suscnt

Suspension count

(Other implementation specific information may be added.)

[Error Code]

E_ID

Invalid ID number (

tskid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified task is not registered)

E_PAR

Parameter error (

pk_rtsk

 is invalid)

[Functional Description]

This service call references the state of the task specified by

tskid

. The state of the

task is returned through the packet pointed to by

pk_rtsk

. If the specified task is in

the NON-EXISTENT state, an

E_NOEXS

 error is returned.

One of the following codes is returned through

tskstat

 to indicate the state of the task:

TTS_RUN

0x01 RUNNING state

TTS_RDY

0x02 READY state

TTS_WAI

0x04 WAITING state

TTS_SUS

0x08 SUSPENDED state

TTS_WAS

0x0c WAITING-SUSPENDED state

TTS_DMT

0x10 DORMANT state

If the task is not in the DORMANT state, the current priority is returned through

tskpri

 and the base priority is returned through

tskbpri

. If the task is in the DOR-

MANT state, the values returned through

tskpri

 and tskbpri are implementa-
97

µITRON4.0 Specification Ver. 4.00.00

tion-dependent.

If the task is in the WAITING state, including the WAITING-SUSPENDED state, one

of the following codes is returned through tskwait to indicate the reason of the task’s

waiting. If the task is not in the WAITING state, the value returned through tskwait is
implementation-dependent.

TTW_SLP 0x0001 Sleeping state

TTW_DLY 0x0002 Delayed state

TTW_SEM 0x0004 Waiting state for a semaphore resource

TTW_FLG 0x0008 Waiting state for an eventflag

TTW_SDTQ 0x0010 Sending waiting state for a data queue

TTW_RDTQ 0x0020 Receiving waiting state for a data queue

TTW_MBX 0x0040 Receiving waiting state for a mailbox

TTW_MTX 0x0080 Waiting state for a mutex

TTW_SMBF 0x0100 Sending waiting state for a message buffer

TTW_RMBF 0x0200 Receiving waiting state for a message buffer

TTW_CAL 0x0400 Calling waiting state for a rendezvous

TTW_ACP 0x0800 Accepting waiting state for a rendezvous

TTW_RDV 0x1000 Terminating waiting state for a rendezvous

TTW_MPF 0x2000 Waiting state for a fixed-sized memory block

TTW_MPL 0x4000 Waiting state for a variable-sized memory block

If the task is in the WAITING state, including the WAITING-SUSPENDED state, the

ID of the object the task is waiting for is returned through wobjid. This does not apply

when the task is in the sleeping state, the delayed state, or the termination waiting state

for a rendezvous. In these states, the value returned through wobjid is implementa-

tion-dependent. If the task is not in the WAITING state, the value returned through

wobjid

 is also implementation-dependent.

When the task is in the WAITING state, including the WAITING-SUSPENDED state,

but not in the delayed state, the amount of time remaining for the task to timeout is

returned through the parameter lefttmo. The value of lefttmo is calculated by sub-

tracting the current time from the time at which the task will timeout. The value

returned through

lefttmo

, however, must be less than or equal to the actual amount of

time until timeout. This means that if the timeout happens at the next time tick, 0 is

returned through lefttmo. If the task is in the WAITING state forever (that is, waiting

without a timeout), TMO_FEVR is returned through lefttmo. If the task is not in the

WAITING state or is in the delayed state, the value returned through lefttmo is imple-

mentation-dependent.

The service call returns the task’s activation request count through

actcnt

.

If the task is not in the DORMANT state, the wakeup request count and suspension

count are returned through wupcnt and suscnt respectively. If the task is in the

DORMANT state, the values returned through wupcnt and suscnt are implementa-
98

µITRON4.0 Specification Ver. 4.00.00

tion-dependent.

If tskid is

TSK_SELF

 (= 0), the state of the invoking task is referenced.

[Differences from the µITRON3.0 Specification]

Referencing many pieces of information in the µITRON3.0 specification was imple-

mentation-dependent, but is now considered standard. The return parameter

wid

 has

been changed to wobjid. In addition the following items have been added: task base

priority (tskbpri), remaining time until timeout (lefttmo), and activation request

count (actcnt). The extended information has been removed from the list.

The order of tskstat and tskpri in pk_rtsk has been exchanged. The data type for

tskstat has been changed from UINT to STAT. The order of parameters and of

return parameters has been changed.

The return values are now implementation-dependent under cases where parameters

have no meaning for specific tasks states. For example, if the task is in the DOR-

MANT state, the value returned through

tskpri

 is implementation-dependent.

The values returned through tskwait have been reassigned.

[Rationale]

If the task is in the delayed state, the value returned through lefttmo is implement-

dependent because the delayed time data type used by dly_tsk is RELTIM (unsigned

integer) and it cannot be always returned through lefttmo which is of TMO (signed

integer).
99

µITRON4.0 Specification Ver. 4.00.00

ref_tst Reference Task State (Simplified Version)

[C Language API]
ER ercd = ref_tst (ID tskid, T_RTST *pk_rtst) ;

[Parameter]
ID tskid ID number of the task to be referenced

T_RTST * pk_rtst Pointer to the packet returning the task state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rtst

 includes (

T_RTST

 type)

STAT tskstat

Task state

STAT tskwait

Reason for waiting

(Other implementation specific information may be added.)

[Error Code]

E_ID

Invalid ID number (

tskid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified task is not registered)

E_PAR

Parameter error (

pk_rtst

 is invalid)

[Functional Description]

This service call references the minimum task state information for the task specified

by

tskid

. The state of the task is returned through the packet pointed to by

pk_rtst

.

This service call is a simplified version of

ref_tsk

. The same values returned by

ref_tsk

 through

tskstat

 and

tskwait

 apply to

ref_tst

 as well.

If tskid is

TSK_SELF

 (= 0), the state of the invoking task is referenced.

[Rationale]

A task’s information can be referenced with

ref_tsk

. However, if only minimum

information is required, an overhead on data space is incurred for the rest of the possi-

ble information. A new service call,

ref_tst

, has been added in order to extract just the

minimum task information.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.
100

µITRON4.0 Specification Ver. 4.00.00

4.2 Task Dependent Synchronization Functions

Task dependent synchronization functions provide direct control of task states to syn-

chronize tasks. Task dependent synchronization functions include the ability to put a

task to the sleeping state, to wakeup a task from the sleeping state, to cancel wakeup

requests, to forcibly release a task from waiting, to suspend a task, to resume a task

from the SUSPENDED state, and to delay the execution of the invoking task.

Wakeup requests for a task are queued. In other words, if a task is not in the sleeping

state and a wakeup request is made for the task, the new request is recorded. When the

task enters the sleeping state under this situation, the task will not be put in the sleeping

state. A task includes a wakeup request count to realize the wakeup request queuing.

This count is cleared to 0 when the task is activated.

Suspension requests for a task are nested. In other words, if a task has already been in

the SUSPENDED state, including WAITING-SUSPENDED state, and an attempt is

made to put the task in the SUSPENDED state again, the new request is recorded.

When an attempt is made to resume the task from SUSPENDED state under this situa-

tion, the task will not be resumed. A task includes a suspension count to realize the

suspension request nesting. This count is cleared to 0 when the task is activated.

The following kernel configuration constants are defined for use with task dependent

synchronization functions:

TMAX_WUPCNT

Maximum wakeup request count

TMAX_SUSCNT Maximum suspension count

The following represents the function codes for the task dependent synchronization

service calls:

TFN_SLP_TSK –0x11 Function code of slp_tsk
TFN_TSLP_TSK –0x12 Function code of tslp_tsk
TFN_WUP_TSK –0x13 Function code of wup_tsk
TFN_IWUP_TSK –0x72 Function code of iwup_tsk
TFN_CAN_WUP –0x14 Function code of can_wup
TFN_REL_WAI –0x15 Function code of rel_wai
TFN_IREL_WAI –0x73 Function code of irel_wai
TFN_SUS_TSK –0x16 Function code of sus_tsk
TFN_RSM_TSK –0x17 Function code of rsm_tsk
TFN_FRSM_TSK –0x18 Function code of frsm_tsk
TFN_DLY_TSK –0x19 Function code of dly_tsk

[Standard Profile]

The Standard Profile requires support for task dependent synchronization functions.

The Standard Profile requires support for a wakeup request count of one or more. It

also requires support for the SUSPENDED state for a task. Therefore, each of
101

µITRON4.0 Specification Ver. 4.00.00
TMAX_WUPCNT and TMAX_SUSCNT must be at least 1.

[Supplemental Information]

TMAX_WUPCNT is undefined if the sleeping state for a task is not supported and is 0

if the wakeup request queuing is not supported. TMAX_SUSCNT is undefined if the

SUSPENDED state for a task is not supported, thus, TMAX_SUSCNT is never 0.

[Differences from the µITRON3.0 Specification]

The functions for releasing a task from waiting, rel_wai, and for delaying the invoking

task’s execution, dly_tsk, are now classified as task dependent synchronization func-

tions.
102

µITRON4.0 Specification Ver. 4.00.00

slp_tsk

Put Task to Sleep

[S]

tslp_tsk

Put Task to Sleep (with Timeout) [S]

[C Language API]
ER ercd = slp_tsk () ;
ER ercd = tslp_tsk (TMO tmout) ;

[Parameter]
TMO tmout Specified timeout (only for tslp_tsk)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_PAR Parameter error (tmout is invalid; only for tslp_tsk)

E_RLWAI Forced release from waiting (accept rel_wai while waiting)

E_TMOUT Polling failure or timeout (only tslp_tsk)

[Functional Description]

These service calls move the invoking task to the sleeping state. However, if wakeup

requests are queued, that is, if the wakeup request count for the invoking task is 1 or

more, the count is decremented by 1 and the invoking task continues execution.

tslp_tsk has the same functionality as slp_tsk with an additional timeout feature.

tmout can be set to a positive number indicating a timeout duration or it can be set to

TMO_POL (= 0) or TMO_FEVR (= –1).

[Supplemental Information]

These service calls do not move the invoking task to the WAITING state if wakeup

requests for the invoking task are queued. Thus the precedence of the invoking task is

not changed.

No polling service call is provided for

slp_tsk

. If a similar feature is necessary, it can

be implemented using

can_wup

.

103

µITRON4.0 Specification Ver. 4.00.00

wup_tsk

Wakeup Task

[S]

iwup_tsk

[S]

[C Language API]

ER ercd = wup_tsk (ID tskid) ;
ER ercd = iwup_tsk (ID tskid) ;

[Parameter]

ID tskid

ID number of the task to be woken up

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

[Error Code]

E_ID

Invalid ID number (

tskid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified task is not registered)

E_OBJ

Object state error (specified task is in the DORMANT state)

E_QOVR

Queue overflow (overflow of wakeup request count)

[Functional Description]

These service calls wake up the task specified by

tskid

 from sleeping. The service call

that placed the task in the WAITING state will return

E_OK

 to the task.

If the task is not in the sleeping state, the wakeup request for the task is queued. (How-

ever, if the task is in the NON-EXISTENT state, an

E_NOEXS

 error is returned and if

the task is in the DORMANT state, an E_OBJ error is returned.) Specifically, the

wakeup request count is incremented by 1. If the count then exceeds the maximum

possible count, an E_QOVR error is returned.

If this service call is invoked from non-task contexts and has its execution delayed, an

E_OBJ error and an E_QOVR error may not be returned.

If tskid is TSK_SELF (= 0), the invoking task is specified. If TSK_SELF is specified

when this service call is invoked from non-task contexts, an

E_ID

 error is returned.

[Supplemental Information]

The Standard Profile requires the maximum wakeup request count to be at least 1. This

implies that a kernel that is compatible with the Standard Profile may not always return

an

E_QOVR

 error even if these service calls are invoked on a task with queued

wakeup requests.

[Differences from the µITRON3.0 Specification]

The invoking task can now be specified in this service call for the consistency with

act_tsk

.

104

µITRON4.0 Specification Ver. 4.00.00

can_wup

Cancel Task Wakeup Requests

[S]

[C Language API]

ER_UINT wupcnt = can_wup (ID tskid) ;

[Parameter]

ID tskid

ID number of the task for cancelling wakeup

requests

[Return Parameter]

ER_UINT wupcnt

Wakeup request count (positive value or 0) or error

code

[Error Code]

E_ID

Invalid ID number (

tskid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified task is not registered)

E_OBJ

Object state error (specified task is in the DORMANT state)

[Functional Description]

This service call cancels all queued wakeup requests for the task specified by

tskid

and returns the cancelled request count for the task. Specifically, the wakeup request

count for the task is cleared to 0. The value returned is the count before it was cleared.

If

tskid

 is

TSK_SELF

 (= 0), the invoking task is specified.

[Supplemental Information]

This service call can be used to check if a task completes a process within a cycle cor-

rectly when the task is woken up cyclically. Specifically,

can_wup

 should be invoked

when the task completes the process. A return value of 1 or more from can_wup indi-

cates that the next wakeup request is done before the task completes the process in the

previous cycle. The task can take measures for this case.

[Differences from the µITRON3.0 Specification]

The wakeup request count (

wupcnt) is now the return value of this service call.
105

µITRON4.0 Specification Ver. 4.00.00

rel_wai Release Task from Waiting [S]

irel_wai [S]

[C Language API]
ER ercd = rel_wai (ID tskid) ;
ER ercd = irel_wai (ID tskid) ;

[Parameter]
ID tskid ID number of the task to be released from waiting

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (tskid is invalid or unusable)

E_NOEXS Non-existent object (specified task is not registered)

E_OBJ Object state error (specified task is in the DORMANT state)

[Functional Description]

These service calls forcibly release the task specified by tskid from waiting. Specifi-

cally, if the task is in the WAITING state, it is moved to the READY state. If the task is

in the WAITNG-SUSPENDED state, it is moved to the SUSPEDED state. When the

task is released from waiting by these service calls, the service call that placed the task

in the WAITING state will return an

E_RLWAI

 error to the task.

If the task is not in the WAITING state, including the WAITING-SUSPENDED state,

an E_OBJ error is returned. However, if the task is in the NON-EXISTENT state, an

E_NOEXS error code is returned. If this service call is invoked from non-task con-

texts and has its execution delayed, an

E_OBJ

 error may not be returned.

[Supplemental Information]

A task cannot specify its own task ID in tskid. If a task does specify its own task ID,

these service calls return an E_OBJ error because the task is not in the WAITING

state.

These service calls do not cause a task in the SUSPENDED state to resume.

frsm_tsk (or rsm_tsk) should be used to forcibly resume a suspended task.

If the task is waiting in a wait queue, the task is removed from the queue. In this case,

some other tasks that are in the wait queue may need to be released from waiting. See

the functional descriptions of snd_mbf and get_mpl.

The following describes the differences between rel_wai and wup_tsk:

 • rel_wai releases a task from any waiting state, while wup_tsk only releases a task

from the sleeping state.

 • To the task in the sleeping state, a success (E_OK) is returned when the task is
106

µITRON4.0 Specification Ver. 4.00.00
released from sleeping with slp_tsk, while an error (E_RLWAI) is returned when

the task is forcibly released from waiting with rel_wai.

 • wup_tsk will increment the wakeup request count if the task is not in the sleeping

state. On the other hand, rel_wai will return an E_OBJ error if the task is not wait-

ing.
107

µITRON4.0 Specification Ver. 4.00.00

sus_tsk Suspend Task [S]

[C Language API]
ER ercd = sus_tsk (ID tskid) ;

[Parameter]
ID tskid ID number of the task to be suspended

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (tskid is invalid or unusable)

E_CTX Context error (the invoking task is specified while under dis-

patching disabled state; any other context error)

E_NOEXS

Non-existent object (specified task is not registered)

E_OBJ Object state error (specified task is in the DORMANT state)

E_QOVR Queue overflow (overflow of suspension count)

[Functional Description]

This service call suspends the task specified by tskid. Specifically, if the task is run-

nable, it is moved to the SUSPENDED state. If the task is in the WAITING state, it is

moved to the WAITING-SUSPENDED state. In addition, the suspension count is

incremented by 1. If the count then exceeds the maximum possible count, an

E_QOVR

 error is returned.

This service call can be invoked under the dispatching disabled state. However, under

the dispatching disabled state, if this service call is invoked specifying the invoking

task, an E_CTX error is returned.

If tskid is TSK_SELF (= 0), the invoking task is specified.

[Supplemental Information]

This service call may be invoked under the dispatching disabled state even though the

invoking task may be moved to the SUSPENDED state as specified in the parameter.

Therefore this is an exception to the principle stating that “The restriction that behavior

is undefined when service calls that can move the invoking task to the blocked state are

invoked while in the dispatching disabled state applies to a service as a whole.”

The Standard Profile requires the maximum suspension count to be at least 1. This

implies that a kernel that is compatible with the Standard Profile may not always return

an

E_QOVR

 error even if this service call is invoked on a task in the SUSPENDED

state.

[Differences from the µITRON3.0 Specification]

The invoking task can now be specified in tskid.
108

µITRON4.0 Specification Ver. 4.00.00

rsm_tsk

Resume Suspended Task

[S]

frsm_tsk

Forcibly Resume Suspended Task

[S]

[C Language API]

ER ercd = rsm_tsk (ID tskid) ;
ER ercd = frsm_tsk (ID tskid) ;

[Parameter]

ID tskid

ID number of the task to be resumed

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

[Error Code]

E_ID

Invalid ID number (

tskid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified task is not registered)

E_OBJ

Object state error (specified task is neither in the SUS-
PENDED state nor WAITING-SUSPENDED state)

[Functional Description]

These service calls release the task specified by

tskid from the SUSPENDED state

and allows the task to continue its normal processing. Specifically, the following

actions are performed.

rsm_tsk decrements the suspension count of the task by 1. If the count becomes 0,

the task is moved according to the following: if the task is in the SUSPEDED state, it is

moved to the READY state; if the task is in the WAITING-SUSPENDED state, it is

moved to the WAITING state. If the count remains to be 1 or more, the state of the task

is not changed.

frsm_tsk clears the suspension count to 0 and forcibly moves the task according to

the following: if the task is in the SUSPEDED state, it is moved to the READY state; if

the task is in the WAITING-SUSPENDED state, it is moved to the WAITING state.

If the specified task is neither in the SUSPENDED state nor WAITING-SUSPENDED

state, an E_OBJ error is returned. However, if the task is in the NON-EXISTING

state, an E_NOEXS error is returned.

[Supplemental Information]

A task cannot specify its own task ID in tskid. If a task does specify its own task ID,

these service calls return an E_OBJ error because the task is not in the SUSPENDED

state. When an implementation-specific service call is capable of moving a task to the

SUSPENDED state from non-task contexts or moving the invoking task to the SUS-
PENDED state under the dispatching disabled state, the invoking task may have the

suspension count of 1 or more. The behavior of rsm_tsk and

frsm_tsk

 in this case is
109

µITRON4.0 Specification Ver. 4.00.00

implementation-dependent.

[Differences from the µITRON3.0 Specification]

After a task is moved from the SUSPENDED state to the READY state, the task has

the lowest precedence among all tasks with the same priority in the READY state. See

Section 3.2.1 for more details.
110

µITRON4.0 Specification Ver. 4.00.00

dly_tsk Delay Task [S]

[C Language API]

ER ercd = dly_tsk (RELTIM dlytim) ;

[Parameter]
RELTIM dlytim Amount of time to delay the invoking task (relative

time)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_PAR Parameter error (dlytim is invalid)

E_RLWAI Forced release from waiting (accept rel_wai while waiting)

[Functional Description]

This service call delays the execution of the invoking task for the amount of time spec-

ified in

dlytim

. Specifically, the invoking task is set to be released from waiting when

the specified relative time has passed since the invocation of this service call, and then

it is moved to the delayed state. When the task is released from waiting after the rela-

tive time expires, the service call completes and returns

E_OK

.

dlytim is the relative time when the task is released from the delayed state with

respect to the time when the service call is invoked.

[Supplemental Information]

The release of a task from the delayed state depends on the system time. Therefore, the

task is released at the first time tick after the specified time has passed. The system

must guarantee that the release of the task occurs after an elapsed time equal to or

greater than the specified time (see Section 2.1.9). This service call moves the invoking

task to the delayed state even if dlytim is 0.

The delayed state is a kind of the WAITING state and can be forcibly released with

rel_wai. The delayed time includes the time a task spends in the WAITING-SUS-

PENDED state.

This service call is different from

tslp_tsk

 in that it returns E_OK when the specified

time expires. Also, an invocation of wup_tsk for the task will not release the task

from the delayed state. Only ter_tsk and rel_wai can release the task from the

delayed state before the time expires.

[Differences from the µITRON3.0 Specification]

The data type of dlytim has been changed from DLYTIME to RELTIM.
111

µITRON4.0 Specification Ver. 4.00.00

4.3 Task Exception Handling Functions

Task exception handling functions provide handling task exceptions within the task’s

context. Task exception handling functions include the ability to define a task excep-

tion handling routine, to request a task exception handling, to enable and disable task

exception handling, and to reference the state of a task exception handling.

When a task’s exception handling is requested, the task suspends processing and the

task exception handling routine is started. The handling routine runs within the same

context as the task itself. Once the task exception handling routine returns, the task

resumes processing. An application can register a task exception handling routine for

each task. A task exception handling routine is not registered when the task is created.

When a task exception handling is requested, the task exception code representing the

type of exception is specified. For each task, the kernel manages the exception code

representing the exceptions that have been requested but have not been processed yet.

This code is referred to as the pending exception code. The pending exception code is

0 if no unprocessed exception request exists. When a task exception handling is

requested for a task that has unprocessed exception requests, the task’s pending excep-

tion code is bit-wise ORed with the requested exception code. The pending exception

code is cleared to 0 when the task is activated.

A task can be in either the task exception disabled state or the task exception enabled

state. Moving a task to the task exception disabled state is called “disabling task

exceptions.” Moving a task to the exception enabled state is called “enabling task

exceptions.” Just after a task starts, it is in the task exception disabled state.

The following behavior is implementation-defined. The kernel disables task excep-

tions when an extended service routine is started and restores the original state when

the routine returns. In addition, if

ena_tex

 is invoked from an extended service call

routine, an E_CTX error is returned because task exceptions should be kept disabled

during the execution of the routine.

A task’s exception handling routine is started when the following four conditions are

met: task exceptions are enabled for the task, the task’s pending exception code is not

0, the task is in the RUNNING state, and non-task contexts or CPU exception handlers

are not being executed. The pending exception code (texptn) and the task’s extended

information (exinf) are passed to the task exception handling routine as parameters.

At this point, task exceptions are disabled and the pending exception code is cleared to

0.

When the task exception handling routine returns, the task resumes executing the pro-

cess that was executing before the routine was started. At this point, the task excep-

tions are enabled. If the pending exception code is not 0, the task exception handling

routine is restarted.

The following data type is used for task exception handling functions:
112

µITRON4.0 Specification Ver. 4.00.00

TEXPTN

Bit pattern for the task exception code (unsigned integer)

The format to write a task exception handling routine in C language is shown below:

void texrtn (TEXPTN texptn, VP_INT exinf)
{

/* Body of the task exception handling routine */
}

The following kernel configuration constant is defined for use with task exception han-

dling functions:

TBIT_TEXPTN

The number of bits in the task exception code (the

number of bits of TEXPTN type)

The following packet data types are defined for defining and referencing task exception

handling routines:

typedef struct t_dtex {
ATR texatr ; /* Task exception handling routine

attribute */
FP texrtn ; /* Task exception handling routine start

address */
/* Other implementation specific fields may be added. */

} T_DTEX ;

typedef struct t_rtex {
STAT texstat ; /* Task exception state */
TEXPTN pndptn ; /* Pending exception code */
/* Other implementation specific fields may be added. */

} T_RTEX ;

The following represents the function codes for the task exception handling service

calls:

TFN_DEF_TEX

–0x1b Function code of

def_tex
TFN_RAS_TEX

–0x1c Function code of

ras_tex
TFN_IRAS_TEX

–0x74 Function code of

iras_tex
TFN_DIS_TEX

–0x1d Function code of

dis_tex
TFN_ENA_TEX

–0x1e Function code of

ena_tex
TFN_SNS_TEX

–0x1f Function code of

sns_tex
TFN_REF_TEX

–0x20 Function code of

ref_tex

[Standard Profile]

The Standard Profile requires support for task exception handling functions except for

dynamic definition of an exception handling routine (

def_tex

) and reference of a task

exception handling routine state (

ref_tex

).

The Standard Profile also requires the bit-width for the bit pattern data type to be at

least 16 bits:

TEXPTN

16 bits or more

Therefore,

TBIT_TEXPTN

 must be 16 or more.
113

µITRON4.0 Specification Ver. 4.00.00

[Supplemental Information]

The specification does not specify whether a task exception handling routine is started

in the CPU locked state because the behavior of service calls that request task excep-

tion handling in the CPU locked state is undefined. On the other hand, a task exception

handling routine must be started if the four task exception handling conditions are met

and even if dispatching is disabled.

The context and states under which task exception handling routines execute are sum-

marized below:

 • Task exception handling routines execute in the same context as the tasks (see Sec-

tion 3.5.1). The contexts in which the task exception handling routines execute are

classified as task contexts.

 • The start of and the return from the task exception handling routines do not change

the CPU state or the dispatching state (see Sections 3.5.4 and 3.5.5). However, the

specification does not specify whether a task exception handling routine is started in

the CPU locked state.

The circumstances regarding enabling and disabling task exceptions are summarized

below:

 • When a task is activated, task exceptions for the task are disabled.

 • When a task exception handling routine is started, task exceptions are disabled.

Task exceptions are enabled upon the return from the task exception handling rou-

tine.

 • Invoking

dis_tex

 disables task exceptions and invoking ena_tex enables task

exceptions.

 • When the definition of a task exception handling routine is released with def_tex,

task exceptions are disabled.

Task exception handling routines may execute a non-local jump by invoking longjmp
from the standard C library. This is allowed because the exception handling routine

executes within the context of the task. When a non-local jump is used to terminate a

task exception handling routine, the kernel does not enable task exceptions because the

kernel cannot detect whether the task exception handling routine terminates. The

application may enable the task exceptions by invoking ena_tex. In addition if an

application executes a non-local jump from the task exception handling routine, the

application must disable task exceptions in order to maintain integrity of global data

structures (see Rationale below).

A task exception handling routine may be restarted just after it returns. In this case, the

stack pointer must be the same as the stack pointer when the routine is started previ-

ously. This implies there is no wasted stack space when the task exception handling

routine is restarted after its completion. If this were not the case, it would be impossi-

ble to bound the size of the stack area used by a succession of task exception handling
114

µITRON4.0 Specification Ver. 4.00.00

routines.

The µITRON4.0 Specification does not provide the functionality to mask a task’s

exception code bit by bit. However, an application could still realize this functionality

through the specified task exception handling functions as described below. An appli-

cation manages the task exception handling mask for each task. At the beginning of the

task exception handling routine, the application checks if the passed task exception

code is masked or not. If the code is masked, the routine must record that the routine

was started with the exception code and return immediately. To be accurate, the routine

must handle the case where some part of the code is masked and some part of the code

is not masked. Later, when the application changes the task exception handling mask,

the application must check if the exception handling routine was started with a previ-

ously masked exception code. If there is a record of a masked exception, the task

exception handling routine is started by the application to handle the exception.

Task exception handling routines are not nested because task exceptions are disabled at

the start of the task exception handling routine. If task exception handling routines are

complex, especially when the task can enter the WAITING state, there are cases when

the routine may need to be nested because an exception could occur while the excep-

tion routine is executing. In cases like this, the exception routine can be nested by

invoking

ena_tex

 within the task exception handling routine. However, some mea-

sures must be taken to avoid starting an unlimited number of nested task exception han-

dling routines. An example measure is to mask the currently processing exceptions

with the exception handling mask described above.

If a CPU exception occurs while a task exception handling routine is executing, the

CPU exception handler begins executing. Once the CPU exception handler returns, the

task exception handler resumes even if the CPU exception handler requests task excep-

tion handling. This is because the task exceptions were disabled when the task excep-

tion handling routine started. If the cause of the CPU exception is not removed within

the CPU exception handler, the CPU exception is raised again just after the handler

returns. As a result, the CPU exception will continue forever. This also applies to any

CPU exceptions that occurred while in the task exception disabled state.

In principle the application must avoid cases where a CPU exception occurs while in

the task exception disabled state, when the CPU exception handler requests task excep-

tion handling. However, CPU exceptions may not be avoidable due to software and/or

hardware malfunctions. In order to avoid continuous CPU exceptions where CPU

exceptions are unavoidable, the CPU exception handler must reference the task excep-

tion handling state and perform special handling when task exceptions are disabled.

Nesting the execution of task exception handling routines using the previously

described method, may also be necessary to shorten the duration task exceptions are

disabled.

In an implementation where different stack spaces are used for the application and the
115

µITRON4.0 Specification Ver. 4.00.00

kernel, information stored in the kernel stack space or in the task control block (TCB)

must often be moved to the application stack space in order to support the nesting of

task exception handling routines. For instance, if a task exception handling request

occurs while a task is being preempted, the exception routine will start the next time

when the task enters the READY state. In this case, the task’s states before the pre-

emption, which is stored in the kernel stack space or in the TCB, must be moved to the

application’s stack space. When the task exception handling routine returns, the task

states must be restored based on the information stored in the application’s stack space.

[Differences from the µITRON3.0 Specification]

Task exception handling functions have been newly added.

[Rationale]

The µITRON4.0 Specification only includes basic task exception handling functions.

An application can realize more complex exception handling based on the provided

functions when necessary. This allows the application to gain more powerful support

while keeping the kernel compact.

The specification only states that task exception handling routines execute in the same

context as the task. The description regarding non-local jumps via longjmp is

included in the supplemental information because easy use of longjmp from the task

exception handling routine is dangerous for the reason described in the next paragraph.

A task exception handling routine can safely be terminated forcibly through ext_tsk.

This method is considered to be sufficient for the scope of the Standard Profile.

An easy use of longjmp can result to the following. If a task exception handling rou-

tine is started while a global data structure is being operated on and if the task exits the

task exception handling routine with a

longjmp

, the possibility exists that the data is

corrupted. In such cases, users should be very careful when using of longjmp to exit

the task exception handling routine. Specifically, task exceptions must be disabled

while a global data structure is inconsistent.
116

µITRON4.0 Specification Ver. 4.00.00

DEF_TEX Define Task Exception Handling Routine (Static API) [S]

def_tex Define Task Exception Handling Routine

[Static API]
DEF_TEX (ID tskid, { ATR texatr, FP texrtn }) ;

[C Language API]
ER ercd = def_tex (ID tskid, T_DTEX *pk_dtex) ;

[Parameter]
ID tskid ID number of the task to be defined

T_DTEX * pk_dtex Pointer to the packet containing the task exception

handling routine definition information (in

DEF_TEX

, the contents must be directly speci-
fied.)

pk_dtex

 includes (T_DTEX type)

ATR texatr Task exception handling routine attribute

FP texrtn Task exception handling routine start address

(Other implementation specific information may be added.)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (tskid is invalid or unusable)

E_NOEXS Non-existent object (specified task is not registered)

E_RSATR Reserved attribute (texatr is invalid or unusable)

E_PAR Parameter error (pk_dtex or texrtn is invalid)

[Functional Description]

This service call defines the task exception handling routine for the task specified by

tskid based on the information contained in the packet pointed to by pk_dtex.

texatr is the attribute of the task exception handling routine. texrtn is the start

address of the task exception handling routine.

In DEF_TEX, tskid is an integer parameter without automatic assignment. texatr is

a preprocessor constant expression parameter.

If pk_dtex is NULL (= 0), the task exception handling routine currently defined is

released and the task exception handling routine becomes undefined. At this time, the

pending exception code is cleared to 0 and task exception are disabled. When a new

task exception handling routine is defined over top of an old one, the old one is released

and the new one takes its place. Under this condition, the pending exception code is

not cleared and task exceptions are not disabled.
117

µITRON4.0 Specification Ver. 4.00.00

When

tskid

 is

TSK_SELF

 (= 0), the task exception handling routine is defined for

the invoking task.

texatr can be specified as (

TA_HLNG

 ||

TA_ASM

). If

TA_HLNG

 (= 0x00) is speci-

fied, the task exception handling routine is started through the C language interface. If

TA_ASM

 (= 0x01) is specified, the routine is started through an assembly language

interface.

[Standard Profile]

The Standard Profile does not require support for when

TA_ASM

 is specified in

texatr

.

[Supplemental Information]

The task exception handling routine remains effective until

def_tex

 is invoked with

pk_dtex

 set to

NULL

 or until the task is deleted.

When

DEF_TEX

 is used to define a task exception handling routine for a task, the

task must be created with

CRE_TSK

 appearing before

DEF_TEX

 in the system con-

figuration file.

[Rationale]

When the definition of the task exception handling routine is cancelled, the pending

exception code is cleared and task exceptions are disabled. This is done to keep the

pending exception code to 0 and task exceptions to the disabled state, when the task

exception handling routine is not defined. Once a task exception handling routine

becomes undefined, these conditions are kept because the pending exception code can-

not be set and because task exceptions cannot be enabled.
118

µITRON4.0 Specification Ver. 4.00.00

ras_tex

Raise Task Exception Handling

[S]

iras_tex

[S]

[C Language API]
ER ercd = ras_tex (ID tskid, TEXPTN rasptn) ;
ER ercd = iras_tex (ID tskid, TEXPTN rasptn) ;

[Parameter]
ID tskid ID number of the task requested

TEXPTN rasptn Task exception code to be requested

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (tskid is invalid or unusable)

E_NOEXS Non-existent object (specified task is not registered)

E_PAR Parameter error (rasptn is invalid)

E_OBJ Object state error (specified task is in the DORMANT state,

task exception handling routine is not defined)

[Functional Description]

These service calls request task exception handling for the task specified by tskid.

The task exception code is specified by the bit pattern in rasptn. Specifically, the

task’s pending exception code is bit-wise ORed with the requested exception code.

If tskid is TSK_SELF (= 0), the invoking task is specified. If TSK_SELF is speci-
fied when this service call is invoked from non-task contexts, an

E_ID

 error is

returned.

If the task is in the DORMANT state or if the task exception handling routine for the

task is undefined, an E_OBJ error is returned. If the service call is invoked from

non-task contexts and has its execution delayed, an E_OBJ error may not be returned.

If rasptn is 0, an E_PAR error is returned.

[Supplemental Information]

These service calls start the task exception handling routine if all the conditions for

starting the routine are met.

If the task is in the blocked state, these service calls only update the pending exception

code, and do not release the task from waiting nor from the SUSPENDED state. If the

task must be released from the block state, the application can use rel_wai or

frsm_tsk (or rsm_tsk) to do so.

There are many service calls that when invoked from non-task contexts can have their

execution delayed until the system is in a state where dispatching can occur. However,
119

µITRON4.0 Specification Ver. 4.00.00
this service call must be executed even if the system is in the dispatching disabled state.

For example, if an interrupt handler requests a task exception handling for the task in

the RUNNING state while in the dispatching disabled state, the task exception han-

dling routine must be started just after the return from the interrupt handler. This is

useful for stopping a malfunctioning task running with dispatching disabled by

requesting a task exception handling from an interrupt handler. However, this is not

useful for stopping a task running with the CPU locked or a task running with task

exceptions and dispatching disabled.
120

µITRON4.0 Specification Ver. 4.00.00

dis_tex

Disable Task Exceptions

[S]

[C Language API]

ER ercd = dis_tex () ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_OBJ Object state error (task exception handling routine is not

defined)

[Functional Description]

This service call moves the invoking task to the task exception disabled state. If the

task exception handling routine is not defined for the invoking task, an E_OBJ error is

returned.
121

µITRON4.0 Specification Ver. 4.00.00

ena_tex Enable Task Exceptions [S]

[C Language API]
ER ercd = ena_tex () ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_OBJ Object state error (the task exception handling routine is not

defined)

E_CTX Context error (invoked from a context not capable of enabling

task exceptions, any other context errors)

[Functional Description]

This service call moves the invoking task to the task exception enabled state. If the

task exception handling routine is not defined for the invoking task, an E_OBJ error is

returned.

For an implementation that does not allow task exceptions enabled within an extended

service call routine, an E_CTX error is returned if this service call is invoked from an

extended service call routine.

[Supplemental Information]

This service call starts the task exception handling routine if all the conditions for start-

ing the routine are met.
122

µITRON4.0 Specification Ver. 4.00.00

sns_tex

Reference Task Exception Handling State

[S]

[C Language API]

BOOL state = sns_tex () ;

[Parameter]
None

[Return Parameter]
BOOL state Task exception disabled state

[Functional Description]

This service call returns TRUE if task exceptions are disabled for the task in the RUN-

NING state (which corresponds to the invoking task when this service call invoked

from task contexts) and returns

FALSE

 if task exceptions are enabled. If this service

call is invoked from non-task contexts and there is no task in the RUNNING state,

TRUE is returned.

[Supplemental Information]

Tasks that have no defined task exception handling routine always have task exceptions

disabled. Therefore, when the invoking task has no defined task exception handling

routine, this service call returns TRUE.
123

µITRON4.0 Specification Ver. 4.00.00

ref_tex Reference Task Exception Handling State

[C Language API]
ER ercd = ref_tex (ID tskid, T_RTEX *pk_rtex) ;

[Parameter]
ID tskid ID number of the task to be referenced

T_RTEX * pk_rtex Pointer to the packet returning the task exception

handling state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rtex

 includes (

T_RTEX

 type)

STAT texstat

Task exception handling state

TEXPTN pndptn

Pending exception code

(Other implementation specific information may be added.)

[Error Code]

E_ID

Invalid ID number (

tskid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified task is not registered)

E_PAR

Parameter error (

pk_rtex

 is invalid)

E_OBJ

Object state error (specified task is in the DORMANT state,

the task exception handling routine is not defined)

[Functional Description]

This service call references the state of the task exception handling for the task speci-

fied by

tskid

. The state of the task exception handling is returned through the packet

pointed to by pk_rtex.

texstat can take on any of the following values:

TTEX_ENA 0x00 Task exception enabled state

TTEX_DIS 0x01 Task exception disabled state

The pending exception code is returned through pndptn. If no unprocessed exception

request exists, pndptn is 0.

If tskid is TSK_SELF (= 0), the state of the invoking task is referenced.

If the task is in the DORMANT state or the task exception handling routine is not

defined for the task, an

E_OBJ

 error is returned.
124

µITRON4.0 Specification Ver. 4.00.00

4.4 Synchronization and Communication Functions

Synchronization and communication functions provide synchronization and communi-

cation between tasks through objects that are independent of the tasks. The objects are

semaphores, data queues, event flags, and mailboxes.

[Differences from the µITRON3.0 Specification]

Implementation of mailboxes are now limited to linked lists. Data queues have been

newly introduced and provide the same functionality as mailboxes but are implemented

with ring buffers.

4.4.1 Semaphores

A semaphore is an object used for mutual exclusion and synchronization. A semaphore

indicates availability and the number of unused resources by a resource count. Sema-

phore functions include the ability to create and delete a semaphore, to acquire and

release resources, and to reference the state of a semaphore. A semaphore is an object

identified by an ID number. The ID number of a semaphore is called the semaphore

ID.

A semaphore has an associated resource count and a wait queue. The resource count

indicates the resource availability or the number of unused resources. The wait queue

manages the tasks waiting for resources from the semaphore. When a task releases a

semaphore resource, the resource count is incremented by 1. When a task acquires a

semaphore resource, the resource count is decremented by 1. If a semaphore has no

resources available or more precisely the resource count is 0, a task attempting to

acquire a resource will wait in the wait queue until a resource is returned to the sema-

phore.

In order to avoid the case where too many resources are returned to a semaphore, each

semaphore has a maximum resource count indicating the maximum number of unused

resources available to the semaphore. If more resources are returned to the semaphore

than its maximum resource count, an error will be returned.

The following kernel configuration constant is defined for use with semaphore func-

tions:

TMAX_MAXSEM

Maximum value of the maximum definable semaphore

resource count

The following data type packets are defined for creating and referencing semaphores:

typedef struct t_csem {
ATR sematr ; /* Semaphore attribute */
UINT isemcnt ; /* Initial semaphore resource count */
UINT maxsem ; /* Maximum semaphore resource count */
/* Other implementation specific fields may be added. */
125

µITRON4.0 Specification Ver. 4.00.00

} T_CSEM ;

typedef struct t_rsem {
ID wtskid ; /* ID number of the task at the head of the

semaphore’s wait queue */
UINT semcnt ; /* Current semaphore resource count */
/* Other implementation specific fields may be added. */

} T_RSEM ;

The following represents the function codes for the semaphore service calls:

TFN_CRE_SEM

–0x21 Function code of

cre_sem
TFN_ACRE_SEM

–0xc2 Function code of

acre_sem
TFN_DEL_SEM

–0x22 Function code of

del_sem
TFN_SIG_SEM

–0x23 Function code of

sig_sem
TFN_ISIG_SEM

–0x75 Function code of

isig_sem
TFN_WAI_SEM

–0x25 Function code of

wai_sem
TFN_POL_SEM

–0x26 Function code of

pol_sem
TFN_TWAI_SEM

–0x27 Function code of

twai_sem
TFN_REF_SEM

–0x28 Function code of

ref_sem

[Standard Profile]

The Standard Profile requires support for semaphore functions except for dynamic cre-

ation and deletion of a semaphore (

cre_sem

, acre_sem, del_sem) and reference of

a semaphore state (ref_sem).

The Standard Profile requires that maximum resource count can be set to at least

65535. Although TMAX_MAXSEM does not have to be defined, if it is defined, it

must be equal to or greater than 65535.

[Rationale]

TMAX_MAXSEM is only used when semaphores are dynamically created. Since

dynamic semaphore creation does not have to be supported in the Standard Profile,

TMAX_MAXSEM does not have to be defined in this case.
126

µITRON4.0 Specification Ver. 4.00.00

CRE_SEM Create Semaphore (Static API) [S]

cre_sem Create Semaphore

acre_sem Create Semaphore (ID Number Automatic Assignment)

[Static API]
CRE_SEM (ID semid, { ATR sematr, UINT isemcnt,

UINT maxsem }) ;

[C Language API]
ER ercd = cre_sem (ID semid, T_CSEM *pk_csem) ;
ER_ID semid = acre_sem (T_CSEM *pk_csem) ;

[Parameter]
ID semid ID number of the semaphore to be created (except

acre_sem)

T_CSEM * pk_csem Pointer to the packet containing the semaphore cre-

ation information (in

CRE_SEM

, packet contents

must be directly specified.)

pk_csem includes (T_CSEM type)

ATR sematr Semaphore attribute

UINT isemcnt Initial semaphore resource count

UINT maxsem Maximum semaphore resource count

(Other implementation specific information may be added.)

[Return Parameter]

cre_sem:

ER ercd E_OK for normal completion or error code

acre_sem:

ER_ID semid ID number (positive value) of the created sema-

phore or error code

[Error Code]

E_ID Invalid ID number (semid is invalid or unusable; only

cre_sem)

E_NOID No ID number available (there is no semaphore ID assignable;

only acre_sem)

E_RSATR Reserved attribute (sematr is invalid or unusable)

E_PAR Parameter error (pk_csem, isemcnt, or maxsem is

invalid)

E_OBJ Object state error (specified semaphore is already registered;

only cre_sem)
127

µITRON4.0 Specification Ver. 4.00.00

[Functional Description]

These service calls create a semaphore with an ID number specified by semid based

on the information contained in the packet pointed to by pk_csem. sematr is the

attribute of the semaphore. isemcnt is the initial value of the resource count after cre-

ation of the semaphore.

maxsem

 is the maximum resource count of the semaphore.

In CRE_SEM, semid is an integer parameter with automatic assignment. sematr is

a preprocessor constant expression parameter.

acre_sem assigns a semaphore ID from the pool of unassigned semaphore IDs and

returns the assigned semaphore ID.

sematr can be specified as (TA_FIFO || TA_TPRI). If TA_FIFO (= 0x00) is speci-

fied, the semaphore’s wait queue will be in FIFO order. If

TA_TPRI

 (= 0x01) is spec-

ified, the semaphore’s wait queue will be in task priority order.

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the semaphore creation information.

The data types of isemcnt and maxsem have been changed from INT to UINT.

acre_sem has been newly added.
128

µITRON4.0 Specification Ver. 4.00.00

del_sem Delete Semaphore

[C Language API]
ER ercd = del_sem (ID semid) ;

[Parameter]
ID semid ID number of the semaphore to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (semid is invalid or unusable)

E_NOEXS Non-existent object (specified semaphore is not registered)

[Functional Description]

This service call deletes the semaphore specified by semid.

[Supplemental Information]

See Section 3.8 for information regarding handling tasks that are waiting for a resource

in a semaphore’s wait queue when the semaphore is deleted.
129

µITRON4.0 Specification Ver. 4.00.00
sig_sem Release Semaphore Resource [S]

isig_sem [S]

[C Language API]
ER ercd = sig_sem (ID semid) ;
ER ercd = isig_sem (ID semid) ;

[Parameter]
ID semid ID number of the semaphore to which resource is

released

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (semid is invalid or unusable)

E_NOEXS Non-existent object (specified semaphore is not registered)

E_QOVR Queue overflow (release will exceed maximum resource

count)

[Functional Description]

These service calls release one resource to the semaphore specified by semid. If any

tasks are waiting for the specified semaphore, the task at the head of the semaphore’s

wait queue is released from waiting. When this happens, the associated semaphore

resource count is not changed. The released task receives E_OK from the service call

that caused it to wait in the semaphore’s wait queue. If no tasks are waiting for the

specified semaphore, the semaphore resource count is incremented by 1.

These service calls return an E_QOVR error if incrementing the resource count by 1

will cause the count to exceed the maximum semaphore resource count. If this service

call is invoked from non-task contexts and has its execution delayed, an E_QOVR
error may not be returned, however the condition must still be checked.
130

µITRON4.0 Specification Ver. 4.00.00

wai_sem Acquire Semaphore Resource [S]

pol_sem Acquire Semaphore Resource (Polling) [S]

twai_sem Acquire Semaphore Resource (with Timeout) [S]

[C Language API]
ER ercd = wai_sem (ID semid) ;
ER ercd = pol_sem (ID semid) ;
ER ercd = twai_sem (ID semid, TMO tmout) ;

[Parameter]
ID semid ID number of the semaphore from which resource is

acquired

TMO tmout Specified timeout (only twai_sem)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (semid is invalid or unusable)

E_NOEXS Non-existent object (specified semaphore is not registered)

E_PAR Parameter error (tmout is invalid; only twai_sem)

E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except pol_sem)

E_TMOUT Polling failure or timeout (except wai_sem)

E_DLT Waiting object deleted (semaphore is deleted while waiting;

except pol_sem)

[Functional Description]

There service calls acquire one resource from the semaphore specified by semid. If

the resource count of the specified semaphore is 1 or more, the associated resource

count is decremented by 1. In this case, the invoking task is not moved to the WAIT-

ING state, but rather receives a normal return from the service call. If, on the other

hand, the resource count of the specified semaphore is 0, the invoking task is placed in

the semaphore’s wait queue and is moved to the waiting state for the semaphore. In

this case, the resource count remains unchanged at 0.

If there are already tasks in the wait queue, the invoking task is placed in the wait queue

as described below. When the semaphore’s attribute has

TA_TFIFO

 (= 0x00) set, the

invoking task is placed in the tail of the wait queue. When the attribute has

TA_TPRI

(= 0x01) set, the invoking task is placed in the wait queue in the order of the task’s pri-

ority. If the wait queue contains tasks with the same priority as the invoking task, the

invoking task is placed after those tasks.

pol_sem

 is a polling service call with the same functionality as wai_sem.
131

µITRON4.0 Specification Ver. 4.00.00

twai_sem has the same functionality as wai_sem with an additional timeout feature.

tmout can be set to a positive number indicating a timeout duration or it can be set to

TMO_POL (= 0) or TMO_FEVR (= –1).

[Supplemental Information]

twai_sem

 acts the same as

pol_sem

 if

TMO_POL

 is specified in

tmout

 as long as

no context error occurs. Also,

twai_sem

 acts the same as

wai_sem

 if

TMO_FEVR

is specified in

tmout

.

[Differences from the µITRON3.0 Specification]

The name of the polling service call has been changed from

preq_sem

 to

pol_sem

.

132

µITRON4.0 Specification Ver. 4.00.00

ref_sem

Reference Semaphore State

[C Language API]

ER ercd = ref_sem (ID semid, T_RSEM *pk_rsem) ;

[Parameter]

ID semid

ID number of the semaphore to be referenced

T_RSEM * pk_rsem Pointer to the packet returning the semaphore state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rsem

 includes (

T_RSEM

 type)

ID wtskid

ID number of the task at the head of the sema-

phore’s wait queue

UINT semcnt

Current semaphore resource count

(Other implementation specific information may be added.)

[Error Code]
E_ID Invalid ID number (semid is invalid or unusable)

E_NOEXS Non-existent object (specified semaphore is not registered)

E_PAR Parameter error (pk_rsem is invalid)

[Functional Description]

This service call references the state of the semaphore specified by semid. The state

of the semaphore is returned through the packet pointed to by pk_rsem.

The ID number of the task at the head of the semaphore’s wait queue is returned

through wtskid. If no tasks are waiting for the semaphore’s resource, TSK_NONE
(= 0) is returned instead.

The semaphore’s current resource count is returned through

semcnt

.

[Supplemental Information]

A semaphore cannot have

wtskid

≠

TSK_NONE

 and

semcnt

≠

 0 at the same time.

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The ID

number of the task at the head of the wait queue is now returned instead of a boolean

value indicating whether a task is waiting or not. Based on this replacement, the name

and data type of the return parameter has been changed.

The data type of

semcnt

 has been changed from

INT

 to

UINT

. The order of parame-

ters and of return parameters has been changed.
133

µITRON4.0 Specification Ver. 4.00.00

4.4.2 Eventflags

An eventflag is a synchronization object that consists of multiple bits in a bit pattern

where each bit represents an event. Eventflag functions include the ability to create and

delete an eventflag, to set and clear an eventflag, to wait for an eventflag, and to refer-

ence the state of an eventflag. An eventflag is an object identified by an ID number.

The ID number of an eventflag is called the eventflag ID.

An eventflag has an associated bit pattern expressing the state of its events, and a wait

queue for tasks waiting on these events. Sometimes the bit pattern of an eventflag is

simply called an eventflag. A task is able to set specified bits when an event occurs and

is able to clear specified bits when necessary. Tasks waiting for events to occur will

wait until every specified bit in the eventflag bit pattern is set. Tasks waiting for an

eventflag are placed in the eventflag’s wait queue.

The following data type is used for eventflag functions:

FLGPTN

Bit pattern of the eventflag (unsigned integer)

The following kernel configuration constant is defined for use with eventflag functions:

TBIT_FLGPTN The number of bits in an eventflag

The following kernel configuration constant is defined for use with eventflag functions:

typedef struct t_cflg {
ATR flgatr ; /* Eventflag attribute */
FLGPTN iflgptn ; /* Initial value of the eventflag bit

pattern */
/* Other implementation specific fields may be added. */

} T_CFLG ;

typedef struct t_rflg {
ID wtskid ; /* ID number of the task at the head of the

eventflag’s wait queue */
FLGPTN flgptn ; /* Current eventflag bit pattern */
/* Other implementation specific fields may be added. */

} T_RFLG ;

The following represents the function codes for the eventflag service calls:

TFN_CRE_FLG

–0x29 Function code of

cre_flg
TFN_ACRE_FLG

–0xc3 Function code of

acre_flg
TFN_DEL_FLG

–0x2a Function code of

del_flg
TFN_SET_FLG

–0x2b Function code of

set_flg
TFN_ISET_FLG

–0x76 Function code of

iset_flg
TFN_CLR_FLG

–0x2c Function code of

clr_flg
TFN_WAI_FLG

–0x2d Function code of

wai_flg
TFN_POL_FLG

–0x2e Function code of

pol_flg
TFN_TWAI_FLG

–0x2f Function code of

twai_flg
TFN_REF_FLG

–0x30 Function code of

ref_flg
134

µITRON4.0 Specification Ver. 4.00.00

[Standard Profile]

The Standard Profile requires support for eventflag functions except for dynamic cre-

ation and deletion of an eventflag (

cre_flg

, acre_flg, del_flg) and reference of an

eventflag state (ref_flg).

The Standard Profile does not require support for multiple tasks waiting for an event-

flag, i.e. eventflags with the

TA_WMUL

 attribute.

The Standard Profile requires support for an eventflag’s bit pattern of at least 16 bits.

Therefore, TBIT_FLGPTN must be defined to be at least 16. The minimum bit width

of the data type for eventflag functions is as follows:

FLGPTN 16 bits or more

[Supplemental Information]

There is no limitation to the number of bits supported by an eventflag except when

implementing the Standard Profile. Therefore it is possible to supply an eventflag that

supports only 1 bit. Because the C language does not support a data type with an arbi-

trary bit width, the number of bits in a variable of

FLGPTN

 type may actually be more

than the number of bits defined in TBIT_FLGPTN (the number of bits in an

eventflag).

[Differences from the µITRON3.0 Specification]

The data type of the parameter holding an eventflag bit pattern has been changed from

UINT to the new data type FLGPTN.
135

µITRON4.0 Specification Ver. 4.00.00

CRE_FLG Create Eventflag (Static API) [S]

cre_flg Create Eventflag

acre_flg Create Eventflag (ID Number Automatic Assignment)

[Static API]
CRE_FLG (ID flgid, { ATR flgatr, FLGPTN iflgptn }) ;

[C Language API]
ER ercd = cre_flg (ID flgid, T_CFLG *pk_cflg) ;
ER_ID flgid = acre_flg (T_CFLG *pk_cflg) ;

[Parameter]
ID flgid ID number of the eventflag to be created (except

acre_flg)

T_CFLG * pk_cflg Pointer to the packet containing the eventflag cre-

ation information (in

CRE_FLG

, packet contents

must be directly specified.)

pk_cflg includes (T_CFLG type)

ATR flgatr Eventflag attribute

FLGPTN iflgptn Initial value of eventflag bit pattern

(Other implementation specific information may be added.)

[Return Parameter]

cre_flg:

ER ercd E_OK for normal completion or error code

acre_flg:

ER_ID flgid ID number (positive value) of the created eventflag

or error code

[Error Code]
E_ID Invalid ID number (flgid is invalid or unusable; only cre_flg)

E_NOID No ID number available (there is no eventflag ID assignable;

only acre_flg)

E_RSATR Reserved attribute (flgatr is invalid or unusable)

E_PAR Parameter error (pk_cflg or iflgptn is invalid)

E_OBJ Object state error (specified eventflag is already registered;

only cre_flg)

[Functional Description]

These service calls create an eventflag with an ID number specified by flgid based on

the information contained in the packet pointed to by pk_cflg. flgatr is the attribute

of the eventflag. iflgptn is the initial value of the bit pattern after creation of the event-
136

µITRON4.0 Specification Ver. 4.00.00

flag.

In

CRE_FLG

,

flgid

 is an integer parameter with automatic assignment.

flgatr

 is a

preprocessor constant expression parameter.

acre_flg assigns an eventflag ID from the pool of unassigned eventflag IDs and returns

the assigned eventflag ID.

flgatr can be specified as ((TA_TFIFO || TA_TPRI) | (TA_WSGL || TA_WMUL) |

[TA_CLR]). If TA_TFIFO (= 0x00) is specified, the eventflag’s wait queue will be in

FIFO order. If

TA_TPRI

 (= 0x01) is specified, the eventflag’s wait queue will be in

task priority order. If

TA_WSGL

 (= 0x00) is specified, only a single task is allowed to

be in the waiting state for the eventflag. If

TA_WMUL

 (= 0x02) is specified, multiple

tasks are allowed to be in the waiting state for the eventflag. If

TA_CLR

 (= 0x04) is

specified, the eventflag’s entire bit pattern will be cleared when a task is released from

the waiting state for the eventflag.

[Standard Profile]

The Standard Profile does not require support for when

TA_WMUL

 is specified in

flgatr

.

[Supplemental Information]

A task in the waiting state for an eventflag is not always released from waiting accord-

ing to its order in the wait queue. This is because when the task satisfies the release

condition, it is released from waiting even if it is not at the head of the wait queue. For

example, even if an eventflag’s attribute has

TA_TFIFO

 set, tasks are not always

released from the wait queue in FIFO order.

If TA_WSGL is specified in flgatr, the eventflag with the TA_TFIFO attribute

behaves the same as the eventflag with the TA_TPRI attribute.

Multiple tasks cannot be released from the waiting state for an eventflag with the

TA_CLR attribute. This is because when a task is released from waiting, all of the bits

in the eventflag is cleared.

[Differences from the µITRON3.0 Specification]

The specification of clearing an eventflag has been moved from the wait mode parame-

ter in

wai_flg

 to the eventflag attribute. This change has been made because there is

almost never a case where some waiting tasks will require the bit pattern to be cleared

and some tasks will require the bit pattern to remain intact.

The functionality allowing the eventflag’s wait queue to be ordered by task priority

with the TA_TPRI attribute has been added.

The extended information has been removed from the eventflag creation information.

The data type of iflgptn have been changed from the UINT to FLGPTN. The value

of TA_WMUL has been changed.

acre_flg has been newly added.
137

µITRON4.0 Specification Ver. 4.00.00

del_flg Delete Eventflag

[C Language API]
ER ercd = del_flg (ID flgid) ;

[Parameter]
ID flgid ID number of the eventflag to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (flgid is invalid or unusable)

E_NOEXS Non-existent object (specified eventflag is not registered)

[Functional Description]

This service call deletes the eventflag specified by flgid.

[Supplemental Information]

See Section 3.8 for information regarding handling tasks that are waiting in an

eventflag’s wait queue when the eventflag is deleted.
138

µITRON4.0 Specification Ver. 4.00.00

set_flg Set Eventflag [S]

iset_flg [S]

[C Language API]
ER ercd = set_flg (ID flgid, FLGPTN setptn) ;
ER ercd = iset_flg (ID flgid, FLGPTN setptn) ;

[Parameter]
ID flgid ID number of the eventflag to be set

FLGPTN setptn Bit pattern to set

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (flgid is invalid or unusable)

E_NOEXS Non-existent object (specified eventflag is not registered)

E_PAR Parameter error (setptn is invalid)

[Functional Description]

These service calls set the bits specified by setptn in the eventflag specified by flgid.

Specifically, the bit pattern of the eventflag is updated to the bit-wise OR of its bit pat-
tern before the invocation of the service call with the value specified in

setptn

.

After the eventflag’s bit pattern is updated, any tasks that satisfy their release condi-
tions are released from waiting. Specifically, each task in the eventflag’s wait queue is

checked starting from the head and is released from waiting if its release condition is

satisfied. Each of the released tasks receives

E_OK

 from the service call that caused it

to wait in the eventflag’s wait queue. It also receives the bit pattern of the eventflag sat-
isfying the task’s releasing condition. If the eventflag’s attribute has

TA_CLR

(= 0x04) set, the service calls complete after clearing the entire bit pattern of the event-
flag. If

TA_CLR

 is not specified, the remaining tasks in the wait queue are checked to

see if they satisfy their release conditions. The service calls terminate after all tasks

have been checked. See the functional description of wai_flg for information about

tasks’ release conditions.

Multiple tasks can be released by a single invocation of set_flg if the eventflag’s

attribute has the TA_WMUL (= 0x02) attribute but not the TA_CLR attribute set.

When multiple tasks are released, they are released in the same order as in the event-
flag’s wait queue. Therefore, among the same priority tasks that are moved to the

READY state, a task closer to the head of the wait queue will have higher precedence.

[Supplemental Information]

No action is required when all of the bits of

setptn are 0.
139

µITRON4.0 Specification Ver. 4.00.00

[Differences from the µITRON3.0 Specification]

The data type of setptn has been changed from UINT to FLGPTN.
140

µITRON4.0 Specification Ver. 4.00.00

clr_flg Clear Eventflag [S]

[C Language API]
ER ercd = clr_flg (ID flgid, FLGPTN clrptn) ;

[Parameter]
ID flgid ID number of the eventflag to be cleared

FLGPTN clrptn Bit pattern to clear (bit-wise negated)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (flgid is invalid or unusable)

E_NOEXS Non-existent object (specified eventflag is not registered)

E_PAR Parameter error (clrptn is invalid)

[Functional Description]

This service call clears the bits in the eventflag specified by flgid that correspond to 0

bit in clrptn. Specifically, the bit pattern of the eventflag is updated to the bit-wise

AND of its bit pattern before the invocation of the service call with the value specified

in clrptn.

[Supplemental Information]

No action is required when all of the bits of clrptn are 1.

[Differences from the µITRON3.0 Specification]

The data type of clrptn has been changed from UINT to FLGPTN.
141

µITRON4.0 Specification Ver. 4.00.00

wai_flg Wait for Eventflag [S]

pol_flg Wait for Eventflag (Polling) [S]

twai_flg Wait for Eventflag (with Timeout) [S]

[C Language API]
ER ercd = wai_flg (ID flgid, FLGPTN waiptn, MODE wfmode,

FLGPTN *p_flgptn) ;
ER ercd = pol_flg (ID flgid, FLGPTN waiptn, MODE wfmode,

FLGPTN *p_flgptn) ;
ER ercd = twai_flg (ID flgid, FLGPTN waiptn, MODE wfmode,

FLGPTN *p_flgptn, TMO tmout) ;

[Parameter]
ID flgid ID number of the eventflag to wait for

FLGPTN waiptn Wait bit pattern

MODE wfmode Wait mode

TMO tmout Specified timeout (only twai_flg)

[Return Parameter]
ER ercd E_OK for normal completion or error code

FLGPTN flgptn Bit pattern causing a task to be released from wait-

ing

[Error Code]

E_ID Invalid ID number (flgid is invalid or unusable)

E_NOEXS Non-existent object (specified eventflag is not registered)

E_PAR Parameter error (waiptn, wfmode, p_flgptn, or tmout is
invalid)

E_ILUSE Illegal service call use (there is already a task waiting for an

eventflag with the TA_WSGL attribute)

E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except pol_flg)

E_TMOUT Polling failure or timeout (except wai_flg)

E_DLT Waiting object deleted (eventflag is deleted while waiting;

except pol_flg)

[Functional Description]

These service calls cause invoking task to wait until the eventflag specified by flgid
satisfies the release condition. The release condition is determined by the bit pattern

specified by waiptn and the wait mode specified by wfmode. Once the release con-

dition is satisfied, the bit pattern causing the release is returned through

flgptn

. Spe-

cifically, the following actions are performed.
142

µITRON4.0 Specification Ver. 4.00.00

If the release condition is already satisfied when the service calls are invoked, the ser-

vice calls complete without causing the invoking task to wait. The eventflag bit pattern

is still returned to the invoking task through

flgptn

. In addition, when the eventflag’s

attribute has TA_CLR set, all the bits in the eventflag’s bit pattern are cleared.

If the release condition is not satisfied, the invoking task is placed in the eventflag’s

wait queue and is moved to the waiting state for the eventflag.

When the eventflag’s attribute has TA_WSGL (= 0x00) set and another task is already

waiting in the eventflag’s wait queue, an

E_ILUSE

 error is returned. This applies even

if the release condition is already satisfied.

wfmode

 can be specified as (

TWF_ANDW

 ||

TWF_ORW

). When

wfmode

 has

TWF_ANDW

 (= 0x00) set, the release condition requires all the bits in waiptn to be

set. Conversely, when

wfmode

 has

TWF_ORW

 (= 0x01) set, the release condition

only requires at least one bit in

waiptn

 to be set.

If there are already tasks in the wait queue, the invoking task is placed in the wait queue

as described below. When the eventflag’s attribute has

TA_TFIFO

 (= 0x00) set, the

invoking task is placed in the tail of the wait queue. When the attribute has

TA_TPRI

(= 0x01) set, the invoking task is placed in the wait queue in the order of the task’s pri-

ority. If the wait queue contains tasks with the same priority as the invoking task, the

invoking task is placed after those tasks.

pol_flg

 is a polling service call with the same functionality as wai_flg. twai_flg has

the same functionality as wai_sem with an additional timeout feature. tmout can be

set to a positive number indicating a timeout duration or it can be set to TMO_POL
(= 0) or TMO_FEVR (= –1).

If

waitpn

 is 0, an

E_PAR

 error is returned.

[Supplemental Information]

twai_flg

 acts the same as

pol_flg

 if

TMO_POL

 is specified in

tmout

 as long as no

context error occurs. Also,

twai_flg

 acts the same as

wai_flg

 if

TMO_FEVR

 is spec-

ified in

tmout

.

[Differences from the µITRON3.0 Specification]

The order of parameters and the return parameter have been changed. The data type of

waiptn and flgptn has been changed from UINT to FLGPTN, and the data type of

wfmode has been changed from UINT to MODE.

The clear specification in the wait mode (TWF_CLR) has been removed. Instead, an

eventflag attribute TA_CLR has been added. The value of TWF_ORW has been

changed.

[Rationale]

The reason that an E_PAR error is returned when waiptn is 0 is because the release

condition will never be satisfied.
143

µITRON4.0 Specification Ver. 4.00.00
ref_flg Reference Eventflag Status

[C Language API]
ER ercd = ref_flg (ID flgid, T_RFLG *pk_rflg) ;

[Parameter]
ID flgid ID number of the eventflag to be referenced

T_RFLG * pk_rflg Pointer to the packet returning the eventflag state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rflg

 includes (

T_RFLG

 type)

ID wtskid

ID number of the task at the head of the eventflag’s

wait queue

FLGPTN flgptn

Eventflag’s current bit pattern

(Other implementation specific information may be added.)

[Error Code]

E_ID

Invalid ID number (

flgid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified eventflag is not registered)

E_PAR

Parameter error (

pk_rflg

 is invalid)

[Functional Description]

This service call references the state of the eventflag specified by parameter

flgid

. The

state of the eventflag is returned through the packet pointed to by

pk_rflg

.

The ID number of the task at the head of the eventflag’s wait queue is returned through

wtskid

. If no tasks are waiting for the eventflag,

TSK_NONE

 (= 0) is returned

instead.

The eventflag’s current bit pattern is returned through

flgptn

.

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The ID

number of the task at the head of the wait queue is now returned instead of a boolean

value indicating whether a task is waiting or not. Based on this replacement, the name

and data type of the return parameter has been changed.

The data type of

flgptn

 has been changed from

UINT

 to

FLGPTN

. The order of

parameters and of return parameters has been changed.
144

µITRON4.0 Specification Ver. 4.00.00

4.4.3 Data Queues

A data queue is an object used for synchronization and communication by sending or

receiving a one word message, called a data element. Data queue functions include the

ability to create and delete a data queue, to send, force-send and receive a data element

to/from a data queue, and to reference the state of a data queue. A data queue is an

object identified by an ID number. The ID number of a data queue is called the data

queue ID.

A data queue has an associated wait queue for sending a data element (send-wait

queue) and an associated wait queue for receiving a data element (receive-wait queue).

Also, a data queue has an associated data queue area used to store sent data elements.

A task sending a data element (notifying the occurrence of an event) places the data

element in the data queue. If there is no room in the data queue area, the task will be in

the sending waiting state for a data queue until there is room for the data element in the

data queue area. The task waiting to send the data element is placed in the data queue’s

send-wait queue. A task receiving a data element (waiting for an occurrence of an

event) removes a data element from the data queue. If there is no data in the data

queue, the task will be in the receiving waiting state until a data element is sent to the

data queue. The task waiting to receive a data element from the data queue is placed in

the data queue’s receive-wait queue.

Synchronous message passing can be performed by setting the number of data ele-

ments that can be stored in the data queue area to 0. The sending task and the receiving

task wait until the other calls the complimentary service call, at which time the data

element is transferred.

The one word data element to be sent and received can be an integer or the address of a

message located in a memory area shared by the sender and the receiver. A data ele-

ment that is sent and received is copied from the sender to the receiver.

The following kernel configuration macro is defined for use with the data queue func-

tions:

SIZE dtqsz = TSZ_DTQ (UINT dtqcnt)

This macro returns the total required size of the data queue area in bytes neces-

sary to store

dtqcnt

 data elements.

The following date types packets are defined for creating and referencing data queues:

typedef struct t_cdtq {
ATR dtqatr ; /* Data queue attribute */
UINT dtqcnt ; /* Capacity of the data queue area (the

number of data elements) */
VP dtq ; /* Start address of the data queue area */
/* Other implementation specific fields may be added. */

} T_CDTQ ;

typedef struct t_rdtq {
145

µITRON4.0 Specification Ver. 4.00.00

ID stskid ; /* ID number of the task at the head of the
data queue’s send-wait queue */

ID rtskid ; /* ID number of the task at the head of the
data queue’s receive-wait queue */

UINT sdtqcnt ; /* The number of data elements in the data
queue */

/* Other implementation specific fields may be added. */
} T_RDTQ ;

The following represents the function codes for the data queue service calls:

TFN_CRE_DTQ

–0x31 Function code of

cre_dtq
TFN_ACRE_DTQ

–0xc4 Function code of

acre_dtq
TFN_DEL_DTQ

–0x32 Function code of

del_dtq
TFN_SND_DTQ

–0x35 Function code of

snd_dtq
TFN_PSND_DTQ

–0x36 Function code of

psnd_dtq
TFN_IPSND_DTQ

–0x77 Function code of

ipsnd_dtq
TFN_TSND_DTQ

–0x37 Function code of

tsnd_dtq
TFN_FSND_DTQ

–0x38 Function code of

fsnd_dtq
TFN_IFSND_DTQ

–0x78 Function code of

ifsnd_dtq
TFN_RCV_DTQ

–0x39 Function code of

rcv_dtq
TFN_PRCV_DTQ

–0x3a Function code of

prcv_dtq
TFN_TRCV_DTQ

–0x3b Function code of

trcv_dtq
TFN_REF_DTQ –0x3c Function code of ref_dtq

[Standard Profile]

The Standard Profile requires support for data queue functions except for dynamic cre-

ation and deletion of a data queue (

cre_dtq

, acre_dtq, del_dtq) and reference of a

data queue state (ref_dtq).

The Standard Profile does not require TSZ_DTQ to be defined.

[Supplemental Information]

Figure 4-1 shows the behavior of a data queue when the number of data elements that

can be stored in the data queue is set to 0. In this figure, task A and task B are assumed

to be running asynchronously.

 • If task A invokes snd_dtq first, task A is moved to the WAITING state until task B

invokes rcv_dtq. During this time, task A is in the sending waiting state for a data

queue.

 • If, on the other hand, task B invokes rcv_dtq first, task B is moved to the WAITING

state until task A invokes snd_dtq. During this time, task B is in the receiving

waiting state for a data queue.

 • When task A invokes snd_dtq and task B invokes rcv_dtq, the data transfer from

task A to task B takes place. After this, both tasks are moved to the runnable state.

A data queue is assumed to be implemented as a ring buffer.
146

µITRON4.0 Specification Ver. 4.00.00
[Differences from the µITRON3.0 Specification]

This functionality has been newly added and has the same functionality as the mailbox

of the µITRON3.0 Specification implemented with a ring buffer.

Figure 4-1. Synchronous Communication through a Data Queue

Task A Task B

snd_dtq (dtqid)

rcv_dtq (dtqid)
147

µITRON4.0 Specification Ver. 4.00.00

CRE_DTQ Create Data Queue (Static API) [S]

cre_dtq Create Data Queue

acre_dtq Create Data Queue (ID Number Automatic Assignment)

[Static API]
CRE_DTQ (ID dtqid, { ATR dtqatr, UINT dtqcnt, VP dtq }) ;

[C Language API]
ER ercd = cre_dtq (ID dtqid, T_CDTQ *pk_cdtq) ;
ER_ID dtqid = acre_dtq (T_CDTQ *pk_cdtq) ;

[Parameter]
ID dtqid ID number of the data queue to be created (except

acre_dtq)

T_CDTQ * pk_cdtq Pointer to the packet containing the data queue cre-

ation information (in

CRE_DTQ

, packet contents

must be directly specified.)

pk_cdtq includes (T_CDTQ type)

ATR dtqatr Data queue attribute

UINT dtqcnt Capacity of the data queue area (the number of data

elements)

VP dtq Start address of the data queue area

(Other implementation specific information may be added.)

[Return Parameter]

cre_dtq:

ER ercd E_OK for normal completion or error code

acre_dtq:

ER_ID dtqid ID number (positive value) of the created data

queue or error code

[Error Code]
E_ID Invalid ID number (dtqid is invalid or unusable; only

cre_dtq)

E_NOID No ID number available (there is no data queue ID assignable;

only acre_dtq)

E_NOMEM Insufficient memory (data queue area cannot be allocated)

E_RSATR Reserved attribute (dtqatr is invalid or unusable)

E_PAR Parameter error (pk_cdtq, dtqcnt, or dtq is invalid)

E_OBJ Object state error (specified data queue is already registered;

only cre_dtq)
148

µITRON4.0 Specification Ver. 4.00.00

[Functional Description]

These service calls create a data queue with an ID number specified by dtqid based on

the information contained in the packet pointed to by pk_cdtq. dtqatr is the attribute

of the data queue. dtqcnt is the capacity of the data queue area: the maximum number

of data elements that may be stored in the data queue area. dtq is the start address of

the data queue area.

In CRE_DTQ, dtqid is an integer parameter with automatic assignment. dtqatr is a

preprocessor constant expression parameter.

acre_dtq assigns a data queue ID from the pool of unassigned data queue IDs and

returns the assigned data queue ID.

dtqatr can be specified as (TA_TFIFO || TA_TPRI). If TA_TFIFO (= 0x00) is spec-

ified, the data queue’s send-wait queue will be in FIFO order. If

TA_TPRI

 (= 0x01) is

specified, the data queue’s send-wait queue will be in task priority order.

The necessary area to hold up to

dtqcnt

 data elements starts from

dtq

 and is used as

the data queue area. An application program can calculate the size of the data queue

area necessary to hold

dtqcnt

 number of data elements by using the

TSZ_DTQ

macro. If

dtq

 is

NULL

 (= 0), the kernel allocates the necessary memory area. dtqcnt

may be specified as 0.

[Standard Profile]

The Standard Profile does not require support for when other values than

NULL

 are

specified in

dtq

.

[Supplemental Information]

The data queue’s receive-wait queue always utilizes FIFO ordering. Also, a data ele-

ment sent to a data queue does not have a priority. The data elements in a data queue is

always in FIFO order. However, when

snd_dtq

 and fsnd_dtq are used at the same

time, there are cases where the data element sent by fsnd_dtq would be ahead of the

data element earlier sent by snd_dtq.
149

µITRON4.0 Specification Ver. 4.00.00

del_dtq Delete Data Queue

[C Language API]
ER ercd = del_dtq (ID dtqid) ;

[Parameter]
ID dtqid ID number of the data queue to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (dtqid is invalid or unusable)

E_NOEXS Non-existent object (specified data queue is not registered)

[Functional Description]

This service call deletes the data queue specified by dtqid. If the data queue area was

allocated by the kernel, the area is released.

[Supplemental Information]

The data elements in the data queue will be discarded. See Section 3.8 for information

regarding handling tasks that are waiting in the data queue’s send-wait queue and

receive-wait queue when the data queue is deleted.
150

µITRON4.0 Specification Ver. 4.00.00

snd_dtq Send to Data Queue [S]

psnd_dtq Send to Data Queue (Polling) [S]

ipsnd_dtq [S]

tsnd_dtq Send to Data Queue (with Timeout) [S]

[C Language API]
ER ercd = snd_dtq (ID dtqid, VP_INT data) ;
ER ercd = psnd_dtq (ID dtqid, VP_INT data) ;
ER ercd = ipsnd_dtq (ID dtqid, VP_INT data) ;
ER ercd = tsnd_dtq (ID dtqid, VP_INT data, TMO tmout) ;

[Parameter]
ID dtqid ID number of the data queue to which the data ele-

ment is sent

VP_INT data

Data element to be sent

TMO tmout Specified timeout (only tsnd_dtq)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (dtqid is invalid or unusable)

E_NOEXS Non-existent object (specified data queue is not registered)

E_PAR Parameter error (tmout is invalid; only tsnd_dtq)

E_RLWAI Forced release from waiting (accept rel_wai while waiting;

only snd_dtq and tsnd_dtq)

E_TMOUT Polling failure or timeout (except snd_dtq)

E_DLT Waiting object deleted (data queue is deleted while waiting;

only snd_dtq and tsnd_dtq)

[Functional Description]

These service calls send the data element specified by data to the data queue specified

by dtqid. Specifically, the following actions are performed.

If there are already tasks in the data queue’s receive-wait queue, these service calls

send the data element to the task at the head of the receive-wait queue and release the

task from waiting. The released task receives E_OK from the service call that caused

it to wait in the receive-wait queue. It also receives the data element from the data

queue through data.

If no tasks are waiting in the data queue’s receive-wait queue, these service calls place

the data element to be sent at the tail of the data queue. If there is no room in the data

queue area, the invoking task is placed in the send-wait queue and is moved to the

sending waiting state for the data queue.
151

µITRON4.0 Specification Ver. 4.00.00

If there are already tasks in the send-wait queue, the invoking task is placed in the

send-wait queue as described below. When the data queue’s attribute has TA_FIFO
(= 0x00) set, the invoking task is placed at the tail of the send-wait queue. When the

data queue’s attribute has

TA_TPRI

 (= 0x01) set, the invoking task is placed in the

send-wait queue in the order of the task’s priority. If the send-wait queue contains

tasks with the same priority as the invoking task, the invoking task is placed after those

tasks.

psnd_dtq

 and

ipsnd_dtq

 are polling service calls with the same functionality as

snd_dtq

.

tsnd_dtq

 has the same functionality as

snd_dtq

 with an additional time-

out feature.

tmout

 can be set to a positive number indicating a timeout duration or it

can be set to TMO_POL (= 0) or TMO_FEVR (= –1).

psnd_dtq

 and

ipsnd_dtq

 return an

E_TMOUT

 error if no tasks are waiting in the

receive-wait queue and if there is no room for the data element in the data queue area.

If the service call is invoked from non-task contexts and has its execution delayed, an

E_TMOUT

 error may not be returned.

[Supplemental Information]

tsnd_dtq

 acts the same as

psnd_dtq

 if

TMO_POL

 is specified in

tmout

 as long as

no context error occurs. Also,

tsnd_dtq

 acts the same as

snd_dtq

 if

TMO_FEVR

 is

specified in

tmout

.

152

µITRON4.0 Specification Ver. 4.00.00

fsnd_dtq

Forced Send to Data Queue

[S]

ifsnd_dtq

[S]

[C Language API]

ER ercd = fsnd_dtq (ID dtqid, VP_INT data) ;
ER ercd = ifsnd_dtq (ID dtqid, VP_INT data) ;

[Parameter]

ID dtqid

ID number of the data queue to which the data ele-
ment is sent

VP_INT data

Data element to be sent to the data queue

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (dtqid is invalid or unusable)

E_NOEXS Non-existent object (specified data queue is not registered)

E_ILUSE Illegal service call use (the capacity of the data queue area is

0)

[Functional Description]

These service calls forcibly send the data element specified by data to the data queue

specified by dtqid. Specifically, the following actions are performed.

If there are already tasks in the data queue’s receive-wait queue, these service calls

send the data element to the task at the head of the receive-wait queue and release the

task from waiting. The released task receives E_OK from the service call that caused

it to wait in the receive-wait queue. It also receives the data element from the data

queue through data.

If no tasks are waiting in the data queue’s receive-wait queue, these service calls place

the data element to be sent at the tail of the data queue. If there is no room in the data

queue area, these service calls reserve a space for the new data element by deleting the

first data element in the data queue. The new data element is still placed at the tail of

the data queue.

These service calls cannot forcibly send a data element when the capacity of the data

queue area is 0. If the capacity of the data queue area is 0, an E_ILUSE error is

returned.

[Supplemental Information]

These service calls force the data to be sent even if there are already tasks waiting to

send data in the send-wait queue.

If the capacity of the data queue area is 0, an E_ILUSE error is returned even if there
153

µITRON4.0 Specification Ver. 4.00.00
is a task waiting in the receive-wait queue.
154

µITRON4.0 Specification Ver. 4.00.00

rcv_dtq Receive from Data Queue [S]

prcv_dtq Receive from Data Queue (Polling) [S]

trcv_dtq Receive from Data Queue (with Timeout) [S]

[C Language API]
ER ercd = rcv_dtq (ID dtqid, VP_INT *p_data) ;
ER ercd = prcv_dtq (ID dtqid, VP_INT *p_data) ;
ER ercd = trcv_dtq (ID dtqid, VP_INT *p_data, TMO tmout) ;

[Parameter]
ID dtqid ID number of the data queue from which a data ele-

ment is received

TMO tmout

Specified timeout (only trcv_dtq)

[Return Parameter]
ER ercd E_OK for normal completion or error code

VP_INT data Data element received from the data queue

[Error Code]
E_ID Invalid ID number (dtqid is invalid or unusable)

E_NOEXS Non-existent object (specified data queue is not registered)

E_PAR Parameter error (p_data or tmout is invalid)

E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except prcv_dtq)

E_TMOUT Polling failure or timeout (except rcv_dtq)

E_DLT Waiting object deleted (data queue is deleted while waiting;

except prcv_dtq)

[Functional Description]

These service calls receive a data element from the data queue specified by dtqid and

returns the data element through data. Specifically, the following actions are per-

formed.

If the data queue already has data elements, these service calls remove the first data ele-

ment from the data queue and return it through

data

. If there is a task in the data

queue’s send-wait queue, these service calls place the data element from the first task in

the send-wait queue at the tail of the data queue and release the task from waiting. The

released task receives E_OK from the service call that caused it to wait in the

send-wait queue.

If there are no data elements in the data queue and if there are tasks in the data queue’s

send-wait queue (this occurs when the capacity of the data queue area is 0), the data

element from the task at the head of the send-wait queue is returned through data, and

the task is released from waiting. The released task receives E_OK from the service
155

µITRON4.0 Specification Ver. 4.00.00

call that caused it to wait in the send-wait queue.

If there are no data elements in the data queue and if there are no tasks in the send-wait

queue, the invoking task is placed in the receive-wait queue and moved to the receiving

waiting state for the data queue. If there are already tasks in the receive-wait queue, the

invoking task is placed at the tail of the receive-wait queue.

prcv_dtq is a polling service call with the same functionality as rcv_dtq. trcv_dtq
has the same functionality as rcv_dtq with an additional timeout feature. tmout can

be set to a positive number indicating a timeout duration or it can be set to TMO_POL
(= 0) or TMO_FEVR (= –1).

[Supplemental Information]

trcv_dtq

 acts the same as

prcv_dtq

 if

TMO_POL

 is specified in

tmout

 as long as

no context error occurs. Also,

trcv_dtq

 acts the same as

rcv_dtq

 if

TMO_FEVR

 is

specified in

tmout

.

156

µITRON4.0 Specification Ver. 4.00.00

ref_dtq

Reference Data Queue State

[C Language API]

ER ercd = ref_dtq (ID dtqid, T_RDTQ *pk_rdtq) ;

[Parameter]

ID dtqid

ID number of the data queue to be referenced

 T_RDTQ * pk_rdtq Pointer to the packet returning the data queue state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rdtq

 includes (

T_RDTQ

 type)

ID stskid

ID number of the task at the head of the send-wait

queue

ID rtskid

ID number of the task at the head of the

receive-wait queue

UINT sdtqcnt

The number of data elements in the data queue

(Other implementation specific information may be added.)

[Error Code]

E_ID

Invalid ID number (

dtqid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified data queue is not registered)

E_PAR

Parameter error (

pk_rdtq

 is invalid)

[Functional Description]

This service call references the state of the data queue specified by

dtqid

. The state of

the data queue is returned through the packet pointed to by

pk_rdtq

.

The ID number of the task at the head of the data queue’s send-wait queue is returned

through

stskid

. If no tasks are waiting to send a data element,

TSK_NONE

 (= 0) is

returned instead.

The ID number of the task at the head of the data queue’s receive-wait queue is

returned through

rtskid

. If no tasks are waiting to receive a data element,

TSK_NONE

 (= 0) is returned instead.

The number of data elements currently in the data queue is returned through sdtqcnt.

[Supplemental Information]

A data queue cannot have

rtskid

≠

TSK_NONE

 and

sdtqcnt

≠

 0 at the same time.

When s

tskid

≠

TSK_NONE

,

sdtqcnt

 is equal to the capacity of the data queue area.
157

µITRON4.0 Specification Ver. 4.00.00

4.4.4 Mailboxes

A mailbox is an object used for synchronization and communication by sending or

receiving a message placed in a shared memory. Mailbox functions include the ability

to create and delete a mailbox, to send and receive a message to/from a mailbox, and to

reference the state of a mailbox. A mailbox is an object identified by an ID number.

The ID number of a mailbox is called the mailbox ID.

A mailbox has an associated message queue used to store sent messages and an associ-

ated wait queue for receiving messages. A task sending a message (notifying the

occurrence of an event) places the message to be sent in the message queue. A task

receiving a message from the mailbox (waiting for an occurrence of an event) removes

the first message from the message queue. If there is no message in the message queue,

the task will be in the receiving waiting state until a message is sent to the mailbox.

The task waiting to receive a message from the mailbox is placed in the mailbox’s wait

queue.

With mailbox functions, only the start address of the message placed in a shared mem-

ory is actually passed between tasks. The message itself is not copied.

The kernel maintains the messages in the message queue using a linked list. The appli-

cation program must reserve an area to be used by the kernel for the linked list at the

head of each sent message. This reserved area is called the message header. A mes-

sage packet is the area consisting of a message header followed by an area that is used

by the application to store a message body. The start address of the message packet is

passed as a parameter to the service calls that send a message, and it is returned as a

return parameter from the service calls that receive a message. An area for the message

priority is included in the message header when the message queue is ordered by mes-

sage priorities.

The kernel modifies the contents of a message header, except the area for the message

priority, while the message is in a message queue (and when the message is to be

placed in a message queue). On the other hand, the application program must not mod-

ify the contents of a message header, including the message priority, while the message

is in a message queue. If the application modifies the contents of a message header, the

resulting behavior is undefined. In addition to the case where the application program

directly modifies the contents of a message header, this rule also applies to the case

where the application program passes the address of the message header to the kernel

and makes the kernel modify its contents. Therefore, the behavior when a message

already in a message queue is resent to a mailbox is undefined.

The following data types are used for message headers:

T_MSG

Message header for a mailbox

T_MSG_PRI Message header with a message priority for a mailbox

The definition and size of the T_MSG type are implementation-defined. The
158

µITRON4.0 Specification Ver. 4.00.00

T_MSG_PRI type is defined using T_MSG type as follows:

typedef struct t_msg_pri {
T_MSG msgque ; /* Message header */
PRI msgpri ; /* Message priority */

} T_MSG_PRI ;

The following kernel configuration macro is defined for use with mailbox functions:

SIZE mprihdsz = TSZ_MPRIHD (PRI maxmpri)

This macro returns the total required size in bytes of the area for message queue

headers for each message priority, when the maximum message priority is

maxmpri

.

The following data types packets are defined for creating and referencing mailboxes:

typedef struct t_cmbx {
ATR mbxatr ; /* Mailbox attribute */
PRI maxmpri ; /* Maximum message priority */
VP mprihd ; /* Start address of the area for message

queue headers for each message
priority */

/* Other implementation specific fields may be added. */
} T_CMBX ;

typedef struct t_rmbx {
ID wtskid ; /* ID number of the task at the head of

mailbox’s wait queue */
T_MSG * pk_msg ; /* Start address of the message packet at

the head of the message queue */
/* Other implementation specific fields may be added. */

} T_RMBX ;

The following represents the function codes for the mailbox service calls:

TFN_CRE_MBX

–0x3d Function code of

cre_mbx
TFN_ACRE_MBX

–0xc5 Function code of

acre_mbx
TFN_DEL_MBX

–0x3e Function code of

del_mbx
TFN_SND_MBX

–0x3f Function code of

snd_mbx
TFN_RCV_MBX

–0x41 Function code of

rcv_mbx
TFN_PRCV_MBX

–0x42 Function code of

prcv_mbx
TFN_TRCV_MBX

–0x43 Function code of

trcv_mbx
TFN_REF_MBX

–0x44 Function code of

ref_mbx

[Standard Profile]

The Standard Profile requires support for mailbox functions except for dynamic cre-

ation and deletion of a mailbox (

cre_mbx

, acre_mbx, del_mbx) and reference of a

mailbox state (ref_mbx).

The Standard Profile does not require TSZ_MPRIHD to be defined.

[Supplemental Information]
159

µITRON4.0 Specification Ver. 4.00.00

In the mailbox functions, the number of messages that can be stored in a message

queue has no upper limit because the application program has the responsibility to

reserve the area for message headers. Service calls for sending a message will not

move the invoking task to the WAITING state.

To make an application program portable to different kernels with different definitions

and sizes for message headers, the message packet should be defined as a C language

structure, and a field of T_MSG type or T_MSG_PRI type should be allocated at the

top of the message packet. In addition the message priority should be assigned to the

msgpri field in T_MSG_PRI type. sizeof (T_MSG) or sizeof (T_MSG_PRI)
can be used to determine the size of the message header.

The area for a message packet may be dynamically allocated from a fixed-sized or vari-

able-sized memory pool. It is also possible to allocate the area statically. A common

practice is that the sending task allocates a memory block from a memory pool and

sends the block as a message packet to a mailbox, while the receiving task releases the

memory block which is received as a message packet from the mailbox to the memory

pool.

[Differences from the µITRON3.0 Specification]

Implementations of mailboxes are now limited to linked lists.
160

µITRON4.0 Specification Ver. 4.00.00

CRE_MBX

Create Mailbox (Static API)

[S]

cre_mbx Create Mailbox

acre_mbx Create Mailbox (ID Number Automatic Assignment)

[Static API]
CRE_MBX (ID mbxid, { ATR mbxatr, PRI maxmpri,

VP mprihd }) ;

[C Language API]
ER ercd = cre_mbx (ID mbxid, T_CMBX *pk_cmbx) ;
ER_ID mbxid = acre_mbx (T_CMBX *pk_cmbx) ;

[Parameter]
ID mbxid ID number of the mailbox to be created (except:

acre_mbx)

T_CMBX * pk_cmbx Pointer to the packet containing the mailbox cre-

ation information (in

CRE_MBX

, packet contents

must be directly specified.)

pk_cmbx includes (T_CMBX type)

ATR mbxatr Mailbox attribute

PRI maxmpri Maximum message priority

VP mprihd Start address of the area for message queue headers

for each message priority

(Other implementation specific information may be added.)

[Return Parameter]

cre_mbx:

ER ercd E_OK for normal completion or error code

acre_mbx:

ER_ID mbxid ID number (positive value) of created mailbox or

error code

[Error Code]
E_ID Invalid ID number (mbxid is invalid or unusable; only

cre_mbx)

E_NOID No ID number available (there is no mailbox ID assignable;

only acre_mbx)

E_NOMEM Insufficient memory (message queue header area cannot be

allocated)

E_RSATR Reserved attribute (mbxatr is invalid or unusable)

E_PAR Parameter error (pk_cmbx, maxmpri, or mprihd is

invalid)
161

µITRON4.0 Specification Ver. 4.00.00

E_OBJ Object state error (specified mailbox is already registered;

only cre_mbx)

[Functional Description]

These service calls create a mailbox with ID number specified by mbxid based on the

information contained in the packet pointed to by pk_cmbx. mbxatr is the attribute

of the mailbox. maxmpri is the maximum message priority of messages sent to the

mailbox. mprihd is the start address of the area for message queue headers for each

message priority. maxmpri and mprihd are valid only when TA_MPRI (= 0x02) is

specified in

mbxatr

.

In

CRE_MBX

,

mbxid

 is an integer parameter with automatic assignment.

mbxatr

and maxmpri are preprocessor constant expression parameters.

acre_mbx

 assigns a mailbox ID from the pool of unassigned mailbox IDs and and

returns the asigned mailbox ID.

mbxatr

 can be specified as ((

TA_TFIFO

 || TA_TPRI) | (TA_MFIFO || TA_MPRI)).
If TA_TFIFO (= 0x00) is specified, the mailbox’s wait queue will be in FIFO order. If
TA_TPRI

 (= 0x01) is specified, the mailbox’s wait queue will be in task priority order.

Similarly, if

TA_MFIFO

 (= 0x00) is specified, the mailbox’s message queue will be in

FIFO order, and if

TA_MPRI

 (= 0x02) is specified, the message queue will be in mes-

sage priority order.

If

TA_MPRI

 is specified in mbxatr, the necessary area to hold the message queue

headers for each of the message priorities up to maxmpri starts from mprihd. An

application program can calculate the size of the necessary message queue header area

when the maximum message priority is maxmpri by using TSZ_MPRIHD macro.

If mprihd is NULL (= 0), the kernel allocates the necessary memory area.
maxmpri

 cannot be specified as 0. If specified, an

E_PAR

 error is returned.

[Standard Profile]

The Standard Profile does not require support for when other values than

NULL

 is

specified in

mprihd

.

[Supplemental Information]

The following must be considered when a message queue is prepared for each message

priority level using the message queue header area.

Preparing a message queue for each message priority level is effective when the num-

ber of the message priority levels is small. When the number of allowed message pri-

ority levels is large, this method requires a large memory area and thus is not practical.

Therefore, in order to handle the case where the message priority levels is large, the

structure of the message queue should be varied depending on the number of message

priority levels. For example, when the maximum priority level is below a certain

threshold value, a message queue is prepared for each message priority level. When

the maximum priority level falls above this threshold, all messages are managed in a
162

µITRON4.0 Specification Ver. 4.00.00

single queue. In this case,

TSZ_MPRIHD

 will return the same value for all values of

maxmpri

 that are above the threshold value.

maxmpri parameter to CRE_MBX is

defined to be a preprocessor constant expression parameter in order for the kernel con-

figurator to create conditional directives involving

maxmpri

 in the C language source

code and to modify the data structure in the kernel when maxmpri is above the

threshold value.

It is also possible to manage all messages in a single queue without using separate mes-

sage queues for each message priority. In this kind of implementations,

TSZ_MPRIHD

 should be defined so that it returns a constant value, regardless of

maxmpri.

[Differences from the µITRON3.0 Specification]

The maximum message priority (maxmpri) and the start address of the area for mes-

sage queue headers for each message priority (

mprihd

) have been added to the mail-

box creation information. The extended information and the ring buffer size (an

implementation-dependent information) have been removed.

acre_mbx

 has been newly aded.
163

µITRON4.0 Specification Ver. 4.00.00

del_mbx Delete Mailbox

[C Language API]
ER ercd = del_mbx (ID mbxid) ;

[Parameter]
ID mbxid ID number of the mailbox to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (mbxid is invalid or unusable)

E_NOEXS Non-existent object (specified mailbox is not registered)

[Functional Description]

This service call deletes the mailbox specified by mbxid. If the area for message

queue headers for each message priority was allocated by the kernel, it is released.

[Supplemental Information]

The messages in the message queue will be discarded. See Section 3.8 for information

regarding handling tasks that are waiting to receive a message in a mailbox’s wait

queue when the mailbox is deleted.
164

µITRON4.0 Specification Ver. 4.00.00
snd_mbx Send to Mailbox [S]

[C Language API]
ER ercd = snd_mbx (ID mbxid, T_MSG *pk_msg) ;

[Parameter]
ID mbxid ID number of the mailbox to which the message is

sent

T_MSG * pk_msg Start address of the message packet to be sent to the

mailbox

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

[Error Code]

E_ID

Invalid ID number (

mbxid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified mailbox is not registered)

E_PAR

Parameter error (

pk_msg

 is invalid, the message priority in

the message packet (

msgpri

) is invalid)

[Functional Description]

This service call sends the message whose start address is specified by

pk_msg

 to the

mailbox specified by

mbxid

. Specifically, the following actions are performed.

If there are already tasks in the mailbox’s wait queue, this service call sends the start

address of the message packet to the task at the head of the wait queue and releases the

task from waiting. The released task receives

E_OK

 from the service call that caused

it to wait in the wait queue. It also receives the start address of the message packet

from the mailbox through

pk_msg

.

If no tasks are waiting in the mailbox’s wait queue, this service call places the message

packet to the message queue. When the mailbox’s attribute has

TA_MFIFIO

 (= 0x00)

set, the message packet is placed at the tail of the message queue. When the mailbox’s

attribute has

TA_MPRI

 (= 0x02) set, the message packet is placed in the message

queue in the order of its message priority. If the message queue contains messages

with the same priority as the newly sent message, the message is placed after those

messages.

When the mailbox’s attribute has

TA_MPRI

 (= 0x02) set, the message header of
T_MSG_PRI

 type is assumed to be at the head of the message packet pointed to by

pk_msg

. The message’s priority is obtained from the

msgpri

 field in the message

header.

[Differences from the µITRON3.0 Specification]

The name of the service call has been changed from

snd_msg

 into

snd_mbx

.

165

µITRON4.0 Specification Ver. 4.00.00

rcv_mbx

Receive from Mailbox

[S]

prcv_mbx

Receive from Mailbox (Polling)

[S]

trcv_mbx

Receive from Mailbox (with Timeout)

[S]

[C Language API]

ER ercd = rcv_mbx (ID mbxid, T_MSG **ppk_msg) ;
ER ercd = prcv_mbx (ID mbxid, T_MSG **ppk_msg) ;
ER ercd = trcv_mbx (ID mbxid, T_MSG **ppk_msg,

TMO tmout) ;

[Parameter]

ID mbxid

ID number of the mailbox from which a message is

received

TMO tmout

Specified timeout (only

trcv_mbx

)

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

T_MSG * pk_msg Start address of the message packet received from

the mailbox

[Error Code]

E_ID

Invalid ID number (

mbxid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified mailbox is not registered)

E_PAR

Parameter error (

ppk_msg

 or

tmout

 is invalid)

E_RLWAI

Forced release from waiting (accept

rel_wai

 while waiting;

except

prcv_mbx

)

E_TMOUT

Polling failure or timeout (except

rcv_mbx

)

E_DLT

Waiting object deleted (mailbox is deleted while waiting;

except

prcv_mbx

)

[Functional Description]

These service calls receive a message from the mailbox specified by

mbxid

 and return

its start address through

pk_msg

. Specifically, the following actions are performed.

If the mailbox’s message queue already has messages, these service calls remove the

first message packet from the message queue and return its start address through

pk_msg

.

If there are no messages in the message queue, the invoking task is placed in the wait

queue and moved to the receiving waiting state for the mailbox.

If there are already tasks in the wait queue, the invoking task is placed in the wait queue

as described below. When the mailbox’s attribute has

TA_TFIFO

 (= 0x00) set, the

invoking task is placed at the tail of the wait queue. When the mailbox’s attribute has

TA_TPRI

 (= 0x01) set, the invoking task is placed in the wait queue in the order of the
166

µITRON4.0 Specification Ver. 4.00.00

task’s priority. If the wait queue contains tasks with the same priority as the invoking

task, the invoking task is placed after those tasks.

prcv_mbx

 is a polling service call with the same functionality as

rcv_mbx

.

trcv_mbx

 has the same functionality as

rcv_mbx

 with an additional timeout feature.

tmout

 can be set to a positive number indicating a timeout duration or it can be set to

TMO_POL

 (= 0) or TMO_FEVR (= –1).

[Supplemental Information]

trcv_mbx

 acts the same as

prcv_mbx

 if

TMO_POL

 is specified in

tmout

 as long

as no context error occurs. Also,

trcv_mbx

 acts the same as

rcv_mbx

 if

TMO_FEVR

 is specified in

tmout

.

[Differences from the µITRON3.0 Specification]

The names of the service calls have been changed from

rcv_msg

,

prcv_msg

,

trcv_msg

 to

rcv_mbx

,

prcv_mbx

,

trcv_mbx

, respectively. The order of parame-

ters and of return parameters has been changed.
167

µITRON4.0 Specification Ver. 4.00.00

ref_mbx Reference Mailbox State

[C Language API]
ER ercd = ref_mbx (ID mbxid, T_RMBX *pk_rmbx) ;

[Parameter]
ID mbxid ID number of the mailbox to be referenced

T_RMBX * pk_rmbx Pointer to the packet returning the mailbox state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rmbx

 includes (

T_RMBX

 type)

ID wtskid

ID number of the task at the head of the mailbox’s

wait queue

T_MSG * pk_msg Start address of the message packet at the head of

message queue

(Other implementation specific information may be added.)

[Error Code]

E_ID

Invalid ID number (

mbxid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified mailbox is not registered)

E_PAR

Parameter error (

pk_rmbx

 is invalid)

[Functional Description]

This service call references the state of the mailbox specified by

mbxid

. The state of

the mailbox is returned through the packet pointed to by

pk_rmbx

.

The ID number of the task at the head of the mailbox’s wait queue is returned through

wtskid

. If no tasks are waiting to receive a message,

TSK_NONE

 (= 0) is returned

instead.

The start address of the message packet at the head of the mailbox’s message queue is

returned through

pk_msg

. If there is no message in the message queue,

NULL

 (= 0)

is returned instead.

[Supplemental Information]

A mailbox cannot have

wtskid

≠

 TSK_NONE and pk_msg ≠ NULL at the same

time.

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The ID

number of the task at the head of the wait queue is now returned instead of a boolean

value indicating whether a task is waiting or not. Based on this replacement, the name

and data type of the return parameter has been changed.
168

µITRON4.0 Specification Ver. 4.00.00
The order of parameters and of return parameters has been changed.
169

µITRON4.0 Specification Ver. 4.00.00

4.5 Extended Synchronization and Communication
Functions

Extend synchronization and communication functions provide advanced synchroniza-

tion and communication between tasks through objects that are independent of the

tasks. The objects are mutexes, message buffers, and rendezvous ports.

[Standard Profile]

The Standard Profile does not require support for extended synchronization and com-

munication functions.

[Differences from the µITRON3.0 Specification]

Mutex is a newly added feature.

4.5.1 Mutexes

A mutex is an object used for mutual exclusion of a shared resource among tasks.

Mutex supports the priority inheritance protocol and the priority ceiling protocol to

avoid unbounded priority inversions among tasks competing for a shared resource.

Mutex functions includes the ability to create and delete a mutex, to lock and unlock a

mutex, and to reference the state of a mutex. A mutex is an object identified by an ID

number. The ID number of a mutex is called the mutex ID.

A mutex has a locked and unlocked state. It also has a wait queue for tasks waiting to

lock the mutex. The kernel manages the task that locks each mutex and also the set of

mutexes a task locks. A task will try to lock a mutex before using a shared resource. In

case a mutex is already locked by another task, the task will be placed in the WAITING

state until the mutex is released. A task unlocks the mutex after using the shared

resource.

A mutex uses the priority inheritance protocol when its attribute has TA_INHERIT
(= 0x02) set, and it uses the priority ceiling protocol when its attribute has
TA_CEILING

 (= 0x03) set. During mutex creation, if the TA_CEILING attribute is

specified, the ceiling priority parameter should be set to the maximum priority of the

tasks that may lock the mutex. When a task tries to lock a mutex with the

TA_CEILING

 attribute and it has a higher base priority than the ceiling priority of the

mutex, an

E_ILUSE

 error is returned. If

chg_pri

 is invoked to set the base priority of

a task that has locked a mutex with the

TA_CEILING

 attribute to a higher value than

the mutex’s ceiling priority,

chg_pri

 will return an

E_ILUSE

 error.

When using these protocols, mutex operations change the current priority of tasks in

order to prevent unbounded priority inversion. The priority inheritance protocol and

the priority ceiling protocol require that the current priority of a task should always be

equal to the highest of the three priorities below:
170

µITRON4.0 Specification Ver. 4.00.00

 • The base priority of the task

 • The highest current priority among tasks waiting to lock one of the mutexes

with the

TA_INHERIT

 attribute that are locked by the task

 • The highest ceiling priority among mutexes with the

TA_CEILING

 attribute

that are locked by the task

This rule is called the strict priority control rule.

If the current priority of a task waiting for a mutex with the

TA_INHERIT

 attribute is

changed by mutex operations or is changed by having its base priority changed by

chg_pri

, the task that has the mutex locked may have to have its current priority

changed. Such a change of priority is called transitive priority inheritance. Moreover,

if the latter task is waiting for a second mutex with the

TA_INHERIT

 attribute, transi-

tive priority inheritance needs to be applied to the task that has the second mutex

locked.

In addition to the strict priority control rule, the µITRON4.0 Specification defines

another priority control rule, called the simplified priority control rule, which limits the

conditions under which the current priority is changed. The priority control rule used

is implementation-defined. Under the simplified priority control rule, when the current

priority of a task should be raised, it must be raised. However, when the current prior-

ity of a task should be lowered, it must be lowered only when the task no longer locks

any mutexes. In the case where the current priority of the task is lowered, it is changed

back to its base priority. More specifically, the current priority of a task is changed

under the following conditions:

 • When a higher-priority task begins to wait for a mutex with the

TA_INHERIT

 attribute that is locked by the task.

 • When the current priority of a task waiting for a mutex with the

TA_INHERIT attribute that is locked by the task is changed to a higher pri-

ority than the task.

 • When the task locks a mutex with the

TA_CEILING

 attribute and with a

higher ceiling priority than the task’s current priority.

 • When the task releases the last mutex that it locked.

The following actions are taken when the current priority of a task has been changed by

mutex operations. When a task whose priority has been changed is in the runnable

state, the precedence of the task is changed according to its new priority. The resulting

precedence of the task among the tasks with the same priority is implementa-

tion-dependent. When a task whose priority has been changed is in a priority-ordered

wait queue, the task’s position in the wait queue is changed according to the new prior-

ity. The resulting position of the task among the tasks of the same priority is imple-

mentation-dependent.

If a task terminates while it still has mutexes locked, the kernel unlocks all the mutexes

that it locked. The order of unlocking the mutexes is implementation-dependent. For
171

µITRON4.0 Specification Ver. 4.00.00

more details about unlocking a mutex, see the functional description of unl_mtx.

The following data type packets are defined for creating and referencing mutexes:

typedef struct t_cmtx {
ATR mtxatr ; /* Mutex attribute */
PRI ceilpri ; /* Mutex ceiling priority */
/* Other implementation specific fields may be added. */

} T_CMTX ;

typedef struct t_rmtx {
ID htskid ; /* ID number of the task that locks the

mutex */
ID wtskid ; /* ID number of the task at the head of the

mutex’s wait queue */
/* Other implementation specific fields may be added. */

} T_RMTX ;

The following represents the function codes for the mutex service calls:

TFN_CRE_MTX

–0x81 Function code of

cre_mtx
TFN_ACRE_MTX

–0xc6 Function code of

acre_mtx
TFN_DEL_MTX

–0x82 Function code of

del_mtx
TFN_LOC_MTX

–0x85 Function code of

loc_mtx
TFN_PLOC_MTX

–0x86 Function code of

ploc_mtx
TFN_TLOC_MTX

–0x87 Function code of

tloc_mtx
TFN_UNL_MTX

–0x83 Function code of

unl_mtx
TFN_REF_MTX

–0x88 Function code of

ref_mtx

[Supplemental Information]

A mutex with the attribute

TA_TFIFO

 or

TA_TPRI

 has a similar functionality as a

semaphore whose maximum count is 1: a binary semaphore. The differences are that a

mutex can only be unlocked by the task that locked it and that a mutex is unlocked by

the kernel when the locking task terminates.

The definition of the priority ceiling protocol described here is different from the prior-

ity ceiling protocol proposed in literature. More strictly, this protocol is sometimes

referred to as the highest locker protocol.

When mutex operations change the current priority of a task, and when the order of the

task within a wait queue is changed, the kernel may need to release the task or other

tasks in the wait queue from waiting. See the functional descriptions of

snd_mbf

 and

get_mpl for details.

[Differences from the µITRON3.0 Specification]

The mutex is newly added feature. Mutexes are introduced as objects independent

from semaphores because supporting priority inheritance protocol for counting sema-

phores is difficult.
172

µITRON4.0 Specification Ver. 4.00.00

[Rationale]

When mutex operations change the current priority of a task, the precedence among the

tasks with the same priority are made implementation-dependent for the following rea-

sons. Some applications might require frequent changes of the current priority through

the use of mutexes, resulting in frequent task switches, which in turn is not desirable.

If precedence of the task among tasks of the same priority is determined to the lowest,

unnecessary task switches may occur. Ideally, precedence (and not priority) should be

inherited. However, such a specification would require a large overhead. For this rea-

son, the precedence among tasks is left up to the implementation.
173

µITRON4.0 Specification Ver. 4.00.00

CRE_MTX Create Mutex (Static API)

cre_mtx Create Mutex

acre_mtx Create Mutex (ID Number Automatic Assignment)

[Static API]
CRE_MTX (ID mtxid, { ATR mtxatr, PRI ceilpri }) ;

[C Language API]
ER ercd = cre_mtx (ID mtxid, T_CMTX *pk_cmtx) ;
ER_ID mtxid = acre_mtx (T_CMTX *pk_cmtx) ;

[Parameter]
ID mtxid ID number of the mutex to be created (except

acre_mtx)

T_CMTX * pk_cmtx Pointer to the packet containing the mutex creation

information (in

CRE_MTX

, the packet contents

must be directly specified.)

pk_cmtx

 includes (

T_CMTX

 type)

ATR mtxatr

Mutex attribute

PRI ceilpri

Mutex ceiling priority

(Other implementation specific information may be added.)

[Return Parameter]

cre_mtx

:

ER ercd E_OK

 for normal completion or error code

acre_mtx

:

ER_ID mtxid

ID number (positive value) of the created mutex or

error code

[Error Code]

E_ID

Invalid ID number (

mtxid

 is invalid or unusable; only

cre_mtx

)

E_NOID

No ID number available (there is no mutex ID assignable;

only

acre_mtx

)

E_RSATR

Reserved attribute (

mtxatr

 is invalid or unusable)

E_PAR

Parameter error (

pk_cmtx

 or

ceilpri

 is invalid)

E_OBJ

Object state error (mutex is already registered; only

cre_mtx

)

[Functional Description]

These service calls create a mutex with an ID number specified by

mtxid

 based on the

information contained in the packet pointed to by

pk_cmtx

.

mtxatr

 is the attribute
174

µITRON4.0 Specification Ver. 4.00.00

of the mutex.

ceilpri

 is the mutex ceiling priority.

ceilpri

 is only valid when

mtxatr

has

TA_CEILING

 (= 0x03) set.

In

CRE_MTX

,

mtxid

 is an integer parameter with automatic assignment.

mtxatr

 is

a preprocessor constant expression parameter.

acre_mtx

 assigns a mutex ID from the pool of unassigned mutex IDs and returns the

assigned mutex ID.

mtxatr

 can be specified as (

TA_TFIFO

 | |

TA_TPRI

 | |

TA_INHERIT

 | |

TA_CEILING

). If

TA_FIFO

 (= 0x00) is specified, the mutex’s wait queue will be in

FIFO order. Otherwise, the mutex’s wait queue will be in task priority order. If

TA_INHERIT

 (= 0x02) is set, the current priority of a task is changed according to the

priority inheritance protocol. If

TA_CEILING

 (= 0x03) is set, the current priority of a

task is changed according to the priority ceiling protocol.
175

µITRON4.0 Specification Ver. 4.00.00

del_mtx

Delete Mutex

[C Language API]

ER ercd = del_mtx (ID mtxid) ;

[Parameter]

ID mtxid

ID number of the mutex to be deleted

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

 [Error Code]
E_ID

Invalid ID number (

mtxid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified mutex is not registered)

[Functional Description]

This service call deletes the mutex specified by

mtxid

.

[Supplemental Information]

If the specified mutex has been locked by a task, del_mtx forces the task to unlock the

mutex it has locked. Therefore, if the mutex has either the

TA_INHERIT

 or

TA_CEILING

 attribute, the current priority of the task that has locked the mutex may

need to be changed. When the simplified priority control rule is applied, the current

priority of the locking task is changed only if after the deletion, no mutex remains

locked by the task.

The task that locked the mutex is not notified about the deletion of the mutex. Rather,

it will receive an error when it tries to unlock the mutex. If deleting a mutex will cause

an undesirable result for the task that is locking the mutex, a task that tries to delete the

mutex should first lock the mutex itself and then delete it.

See Section 3.8 for information regarding handling tasks that are waiting to lock a

mutex when the mutex is deleted.
176

µITRON4.0 Specification Ver. 4.00.00

loc_mtx

Lock Mutex

ploc_mtx

Lock Mutex (Polling)

tloc_mtx

Lock Mutex (with Timeout)

[C Language API]

ER ercd = loc_mtx (ID mtxid) ;
ER ercd = ploc_mtx (ID mtxid) ;
ER ercd = tloc_mtx (ID mtxid, TMO tmout) ;

[Parameter]

ID mtxid

ID number of the mutex to be locked

TMO tmout

Specified timeout (only

tloc_mtx

)

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

[Error Code]

E_ID

Invalid ID number (

mtxid

 is invalid or unusable)

E_NOEXS Non-existent object (specified mutex is not registered)

E_PAR Parameter error (tmout is invalid; only tloc_mtx)

E_ILUSE Illegal service call use (multiple locking of a mutex, ceiling

priority violation)

E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except ploc_mtx)

E_TMOUT Polling failure or timeout (except loc_mtx)

E_DLT Waiting object deleted (mutex is deleted while waiting; except

ploc_mtx)

[Functional Description]

These service calls lock the mutex specified by mtxid. Specifically, if the mutex is not

locked, the service calls let the invoking task lock the mutex and return without moving

the invoking task to the WAITING state. If the mutex is locked, the invoking task is

placed in the mutex’s wait queue and is moved to the waiting state for the mutex.

If there are already tasks in the wait queue, the invoking task is placed in the wait queue

as described below. When the mutex’s attribute has TA_TFIFO (= 0x00) set, the

invoking task is placed at the tail of the wait queue. Otherwise, the invoking task is

placed in the wait queue in the order of the task’s priority. If the wait queue contains

tasks with the same priority as the invoking task, the invoking task is placed after those

tasks.

If the invoking task has already locked the mutex, these service calls return an

E_ILUSE

 error. An

E_ILUSE

 error will also be returned if the mutex has

TA_CEILING

 attribute set and if the invoking task has a base priority higher than the
177

µITRON4.0 Specification Ver. 4.00.00

ceiling priority of the mutex.

ploc_mtx

 is a polling service call with the same functionality as

loc_mtx

.

tloc_mtx

has the same functionality as

loc_mtx

 with an additional timeout feature.

tmout

 can

be set to a positive number indicating a timeout duration or it can be set to

TMO_POL
(= 0) or TMO_FEVR (= –1).

[Supplemental Information]

When a task invokes these service calls on the mutex with

TA_INHERIT

 attribute that

is locked and is moved to the WAITING state, the current priority of the task that locks

a mutex is changed to the current priority of the invoking task if the latter’s current pri-

ority is lower than the current priority of the invoking task.

The current priority of a task that locks a mutex with

TA_INHERIT

 attribute may

need to be changed when a task that is waiting for the mutex is released from waiting

due to a timeout or with rel_wai. The simplified priority control rule does not perform

such a change.

When a task invokes these service calls on the mutex with TA_CEILING attribute and

locks it successfully, the current priority of the task is changed to the ceiling priority of

the mutex if the ceiling priority is higher than the task’s current priority.

tloc_mtx acts the same as ploc_mtx if TMO_POL is specified in tmout as long as

no context error occurs. Also, tloc_mtx acts the same as loc_mtx if TMO_FEVR is

specified in tmout.
178

µITRON4.0 Specification Ver. 4.00.00
unl_mtx Unlock Mutex

[C Language API]
ER ercd = unl_mtx (ID mtxid) ;

[Parameter]
ID mtxid ID number of the mutex to be unlocked

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (mtxid is invalid or unusable)

E_NOEXS Non-existent object (specified mutex is not registered)

E_ILUSE Illegal service call use (the invoking task does not have the

specified mutex locked)

[Functional Description]

This service call unlocks the mutex specified by mtxid. Specifically, if there are tasks

waiting to lock the mutex, the service call release the task at the head of the mutex’s

wait queue from waiting and let the released task lock the mutex. The task receives

E_OK from the service call that caused it to wait in the mutex’s wait queue. If no task

is waiting to lock the mutex, the service call moves the mutex to the unlocked state.

When the invoking task does not have the mutex locked, this service call returns an

E_ILUSE error.

[Supplemental Information]

The current priority of the task invoking this service call may need to be changed when

the specified mutex has the TA_INHERIT or TA_CEILING attribute set. If the sim-

plified priority control rule is applied, the service call changes the current priority of

the invoking task only when no mutex remains locked by the task.
179

µITRON4.0 Specification Ver. 4.00.00

ref_mtx Reference Mutex State

[C Language API]
ER ercd = ref_mtx (ID mtxid, T_RMTX *pk_rmtx) ;

[Parameter]
ID mtxid ID number of the mutex to be referenced

T_RMTX * pk_rmtx Pointer to the packet returning the mutex state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rmtx

 includes (

T_RMTX

 type)

ID htskid

ID number of the task locking the mutex

ID wtskid

ID number of the task at the head of the mutex’s

wait queue

(Other implementation specific information may be added.)

[Error Code]

E_ID

Invalid ID number (

mtxid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified mutex is not registered)

E_PAR

Parameter error (

pk_rmtx

 is invalid)

[Functional Description]

This service call references the state of the mutex specified by

mtxid

. The state of the

mutex is returned through the packet pointed to by

pk_rmtx

.

The ID number of the task that has the mutex locked is returned through

htskid

. If no

task has the mutex locked,

TSK_NONE

 (= 0) is returned instead.

The ID number of the task at the head of the mutex’s wait queue is returned through

wtskid

. If no tasks are waiting to lock the mutex

TSK_NONE

 (= 0) is returned

instead.

[Supplemental Information]

A mutex cannot have

htskid

 =

TSK_NONE

 and

wtskid

≠

TSK_NONE

 at the same

time.
180

µITRON4.0 Specification Ver. 4.00.00

4.5.2 Message Buffers

A message buffer is an object used for synchronization and communication by sending

and receiving a variable-sized message. Message buffer functions include the ability to

create and delete a message buffer, to send and receive a message to/from a message

buffer, and to reference the state of a message buffer. A message buffer is an object

identified by an ID number. The ID number of a message buffer is called the message

buffer ID.

A message buffer has an associated wait queue for sending a message (send-wait

queue) and an associated wait queue for receiving a message (receive-wait queue).

Also, a message buffer has an associated message buffer area to store the sent mes-

sages. A task sending a message (notifying the occurrence of an event) copies the mes-

sage into the message buffer. If there is no room in the message buffer area, the task

will be in the sending waiting state for a message buffer until there is room for the mes-

sage in the message buffer area. The task waiting to send the message is placed in the

message buffer’s send-wait queue. A task receiving a message (waiting for an occur-

rence of an event) removes a message from the message buffer. If there is no message

in the message buffer, the task will be in the receiving waiting state until a message is

sent to the message buffer. The task waiting to receive a message from the message

buffer is placed in the message buffer’s receive-wait queue.

Synchronous message passing can be performed by setting the size of the message

buffer area to 0. The sending task and the receiving task wait until the other calls the

complimentary service call, at which time the message is transferred.

The following kernel configuration macro is defined for use with message buffer func-

tions:

SIZE mbfsz = TSZ_MBF (UINT msgcnt, UINT msgsz)

This macro returns the approximate required size of the message buffer area in

bytes necessary to store

msgcnt

 messages each consisting of

msgsz

 bytes.

This macro is only an estimation for determining the size of a message buffer area. It

cannot be used to determine the total required size of a message buffer area to store

messages with different sizes.

The following data type packets are defined for creating and referencing message buff-

ers:

typedef struct t_cmbf {
ATR mbfatr ; /* Message buffer attribute */
UINT maxmsz ; /* Maximum message size (in bytes) */
SIZE mbfsz ; /* Size of message buffer area (in bytes) */
VP mbf ; /* Start sddress of message buffer area */
/* Other implementation specific fields may be added. */

} T_CMBF ;

typedef struct t_rmbf {
181

µITRON4.0 Specification Ver. 4.00.00

ID stskid ; /* ID number of the task at the head of the
message buffer’s send-wait queue */

ID rtskid ; /* ID number of the task at the head of the
message buffer’s receive-wait queue */

UINT smsgcnt ; /* The number of messages in the message
buffer */

SIZE fmbfsz ; /* Size of free message buffer area in bytes,
without the minimum control areas */

/* Other implementation specific fields may be added. */
} T_RMBF ;

The following represents the function codes for the message buffer service calls:

TFN_CRE_MBF

–0x89 Function code of

cre_mbf
TFN_ACRE_MBF

–0xc7 Function code of

acre_mbf
TFN_DEL_MBF

–0x8a Function code of

del_mbf
TFN_SND_MBF

–0x8d Function code of

snd_mbf
TFN_PSND_MBF

–0x8e Function code of

psnd_mbf
TFN_TSND_MBF

–0x8f Function code of

tsnd_mbf
TFN_RCV_MBF

–0x91 Function code of

rcv_mbf
TFN_PRCV_MBF

–0x92 Function code of

prcv_mbf
TFN_TRCV_MBF

–0x93 Function code of

trcv_mbf
TFN_REF_MBF

–0x94 Function code of

ref_mbf

[Supplemental Information]

Figure 4-2 shows the behavior of a message buffer when the size of the message buffer

area is 0. In this figure, task A and task B are assumed to be running asynchronously.

 • If task A invokes

snd_mbf

 first, task A is moved to the WAITING state until task B

invokes rcv_mbf. During this time, task A is in the sending waiting state for a mes-

sage buffer.

 • If, on the other hand, task B invokes

rcv_mbf

 first, task B is moved to the WAIT-

ING state until task A invokes

snd_mbf

. During this time, task B is in the receiv-

Figure 4-2. Synchronous Communication through a Message Buffer

Task A Task B

snd_mbf (mbfid)

rcv_mbf (mbfid)
182

µITRON4.0 Specification Ver. 4.00.00

ing waiting state for a message buffer.

 • When task A invokes

snd_mbf

 and task B invokes

rcv_mbf

, the message transfer

from task A and task B takes place. After this, both tasks are moved to the runnable

state.

Tasks that are waiting to send a message to a message buffer will send their messages

in the order that the tasks are placed in the wait queue. An example is when task A tries

to send a 40 byte message to a message buffer, and task B tries to send a 10 byte mes-

sage to the same message buffer. Assume that these tasks are placed in the wait queue

so that task A is ahead of task B. A third task then receives a message 20 byte long,

resulting in 20 bytes of available area in the message buffer. Even though task B only

needs 10 bytes to send its message, it cannot do so until task A has sent its message.

However, an implementation-specific extension can add an attribute to the message

buffer that will allow task B to send its message before task A in this example.

A message buffer transfers a variable-sized message through copying. It is different

from a data queue in that it transfers variable-sized messages. It is different from a

mailbox in that it copies the messages.

A message buffer is assumed to be implemented as a ring buffer.

If a message buffer is used for the kernel’s error log (for recording errors that cannot be

reported to the processing unit that invoked a service call), a message buffer with an ID

number of (–4) can be used. Furthermore, message buffers with ID numbers (–3) and

(–2) can be used when message buffers are used inside the kernel to communicate with

debug support functions. Limiting the access to these message buffers from applica-

tion programs is also allowed.

[Differences from the µITRON3.0 Specification]

Whether tasks should send messages according to their order in the wait queue or

according to which task can send a message first was implementation-dependent in the

µITRON3.0 Specification. The µITRON4.0 Specifications has determined the former

order to be standard.
183

µITRON4.0 Specification Ver. 4.00.00

CRE_MBF Create Message Buffer (Static API)

cre_mbf Create Message Buffer

acre_mbf Create Message Buffer (ID Number Automatic Assignment)

[Static API]
CRE_MBF (ID mbfid, { ATR mbfatr, UINT maxmsz, SIZE mbfsz,

VP mbf }) ;

[C Language API]
ER ercd = cre_mbf (ID mbfid, T_CMBF *pk_cmbf) ;
ER_ID mbfid = acre_mbf (T_CMBF *pk_cmbf) ;

[Parameter]
ID mbfid ID number of the message buffer to be created

(except acre_mbf)
T_CMBF * pk_cmbf Pointer to the packet containing the message buffer

creation information (in

CRE_MBF

, packet con-

tents must be directly specified.)

pk_cmbf

 includes (T_CMBF type)

ATR mbfatr Message buffer attribute

UINT maxmsz Maximum message size (in bytes)

SIZE mbfsz Size of message buffer area (in bytes)

VP mbf Start address of message buffer area

(Other implementation specific information may be added.)

[Return Parameter]

cre_mbf:
ER ercd E_OK for normal completion or error code

acre_mbf:
ER_ID mbfid ID number (positive value) of the created message

buffer or error code

[Error Code]
E_ID Invalid ID number (mbfid is invalid or unusable; only

cre_mbf)
E_NOID No ID number available (there is no message buffer ID

assignable; only acre_mbf)
E_NOMEM Insufficient memory (message buffer area cannot be allocated)

E_RSATR Reserved attribute (mbfatr is invalid or unusable)

E_PAR Parameter error (pk_cmbf, maxmsz, mbfsz, or mbf is

invalid)

E_OBJ Object state error (message buffer is already registered; only
184

µITRON4.0 Specification Ver. 4.00.00

cre_mbf)

[Functional Description]

These service calls create a message buffer with an ID number specified by mbfid
based on the information contained in the packet pointed to by pk_cmbf. mbfatr is

the attribute of the message buffer. maxmsz is the maximum size in bytes of the mes-

sage that can be sent to the message buffer.

mbfsz

 is the size of the message buffer

area in bytes. mbf is the start address of the message buffer area.

In CRE_MBF, mbfid is an integer parameter with automatic assignment. mbfatr is

a preprocessor constant expression parameter.

acre_mbf assigns a message buffer ID from the pool of unassigned message buffer

IDs and returns the assigned message buffer ID.

mbfatr can be specified as (TA_TFIFO || TA_TPRI). If TA_TFIFO (= 0x00) is

specified, the message buffer’s send-wait queue will be in FIFO order. If

TA_TPRI

(= 0x01) is specified, the message buffer’s send-wait queue will be in task priority

order.

The memory area starting from

mbf

 and whose size is

mbfsz

 is used as the message

buffer area. Because the information for message management is also placed in the

message buffer area, the whole message buffer area cannot be used to store messages.

An application program can estimate the size to be specified in

mbfsz

 by using the

TSZ_MBF

 macro. If mbf is

NULL

 (= 0), the kernel allocates the necessary memory

area in bytes specified by

mbfsz

.

mbfsz

 may be specified as 0.

When

maxmsz

 is specified as 0, an

E_PAR

 error is returned.

[Supplemental Information]

The message buffer’s receive-wait queue always utilizes the FIFO ordering. Also, the

messages in a message buffer is always in FIFO order.

[Differences from the µITRON3.0 Specification]

In µITRON3.0, the

TA_TPRI

 attribute of a message buffer indicated that the

receive-wait queue is priority-ordered. In µITRON4.0, it has changed to indicate that

the send-wait queue is priority-ordered. This is because the priority-ordered send-wait

queue is more effective than priority-ordered receive-wait queue.

The start address of the message buffer area (

mbf

) has been added to the message

buffer creation information. The extended information has been removed. The param-

eter name has been changed from

bufsz

 to mbfsz and the order of maxmsz and

mbfsz in the creation information packet has been exchanged. The data type of

maxmsz has been changed from INT to UINT and that of mbfsz has been changed

from INT to SIZE.

acre_mbf has been newly added.
185

µITRON4.0 Specification Ver. 4.00.00

del_mbf Delete Message Buffer

[C Language API]
ER ercd = del_mbf (ID mbfid) ;

[Parameter]
ID mbfid ID number of the message buffer to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (mbfid is invalid or unusable)

E_NOEXS Non-existent object (specified message buffer is not regis-

tered)

[Functional Description]

This service call deletes the message buffer specified by mbfid. If the message buffer

area was allocated by the kernel, the area is released.

[Supplemental Information]

The messages in the message buffer will be discarded. See Section 3.8 for information

regarding handling tasks that are waiting in the message buffer’s send-wait queue and

receive-wait queue when the message buffer is deleted.
186

µITRON4.0 Specification Ver. 4.00.00

snd_mbf Send to Message buffer

psnd_mbf Send to Message buffer (Polling)

tsnd_mbf Send to Message buffer (with Timeout)

[C Language API]
ER ercd = snd_mbf (ID mbfid, VP msg, UINT msgsz) ;
ER ercd = psnd_mbf (ID mbfid, VP msg, UINT msgsz) ;
ER ercd = tsnd_mbf (ID mbfid, VP msg, UINT msgsz,

TMO tmout) ;

[Parameter]
ID mbfid ID number of the message buffer to which the mes-

sage is sent

VP msg

Start address of the message to be sent

UINT msgsz Size of the message to be sent (in bytes)

TMO tmout Specified timeout (only tsnd_mbf)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (mbfid is invalid or unusable)

E_NOEXS Non-existent object (specified message buffer is not regis-

tered)

E_PAR

Parameter error (msg, msgsz, tmout is invalid)

E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except psnd_mbf)
E_TMOUT Polling failure or timeout (except snd_mbf)
E_DLT Waiting object deleted (message buffer is deleted while wait-

ing; except

psnd_mbf

)

[Functional Description]

These service calls send a message to the message buffer specified by mbfid. The

message to be sent is placed in the memory area starting from the address specified by

msg and its size in bytes is specified by msgsz. Specifically, the following actions are

performed.

If there are already tasks in the message buffer’s receive-wait queue, the task at the

head of the receive-wait queue is selected to receive the message. These service calls

copy the sent message to the memory area specified by the task for receiving a message

and release the task from waiting. The released task receives the size of the sent mes-

sage (

msgsz

) as the return value of the service call that caused it to wait in the

receive-wait queue.
187

µITRON4.0 Specification Ver. 4.00.00

If no tasks are waiting in the message buffer’s receive-wait queue, the behavior of these

service calls depends on whether there is a task already waiting to send its message

before the invoking task. These service calls will copy the sent message to the tail of

the message buffer if either: 1) no task is waiting to send a message to the specified

message buffer, or 2) the message buffer has the TA_TPRI (= 0x01) attribute set and

the priorities of the other tasks that are waiting to send messages are lower than the

invoking task. If neither of these conditions is satisfied, or if there is no room in the

message buffer area to store the sent message, the invoking task is placed in the

send-wait queue and is moved to the sending waiting state for the message buffer.

If there are already tasks in the message buffer’s send-wait queue, the invoking task is

placed in the send-wait queue as described below. When the message buffer’s attribute

has

TA_TFIFO

 (= 0x00) set, the invoking task is placed at the tail of the send-wait

queue. When the message buffer’s attribute has

TA_TPRI

 (= 0x01) set, the invoking

task is placed in the send-wait queue in the order of the task’s priority. If the send-wait

queue contains tasks with the same priority as the invoking task, the invoking task is

placed after those tasks.

When the first task in the send-wait queue has changed as the result of releasing a task

in the wait queue from waiting with

rel_wai

,

ter_tsk

, or a timeout, the actions, when

possible, to make the tasks send messages starting from the new first task in the wait

queue are necessary. Since the specific actions are similar to the actions to be taken

after

rcv_mbf

 has removed a message from the message buffer, see the functional

description of

rcv_mbf

 for more details. The same actions are also necessary when

the first task in the send-wait queue has changed as the result of changing the priority

of a task in the wait queue by

chg_pri

 or mutex operations.

psnd_mbf

 is a polling service call with the same functionality as

snd_mbf

.

tsnd_mbf

 has the same functionality as

snd_mbf

 with an additional timeout feature.

tmout

 can be set to a positive number indicating a timeout duration or it can be set to

TMO_POL

 (= 0) or TMO_FEVR (= –1).

When

msgsz

 is larger than the maximum message size of the message buffer, an

E_PAR

 error is returned. An

E_PAR

 error is also returned when

msgsz

 is 0.

[Supplemental Information]

tsnd_mbf

 acts the same as

psnd_mbf

 if

TMO_POL

 is specified in

tmout

 as long

as no context error occurs. Also,

tsnd_mbf

 acts the same as

snd_mbf

 if

TMO_FEVR

 is specified in

tmout

.

[Differences from the µITRON3.0 Specification]

The order of the parameters has been changed. The data type of

msgsz

 has been

changed from

INT

 to

UINT

.

188

µITRON4.0 Specification Ver. 4.00.00

rcv_mbf

Receive from Message Buffer

prcv_mbf

Receive from Message Buffer (Polling)

trcv_mbf

Receive from Message Buffer (with Timeout)

[C Language API]

ER_UINT msgsz = rcv_mbf (ID mbfid, VP msg) ;
ER_UINT msgsz = prcv_mbf (ID mbfid, VP msg) ;
ER_UINT msgsz = trcv_mbf (ID mbfid, VP msg, TMO tmout) ;

[Parameter]

ID mbfid

ID number of the message buffer from which a mes-

sage is received

VP msg

Start address of the memory area to store the

received message

TMO tmout Specified timeout (only trcv_mbf)

[Return Parameter]
ER_UINT msgsz Size of the received message (in byte, positive

value) or error code

[Error Code]
E_ID Invalid ID number (mbfid is invalid or unusable)

E_NOEXS Non-existent object (specified message buffer is not regis-

tered)

E_PAR

Parameter error (msg or tmout is invalid)

E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except prcv_mbf)
E_TMOUT Polling failure or timeout (except rcv_mbf)
E_DLT Waiting object deleted (message buffer is deleted while wait-

ing; except

prcv_mbf

)

[Functional Description]

These service calls receive a message from the message buffer specified by mbfid and

stores it in the memory area starting from the address specified by msg. The size of

the received message in bytes is returned through msgsz. Specifically, the following

actions are performed.

If the message buffer already has messages, these service calls copy the first message to

the memory area starting from the address specified by msg and return the message

size through msgsz. The copied message is deleted from the message buffer area. If

there are tasks in the message buffer’s send-wait queue, the service calls check if there

is enough room for the message of the task at the head of the wait queue after deleting

the received message. If there is enough room, the message of the task at the head of
189

µITRON4.0 Specification Ver. 4.00.00

the wait queue is copied to the tail of the message buffer and the task is released from

waiting. The released task receives E_OK from the service call that caused it to wait in

the wait queue. When some tasks still remain in the send-wait queue after the release

of the task, the same actions must be repeated on the new head task in the wait queue.

If there are no messages in the message buffer and if there are tasks in the message

buffer’s send-wait queue (this occurs when the size of the message buffer area is too

small for the message of the task at the head of the wait queue), the message from the

task at the head of the send-wait queue is copied to the memory area starting from the

address specified by msg. The size of the copied message is returned through msgsz.

The task is released from waiting and receives E_OK from the service call that caused

it to wait in the send-wait queue.

If there are no messages in the message buffer and if there are no tasks in the send-wait

queue, the invoking task is placed in the receive-wait queue and moved to the receiving

waiting state for the message buffer. If there are already tasks in the receive-wait

queue, the invoking task is placed at the tail of the receive-wait queue.

prcv_mbf is a polling service call with the same functionality as rcv_mbf.
trcv_mbf has the same functionality as rcv_mbf with an additional timeout feature.

tmout can be set to a positive number indicating a timeout duration or it can be set to

TMO_POL (0) or TMO_FEVR (–1).

[Supplemental Information]

If these service calls release more than one task from waiting, the order of release cor-

responds with the order in which the tasks are placed in the wait queue. Therefore,

among the same priority tasks moved to the runnable state, the task closer to the head

of the wait queue has higher precedence.

trcv_mbf

 acts the same as prcv_mbf if TMO_POL is specified in tmout as long as

no context error occurs. Also, trcv_mbf acts the same as rcv_mbf if TMO_FEVR is

specified in tmout.

[Differences from the µITRON3.0 Specification]

The size of the received message (msgsz) is now returned as the return value of the

service calls. The order of parameters has been changed. The data type of msgsz has

been changed from INT to UINT (the actual type though is ER_UINT).
190

µITRON4.0 Specification Ver. 4.00.00

ref_mbf Reference Message Buffer State

[C Language API]
ER ercd = ref_mbf (ID mbfid, T_RMBF *pk_rmbf) ;

[Parameter]
ID mbfid ID number of the message buffer to be referenced

T_RMBF * pk_rmbf Pointer to the packet returning the message buffer

state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rmbf

 includes (

T_RMBF

 type)

ID stskid

ID number of the task at the head of the send-wait

queue

ID rtskid

ID number of the task at the head of the

receive-wait queue

UINT smsgcnt

The number of messages in the message buffer

SIZE fmbfsz

Size of free message buffer area in bytes, without

the minimum control areas

(Other implementation specific information may be added.)

[Error Code]

E_ID

Invalid ID number (

mbfid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified message buffer is not regis-

tered)

E_PAR

Parameter error (pk_rmbf is invalid)

[Functional Description]

This service call references the state of the message buffer specified by mbfid. The

state of the message buffer is returned through the packet pointed to by pk_rmbf.

The ID number of the task at the head of the message buffer’s send-wait queue is

returned through stskid. If no tasks are waiting to send a message, TSK_NONE
(= 0) is returned instead.

The ID number of the task at the head of the message buffer’s receive-wait queue is

returned through

rtskid

. If no tasks are waiting to receive a message,

TSK_NONE

(= 0) is returned instead.

The number of messages currently in the message buffer is returned through

smsgcnt

.

The size of the minimum control area subtracted from the size of the free message

buffer area in bytes is returned through

fmbfsz

. Specifically,

fmbfsz

 is the maximum
191

µITRON4.0 Specification Ver. 4.00.00

message size that can be stored in the free message buffer area when there is not

enough room for a message with the maximum message size. If the message buffer has

enough room to store a message with the maximum message size,

fmbfsz

 is the

approximate total size of messages that can be stored in the free message buffer area.

[Supplemental Information]

A message with smaller size than

fmbfsz

 may not always be sent at once without

entering the WAITING state. This happens if there are tasks already waiting to send a

message to the message buffer (when

stskid

≠

TSK_NONE

).

A message buffer cannot have

tskid

≠

TSK_NONE

 and

smsgcnt

≠

 0 at the same

time. When

stskid

≠

TSK_NONE

,

fmbfsz

 is smaller than the maximum message

size.

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The ID

number of the task at the head of each wait queue is now returned instead of a boolean

value indicating whether a task is waiting or not. The number of messages in the mes-

sage buffer is now returned instead of the size of the message to be received next.

Based on these replacements, the names and data types of the return parameters have

been changed. The size of the minimum control area is excluded from the size returned

through

fmbfsz

 in order to make the returned value strictly standardized to the mes-

sage size when the free message buffer area is small.

The name of the return parameter

frbufsz

 has been changed to fmbfsz and its data

type has been changed from INT to SIZE. The order of parameters and of return

parameters has been changed.
192

µITRON4.0 Specification Ver. 4.00.00

4.5.3 Rendezvous

The rendezvous feature is used for synchronization and communication between tasks.

It supports a procedure to handle a processing request from one task to another task and

the return of the result to the requesting task. The object used to coordinate this task

interaction is called a rendezvous port. The rendezvous feature is typically used to

realize a client/server model communication, but it also provides a more flexible syn-

chronous communication model.

Rendezvous functions include the ability to create and delete a rendezvous port, to

request a processing at a rendezvous port (calling rendezvous), to accept a processing

request at a rendezvous port (accepting rendezvous), to return a processed result (termi-

nating rendezvous), to forward a processing request to another rendezvous port (for-

warding rendezvous), and to reference the state of a rendezvous port and of a

rendezvous. A rendezvous port is an object identified with an ID number. The ID

number of a rendezvous port is called the rendezvous port ID.

A task which requests a processing at a rendezvous port (the client task) calls for a ren-

dezvous by specifying a rendezvous port, a rendezvous condition, and a message that

contains information about the requested processing. The message is referred to as the

calling message. A task that receives a processing request (the server task) accepts the

rendezvous by specifying the rendezvous port and the rendezvous condition.

A rendezvous condition is specified by a bit pattern. A rendezvous is only established

when the bit patterns of the rendezvous conditions of both the calling task and the

accepting task match. The match is performed by taking the logical AND of the corre-

sponding bits. If the result is not 0, the rendezvous is established. The calling task will

be in the calling waiting state for the rendezvous until the rendezvous is established.

On the other hand, the accepting task will be in the accepting waiting state for the ren-

dezvous until the rendezvous is established.

When a rendezvous is established, the calling message is transferred from the calling

task to the accepting task. The calling task is moved to the termination waiting state

for the rendezvous and waits for the processing to be completed. The accepting task is

released from the accepting waiting state for the rendezvous and executes the requested

processing. Once the accepting task completes its processing, it returns the result to

the calling task as a return message, and the rendezvous is terminated. At this time, the

calling task is released from the termination waiting state for the rendezvous.

A rendezvous port has an associated call-wait queue to hold the tasks in the calling

waiting state for a rendezvous and an accept-wait queue to hold the tasks in the accept-

ing waiting state for a rendezvous. Once a rendezvous is established, the two tasks are

detached from the rendezvous port. A rendezvous port does not have a wait queue to

hold the tasks that are in the termination waiting state for a rendezvous. Also, it does

not have information about the two tasks involved with the requested processing.
193

µITRON4.0 Specification Ver. 4.00.00

The kernel assigns an object number to a rendezvous in order to distinguish multiple

rendezvous. The object number of a rendezvous is called the rendezvous number. The

process for assigning rendezvous numbers is implementation-dependent. However, the

rendezvous number should at least include information regarding the task that called

the rendezvous. Each rendezvous should have a unique rendezvous number if possible.

For example, if the same task calls a rendezvous port twice, the first and second rendez-

vous should have different rendezvous numbers.

The following data types are used for rendezvous functions:

RDVPTN

Bit pattern of the rendezvous condition (unsigned integer)

RDVNO Rendezvous number

The following kernel configuration constant is defined for use with rendezvous func-

tions:

TBIT_RDVPTN

The number of bits in a rendezvous condition (the

number of bits of RDVPTN type)

The following data type packets are defined for creating and referencing rendezvous

ports and rendezvous:

typedef struct t_cpor {
ATR poratr ; /* Rendezvous port attribute */
UINT maxcmsz ; /* Maximum calling message size (in

bytes) */
UINT maxrmsz ; /* Maximum return message size (in

bytes) */
/* Other implementation specific fields may be added. */

} T_CPOR ;

typedef struct t_rpor {
ID ctskid ; /* ID number of the task at the head of the

rendezvous port’s call-wait queue */
ID atskid ; /* ID number of the task at the head of the

rendezvous port’s accept-wait queue */
/* Other implementation specific fields may be added. */

} T_RPOR ;

typedef struct t_rrdv {
ID wtskid ; /* ID number of the task in the termination

waiting state for the rendezvous */
/* Other implementation specific fields may be added. */

} T_RRDV ;

The following represents the function codes for rendezvous service calls:

TFN_CRE_POR

–0x95 Function code of

cre_por
TFN_ACRE_POR

–0xc8 Function code of

acre_por
TFN_DEL_POR

–0x96 Function code of

del_por
TFN_CAL_POR

–0x97 Function code of

cal_por
TFN_TCAL_POR

–0x98 Function code of

tcal_por
194

µITRON4.0 Specification Ver. 4.00.00

TFN_ACP_POR

–0x99 Function code of

acp_por
TFN_PACP_POR

–0x9a Function code of

pacp_por
TFN_TACP_POR

–0x9b Function code of

tacp_por
TFN_FWD_RDV

–0x9c Function code of

fwd_rdv
TFN_RPL_RDV

–0x9d Function code of

rpl_rdv
TFN_REF_POR

–0x9e Function code of

ref_por
TFN_REF_RDV

–0x9f Function code of

ref_rdv

[Supplemental Information]

A rendezvous is a synchronization and communication function which was introduced

by the ADA language specification and is based on CSP (Communicating Sequential

Processes). However, the ADA rendezvous is a part of the language specification and

its premise is different from the µITRON4.0 Specification rendezvous. In particular,

the rendezvous offered by a real-time kernel is intended to be a primitive for realizing

the language rendezvous. There are several differences between the ADA rendezvous

and the µITRON4.0 Specification rendezvous. Because of this, the rendezvous port of

the µITRON4.0 Specification cannot always be used in realizing the ADA rendezvous.

Figure 4-3 shows the behavior of a rendezvous. In this figure, task A and task B are

assumed to be running asynchronously.

 • If task A invokes cal_por first, task A is moved to the WAITING state until task B

invokes acp_por. During this time, task A is in the calling waiting state for the ren-

dezvous.

 • If, on the other hands, task B invokes

acp_por

 first, task B is moved to the WAIT-

ING state until task A invokes

cal_por

. During this time, task B is in the accepting

waiting state for the rendezvous.

 • When task A invokes cal_por and task B invokes acp_por, the rendezvous is

established. When this happens, task B is released from waiting while task A

remains in the WAITING state. Task A, at this time, is in the termination waiting

state for the rendezvous.

Figure 4-3. Rendezvous Operation

Task A Task B

cal_por (porid)

acp_por (porid)

rpl_rdv (rdvno)
195

µITRON4.0 Specification Ver. 4.00.00

 • Once task B invokes rpl_rdv, task A is released from waiting. Both tasks are

moved to the runnable state.

One example of assigning a rendezvous number is to use the ID number of the task that

called the rendezvous as the lower bits, and then assign a serial number to the remain-

ing upper bits. So if the task ID is a 16-bit value, the rendezvous number should be

made 32 bits by adding a 16-bit serial value.

[Differences from the µITRON3.0 Specification]

The term rendezvous port is now used instead of port.

The data type of the parameter that contains the rendezvous condition bit pattern has

been changed from UINT to the new data type RDVPTN. The data type for a rendez-

vous number has been changed from

RNO

 to RDVNO.

[Rationale]

Although a rendezvous feature can be realized by combining other synchronization and

communication features, writing application programs involving return messages with

rendezvous functions is much easier and more efficient. For example, a rendezvous

does not need an area to store messages because the two tasks wait until the message

transfer is completed.

When a task calls a rendezvous port multiple times, each rendezvous number must be

unique if possible for the following reason. Assume that a task is in the termination

waiting state for a rendezvous and that the task is released from waiting due to timeout

or forced release. After being released, if it calls a rendezvous port again that is suc-

cessfully established, the rendezvous numbers of the previous and the current rendez-

vous would be the same. When another task tries to terminate the previous rendezvous,

the current one would be terminated by mistake if they have the same number. By

assigning two different numbers to two different rendezvous and by recording the ren-

dezvous number with the waiting task, an error can be detected when the first rendez-

vous is terminated.
196

µITRON4.0 Specification Ver. 4.00.00

CRE_POR

Create Rendezvous Port (Static API)

cre_por

Create Rendezvous Port

acre_por Create Rendezvous Port (ID Number Automatic Assignment)

[Static API]
CRE_POR (ID porid, { ATR poratr, UINT maxcmsz,

UINT maxrmsz }) ;

[C Language API]
ER ercd = cre_por (ID porid, T_CPOR *pk_cpor) ;
ER_ID porid = acre_por (T_CPOR *pk_cpor) ;

[Parameter]
ID porid ID number of the rendezvous port to be created

(except acre_por)

T_CPOR * pk_cpor Pointer to the packet containing the rendezvous port

creation information (in

CRE_POR

, packet con-

tents must be directly specified.)

pk_cpor

 includes (T_CPOR type)

ATR poratr Rendezvous port attribute

UINT maxcmsz Maximum calling message size (in bytes)

UINT maxrmsz Maximum return message size (in bytes)

(Other implementation specific information may be added.)

[Return Parameter]

cre_por:

ER ercd E_OK for normal completion or error code

acre_por:

ER_ID porid ID number (positive value) of the created rendez-

vous port or error code

[Error Code]

E_ID Invalid ID number (porid is invalid or unusable; only

cre_por)

E_NOID No ID number available (there is no rendezvous port ID

assignable; only acre_por)

E_RSATR Reserved attribute (poratr is invalid or unusable)

E_PAR Parameter error (pk_cpor, maxcmsz, or maxrmsz is

invalid)

E_OBJ Object state error (specified rendezvous port is already regis-

tered; only

cre_por

)

197

µITRON4.0 Specification Ver. 4.00.00

[Functional Description]

These service calls create a rendezvous port with an ID number specified by porid
based on the information contained in the packet pointed to by pk_cpor. poratr is

the rendezvous port attribute. maxcmsz is the maximum size in bytes of a calling

message. maxrmsz is the maximum size in bytes of a returned message.

In CRE_POR, porid is an integer parameter with automatic assignment. poratr is a

preprocessor constant expression parameter.

acre_por assigns a rendezvous port ID from the pool of unassigned rendezvous port

IDs and returns the assigned rendezvous port ID.

poratr can be specified as (TA_TFIFO || TA_TPRI). If TA_TFIFO (= 0x00) is spec-

i fied, the rendezvous port ’s cal l -wai t queue wil l be in FIFO order. I f

TA_TPRI

(= 0x01) is specified, the rendezvous port’s call-wait queue will be in task

priority order.

maxcmsz

 and

maxrmsz

 may be specified as 0.

[Supplemental Information]

The rendezvous port’s accept-wait queue always utilizes FIFO ordering.

[Differences from the µITRON3.0 Specification]

By specifying the

TA_TRPI

 attribute, a rendezvous port’s call-wait queue will now be

in task priority order.

The extended information has been removed from the rendezvous port creation infor-

mation. The data types of

maxcmsz

 and maxrmsz have been changed from INT to

UINT.

acre_por has been newly added.
198

µITRON4.0 Specification Ver. 4.00.00

del_por Delete Rendezvous Port

[C Language API]
ER ercd = del_por (ID porid) ;

[Parameter]
ID porid ID number of the rendezvous port to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (porid is invalid or unusable)

E_NOEXS Non-existent object (specified rendezvous port is not regis-

tered)

[Functional Description]

This service call deletes the rendezvous port specified by porid.

[Supplemental Information]

Deleting a rendezvous port does not affect an already established rendezvous. The

deletion is not reported to a task that has accepted a rendezvous and is already execut-

ing the requested processing. The task that called the rendezvous and is in the termina-

tion waiting state for the rendezvous will still continue waiting. Moreover, a

termination of the rendezvous is executed normally even if the rendezvous port is

already deleted.

See Section 3.8 for information regarding handling tasks that are waiting to call or

accept a rendezvous at the rendezvous port when the rendezvous port is deleted.
199

µITRON4.0 Specification Ver. 4.00.00

cal_por Call Rendezvous

tcal_por Call Rendezvous (with Timeout)

[C Language API]
ER_UINT rmsgsz = cal_por (ID porid, RDVPTN calptn, VP msg,

UINT cmsgsz) ;
ER_UINT rmsgsz = tcal_por (ID porid, RDVPTN calptn, VP msg,

UINT cmsgsz, TMO tmout) ;

[Parameter]
ID porid ID number of the rendezvous port to be called

RDVPTN calptn Bit pattern of the rendezvous condition at the call-

ing side

VP msg

Start address of the calling message and of the

memory area to store the return message

UINT cmsgsz Calling message size (in bytes)

TMO tmout Specified timeout (only tcal_por)

[Return Parameter]
ER_UINT rmsgsz Return message size (in bytes, positive value or 0)

or error code

[Error Code]
E_ID Invalid ID number (porid is invalid or unusable)

E_NOEXS Non-existent object (specified rendezvous port is not regis-

tered)

E_PAR

Parameter error (calptn, msg, cmsgsz, or tmout is

invalid)

E_RLWAI Forced release from waiting (accept rel_wai while waiting)

E_TMOUT Polling failure or timeout (only tcal_por)

E_DLT Waiting object deleted (rendezvous port is deleted while wait-

ing)

[Functional Description]

These service calls call for a rendezvous at the port specified by

porid with the rendez-

vous condition specified by

calptn

. The start address of the calling message is speci-

fied by

msg

 and its size in bytes is specified by cmsgsz. The service calls store the

return message in the memory area starting from msg and return its size in bytes

through rmsgsz. Specifically, the following actions are performed.

If there is a task in the accepting waiting state for the rendezvous at the rendezvous

port, these service calls establish a rendezvous if the rendezvous conditions of the

invoking task and the waiting task match. If there are more than one task in the accept-
200

µITRON4.0 Specification Ver. 4.00.00

ing waiting state for the rendezvous, these service calls check their rendezvous condi-

tions one by one starting from the task at the head of the accept-wait queue. The

service calls establish a rendezvous with the first task that matches the rendezvous con-

dition.

When a rendezvous is established, these service calls assign a rendezvous number to

the established rendezvous and move the invoking task to the termination waiting state

for the rendezvous. The service calls also copy the calling message into the memory

area specified by the accepting task, which was in the accepting waiting state for the

rendezvous. The service calls then release the task from waiting. The released task

receives the calling message size (

cmsgsz

) as the return value of the service call that

caused it to wait in the accept-wait queue and the assigned rendezvous number through

rdvno.

If no tasks are waiting to accept a rendezvous at the specified rendezvous port, or if

none of the waiting tasks has a matching rendezvous condition, the invoking task is

placed in the call-wait queue and is moved to the calling waiting state for the rendez-

vous.

If there are already tasks in the rendezvous port’s call-wait queue, the invoking task is

placed in the call-wait queue as described below. When the rendezvous port’s attribute

has

TA_TFIFO

 (= 0x00) set, the invoking task is placed at the tail of the call-wait

queue. When rendezvous port’s attribute has

TA_TPRI

 (= 0x01) set, the invoking task

is placed in the call-wait queue in the order of the task’s priority. If the call-wait queue

contains tasks with the same priority as the invoking task, the invoking tasks is placed

after those tasks.

tcal_por

 has same functionality as

cal_por

 with an additional timeout feature. If the

rendezvous does not terminate after a period specified by

tmout

 starting from when

tcal_por

 is called,

tcal_por

 returns an

E_TMOUT

 error.

tmout

 can be set to

TMO_FEVR

 (= –1) in addition to a positive number indicating a timeout duration.

When

TMO_POL

 (= 0) is specified, an E_PAR error is returned.

If

tcal_por

 is invoked and results in a timeout after it establishes a rendezvous, the sta-

tus of the rendezvous cannot be recovered to its former state before it was established.

This is an exception to the rule stating that “side effects due to a service call that returns

an error code do not arise.” In this case, an error is reported to the accepting task when

the task tries to terminate the rendezvous. This also applies to the case where a task is

forcibly released from the termination waiting state for the rendezvous with

rel_wai

.

In this case, the service call returns an E_RLWAI error. On the contrary, since deleting

a rendezvous port does not affect an already established rendezvous, the service call

never returns an E_DLT error once the rendezvous is established.

An E_PAR error is returned when calptn is 0 or when cmsgsz exceeds the maxi-

mum calling message size.

cmsgsz

 may be specified as 0.
201

µITRON4.0 Specification Ver. 4.00.00

[Supplemental Information]

When there is a possibility that a rendezvous might be forwarded, the application

should allocate enough memory area, starting from the address specified by msg, to

store a return message with the maximum size regardless of the expected return mes-

sage size. The application should also assume that the contents of the allocated mem-

ory area will be destroyed. This is because when the rendezvous is forwarded, the

calling message may be copied to the memory area starting from the address specified

by

msg

.

tcal_por acts the same as cal_por if TMO_FEVR is specified in tmout.

[Differences from the µITRON3.0 Specification]

The interpretation of timeout in tcal_por has been changed. As a result, pcal_por
became unnecessary and is removed from the µITRON4.0 Specification. tcal_por
returns an E_PAR error if TMO_POL is specified in tmout.

A calling message with a size of 0 is now allowed.

The return message size (rmsgsz) is now returned as the return value of the service

calls. The data type of calptn has been changed from UINT to RDVPTN. The data

types of cmsgsz and rmsgsz have been changed from INT to UINT (the actual type

though is ER_UINT for rmsgsz). The order of parameters and of return parameters

has been changed.

[Rationale]

The reason an E_PAR error is returned when 0 is specified for calptn is that a rendez-

vous is never established in this case, which in turn would never release the invoking

task from calling waiting state for the rendezvous.
202

µITRON4.0 Specification Ver. 4.00.00

acp_por

Accept Rendezvous

pacp_por

Accept Rendezvous (Polling)

tacp_por Accept Rendezvous (with Timeout)

[C Language API]
ER_UINT cmsgsz = acp_por (ID porid, RDVPTN acpptn,

RDVNO *p_rdvno, VP msg) ;
ER_UINT cmsgsz = pacp_por (ID porid, RDVPTN acpptn,

RDVNO *p_rdvno, VP msg) ;
ER_UINT cmsgsz = tacp_por (ID porid, RDVPTN acpptn,

RDVNO *p_rdvno, VP msg, TMO tmout) ;

[Parameter]
ID porid ID number of the rendezvous port where a rendez-

vous is accepted

RDVPTN acpptn

Bit pattern of the rendezvous condition at the

accepting side

VP msg Start address of the memory area to store the calling

message

TMO tmout Specified timeout (only tacp_por)

[Return Parameter]
ER_UINT cmsgsz Calling message size (in bytes, positive value or 0)

or error code

RDVNO rdvno Rendezvous number of the established rendezvous

[Error Code]
E_ID Invalid ID number (porid is invalid or unusable)

E_NOEXS Non-existent object (specified rendezvous port is not regis-

tered)

E_PAR

Parameter error (acpptn, msg, or tmout is invalid)

E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except pacp_por)

E_TMOUT Polling failure or timeout (except acp_por)

E_DLT Waiting object deleted (rendezvous port is deleted while wait-

ing; except

pacp_por

)

[Functional Description]

These service calls accept a rendezvous at the rendezvous port specified by porid with

the rendezvous condition specified by acpptn. The calling message is stored in the

memory area starting from the address specified by msg and its size in bytes is

returned through cmsgsz. The rendezvous number of the established rendezvous is
203

µITRON4.0 Specification Ver. 4.00.00

returned through rdvno. Specifically, the following actions are performed.

If there is a task in the calling waiting state for the rendezvous at the rendezvous port,

these service calls establish a rendezvous if the rendezvous conditions of the invoking

task and the waiting task match. If there are more than one task in the calling waiting

state for the rendezvous, these service calls check their rendezvous conditions one by

one starting from the task at the head of the call-wait queue. The service calls establish

a rendezvous with the first task that matches the rendezvous condition.

When a rendezvous is established, these service calls assign a rendezvous number to

the established rendezvous and return the rendezvous number through rdvno. The

service calls also copy the calling message of the calling task, which was in the calling

waiting state for the rendezvous, to the memory area starting from the address specified

by msg and return the calling message size through cmsgsz. The task is then

removed from the rendezvous port’s call-wait queue and is moved to the termination

waiting state for the rendezvous.

If no tasks are waiting to call a rendezvous at the specified rendezvous port, or if none

of the waiting tasks has a matching rendezvous condition, the invoking task is placed in

the accept-wait queue and is moved to the accepting waiting state for the rendezvous.

If there are already tasks in the accept-wait queue, the invoking task is placed at the tail

of the accept-wait queue.

pacp_por is a polling service call with the same functionality as acp_por.

tacp_por has the same functionality as acp_por with an additional timeout feature.

tmout can be set to a positive number indicating a timeout duration or it can be set to

TMO_POL (= 0) or TMO_FEVR (= –1).

An

E_PAR

 error is returned when

acpptn

 is 0.

[Supplemental Information]

A task that has established a rendezvous with another task with

acp_por

 may accept a

rendezvous again with

acp_por

 before the previous rendezvous has been terminated.

The new rendezvous can be accepted at either the same rendezvous port as the previ-

ously established one or at another rendezvous port. If the same rendezvous port is

used, the task can have multiple established rendezvous at the same rendezvous port.

Furthermore, the calling task of the previously established rendezvous can be released

from waiting either by timeout or forced release. When the task calls the rendezvous

again, the task can have multiple rendezvous with the other task at the same rendezvous

port.

tacp_por

 acts the same as pacp_por if TMO_POL is specified in tmout as long as

no context error occurs. Also, tacp_por acts the same as acp_por if TMO_FEVR is

specified in tmout.

[Differences from the µITRON3.0 Specification]

The calling message size (cmsgsz) is now returned as the return value of the service
204

µITRON4.0 Specification Ver. 4.00.00

calls. The data type of acpptn has been changed from UINT to RDVPTN. The data

type of rdvno has been changed from RNO to RDVNO. The data type of cmsgsz
has been changed from INT to UINT (the actual type though is ER_UINT). The order

of parameters and of return parameters has been changed.

[Rationale]

The reason an E_PAR error is returned when 0 is specified for acpptn is that a ren-

dezvous is never established in this case, which in turn would never release the invok-

ing task from accepting waiting state for the rendezvous.
205

µITRON4.0 Specification Ver. 4.00.00

fwd_por Forward Rendezvous

[C Language API]
ER ercd = fwd_por (ID porid, RDVPTN calptn, RDVNO rdvno,

VP msg, UINT cmsgsz) ;

[Parameter]
ID porid ID number of the rendezvous port to which the ren-

dezvous is forwarded

RDVPTN calptn

Bit pattern of the rendezvous condition at the call-

ing side

RDVNO rdvno

Rendezvous number to be forwarded

VP msg Start address of the calling message

UINT cmsgsz Calling message size (in bytes)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (porid is invalid or unusable)

E_NOEXS Non-existent object (specified rendezvous port is not regis-

tered)

E_PAR

Parameter error (calptn, msg, or cmsgsz is invalid)

E_ILUSE Illegal service call use (maximum return message size of the

rendezvous port to which the rendezvous is forwarded is too

large)

E_OBJ Object state error (rdvno is invalid)

[Functional Description]

This service call forwards the rendezvous specified by rdvno with the rendezvous con-

dition specified by

calptn

 to the rendezvous port specified by porid. The start

address of the calling message after forwarding is specified by msg and its size in

bytes is specified by cmsgsz.

When fwd_por is invoked, the result is the same as if the task that called the rendez-

vous specified by

rdvno

 (called task A below) has called the rendezvous port specified

by portid with the rendezvous condition calptn and the calling message msg.

The operations of fwd_por is described in detail as follows.

If a task is waiting to accept a rendezvous at the rendezvous port to which the rendez-

vous is forwarded, and if the rendezvous condition of the waiting task and that speci-

fied by

calptn

 match, this service call establishes a rendezvous between the task and

task A. If there are more than one task waiting to accept a rendezvous, this service call

check their rendezvous conditions one by one starting from the task at the head of the
206

µITRON4.0 Specification Ver. 4.00.00

accept-wait queue. The service call establishes a rendezvous with the first task that

matches the rendezvous condition.

When a rendezvous is established, this service call assigns a rendezvous number to the

established rendezvous and moves task A to the termination waiting state for the ren-

dezvous. The service call also copies the calling message specified by

msg

 and

cmsgsz into the memory area specified by the accepting task, which was in the

accepting waiting state for the rendezvous. The service call then releases the task from

waiting. The released task receives the calling message size (cmsgsz) as the return

value of the service call that caused it to wait in the accept-wait queue and the assigned

rendezvous number through rdvno.

If no tasks are waiting to accept a rendezvous at the rendezvous port to which the ren-

dezvous is forwarded, or if none of the waiting tasks has a matching rendezvous condi-

tion, task A is placed in the call-wait queue of the rendezvous port to which the

rendezvous is forwarded, and is moved to the calling waiting state for the rendezvous.

The calling message specified by

msg

 and cmsgsz is copied to the memory area

specified by task A to store the return message.

If there are already tasks in the rendezvous port’s call-wait queue, task A is placed in

the call-wait queue as described below. If the rendezvous port’s attribute has

TA_TFIFO (= 0x00) set, task A is placed at the tail of the call-wait queue. If the ren-

dezvous port’s attribute has

TA_TPRI

 (= 0x01) set, task A is placed in the call-wait

queue in the order of the task’s priority. If the call-wait queue contains tasks with the

same priority as task A, task A is placed after those tasks.

The maximum return message size of the rendezvous port to which the rendezvous is

forwarded must be smaller than or equal to that of the rendezvous port at which the ren-

dezvous was established. Otherwise an

E_ILUSE

 error is returned.

When cmsgsz is larger than the maximum calling message size of the rendezvous port

to which the rendezvous is forwarded, or when cmsgsz is larger than the return mes-

sage size of the rendezvous port at which the rendezvous was established, an

E_PAR

error is returned. cmsgsz may be specified as 0.

A rendezvous number accepted by another task may also be specified in rdvno. In

other words, the task that invokes fwd_por and forwards the rendezvous does not nec-

essarily correspond to the task that has accepted the rendezvous.

If the task that has called the rendezvous specified by

rdvno

 is not in the termination

waiting state for the same rendezvous, an E_OBJ error is returned. An E_OBJ error

is also returned when the value specified by rdvno cannot be interpreted as a rendez-

vous number.

An

E_PAR

 error is returned when calptn is 0.

[Supplemental Information]

Since the result of invoking fwd_por is the same as if task A has called the rendezvous
207

µITRON4.0 Specification Ver. 4.00.00

port, the record of forwarding a rendezvous is not necessary. For this reason, a for-

warded rendezvous can be forwarded again.

Since the execution of

fwd_por

 ends immediately, the task that invokes fwd_por
never enters the WAITING state. The application can reuse the area in which the call-

ing message was stored for other purposes after

fwd_por

 returns because the calling

message specified by msg and cmsgsz is copied to another area during the execution

of fwd_por. After fwd_por returns, the task that invoked fwd_por is detached from

the following: the rendezvous port at which the rendezvous was established, the ren-

dezvous port to which the rendezvous is forwarded, the forwarded rendezvous, and the

newly established rendezvous if any.

A timeout specified for

tcal_por

 applies to the interval from the invocation of

tcal_por to the termination of the rendezvous. Therefore, if task A called a rendez-

vous by

tcal_por

, the specified timeout continues to be valid after the rendezvous is

forwarded.

The rendezvous port to which the rendezvous is forwarded may be the same rendez-

vous port at which the rendezvous was originally established. In this case, the accepted

rendezvous is returned to the original state before it was established. However, the ren-

dezvous pattern and the calling message are changed to those specified for

fwd_por

.

Even if the task that has called the rendezvous is released from the termination waiting

state for the rendezvous due to a timeout or a forced release after the rendezvous is

established, its release would not be notified to the task that has accepted the rendez-

vous. In this case, an

E_OBJ

 error is returned if the task that accepted the rendezvous

invokes fwd_por and tries to forward the rendezvous. The task can determine whether

the calling task for the rendezvous is still in the termination waiting state by invoking

ref_rdv.

Figure 4-4 illustrates a server distribution task using fwd_por.

[Differences from the µITRON3.0 Specification]

When task A is moved to the calling waiting state for a rendezvous, the calling message

specified by msg and cmsgsz is now defined to be stored in the area in which task A

stores the return message.

The handling of timeout in fwd_por has been changed according to the changed inter-

pretation of timeout for

tcal_por

.

The fact that a task other than the task that has accepted the rendezvous can forward the

rendezvous is now clarified.

The calling message size can now be specified as 0.

The data types of calptn, rdvno, and cmsgsz have been changed from UINT to

RDVPTN, from RNO to RDVNO, and from INT to UINT, respectively.

[Rationale]

In order to reduce the number of states the system should handle, the specification does
208

µITRON4.0 Specification Ver. 4.00.00

not require the record of forwarding a rendezvous. In cases where the record is neces-

sary, the rendezvous may be called, instead of forwarded by

fwd_por

, using nested

cal_por.

The following states the reason why an error is returned when the maximum return

message size of the rendezvous port to which the rendezvous is forwarded is larger

than that of the rendezvous port at which the rendezvous was established. Task A must

allocate a memory area that can hold a return message of the maximum allowed size

from the rendezvous port that task A first called. If the maximum return message size

of the rendezvous port to which the rendezvous is forwarded is larger, the return mes-

sage may not fit in the allocated area.

An error is returned if

cmsgsz

 is larger than the maximum return message size of the

rendezvous port at which the rendezvous was established. This is because when task A

is moved to the calling waiting state for a rendezvous, task A copies the calling mes-

sage specified by

msg

 and cmsgsz to the area it allocated for storing the return mes-

sage.

Figure 4-4.

Server Distribution Task using fwd_por

Client task

cal_por acp_por

rpl_rdv

fwd_por fwd_por fwd_por

Server distribution task

Server
task for

Service A

acp_por

rpl_rdv

Server
task for

Service B

acp_por

rpl_rdv

Server
task for

Service C

acp_por

port

port port port
209

µITRON4.0 Specification Ver. 4.00.00

rpl_rdv Terminate Rendezvous

[C Language API]
ER ercd = rpl_rdv (RDVNO rdvno, VP msg, UINT rmsgsz) ;

[Parameter]
RDVNO rdvno Rendezvous number to be terminated

VP msg Start address of the return message

UINT rmsgsz Return message size (in bytes)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_PAR Parameter error (msg or rmsgsz is invalid)

E_OBJ Object state error (rdvno is invalid)

[Functional Description]

This service call terminates the rendezvous specified by rdvno. The start address of

the return message is specified by msg and its size in bytes is specified by rmsgsz.

Specifically, if the task which has called the rendezvous specified by rdvno is in the

termination waiting state for the rendezvous, this service call copies the return message

specified by msg and rmsgsz to the area allocated by the calling task to store the

return message. The service call then releases the task from waiting. The released task

receives the return message size (rmsgsz) as the return value of the service call that

caused it to wait.

If the task that has called the rendezvous specified by rdvno is not in the termination

waiting state for the same rendezvous, an E_OBJ error is returned. An E_OBJ error

is also returned when the value specified by rdvno cannot be interpreted as a rendez-

vous number.

A rendezvous number accepted by another task may also be specified in

rdvno

. In

other words, the task that invokes rpl_rdv and terminates the rendezvous does not nec-

essarily correspond to the task that has accepted the rendezvous.

When

rmsgsz

 is larger than the maximum return message size of the rendezvous port

to which the rendezvous was established, an E_PAR error is returned. rmsgsz may

be specified as 0.

[Supplemental Information]

Even if the task that has called the rendezvous is released from the termination waiting

state for the rendezvous due to a timeout or a forced release after the rendezvous is

established, its release would not be notified to the task that has accepted the rendez-

vous. In this case, an

E_OBJ

 error is returned if the task that accepted the rendezvous
210

µITRON4.0 Specification Ver. 4.00.00

invokes

rpl_rdv

 and tries to terminate the rendezvous. The task can determine

whether the calling task for the rendezvous is still in the termination waiting state by

invoking

ref_rdv.

After the rendezvous is established, both the calling and accepting tasks are detached

from the rendezvous port. However, the maximum return message size for the rendez-

vous port is necessary for checking if the return message size (

rmsgsz

) is smaller than

or equal to the maximum size. For this reason, the maximum return message size must

be saved in conjunction with the rendezvous. The maximum size, for example, can be

stored in the TCB of the task in the calling waiting state or in an area (such as the stack

area) that can be referenced from the TCB.

[Differences from the µITRON3.0 Specification]

The fact that a task other than the task that has accepted the rendezvous can terminate

the rendezvous is now clarified.

The return message size can now be specified as 0.

The data types of rdvno and rmsgsz have been changed from RNO to RDVNO and

from INT to UINT, respectively.

[Rationale]

A rendezvous port ID is not passed as a parameter to rpl_rdv because the task that has

called the rendezvous is detached from the rendezvous port once the rendezvous is

established.

When rdvno is invalid, an E_OBJ error is returned instead of an E_PAR error. This

is because an invalid value of rdvno cannot be detected statically.
211

µITRON4.0 Specification Ver. 4.00.00

ref_por Reference Rendezvous Port State

[C Language API]
ER ercd = ref_por (ID porid, T_RPOR *pk_rpor) ;

[Parameter]
ID porid ID number of the rendezvous port to be referenced

T_RPOR * pk_rpor Pointer to the packet returning the rendezvous port

state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rpor

 includes (

T_RPOR

 type)

ID ctskid

ID number of the task at the head of the call-wait

queue

ID atskid

ID number of the task at the head of the accept-wait

queue

(Other implementation specific information may be added.)

[Error Code]

E_ID

Invalid ID number (

porid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified rendezvous port is not regis-

tered)

E_PAR

Parameter error (pk_rpor is invalid)

[Functional Description]

This service call references the state of the rendezvous port specified by porid. The

state of the rendezvous port is returned through the packet pointed to by pk_rpor.

The ID number of the task at the head of the rendezvous port’s call-wait queue is

returned through ctskid. If no tasks are waiting to call a rendezvous at the rendezvous

port, TSK_NONE (= 0) is returned instead.

The ID number of the task at the head of the rendezvous port’s accept-wait queue is

returned through

atskid

. If no tasks are waiting to accept a rendezvous at the rendez-

vous port,

TSK_NONE

 (= 0) is returned instead.

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The ID

number of the task at the head of each wait queue is now returned instead of a boolean

value indicating whether a task is waiting or not. Based on this replacement, the names

and data types of the return parameters have been changed. The order of parameters

and of return parameters has been changed.
212

µITRON4.0 Specification Ver. 4.00.00

ref_rdv

Reference Rendezvous State

[C Language API]

ER ercd = ref_rdv (RDVNO rdvno, T_RRDV *pk_rrdv) ;

[Parameter]

RDVNO rdvno

Rendezvous number of the rendezvous to be refer-

enced

T_RRDV * pk_rrdv Pointer to the packet returning the rendezvous state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rrdv

 includes (

T_RRDV

 type)

ID wtskid

ID number of the task in the termination waiting

state for the rendezvous

(Other implementation specific information may be added.)

[Error Code]

E_PAR

Parameter error (

pk_rrdv

 is invalid)

[Functional Description]

This service call references the state of the rendezvous to which the rendezvous num-

ber specified by

rdvno

 is assigned. The state of the rendezvous is returned through the

packet pointed to by pk_rrdv.

When the task that has called the rendezvous specified by rdvno is in the termination

waiting state for the same rendezvous, the ID number of the task is returned through

wtskid. If the task is not in the termination waiting state for the same rendezvous, or

if the rdvno cannot be interpreted as a rendezvous number, TSK_NONE (= 0) is

returned instead.

[Supplemental Information]

When this service call invoked with a rendezvous number returns a task ID through

wtskid

,

rpl_rdv

 or

fwd_por

 invoked with the same rendezvous number never

returns an

E_OBJ error.

[Differences from the µITRON3.0 Specification]

ref_rdv has been newly added. The ITRON2 Specification had a corresponding ser-

vice call,

rdv_sts

.

213

µITRON4.0 Specification Ver. 4.00.00

4.6 Memory Pool Management Functions

Memory pool management functions provide dynamic memory management by soft-

ware. Memory pool management functions include fixed-sized memory pool and vari-

able-sized memory pool.

[Supplemental Information]

The µITRON4.0 Specification does not specify functions for multiple logical memory

spaces or hardware memory management unit (MMU).

4.6.1 Fixed-Sized Memory Pools

A fixed-sized memory pool is an object for dynamically managing fixed-sized memory

blocks. The fixed-sized memory pool functions include the ability to create and delete

a fixed-sized memory pool, to acquire and release a memory block to/from a

fixed-sized memory pool, and to reference the state of a fixed-sized memory pool. A

fixed-sized memory pool is an object identified by an ID number. The ID number of a

fixed-sized memory pool is called the fixed-sized memory pool ID.

A fixed-sized memory pool has an associated memory area where fixed-sized memory

blocks are allocated (this is called fixed-sized memory pool area or simply memory

pool area) and an associated wait queue for acquiring a memory block. If there are no

memory blocks available, a task trying to acquire a memory block from the fixed-sized

memory pool will be in the waiting state for a fixed-sized memory block until a mem-

ory block is released. The task waiting to acquire a fixed-sized memory block is placed

in the fixed-sized memory pool’s wait queue.

The following kernel configuration macro is defined for use with the fixed-sized mem-

ory pool functions:

SIZE mpfsz = TSZ_MPF (UINT blkcnt, UINT blksz)

This macro returns the total required size of the fixed-size memory pool area in

bytes necessary to allocate

blkcnt

 memory blocks each of size

blksz

 bytes.

The following data type packets are defined for creating and referencing fixed-sized

memory pools:

typedef struct t_cmpf {
ATR mpfatr ; /* Fixed-sized memory pool attribute */
UINT blkcnt ; /* Total number of memory blocks */
UINT blksz ; /* Memory block size (in bytes) */
VP mpf ; /* Start address of the fixed-sized memory

pool area */
/* Other implementation specific fields may be added. */

} T_CMPF ;

typedef struct t_rmpf {
214

µITRON4.0 Specification Ver. 4.00.00

ID wtskid ; /* ID number of the task at the head of the
fixed-sized memory pool’s wait
queue */

UINT fblkcnt ; /* Number of free memory blocks in the
fixed-sized memory pool */

/* Other implementation specific fields may be added. */
} T_RMPF ;

The following represents the functions codes for the fixed-sized memory pool service

calls:

TFN_CRE_MPF

–0x45 Function code of

cre_mpf
TFN_ACRE_MPF

–0xc9 Function code of

acre_mpf
TFN_DEL_MPF

–0x46 Function code of

del_mpf
TFN_GET_MPF

–0x49 Function code of

get_mpf
TFN_PGET_MPF

–0x4a Function code of

pget_mpf
TFN_TGET_MPF

–0x4b Function code of

tget_mpf
TFN_REL_MPF

–0x47 Function code of

rel_mpf
TFN_REF_MPF

–0x4c Function code of

ref_mpf

[Standard Profile]

The Standard Profile requires support for fixed-sized memory pool functions except for

dynamic creation and deletion of a fixed-sized memory pool (

cre_mpf

,

acre_mpf

,

del_mpf

) and reference of a fixed-sized memory pool state (ref_mpf).

The Standard Profile does not require TSZ_MPF to be defined.

[Supplemental Information]

When using fixed-sized memory pool functions for memory blocks of different sizes, a

fixed-sized memory pool should be created for each size.
215

µITRON4.0 Specification Ver. 4.00.00

CRE_MPF Create Fixed-Sized Memory Pool (Static API) [S]

cre_mpf Create Fixed-Sized Memory Pool

acre_mpf Create Fixed-Sized Memory Pool (ID Number Automatic Assignment)

[Static API]
CRE_MPF (ID mpfid, { ATR mpfatr, UINT blkcnt, UINT blksz,

VP mpf }) ;

[C Language API]
ER ercd = cre_mpf (ID mpfid, T_CMPF *pk_cmpf) ;
ER_ID mpfid = acre_mpf (T_CMPF *pk_cmpf) ;

[Parameter]
ID mpfid ID number of the fixed-sized memory pool to be

created (except acre_mpf)
T_CMPF * pk_cmpf Pointer to the packet containing the fixed-sized

memory pool creation information (in

CRE_MPF

,

packet contents must be directly specified.)

pk_cmpf

 includes (

T_CMPF

 type)

ATR mpfatr

Fixed-sized memory pool attribute

UINT blkcnt

Total number of memory blocks

UINT blksz

Memory block size (in bytes)

VP mpf

Start address of the fixed-sized memory pool area

(Other implementation specific information may be added.)

[Return Parameter]

cre_mpf

:

ER ercd E_OK

 for normal completion or error code

acre_mpf

:

ER_ID mpfid

ID number (positive value) of the created

fixed-sized memory pool or error code

[Error Code]

E_ID

Invalid ID number (

mpfid

 is invalid or unusable; only

cre_mpf

)

E_NOID

No ID number available (there is no fixed-sized memory pool

ID assignable; only

acre_mpf

)

E_NOMEM

Insufficient memory (memory pool area cannot be allocated)

E_RSATR

Reserved attribute (

mpfatr

 is invalid or unusable)

E_PAR

Parameter error (

pk_cmpf

,

blkcnt

,

blksz

, or

mpf

 is

invalid)

E_OBJ

Object state error (specified fixed-sized memory pool is
216

µITRON4.0 Specification Ver. 4.00.00

already registered; only

cre_mpf

)

[Functional Description]

These service calls create a fixed-sized memory pool with an ID number specified by

mpfid

 based on the information contained in the packet pointed to by

pk_cmpf

.

mpfatr

 is the attribute of the fixed-sized memory pool.

blkcnt

 is the total number of

memory blocks.

blksz

 is size of each memory block.

mpf

 is the start address of the

fixed-sized memory pool area.

In

CRE_MPF

,

mpfid

 is an integer parameter with automatic assignment.

mpfatr

 is

a preprocessor constant expression parameter.

acre_mpf

 assigns a fixed-sized memory pool ID from the pool of unassigned

fixed-sized memory pool IDs and returns the assigned fixed-sized memory pool ID.

mpfatr

 can be specified as (

TA_TFIFO

 ||

TA_TPRI

). If

TA_TFIFO

 (= 0x00) is

specified, the fixed-sized memory pool’s wait queue will be in FIFO order. If

TA_TPRI

 (= 0x00) is specified, the fixed-sized memory pool’s wait queue will be in

task priority order.

The necessary area to hold up to

blkcnt

 memory blocks, each of size

blksz

 bytes,

starts from

mpf

 and is used as the fixed-size memory pool area. An application pro-

gram can calculate the size of the memory pool area necessary to hold

blkcnt

 number

of memory blocks, each of size blksz bytes, by using the TSZ_MPF macro. If mpf is
NULL (= 0), the kernel allocates the necessary memory area. When blkcnt or blksz

is specified as 0, an

E_PAR

 error is returned.

[Standard Profile]

The Standard Profile does not require support for when other values than

NULL

 is

specified in

mpf

.

[Differences from the µITRON3.0 Specification]

The start address of the memory pool area (

mpf

) has been added to the fixed-sized

memory pool creation information. The extended information has been removed. The

names of the parameters have been changed from

mpfcnt

 to

blkcnt

 and from

blfsz

to blksz, respectively. In addition, their data types have been changed from

INT

 to

UINT

.

acre_mpf

 has been newly added.
217

µITRON4.0 Specification Ver. 4.00.00

del_mpf

Delete Fixed-Sized Memory Pool

[C Language API]

ER ercd = del_mpf (ID mpfid) ;

[Parameter]

ID mpfid

ID number of the fixed-sized memory pool to be

deleted

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

[Error Code]

E_ID

Invalid ID number (

mpfid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified fixed-sized memory pool is not

registered)

[Functional Description]

This service call deletes the fixed-sized memory pool specified by

mpfid

. If the mem-

ory pool area was allocated by the kernel, the area is released.

[Supplemental Information]

See Section 3.8 for information regarding handling tasks that are waiting for a memory

block from the fixed-sized memory pool when the fixed-sized memory pool is deleted.
218

µITRON4.0 Specification Ver. 4.00.00

get_mpf

Acquire Fixed-Sized Memory Block

[S]

pget_mpf Acquire Fixed-Sized Memory Block (Polling) [S]

tget_mpf Acquire Fixed-Sized Memory Block (with Timeout) [S]

[C Language API]
ER ercd = get_mpf (ID mpfid, VP *p_blk) ;
ER ercd = pget_mpf (ID mpfid, VP *p_blk) ;
ER ercd = tget_mpf (ID mpfid, VP *p_blk, TMO tmout) ;

[Parameter]
ID mpfid ID number or the fixed-sized memory pool from

which a memory block is acquired

TMO tmout Specified timeout (only tget_mpf)

[Return Parameter]
ER ercd E_OK for normal completion or error code

VP blk Start address of the acquired memory block

[Error Code]
E_ID Invalid ID number (mpfid is invalid or unusable)

E_NOEXS Non-existent object (specified fixed-sized memory pool is not

registered)

E_PAR Parameter error (p_blk or tmout is invalid)

E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except pget_mpf)
E_TMOUT Polling failure or timeout (except get_mpf)
E_DLT Waiting object deleted (fixed-sized memory pool is deleted

while waiting; except pget_mpf)

[Functional Description]

These service calls acquire a memory block from the fixed-sized memory pool speci-

fied by

mpfid

. The size of the memory block is specified during the creation of the

fixed-sized memory pool. The start address of the memory block is returned through

blk. Specifically, when free memory blocks are available in the memory pool area,

one of the memory blocks is selected and takes on an acquired status. If there are no

memory blocks available, the invoking task is placed in the fixed-sized memory pool’s

wait queue and is moved to the waiting state for a fixed-sized memory block.

If there are already tasks in the fixed-sized memory pool’s wait queue, the invoking

task is placed in the wait queue as described below. When the fixed-sized memory

pool’s attribute has TA_TFIFO (= 0x00) set, the invoking task is placed at the tail of

the wait queue. When the fixed-sized memory pool’s attribute has

TA_TPRI

 (= 0x01)

set, the invoking task is placed in the wait queue in the order of the task’s priority. If
219

µITRON4.0 Specification Ver. 4.00.00

the wait queue contains tasks with the same priority as the invoking tasks, the invoking

task is placed after those tasks.

pget_mpf

 is a polling service call with the same funcionality as

get_mpf

.

tget_mpf
has the same functionality as get_mpf with an additional timeout feature. tmout can

be set to a positive number indicating a timeout duration or it can be set to TMO_POL
(= 0) or TMO_FEVR (= –1).

[Supplemental Information]

The size of the acquired memory block may be larger than the memory block size that

was specified during the creation of the fixed-sized memory pool. Since these service

calls do not clear the memory block, its contents are undefined.

tget_mpf

 acts the same as

pget_mpf

 if

TMO_POL

 is specified in

tmout

 as long as

no context error occurs. Also,

tget_mpf

 acts the same as

get_mpf

 if

TMO_FEVR

 is

specified in

tmout

.

[Differences from the µITRON3.0 Specification]

The names of the service calls have been changed from

get_blf

,

pget_blf

, and

tget_blf

 to

get_mpf

,

pget_mpf

, and

tget_mpf

, respectively. The order of parame-

ters and of return parameters has been changed.
220

µITRON4.0 Specification Ver. 4.00.00

rel_mpf

Release Fixed-Sized Memory Block

[S]

[C Language API]

ER ercd = rel_mpf (ID mpfid, VP blk) ;

[Parameter]
ID mpfid ID number of the fixed-sized memory pool to which

the memory block is released

VP blk Start address of the memory block to be released

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (mpfid is invalid or unusable)

E_NOEXS Non-existent object (specified fixed-sized memory pool is not

registered)

E_PAR Parameter error (blk is invalid, release to a different memory

pool, specified address is not the start address of a memory

block)

[Functional Description]

This service call releases the memory block starting from the address specified by blk
to the fixed-sized memory pool specified by mpfid.

If there are already tasks in the fixed-sized memory pool’s wait queue, this service call

lets the task at the head of the wait queue acquire the released memory block and

releases the task from waiting. The released task receives E_OK from the service call

that caused it to wait in the fixed-sized memory pool’s wait queue. It also receives the

value specified by blk as the start address of the acquired memory block.

The fixed-sized memory pool to which the memory block is released must be the same

fixed-sized memory pool from which the memory block was acquired. Otherwise, an

E_PAR error is returned.

The start address of the memory block to be released must be the start address of an

acquired memory block returned by get_mpf, pget_mpf, or tget_mpf. In addition,

the memory block must not be a released memory block. The behavior is undefined

when other addresses are specified in blk. When an error should be reported, an

E_PAR error is returned.

[Differences from the µITRON3.0 Specification]

The name of the service call has been changed from rel_blf to rel_mpf. The name of

the parameter has been changed from blf to blk.
221

µITRON4.0 Specification Ver. 4.00.00

ref_mpf Reference Fixed-Sized Memory Pool State

[C Language API]
ER ercd = ref_mpf (ID mpfid, T_RMPF *pk_rmpf) ;

[Parameter]
ID mpfid ID number of the fixed-sized memory pool to be

referenced

T_RMPF * pk_rmpf Pointer to the packet returning the fixed-sized mem-

ory pool state

[Return Parameter]

ER ercd E_OK for normal completion or error code

pk_rmpf includes (T_RMPF type)

ID wtskid ID number of the task at the head of the wait queue

UINT fblkcnt Number of free memory blocks

(Other implementation specific information may be added.)

[Error Code]
E_ID Invalid ID number (mpfid is invalid or unusable)

E_NOEXS Non-existent object (specified fixed-sized memory pool is not

registered)

E_PAR Parameter error (pk_rmpf is invalid)

[Functional Description]

This service call references the state of the fixed-sized memory pool specified by

mpfid. The state of the fixed-sized memory pool is returned through the packet

pointed to by pk_rmpf.

The ID number of the task at the head of the fixed-sized memory pool’s wait queue is

returned through wtskid. If no tasks are waiting to acquire a memory block,

TSK_NONE (= 0) is returned instead.

The number of free memory blocks in the fixed-sized memory pool area is returned

through

fblkcnt

.

[Supplemental Information]

A fixed-sized memory pool cannot have

wtskid

≠

TSK_NONE

 and

fblkcnt

≠

 0 at

the same time.

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The ID

number of the task at the head of the wait queue is now returned instead of a boolean

value indicating whether a task is waiting or not. Based on this replacement, the name

and data type of the return parameter has been changed.
222

µITRON4.0 Specification Ver. 4.00.00

The name of the return parameter has been changed from

frbcnt

 to

fblkcnt

, and its

data type has been changed from

INT

 to

UNIT

. The order of parameters and of return

parameters has been changed.
223

µITRON4.0 Specification Ver. 4.00.00

4.6.2 Variable-Sized Memory Pools

A variable-sized memory pool is an object for dynamically managing variable-sized

memory blocks. The variable-sized memory pool functions include the ability to cre-

ate and delete a variable-sized memory pool, to acquire and release a memory block to/

from a variable-sized memory pool, and to reference the state of a variable-sized mem-

ory pool. A variable-sized memory pool is an object identified by an ID number. The

ID number of a variable-sized memory pool is called the variable-sized memory ID.

A variable-sized memory pool has an associated memory area where variable-sized

memory blocks are allocated (this is called variable-sized memory pool area or simply

memory pool area) and an associated wait queue for acquiring a memory block. If

there are no memory blocks available, a task trying to acquire a memory block from the

variable-sized memory pool will be in the waiting state for a variable-sized memory

block until enough memory blocks are released. The task waiting to acquire a vari-

able-sized memory block is placed in the variable-sized memory pool’s wait queue.

The following kernel configuration macro is defined for use with variable-sized mem-

ory pool functions:

SIZE mplsz = TSZ_MPL (UINT blkcnt, UINT blksz)

This macro returns an approximate size in bytes necessary to allocate

blkcnt

memory blocks each of size

blksz

 bytes.

This macro is only an estimation for determining the size of the memory pool area. It

cannot be used to determine the total required size of a memory pool area to allocate

memory blocks with different sizes. In addition, when the memory pool area becomes

fragmented, the specified number of memory blocks cannot be allocated.

The following data type packets are defined for creating and referencing variable-sized

memory pools:

typedef struct t_cmpl {
ATR mplatr ; /* Variable-sized memory pool attribute */
SIZE mplsz ; /* Size of the variable-sized memory pool

area (in bytes) */
VP mpl ; /* Start address of the variable-sized

memory pool area */
/* Other implementation specific fields may be added. */

} T_CMPL ;

typedef struct t_rmpl {
ID wtskid ; /* ID number of the task at the head of the

variable-sized memory pool’s wait
queue */

SIZE fmplsz ; /* Total size of free memory blocks in the
variable-sized memory pool (in
bytes) */
224

µITRON4.0 Specification Ver. 4.00.00

UINT fblksz ; /* Maximum memory block size available
(in bytes) */

/* Other implementation specific fields may be added. */
} T_RMPL ;

The following represents the functions codes for the variable-sized memory pool ser-

vice calls:

TFN_CRE_MPL

–0xa1 Function code of cre_mpl
TFN_ACRE_MPL –0xca Function code of acre_mpl
TFN_DEL_MPL –0xa2 Function code of del_mpl
TFN_GET_MPL –0xa5 Function code of get_mpl
TFN_PGET_MPL –0xa6 Function code of pget_mpl
TFN_TGET_MPL –0xa7 Function code of tget_mpl
TFN_REL_MPL –0xa3 Function code of rel_mpl
TFN_REF_MPL –0xa8 Function code of ref_mpl

[Standard Profile]

The Standard Profile does not require support for variable-sized memory pool func-

tions.

[Supplemental Information]

Tasks that are waiting for a memory block from a variable-sized memory pool will

acquire a memory block in the order that the tasks are placed in the wait queue. An

example is when task A tries to acquire 400 byte memory block from a variable-sized

memory pool and task B tries to acquire 100 byte memory block from the same vari-

able-sized memory pool. Assume that these tasks are placed in the wait queue so that

task A is ahead of task B. A third task then releases 200 byte memory block to the vari-

able-sized memory pool, resulting in 200 bytes of available area in the variable-sized

memory pool. Even though task B only needs 100 bytes to acquire a memory block, it

cannot do so until task A has acquired a memory block. However, an implementa-

tion-specific extension can add an attribute to the variable-sized memory pool that will

allow task B to acquire a memory block before task A in this example.

[Differences from the µITRON3.0 Specification]

Whether tasks should acquire memory blocks according to their order in the wait queue

or according to which task can acquire a memory block first was implementa-

tion-dependent in the µITRON3.0 Specification. The µITRON4.0 Specifications has

determined the former order to be standard.
225

µITRON4.0 Specification Ver. 4.00.00

CRE_MPL Create Variable-Sized Memory Pool (Static API)

cre_mpl Create Variable-Sized Memory Pool

acre_mpl Create Variable-Sized Memory Pool (ID Number Automatic Assignment)

[Static API]
CRE_MPL (ID mplid, { ATR mplatr, SIZE mplsz, VP mpl }) ;

[C Language API]
ER ercd = cre_mpl (ID mplid, T_CMPL *pk_cmpl) ;
ER_ID mplid = acre_mpl (T_CMPL *pk_cmpl) ;

[Parameter]
ID mplid ID number of the variable-sized memory pool to be

created (except acre_mpl)
T_CMPL * pk_cmpl Pointer to the packet containing the variable-sized

memory pool creation information (in

CRE_MPL

,

packet contents must be directly specified.)

pk_cmpl

 includes (

T_CMPL

 type)

ATR mplatr

Variable-sized memory pool attribute

SIZE mplsz

Size of the variable-sized memory pool area (in

bytes)

VP mpl

Start address of the variable-sized memory pool

area

(Other implementation specific information may be added.)

[Return Parameter]

cre_mpl

:

ER ercd E_OK

 for normal completion or error code

acre_mpl

:

ER_ID mplid

ID number (positive value) of the created vari-

able-sized memory pool or error code

[Error Code]

E_ID Invalid ID number (mplid is invalid or unusable; only

cre_mpl)
E_NOID No ID number available (there is no variable-sized memory

pool ID assignable; only acre_mpl)
E_NOMEM Insufficient memory (memory pool area cannot be allocated)

E_RSATR Reserved attribute (mplatr is invalid or unusable)

E_PAR Parameter error (pk_cmpl, mplsz, or mpl is invalid)

E_OBJ Object state error (specified variable-sized memory pool is

already registered; only cre_mpl)
226

µITRON4.0 Specification Ver. 4.00.00

[Functional Description]

These service calls create a variable-sized memory pool with an ID number specified

by mplid based on the information contained in the packet pointed to by pk_cmpl.
mplatr is the attribute of the variable-sized memory pool. mplsz is the size of the

variable-sized memory pool area in bytes. mpl is the start address of the vari-

able-sized memory pool area.

In

CRE_MPL

, mplid is an integer parameter with automatic assignment. mplatr is

a preprocessor constant expression parameter.

acre_mpl assigns a variable-sized memory pool ID from the pool of unassigned vari-

able-sized memory pool IDs and returns the assigned variable-sized memory pool ID.

mplatr

 can be specified as (TA_TFIFO || TA_TPRI). If TA_TFIFO (= 0x00) is

specified, the variable-sized memory pool’s wait queue will be in FIFO order. If

TA_TPRI

 (= 0x00) is specified, the variable-sized memory pool’s wait queue will be in

task priority order.

The memory area starting from

mpl

 and whose size is

mplsz

 is used as the memory

pool area. Because the information for memory block management is also placed in

the memory pool area, the whole memory pool area cannot be used to allocate memory

blocks. An application program can estimate the size to be specified in mplsz by using

the

TSZ_MPL

 macro. If

mpl

 is

NULL

 (= 0), the kernel allocates the necessary mem-

ory area in bytes specified by

mplsz

. When mplsz is specified as 0, an E_PAR error

is returned.

[Differences from the µITRON3.0 Specification]

The start address of the memory pool area (mpl) has been added to the variable-sized

memory pool creation information. The extended information has been removed. The

data type of mplsz has been changed from INT to SIZE.

acre_mpl has been newly added.
227

µITRON4.0 Specification Ver. 4.00.00
del_mpl Delete Variable-Sized Memory Pool

[C Language API]
ER ercd = del_mpl (ID mplid) ;

[Parameter]
ID mplid ID number of the variable-sized memory pool to be

deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (mplid is invalid or unusable)

E_NOEXS Non-existent object (specified variable-sized memory pool is

not registered)

[Functional Description]

This service call deletes the variable-sized memory pool specified by mplid. If the

memory pool area was allocated by the kernel, the area is released.

[Supplemental Information]

See Section 3.8 for information regarding handling tasks that are waiting for a memory

block from the variable-sized memory pool when the variable-sized memory pool is

deleted.
228

µITRON4.0 Specification Ver. 4.00.00
get_mpl Acquire Variable-Sized Memory Block

pget_mpl Acquire Variable-Sized Memory Block (Polling)

tget_mpl Acquire Variable-Sized Memory Block (with Timeout)

[C Language API]
ER ercd = get_mpl (ID mplid, UINT blksz, VP *p_blk) ;
ER ercd = pget_mpl (ID mplid, UINT blksz, VP *p_blk) ;
ER ercd = tget_mpl (ID mplid, UINT blksz, VP *p_blk,

TMO tmout) ;

[Parameter]
ID mplid ID number of the variable-sized memory pool from

which a memory block is acquired

UINT blksz Memory block size to be acquired (in bytes)

TMO tmout Specified timeout (only tget_mpl)

[Return Parameter]
ER ercd E_OK for normal completion or error code

VP blk Start address of the acquired memory block

[Error Code]
E_ID Invalid ID number (mplid is invalid or unusable)

E_NOEXS Non-existent object (specified variable-sized memory pool is

not registered)

E_PAR Parameter error (p_blk, tmout is invalid)

E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except pget_mpl)
E_TMOUT Polling failure or timeout (except get_mpl)
E_DLT Waiting object deleted (variable-sized memory pool is deleted

while waiting; except pget_mpl)

[Functional Description]

These service calls acquire a memory block whose size is specified by blksz from the

variable-sized memory pool specified by mplid. The start address of the memory

block is returned through blk.

Specific actions to be performed depend on whether there is a task waiting to acquire a

memory block with precedence over the invoking task. If no tasks are waiting to

acquire a memory block from the variable-sized memory block, or if the variable-sized

memory pool’s attribute has TA_TPRI (= 0x01) set and the invoking task has higher

priority than all of the waiting tasks, a memory block of size

blksz

 bytes is acquired

from the memory pool area. If the conditions are not satisfied or if the free memory

area is insufficient for acquiring a memory block, the invoking task is placed in the
229

µITRON4.0 Specification Ver. 4.00.00

variable-sized memory pool’s wait queue and is moved to the waiting state for a vari-

able-sized memory block.

If there are already tasks in the variable-sized memory pool’s wait queue, the invoking

task is placed in the wait queue as described below. When the variable-sized memory

pool’s attribute has

TA_TFIFO

 (= 0x00) set, the invoking task is placed at the tail of

the wait queue. When the variable-sized memory pool’s attribute has

TA_TPRI

(= 0x01) set, the invoking task is placed in the wait queue in the order of the task’s pri-

ority. If the wait queue contains tasks with the same priority as the invoking tasks, the

invoking task is placed after those tasks.

When the first task in the wait queue has changed as the result of releasing a task in the

wait queue from waiting with

rel_wai

, ter_tsk, or a timeout, the actions, when possi-

ble, to make the tasks acquire memory blocks starting from the new first task in the

wait queue are necessary. Since the specific actions are similar to the actions to be

taken after

rel_mpl

 has released a memory block to the variable-sized memory pool,

see the functional description of rel_mpl for more details. The same actions are also

necessary when the first task in the wait queue has changed as the result of changing

the priority of a task in the wait queue by chg_pri or mutex operations.

pget_mpl is a polling service call with the same funcionality as get_mpl. tget_mpl
has the same functionality as get_mpl with an additional timeout feature. tmout can

be set to a positive number indicating a timeout duration or it can be set to TMO_POL
(= 0) or TMO_FEVR (= –1).

[Supplemental Information]

The size of the acquired memory block may be larger than the size specified by

blksz

.

Since these service calls do not clear the memory block, its contents are undefined.

tget_mpl

 acts the same as

pget_mpl

 if

TMO_POL

 is specified in

tmout

 as long as

no context error occurs. Also,

tget_mpl

 acts the same as

get_mpl

 if

TMO_FEVR

 is

specified in

tmout

.

[Differences from the µITRON3.0 Specification]

The names of the service calls have been changed from

get_blk

,

pget_blk

, and

tget_blk

 to

get_mpl

,

pget_mpl

, and

tget_mpl

, respectively. The data type of

blksz

 has been changed from

INT

 to

UINT

. The order of parameters and of return

parameters has been changed.
230

µITRON4.0 Specification Ver. 4.00.00

rel_mpl

Release Variable-Sized Memory Block

[C Language API]

ER ercd = rel_mpl (ID mplid, VP blk) ;

[Parameter]

ID mplid

ID number of the variable-sized memory pool to

which the memory block is released

VP blk

Start address of memory block to be released

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

[Error Code]

E_ID

Invalid ID number (

mplid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified variable-sized memory pool is

not registered)

E_PAR

Parameter error (

blk

 is invalid, release to a different memory

pool, specified address is not the start address of a memory

block)

[Functional Description]

This service call release the memory block starting from the address specified by

blk

to the variable-sized memory pool specified by

mplid

.

If there are already tasks in the variable-sized memory pool’s wait queue, this service

call checks if, as a result of releasing the memory block, the first task in the wait queue

can acquire a memory block of the requested size. If the requested size is met, the ser-

vice call lets the task acquire the memory block and releases the task from waiting.

The released task receives

E_OK

 from the service call that caused it to wait in the vari-

able-sized memory pool’s wait queue. It also receives the start address of the acquired

memory block. When some tasks still remain in the wait queue after the release of the

task, the same actions must be repeated on the new head task in the wait queue.

The variable-sized memory pool to which the memory block is released must be the

same variable-sized memory pool from which the memory block was acquired. Other-

wise, an

E_PAR

 error is returned.

The start address of the memory block to be released must be the start address of an

acquired memory block returned by get_mpl, pget_mpl, or tget_mpl. In addition,

the memory block must not be a released memory block. The behavior is undefined

when other addresses are specified in blk. When an error should be reported, an

E_PAR error is returned.
231

µITRON4.0 Specification Ver. 4.00.00

[Supplemental Information]

If this service call releases more than one task from waiting, the order of release corre-

sponds with the order in which the tasks are placed in the wait queue. Therefore,

among the same priority tasks moved to the runnable state, the task closer to the head

of the wait queue has higher precedence.

[Differences from the µITRON3.0 Specification]

The name of the service call has been changed from

rel_blk to rel_mpl.
232

µITRON4.0 Specification Ver. 4.00.00

 ref_mpl Reference Variable-Sized Memory Pool State

[C Language API]
ER ercd = ref_mpl (ID mplid, T_RMPL *pk_rmpl) ;

[Parameter]
ID mplid ID number of the variable-sized memory pool to be

referenced

T_RMPL * pk_rmpl Pointer to the packet returning the variable-sized

memory pool state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rmpl

 includes (

T_RMPL

 type)

ID wtskid

ID number of the task at the head of the wait queue

SIZE fmplsz

Total size of free memory blocks (in bytes)

UINT fblksz

Maximum memory block size available (in bytes)

(Other implementation specific information may be added.)

[Error Code]

E_ID

Invalid ID number (

mplid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified variable-sized memory pool is

not registered)

E_PAR

Parameter error (

pk_rmpl

 is invalid)

[Functional Description]

This service call references the state of the variable-sized memory pool specified by

mplid

. The state of the memory pool is returned through the packet pointed to by

pk_rmpl

.

The ID number of the task at the head of the variable-sized memory pool’s wait queue

is returned through

wtskid

. If no tasks are waiting to acquire a memory block,

TSK_NONE

 (= 0) is returned instead.

The current total size of free memory blocks in the variable-sized memory pool in

bytes is returned through

fmplsz

.

The size of the largest free memory block in bytes that can be acquired immediately

from the variable-sized memory pool is returned through

fblksz

. When the size of the

memory block is too large to represent with

UINT

 type, the maximum value that can fit

in

UINT

 type is returned through

fblksz

.

[Supplemental Information]

If the kernel uses dynamic memory management internally, this service call can be

used as an API to reference the kernel’s dynamic memory area. Specifically, this ser-
233

µITRON4.0 Specification Ver. 4.00.00

vice call returns the information on the kernel’s dynamic memory area when invoked

with an ID number of (–4). However, wtskid does not have a meaning in this case. In

addition, if the kernel manages more than one dynamic memory area, these can be ref-

erenced through ID numbers (–3) and (–2).

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The ID

number of the task at the head of the wait queue is now returned instead of a boolean

value indicating whether a task is waiting or not. Based on this replacement, the names

and data types of the return parameters have been changed.

The names of the return parameters have been changed from frsz to fmplsz and from

maxsz to fblksz. The data types of fmplsz and fblksz have been changed from INT
to SIZE and from INT to UINT, respectively. The order of parameters and of return

parameters has been changed.
234

µITRON4.0 Specification Ver. 4.00.00

4.7 Time Management Functions

Time management functions provide time-dependent processing. The time manage-

ment functions include system time management, cyclic handlers, alarm handlers, and

overrun handlers. Cyclic handlers, alarm handlers, and overrun handlers are generi-

cally called time event handlers.

[Supplemental Information]

The contexts and states under which time event handlers execute are summarized as

follows:

 • Time event handlers execute in their own independent contexts (see Section 3.5.1).

The contexts in which time event handlers execute are classified as non-task contexts

(see Section 3.5.2).

 • Time event handlers execute at lower precedence than the interrupt handler that

called

isig_tim, but at higher precedence than the dispatcher (see Section 3.5.3).

 • After time event handlers start, the system is in the CPU unlocked state. When

returning from time event handlers, the system must be in the CPU unlocked state

(see Section 3.5.4).

 • The start of and the return from time handlers do not change the dispatching state.

When the dispatching state is changed within time event handlers, the original state

must be restored before returning (see Section 3.5.5).

[Differences from the µITRON3.0 Specification]

The name cyclic handler has been changed from cyclic activation handler. Overrun

handler is a newly added feature. The delay task function (del_tsk) has been moved

from time management functions to task dependent synchronization functions.

ret_tmr has been removed (see Section 3.9).

4.7.1 System Time Management

System time management functions provide control over system time. System time

management functions include the ability to set and get the system time and to supply a

time tick for updating the system time.

System time initializes to 0 when the system is started (see Section 3.7) and will be

updated every time isig_tim is invoked by the application. The amount of time added

to the system time when isig_tim is invoked is implementation-defined. The fre-

quency of calling

isig_tim

 from the application must be correlated with the amount of

time added to the system time. If the kernel has a mechanism of updating the system

time, isig_tim need not be supported.

The following features depend on the system time: processing of timeouts, releasing

tasks from waiting after a call to dly_tsk, and activation of cyclic handlers and alarm
235

µITRON4.0 Specification Ver. 4.00.00

handlers. The execution order of multiple processes that start at the same system time

tick is implementation-dependent.

The following kernel configuration constants are defined for use with system time man-

agement functions:

TIC_NUME

Time tick period numerator

TIC_DENO Time tick period denominator

These constants allow the application to reference the approximate time precision of

the system time. TIC_NUME/TIC_DENO is the time tick period measured in the

same units as the system time. If the system time is not updated periodically, the con-

stants should still be defined so that they reflect the characteristic of the system time

precision.

The following represents the function codes for the system time management service

calls:

TFN_SET_TIM

–0x4d Function code of set_tim
TFN_GET_TIM –0x4e Function code of get_tim
TFN_ISIG_TIM –0x7d Function code of isig_tim

[Standard Profile]

The Standard Profile requires support for the system time management functions.

However, if the kernel has a mechanism of updating the system time, isig_tim need

not be supported.

[Supplemental Information]

Another method to define TIC_NUME and TIC_DENO is to allow the application to

define them in the system configuration file or in header files prepared by the applica-

tion. The kernel determines the period that

isig_tim

 is invoked by the application

from these constants.

[Differences from the µITRON3.0 Specification]

The name system time has been changed from system clock. The service call to supply

a time tick (isig_tim) has been newly added. This allows the kernel to be independent

of timer hardware.

The recommended number of bits used to represent the value of the system time is not

specified. In the µITRON3.0 Specification it was 48 bits. Now the system is set to 0

upon initialization. In the µITRON3.0 Specification, the recommended start date for

absolute time was January 1st, 1985, 0:00 am GMT.
236

µITRON4.0 Specification Ver. 4.00.00

set_tim Set System Time [S]

[C Language API]
ER ercd = set_tim (SYSTIM *p_systim) ;

[Parameter]
SYSTIM systim Time to set as system time

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_PAR Parameter error (p_systim or systim is invalid)

[Functional Description]

This service call sets the system time to the value specified by systim.

[Supplemental Information]

Changing the system time using this service call will not change the time in the real

world when an event specified using relative time is to occur. However, the system

time when that event occurs will change (see Section 2.1.9).

[Differences from the µITRON3.0 Specification]

The data type of the system time has been changed from SYSTIME to SYSTIM. The

parameter name in the C language API has changed from pk_tim to p_systim.

[Rationale]

systim is passed through a pointer because passing the parameter value may reduce

system efficiency when SYSTIM is defined as a data structure.
237

µITRON4.0 Specification Ver. 4.00.00
get_tim Reference System Time [S]

[C Language API]
ER ercd = get_tim (SYSTIM *p_systim) ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for normal completion or error code

SYSTIM systim Current system time

[Error Code]
E_PAR Parameter error (p_systim is invalid)

[Functional Description]

This service call returns the current system time through systim.

[Differences from the µITRON3.0 Specification]

The data type of the system time has been changed from SYSTIME to SYSTIM. The

parameter name in the C language API has changed from pk_tim to p_systim.
238

µITRON4.0 Specification Ver. 4.00.00
isig_tim Supply Time Tick [S]

[C Language API]
ER ercd = isig_tim () ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
No errors specific to this service call

[Functional Description]

This service call updates the system time.

[Standard Profile]

The Standard Profile does not require support for this service call if the kernel has a

mechanism of updating the system time.

[Supplemental Information]

This service call may start processes that depend on the system time. This does not

mean that these processes must be executed within this service call. This implies that

these processes do not necessarily complete before the service call returns.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.
239

µITRON4.0 Specification Ver. 4.00.00

4.7.2 Cyclic Handlers

A cyclic handler is a time event handler activated periodically. Cyclic handler func-

tions include the ability to create and delete a cyclic handler, to start and stop a cyclic

handler’s operation, and to reference the state of a cyclic handler. A cyclic handler is

an object identified by an ID number. The ID number of a cyclic handler is called the

cyclic handler ID.

The activation cycle and activation phase are set at the creation of the cyclic handler.

The kernel determines the next time the handler will be activated based on the activa-

tion cycle and the activation phase. When the cyclic handler is created, the first activa-

tion time is calculated by adding the activation phase to the time at which the cyclic

handler was created. At the cyclic handler’s activation time, the cyclic handler is called

with its extended information (

exinf

) passed as a parameter. At this time the next acti-

vation time is calculated by adding the activation cycle to the current activation time.

In addition, the next activation time may be recalculated when the cyclic handler’s

operation is started.

Generally, a cyclic handler’s activation phase is less than its activation cycle. The

behavior is implementation-dependent when the activation phase is longer than the

activation cycle.

A cyclic handler is either in an operational state or a non-operational state. When a

cyclic handler is in a non-operational state, the cyclic handler is not activated at its acti-

vation time. Instead, its next activation time is determined. When the service call that

starts the operation of a cyclic handler (

sta_cyc

) is invoked, the cyclic handler is

moved to an operational state and its next activation time is recalculated if necessary.

When the service call that stops the operation of a cyclic handler (stp_cyc) is invoked,

the cyclic handler is moved to a non-operational state. After the creation of a cyclic

handler, the cyclic handler’s attribute determines the operational state of the cyclic han-

dler.

The activation phase is the relative time from the time when the cyclic handler was cre-

ated to the first activation time. If the cyclic handler is created through a static API, the

creation time is considered to be the system initialization time. The activation cycle is

the relative time from the last activation time to the next activation time. The last acti-

vation time may not have been the actual time of activation, but rather the last expected

activation time. An actual interval between actual activations can possibly be shorter

than the activation cycle. However, in the long term, the average actual activation

interval will correspond with the activation cycle.

The format to write a cyclic handler in the C language is shown below:

void cychdr (VP_INT exinf)
{

/* Body of the cyclic handler */
}

240

µITRON4.0 Specification Ver. 4.00.00

The following data type packets are defined for creating and referencing cyclic han-

dlers:

typedef struct t_ccyc {
ATR cycatr ; /* Cyclic handler attribute */
VP_INT exinf ; /* Cyclic handler extended information */
FP cychdr ; /* Cyclic handler start address */
RELTIM cyctim ; /* Cyclic handler activation cycle */
RELTIM cycphs ; /* Cyclic handler activation phase */
/* Other implementation specific fields may be added. */

} T_CCYC ;

typedef struct t_rcyc {
STAT cycstat ; /* Cyclic handler operational state */
RELTIM lefttim ; /* Time left before the next activation */
/* Other implementation specific fields may be added. */

} T_RCYC ;

The following represents the function codes for the cyclic handler service calls:

TFN_CRE_CYC

–0x4f Function code of

cre_cyc
TFN_ACRE_CYC

–0xcb Function code of

acre_cyc
TFN_DEL_CYC

–0x50 Function code of

del_cyc
TFN_STA_CYC

–0x51 Function code of

sta_cyc
TFN_STP_CYC

–0x52 Function code of

stp_cyc
TFN_REF_CYC

–0x53 Function code of

ref_cyc

[Standard Profile]

The Standard Profile requires support for cyclic handler functions except for dynami-

cally creation and deletion of a cyclic handler (

cre_cyc

, acre_cyc, del_cyc) and ref-

erence of a cyclic handler state (

ref_cyc

).

The Standard Profile does not require support for preserving the activation phase,

which is specified by TA_PHS in the cyclic handler’s attribute.

[Supplemental Information]

When the activation phase is preserved, the activation time is determined so that the

quantity (((activation time) – (creation time)) % (activation cycle)) is constant. Figure

4-5 show how the cyclic handler is activated after it is created with TA_STP specified

in its attribute and then it is moved to an operational state with sta_cyc. When the

activation phase is preserved, the activation time is always determined base on the cre-

ation time (Figure 4-5 (a)). When the activation phase is not preserved the activation

time is determined base on the time when

sta_cyc

 is invoked (Figure 4-5 (b)).

The activation of cyclic handlers depends on the system time. Therefore, these han-

dlers are activated at the first time tick after the activation time has passed. The activa-

tion phase is the relative time from when the cyclic handler was created. This means

that the first activation of the cyclic handler occurs after an elapsed time equal to or

greater than the activation phase (as long as the cyclic handler is in an operational
241

µITRON4.0 Specification Ver. 4.00.00

state). The activation cycle is the relative time from the last activation time. This

means that the n-th activation of the cyclic handler must occur after an elapsed time

equal to or greater than ((activation phase) + (activation cycle) * (n–1)) from the cre-

ation time. For example, for a system with a 10 millisecond time tick where a cyclic

handler is created through the static API with the activation phase set to 15 millisec-

onds and the activation cycle set to 25 milliseconds, then the activation times will be at

20, 40, 70, 90, and 120 milliseconds and so on. See Section 2.1.9 for how to handle

events specified with relative times.

This specification describes the calculation of the next activation time even when a

cyclic handler is in a non-operational state. This calculation can be omitted in an

implementation as long as the behavior of cyclic handlers do not change.

[Differences from the µITRON3.0 Specification]

The name cyclic handler has been changed from cyclic activation handler. Cyclic han-

dlers are now identified by ID numbers. Cyclic handlers are now objects created by

cre_cyc

 rather than defined by def_cyc. The service call to delete a cyclic handler

(del_cyc) has been newly added.

The service call to control the operational state of a cyclic handler (act_cyc) has been

divided into a service call that starts the operation of a handler (sta_cyc) and one that

stops the operation of a handler (stp_cyc).

Figure 4-5. Preserving Activation Phase

activcation phase activation cycle activation cycle

activation cycleactivation cycleactivcation phase

(a) when the activation phase is preserved (TA_PHS specified)

(b) when the activation phase is not preserved (TA_PHS not specified)

Cyclic handler is called.

Cyclic handler is called.

sta_cyccre_cyc

sta_cyccre_cyc (TA_STA not specified)

(TA_STA not specified)
242

µITRON4.0 Specification Ver. 4.00.00

CRE_CYC Create Cyclic Handler (Static API) [S]

cre_cyc Create Cyclic Handler

acre_cyc Create Cyclic Handler (ID Number Automatic Assignment)

[Static API]
CRE_CYC (ID cycid, { ATR cycatr, VP_INT exinf, FP cychdr,

RELTIM cyctim, RELTIM cycphs }) ;

[C Language API]
ER ercd = cre_cyc (ID cycid, T_CCYC *pk_ccyc) ;
ER_ID cycid = acre_cyc (T_CCYC *pk_ccyc) ;

[Parameter]
ID cycid ID number of the cyclic handler to be created

(except acre_cyc)

T_CCYC * pk_ccyc Pointer to the packet containing the cyclic handler

creation information (In

CRE_CYC

, the contents

must be directly specified.)

pk_ccyc

 includes (

T_CCYC

 type)

ATR cycatr

Cyclic handler attribute

VP_INT exinf

Cyclic handler extended information

FP cychdr

Cyclic handler start address

RELTIM cyctim

Cyclic handler activation cycle

RELTIM cycphs

Cyclic handler activation phase

(Other implementation specific information may be added.)

[Return Parameter]

cre_cyc

:

ER ercd E_OK

 for normal completion or error code

acre_cyc

:

ER_ID cycid

ID number (positive value) of the created cyclic

handler or error code

[Error Code]

E_ID

Invalid ID number (

cycid

 is invalid or unusable; only

cre_cyc

)

E_NOID

No ID number available (there is no cyclic handler ID assign-

able; only

acre_cyc

)

E_RSATR Reserved attribute (cycatr is invalid or unusable)

E_PAR Parameter error (pk_ccyc, cychdr, cyctim, or cycphs is

invalid)

E_OBJ Object state error (cyclic handler is already registered; only
243

µITRON4.0 Specification Ver. 4.00.00

cre_cyc)

[Functional Description]

These service calls create a cyclic handler with an ID number specified by cycid based

on the information contained in the packet pointed to by pk_ccyc. cycatr is the

attribute of the cyclic handler. exinf is the extended information passed as a parameter

to the cyclic handler when it is called. cychdr is the start address of the cyclic han-

dler.

cyctim

 is the activation cycle time. cycphs is the activation phase.

In CRE_CYC, cycid is an integer parameter with automatic assignment. cycatr is a

preprocessor constant expression parameter.

acre_cyc assigns a cyclic handler ID from the pool of unassigned cyclic handler IDs

and returns the assigned cyclic handler ID.

cycatr can be specified as ((TA_HLNG || TA_ASM) | [TA_STA] | [TA_PHS]). If

TA_HLNG (= 0x00) is specified, the cyclic handler is called through the C language

interface. If

TA_ASM

 (= 0x01) is specified, the cyclic handler is called through an

assembly language interface. If

TA_STA

 (= 0x02) is specified, the handler is in an

operational state when it is created, otherwise it is in a non-operational state. If

TA_PHS

 (= 0x04) is specified, the next activation time is determined preserving the

activation phase when the cyclic handler is moved to an operational state. See the

functional description of

sta_cyc

 for the actions to be taken when a cyclic handler is

moved to an operational state.

The first activation time of the cyclic handler is the time when the service call is

invoked plus the activation phase. For the static API, the system initialization time is

used as the invoking time.

When

cyctim

 is 0, an

E_PAR

 error is returned. The behavior of the system when the

value of

cycphs

 is greater than

cyctim

 is implementation-dependent. When an error

should be reported, an

E_PAR

 error is returned.

[Standard Profile]

The Standard Profile does not require support for when

T_PHS

 or

TA_ASM

 is speci-

fied in

cycatr

.

[Supplemental Information]

The cyclic handler activation phase (cycphs) does not have any meaning when neither

TA_STA nor TA_PHS are specified in cycatr.

[Differences from the µITRON3.0 Specification]

Cyclic handlers are now objects created by cre_cyc rather than defined by def_cyc.

The functionality for specifying the activation phase has been newly added. The acti-

vation phase (

cycphs

) has been added to the cyclic handler creation information. The

method for specifying the cyclic handler’s operational state after creation has been

changed.
244

µITRON4.0 Specification Ver. 4.00.00

The order of

cycatr

 and

exinf in the creation information packet has been exchanged.

The data type of exinf has been changed from VP to VP_INT and the data type of

cyctim has been changed from CYCTIME to RELTIM.

acre_cyc has been newly added.
245

µITRON4.0 Specification Ver. 4.00.00

del_cyc Delete Cyclic Handler

[C Language API]
ER ercd = del_cyc (ID cycid) ;

[Parameter]
ID cycid ID number of the cyclic handler to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (cycid is invalid or unusable)

E_NOEXS Non-existent object (specified cyclic handler is not registered)

[Functional Description]

This service call deletes the cyclic handler specified by cycid.

[Differences from the µITRON3.0 Specification]

This service call has been newly added. In the µITRON3.0 Specification, the def_cyc
service call can be used for releasing a handler as well as defining a handler.
246

µITRON4.0 Specification Ver. 4.00.00
sta_cyc Start Cyclic Handler Operation [S]

[C Language API]
ER ercd = sta_cyc (ID cycid) ;

[Parameter]
ID cycid ID number of the cyclic handler operation to be

started

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (cycid is invalid or unusable)

E_NOEXS Non-existent object (specified cyclic handler is not registered)

[Functional Description]

This service call moves the cyclic handler specified by cycid to an operational state.

If the handler’s attribute does not have TA_PHS (= 0x04) specified, the next activation

time is the time when

sta_cyc

 is invoked plus the activation cycle.

If the cyclic handler is already in an operational state and

TA_PHS

 is not specified in

the attribute, the activation time is recalculated. If the cyclic handler is already in an

operational state and

TA_PHS

 is specified in the attribute, no action is required.

[Differences from the µITRON3.0 Specification]

The service call to control the operational state of a cyclic handler (

act_cyc

) has been

divided into a service call that starts the operation of a handler (

sta_cyc

) and one that

stops the operation of a handler (

stp_cyc

). In the µITRON3.0 Specification, when the

act_cyc

 service call is invoked with

TCY_INI

 specified, the activation time is recalcu-

lated. A similar functionality is achieved through the use of

TA_PHS

.

247

µITRON4.0 Specification Ver. 4.00.00

stp_cyc Stop Cyclic Handler Operation [S]

[C Language API]
ER ercd = stp_cyc (ID cycid) ;

[Parameter]
ID cycid ID number of the cyclic handler operation to be

stopped

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (cycid is invalid or unusable)

E_NOEXS Non-existent object (specified cyclic handler is not registered)

[Functional Description]

This service call moves the cyclic handler specified by cycid to a non-operational

state. No action is required when the specified cyclic handler is already in a non-oper-

ational state.

[Differences from the µITRON3.0 Specification]

The service call to control the operational state of a cyclic handler (act_cyc) has been

divided into a service call that starts the operation of a handler (sta_cyc) and one that

stops the operation of a handler (stp_cyc).
248

µITRON4.0 Specification Ver. 4.00.00

ref_cyc Reference Cyclic Handler State

[C Language API]
ER ercd = ref_cyc (ID cycid, T_RCYC *pk_rcyc) ;

[Parameter]
ID cycid ID number of the cyclic handler to be referenced

T_RCYC * pk_rcyc Pointer to the packet returning the cyclic handler

state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rcyc

 includes (

T_RCYC

 type)

STAT cycstat

Cyclic handler operational state

RELTIM lefttim

Time left before the next activation

(Other implementation specific information may be added.)

[Error Code]

E_ID

Invalid ID number (

cycid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified cyclic handler is not registered)

E_PAR

Parameter error (

pk_rcyc

 is invalid)

[Functional Description]

This service call references the state of the cyclic handler specified by

cycid

. The state

of the cyclic handler is returned through the packet pointed to by

pk_rcyc

.

One of the following values is returned through

cycstat

 depending on the operational

state of the cyclic handler:

TCYC_STP

0x00 Cyclic handler is in a non-operational state

TCYC_STA

0x01 Cyclic handler is in an operational state

The amount of time remaining before the cyclic handler’s next activation time is

returned through

lefttim

 if the cyclic handler is in an operational state. This means the

time returned is the next activation time minus the current time. The value returned

will be less than the time it will take to activate the cyclic handler. Therefore, if 0 is

returned, the cyclic handler will be activated on the next time tick. The value returned

through

lefttim

 when the cyclic handler is a non-operational state is implementa-

tion-dependent.

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The

method to reference the operational state has been changed. The data type of

lefttim
has been changed from CYCTIME to RELTIM. The order of parameters and of

return parameters has been changed.
249

µITRON4.0 Specification Ver. 4.00.00

4.7.3 Alarm Handlers

An alarm handler is a time event handler activated at a specified time. Alarm handler

functions include the ability to create and delete an alarm handler, to start and stop an

alarm handler’s operation, and to reference the state of an alarm handler. An alarm

handler is an object identified by an ID number. The ID number of an alarm handler is

called the alarm handler ID.

The time at which the alarm handler is activated, called the activation time of the alarm

handler, can be set for each handler. At the alarm handler’s activation time, the alarm

handler is called with its extended information (exinf) passed as a parameter.

The activation time of the alarm handler is not set when the handler is created. There-

fore, the operation of the alarm handler is stopped. The service call that starts the oper-

ation of an alarm handler (

sta_alm

) sets the activation time relative to the time when

the service call is invoked. In addition, the alarm handler is moved to an operational

state. When the service call that stops the operation of an alarm handler (stp_alm) is

invoked, the activation time is released and the alarm handler is moved to a non-opera-

tional state. When an alarm handler is called, the activation time is released and the

alarm handler is moved to a non-operational state.

The format to write an alarm handler in the C language is shown below:

void almhdr (VP_INT exinf)
{

/* Body of the alarm handler */
}

The following data type packets are defined for creating and referencing alarm han-

dlers:

typedef struct t_calm {
ATR almatr ; /* Alarm handler attribute */
VP_INT exinf ; /* Alarm handler extended information */
FP almhdr ; /* Alarm handler start address */
/* Other implementation specific fields may be added. */

} T_CALM ;

typedef struct t_ralm {
STAT almstat ; /* Alarm handler operational state */
RELTIM lefttim ; /* Time left before the activation */
/* Other implementation specific fields may be added. */

} T_RALM ;

The following represents the function codes for the alarm handler service calls:

TFN_CRE_ALM

–0xa9 Function code of

cre_alm
TFN_ACRE_ALM

–0xcc Function code of

acre_alm
TFN_DEL_ALM

–0xaa Function code of

del_alm
TFN_STA_ALM

–0xab Function code of

sta_alm
TFN_STP_ALM

–0xac Function code of

stp_alm
250

µITRON4.0 Specification Ver. 4.00.00

TFN_REF_ALM

–0xad Function code of

ref_alm

[Standard Profile]

The Standard Profile does not require support for alarm handlers.

[Supplemental Information]

The activation of alarm handlers depends on the system time. Therefore, these han-

dlers are activated at the first time tick after the activation time has passed. The system

must guarantee that the activation of the alarm handler occurs after an elapsed time

equal to or greater than the specified time (see Section 2.1.9).

The activation time is released when the alarm handler is called but before the alarm

handler is executed. If an implementation allows non-task contexts to invoke the ser-

vice call to start the alarm handler operation, the alarm handler can reset the activation

time and move itself to an operational state.

[Differences from the µITRON3.0 Specification]

Alarm handlers are now identified by ID numbers. Alarm handlers are now objects cre-

ated by

cre_alm

 rather than defined by def_alm. The service call to delete an alarm

handler (del_alm) has been newly added.

For the case when an alarm handler is created statically, the activation time of the alarm

handler is now specified with the newly added service call (sta_alm) instead of the

create alarm handler service call or the static API. The service call to stop the opera-

tion of a alarm handler (

stp_alm

) has been newly added.

The ability to set an alarm handler activation time to an absolute time has been

removed.
251

µITRON4.0 Specification Ver. 4.00.00

CRE_ALM Create Alarm Handler (Static API)

cre_alm Create Alarm Handler

acre_alm Create Alarm Handler (ID Number Automatic Assignment)

[Static API]
CRE_ALM (ID almid, { ATR almatr, VP_INT exinf, FP almhdr }) ;

[C Language API]
ER ercd = cre_alm (ID almid, T_CALM *pk_calm) ;
ER_ID almid = acre_alm (T_CALM *pk_calm) ;

[Parameter]
ID almid ID number of the alarm handler to be created

(except acre_alm)

T_CALM * pk_calm Pointer to the packet containing the alarm handler

creation information (In

CRE_ALM

, the contents

must be directly specified.)

pk_calm

 includes (

T_CALM

 type)

ATR almatr

Alarm handler attribute

VP_INT exinf

Alarm handler extended information

FP almhdr

Alarm handler start address

(Other implementation specific information may be added.)

[Return Parameter]

cre_alm

:

ER ercd E_OK

 for normal completion or error code

acre_alm

:

ER_ID almid

ID number (positive value) of the created alarm

handler or error code

[Error Code]

E_ID

Invalid ID number (

almid

 is invalid or unusable; only

cre_alm

)

E_NOID

No ID number available (there is no alarm handler ID assign-

able; only

acre_alm

)

E_RSATR Reserved attribute (almatr is invalid or unusable)

E_PAR Parameter error (pk_calm or almhdr is invalid)

E_OBJ Object state error (alarm handler is already registered; only

cre_alm)

[Functional Description]

These service calls create an alarm handler with an ID number specified by almid
252

µITRON4.0 Specification Ver. 4.00.00

based on the information contained in the packet pointed to by pk_calm. almatr is

the attribute of the alarm handler. exinf is the extended information passed as a

parameter to the alarm handler when it is called. almhdr is the start address of the

alarm handler.

In CRE_ALM, almid is an integer parameter with automatic assignment. almatr is

a preprocessor constant expression parameter.

acre_alm assigns an alarm handler ID from the pool of unassigned alarm handler IDs

and returns the assigned alarm handler ID.

After the alarm handler is created, the activation time is not set and the alarm handler is

in a non-operational state.

almatr can be specified as (TA_HLNG || TA_ASM). If TA_HLNG (= 0x00) is spec-

ified, the alarm handler is called through the C language interface. If

TA_ASM

(= 0x01) is specified, the alarm handler is called through an assembly language inter-

face.

[Differences from the µITRON3.0 Specification]

Alarm handlers are now objects created by

cre_alm rather than defined by def_alm.

For the case when an alarm handler is created statically, the activation time of the alarm

handler is not specified by the create alarm handler service call or the static API.

The order of almatr and exinf in the creation information packet has been exchanged.

The data type of exinf has been changed from VP to VP_INT.

acre_alm has been newly added.
253

µITRON4.0 Specification Ver. 4.00.00
del_alm Delete Alarm Handler

[C Language API]
ER ercd = del_alm (ID almid) ;

[Parameter]
ID almid ID number of the alarm handler to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (almid is invalid or unusable)

E_NOEXS Non-existent object (specified alarm handler is not registered)

[Functional Description]

This service call deletes the alarm handler specified by almid.

[Supplemental Information]

If the alarm handler is in an operational state, the activation time is released and the

alarm handler is moved to a non-operational state.

[Differences from the µITRON3.0 Specification]

This service call has been newly added. In the µITRON3.0 Specification, the def_alm
service call can be used for releasing a handler as well as defining a handler.
254

µITRON4.0 Specification Ver. 4.00.00
sta_alm Start Alarm Handler Operation

[C Language API]
ER ercd = sta_alm (ID almid, RELTIM almtim) ;

[Parameter]
ID almid ID number of the alarm handler operation to be

started

RELTIM almtim Activation time of the alarm handler (relative time)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (almid is invalid or unusable)

E_NOEXS Non-existent object (specified alarm handler is not registered)

E_PAR Parameter error (almtim is invalid)

[Functional Description]

This service call sets the activation time of the alarm handler specified by almid. The

activation time is set to the time when the service call is invoked plus the relative time

specified by almtim. The alarm handler is also moved to an operational state.

If the alarm handler is already in an operational state, the previous activation time is

released and a new activation time is set.

almtim is the relative time from when this service call is invoked to the activation

time of the alarm handler.

[Differences from the µITRON3.0 Specification]

This service call has been newly added. The µITRON3.0 Specification allowed

def_alm to set the activation time of an alarm handler.
255

µITRON4.0 Specification Ver. 4.00.00
stp_alm Stop Alarm Handler Operation

[C Language API]
ER ercd = stp_alm (ID almid) ;

[Parameter]
ID almid ID number of the alarm handler operation to be

stopped

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (almid is invalid or unusable)

E_NOEXS Non-existent object (specified alarm handler is not registered)

[Functional Description]

This service call releases the activation time of the alarm handler specified by almid
and moves the alarm handler to a non-operational state. If the alarm handler is already

in a non-operational state, no action is required.

[Differences from the µITRON3.0 Specification]

This service call has been newly added. The µITRON3.0 specification did not allow an

alarm handler to be stopped by any other means than releasing the registration of the

alarm handler.
256

µITRON4.0 Specification Ver. 4.00.00

ref_alm Reference Alarm Handler State

[C Language API]
ER ercd = ref_alm (ID almid, T_RALM *pk_ralm) ;

[Parameter]
ID almid ID number of the alarm handler to be referenced

T_RALM * pk_ralm Pointer to the packet returning the alarm handler

state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_ralm

 includes (

T_RALM

 type)

STAT almstat

Alarm handler operational state

RELTIM lefttim

Time left before the activation

(Other implementation specific information may be added.)

[Error Code]

E_ID

Invalid ID number (

almid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified alarm handler is not registered)

E_PAR

Parameter error (

pk_ralm

 is invalid)

[Functional Description]

This service call references the state of the alarm handler specified by

almid

. The

state of the alarm handler is returned through the packet pointed to by

pk_ralm

.

One of the following values will be returned through

almstat

 depending on the opera-

tional state of the alarm handler:

TALM_STP

0x00 Alarm handler is in a non-operational state

TALM_STA 0x01 Alarm handler is in an operational state

The amount of time remaining before the alarm handler’s activation time is returned

through lefttim if the alarm handler is in an operational state. This means the time

returned is the activation time minus the current time. The value returned will be less

than the time it will take to activate the alarm handler. Therefore, if 0 is returned, the

alarm handler will be activated on the next time tick. The value returned through

lefttim when the alarm handler is a non-operational state is implementation-depen-

dent.

[Differences from the µITRON3.0 Specification]

The alarm handler operational state (

almstat) has been added to the reference infor-

mation. The extended information has been removed from the reference information.

The data type of

lefttim

 has been changed from ALMTIME to RELTIM. The order

of the parameters and of the return parameters has been changed.
257

µITRON4.0 Specification Ver. 4.00.00

4.7.4 Overrun Handler

The overrun handler is a time event handler activated when a task has been executed by

the processor longer than a specified amount of time. Overrun handler functions

include the ability to define the overrun handler, to start and stop the overrun handler’s

operation, and to reference the state of the overrun handler.

The amount of time used to determine the activation condition, called the processor

time limit, can be specified for each task. Once a task has a processor time limit set,

the kernel keeps track of the accumulated processor time consumed by the task, called

the processor time used, until the consumed time exceeds the time limit. Once this

occurs, the overrun handler is called. Because only one overrun handler can be defined

for the whole system, the task ID number (tskid) and the task’s extended information

(exinf) are passed as parameters to the overrun handler.

The task’s processor time limit is not set when the task is created. When the service

call to start the overrun handler operation (sta_ovr) is invoked for a specified task, the

processor time limit is set for the task. In addition, the processor time used for the task

is cleared to 0. Once the service call to stop the overrun handler operation (stp_ovr) is

invoked for a specified task, the processor time limit for the task is released. The pro-

cessor time limit for a task is also released when the overrun handler is called for the

task or when the task is terminated.

The processor time used by a task includes the time consumed by the task, by the task’s

exception handling routine, and by all service calls invoked by the task. On the other

hand, the time consumed by the other tasks, by their exception handling routines, and

by all the service calls they invoke are not included in the processor time used by the

task. The decision to include the time for task dispatching and for interrupt processing

is implementation-dependent. In addition, the accuracy of the measured processor time

used is implementation-dependent. Nevertheless, the overrun handler is activated only

when the processor time used exceeds the specified processor time limit.

The following data type is used within the overrun handler functions:

OVRTIM

Processor time (unsigned integer, unit of time is implementa-

tion-defined)

The format to write an overrun handler in the C language is shown below:

void ovrhdr (ID tskid, VP_INT exinf)
{

/* Body of the overrun handler */
}

The following data type packets are defined for defining and referencing overrun han-

dlers:

typedef struct t_dovr {
ATR ovratr ; /* Overrun handler attribute */
FP ovrhdr ; /* Overrun handler start address */
258

µITRON4.0 Specification Ver. 4.00.00

/* Other implementation specific fields may be added. */
} T_DOVR ;

typedef struct t_rovr {
STAT ovrstat ; /* Overrun handler operational state */
OVRTIM leftotm ; /* Remaining processor time */
/* Other implementation specific fields may be added. */

} T_ROVR ;

The following represents the function codes for the overrun handler service calls:

TFN_DEF_OVR

–0xb1 Function code of

def_ovr
TFN_STA_OVR

–0xb2 Function code of

sta_ovr
TFN_STP_OVR

–0xb3 Function code of

stp_ovr
TFN_REF_OVR

–0xb4 Function code of

ref_ovr

[Standard Profile]

The Standard Profile does not require support for the overrun handler.

[Supplemental Information]

The activation of the overrun handler does not depend on the system time. This implies

the handler is not necessarily called synchronously with the time tick. Implementa-

tions may call the overrun handler synchronously with the time tick.

A task’s processor time limit is released when the handler is called but before the over-

run handler is executed. If an implementation allows non-task contexts to invoke the

service call to start the overrun handler operation, the overrun handler can reset the pro-

cessor time limit for the task that causes the overrun handler’s activation.

The overrun handler can raise a task’s exception. Then, the task’s exception handling

routine is started by the kernel within the task’s context to handle the overrun situation.

[Differences from the µITRON3.0 Specification]

Overrun handler is a newly added feature.
259

µITRON4.0 Specification Ver. 4.00.00

DEF_OVR Define Overrun Handler (Static API)

def_ovr Define Overrun Handler

[Static API]
DEF_OVR ({ ATR ovratr, FP ovrhdr }) ;

[C Language API]
ER ercd = def_ovr (T_DOVR *pk_dovr) ;

[Parameter]
T_DOVR * pk_dovr Pointer to the packet containing the overrun handler

definition information (in

DEF_OVR

, the contents

must be directly specified.)

pk_dovr

 includes (

T_DOVR

 type)

ATR ovratr

Overrun handler attribute

FP ovrhdr

Overrun handler start address

(Other implementation specific information may be added.)

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

[Error Code]

E_RSATR

Reserved attribute (

ovratr

 is invalid or unusable)

E_PAR

Parameter error (

pk_dovr

 or

ovrhdr

 is invalid)

[Functional Description]

This service call defines the overrun handler based on the information contained in the

packet pointed to by

pk_dovr

.

ovratr

 is the attribute of the overrun handler.

ovrhdr

is the start address of the overrun handler.

In

DEF_OVR

,

ovratr

 is a preprocessor constant expression parameter.

If

pk_dovr

 is

NULL

 (= 0), the overrun handler currently defined is released and the

overrun handler becomes undefined. At this time, the processor time limits for all tasks

are also released. When a new overrun handler is defined over top of an old one, the

old one is released and the new one takes its place. Under this condition, the processor

time limits for the tasks are not released.

ovratr

 can be specified as (

TA_HLNG

 ||

TA_ASM

). If

TA_HLNG

 (= 0x00) is spec-

ified, the overrun handler is called through the C language interface. If

TA_ASM

(= 0x01) is specified, the overrun handler is called through an assembly language inter-

face.

[Rationale]

The reason why the processor time limit is released for a task when the definition of the

handler is released is to ensure that there is no processor time limit set while the over-
260

µITRON4.0 Specification Ver. 4.00.00

run handler is undefined.
261

µITRON4.0 Specification Ver. 4.00.00

sta_ovr Start Overrun Handler Operation

[C Language API]
ER ercd = sta_ovr (ID tskid, OVRTIM ovrtim) ;

[Parameter]
ID tskid ID number of the task where the overrun handler

should start operation

OVRTIM ovrtim Processor time limit for the task to be set

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (tskid is invalid or unusable)

E_NOEXS Non-existent object (specified task is not registered)

E_PAR Parameter error (ovrtim is invalid)

E_OBJ Object state error (overrun handler is not defined)

[Functional Description]

This service call starts the operation of the overrun handler for the task specified by

tskid. It also sets the processor time limit for the task as specified by ovrtim. In

addition, the processor time used by the task is cleared to 0.

Even if the task already has a processor time limit set, the processor time limit will be

reset to the new value and the processor time used will be cleared to 0.

If tskid is TSK_SELF (= 0), the task that invoked the service call will be the target

task.
262

µITRON4.0 Specification Ver. 4.00.00

stp_ovr

Stop Overrun Handler Operation

[C Language API]

ER ercd = stp_ovr (ID tskid) ;

[Parameter]

ID tskid

ID number of the task on which the overrun handler

should stop operation

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

[Error Code]

E_ID

Invalid ID number (

tskid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified task is not registered)

E_OBJ

Object state error (overrun handler is not defined)

[Functional Description]

This service call stops the operation of the overrun handler for the task specified by

tskid

 by releasing the processor time limit for the task. If the specified task does not

have a processor time limit set, no action is required.

If

tskid

 is

TSK_SELF

 (= 0), the task that invoked the service call will be the target

task.
263

µITRON4.0 Specification Ver. 4.00.00

ref_ovr

Reference Overrun Handler State

[C Language API]

ER ercd = ref_ovr (ID tskid, T_ROVR *pk_rovr) ;

[Parameter]

ID tskid

ID number of the task for which the overrun han-

dler’s state should be referenced

T_ROVR * pk_rovr Pointer to the packet returning the overrun handler

state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rovr

 includes (

T_ROVR

 type)

STAT ovrstat

Overrun handler operational state

OVRTIM leftotm

Remaining processor time

(Other implementation specific information may be added.)

[Error Code]

E_ID

Invalid ID number (

tskid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified task is not registered)

E_PAR

Parameter error (

pk_rovr

 is invalid)

E_OBJ

Object state error (overrun handler is not defined)

[Functional Description]

This service call references the state of the overrun handler for the task specified by

tskid

. The state of the overrun handler is returned through the packet pointed to by

pk_rovr

.

The operational state of the overrun handler is returned through

ovrstat

. One of the

following values is returned depending on whether the processor time limit has been

set for the task:

TOVR_STP

0x00 Processor time limit is not set

TOVR_STA

0x01 Processor time limit is set

The processor time remaining until the overrun handler is called for the specified task

is returned through

leftotm

 if the processor time limit is set for the specified task.

This means the value returned is the processor time limit minus the processor time

used. The value returned will be less than the actual remaining processor time which

can be consumed by the task until the overrun handler is called. Therefore, 0 can be

returned through leftotm if this service call is invoked just before the overrun handler is

called. The value returned through

leftotm

 when the processor time limit is not set for

the specified task is implementation-dependent.
264

µITRON4.0 Specification Ver. 4.00.00

If

tskid

 is

TSK_SELF

 (= 0), the task that invoked the service call will be the target

task.
265

µITRON4.0 Specification Ver. 4.00.00
 4.8 System State Management Functions

System state management functions provide control of and reference to the various sys-

tem states. System state management functions include the ability to rotate task prece-

dence, to reference the ID of the task in the RUNNING state, to lock and unlock the

CPU, to enable and disable dispatching, and to reference the context and the system

state.

The following data type packet is defined for referencing system state:

typedef struct t_rsys {
/* Implementation specific fields */

} T_RSYS ;

The following represents the function codes for the system state management service

calls:

TFN_ROT_RDQ

–0x55 Function code of

rot_rdq
TFN_IROT_RDQ

–0x79 Function code of

irot_rdq
TFN_GET_TID

–0x56 Function code of

get_tid
TFN_IGET_TID

–0x7a Function code of

iget_tid
TFN_LOC_CPU

–0x59 Function code of

loc_cpu
TFN_ILOC_CPU

–0x7b Function code of

iloc_cpu
TFN_UNL_CPU

–0x5a Function code of

unl_cpu
TFN_IUNL_CPU

–0x7c Function code of

iunl_cpu
TFN_DIS_DSP

–0x5b Function code of

dis_dsp
TFN_ENA_DSP

–0x5c Function code of

ena_dsp
TFN_SNS_CTX

–0x5d Function code of

sns_ctx
TFN_SNS_LOC

–0x5e Function code of

sns_loc
TFN_SNS_DSP

–0x5f Function code of

sns_dsp
TFN_SNS_DPN

–0x60 Function code of

sns_dpn
TFN_REF_SYS

–0x61 Function code of

ref_sys

[Standard Profile]

The Standard Profile requires support for system state management functions except

for the reference of the system state (

ref_sys

).

[Differences from the µITRON3.0 Specification]

The category of system state management functions has been newly added.
266

µITRON4.0 Specification Ver. 4.00.00

rot_rdq

Rotate Task Precedence

[S]

irot_rdq

[S]

[C Language API]

ER ercd = rot_rdq (PRI tskpri) ;
ER ercd = irot_rdq (PRI tskpri) ;

[Parameter]

PRI tskpri

Priority of the tasks whose precedence is rotated

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

[Error Code]

E_PAR

Parameter error (

tskpri

 is invalid)

[Functional Description]

These service calls rotate the precedence of the tasks with the priority specified by

tskpri

. In other words, the task with the highest precedence of all the runnable tasks

with the specified priority will have the lowest precedence among the tasks with the

same priority after the precedence rotation.

If tskpri is TPRI_SELF (= 0), the base priority of the invoking task becomes the tar-
get priority. An

E_PAR

 error is returned if TPRI_SELF is specified when the service

call is invoked from non-task contexts.

[Supplemental Information]

Round-robin scheduling can be achieved by invoking this service call periodically. No

action is required if there is a single task at the target priority or no tasks at the target

priority (no error is reported).

When the service call is invoked with the current priority of the invoking task as the

target priority while in the dispatching enabled state, the invoking task’s precedence

becomes the lowest among the tasks with the same priority. This means the invoking

task may yield it execution privilege to another task. While in the dispatching disabled

state, the task with the highest precedence among the tasks with the same priority may

not necessarily be the running task. Therefore, the invoking task’s precedence may not

become the lowest among the tasks with the same priority using this yield method. The

yield method can be realized by invoking the service call with TPRI_SELF specified

for tskpri when the current priority of the invoking task equals its base priority, as is

always the case when mutex functions are not used.

[Differences from the µITRON3.0 Specification]

The ability to rotate the tasks precedence at the running task’s priority from non-task

contexts has been removed. Therefore, TPRI_RUN has been changed to
267

µITRON4.0 Specification Ver. 4.00.00

TPRI_SELF. TPRI_SELF now specifies the base priority of the invoking task due to

the introduction of mutex functions.
268

µITRON4.0 Specification Ver. 4.00.00

get_tid Reference Task ID in the RUNNING State [S]

iget_tid [S]

[C Language API]
ER ercd = get_tid (ID *p_tskid) ;
ER ercd = iget_tid (ID *p_tskid) ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for normal completion or error code

ID tskid ID number of the task in the RUNNING state

[Error Code]
No errors specific to this service call

[Functional Description]

These service calls reference the ID number of the task in the RUNNING state (this

corresponds to the invoking task when the service call is invoked from task contexts)

and return the task ID through tskid. If no task is in the RUNNING state when the

service call is invoked from non-task contexts, TSK_NONE (= 0) is returned instead.

[Supplemental Information]

Some kernel implementations employ an idle task that runs when no application tasks

are runnable. When the service call is invoked for such a kernel implementation while

an idle task is in the RUNNING state,

TSK_NONE

 is returned instead of the ID num-
ber of the idle task.

[Differences from the µITRON3.0 Specification]

This service call has been changed from returning the invoking task ID to returning the

task ID of the task in the RUNNING state. As a result, the behavior upon invoking this

service call from non-task contexts has been changed.

[Rationale]

The reason why tskid is not returned through the return value of the service call is

because negative task ID numbers can be supported.
269

µITRON4.0 Specification Ver. 4.00.00

loc_cpu Lock the CPU [S]

iloc_cpu [S]

[C Language API]
ER ercd = loc_cpu () ;
ER ercd = iloc_cpu () ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
No errors specific to this service call

[Functional Description]

These service calls transition the system to the CPU locked state. If the system is in the

CPU locked state, no action is required.

[Supplemental Information]

The system is released from the CPU locked state when unl_cpu or iunl_cpu is

invoked once, even if multiple calls of loc_cpu or iloc_cpu have been made. There-

fore, if a pair of

loc_cpu

 or iloc_cpu and unl_cpu or iunl_cpu need to be nested,

the following method may be required:

{
BOOL cpu_locked = sns_loc () ;

if (!cpu_locked)
loc_cpu () ;

/* work to do in the CPU locked state */
if (!cpu_locked)

unl_cpu () ;
}

[Differences from the µITRON3.0 Specification]

The meaning of the CPU locked state has been changed (see Section 3.5.4). In addi-

tion, the service call may now be invoked from non-task contexts.
270

µITRON4.0 Specification Ver. 4.00.00

unl_cpu

Unlock the CPU

[S]

iunl_cpu

[S]

[C Language API]
ER ercd = unl_cpu () ;
ER ercd = iunl_cpu () ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
No errors specific to this service call

[Functional Description]

These service calls transition the system to the CPU unlocked state. If the system is in

the CPU unlocked state, no action is required.

[Differences from the µITRON3.0 Specification]

The meaning of the CPU unlocked state has been changed (see Section 3.5.4). Now,

invoking this service call does not necessarily transition the system to the dispatching

enabled state. In addition, the service call may now be invoked from non-task contexts.
271

µITRON4.0 Specification Ver. 4.00.00

dis_dsp Disable Dispatching [S]

[C Language API]
ER ercd = dis_dsp () ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
No errors specific to this service call

[Functional Description]

This service call transitions the system to the dispatching disabled state. If the system

is in the dispatching disabled state, no action is required.

[Supplemental Information]

The system is released from the dispatching disabled state when ena_dsp is invoked

once, even if multiple calls of dis_dsp have been made. Therefore, if a pair of

dis_dsp and ena_dsp need to be nested, the following method may be required:

{
BOOL dispatch_disabled = sns_dsp () ;

if (!dispatch_disabled)
dis_dsp () ;

/* work to do in the dispatching disabled state */
if (!dispatch_disabled)

ena_dsp () ;
}

[Differences from the µITRON3.0 Specification]

The meaning of the dispatching state has been changed (see Section 3.5.5).
272

µITRON4.0 Specification Ver. 4.00.00

ena_dsp

Enable Dispatching

[S]

[C Language API]

ER ercd = ena_dsp () ;

[Parameter]

None

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

[Error Code]

No errors specific to this service call

[Functional Description]

This service call transitions the system to the dispatching enabled state. If the system is

in the dispatching enabled state, no action is required.

[Differences from the µITRON3.0 Specification]

The meaning of the dispatching state has been changed (see Section 3.5.5).
273

µITRON4.0 Specification Ver. 4.00.00

sns_ctx

Reference Contexts

[S]

[C Language API]

BOOL state = sns_ctx () ;

[Parameter]

None

[Return Parameter]

BOOL state

Context

[Functional Description]

This service call returns

TRUE

 if invoked from non-task contexts and returns

FALSE

if invoked from task contexts.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.
274

µITRON4.0 Specification Ver. 4.00.00

sns_loc

Reference CPU State

[S]

[C Language API]

BOOL state = sns_loc () ;

[Parameter]
None

[Return Parameter]
BOOL state CPU state

[Functional Description]

This service call returns TRUE if the system is in the CPU locked state and returns

FALSE if the system is in the CPU unlocked state.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.
275

µITRON4.0 Specification Ver. 4.00.00

sns_dsp Reference Dispatching State [S]

[C Language API]
BOOL state = sns_dsp () ;

[Parameter]
None

[Return Parameter]
BOOL state Dispatching state

[Functional Description]

This service call returns TRUE if the system is in the dispatching disabled state and

returns FALSE if the system is in the dispatching enabled state.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.
276

µITRON4.0 Specification Ver. 4.00.00

sns_dpn Reference Dispatch Pending State [S]

[C Language API]
BOOL state = sns_dpn () ;

[Parameter]
None

[Return Parameter]
BOOL state Dispatch pending state

[Functional Description]

This service call returns TRUE if the system is in the dispatch pending state and

returns FALSE in any other states. In other words, it returns TRUE, while a process-

ing unit with higher precedence than the dispatcher is executing, while in the CPU

locked state, or while in the dispatching disabled state.

[Supplemental Information]

If the system is in the condition where this service call returns

FALSE, those service

calls which possibly put the invoking task into the WAITING state may be invoked.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.
277

µITRON4.0 Specification Ver. 4.00.00

ref_sys Reference System State

[C Language API]
ER ercd = ref_sys (T_RSYS *pk_rsys) ;

[Parameter]
T_RSYS * pk_rsys Pointer to the packet returning the system state

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rsys

 includes (

T_RSYS

 type)

(Implementation-specific information)

[Error Code]

E_PAR

Parameter error (

pk_rsys

 is invalid)

[Functional Description]

This service call references the system state and returns it through the packet pointed to

by

pk_rsys

. The specific information referenced is implementation-defined.

[Supplemental Information]

Possible information that may be referenced by this service call includes: states which

can be referenced by other reference service calls (

get_tid

,

sns_ctx

,

sns_loc

,

sns_dsp

,

sns_dpn

), priority of the task in the RUNNING state, interrupt enabled or

disabled state, interrupt mask, processor execution mode, and other information

depending on the target processor’s architecture.

[Differences from the µITRON3.0 Specification]

In the µITRON4.0 Specification, the information returned by the reference service calls

(

sns_ctx

,

sns_loc

,

sns_dsp

) replace the information returned by

ref_sys

(

sysstat

) in the µITRON3.0 Specification.
278

µITRON4.0 Specification Ver. 4.00.00

4.9 Interrupt Management Functions

Interrupt management functions provide management for interrupt handlers and for

interrupt service routines started by external interrupts. The interrupt management

functions include ability to define an interrupt handler, to create and delete an interrupt

service routine, to reference the state of an interrupt service routine, to disable and

enable an interrupt, and to change and reference the interrupt mask. An interrupt ser-

vice routine is an object identified by an ID number. The ID number of an interrupt

service routine is called the interrupt service routine ID.

The following data types are used for interrupt management functions:

INHNO

Interrupt handler number

INTNO Interrupt number

IXXXX Interrupt mask

The XXXX portion of the interrupt mask data type is implementation-defined and

should be an appropriate character string for the target processor’s architecture.

The format to write an interrupt handler is implementation-defined.

When calling an interrupt service routine, the extended information (exinf) of the

interrupt service routine is passed as a parameter. The format to write an interrupt ser-

vice routine in the C language is shown below:

void isr (VP_INT exinf)
{

/* Body of the interrupt service routine */
}

The following data type packets are defined for defining interrupt handlers and for cre-

ating and referencing interrupt service routines:

typedef struct t_dinh {
ATR inhatr ; /* Interrupt handler attribute */
FP inthdr ; /* Interrupt handler start address */
/* Other implementation specific fields may be added. */

} T_DINH ;

typedef struct t_cisr {
ATR isratr ; /* Interrupt service routine attribute */
VP_INT exinf ; /* Interrupt service routine extended

information */
INTNO intno ; /* Interrupt number to which the interrupt

service routine is to be attached */
FP isr ; /* Interrupt service routine start sddress */
/* Other implementation specific fields may be added. */

} T_CISR ;

typedef struct t_risr {
/* Implementation-specific fields */

} T_RISR ;
279

µITRON4.0 Specification Ver. 4.00.00

The following represents the function codes for the interrupt management service calls:

TFN_DEF_INH

–0x65 Function code of

def_inh
TFN_CRE_ISR

–0x66 Function code of

cre_isr
TFN_ACRE_ISR

–0xcd Function code of

acre_isr
TFN_DEL_ISR

–0x67 Function code of

del_isr
TFN_REF_ISR

–0x68 Function code of

ref_isr
TFN_DIS_INT

–0x69 Function code of

dis_int
TFN_ENA_INT

–0x6a Function code of

ena_int
TFN_CHG_IXX

–0x6b Function code of

chg_ixx
TFN_GET_IXX

–0x6c Function code of

get_ixx

[Standard Profile]

The Standard Profile requires support for the static API to define an interrupt handler

(

DEF_INH

). If the implementation supports the static API that attaches an interrupt

service routine to the kernel (

ATT_ISR

), the implementation does not have to support

DEF_INH

.

[Supplemental Information]

The contexts and states under which interrupt handlers execute are summarized as fol-

lows:

 • Interrupt handlers execute in their own independent contexts (see Section 3.5.1).

The contexts in which interrupt handlers execute are classified as non-task contexts

(see Section 3.5.2).

 • Interrupt handlers execute at higher precedence than the dispatcher (see Section

3.5.3).

 • After interrupt handlers start, whether the system is in the CPU locked state or in the

CPU unlocked state is implementation-dependent. However, the implementation

must provide a means to unlock the CPU in an interrupt service routine as well as a

means to correctly return from the interrupt handler after unlocking the CPU (see

Section 3.5.4).

 • The start of and the return from interrupt handlers do not change the dispatching

state. When the dispatching state is changed within interrupt handlers, the original

state must be restored before returning (see Section 3.5.5).

The contexts and states under which interrupt service routines execute are summarized

as follows:

 • Interrupt service routines execute in their own independent contexts (see Section

3.5.1). The contexts in which interrupt service routines execute are classified as

non-task contexts (see Section 3.5.2).

 • Interrupt service routines execute at higher precedence than the dispatcher (see Sec-

tion 3.5.3).

 • After interrupt service routines start, the system is in the CPU unlocked state. When
280

µITRON4.0 Specification Ver. 4.00.00

returning from interrupt service routines, the system must be in the CPU unlocked

state (see Section 3.5.4).

 • The start of and the return from interrupt service routines do not change the dis-

patching state. When the dispatching state is changed within interrupt service rou-

tines, the original state must be restored before returning (see Section 3.5.5).

[Differences from the µITRON3.0 Specification]

loc_cpu and unl_cpu are now classified as system state management functions.

ret_int and ret_wup have been removed (see Section 3.9).

The data type of the parameter and the return parameter for an interrupt mask has been

changed from UINT to a newly added data type IXXXX.
281

µITRON4.0 Specification Ver. 4.00.00

DEF_INH Define Interrupt Handler (Static API) [S]

def_inh Define Interrupt Handler

[Static API]
DEF_INH (INHNO inhno, { ATR inhatr, FP inthdr }) ;

[C Language API]
ER ercd = def_inh (INHNO inhno, T_DINH *pk_dinh) ;

[Parameter]
INHNO inhno Interrupt handler number to be defined

T_DINH * pk_dinh Pointer to the packet containing the interrupt han-

dler definition information (in

DEF_INH

, packet

contents must be directly specified.)

pk_dinh includes (T_DINH type)

ATR inhatr Interrupt handler attribute

FP inthdr Interrupt handler start address

(Other implementation specific information may be added.)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_RSATR Reserved attribute (inhatr is invalid or unusable)

E_PAR Parameter error (inhno, pk_dinh, or inthdr is invalid)

[Functional Description]

This service call assigns an interrupt handler to the interrupt handler number specified

by inhno based on the information contained in the packet pointed to by pk_dinh.

inhatr is the interrupt handler attribute. inthdr is the start address of the interrupt

handler.

In DEF_INH, inhno is an integer parameter without automatic assignment. inhatr
is a preprocessor constant expression parameter.

The specific meaning of inhno is implementation-defined, but it corresponds to the

processor’s interrupt vector number in typical implementations. If a processor does not

have interrupt vectors, only one interrupt handler number may be available.

If pk_dinh is NULL (= 0), the interrupt handler currently defined is released. When a

new interrupt handler is defined over top of an old one, the old one is released and the

new takes its place.

The possible values and meanings of

inhatr

 are implementation-defined.
282

µITRON4.0 Specification Ver. 4.00.00

[Standard Profile]

The Standard Profile does not require support for

DEF_INH

 if the implementation

supports

ATT_ISR

.

[Differences from the µITRON3.0 Specification]

The abbreviation of interrupt handler has been changed from

int

 to

inh

. Therefore,

the name of this service call has been changed from

def_int

 to

def_inh

. The possible

values and meanings of

inhatr

 are now left to the implementation.
283

µITRON4.0 Specification Ver. 4.00.00

ATT_ISR

Attach Interrupt Service Routine (Static API)

cre_isr

Create Interrupt Service Routine

acre_isr

Create Interrupt Service Routine (ID Number Automatic Assignment)

[Static API]

ATT_ISR ({ ATR isratr, VP_INT exinf, INTNO intno, FP isr }) ;

[C Language API]

ER ercd = cre_isr (ID isrid, T_CISR *pk_cisr) ;
ER_ID isrid = acre_isr (T_CISR *pk_cisr) ;

[Parameter]

ID isrid

ID number of the interrupt service routine to be cre-

ated (only

cre_isr

)

T_CISR * pk_cisr Pointer to the packet containing the interrupt service

routine creation information (in

ATT_ISR

, packet

contents must be directly specified.)

pk_cisr

 includes (

T_CISR

 type)

ATR isratr

Interrupt service routine attribute

VP_INT exinf

Interrupt service routine extended information

INTNO intno

Interrupt number to which the interrupt service rou-

tine is to be attached

FP isr

Interrupt service routine start address

(Other implementation specific information may be added.)

[Return Parameter]

cre_isr:

ER ercd E_OK for normal completion or error code

acre_isr:

ER_ID isrid ID number (positive value) of the created interrupt

service routine or error code

[Error Code]
E_ID Invalid ID number (isrid is invalid or unusable; only

cre_isr)

E_NOID No ID number available (there is no interrupt service routine

ID assignable; only acre_isr)

E_RSATR Reserved attribute (isratr is invalid or unusable)

E_PAR Parameter error (pk_cisr, intno, or isr is invalid)

E_OBJ Object state error (interrupt service routine is already regis-

tered; only

cre_isr

)

284

µITRON4.0 Specification Ver. 4.00.00

[Functional Description]

These service calls create an interrupt service routine with an ID number specified by

isrid

 based on the information contained in the packet pointed to by pk_cisr. isratr
is the attribute of the interrupt service routine. exinf is the extended information

passed as a parameter to the interrupt service routine when it is called. intno is the

number of the interrupt associated with the interrupt service routine. isr is the start

address of interrupt service routine.

ATT_ISR is used to attach an interrupt service routine without assigning isrid. The

interrupt service routines specified in this way have no ID numbers. In ATT_ISR,

isratr is a preprocessor constant expression parameter. intno is an integer parameter

without automatic assignment.

acre_isr assigns an interrupt service routine ID from the pool of unassigned interrupt

service routine IDs and returns the assigned interrupt service routine ID.

isratr can be specified as (TA_HLNG || TA_ASM). If TA_HLNG (= 0x00) is speci-

fied, the interrupt service routine is called through the C language interface. If

TA_ASM

 (= 0x01) is specified, the interrupt service routine is called through an

assembly language interface.

[Standard Profile]

The Standard Profile does not require support for

DEF_INH

 if the implementation

supports

ATT_ISR

. In this case, the Standard Profile does not require support for

when

TA_ASM

 is specified in

isratr

.

[Supplemental Information]

Multiple interrupt service routines may be attached to the same interrupt number. See

Section 3.3.2 for information on how to handle multiple interrupt service routines

attached to the same interrupt number.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.
285

µITRON4.0 Specification Ver. 4.00.00

del_isr

Delete Interrupt Service Routine

[C Language API]

ER ercd = del_isr (ID isrid) ;

[Parameter]

ID isrid

ID number of the interrupt service routine to be

deleted

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

[Error Code]

E_ID

Invalid ID number (

isrid

 is invalid or unusable)

E_NOEXS

Non-existent object (specified interrupt service routine is not

registered)

 [Functional Description]

This service all deletes the interrupt service routine specified by

isrid

.

[Supplemental Information]

Interrupt service routines attached through

ATT_ISR

 cannot be deleted with this ser-

vice call because they do not have ID numbers.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.
286

µITRON4.0 Specification Ver. 4.00.00

ref_isr

Reference Interrupt Service Routine State

[C Language API]

ER ercd = ref_isr (ID isrid, T_RISR *pk_risr) ;

[Parameter]
ID isrid ID number of the interrupt service routine to be ref-

erenced

T_RISR * pk_risr Pointer a packet returning the interrupt service rou-

tine state

[Return Parameter]

ER ercd E_OK for normal completion or error code

pk_risr includes (T_RISR type)

(Implementation-specific information)

[Error Code]
E_ID Invalid ID number (isrid is invalid or unusable)

E_NOEXS Non-existent object (specified interrupt service routine is not

registered)

E_PAR Parameter error (pk_risr is invalid)

[Functional Description]

The service call references the state of the interrupt service routine specified by isrid.

The state of the interrupt service routine is returned through the packet pointed to by

pk_risr. The specific information returned is implementation-defined.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.
287

µITRON4.0 Specification Ver. 4.00.00

dis_int Disable Interrupt

[C Language API]
ER ercd = dis_int (INTNO intno) ;

[Parameter]
INTNO intno Interrupt number to be disabled

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_PAR Parameter error (intno is invalid)

[Functional Description]

This service call disables the interrupt specified by intno. The specific meaning of

intno is implementation-defined. In typical implementations, intno corresponds to

the interrupt request line to the IRC.

[Supplemental Information]

This service call is intended to control the IRC. This service call does not transition the

system to the CPU locked state nor does it transition the system to the dispatching dis-

abled state. Therefore, dispatching still occurs even if all interrupts are disabled due to

this service call. In addition, if interrupts are disabled, they remain disabled after task

dispatching.

[Differences from the µITRON3.0 Specification]

Because this service call is intended to control the IRC, the meaning of intno is

defined more strictly than in the µITRON3.0 Specification. The data type of intno has

been changed from UINT to INTNO.
288

µITRON4.0 Specification Ver. 4.00.00

ena_int Enable Interrupt

[C Language API]
ER ercd = ena_int (INTNO intno) ;

[Parameter]
INTNO intno Interrupt number to be enabled

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_PAR Parameter error (intno is invalid)

[Functional Description]

This service call enables the interrupt specified by intno. The specific meaning of

intno is implementation-defined. In typical implementations, intno corresponds to

the interrupt request line to the IRC.

[Supplemental Information]

This service call is intended to control the IRC. This service call does not transition the

system to the CPU unlocked state nor does it transition the system to the dispatching

enabled state. Therefore, this service call does not necessarily result in a state where

interrupts will be accepted by the processor.

[Differences from the µITRON3.0 Specification]

Because this service call is intended to control the IRC, the meaning of intno is

defined more strictly than in the µITRON3.0 Specification. The data type of intno has

been changed from UINT to INTNO.
289

µITRON4.0 Specification Ver. 4.00.00

chg_ixx Change Interrupt Mask

[C Language API]
ER ercd = chg_ixx (IXXXX ixxxx) ;

[Parameter]
IXXXX ixxxx Interrupt mask desired

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_PAR Parameter error (ixxxx is invalid)

[Functional Description]

This service call changes the processor’s interrupt mask (also referred to as interrupt

level or interrupt priority) to the value specified by ixxxx.

The xx portion of the service call name and the xxxx portion of the parameter name

are implementation-defined and should be appropriate character strings for the target

processor’s architecture.

Depending on the value specified by ixxxx, this service call may cause the transition

between the CPU locked state and the CPU unlocked state and/or the transition

between the dispatching disabled state and the dispatching enabled state. The value

causing these transitions and the transition caused by this service call are implementa-

tion-defined.

[Supplemental Information]

In implementations where the CPU state is managed with the interrupt mask, changing

the interrupt mask may cause the transition between the CPU states or the transition

between the dispatching states. In implementations where these states are managed by

a combination of the interrupt mask and a variable, the variable’s value must be

updated to reflect the change in the interrupt mask.

[Differences from the µITRON3.0 Specification]

The data type for ixxxx has been change from UINT to IXXXX.
290

µITRON4.0 Specification Ver. 4.00.00

get_ixx Reference Interrupt Mask

[C Language API]
ER ercd = get_ixx (IXXXX *p_ixxxx) ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for normal completion or error code

IXXXX ixxxx Current interrupt mask

[Error Code]
E_PAR Parameter error (p_ixxxx is invalid)

[Functional Description]

This service call references the processor’s interrupt mask (also referred to as interrupt

level or interrupt priority) and returns it through ixxxx.

The xx portion of the service call name and the xxxx portion of the parameter name

are implementation-defined and should be appropriate character strings for the target

processor’s architecture.

[Differences from the µITRON3.0 Specification]

The name of this service call has been changed from ref_ixx to get_ixx. The data

type for ixxxx has been change from UINT to IXXXX.
291

µITRON4.0 Specification Ver. 4.00.00
4.10 Service Call Management Functions

Service call management functions provide definition and invocation of extended ser-

vice calls. The ability to invoke extended service calls may also be used to invoke stan-

dard service calls.

An extended service call is a function that allows the invocation of another module

when the entire system is not linked to a single module. When an extended service call

is invoked, the extended service call routine defined by the application is called.

The format to write an extended service call routine in the C language is shown below:

ER_UINT svcrtn (VP_INT par1, VP_INT par2, ...)
{

/* Body of the extended service call routine */
}

Only the necessary parameters for the extended service call routine (

par1

,

par2

, and

so on) may be specified. There may be an implementation-defined limit on the number

of parameters for extended service calls. However, at least one parameter must be sup-

ported.

The following data type packets are used for defining extended service calls:

typedef struct t_dsvc {
ATR svcatr ; /* Extended service call attribute */
FP svcrtn ; /* Extended service call routine start

address */
/

* Other implementation specific fields may be added. */

} T_DSVC ;

The following represents the function codes for service call management service calls.

cal_svc

 has no function code.

TFN_DEF_SVC

–0x6d Function code of

def_svc

[Standard Profile]

The Standard Profile does not require support for service call management functions.

[Supplemental Information]

The contexts and states under which extended service call routines execute are summa-

rized as follows:

 • An extended service call routine executes in its own independent context determined

by the extended service call and by the context from which the extended service call

is invoked (see Section 3.5.1). The context in which an extended service call routine

executes is classified as task contexts when the invoking context is classified as task

contexts. It is classified as non-task contexts when the invoking context is classified

as non-task contexts (See Section 3.5.2).

 • The precedence of extended service call routines is higher than the precedence of the
292

µITRON4.0 Specification Ver. 4.00.00

processing unit that invokes the extended service calls and is lower than the prece-

dence of any processing unit that has a higher precedence than the invoking process-

ing unit (see Section 3.5.3).

 • The start of and the return from extended service call routines do not change the

CPU state and the dispatching state (See Sections 3.5.4 and 3.5.5).

 • Executing extended service call routines with task exceptions disabled is implemen-

tation-defined (see Section 4.3).

[Differences from the µITRON3.0 Specification]

The category of service call management functions has been newly added.

The terms extended SVC and extended SVC handler have been changed to extended

service call and extended service call routine, respectively. The contexts and states

under which extended service call routines execute is more strictly defined compared to

the µITRON3.0 Specification.
293

µITRON4.0 Specification Ver. 4.00.00

DEF_SVC Define Extended Service Call (Static API)

def_svc Define Extended Service Call

[Static API]
DEF_SVC (FN fncd, { ATR svcatr, FP svcrtn }) ;

[C Language API]
ER ercd = def_svc (FN fncd, T_DSVC *pk_dsvc) ;

[Parameter]
FN fncd Function code of the extended service call to be

defined

T_DSVC * pk_dsvc Pointer to the packet containing the extended ser-

vice call definition information (in

DEF_SVC

,

packet contents must be directly specified.)

pk_dsvc includes (T_DSVC type)

ATR svcatr Extended service call attribute

FP svcrtn Extended service call routine start address

(Other implementation specific information may be added.)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_RSATR Reserved attribute (svcatr is invalid or unusable)

E_PAR Parameter error (fncd, pk_dsvc, or svcatr is invalid)

[Functional Description]

This service call defines an extended service call for the function code specified by

fncd based on the information contained in the packet pointed to by pk_dsvc.

svcatr is the attribute of the extended service call. svcrtn is the start address of the

extended service call routine.

In DEF_SVC, fncd is an integer parameter without automatic assignment. svcatr is

a preprocessor constant expression parameter.

This service call and this static API can define an extended service call with a positive

value of fncd. If a negative value is specified in fncd, an E_PAR error is reported.

If pk_dsvc is NULL (= 0), the extended service call currently defined is released and

the extended service call becomes undefined. When a new extended service call is

defined over top of an old one, the old one is released and the new takes its place.

svcatr can be specified as (

TA_HLNG

 ||

TA_ASM

). If

TA_HLNG

 (= 0x00) is speci-

fied, the extended service call routine is called through the C language interface. If

TA_ASM

 (= 0x01) is specified, the extended service call routine is called through an
294

µITRON4.0 Specification Ver. 4.00.00

assembly language interface.

[Differences from the µITRON3.0 Specification]

The name of the parameter has been changed from

svchdr

 to

svcrtn

.

295

µITRON4.0 Specification Ver. 4.00.00

cal_svc

Invoke Service Call

[C Language API]

ER_UINT ercd = cal_svc (FN fncd, VP_INT par1, VP_INT par2,
...) ;

[Parameter]

FN fncd

Function code of the service call to be invoked

VP_INT par1

The first parameter of the service call

VP_INT par2

The second parameter of the service call

... ... (up to the necessary number of parameters)

[Return Parameter]

ER_UINT ercd

The service call’s return value

[Error Code]

E_RSFN

Reserved function code (

fncd

 is invalid or unusable)

[Functional Description]

This service call invokes the service call specified by

fncd

 with the parameters

par1

,

par2

, and so on, and returns the return value of the invoked service call.

There may be an implementation-defined limit greater than or equal to 1 on the number

of parameters that can be passed to the service call. If the service call’s parameters are

not of

VP_INT

 type, this service call converts the parameters to the appropriate data

types while preserving their values. If the service call’s return value is of

ER

,

BOOL

,

or

ER_BOOL

 type, this service call converts the return value to

ER_UINT

 type while

preserving its value.

In addition to an extended service call, allowing this service call to invoke a standard

service call is implementation-defined. If this service call cannot invoke a standard ser-

vice call, it returns an

E_RSFN

 error.

[Supplemental Information]

Standard service calls are distinguished from extended service calls because the former

have negative function codes. Since cal_svc does not have a function code, cal_svc
cannot be used to invoke itself.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.
296

µITRON4.0 Specification Ver. 4.00.00

4.11 System Configuration Management Functions

System configuration management functions include the ability to define a CPU excep-

tion handler, to reference the system configuration and version information, and to

define an initialization routine. The initialization routine executes during system ini-

tialization. See Section 3.7 for the timing and contexts of initialization routine execu-

tion.

The following data types are used for system configuration management functions:

EXCNO

CPU exception handler number

The format to write a CPU exception handler is implementation-defined.

When calling an initialization routine, the extended information (exinf) of the initial-

ization routine is passed as a parameter. The format to write an initialization routine in

the C language is shown below:

void inirtn (VP_INT exinf)
{

/* Body of the initialization routine */
}

The following data type packets are defined for defining CPU exception handlers and

for referencing the configuration and version information.

typedef struct t_dexc {
ATR excatr ; /* CPU exception handler attribute */
FP exchdr ; /* CPU exception handler start address */
/* Other implementation specific fields may be added. */

} T_DEXC ;

typedef struct t_rcfg {
/* Implementation specific fields */

} T_RCFG ;

typedef struct t_rver {
UH maker ; /* Kernel maker’s code */
UH prid ; /* Identification number of the kernel */
UH spver ; /* Version number of the ITRON

Specification */
UH prver ; /* Version number of the kernel */
UH prno[4] ; /* Management information of the kernel

product */
} T_RVER ;

The following represents the function codes for the system configuration management

service calls:

TFN_DEF_EXC

–0x6e Function code of

def_exc
TFN_REF_CFG

–0x6f Function code of

ref_cfg
TFN_REF_VER

–0x70 Function code of

ref_ver
297

µITRON4.0 Specification Ver. 4.00.00

[Standard Profile]

The Standard Profile requires support for the static API defining an CPU exception

handler (

DEF_EXC

) and the static API defining an initialization routine (

ATT_INI

).

[Supplemental Information]

The contexts and states under which CPU exception handlers execute are summarized

as follows:

 • The service calls that can be invoked from within CPU exception handlers are imple-

mentation-defined (see Section 3.4.2).

 • A CPU exception handler executes in its own independent context determined by the

CPU exception and by the context in which the CPU exception occurred (see Sec-

tion 3.5.1). When a CPU exception occurs in task contexts, whether the CPU excep-

t i on hand l e r execu t e s i n t a sk con t ex t s o r i n non - t a sk con t ex t s i s

implementation-defined. When a CPU exception occurs in non-task contexts, the

CPU exception handler executes in non-task contexts (see Section 3.5.2).

 • The precedence of CPU exception handlers is higher than the precedence of the pro-

cessing unit where the CPU exception occurs and higher than the precedence of the

dispatcher (see Section 3.5.3).

 • The start of and the return from CPU exception handlers do not change the CPU

state and the dispatching state. When the CPU state or the dispatching state is

changed in CPU exception handlers, they should be returned to their previous states

before returning from the CPU exception handlers (see Sections 3.5.4 and 3.5.5).
298

µITRON4.0 Specification Ver. 4.00.00

DEF_EXC

Define CPU Exception Handler (Static API)

[S]

def_exc

Define CPU Exception Handler

[Static API]
DEF_EXC (EXCNO excno, { ATR excatr, FP exchdr }) ;

[C Language API]
ER ercd = def_exc (EXCNO excno, T_DEXC *pk_dexc) ;

[Parameter]
EXCNO excno CPU exception handler number to be defined

T_DEXC * pk_dexc Pointer to the packet containing the CPU exception

handler definition information (in

DEF_EXC

,

packet contents must be directly specified.)

pk_dexc

 includes (

T_DEXC

 type)

ATR excatr

CPU exception handler attribute

FP exchdr

CPU exception handler start address

(Other implementation specific information may be added.)

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

[Error Code]

E_RSATR

Reserved attribute (

excatr

 is invalid or unusable)

E_PAR

Parameter error (

excno

,

pk_dexc

, and

exchdr

 is invalid)

[Functional Description]

This service call assigns a CPU exception handler to the CPU exception handler num-
ber specified by

excno

 based on the information contained in the packet pointed to by

pk_dexc. excatr is the attribute of CPU exception handler attribute. exchdr is the

start address of the CPU exception handler.

In DEF_EXC, excno is an integer parameter without automatic assignment. excatr
is a preprocessor constant expression parameter.

The specific meaning of excno is implementation-defined, but it corresponds to the

processor’s exception in typical implementations.

If pk_dexc is NULL (= 0), the CPU exception handler currently defined is released.

When a new CPU exception handler is defined over top of an old one, the old one is

released and the new takes its place.

The possible values and meanings of

excatr

 are implementation-defined.

[Differences from the µITRON3.0 Specification]

This service call is now specified for defining a CPU exception handler. The object
299

µITRON4.0 Specification Ver. 4.00.00

number for identifying a CPU exception handler is now the CPU exception handler

number (

excno

) of

EXCNO

 type. The possible values and meanings of

excatr

 are

now left to the implementation.
300

µITRON4.0 Specification Ver. 4.00.00

ref_cfg

Reference Configuration Information

[C Language API]

ER ercd = ref_cfg (T_RCFG *pk_rcfg) ;

[Parameter]

T_RCFG * pk_rcfg Pointer to the packet returning the configuration

information

[Return Parameter]

ER ercd E_OK

 for normal completion or error code

pk_rcfg

 includes (

T_RCFG

 type)

(Implementation-specific information)

[Error Code]

E_PAR

Parameter error (

pk_rcfg

 is invalid)

[Functional Description]

This service call references the static information and configuration information of the

system. The information is returned through the packet pointed to by

pk_rcfg

. The

specific information referenced is implementation-defined.

[Supplemental Information]

Possible information that may be referenced by this service call includes: the kernel

configuration constants, the range of ID numbers for each object, overview of the

memory map, available memory size, information on peripheral chips and I/O devices,

and time unit and precision of the data types to specify the time.
301

µITRON4.0 Specification Ver. 4.00.00

ref_ver

Reference Version Information

[C Language API]

ER ercd = ref_ver (T_RVER *pk_rver) ;

[Parameter]

 T_RVER * pk_rver Pointer to the packet returning the version informa-

tion

[Return Parameter]

ER ercd E_OK for normal completion or error code

pk_rver includes (T_RVER type)

UH maker Kernel maker’s code

UH prid Identification number of the kernel

UH spver Version number of the ITRON Specification

UH prver Version number of the kernel

UH prno[4] Management information of the kernel product

[Error Code]
E_PAR Parameter error (pk_rver is invalid)

[Functional Description]

This service call references the version information of the kernel. The information is

returned through the packet pointed to by pk_rver. Specifically, the following infor-

mation can be referenced.

maker

 is the code that represents the kernel maker. See Section 5.4 for definitions of

maker codes.

prid is the number for identifying the kernel. The kernel maker can assign values to

prid. A particular kernel implementation should be uniquely identified by the combi-

nation of

maker

 and prid codes.

The upper four bits of spver identify the type of the TRON Specification, and the

lower 12 bits indicate the version number of the specification. The upper four bits of

spver are assigned as follows:

0x0 Common specification for TRON (such as TAD)

0x1 ITRON Specifications (ITRON1, ITRON2)

0x2 BTRON Specifications

0x3 CTRON Specifications

0x5 µITRON Specifications (µITRON2.0, µITRON3.0, µITRON4.0)

0x6 µBTRON Specifications

The lower 12 bits of spver represent the upper 3 digits of the specification version

number. The upper 3 digits of the specification version number are represented in
302

µITRON4.0 Specification Ver. 4.00.00

binary coded decimal (BCD) format and each digit is 4 bit long. Version numbers for

draft specifications or specifications under discussion can include an alphabet letter. In

this case, the letter is interpreted as a hexadecimal number. See Section 5.3 for further

description on version numbers of the ITRON Specification.

prver is the version number of the particular kernel implementation. The kernel

maker can assign values to prver.

prno is a return parameter that may contain the kernel product’s management informa-

tion, product number, and others. The kernel maker determines its definition.

[Supplemental Information]

As an example, the value of

spver for a kernel conformant to the µITRON4.0 Specifi-

cation Ver.4.02.10 is 0x5402, and its value for a kernel conformant to Ver. 4.A1.01 is

0x54A1. This example shows that a newer version of the specification does not always

have a larger value of

spver

 when a draft specification is involved.

The returned information except prno can be referenced with the kernel configuration

macros: TKERNEL_MAKER, TKERNEL_PRID, TKERNEL_SPVER, and

TKERNEL_PRVER.

[Differences from the µITRON3.0 Specification]

The name of the service call has been changed from get_ver to ref_ver. Referencing

the CPU information and the variation descriptor have been removed. The specifica-

tion of the

prver

 format has been removed. The name of the return parameter has been

changed from id to prid.

[Rationale]

The values stored in spver include only the upper 3 digits of the specification version

number and do not include the remaining digits. This is because the remaining digits

only refer to the notation of the specification and not the contents.
303

µITRON4.0 Specification Ver. 4.00.00

ATT_INI Attach Initialization Routine (Static API) [S]

[Static API]
ATT_INI ({ ATR iniatr, VP_INT exinf, FP inirtn }) ;

[Parameter]
ATR iniatr Initialization routine attribute

VP_INT exinf Initialization routine extended information

FP inirtn Initialization routine start address

(Other implementation specific information may be added.)

[Functional Description]

This static API registers an initialization routine based on the specified parameters.

iniatr is the attribute of the initialization routine. exinf is the extended information

passed as a parameter to the initialization routine. inirtn is the start address of the ini-

tialization routine.

In

ATT_INI

, iniatr is a preprocessor constant expression parameter.

The registered initialization routine is executed as a part of the processing of the static

APIs during system initialization. See Section 3.7 for a detailed description of this pro-

cess.

iniatr

 can be specified as (TA_HLNG || TA_ASM). If TA_HLNG (= 0x00) is speci-

fied, the initialization routine is called through the C language interface. If

TA_ASM

(= 0x01) is specified, the initialization routine is called through an assembly language

interface.

[Standard Profile]

The Standard Profile does not require support for when

TA_ASM

 is specified in

iniatr

.

[Supplemental Information]

The system configuration file can include more than one

ATT_INI

. See Section 3.7 for

the execution order of the initialization routines when more than one

ATT_INI

 are

described.

[Differences from the µITRON3.0 Specification]

This static API has been newly added.
304

µITRON4.0 Specification Ver. 4.00.00

Chapter 5 Additional Specifications

5.1 The Specification Requirements for the
µITRON4.0 Specification

5.1.1 Basic Concept

The µITRON Specifications are specifications which are based on a loose standardiza-

tion concept. It emphasizes applicability to a wide range of hardwares and applications

rather than portability of application programs, and aims at standardization for the edu-

cation of software engineers. Therefore, as long as the OS specification meets the min-

imum requirements of a real-time kernel, the realization of the functionality defined in

this specification and the addition of extended functionalities are left to the implemen-

tation.

Specifically, the following conditions must be satisfied for the implementation of the

µITRON4.0 Specification.

(a) It must have the minimum functionalities that are required to satisfy the

µITRON4.0 Specification (see Section 5.1.2).

(b) If it contains functionalities similar to those described in the µITRON4.0 Specifica-

tion, the functionality specifications must match the µITRON4.0 Specification.

However, if the implementation does not provide a configurator, conforming to the

static API specification of the µITRON4.0 Specification is not necessary.

(c) If it contains functionalities not specified by the µITRON4.0 Specification, the

functionality specifications must satisfy the conditions for implementation-depen-

dent extensions specified by the µITRON4.0 Specification. However, if the imple-

mentation supports several sets of APIs, this condition is not applied to sets of APIs

other than the µITRON4.0 Specification APIs.

If the implementation provides subsetting of service call functionalities or functionality

restrictions, or if it has special implementation functions that are not specified by the

µITRON4.0 Specification, the product manual must contain the description of the

implementation for clarification.

The profile rule defines the minimum function requirements that must be satisfied by

the kernel for the portability of application programs that are written in a high-level

language. In order for an implementation based on the µITRON4.0 Specification to

conform to a certain profile rule, it must have all the functionalities specified by the

profile, and it must agree with all the rules related to the profile. It can contain func-

tionalities that are not included by the profile and implementation-specific extensions.

However, application programs that are written to operate using only the functionalities

included in the profile must operate without modification.
305

µITRON4.0 Specification Ver. 4.00.00

Moreover, when embedding the implemented kernel to an application, embedding only

the functions needed by the application is possible.

[Standard Profile]

The Standard Profile is one of the profile specifications of the µITRON4.0 Specifica-

tion.

[Supplemental Information]

The conditions under which an implementation satisfies the µITRON4.0 Specification

is illustrated by the following example. If the implementation has semaphore func-

tions, the names and functionalities of the service calls, the types, orders, and names of

the parameters and return parameters, and the types and names of main error codes

must all agree with the semaphore functions that are specified by the µITRON4.0 Spec-

ification. In this case, subsetting of service call functions is permitted at the cost of

portability of application programs. If the implementation adds a functionality that is

not specified by the µITRON4.0 Specification (like counting semaphores with priority

inheritance), the functionality definition is freely decided by the implementation.

Moreover, in situations where subsets or implementation-specific extensions are made,

adding and/or deleting parameters and return parameters is permitted.

The conditions of this section do not specify a kernel configured for a particular appli-

cation. When a kernel conforming to the Standard Profile is embedded to an applica-

tion, the kernel functionalities may be limited to those functions needed by the

application and the range of ID numbers and priorities may be limited.

5.1.2 Minimum Required Functionalities

The minimum functionalities that are required to satisfy the µITRON4.0 Specification

are as follows:

(a) Creation of tasks. The task must at least be able to be in the RUNNING state, the

READY state, and the DORMANT state.

(b) Task scheduling conforming to the µITRON4.0 Specification scheduling rule.

However, restricting the number of tasks to one for each priority level or restricting

the priority level to only one is allowed.

(c) Registration of interrupt handlers (or interrupt service routines).

(d) A method to activate tasks (changing the state from the DORMANT state to the

READY state) from tasks and interrupt handlers (or interrupt service routines).

(e) A method for a task to terminate itself (changing the state from the READY state to

the DORMANT state).

[Supplemental Information]

As an example, the minimum functionalities above can be satisfied if the implementa-

tion provides the service calls and static APIs below, and if its task scheduling rule fol-
306

µITRON4.0 Specification Ver. 4.00.00

lows the specification.

CRE_TSK

create task (static API)

act_tsk

 /

iact_tsk

activate task

ext_tsk terminate invoking task

DEF_INH define interrupt handler (static API)

In this case, defining an interrupt handler (DEF_INH) can be replaced by attaching an

interrupt service routine (ATT_ISR). If a configurator is not provided, providing

equivalent methods with the static APIs instead of the static APIs conforming to the

specification is sufficient. Also act_tsk and iact_tsk do not have to support queuing

of activation requests. ext_tsk can be replaced by a return from the main routine.

[Differences from the µITRON3.0 Specification]

The minimum set of states for a task is changed from the RUNNING state, the READY

state, and the WAITING state to the RUNNING state, the READY state, and the DOR-

MANT state. The service calls required to be supported (level R) is not defined.

5.1.3 Extension of the µITRON4.0 Specification

When adding implementation-specific service calls to realize a new functionality

which is not specified by the µITRON4.0 Specification, a “v” must be added in front of

the name of the new service call. The names of the static API for implementation-spe-

cific functions are also based on this rule. However, the names for implementa-

tion-specific service calls that can be called from non-task contexts are exceptions to

this rule (see Section 3.6.3). The value of the function code for any implementa-

tion-specific service call must be within the range provided.

When adding implementation-specific main error codes, the form of the name must be

EV_

XXXXX and the value of the main error code must be defined within the range

provided. Also if there are implementation-specific data types, constants (except for

error codes), and/or macros defined, identifying those that are not defined by the

µITRON4.0 Specification by inserting a “V” into the name is recommended.

In the µITRON4.0 Specification, the constants that specify the object attributes and ser-

vice call operational modes are assigned values that can be expressed in 8 bits. Also

the constants that express the object states are assigned 8-bit values, with a few excep-

tions. The lower 8-bit values of the parameters or return parameters are reserved for

future extensions of the ITRON Specifications. When assigning bit values to the

implementation-specific constants for those parameters and return parameters, the bit

values that cannot be used are the bits which are used by the constants defined by this

specification and the reserved lowest 8 bits. The remaining values in the upper 8 bits

should be used.

Also if there are rules that specify methods for implementation-specific extensions,

such as the packet for object registration information and object reference information,
307

µITRON4.0 Specification Ver. 4.00.00

these rules must be followed.

5.2 Automotive Control Profile

The Automotive Control Profile of the µITRON4.0 Specification is one of the

µITRON4.0 Specification profile rules and is mainly targeted at automotive control

applications. In order to realize the goal of reducing kernel overhead and memory

usage, a subsetting of the specification functions and additional functions for reducing

memory consumption are provided.

Compared to the Standard Profile, the Automotive Control Profile does not need to sup-

port the following functionalities:

 • Service calls with timeouts

 • Wait queues in task priority order

 • The SUSPENDED state

 • Task exception handling functions

 • Mailboxes

 • Fixed-sized memory pools

 • Some other service calls

In order to reduce the memory usage, restricted task functions are added. Restricted

tasks are tasks whose functionalities are restricted compared to conventional tasks. As

long as the application does not depend on an

E_NOSPT

 error returned when

restricted functions are used, the application should behave the same way if the

restricted tasks are replaced with conventional tasks. In this sense, the Automotive

Control Profiles have a lower compatibility to the Standard Profile even if restricted

task functions are added.

5.2.1 Restricted Tasks

By restricting some functionalities of tasks, a restricted task can share the same stack

space with other restricted tasks. This reduces the memory area required for task stack.

A restricted task differs from a conventional task as follows:

 • A restricted task can not enter the WAITING state.

When a restricted task invokes a service call that might enter the WAITING state,

the behavior is undefined. When an error should be reported, an E_NOSPT error is

returned.

 • The priority of a restricted task cannot be changed.

The behavior of changing a restricted task’s priority by invoking chg_pri is unde-

fined. When an error should be reported, an

E_NOSPT

 error is returned.

 • A restricted task cannot be terminated by a service call.
308

µITRON4.0 Specification Ver. 4.00.00

A restricted task can only be terminated by returning from the task’s main routine.

The behavior when a restricted task terminate itself by invoking

ext_tsk

 and the

behavior when a restricted task is forcibly terminated through

ter_tsk are unde-

fined. When an error should be reported, an

E_NOSPT

 error is returned.

Whether the task is restricted or not is determined by the task attribute specified during

task creation. Specifically, the task will be a restricted task if the task is created by

specifying TA_RSTR (= 0x04) in the task attribute.

[Supplemental Information]

Specifying the task stack size, which is included in the task creation information, is

also valid for a restricted task. For example, if the same stack area is shared by several

restricted tasks of the same priority, setting the maximum value of each task’s stack

size to the size of the stack area allocated by the kernel is necessary. Like the Standard

Profile, the Automotive Control Profile does not require support for when other values

than

NULL

 are specified as the start address of a task stack space.

5.2.2 Functionalities Included in the Automotive Control Profile

All the functionalities of the Automotive Control Profile except for the restricted task

functions are included in the Standard Profile. The Automotive Control Profile must

support the following static APIs and service calls.

(1) Task management functions

CRE_TSK

create task (static API)

act_tsk

 /

iact_tsk

activate task

can_act

cancel task activation requests

ext_tsk

terminate invoking task

ter_tsk

terminate task

chg_pri

change task priority

get_pri

reference task priority

(2) Task dependent synchronization functions

slp_tsk

put task to sleep

wup_tsk

 /

iwup_tsk

wakeup task

can_wup

cancel task wakeup requests

rel_wai

 /

irel_wai

release task from waiting

(4) Synchronization and communication functions

Semaphores

CRE_SEM

create semaphore (static API)

sig_sem

 /

isig_sem

release semaphore resource

wai_sem

acquire semaphore resource

pol_sem

acquire semaphore resource (polling)
309

µITRON4.0 Specification Ver. 4.00.00

Eventflags

CRE_FLG

create eventflag (static API)

set_flg

 /

iset_flg

set eventflag

clr_flg

clear eventflag

wai_flg

wait for eventflag

pol_flg

wait for eventflag (polling)

Data queues
CRE_DTQ

create data queue (static API)

psnd_dtq

 /

ipsnd_dtq

send to data queue (polling)

fsnd_dtq

 /

ifsnd_dtq

forced send to data queue

rcv_dtq

receive from data queue

prcv_dtq

receive from data queue (polling)

(7) Time management functions

System time management

isig_tim

supply time tick

 * If the kernel has a mechanism of updating the system time,

isig_tim

 need

not be supported.

Cyclic handlers

CRE_CYC

create cyclic handler (static API)

sta_cyc start cyclic handler operation

stp_cyc stop cyclic handler operation

(8) System state management functions
get_tid / iget_tid reference task ID in the RUNNING state

loc_cpu / iloc_cpu lock the CPU

unl_cpu / iunl_cpu unlock the CPU

dis_dsp disable dispatching

ena_dsp enable dispatching

sns_ctx reference contexts

sns_loc reference CPU state

sns_dsp reference dispatching state

sns_dpn reference dispatch pending state

(9) Interrupt management functions
DEF_INH define interrupt handler (static API)

 * If ATT_ISR is supported, DEF_INH need not be supported.

(11) System configuration management functions
DEF_EXC define CPU exception handler (static API)

ATT_INI attach initialization routine (static API)

Among these static APIs or service calls, the functions that should be supported by the

Automotive Control Profile but are restricted or extended compared to the Standard
310

µITRON4.0 Specification Ver. 4.00.00

Profile are as follows.

 • CRE_TSK

TA_RSTR (= 0x04) can be specified in the task attribute. When TA_RSTR is spec-

ified, a restricted task is created.

 •

CRE_SEM

, CRE_FLG, CRE_DTQ

The Automotive Control Profile does not require support for when TA_TPRI is
specified in each object attribute.

 • ext_tsk

The behavior when invoked from restricted tasks is undefined. When an error

should be reported, an E_NOSPT error is returned.

 • ter_tsk, chg_pri

The behavior when invoked with a restricted task is undefined. When an error

should be reported, an E_NOSPT error is returned.

 • slp_tsk, wai_sem, wai_flg, rcv_dtq

The behavior when invoked from a restricted task is undefined. When an error

should be reported, an E_NOSPT error is returned.

[Supplemental Information]

Within the Automotive Control Profile, the behavior when TA_TFIFO is specified as

the eventflag attribute is the same as when TA_TPRI is specified. In addition, since the

task cannot enter the sending waiting state for a data queue, specifying TA_TFIFO or

TA_TPRI for the data queue attribute is meaningless. Therefore, the restriction that

TA_TPRI cannot be specified for the eventflag attribute and the data queues attribute

practically means that when TA_TPRI is specified, an error should be returned.

5.3 Version Number of the Specifications

The version number of the ITRON Specifications is in the following form:

Ver. X.YY.ZZ [.WW]

X represents the major version number of the ITRON Specifications. The numbers

below are assigned to the kernel specifications:

1 ITRON1

2 ITRON2 or µITRON (Ver. 2.0)

3 µITRON3.0

4 µITRON4.0

YY indicates the version number of the updated specification when modifications or

additions are made to its contents. Once the specification is published, YY is updated

to YY = 00, 01, 02, and so on for each version of the specification. For draft specifica-

tions or specifications under discussion, on the other hand, one of the letters in

YY
311

µITRON4.0 Specification Ver. 4.00.00

should be ‘A’, ‘B’, or ‘C’.

The X.YY portion in the version number can be referenced through the kernel configu-

ration macro

TKERNEL_SPVER

 and through the return parameter spver of ref_ver
service call. If YY contains ‘A’, ‘B’, or ‘C’, the hexadecimal representation of ‘A’, ‘B’,

or ‘C’ is used, respectively.

ZZ is a number identifying the version relating to the specification notation. When

structural changes are made to the specification document or chapters, or when typo-

graphical errors are corrected,

ZZ

 is updated to ZZ = 00, 01, 02, and so on.

WW may be used for minor classifications on notations in the specification document.

If WW is omitted, WW is regarded as 00.

5.4 Maker Codes

The TRON Association assigns the maker codes referenced through the kernel configu-

ration macro

TKERNEL_MAKER

 and through the return parameter maker of

ref_ver service call.

At the time of the publication of this specification document, the following maker

codes are assigned:

0x0000 No maker code (such as experimental systems)

0x0001 University of Tokyo

0x0008 Individuals (or personal businesses)

0x0009 FUJITSU LIMITED

0x000a Hitachi, Ltd.

0x000b Matsushita Electric Industrial Co., Ltd.

0x000c Mitsubishi Electric Corporation

0x000d NEC Corporation

0x000e Oki Electric Industry Company, Limited

0x000f Toshiba Corporation

0x0010 ALPS ELECTRIC Co., Ltd.

0x0011 WACOM Co., Ltd.

0x0012 Personal Media Corporation

0x0013 Sony Corporation

0x0014 Motorola, Inc.

0x0015 National Semiconductor Corporation

0x0101 OMRON Corporation

0x0102 Seiko Precision Inc.

0x0103 System Algo Co., Ltd.

0x0104 TOKYO COMPUTER SERVICE Co., Ltd.

0x0105 Yamaha Corporation

0x0106 MORSON JAPAN
312

µITRON4.0 Specification Ver. 4.00.00

0x0107 Toshiba Information Systems (JAPAN) Corporation

0x0108 MiSPO Co., Ltd.

0x0109 Three Ace Computer Corporation

0x010a FIRMWARE SYSTEMS Inc.

0x010b eSOL Co., Ltd.

0x010c U S Software Corporation

0x010d ACCESS CO., LTD.

0x010e FUJITSU DEVICES INC.

0x010f Accelerated Technology Incorporated

0x0110 ELMIC SYSTEMS, INC.

0x0111 FJB Web Technology Ltd.

0x0112 A. I. Corporation

For the kernels implemented by individuals (or personal businesses), 0x0008 is used as

the maker code. For further identification of the kernel implementor, unique values are

assigned to each individual in the upper 8 bits of the identification number of the ker-

ne l , which can be referenced through the kerne l configura t ion macro

TKERNEL_PRID

 and through the return parameter prid of ref_ver service call.
313

µITRON4.0 Specification Ver. 4.00.00
314

µITRON4.0 Specification Ver. 4.00.00

Chapter 6 Appendix

6.1 Conditions for Using the Specification and the
Specification Document

The conditions for using the µITRON4.0 Specification and its specification document

are as follows:

Conditions for Using the Specification

The µITRON4.0 Specification is an open specification. Anyone may freely develop,

use, distribute, and sell software that conforms to the µITRON4.0 Specification. There

is no need to pay a license fee or register to the ITRON Committee of the TRON Asso-
ciation.

However, the ITRON Committee of the TRON Association strongly recommends that

the following statements (or statements with the same meaning) be included in the doc-
umentation of the software, such as the product manuals, conforming to the

µITRON4.0 Specification:

 • TRON is the abbreviation of “The Real-time Operating system Nucleus.”

 • ITRON is the abbreviation of “Industrial TRON.”

 • µITRON is the abbreviation of “Micro Industrial TRON.”

 • TRON, ITRON, and µITRON do not refer to any specific product or prod-
ucts.

The ITRON Committee of the TRON Association also recommends that the following

statements (or statements with the same meaning) be included in the documentation of

the software, such as the product manuals, conforming to the µITRON4.0 Specifica-
tion:

The µITRON4.0 Specifications is an open real-time kernel specification devel-
oped by the ITRON Committee of the TRON Association. The µITRON4.0

Specification document can be obtained from the ITRON Project web site

(

http://www.itron.gr.jp/

).

If you receive permission to modify the specification document to create product man-
uals (described later), or if you register products to the ITRON-Specification Product

Registration System (see Section 6.2), you are obliged to include the statements

described above.

Conditions for Using the Specification Document

The copyright of the µITRON4.0 Specification document belongs to the ITRON Com-
315

µITRON4.0 Specification Ver. 4.00.00

mittee of the TRON Association.

The ITRON Committee of the TRON Association grants the permission to copy the

whole or a part of the µITRON4.0 Specification document and to redistribute it intact

without charge or with a distribution fee. However, when a part of the µITRON4.0

Specification document is redistributed, it must clearly state (1) that it is a part of the

µITRON4.0 Specification document, (2) which part it was taken, and (3) the method to

obtain the whole µITRON4.0 Specification document.

Modification of the µITRON4.0 Specification document without prior written permis-

sion from the ITRON Committee of the TRON Association is strongly prohibited.

The ITRON Committee of the TRON Association permits the members of the TRON

Association to modify the µITRON4.0 Specification document to create, distribute,

and sell product manuals. Contact the ITRON Committee for the conditions and the

procedure to get the permission.

Disclaimer

The ITRON Committee of the TRON Association disclaims all warranties with regard

to the µITRON4.0 Specification and its document including all implied warranties.

The ITRON Committee of the TRON Association is not liable for any direct or indirect

damages caused by using the µITRON4.0 Specification or its document.

The ITRON Committee of the TRON Association may revise the µITRON4.0 Specifi-

cation documentation without notice.

6.2 Maintenance of the Specification and Related
Information

Maintenance of the ITRON Specifications and Contact Information

The ITRON Specifications and their documents are developed and maintained by the

ITRON Committee of the TRON Association. Any questions regarding the specifica-

tions and their documents should be directed to the following:

ITRON Committee, TRON Association

Katsuta Building 5F

3-39, Mita 1-chome, Minato-ku,

Tokyo 108-0073, JAPAN

TEL: +81-3-3454-3191

FAX: +81-3-3454-3224

ITRON Project Web Site

The ITRON Committee of the TRON Association maintains the ITRON Project web
316

µITRON4.0 Specification Ver. 4.00.00

site for distributing information regarding the ITRON Project and Specifications. Vari-

ous ITRON Specifications and other documents are available at the web site, such as:

introduction to the ITRON Project, the ITRON Newsletter, status of standardization

activities, results of the survey on RTOS uses, list of products registered to the

ITRON-Supplications Product Registration System, information on seminars and trade

show participation, presentation materials used in lectures, and the list of the ITRON

Committee members.

The URL of the ITRON Project Web Site is:

http://www.itron.gr.jp/

The ITRON Newsletter

The ITRON Committee of the TRON Association publishes the ITRON Newsletter

bimonthly to widely distribute the latest information regarding the ITRON Project and

the activities of the ITRON Committee. The ITRON Newsletter has both Japanese and

English versions. Information regarding additions or corrections to the ITRON Speci-

fications, and information regarding corrections to the books published by the ITRON

Committee are notified with the ITRON Newsletter. The ITRON Newsletter is also

used to introduce products, books, and documents related to the ITRON Specifications,

and to notify the events such as seminars and trade shows.

The ITRON Newsletter is included in the TRONWARE magazine (only in Japanese)

and the periodicals by the TRON Association. The ITRON Newsletter is also available

at the ITRON Project web site.

ITRON-Specification Product Registration System

In order to promote the use and development of the ITRON Specifications, the ITRON

Committee of the TRON Association provides the ITRON-Specification Product Reg-

istration System. The purpose of this system is to create and maintain a list of products

developed by companies that conform to the ITRON Specifications and to promote the

use of the ITRON Specifications and the conforming products. This system is different

from the so-called certification system. It is not intended to certify registered products

to be conformant to the ITRON Specifications.

The list of products registered to the system is available at the ITRON Project web site.

Contact the ITRON Committee if you are interested in registering products that con-

form to the ITRON Specifications.

Reference documents

“THE TRON PROJECT” is published by the TRON Association as a reference for the

entire TRON Project. This document includes an introduction to the activities of each

TRON basic and application sub-project, the history of the TRON Project, and the list

of the reference regarding the TRON Project.
317

µITRON4.0 Specification Ver. 4.00.00

For the latest information on the TRON Project, refer to “TRONWARE,” a TRON

Project technical information magazine published bimonthly by Personal Media Cor-

poration. For the research results of the TRON Project, refer to the proceedings of the

annual TRON Project International Symposium.

The ITRON Committee of the TRON Association publishes the ITRON Specification

Guidebook as a textbook regarding the ITRON Specifications.

“ITRON Specification Guidebook 2,” supervised by Ken Sakamura, Personal

Media Corporation, 1994 (ISBN4-89362-133-5).

“ITRON Specifications Guidebook 2” is based on the µITRON3.0 Specification and

does not correspond to the µITRON4.0 Specification. However, the ITRON Commit-

tee is planning to publish an edition that corresponds to the µITRON4.0 Specification.

6.3 Background and Development Process of the
Specification

Background and Development Process of the Specification

The ITRON Committee of the TRON Association started the µITRON4.0 Specification

Study Group to develop the next generation µITRON Specification following the

results of the Hard Real-Time Support Study Group (from November 1996 to March

1998) and of the RTOS Automotive Application Technical Committee (from June 1997

to March 1998). The µITRON4.0 Specification Study Group was an open group where

anyone, including non-members of either the ITRON Committee or the TRON Associ-

ation, was welcome to participate, thus promoting the involvement of active engineers

from various fields of embedded system development.

The Kernel Specification Working Group established under the µITRON4.0 Specifica-

tion Study Group developed the µITRON4.0 Specification. The Kernel Specification

Working Group started the development in April 1998. It organized meetings once or

twice a month until June 1999, when the official specification document was published.

Email discussions were also conducted for the development.

The µITRON4.0 Specification also reflects the requirements and ideas derived from the

following investigations: the ITRON TCP/IP API Specification by the Embedded TCP/

IP Technical Committee, the JTRON2.0 Specification by Java Technology on

ITRON-Specification OS Technical Committee, and investigations by the Device

Driver Design Guideline Working Group of the µITRON4.0 Specification Study

Group.

Member List of the ITRON Committee of the TRON Association

 (in alphabetical

order)

John Cheuck (Metrowerks Co., Ltd.)
318

µITRON4.0 Specification Ver. 4.00.00

Shouichi Hachiya (Aplix Corporation)

Makoto Hirayama (Hewlett-Packard Japan, Ltd.)

Noboru Hirose (FIRMWARE SYSTEMS Inc.)

Shigeru Honma (Yamaha Corporation)

Katsuhiko Ishida (Hitachi, Ltd.)

Hidehiro Ishii (YDC Corporation)

Norihiko Ito (Nihon Cygnus Solutions)

Tomihisa Kamada (ACCESS Co., Ltd.)

Tatsuya Kamei (Mitsubishi Electric Corporation)

Kenji Kudou (FUJITSU DEVICES Inc.), Vice-Chair

Akira Matsui (Personal Media Corporation)

Hiroshi Monden (NEC Corporation)

Tetsuo Oe (Oki Electric Industry Company, Limited)

Ken Sakamura (University of Tokyo)

Kazuo Sato (Toshiba Information Systems (JAPAN) Corporation)

Tetsu Shibashita (Mentor Graphics Japan Co., Ltd.)

Hiroaki Takada (Toyohashi University of Technology), Secretary

Tetsuo Takagi (DENSO CREATE Inc.)

Tohru Takeuchi (TRON Association), Secretariat

Kiichiro Tamaru (Toshiba Corporation), Chair

Yasutaka Tsunakawa (Sony Corporation)

Yiroyuki Watanabe (Seiko Instruments Inc.)

Member List of the Kernel Specification Working Group of the µITRON4.0
Specification Study Group

 (in alphabetical order)

Yoshitaka Adachi (Matsushita Electric Industry Co., Ltd.)

Yoshihiko Aoki (Sanyo Engineering & Construction Inc.)

Shigemasa Asai (Aisin Seiki Co., Ltd.)

Akihito Chiba (NIPPON TELECOMMUNICATIONS CONSULTING

Co., Ltd.)

Kazuhiro Ibuka (Motorola Japan Ltd.)

Jun’ichi Iijima, Secretery

Kazutoyo Inamitsu (FUJITSU DEVICES Inc.)

Katsuhiko Ishida (Hitachi, Ltd.)

Masanori Ishikawa (YDC Corporation)

Kazunori Isomoto (Mazda Motor Corporation)

Norihiko Ito (Nihon Cygnus Solutions)

Takanao Ito (Fuji Electric Mie Design Co., Ltd.)

Yoshihisa Iwaki (Honda R&D Co., Ltd.)

Shouichi Hachiya (Aplix Corporation)

Shin’ichi Hashimoto (ACCESS Co., Ltd.)
319

µITRON4.0 Specification Ver. 4.00.00
Osamu Higashihara (NEC Information Systems, Ltd.)

Hiroki Hihara (NEC Corporation)

Michitaro Horiuchi (ACCESS Co., Ltd.)

Hiroshi Kako (DENSO CORPORATION)

Hironori Kaneda (Data Technology Inc.)

Hiroshi Kawaguchi (HANAZUKA ELECTRIC INDUSTRY Co., Ltd.)

Tuyoshi Kodama (Alpine Information System Inc.)

Manabu Kobayakawa (Hitachi, Ltd.)

Masakazu Kobayashi (Hitachi ULSI Systems Co., Ltd.)

Yasuhiro Kobayashi (FUJITSU LIMITED)

Takahiro Kudo (Data Technology Inc.)

Kenji Kudou (FUJITSU DEVICES Inc.)

Tadakatsu Masaki (Matsushita Information Systems Research Labora-

tory Hiroshima Co., Ltd.)

Takayuki Matsunaga (Yazaki Corporation)

Atsushi Miki (Sumitomo Electric Industries, Ltd.)

Tetsuo Miyauchi (NEC Microcomputer Technology, Ltd.)

Hisaya Miyamoto (Toshiba Corporation)

Hisanori Miyazaki (MiSPO Co., Ltd.)

Kohei Mugitani (Sharp Corporation)

Hiroyuki Muraki (Mitsubishi Electric Semiconductor Systems Corpora-

tion)

Hiroyuki Nagasaku (CRESCO Ltd.)

Ryuichi Naito (Nippon Business Solution)

Yuiku Nakai (DENSAN Co., Ltd.)

Ken’ichi Nakamura (Nihon Cygnus Solutions)

Shigeki Nankaku (Mitsubishi Electric Corporation)

Tomo Onozawa (Aishin Seiki Co., Ltd.)

Masayuki Osajima (ACCESS Co., Ltd.)

Hideto Sakamoto (EST K.K.)

Koji Sato (Toyota Motor Corporation)

Shuji Sato (Toshiba Engineering Corporation)

Tsutomu Sawada (Erg Co., Ltd.), Secretary

Masanobu Shigeta (Fuji Denki Co., Ltd.)

Kazu Shimazaki (SENNET, Inc.)

Masahiro Shukuguchi (Mitsubishi Electric Micro-Computer Application

Software Co., Ltd.)

Hideaki Suganuma (Toyota Motor Corporation)

Kenji Suganuma (DENSO CORPORATION)

Akihiko Sugimoto (Data Technology Inc.)

Hiroaki Takada (Toyohashi University of Technology), Secretary
320

µITRON4.0 Specification Ver. 4.00.00

Shuji Takanashi (Toshiba Corporation)

Yosuke Takano (NEC Corporation)

Tohru Takeuchi (TRON Association), Secretariat

Noriaki Tanaka (DENSO CREATE Inc.)

Kazuhiko Taoka (MiSPO Co., Ltd.)

Kazuhiro Terauchi (Toshiba Information Systems (JAPAN) Corporation)

Shin’ichi Tsunashima (ACCESS Co., Ltd.)

Naotaka Uehara (Casio)

Masakazu Uemura (Fuji Electric Mie Design)

Shinjiro Yamada (Hitachi, Ltd.)

Tatsuo Yamada (Motorola Japan Ltd.)

Masaru Yamanaka (Nihon Cygnus Solutions)

Akira Yokozawa (Toshiba Corporation)

Tomoaki Yoshida (Toshiba Corporation)

Miyoko Yoshimura (ERG. Co., Ltd)

Yukio Yoshino (Communication And Technology Systems, Inc.)

Masahiko Watanabe (Communication And Technology Systems, Inc.)

Contributors to the English Translation of the µITRON4.0 Specification

Eva Austria Barcelon (Toyohashi University of Technology)

Christopher G. Brown (U S Software)

Donald Dunstan (U S Software)

Tadahiro Fukaya (FIRMWARE SYSTEMS Inc.)

Shin’ichi Hashimoto (ACCESS Co., Ltd.)

Kazutoyo Inamitsu (FUJITSU DEVICES Inc.)

Kazuhiro Inaoka (Mitsubishi Electric Semiconductor Systems Corpora-

tion)

Takeshi Kaneko (A.I.Corporation)

Hiroyuki Kato (A.I.Corporation)

Tsutomu Kindaichi (ELMIC SYSTEMS, INC)

Isao Kubota (ERG Co., Ltd.)

Akira Matsui (Personal Media Corporation)

Koji Mugita (GRAPE SYSTEMS INC.)

Hiroyuki Muraki (Mitsubishi Electric Semiconductor Systems Corpora-

tion)

Kohichi Nakamoto (NEC Corporation)

Nicholas James Withcy (U S Software)

Takuya Nomura (Matsushita Electric Industrial Co., Ltd.)

Tatsuo Obata (A.I.Corporation)

Tsutomu Sawada (ERG Co., Ltd.)

Hiroaki Takada (Toyohashi University of Technology)
321

µITRON4.0 Specification Ver. 4.00.00

Tetsuo Takagi (DENSO CREATE Inc.)

Tohru Takeuchi (TRON Association)

Shinjiro Yamada (Hitachi, Ltd.)

Koichi Yasutake (Matsushita Electric Industrial Co., Ltd.)

Akira Yokozawa (Toshiba Corporation)

6.4 Version History

May 10, 1999 Ver. 4.A0.00 A draft version released for public com-

ments

May 17, 1999 Ver. 4.A1.00 Unfinished portion completed

June 1, 1999 Ver. 4.B0.00 (Working Group internal version)

June 10, 1999 Ver. 4.B1.00 (Working Group internal version)

June 30, 1999 Ver. 4.00.00 Official release published
322

µITRON4.0 Specification Ver. 4.00.00

Chapter 7 References

7.1 Service Call List

(1) Task management functions
ER ercd = cre_tsk (ID tskid, T_CTSK *pk_ctsk) ;
ER_ID tskid = acre_tsk (T_CTSK *pk_ctsk) ;
ER ercd = del_tsk (ID tskid) ;
ER ercd = act_tsk (ID tskid) ;
ER ercd = iact_tsk (ID tskid) ;
ER_UINT actcnt = can_act (ID tskid) ;
ER ercd = sta_tsk (ID tskid, VP_INT stacd) ;
void ext_tsk () ;
void exd_tsk () ;
ER ercd = ter_tsk (ID tskid) ;
ER ercd = chg_pri (ID tskid, PRI tskpri) ;
ER ercd = get_pri (ID tskid, PRI *p_tskpri) ;
ER ercd = ref_tsk (ID tskid, T_RTSK *pk_rtsk) ;
ER ercd = ref_tst (ID tskid, T_RTST *pk_rtst) ;

(2) Task dependent synchronization functions
ER ercd = slp_tsk () ;
ER ercd = tslp_tsk (TMO tmout) ;
ER ercd = wup_tsk (ID tskid) ;
ER ercd = iwup_tsk (ID tskid) ;
ER_UINT wupcnt = can_wup (ID tskid) ;
ER ercd = rel_wai (ID tskid) ;
ER ercd = irel_wai (ID tskid) ;
ER ercd = sus_tsk (ID tskid) ;
ER ercd = rsm_tsk (ID tskid) ;
ER ercd = frsm_tsk (ID tskid) ;
ER ercd = dly_tsk (RELTIM dlytim) ;

(3) Task exception handling functions
ER ercd = def_tex (ID tskid, T_DTEX *pk_dtex) ;
ER ercd = ras_tex (ID tskid, TEXPTN rasptn) ;
ER ercd = iras_tex (ID tskid, TEXPTN rasptn) ;
ER ercd = dis_tex () ;
ER ercd = ena_tex () ;
BOOL state = sns_tex () ;
ER ercd = ref_tex (ID tskid, T_RTEX *pk_rtex) ;
323

µITRON4.0 Specification Ver. 4.00.00

(4) Synchronization and communication functions

Semaphores

ER ercd = cre_sem (ID semid, T_CSEM *pk_csem) ;
ER_ID semid = acre_sem (T_CSEM *pk_csem) ;
ER ercd = del_sem (ID semid) ;
ER ercd = sig_sem (ID semid) ;
ER ercd = isig_sem (ID semid) ;
ER ercd = wai_sem (ID semid) ;
ER ercd = pol_sem (ID semid) ;
ER ercd = twai_sem (ID semid, TMO tmout) ;
ER ercd = ref_sem (ID semid, T_RSEM *pk_rsem) ;

Eventflags

ER ercd = cre_flg (ID flgid, T_CFLG *pk_cflg) ;
ER_ID flgid = acre_flg (T_CFLG *pk_cflg) ;
ER ercd = del_flg (ID flgid) ;
ER ercd = set_flg (ID flgid, FLGPTN setptn) ;
ER ercd = iset_flg (ID flgid, FLGPTN setptn) ;
ER ercd = clr_flg (ID flgid, FLGPTN clrptn) ;
ER ercd = wai_flg (ID flgid, FLGPTN waiptn, MODE wfmode,

FLGPTN *p_flgptn) ;
ER ercd = pol_flg (ID flgid, FLGPTN waiptn, MODE wfmode,

FLGPTN *p_flgptn) ;
ER ercd = twai_flg (ID flgid, FLGPTN waiptn, MODE wfmode,

FLGPTN *p_flgptn, TMO tmout) ;
ER ercd = ref_flg (ID flgid, T_RFLG *pk_rflg) ;

Data queues

ER ercd = cre_dtq (ID dtqid, T_CDTQ *pk_cdtq) ;
ER_ID dtqid = acre_dtq (T_CDTQ *pk_cdtq) ;
ER ercd = del_dtq (ID dtqid) ;
ER ercd = snd_dtq (ID dtqid, VP_INT data) ;
ER ercd = psnd_dtq (ID dtqid, VP_INT data) ;
ER ercd = ipsnd_dtq (ID dtqid, VP_INT data) ;
ER ercd = tsnd_dtq (ID dtqid, VP_INT data, TMO tmout) ;
ER ercd = fsnd_dtq (ID dtqid, VP_INT data) ;
ER ercd = ifsnd_dtq (ID dtqid, VP_INT data) ;
ER ercd = rcv_dtq (ID dtqid, VP_INT *p_data) ;
ER ercd = prcv_dtq (ID dtqid, VP_INT *p_data) ;
ER ercd = trcv_dtq (ID dtqid, VP_INT *p_data, TMO tmout) ;
ER ercd = ref_dtq (ID dtqid, T_RDTQ *pk_rdtq) ;

Mailboxes

ER ercd = cre_mbx (ID mbxid, T_CMBX *pk_cmbx) ;
324

µITRON4.0 Specification Ver. 4.00.00
 ER_ID mbxid = acre_mbx (T_CMBX *pk_cmbx) ;
ER ercd = del_mbx (ID mbxid) ;
ER ercd = snd_mbx (ID mbxid, T_MSG *pk_msg) ;
ER ercd = rcv_mbx (ID mbxid, T_MSG **ppk_msg) ;
ER ercd = prcv_mbx (ID mbxid, T_MSG **ppk_msg) ;
ER ercd = trcv_mbx (ID mbxid, T_MSG **ppk_msg,

TMO tmout) ;
ER ercd = ref_mbx (ID mbxid, T_RMBX *pk_rmbx) ;

(5) Extended synchronization and communication functions

Mutexes

ER ercd = cre_mtx (ID mtxid, T_CMTX *pk_cmtx) ;
ER_ID mtxid = acre_mtx (T_CMTX *pk_cmtx) ;
ER ercd = del_mtx (ID mtxid) ;
ER ercd = loc_mtx (ID mtxid) ;
ER ercd = ploc_mtx (ID mtxid) ;
ER ercd = tloc_mtx (ID mtxid, TMO tmout) ;
ER ercd = unl_mtx (ID mtxid) ;
ER ercd = ref_mtx (ID mtxid, T_RMTX *pk_rmtx) ;

Message buffers

ER ercd = cre_mbf (ID mbfid, T_CMBF *pk_cmbf) ;
ER_ID mbfid = acre_mbf (T_CMBF *pk_cmbf) ;
ER ercd = del_mbf (ID mbfid) ;
ER ercd = snd_mbf (ID mbfid, VP msg, UINT msgsz) ;
ER ercd = psnd_mbf (ID mbfid, VP msg, UINT msgsz) ;
ER ercd = tsnd_mbf (ID mbfid, VP msg, UINT msgsz,

TMO tmout) ;
ER_UINT msgsz = rcv_mbf (ID mbfid, VP msg) ;
ER_UINT msgsz = prcv_mbf (ID mbfid, VP msg) ;
ER_UINT msgsz = trcv_mbf (ID mbfid, VP msg, TMO tmout) ;
ER ercd = ref_mbf (ID mbfid, T_RMBF *pk_rmbf) ;

Rendezvous

ER ercd = cre_por (ID porid, T_CPOR *pk_cpor) ;
ER_ID porid = acre_por (T_CPOR *pk_cpor) ;
ER ercd = del_por (ID porid) ;
ER_UINT rmsgsz = cal_por (ID porid, RDVPTN calptn, VP msg,

UINT cmsgsz) ;
ER_UINT rmsgsz = tcal_por (ID porid, RDVPTN calptn, VP msg,

UINT cmsgsz, TMO tmout) ;
ER_UINT cmsgsz = acp_por (ID porid, RDVPTN acpptn,

RDVNO *p_rdvno, VP msg) ;
325

µITRON4.0 Specification Ver. 4.00.00

ER_UINT cmsgsz = pacp_por (ID porid, RDVPTN acpptn,
RDVNO *p_rdvno, VP msg) ;

ER_UINT cmsgsz = tacp_por (ID porid, RDVPTN acpptn,
RDVNO *p_rdvno, VP msg, TMO tmout) ;

ER ercd = fwd_por (ID porid, RDVPTN calptn, RDVNO rdvno,
VP msg, UINT cmsgsz) ;

ER ercd = rpl_rdv (RDVNO rdvno, VP msg, UINT rmsgsz) ;
ER ercd = ref_por (ID porid, T_RPOR *pk_rpor) ;
ER ercd = ref_rdv (RDVNO rdvno, T_RRDV *pk_rrdv) ;

(6) Memory pool management functions

Fixed-sized memory pools

ER ercd = cre_mpf (ID mpfid, T_CMPF *pk_cmpf) ;
ER_ID mpfid = acre_mpf (T_CMPF *pk_cmpf) ;
ER ercd = del_mpf (ID mpfid) ;
ER ercd = get_mpf (ID mpfid, VP *p_blk) ;
ER ercd = pget_mpf (ID mpfid, VP *p_blk) ;
ER ercd = tget_mpf (ID mpfid, VP *p_blk, TMO tmout) ;
ER ercd = rel_mpf (ID mpfid, VP blk) ;
ER ercd = ref_mpf (ID mpfid, T_RMPF *pk_rmpf) ;

Variable-sized memory pools

ER ercd = cre_mpl (ID mplid, T_CMPL *pk_cmpl) ;
ER_ID mplid = acre_mpl (T_CMPL *pk_cmpl) ;
ER ercd = del_mpl (ID mplid) ;
ER ercd = get_mpl (ID mplid, UINT blksz, VP *p_blk) ;
ER ercd = pget_mpl (ID mplid, UINT blksz, VP *p_blk) ;
ER ercd = tget_mpl (ID mplid, UINT blksz, VP *p_blk,

TMO tmout) ;
ER ercd = rel_mpl (ID mplid, VP blk) ;
ER ercd = ref_mpl (ID mplid, T_RMPL *pk_rmpl) ;

(7) Time management functions

System time management

ER ercd = set_tim (SYSTIM *p_systim) ;
ER ercd = get_tim (SYSTIM *p_systim) ;
ER ercd = isig_tim () ;

Cyclic handlers

ER ercd = cre_cyc (ID cycid, T_CCYC *pk_ccyc) ;
ER_ID cycid = acre_cyc (T_CCYC *pk_ccyc) ;
ER ercd = del_cyc (ID cycid) ;
ER ercd = sta_cyc (ID cycid) ;
ER ercd = stp_cyc (ID cycid) ;
326

µITRON4.0 Specification Ver. 4.00.00

ER ercd = ref_cyc (ID cycid, T_RCYC *pk_rcyc) ;

Alarm handlers

ER ercd = cre_alm (ID almid, T_CALM *pk_calm) ;
ER_ID almid = acre_alm (T_CALM *pk_calm) ;
ER ercd = del_alm (ID almid) ;
ER ercd = sta_alm (ID almid, RELTIM almtim) ;
ER ercd = stp_alm (ID almid) ;
ER ercd = ref_alm (ID almid, T_RALM *pk_ralm) ;

Overrun handler

ER ercd = def_ovr (T_DOVR *pk_dovr) ;
ER ercd = sta_ovr (ID tskid, OVRTIM ovrtim) ;
ER ercd = stp_ovr (ID tskid) ;
ER ercd = ref_ovr (ID tskid, T_ROVR *pk_rovr) ;

(8) System state management functions
ER ercd = rot_rdq (PRI tskpri) ;
ER ercd = irot_rdq (PRI tskpri) ;
ER ercd = get_tid (ID *p_tskid) ;
ER ercd = iget_tid (ID *p_tskid) ;
ER ercd = loc_cpu () ;
ER ercd = iloc_cpu () ;
ER ercd = unl_cpu () ;
ER ercd = iunl_cpu () ;
ER ercd = dis_dsp () ;
ER ercd = ena_dsp () ;
BOOL state = sns_ctx () ;
BOOL state = sns_loc () ;
BOOL state = sns_dsp () ;
BOOL state = sns_dpn () ;
ER ercd = ref_sys (T_RSYS *pk_rsys) ;

(9) Interrupt management functions
ER ercd = def_inh (INHNO inhno, T_DINH *pk_dinh) ;
ER ercd = cre_isr (ID isrid, T_CISR *pk_cisr) ;
ER_ID isrid = acre_isr (T_CISR *pk_cisr) ;
ER ercd = del_isr (ID isrid) ;
ER ercd = ref_isr (ID isrid, T_RISR *pk_risr) ;
ER ercd = dis_int (INTNO intno) ;
ER ercd = ena_int (INTNO intno) ;
ER ercd = chg_i

xx

 (I

XXXX

 i

xxxx

) ;
ER ercd = get_i

xx

 (I

XXXX

 *p_i

xxxx

) ;
327

µITRON4.0 Specification Ver. 4.00.00

(10) Service call management functions
ER ercd = def_svc (FN fncd, T_DSVC *pk_dsvc) ;
ER_UINT ercd = cal_svc (FN fncd, VP_INT par1, VP_INT par2,

...) ;

(11) System configuration management functions
ER ercd = def_exc (EXCNO excno, T_DEXC *pk_dexc) ;
ER ercd = ref_cfg (T_RCFG *pk_rcfg) ;
ER ercd = ref_ver (T_RVER *pk_rver) ;

7.2 Static API List

(1) Task management functions

CRE_TSK (ID tskid, { ATR tskatr, VP_INT exinf, FP task,
PRI itskpri, SIZE stksz, VP stk }) ;

(3) Task exception handling functions

DEF_TEX (ID tskid, { ATR texatr, FP texrtn }) ;

(4) Synchronization and communication functions

CRE_SEM (ID semid, { ATR sematr, UINT isemcnt,
UINT maxsem }) ;

CRE_FLG (ID flgid, { ATR flgatr, FLGPTN iflgptn }) ;
CRE_DTQ (ID dtqid, { ATR dtqatr, UINT dtqcnt, VP dtq }) ;
CRE_MBX (ID mbxid, { ATR mbxatr, PRI maxmpri,

VP mprihd }) ;

(5) Extended synchronization and communication functions

CRE_MTX (ID mtxid, { ATR mtxatr, PRI ceilpri }) ;
CRE_MBF (ID mbfid, { ATR mbfatr, UINT maxmsz, SIZE mbfsz,

VP mbf }) ;
CRE_POR (ID porid, { ATR poratr, UINT maxcmsz,

UINT maxrmsz }) ;

(6) Memory pool management functions

CRE_MPF (ID mpfid, { ATR mpfatr, UINT blkcnt, UINT blksz,
VP mpf }) ;

CRE_MPL (ID mplid, { ATR mplatr, SIZE mplsz, VP mpl }) ;

(7) Time management functions

CRE_CYC (ID cycid, { ATR cycatr, VP_INT exinf, FP cychdr,
RELTIM cyctim, RELTIM cycphs }) ;

CRE_ALM (ID almid, { ATR almatr, VP_INT exinf, FP almhdr }) ;
DEF_OVR ({ ATR ovratr, FP ovrhdr }) ;
328

µITRON4.0 Specification Ver. 4.00.00

(9) Interrupt management functions
DEF_INH (INHNO inhno, { ATR inhatr, FP inthdr }) ;
ATT_ISR ({ ATR isratr, VP_INT exinf, INTNO intno, FP isr }) ;

(10) Service call management functions
DEF_SVC (FN fncd, { ATR svcatr, FP svcrtn }) ;

(11) System configuration management functions
DEF_EXC (EXCNO excno, { ATR excatr, FP exchdr }) ;
ATT_INI ({ ATR iniatr, VP_INT exinf, FP inirtn }) ;

7.3 Static APIs and Service Calls in the Standard
Profile

(1) Task management functions

CRE_TSK

Create Task (Static API)

act_tsk

 /

iact_tsk

Activate Task

can_act

Cancel Task Activation Requests

ext_tsk

Terminate Invoking Task

ter_tsk

Terminate Task

chg_pri

Change Task Priority

get_pri

Reference Task Priority

(2) Task dependent synchronization functions

slp_tsk

Put Task to Sleep

tslp_tsk

Put Task to Sleep (with Timeout)

wup_tsk

 /

iwup_tsk

Wakeup Task

can_wup

Cancel Task Wakeup Requests

rel_wai

 /

irel_wai

Release Task from Waiting

sus_tsk

Suspend Task

rsm_tsk

Resume Suspended Task

frsm_tsk

Forcibly Resume Suspended Task

dly_tsk

Delay Task

(3) Task exception handling functions

DEF_TEX

Define Task Exception Handling Routine (Static

API)

ras_tex

 /

iras_tex

Raise Task Exception Handling

dis_tex

Disable Task Exceptions

ena_tex

Enable Task Exceptions

sns_tex

Reference Task Exception Handling State
329

µITRON4.0 Specification Ver. 4.00.00

(4)

Reference Task Exception Handling State

Semaphores

CRE_SEM

Create Semaphore (Static API)

sig_sem

 /

isig_sem

Release Semaphore Resource

wai_sem

Acquire Semaphore Resource

pol_sem

Acquire Semaphore Resource (Polling)

 twai_sem Acquire Semaphore Resource (with Timeout)

Eventflags

CRE_FLG

Create Eventflag (Static API)

set_flg

 /

iset_flg

Set Eventflag

clr_flg

Clear Eventflag

wai_flg

Wait for Eventflag

pol_flg

Wait for Eventflag (Polling)

twai_flg

Wait for Eventflag (with Timeout)

Data queues

CRE_DTQ

Create Data Queue (Static API)

snd_dtq

Send to Data Queue

psnd_dtq

 /

ipsnd_dtq

Send to Data Queue (Polling)

tsnd_dtq

Send to Data Queue (with Timeout)

fsnd_dtq

 /

ifsnd_dtq

Forced Send to Data Queue

rcv_dtq

Receive from Data Queue

prcv_dtq

Receive from Data Queue (Polling)

trcv_dtq

Receive from Data Queue (with Timeout)

Mailboxes

CRE_MBX

Create Mailbox (Static API)

snd_mbx

Send to Mailbox

rcv_mbx

Receive from Mailbox

prcv_mbx

Receive from Mailbox (Polling)

trcv_mbx Receive from Mailbox (with Timeout)

(6) Memory pool management functions

Fixed-sized memory pools

CRE_MPF Create Fixed-Sized Memory Pool (Static API)

get_mpf Acquire Fixed-Sized Memory Block

pget_mpf Acquire Fixed-Sized Memory Block (Polling)

tget_mpf Acquire Fixed-Sized Memory Block (with Time-

out)

rel_mpf

Release Fixed-Sized Memory Block

(7) Time management functions

System time management

set_tim Set System Time
330

µITRON4.0 Specification Ver. 4.00.00

get_tim Reference System Time

isig_tim Supply Time Tick

 * If the kernel has a mechanism of updating the system time, isig_tim need

not be supported.

Cyclic handlers

CRE_CYC Create Cyclic Handler (Static API)

sta_cyc Start Cyclic Handler Operation

stp_cyc Stop Cyclic Handler Operation

(8) System state management functions
rot_rdq / irot_rdq Rotate Task Precedence

get_tid / iget_tid Reference Task ID in the RUNNING State

loc_cpu / iloc_cpu Lock the CPU

unl_cpu / iunl_cpu Unlock the CPU

dis_dsp Disable Dispatching

ena_dsp Enable Dispatching

sns_ctx Reference Contexts

sns_loc Reference CPU State

sns_dsp Reference Dispatching State

sns_dpn Reference Dispatch Pending State

(9) Interrupt management functions
DEF_INH Define Interrupt Handler (Static API)

 * If ATT_ISR is supported, DEF_INH need not be supported.

(11) System configuration management functions
DEF_EXC Define CPU Exception Handler (Static API)

ATT_INI Attach Initialization Routine (Static API)

7.4 Data Types

The data types, except those for packets, defined in the µITRON4.0 Specification are as

follows:

B Signed 8-bit integer

H Signed 16-bit integer

W Signed 32-bit integer

D Signed 64-bit integer

UB Unsigned 8-bit integer

UH Unsigned 16-bit integer

UW Unsigned 32-bit integer

UD Unsigned 64-bit integer
331

µITRON4.0 Specification Ver. 4.00.00

VB 8-bit value with unknown data type

VH 16-bit value with unknown data type

VW 32-bit value with unknown data type

VD 64-bit value with unknown data type

VP Pointer to an unknown data type

FP Processing unit start address (pointer to a function)

INT Signed integer for the processor

UINT Unsigned integer for the processor

BOOL Boolean value (TRUE or FALSE)

FN Function code (signed integer)

ER Error code (signed integer)

ID Object ID number (signed integer)

ATR Object attribute (unsigned integer)

STAT Object state (unsigned integer)

MODE Service call operational mode (unsigned integer)

PRI Priority (signed integer)

SIZE Memory area size (unsigned integer)

TMO Timeout (signed integer, unit of time is implementa-

tion-defined)

RELTIM

Relative time (unsigned integer, unit of time is implementa-

tion-defined)

SYSTIM

System time (unsigned integer, unit of time is implementa-

tion-defined)

VP_INT

Pointer to an unknown data type, or a signed integer for the

processor

ER_BOOL Error code or a boolean value (signed integer)

ER_ID Error code or an object ID number (signed integers and nega-

tive ID numbers cannot be represented)

ER_UINT

Error code or an unsigned integer (the number of available

bits for an unsigned integer is one bit shorter than UINT)

TEXPTN Bit pattern for the task exception code (unsigned integer)

FLGPTN Bit pattern of the eventflag (unsigned integer)

T_MSG Message header for a mailbox

T_MSG_PRI Message header with a message priority for a mailbox

RDVPTN Bit pattern of the rendezvous condition (unsigned integer)

RDVNO Rendezvous number

OVRTIM Processor time (unsigned integer, unit of time is implementa-

tion-defined)
332

µITRON4.0 Specification Ver. 4.00.00

INHNO

Interrupt handler number

INTNO

Interrupt number

IXXXX Interrupt mask

EXCNO CPU exception handler number

Among the above data types, the definition of the following data type is standardized:

typedef struct t_msg_pri {
T_MSG msgque ; /* Message header */
PRI msgpri ; /* Message priority */

} T_MSG_PRI ;

[Standard Profile]

The data types, except those for packets, that must be defined in the Standard Profile,

their minimum number of bits, and their unit of time are as follows:

B

Signed 8-bit integer

H

Signed 16-bit integer

W

Signed 32-bit integer

UB

Unsigned 8-bit integer

UH

Unsigned 16-bit integer

UW

Unsigned 32-bit integer

VB

8-bit value with unknown data type

VH

16-bit value with unknown data type

VW

32-bit value with unknown data type

VP

Pointer to an unknown data type

FP

Processing unit start address (pointer to a function)

INT

Signed integer for the processor (16 or more bits)

UINT

Unsigned integer for the processor (16 or more bits)

BOOL

Boolean value (

TRUE

 or

FALSE

)

FN Function code (signed integer, 16 or more bits)

ER Error code (signed integer, 8 or more bits)

ID Object ID number (signed integer, 16 or more bits)

ATR Object attribute (unsigned integer, 8 or more bits)

STAT Object state (unsigned integer, 16 or more bits)

MODE Service call operational mode (unsigned integer, 8 or more

bits)

PRI Priority (signed integer, 16 or more bits)

SIZE Memory area size (unsigned integer, equal to the number of

bits in a pointer)

TMO Timeout (signed integer, 16 or more bits, unit of time is 1

msec)
333

µITRON4.0 Specification Ver. 4.00.00
RELTIM Relative time (unsigned integer, 16 or more bits, unit of time

is 1 msec)

SYSTIM System time (unsigned integer, 16 or more bits, unit of time is

1 msec)

VP_INT Pointer to an unknown data type, or a signed integer for the

processor

ER_UINT Error code or an unsigned integer (the number of available

bits for an unsigned integer is one bit shorter than UINT)

TEXPTN Bit pattern for the task exception code (unsigned integer, 16 or

more bits)

FLGPTN Bit pattern of the eventflag (unsigned integer, 16 or more bits)

T_MSG Message header for a mailbox

T_MSG_PRI Message header with a message priority for a mailbox

INHNO Interrupt handler number (when DEF_INH is supported)

INTNO Interrupt number (when ATT_ISR is supported)

EXCNO CPU exception handler number

7.5 Packet Formats

(1) Task management functions

Task creation information packet:

typedef struct t_ctsk {
ATR tskatr ; /* Task attribute */
VP_INT exinf ; /* Task extended information */
FP task ; /* Task start address */
PRI itskpri ; /* Task initial priority */
SIZE stksz ; /* Task stack size (in bytes) */
VP stk ; /* Base address of task stack space */
/* Other implementation specific fields may be added. */

} T_CTSK ;

Task state packet:

typedef struct t_rtsk {
STAT tskstat ; /* Task state */
PRI tskpri ; /* Task current priority */
PRI tskbpri ; /* Task base priority */
STAT tskwait ; /* Reason for waiting */
ID wobjid ; /* Object ID number for which the task is

waiting */
TMO lefttmo ; /* Remaining time until timeout */
UINT actcnt ; /* Activation request count */
UINT wupcnt ; /* Wakeup request count */
UINT suscnt ; /* Suspension count */
334

µITRON4.0 Specification Ver. 4.00.00

/* Other implementation specific fields may be added. */
} T_RTSK ;

Task state packet (simplified version):

typedef struct t_rtst {
STAT tskstat ; /* Task state */
STAT tskwait ; /* Reason for waiting */
/* Other implementation specific fields may be added. */

} T_RTST ;

(3) Task exception handling functions

Task exception handling routine definition information packet:

typedef struct t_dtex {
ATR texatr ; /* Task exception handling routine

attribute */
FP texrtn ; /* Task exception handling routine start

address */
/* Other implementation specific fields may be added. */

} T_DTEX ;

Task exception handling state packet:

typedef struct t_rtex {
STAT texstat ; /* Task exception state */
TEXPTN pndptn ; /* Pending exception code */
/* Other implementation specific fields may be added. */

} T_RTEX ;

(4) Synchronization and communication functions

Semaphore creation information packet:

typedef struct t_csem {
ATR sematr ; /* Semaphore attribute */
UINT isemcnt ; /* Initial semaphore resource count */
UINT maxsem ; /* Maximum semaphore resource count */
/* Other implementation specific fields may be added. */

} T_CSEM ;

Semaphore state packet:

typedef struct t_rsem {
ID wtskid ; /* ID number of the task at the head of the

semaphore’s wait queue */
UINT semcnt ; /* Current semaphore resource count */
/* Other implementation specific fields may be added. */

} T_RSEM ;

Eventflag creation information packet:

typedef struct t_cflg {
ATR flgatr ; /* Eventflag attribute */
FLGPTN iflgptn ; /* Initial value of the eventflag bit

pattern */
/* Other implementation specific fields may be added. */
335

µITRON4.0 Specification Ver. 4.00.00

} T_CFLG ;

Eventflag state packet:

typedef struct t_rflg {
ID wtskid ; /* ID number of the task at the head of the

eventflag’s wait queue */
FLGPTN flgptn ; /* Current eventflag bit pattern */
/* Other implementation specific fields may be added. */

} T_RFLG ;

Data queue creation information packet:

typedef struct t_cdtq {
ATR dtqatr ; /* Data queue attribute */
UINT dtqcnt ; /* Capacity of the data queue area (the

number of data elements) */
VP dtq ; /* Start address of the data queue area */
/* Other implementation specific fields may be added. */

} T_CDTQ ;

Data queue state packet:

typedef struct t_rdtq {
ID stskid ; /* ID number of the task at the head of the

data queue’s send-wait queue */
ID rtskid ; /* ID number of the task at the head of the

data queue’s receive-wait queue */
UINT sdtqcnt ; /* The number of data elements in the data

queue */
/* Other implementation specific fields may be added. */

} T_RDTQ ;

Mailbox creation information packet:

typedef struct t_cmbx {
ATR mbxatr ; /* Mailbox attribute */
PRI maxmpri ; /* Maximum message priority */
VP mprihd ; /* Start address of the area for message

queue headers for each message
priority */

/* Other implementation specific fields may be added. */
} T_CMBX ;

Mailbox state packet:

typedef struct t_rmbx {
ID wtskid ; /* ID number of the task at the head of

mailbox’s wait queue */
T_MSG * pk_msg ; /* Start address of the message packet at

the head of the message queue */
/* Other implementation specific fields may be added. */

} T_RMBX ;
336

µITRON4.0 Specification Ver. 4.00.00

(5) Extended synchronization and communication functions

Mutex creation information packet:

typedef struct t_cmtx {
ATR mtxatr ; /* Mutex attribute */
PRI ceilpri ; /* Mutex ceiling priority */
/* Other implementation specific fields may be added. */

} T_CMTX ;

Mutex state packet:

typedef struct t_rmtx {
ID htskid ; /* ID number of the task that locks the

mutex */
ID wtskid ; /* ID number of the task at the head of the

mutex’s wait queue */
/* Other implementation specific fields may be added. */

} T_RMTX ;

Message buffer creation information packet:

typedef struct t_cmbf {
ATR mbfatr ; /* Message buffer attribute */
UINT maxmsz ; /* Maximum message size (in bytes) */
SIZE mbfsz ; /* Size of message buffer area (in bytes) */
VP mbf ; /* Start sddress of message buffer area */
/* Other implementation specific fields may be added. */

} T_CMBF ;

Message buffer state packet:

typedef struct t_rmbf {
ID stskid ; /* ID number of the task at the head of the

message buffer’s send-wait queue */
ID rtskid ; /* ID number of the task at the head of the

message buffer’s receive-wait queue */
UINT smsgcnt ; /* The number of messages in the message

buffer */
SIZE fmbfsz ; /* Size of free message buffer area in bytes,

without the minimum control areas */
/* Other implementation specific fields may be added. */

} T_RMBF ;

Rendezvous port creation information packet:

typedef struct t_cpor {
ATR poratr ; /* Rendezvous port attribute */
UINT maxcmsz ; /* Maximum calling message size (in

bytes) */
UINT maxrmsz ; /* Maximum return message size (in

bytes) */
/* Other implementation specific fields may be added. */

} T_CPOR ;
337

µITRON4.0 Specification Ver. 4.00.00

Rendezvous port state packet:

typedef struct t_rpor {
ID ctskid ; /* ID number of the task at the head of the

rendezvous port’s call-wait queue */
ID atskid ; /* ID number of the task at the head of the

rendezvous port’s accept-wait queue */
/* Other implementation specific fields may be added. */

} T_RPOR ;

Rendezvous state packet:

typedef struct t_rrdv {
ID wtskid ; /* ID number of the task in the termination

waiting state for the rendezvous */
/* Other implementation specific fields may be added. */

} T_RRDV ;

(6) Memory pool management functions

Fixed-sized memory pool creation information packet:

typedef struct t_cmpf {
ATR mpfatr ; /* Fixed-sized memory pool attribute */
UINT blkcnt ; /* Total number of memory blocks */
UINT blksz ; /* Memory block size (in bytes) */
VP mpf ; /* Start address of the fixed-sized memory

pool area */
/* Other implementation specific fields may be added. */

} T_CMPF ;

Fixed-sized memory pool state packet:

typedef struct t_rmpf {
ID wtskid ; /* ID number of the task at the head of the

fixed-sized memory pool’s wait
queue */

UINT fblkcnt ; /* Number of free memory blocks in the
fixed-sized memory pool */

/* Other implementation specific fields may be added. */
} T_RMPF ;

Variable-sized memory pool creation information packet:

typedef struct t_cmpl {
ATR mplatr ; /* Variable-sized memory pool attribute */
SIZE mplsz ; /* Size of the variable-sized memory pool

area (in bytes) */
VP mpl ; /* Start address of the variable-sized

memory pool area */
/* Other implementation specific fields may be added. */

} T_CMPL ;

Variable-sized memory pool state packet:

typedef struct t_rmpl {
338

µITRON4.0 Specification Ver. 4.00.00

ID wtskid ; /* ID number of the task at the head of the
variable-sized memory pool’s wait
queue */

SIZE fmplsz ; /* Total size of free memory blocks in the
variable-sized memory pool (in
bytes) */

UINT fblksz ; /* Maximum memory block size available
(in bytes) */

/* Other implementation specific fields may be added. */
} T_RMPL ;

(7) Time management functions

Cyclic handler creation information packet:

typedef struct t_ccyc {
ATR cycatr ; /* Cyclic handler attribute */
VP_INT exinf ; /* Cyclic handler extended information */
FP cychdr ; /* Cyclic handler start address */
RELTIM cyctim ; /* Cyclic handler activation cycle */
RELTIM cycphs ; /* Cyclic handler activation phase */
/* Other implementation specific fields may be added. */

} T_CCYC ;

Cyclic handler state packet:

typedef struct t_rcyc {
STAT cycstat ; /* Cyclic handler operational state */
RELTIM lefttim ; /* Time left before the next activation */
/* Other implementation specific fields may be added. */

} T_RCYC ;

Alarm handler creation information packet:

typedef struct t_calm {
ATR almatr ; /* Alarm handler attribute */
VP_INT exinf ; /* Alarm handler extended information */
FP almhdr ; /* Alarm handler start address */
/* Other implementation specific fields may be added. */

} T_CALM ;

Alarm handler state packet:

typedef struct t_ralm {
STAT almstat ; /* Alarm handler operational state */
RELTIM lefttim ; /* Time left before the activation */
/* Other implementation specific fields may be added. */

} T_RALM ;

Overrun handler definition information packet:

typedef struct t_dovr {
ATR ovratr ; /* Overrun handler attribute */
FP ovrhdr ; /* Overrun handler start address */
/* Other implementation specific fields may be added. */

} T_DOVR ;
339

µITRON4.0 Specification Ver. 4.00.00

Overrun handler state packet:

typedef struct t_rovr {
STAT ovrstat ; /* Overrun handler operational state */
OVRTIM leftotm ; /* Remaining processor time */
/* Other implementation specific fields may be added. */

} T_ROVR ;

(8) System state management functions

System state packet:

typedef struct t_rsys {
/* Implementation specific fields */

} T_RSYS ;

(9) Interrupt management functions

Interrupt handler definition information packet:

typedef struct t_dinh {
ATR inhatr ; /* Interrupt handler attribute */
FP inthdr ; /* Interrupt handler start address */
/* Other implementation specific fields may be added. */

} T_DINH ;

Interrupt service routine creation information packet:

typedef struct t_cisr {
ATR isratr ; /* Interrupt service routine attribute */
VP_INT exinf ; /* Interrupt service routine extended

information */
INTNO intno ; /* Interrupt number to which the interrupt

service routine is to be attached */
FP isr ; /* Interrupt service routine start sddress */
/* Other implementation specific fields may be added. */

} T_CISR ;

Interrupt service routine state packet:

typedef struct t_risr {
/* Implementaion-specific fields */

} T_RISR ;

(10) Service call management functions

Extended service call definition information packet:

typedef struct t_dsvc {
ATR svcatr ; /* Extended service call attribute */
FP svcrtn ; /* Extended service call routine start

address */
/

* Other implementation specific fields may be added. */

} T_DSVC ;
340

µITRON4.0 Specification Ver. 4.00.00

(11) System configuration management functions

CPU exception handler definition information packet:

typedef struct t_dexc {
ATR excatr ; /* CPU exception handler attribute */
FP exchdr ; /* CPU exception handler start address */
/* Other implementation specific fields may be added. */

} T_DEXC ;

Configuration information packet:

typedef struct t_rcfg {
/* Implementation specific fields */

} T_RCFG ;

Version information packet:

typedef struct t_rver {
UH maker ; /* Kernel maker’s code */
UH prid ; /* Identification number of the kernel */
UH spver ; /* Version number of the ITRON

Specification */
UH prver ; /* Version number of the kernel */
UH prno[4] ; /* Management information of the kernel

product */
} T_RVER ;

7.6 Constants and Macros

(1) Object Attributes

TA_HLNG

0x00 Start a processing unit through a high-level language

interface

TA_ASM

0x01 Start a processing unit through an assembly language

interface

TA_TFIFO

0x00 Task wait queue is in FIFO order

TA_TPRI

0x01 Task wait queue is in task priority order

TA_MFIFO

0x00 Message queue is in FIFO order

TA_MPRI

0x02 Message queue is in message priority order

TA_ACT

0x02 Task is activated after the creation

TA_RSTR

0x04 Restricted task

TA_WSGL

0x00 Only one task is allowed to be in the waiting state for

the eventflag

TA_WMUL

0x02 Multiple tasks are allowed to be in the waiting state

for the eventflag

TA_CLR

0x04 Eventflag’s bit pattern is cleared when a task is
341

µITRON4.0 Specification Ver. 4.00.00

released from the waiting state for that eventflag

TA_INHERIT

0x02 Mutex uses the priority inheritance protocol

TA_CEILING

0x03 Mutex uses the priority ceiling protocol

TA_STA

0x02 Cyclic handler is in an operational state after the cre-

ation

TA_PHS

0x04 Cyclic handler is activated preserving the activation

phase

(2) Service Call Operational Mode

TWF_ANDW 0x00 AND waiting condition for an eventflag

TWF_ORW 0x01 OR waiting condition for an eventflag

(3) Object States

TTS_RUN 0x01 RUNNING state

TTS_RDY 0x02 READY state

TTS_WAI 0x04 WAITING state

TTS_SUS 0x08 SUSPENDED state

TTS_WAS 0x0c WAITING-SUSPENDED state

TTS_DMT 0x10 DORMANT state

TTW_SLP 0x0001 Sleeping state

TTW_DLY 0x0002 Delayed state

TTW_SEM 0x0004 Waiting state for a semaphore resource

TTW_FLG 0x0008 Waiting state for an eventflag

TTW_SDTQ 0x0010 Sending waiting state for a data queue

TTW_RDTQ 0x0020 Receiving waiting state for a data queue

TTW_MBX 0x0040 Receiving waiting state for a mailbox

TTW_MTX 0x0080 Waiting state for a mutex

TTW_SMBF 0x0100 Sending waiting state for a message buffer

TTW_RMBF 0x0200 Receiving waiting state for a message buffer

TTW_CAL 0x0400 Calling waiting state for a rendezvous

TTW_ACP 0x0800 Accepting waiting state for a rendezvous

TTW_RDV 0x1000 Terminating waiting state for a rendezvous

TTW_MPF 0x2000 Waiting state for a fixed-sized memory block

TTW_MPL 0x4000 Waiting state for a variable-sized memory block

TTEX_ENA 0x00 Task exception enabled state

TTEX_DIS 0x01 Task exception disabled state

TCYC_STP 0x00 Cyclic handler is in a non-operational state

TCYC_STA 0x01 Cyclic handler is in an operational state

TALM_STP 0x00 Alarm handler is in a non-operational state
342

µITRON4.0 Specification Ver. 4.00.00
TALM_STA 0x01 Alarm handler is in an operational state

TOVR_STP 0x00 Processor time limit is not set

TOVR_STA 0x01 Processor time limit is set

(4) Other constants

TSK_SELF 0 Specifying invoking task

TSK_NONE 0 No applicable task

TPRI_SELF 0 Specifying the base priority of the invoking task

TPRI_INI 0 Specifying the initial priority of the task

(5) Macros

ER mercd = MERCD (ER ercd)

This macro retrieves the main error code from an error code.

ER sercd = SERCD (ER ercd)

This macro retrieves the sub error code from an error code.

7.7 Kernel Configuration Constants and Macros

(1) Priority Range

TMIN_TPRI

Minimum task priority (= 1)
TMAX_TPRI

Maximum task priority

TMIN_MPRI

Minimum message priority (= 1)
TMAX_MPRI

Maximum message priority

(2) Version Information

TKERNEL_MAKER

Kernel maker code

TKERNEL_PRID

Identification number of the kernel

TKERNEL_SPVER

Version number of the ITRON Specification

TKERNEL_PRVER

Version number of the kernel

(3) Maximum Nesting/Queueing Count

TMAX_ACTCNT

Maximum activation request count

TMAX_WUPCNT

Maximum wakeup request count

TMAX_SUSCNT

Maximum suspension count

(4) Number of Bits in Bitpatterns

TBIT_TEXPTN

Number of bits in the task exception code
343

µITRON4.0 Specification Ver. 4.00.00

TBIT_FLGPTN

Number of bits in an eventflag

TBIT_RDVPTN

Number of bits in a rendezvous condition

(5) Time Tick Period

TIC_NUME

Time tick period numerator

TIC_DENO

Time tick period denominator

(6) Required Memory Size

SIZE dtqsz = TSZ_DTQ (UINT dtqcnt)

Total required size of the data queue area in bytes necessary to store

dtqcnt

data elements

SIZE mprihdsz = TSZ_MPRIHD (PRI maxmpri)

Total required size in bytes of the area for message queue headers for each mes-

sage priority, when the maximum message priority is

maxmpri

SIZE mbfsz = TSZ_MBF (UINT msgcnt, UINT msgsz)

Approximate required size of the message buffer area in bytes necessary to store

msgcnt

 messages each consisting of

msgsz

 bytes

SIZE mpfsz = TSZ_MPF (UINT blkcnt, UINT blksz)

Total required size of the fixed-size memory pool area in bytes necessary to

allocate

blkcnt

 memory blocks each of size

blksz

 bytes

SIZE mplsz = TSZ_MPL (UINT blkcnt, UINT blksz)

Approximate size in bytes necessary to allocate

blkcnt

 memory blocks each of

size

blksz

 bytes

(7) Others

TMAX_MAXSEM

Maximum value of the maximum definable semaphore

resource count

7.8 Error Code List

E_SYS

–5 System error

E_NOSPT

–9 Unsupported function

E_RSFN

–10 Reserved function code

E_RSATR

–11 Reserved attribute

E_PAR

–17 Parameter error

E_ID

–18 Invalid ID number

E_CTX

–25 Context error
344

µITRON4.0 Specification Ver. 4.00.00

E_MACV

–26 Memory access violation

E_OACV

–27 Object access violation

E_ILUSE

–28 Illegal service call use

E_NOMEM

–33 Insufficient memory

E_NOID –34 No ID number available

E_OBJ –41 Object state error

E_NOEXS –42 Non-existent object

E_QOVR –43 Queue overflow

E_RLWAI –49 Forced release from waiting

E_TMOUT –50 Polling failure or timeout

E_DLT –51 Waiting object deleted

E_CLS –52 Waiting object state changed

E_WBLK –57 Non-blocking call accepted

E_BOVR –58 Buffer overflow

7.9 Function Code List

–0 –1 –2 –3

–0x01 reserved reserved reserved reserved

–0x05 cre_tsk del_tsk act_tsk can_act

–0x09 sta_tsk ext_tsk exd_tsk ter_tsk

–0x0d chg_pri get_pri ref_tsk ref_tst

–0x11 slp_tsk tslp_tsk wup_tsk can_wup

–0x15 rel_wai sus_tsk rsm_tsk frsm_tsk

–0x19 dly_tsk reserved def_tex ras_tex

–0x1d dis_tex ena_tex sns_tex ref_tex

–0x21 cre_sem del_sem sig_sem reserved

–0x25 wai_sem pol_sem twai_sem ref_sem

–0x29 cre_flg del_flg set_flg clr_flg

–0x2d wai_flg pol_flg twai_flg ref_flg

–0x31 cre_dtq del_dtq reserved reserved

–0x35 snd_dtq psnd_dtq tsnd_dtq fsnd_dtq

–0x39 rcv_dtq prcv_dtq trcv_dtq ref_dtq

–0x3d cre_mbx del_mbx snd_mbx reserved

–0x41 rcv_mbx prcv_mbx trcv_mbx ref_mbx

–0x45 cre_mpf del_mpf rel_mpf reserved

–0x49 get_mpf pget_mpf tget_mpf ref_mpf

–0x4d set_tim get_tim cre_cyc del_cyc

–0x51 sta_cyc stp_cyc ref_cyc reserved
345

µITRON4.0 Specification Ver. 4.00.00
–0x55 rot_rdq get_tid reserved reserved

–0x59 loc_cpu unl_cpu dis_dsp ena_dsp

–0x5d sns_ctx sns_loc sns_dsp sns_dpn

–0x61 ref_sys reserved reserved reserved

–0x65 def_inh cre_isr del_isr ref_isr

–0x69 dis_int ena_int chg_ixx get_ixx

–0x6d def_svc def_exc ref_cfg ref_ver

–0x71 iact_tsk iwup_tsk irel_wai iras_tex

–0x75 isig_sem iset_flg ipsnd_dtq ifsnd_dtq

–0x79 irot_rdq iget_tid iloc_cpu iunl_cpu

–0x7d isig_tim reserved reserved reserved

–0x81 cre_mtx del_mtx unl_mtx reserved

–0x85 loc_mtx ploc_mtx tloc_mtx ref_mtx

–0x89 cre_mbf del_mbf reserved reserved

–0x8d snd_mbf psnd_mbf tsnd_mbf reserved

–0x91 rcv_mbf prcv_mbf trcv_mbf ref_mbf

–0x95 cre_por del_por cal_por tcal_por

–0x99 acp_por pacp_por tacp_por fwd_por

–0x9d rpl_rdv ref_por ref_rdv reserved

–0xa1 cre_mpl del_mpl rel_mpl reserved

–0xa5 get_mpl pget_mpl tget_mpl ref_mpl

–0xa9 cre_alm del_alm sta_alm stp_alm

–0xad ref_alm reserved reserved reserved

–0xb1 def_ovr sta_ovr stp_ovr ref_ovr

–0xb5 reserved reserved reserved reserved

–0xb9 reserved reserved reserved reserved

–0xbd reserved reserved reserved reserved

–0xc1 acre_tsk acre_sem acre_flg acre_dtq

–0xc5 acre_mbx acre_mtx acre_mbf acre_por

–0xc9 acre_mpf acre_mpl acre_cyc acre_alm

–0xcd acre_isr reserved reserved reserved

–0xd1 reserved reserved reserved reserved

–0xd5 reserved reserved reserved reserved

–0xd9 reserved reserved reserved reserved

–0xdd reserved reserved reserved reserved

–0xe1 implementation-specific service calls

–0xe5 implementation-specific service calls

–0xe9 implementation-specific service calls

–0xed implementation-specific service calls
346

µITRON4.0 Specification Ver. 4.00.00
–0xf1 implementation-specific service calls

–0xf5 implementation-specific service calls

–0xf9 implementation-specific service calls

–0xfd implementation-specific service calls
347

µITRON4.0 Specification Ver. 4.00.00
348

µITRON4.0 Specification Ver. 4.00.00
Index

This is an index of the terms used in the main body of the µITRON4.0 Specification

(Chapter 2 to Chapter 5). The number refers to the page where the term is defined or

explained.

A

activation (of task) ...53

activation request count ...79

active states ..53

alarm handler ...250

API ...24

argument ..25

atomicity (of service call) ..64

attachment (of object) ..73

automatic assignment header file ..26

automatic ID number assignment (by configurator) ...34

automatic ID number assignment (by service call) ...73

Automotive Control Profile ...308

B

base priority ...79

blocked state ..52

C

callback ..24

calling message (of rendezvous) ...193

configurator ...32

constant ..26

context ...51

CPU exception handler ..60, 297

CPU locked state ...64

CPU state ...64

CPU unlocked state ...64

creation (of object) ..27, 73

current priority ...79

cyclic handler ...240

D

data queue ..145

data type ...25

definition (of object) ..27
349

µITRON4.0 Specification Ver. 4.00.00
delayed execution (of service call) ..70

delayed state ..111

deletion (of object) ..73

dispatch pending state ...67

dispatcher ..51

dispatching ..51

dispatching disabled state ..66

dispatching enabled state ...66

dispatching state ..66

DORMANT state ..53

E

error class ..28

error code ...28

eventflag ..134

extended information ...30

extended service call ...292

extended service call routine ...62, 292

F

FCFS ..55

fixed-sized memory pool ...214

function code ...28

G

general constant expression parameter ..35

glue routine (for CPU exception handler) ...60

glue routine (for interrupt handler) ..57

H

header file ..26

I

ID number ...26

implementation-defined ..23

implementation-dependent ..23

implementation-specific ..23

initialization routine ..72, 297

insufficient resource error class ...45

integer parameter ...35

integer parameter with automatic assignment ...34

integer parameter without automatic assignment ..34

internal error class ...44
350

µITRON4.0 Specification Ver. 4.00.00
internal identifier ...41

interrupt ...57

interrupt handler ..57, 279

interrupt handler number ...59

interrupt number ..59

interrupt service routine ...57, 279

invoking context error class ...45

invoking task ...51

IRC ..57

ITRON general concepts, rules, and guidelines ..23

ITRON general constant ..44

ITRON general data type ...41

ITRON general macro ...48

ITRON general static API ...48

K

kernel configuration constant ..75

kernel configuration macro ..75

L

loose standardization ...305

M

macro ...26

mailbox ..158

main error code ..28, 44

memory pool ..214

message buffer ...181

message header ..158

message packet ..158

mutex ...170

N

nesting (of task suspention requests) ...101

non-blocking ..31

NON-EXISTENT state ..53

non-kernel interrupt ...58

non-local jump ...114

non-task contexts ...62

O

object ...26

object attribute ...30
351

µITRON4.0 Specification Ver. 4.00.00
object number ..27

object state error class ...46

overrun handler ...258

P

packet ..25

parameter ...25

parameter error class ...45

pending exception code ...112

polling ..31

precedence ...51

precedence (between processing units) ...63

precedence (between tasks) ...55

preempt ..53

preprocessor constant expression parameter ...35

priority ...27

priority (of task) ..79

priority ceiling protocol ...170

priority inheritance protocol ..170

priority inversions ...170

processing unit ...61

processor time limit ...258

processor time used ...258

profile rule ...305

Q

queueing (of task activation requests) ...79

queueing (of task wakeup requests) ..101

R

READY state ...52

real time ...32

registration (of object) ...27

relative time ...32

release task from waiting ...53

rendezvous ...193

rendezvous number ...194

rendezvous port ...193

restricted task ...308

restriction (of service call functionality) ...305

resume (of suspended task) ...53

return message (of rendezvous) ...193
352

µITRON4.0 Specification Ver. 4.00.00
return parameter ...25

return value (of service call) ..28

round-robin scheduling ..55, 267

runnable state ...52

RUNNING state ..52

S

scheduler ..51

scheduling ..51

scheduling rule ...55

semaphore ..125

service call ...24

service calls for non-task contexts ...69

service calls for task contexts ..70

simplified priority control rule ..171

sleeping state ...103

software component identifier ...36

Standard Profile ...306

start code (of task) ...79

state transitions (of task) ..53

static API ...24

static API process ..72

strict priority control rule ...171

sub error code ..28

subsetting (of service call functionalities) ...305

SUSPENDED state ..52

suspension count ..101

system call ...24

system configuration file ...32

system object ...27

system time ..32, 235

T

task ...51

task contexts ..62

task control block (TCB) ...116

task dispatcher ...51

task dispatching ...51

task exception code ..112

task exception disabled state ...112

task exception enabled state ..112

task exception handling routine ...60, 112
353

µITRON4.0 Specification Ver. 4.00.00
task scheduler ..51

task scheduling ..51

task state ..52

termination (of task) ..53

time event handler ...61, 235

time tick ...235

timeout ...30

transitive priority inheritance ..171

U

undefined ...23

unsupported error class ..44

user object ...27

V

variable-sized memory pool ..224

W

waiting released error class ...46

WAITING state ...52

WAITING-SUSPENDED state ...52

wakeup request count ..101

warning class ...47
354

	A Word from the Project Leader
	Preface
	Organization of the Specification Document
	Description Format of the Specification Document
	Table of Contents
	Service Call Index
	Static API Index
	Chapter 1 Background of µITRON4.0 Specification
	1.1 TRON Project
	1.1.1 What is the TRON Project?
	Toward the 21st Century
	Open Architecture
	Loose Standardization
	Future Compatibility
	Standardization of Operation

	1.1.2 Basic Sub-Projects
	ITRON (Industrial TRON) and JTRON
	BTRON (Business TRON)
	CTRON (Communication and Central TRON)
	TRON HMI

	1.1.3 Application Sub-Projects
	Computer Augmented Environment
	Multi-Media Network Service Platform (MNP)
	Digital Museum
	Distributed Software Platform for Information Home Electronics

	1.2 History and Current Status of the ITRON Specifications
	1.2.1 Current State and Features of Embedded System
	1.2.2 Requirements for RTOS on Embedded System
	1.2.3 Current Status of the ITRON Specifications

	1.3 ITRON Specification Design Policy
	1.4 Position of the µITRON4.0 Specification
	1.4.1 Second Phase Standardization Activities of the ITRON Project
	1.4.2 Necessity of the µITRON4.0 Specification
	1.4.3 Introduction of the Standard Profile
	1.4.4 Realization of a Wider Scalability
	1.4.5 New Functions in the µITRON4.0 Specificatio
	Exception Handling Functions
	Data Queues
	System State Reference Functions
	Object Creation Functions for Automatic ID Number Assignment
	Interrupt Service Routines
	Mutexes
	Overrun Handler
	Standard Configuration Method

	Chapter 2 ITRON General Concepts, Rule, and Guidelines
	2.1 ITRON General Concepts
	2.1.1 Terminologies
	2.1.2 Elements of an API
	2.1.3 Object ID Numbers and Object Numbers
	2.1.4 Priorities
	2.1.5 Function Codes
	2.1.6 Return Values of Service Calls and Error Codes
	2.1.7 Object Attributes and Extended Information
	2.1.8 Timeout and Non-Blocking
	2.1.9 Relative Time and System Time
	2.1.10 System Configuration File
	2.1.11 Syntax and Parameters of Static APIs

	2.2 API Naming Convention
	2.2.1 Software Component Identifiers
	2.2.2 Service Calls
	2.2.3 Callbacks
	2.2.4 Static APIs
	2.2.5 Parameter and Return Parameter
	2.2.6 Data Types
	2.2.7 Constants
	2.2.8 Macros
	2.2.9 Header Files
	2.2.10 Kernel and Software Component Internal Identifiers

	2.3 ITRON General Definitions
	2.3.1 ITRON General Data Types
	2.3.2 ITRON General Constants
	(1) General Constants
	(2) Main Error Codes
	(3) Object Attribute
	(4) Timeout Specification

	2.3.3 ITRON General Macros
	(1) Error Code Retrieving Macros

	2.3.4 ITRON General Static APIs
	(1) File Inclusion

	Chapter 3 Concepts and Common Definitions in µITR
	3.1 Glossary of Basic Terms
	(1) Task and Invoking Task
	(2) Dispatching and Dispatcher
	(3) Scheduling and Scheduler
	(4) Context
	(5) Precedence

	3.2 Task States and Scheduling Rule
	3.2.1 Task States
	3.2.2 Task Scheduling Rules

	3.3 Interrupt Process Model
	3.3.1 Interrupt Handlers and Interrupt Service Routines
	3.3.2 Ways to Designate an Interrupt

	3.4 Exception Process Model
	3.4.1 Exception Processing Framework
	3.4.2 Operations within a CPU Exception Handler

	3.5 Context and System State
	3.5.1 Processing Units and Their Contexts
	3.5.2 Task Contexts and Non-Task Contexts
	3.5.3 Execution Precedence and Service Call Atomicity
	3.5.4 CPU Locked State
	3.5.5 Dispatching Disabled State
	3.5.6 Task State during Dispatch Pending State

	3.6 Service Call Invocation from Non-Task Contexts
	3.6.1 Service Calls that can be Invoked from Non-Task Contexts
	3.6.2 Delayed Execution of Service Calls
	3.6.3 Adding Service Calls that can be Invoked from Non-Task Contexts

	3.7 System Initialization Procedure
	3.8 Object Registration and Release
	3.9 Description Format for Processing Unit
	3.10 Kernel Configuration Constants and Macros
	3.11 Kernel Common Definitions
	3.11.1 Kernel Common Constants
	(1) Object Attributes
	(2) Main Error Codes Used in Kernel
	(3) Service Call Function Codes
	(4) Other Kernel Common Constants

	3.11.2 Kernel Common Configuration Constants
	(1) Priority Range
	(2) Version Information

	Chapter 4 µITRON4.0 Functions
	4.1 Task Management Functions
	CRE_TSK
	cre_tsk
	acre_tsk
	del_tsk
	act_tsk
	iact_tsk
	can_act
	sta_tsk
	ext_tsk
	exd_tsk
	ter_tsk
	chg_pri
	get_pri
	ref_tsk
	ref_tst

	4.2 Task Dependent Synchronization Functions
	slp_tsk
	tslp_tsk
	wup_tsk
	iwup_tsk
	can_wup
	rel_wai
	irel_wai
	sus_tsk
	rsm_tsk
	frsm_tsk
	dly_tsk

	4.3 Task Exception Handling Functions
	DEF_TEX
	def_tex
	ras_tex
	iras_tex
	dis_tex
	ena_tex
	sns_tex
	ref_tex

	4.4 Synchronization and Communication Functions
	4.4.1 Semaphores
	CRE_SEM
	cre_sem
	acre_sem
	del_sem
	sig_sem
	isig_sem
	wai_sem
	pol_sem
	twai_sem
	ref_sem

	4.4.2 Eventflags
	CRE_FLG
	cre_flg
	acre_flg
	del_flg
	set_flg
	iset_flg
	clr_flg
	wai_flg
	pol_flg
	twai_flg
	ref_flg

	4.4.3 Data Queues
	CRE_DTQ
	cre_dtq
	acre_dtq
	del_dtq
	snd_dtq
	psnd_dtq
	ipsnd_dtq
	tsnd_dtq
	fsnd_dtq
	ifsnd_dtq
	rcv_dtq
	prcv_dtq
	trcv_dtq
	ref_dtq

	4.4.4 Mailboxes
	CRE_MBX
	cre_mbx
	acre_mbx
	del_mbx
	snd_mbx
	rcv_mbx
	prcv_mbx
	trcv_mbx
	ref_mbx

	4.5 Extended Synchronization and Communication Functions
	4.5.1 Mutexes
	CRE_MTX
	cre_mtx
	acre_mtx
	del_mtx
	loc_mtx
	ploc_mtx
	tloc_mtx
	unl_mtx
	ref_mtx

	4.5.2 Message Buffers
	CRE_MBF
	cre_mbf
	acre_mbf
	del_mbf
	snd_mbf
	psnd_mbf
	tsnd_mbf
	rcv_mbf
	prcv_mbf
	trcv_mbf
	ref_mbf

	4.5.3 Rendezvous
	CRE_POR
	cre_por
	acre_por
	del_por
	cal_por
	tcal_por
	acp_por
	pacp_por
	tacp_por
	fwd_por
	rpl_rdv
	ref_por
	ref_rdv

	4.6 Memory Pool Management Functions
	4.6.1 Fixed-Sized Memory Pools
	CRE_MPF
	cre_mpf
	acre_mpf
	del_mpf
	get_mpf
	pget_mpf
	tget_mpf
	rel_mpf
	ref_mpf

	4.6.2 Variable-Sized Memory Pools
	CRE_MPL
	cre_mpl
	acre_mpl
	del_mpl
	get_mpl
	pget_mpl
	tget_mpl
	rel_mpl
	ref_mpl

	4.7 Time Management Functions
	4.7.1 System Time Management
	set_tim
	get_tim
	isig_tim

	4.7.2 Cyclic Handlers
	CRE_CYC
	cre_cyc
	acre_cyc
	del_cyc
	sta_cyc
	stp_cyc
	ref_cyc

	4.7.3 Alarm Handlers
	CRE_ALM
	cre_alm
	acre_alm
	del_alm
	sta_alm
	stp_alm
	ref_alm

	4.7.4 Overrun Handler
	DEF_OVR
	def_ovr
	sta_ovr
	stp_ovr
	ref_ovr

	4.8 System State Management Functions
	rot_rdq
	irot_rdq
	get_tid
	iget_tid
	loc_cpu
	iloc_cpu
	unl_cpu
	iunl_cpu
	dis_dsp
	ena_dsp
	sns_ctx
	sns_loc
	sns_dsp
	sns_dpn
	ref_sys

	4.9 Interrupt Management Functions
	DEF_INH
	def_inh
	ATT_ISR
	cre_isr
	acre_isr
	del_isr
	ref_isr
	dis_int
	ena_int
	chg_ixx
	get_ixx

	4.10 Service Call Management Functions
	DEF_SVC
	def_svc
	cal_svc

	4.11 System Configuration Management Functions
	DEF_EXC
	def_exc
	ref_cfg
	ref_ver
	ATT_INI

	Chapter 5 Additional Specifications
	5.1 The Specification Requirements for the µITRON
	5.1.1 Basic Concept
	5.1.2 Minimum Required Functionalities
	5.1.3 Extension of the µITRON4.0 Specification

	5.2 Automotive Control Profile
	5.2.1 Restricted Tasks
	5.2.2 Functionalities Included in the Automotive Control Profile

	5.3 Version Number of the Specifications
	5.4 Maker Codes

	Chapter 6 Appendix
	6.1 Conditions for Using the Specification and the Specification Document
	Conditions for Using the Specification
	Conditions for Using the Specification Document
	Disclaimer

	6.2 Maintenance of the Specification and Related Information
	Maintenance of the ITRON Specifications and Contact Information
	ITRON Project Web Site
	The ITRON Newsletter
	ITRON-Specification Product Registration System
	Reference documents

	6.3 Background and Development Process of the Specification
	Background and Development Process of the Specification
	Member List of the ITRON Committee of the TRON Association (in alphabetical order)
	Member List of the Kernel Specification Working G
	Contributors to the English Translation of the µI

	6.4 Version History

	Chapter 7 References
	7.1 Service Call List
	7.2 Static API List
	7.3 Static APIs and Service Calls in the Standard Profile
	7.4 Data Types
	7.5 Packet Formats
	7.6 Constants and Macros
	(1) Object Attributes
	(2) Service Call Operational Mode
	(3) Object States
	(4) Other constants
	(5) Macros

	7.7 Kernel Configuration Constants and Macros
	(1) Priority Range
	(2) Version Information
	(3) Maximum Nesting/Queueing Count
	(4) Number of Bits in Bitpatterns
	(5) Time Tick Period
	(6) Required Memory Size
	(7) Others

	7.8 Error Code List
	7.9 Function Code List

	Index

