LITRON4.0 Specification
Ver. 4.00.00

| TRON Committee, TRON ASSOCIATION

Supervised by Ken Sakamura
Edited by Hiroaki Takada

Copyright (C) 1999, 2002 by TRON ASSOCIATION, JAPAN



MITRONA4.0 Specification (Ver. 4.00.00)

The copyright of this specification document belongs to the ITRON Committee of the
TRON Association.

The ITRON Committee of the TRON Association grants the permission to copy the
whole or a part of this specification document and to redistribute it intact without
charge or with a distribution fee. However, when a part of this specification document
isredistributed, it must clearly state (1) that it isa part of the il TRONA4.0 Specification
document, (2) which part it was taken, and (3) the method to obtain the whole specifi-
cation document. See Section 6.1 for more information on the conditions for using this
specification and this specification document.

Any questions regarding this specification and this specification document should be
directed to the following:

ITRON Committee, TRON Association
Katsuta Building 5F
3-39, Mita 1-chome, Minato-ku,
Tokyo 108-0073, JAPAN
TEL: +81-3-3454-3191
FAX: +81-3-3454-3224

8§ TRON is the abbreviation of “The Real-time Operating system Nucleus.”

8 ITRON isthe abbreviation of “Industrial TRON.”

§ MITRON isthe abbreviation of “Micro Industrial TRON.”

§ BTRON isthe abbreviation of “Business TRON.”

§ CTRON isthe abbreviation of “Central and Communication TRON.”

§ TRON, ITRON, WITRON, BTRON, and CTRON do not refer to any specific product or products.



M TRON4.0 Specification Ver. 4.00.00

A Word from the Project Leader

Fifteen years have passed since the ITRON Sub-Project started as a part of the TRON
Project: areal-time operating system specification for embedded equipment control.
During this time, there has been a high degree of technological innovation on micro-
processors, and the range of applications the ITRON Specifications cover has broad-
ened considerably. The range of applications includes industrial usage such as control
of robots and manufacturing equipment in factories, and consumer usage such as office
automation (OA) and home appliances. The application range has even extended to
new areas such as new information and communication tools and advanced digital con-
sumer appliances. There is no doubt that the technological advantages of the ITRON
Specifications such as real-time response, compactness to maximize usage of system
resources, and flexible adaptability in specification has greatly contributed to the steady
expansion of the ITRON Specifications adaptable applications. The open architecture
policy of the TRON Project has aso contributed to achieve a high degree of actual use
of the ITRON Specifications.

The ITRON4.0 Specification, which is based on the pI TRON3.0 Specification, has
been devel oped to reorganize concepts and terms, to improve compatibility and con-
formance level, to increase productivity in software development, to allow reuse of
application software, and to achieve more portability.

The increasing cases where communication and GUI focusing on modern network
applications, internet and intranet equipments, and debugging related middieware are
used on the ITRON-Specification operating system serves as the background of the
M TRONA4.0 Specification. This trend created a demand for more rigorous compatibil -
ity and higher conformance level. The ITRON Specifications are designed on a con-
cept called loose standardization and level for alowing applicability to low-end CPUs
with relatively scarce resources. However, strict standardization is required for soft-
ware portability purposes. The specification satisfying these two contradictory
demandsisthe Wl TRON4.0 Specification. The ul TRON4.0 Specification maintainsthe
loose standardization, but develops the level concept to introduce a new property called
the Standard Profile. The Standard Profile supports strict standardization to facilitate
software portability. Profiles other than the Standard Profile is allowed to increase
compatibility in each application field.

The terms and concepts in the specification have been reorganized, defined, and
explained in more details, reducing as much implementati on-dependent portion as pos-
siblein an effort to achieve completeness of the specification.

The I TRON4.0 Specification reflects the rich experience on the ITRON Specifications
and meets the actual users' demands for new applications. Introduction and effective
utilization of the pI TRON4.0 Specification in many fields including newly created
fields and applications is expected.



pI TRON4.0 Specification Ver. 4.00.00

June, 1999
Ken Sakamura
Project Leader, TRON Project



M TRON4.0 Specification Ver. 4.00.00

Preface

Fifteen years have elapsed since the ITRON Project started in 1984. By the efforts of
those involved, the I TRON Specifications have developed into de-facto standards for
the real-time kernel for embedded systems. Based on this achievement, sometime
around 1996 the ITRON Project started working towards a second phase of standard-
ization to expand the specification from real-time kernel to related specifications such
as software components.

The WITRON4.0 Specification is the result of two years of intensive effort by both the
Kernel Specification WG of the Hard Real-Time Support Study Group (from April
1997 to March 1998) and its successor, the Kernel Specification WG of the
M TRON4.0 Specification Study Group (from April 1998 to June 1999). The specifica-
tion study held by both WGs was proceeded with monthly meetings and discussions
through email. Eventually, more than 1,000 emails regarding the discussion of the
specification were exchanged. Other standardization activities in the ITRON Project,
especially those done by the RTOS Automotive Application Technical Committee and
the Device Driver Design Guideline WG of the WITRON4.0 Specification Study
Group, produced an important part of the il TRON4.0 Specification.

During the second phase of the standardization, a new approach was adopted by the
ITRON Project. The ITRON Project opened the discussion of the pl TRON4.0 Specifi-
cation. In other words, anyone could participate in the discussion regardless of qualifi-
cation. This approach was a major factor in enabling many engineers to participate in
the project. Prior to this, most of the engineers did not formerly participate in the dis-
cussion. The participation of application engineers as well as the participation of ker-
nel engineers was very significant in organizing the specification.

Another new attempt of the I TRON4.0 Specification is defining the Standard Profile
in order to insure the portability of the software. Under conventional loose standard-
ization policy, there is no enforced implementation agreement among members. Com-
promises are adopted, and it is up to the implementors to choose specific
implementation options. However, when defining the Standard Profile specification,
standardizing each and every feature of the Wl TRON Specifications was necessary and
this caused many disagreements among the members. Most disagreements were based
on the difference between application requirements rather than on the difference
between company interests. Nevertheless, members shared a common vision to create
a better specification.

Through the process outlined above, the Wl TRON4.0 Specification was completed
reflecting variety of ideas from a variety of point of views. | am personally proud of
the level of accomplishment of the ul TRON4.0 Specification. | believe that this level
of accomplishment could not have been achieved by a single man or company.

To the readers of the Wl TRON4.0 Specification, | would like to remark that in the inter-



pI TRON4.0 Specification Ver. 4.00.00

ests of adhering to strictness in the specification, some readability was sacrificed. The
previous U TRON Specifications included tutorial-like contents for engineers who are
unfamiliar with a real-time operating system. On the other hand, the ul TRON4.0
Specification is written seeking strictness rather than easiness in reading in order to
secure software portability. Hence, a criticism on a lesser understandability than the
previous specifications is considered to be unavoidable. Therefore we would like to
work on some complementary documents such as a reference or a guide book for this
specification. However, the editor’s responsibility still spans to statements which are
unnecessarily difficult to understand.

As aroadmap for the ITRON Specifications, the WITRON4.0 Specification Study
Group is working on the standardization of the debugging interface and creating guide-
lines for device driver designs. The creation of a certification system for the
M TRONA4.0 Standard Profile is also under consideration in the near future. We are sure
that these activities will increase the acceptance of the ITRON Specifications as
de-facto real-time operating system standards.

Finally, | would like to express my gratitude to those who contributed to the standard-
ization of the WITRON4.0 Specification. This includes those who participated in the
Kernel Specification WG of the il TRON4.0 Specification Study Group, those involved
in the ITRON Project, and those who directly or indirectly supported the process to
develop the WITRON4.0 Specification. | would also appreciate your continuous sup-
port for the standardization activities of the ITRON Project.

June 1999
Hiroaki Takada

Secretary of the the pFITRON4.0 Spefication Study Group
Department of Information and Computer Sciences,
Toyohashi University of Technology



M TRON4.0 Specification Ver. 4.00.00

Organization of the Specification Document

This document is the specification of the Wl TRON4.0 (or the I TRON4.0 Real-Time
Kernel) C-Language API Specification. The version number of specification is printed
on the cover and the top-right of each page.

The organization of this document is as follows.

In Chapter 1, asummary of the TRON Project and the ITRON Project and adesign pol-
icy of ITRON Specifications are introduced. The position of the il TRON4.0 Specifi-
cation is also described. This chapter describes the background information of the
M TRONA4.0 Specification and is not the main body of the ul TRON4.0 Specification.

In Chapter 2, the common rule of the I TRON4.0 Specification and the software com-
ponents that are standardized to be consistent with the pI TRON4.0 Specification is
described. In Chapter 3, the various concepts and the common definitions for various
features of the Wl TRON4.0 Specification are shown. In Chapter 4, each feature of the
M TRONA4.0 Specification is described. 1n Chapter 5, the additional specifications are
described.

In Chapter 6, the reference information, such as the maintenance of specification and
reference documents, is described. In Chapter 7, the lists and other information that
may be helpful in reading this specification is shown. These lists are the contents of
Chapter 2 to Chapter 5, as seen from a different point of view. Chapter 6 and Chapter 7
are not the main body of the ul TRON4.0 Specification.



pI TRON4.0 Specification Ver. 4.00.00

Description Format of the Specification Document

The following description format is used in this specification document.

[Standard Profile]

The specifications of the Standard Profile of the u TRON4.0 Specification are
described here. The scope of functionalities that the Standard Profile requires support,
the rule that is not applied to the Standard Profile but is included in the functional
descriptions of the services calls and static APIs which the Standard Profile requires to
support, and the rule that is not described in the Wl TRON4.0 Specification but applied
to the Standard Profile are described here.

[Supplemental Information]

Supplemental explanations of items difficult to understand to avoid misunderstanding
are described here. Thisis not the main body of the W TRON4.0 Specification.
[Differences from the pITRON3.0 Specification]

The differences of the Wl TRON4.0 Specification from the pl TRON3.0 Specification
and their reasons are described here. The major differences and modifications from the
M TRON3.0 Specification is mainly described, but not the additions or clarification
made in the WITRON4.0 Specification. Thisis not the main body of the uITRON4.0
Specification.

[Rationale]

The reasons for the specification decision are described here, when further explana
tions are necessary. Thisis not the main body of the pl TRON4.0 Specification.

The functional descriptions of service calls and static APIsin Chapter 4 uses the format
described below.

The description of each service call or static API is started with the following header.

API Name API Description Profile

“APl Name” isaservice call or astatic APl name. “API description” isasimple state-
ment about the functionality of this service call or static API. If [S] is placed at the
“Profile” field, the Standard Profile requires support for the service call or static API.

[Static API]
This shows the description format of a static API in the system configuration file.

[C Language API]
This shows the invocation format of a service call from the C Language.

Vi



M TRON4.0 Specification Ver. 4.00.00

[Parameter]

Thislistsal of the parameters for this service call or static API. It aso includesasim-
ple description, the data type, and the name of each parameter.

[Return Parameter]

Thislists all of the return parameters for this service call. It also includes a simple
description, the data type, and the name of each return parameter.

[Error Code]

Thislistsall the main error codes that this service call returns. It also includes asimply
description of the cause of each error code. However, the main error codes that many
service calls may return due to the same cause are not described for each service call
(see Section 2.1.6).

[Functional Description]

This describes the functionality of this service call or static API.

Italic characters within the names of service calls and constants represent other charac-
ters. For example, cre_yyy (yyy areitalic characters) can be cre_tsk, cre_sem,
cre_flg, and so on.

For some parameters, such as object attributes or service call operational modes where
specific values are chosen, the following format is used:

[X] X may or may not be specified

X|y either x or y or both (bit-wise OR of x and y) may be speci-
fied

x|y one of x and y must be specified

For example, ((TA_HLNG || TA_ASM) | [TA_ACT]) can take one of the following
four values.

TA_HLNG

TA_ASM

(TA_HLNG | TA_ACT)
(TA_ASM | TA_ACT)

Vii



pI TRON4.0 Specification Ver. 4.00.00

Table of Contents

A Word from the ProjeCt LEATES .......cooveiire e [
= =0 PSP i
Organization of the Specification DOCUMENL.............cccevieieieeiieie e %
Description Format of the Specification DOCUMENL ..........cccovrererineeieerese e Vi
TaDI@ Of CONLENLS. ......eieeieeeiieeie e et e e ae et eneenrs viii
SEIVICE Call INUEX ...t Xii
I o AN I 1 T =SSR XVi
Chapter 1 Background of pITRON4.0 Specification 1
I R I O |\ VI = (0= o SRS 1
1.1.1 What iSthe TRON ProjeCt?.........cccoiiiininineneneeieesee e 1

1.1.2 BasiC SUD-PrOJECES......cceiiiieciee et 3

1.1.3 Application SUD-ProjeCES........cccueieiiririerieniesieeee e 5

1.2 History and Current Status of the ITRON Specifications............ccocceevriereeneee. 6
1.2.1 Current State and Features of Embedded System..........cccccvevvvceevieennene. 6

1.2.2 Requirements for RTOS on Embedded System...........ccccoveeiinniennene. 7

1.2.3 Current Status of the ITRON SpeCifiCations...........ccccvvevereereiieeseenene 9

1.3 ITRON Specification DeSign POlICY ........cccoveriririiiieiesese e 11
1.4 Position of the ITRON4.0 SpecifiCation ..........cccocvvvceevieciiesie e 12
1.4.1 Second Phase Standardization Activities of the ITRON Project ......... 12

1.4.2 Necessity of the LITRON4.0 Specification..........ccccvevveevieeeiieesieciieenne 14

1.4.3 Introduction of the Standard Profile..........cccccovvevvriiieieccecececee 15

1.4.4 Redization of aWider Scalability ........cccoceeveeviiiiiiiececce e, 16

1.45 New Functionsin the Wl TRON4.0 SpeCification..........ccceeereerereennne 17
Chapter 2 ITRON General Concepts, Rule, and Guidelines 23
2.1 ITRON General CONCEPLS......occuiiiiiiiierieecieesieesreestee et sre e sa e sneesnne e 23
211 TeIMINOIOGIES ....ccueeueeeiieriesie sttt sttt b e sa e b e 23

2.1.2 ElementSof @NAPI ... s 24

2.1.3 Object ID Numbers and Object NUMDESS.........ccceveiienenenireseee, 26

P o Lo (=TSR 27

2.1.5 FUNCLON COUES ......ooueeierieeie e ceesteeee sttt nee e e 28

2.1.6 Return Values of Service Callsand Error Codes...........cccevvreerierennne. 28

2.1.7 Object Attributes and Extended Information .............ccccevvevenerenennne. 30

2.1.8 Timeout and NON-BIOCKING .......ccoeeiiiiiiiiii e 30

2.19 Relative Timeand SyStemM TIME ......ccoooviiirenireeeeee e 32

2.1.10 System Configuration File .........ccoeiiviiieiiicecee e 32

2.1.11 Syntax and Parameters of StatiC APIS........ccocverieriiienene e, 34

2.2 APl Naming COMVENTION ........ooieierieieesieeiesiee e see st ee e e 36
2.2.1 Software Component [dentifierS........ccoceveeienieenicie e 36

2.2.2 SEIVICE CallS ..ot s 37

2.2.3 CalDACKS. ..o 37

224 SHAICAPIS. .. e s 37

2.2.5 Parameter and Return Parameter...........cocooceveverenieenenese e 39

viii



M TRON4.0 Specification Ver. 4.00.00

A T B T = B Y/ 01 SRS 39
2.2.7 CONSLANES......eiiuiiiiee et e see st e st s be e sae e sse e sateenneesneeeneas 40
2.2.8 IMIBCIOS.....ceitieieieiee ettt sttt n e e s e e ne e enneenneesnneeneas 41
2.2.9 HEAAEN FIlES ...ceeeeeceeeee ettt 41
2.2.10 Kernel and Software Component Internal Identifiers...........cccceeveeneee. 41

2.3 ITRON General DefiNItiONS.........ccooerireriieieieniesesie st 41
2.3.1 ITRON General Data TYPES.....cceeeerieerieriesieerie e siee e 41
2.3.2 ITRON General CoNStantS .........cocererieeriereresiesieseseseeee e 44
2.3.3 ITRON General MaCIOS.......cccceiirierieeieriesieesieseesiee e sneeneas 48
2.3.4 ITRON General StatiC APIS.......coveiiiieie s 48
Chapter 3 Concepts and Common Definitions in WITRON4.0 51
3.1 Glossary Of BaSiC TEIMIS.....ccuiiiieiieie et s see e 51
3.2 Task Statesand Scheduling RUIE............ccooviiiiieieee e 52
TN R - TS - == TS 52
3.2.2 Task Scheduling RUIES ..........covcieceeceee e 55

3.3 Interrupt ProCeSS MOEL ..o e 57
3.3.1 Interrupt Handlers and Interrupt Service ROULINES .........ccccccvevcveeinnnnne 57
3.3.2 Waysto Designate an INtermrupt .......ccceeveveerereneneseseeee e 59

3.4 EXCeption ProceSS MOE! ..........oooeeiiiiiiiieieeesee e 60
3.4.1 Exception Processing Framework ..........cccceveeveereveesesie e e 60
3.4.2 Operationswithin a CPU Exception Handler ..........ccoooeevviieneninnenne 60

3.5 Context and SYyStEM SLALE........ccecceeiice et 61
3.5.1 Processing Unitsand Their CONteXtS..........ocverererenieeieniesese e 61
3.5.2 Task Contexts and NON-Task CONEEXLS..........ccvvrererereeieenienienie e 62
3.5.3 Execution Precedence and Service Call AtOMICItY ........cccevervririennne 63
3.5.4 CPU LOCKEA SEALE.....c.ceeeiiriiiie et 64
3.5.5 Dispatching Disabled State.........ccccoorieiieiinineeeeee e 66
3.5.6 Task State during Dispatch Pending State............ccooeeveeieceesieccieeneene, 67

3.6 Service Call Invocation from Non-Task CONEXLS........ccecvevereereerersieeseennnns 69
3.6.1 Service Callsthat can be Invoked from Non-Task Contexts................ 69
3.6.2 Delayed Execution of Service CallS.........oovvvinirenenienieesese e 70
3.6.3 Adding Service Callsthat can be Invoked from Non-Task Contexts...71

3.7 System Initialization ProCEAUIE..........ccevveieeie e 72
3.8 Object Registration and REIEASE............cccoeieiiiiee e 73
3.9 Description Format for Processing UNit.........cccocoeviiiiiniiieesee e 74
3.10 Kernel Configuration Constants and Macros...........ccccveeveeiueseeneeseeseeneeennens 75
3.11 Kernel Common DeEfiNITIONS........cccoiiiiiierieeiesee e 75
3.11.1 Kernel Common CONSLANES ......ccvevverierieieiesie et 75
3.11.2 Kernel Common Configuration Constants...........cocceeeeereeneneneneennenn 77
Chapter 4 pITRON4.0 Functions 79
4.1 Task Management FUNCLIONS..........ccceciueieeiieeie e e eee s 79
4.2 Task Dependent Synchronization FUNCLIONS ............cocvvenerieiienesee e 101
4.3 Task Exception Handling FUNCLIONS..........cccoviiininiee e 112
4.4 Synchronization and Communication FUNCLIONS.............ccceveeveiceesecciecene, 125
441 SEMAPNOTES ..o 125



pI TRON4.0 Specification Ver. 4.00.00

442 EVENIIIAgS.....ci it s 134
443 Dal@QUEUES........cueeeeeeeieee e ettt e st e e et e e e s e e e e snr e e e e ennnee e e e e nnnneeas 145
444  MalDOXES.....cceeieieriisie sttt ettt besreeneeneens 158

4.5 Extended Synchronization and Communication Functions......................... 170
N R Y 011U 170
452 MeSSage BUFfENS.......cceieeece e 181
4.5.3 RENUEZVOUS.......c.eerieeieeieesieeiiseesie e seestesee e e see e sseeneesneesseensesneesnes 193

4.6 Memory Pool Management FUNCLIONS...........cccecieeiee e esie e 214
4.6.1 Fixed-Sized MemOry POOIS.........ccccouiiiininenireeese e 214
4.6.2 Variable-Sized Memory POOIS .........ccocooiveiieiie e 224

4.7 Time Management FUNCLIONS.........ccccveuereerieeieseeseeee e sie e sree e eeesseeneens 235
4.7.1 System Time Management.........ccceoereererieneenieniee e 235
4.7.2 CycliCHANAIEIS.......oceeceeeececee e 240
4.7.3 AlarM HANAIENS. ..o s 250
474 OVETUN HANAIEN .....ccooiiiieiiieee e 258

4.8 System State Management FUNCLIONS ..........ccooerereeieeiieneresese e 266
4.9 Interrupt Management FUNCHIONS ..........cccoeviieiie e 279
4.10 Service Call Management FUNCLIONS..........ccccccueiiereerieseesieeeeseeseeeeseeseens 292
4.11 System Configuration Management FUNCLIONS ..........cccooerereneneneneneeen, 297
Chapter 5 Additional Specifications 305
5.1 The Specification Requirements for the WITRON4.0 Specification............. 305
5.1.1 BaSICCONCEDE ..ottt 305
5.1.2 Minimum Required Functionalities.............cccceeevreeveesesieeseece e 306
5.1.3 Extension of the I TRON4.0 SpeCifiCcation............cecveeeeieereereseennenn 307

5.2 Automotive Control Profile..........coiiieiiiieee e 308
5.2.1 RESINCIE TASKS .....eeieeeeieiesiiesie e siee e ee s e et nns 308
5.2.2 Functionalities Included in the Automotive Control Profile.............. 309

5.3 Version Number of the SpeCifiCations..........cccceveererieseereece e 311
5.4 MEKEN COUES........coiuieieeieeiteeiie e steeiesee st e st te s e s teeee e e saeeneesneesreeneeans 312
Chapter 6 Appendix 315
6.1 Conditions for Using the Specification and the Specification Document ....315
6.2 Maintenance of the Specification and Related Information............c............ 316
6.3 Background and Development Process of the Specification........................ 318
6.4 VErSION HIStOMY .....ccuicieceec ettt st e re e 322
Chapter 7 References 323
7.1 SErVICE Call LiSt..oiiieieeieiiee ettt 323
A S - (o o I SO 328
7.3 Static APIsand Service Callsin the Standard Profile...........ccocvvnininenneee, 329
T4 DaATYPES.....eeiiiieeeieee e 331
7.5 PaCket FOrMALS ........coiiiiiiieie e 334
7.6 ConStantS @A MACTOS .......ccuerieriiririereeieee et 341
7.7 Kernel Configuration Constants and MaCros...........cceceeeeevenenenenenesennnen. 343
7.8 EITOr CoU@ LISt... oottt 344
7.9 FUNCHON COOR LISE.....ciiiiiiiie et 345



M TRON4.0 Specification Ver. 4.00.00

Xi



pI TRON4.0 Specification Ver. 4.00.00

Service Call Index

Thisisan index of the service calls defined in the il TRON4.0 Specification.

acp_por
acre_alm
acre_cyc
acre_dtq
acre_flg
acre_isr
acre_mbf
acre_mbx
acre_mpf
acre_mpl
acre_mtx
acre_por
acre_sem
acre_tsk
act_tsk
cal_por
cal_svc
can_act
can_wup
chg_ixx
chg_pri
clr_flg
cre_alm
cre_cyc
cre_dtq
cre_flg
cre_isr
cre_mbf
cre_mbx
cre_mpf
cre_mpl
cre_mtx
cre_por
cre_sem
cre_tsk
def_exc
def _inh
def ovr
def _svc
def tex

ACCEPL RENAEZVOUS.......c.eeceeceete ettt 203
Create Alarm Handler (ID Number Automatic Assignment)........... 252
Create Cyclic Handler (ID Number Automatic Assignment) .......... 243
Create Data Queue (ID Number Automatic Assignment)................ 148
Create Eventflag (ID Number Automatic Assignment) ................... 136
Create Interrupt Service ROULINE...........coceeveriiineeneeie e 284
Create Message Buffer (ID Number Automatic Assignment) ......... 184
Create Mailbox (ID Number Automatic Assignment) ...........cc........ 161

Create Fixed-Sized Memory Pool (ID Number Automatic Assignment)....216
Create Variable-Sized Memory Pool (ID Number Automatic Assignment) 226

Create Mutex (ID Number Automatic ASSignment) ..........ccocceeeneee. 174
Create Rendezvous Port (ID Number Automatic Assignment)........ 197
Create Semaphore (ID Number Automatic Assignment)................. 127
Create Task (ID Number Automatic ASSIgNMENt) ........cceeererereenns 83
ACHVELE TASK ...ttt sttt ne s 87
Call RENAEZVOUS..........eeuieieeniiiesie st 200
INVOKE SErVICE Call ....c.vveeeee e 296
Cancel Task Activation REQUESES .........coveriireenieee e 88
Cancel Task Wakeup REQUESES..........cccueieevieeie e 105
Change INterrupt MasK..........cocoveieninenieeeee e 290
Change Task Priority .......coeeiieiiee e 94
Clear EVENtflag.........coveeiieieceeeese e 141
Create Alarm Handler .........cccooovveeeie e 252
Create Cyclic Handler .........ocooiieeieeeeeee e 243
Create Data QUEUE ...t 148
Create EVENtlag.......cooveieieieece e 136
Create Interrupt Service ROULINE...........coeeveriiinieneeie e 284
Create Message BUFfEr ........ccuvcieceecece e 184
Create MailbOoX........coovieiieeeesees e 161
Create Fixed-Sized Memory P00l ... 216
Create Variable-Sized Memory Pool ...........ccccoeeeveeieieeiece e 226
CrEate MULEX .....coceieeie ettt e 174
Create ReNdezvouS POrt .........c.ccoieeiiiie e 197
Create SEMaPNOre........coo e 127
(O (SN =S 83
Define CPU Exception Handler ...........cccooovveineniinieneee e 299
Define Interrupt Handler ...........ooveveeeii e 282
Define Overrun Handler ...........cooveeeeecece e 260
Define Extended Service Call ... 294
Define Task Exception Handling Routing............cccccceveeceveevieenene 117

Xii



M TRON4.0 Specification

del_alm
del_cyc
del_dtq
del _flg
del isr
del_mbf
del_mbx
del_mpf
del_mpl
del_mtx
del_por
del_sem
del_tsk
dis_dsp
dis_int
dis_tex
dly tsk
ena_dsp
ena_int
ena_tex
exd_tsk
ext_tsk
frsm_tsk
fsnd_dtq
fwd_por
get_ixx
get_mpf
get_mpl
get_pri
get_tid
get_tim
iact_tsk
ifsnd_dtq
iget_tid
iloc_cpu
ipsnd_dtq
iras_tex
irel_wai
irot_rdq
iset flg
isig_sem
isig_tim
iunl_cpu
iwup_tsk

Ver. 4.00.00
Delete Alarm Handler..........oooeriiiiiieeeeee e 254
Delete Cyclic Handler .........cooveeeieecece e 246
Delete Data QUEUE ..........covueeieeieceeesie e 150
Delete EVENtflag ......cooveiiieiiece e 138
Delete Interrupt Service ROULINE.........ccoveeveecee e 286
Delete Message BUFFEr ........oooiiieieceeee e 186
Delete MallDOX ......ooueeiieiiriieieee e 164
Delete Fixed-Sized Memory POOI ..........ccccoovevenieince e 218
Delete Variable-Sized Memory Po0l ...........ccocoviveieeieieeeceee 228
DElEE MULEX ..ottt e 176
Delete ReNdEZVOUS POIT ..........coieiiriiierine s 199
Delete SEMEPNOTE ......c.ooiiieiereeeeee e s 129
DS [ S =S S 86
Disable DISpatChing .........ccceveeereerice e 272
DiSabl@ INTEITUPL ... 288
Disable Task EXCEPLIONS.........ccceveeiiieiiecee e 121
DEAY TASK ..cviviriiriieiieieie et 111
Enable DIiSPatChing .......cccoereriririeieeree s 273
Enable INtEITUPL.......ooiee e e 289
Enable Task EXCEPLIONS........ccveieieeice e 122
Terminate and Delete INnvoking TasK ........cccovvvrevenieeieeiencsecee 91
Terminate INVOKING TaSK .....cccveeiieiieciie et 90
Forcibly Resume Suspended TasK..........cccevveeeneeresieesieenieseeseeenens 109
Forced Send to Data QUEUE.............covuererrieerienieseee e 153
Forward RENAEZVOUS...........coevierieeiieeeiesie e 206
Reference INterrupt MasK........cccvcveveeeveese e 291
Acquire Fixed-Sized Memory BIOCK .........ccoeririieieiieiiiecnenene 219
Acquire Variable-Sized Memory BIOCK ..........ccccovevvecevecieciecene, 229
Reference Task Priority ......ccccceveeieeieeseeie e seese e see e 96
Reference Task ID in the RUNNING State.........ccooeeveieeneienieneene. 269
Reference SystemM TIME.......ccoveeceeiece e 238
ACHVAE TASK ...ttt s 87
Forced Send to Data QUEUE.............coverierieriieniesee e 153
Reference Task ID in the RUNNING State........ccevevveevenenenieneenne 269
LOCK the CPU ...t 270
Send to Data Queue (POlING)......cceovereririreneseeee e 151
Raise Task Exception Handling...........ccccoeveeveeieeie s 119
Release Task from Waiting........c.cceeeeeieninenencseeeeeee e 106
Rotate Task PreCedenCe. .......ccvvvriererie e 267
Set Eventflag........cccoooeeieie e 139
Release Semaphore RESOUICE..........cccveiverirereseseeee e 130
SUPPIY TIME TICK ..ttt 239
UNIOCK the CPU ..o s 271
WAKEUD TASK.....cueeieieeiieiiesti s ettt e e nesnesneeneas 104



pI TRON4.0 Specification

loc_cpu
loc_mtx
pacp_por
pget_mpf
pget_mpl
ploc_mtx
pol_flg
pol_sem
prcv_dtq
prcv_mbf
prcv_mbx
psnd_dtq
psnd_mbf
ras_tex
rcv_dtq
rcv_mbf
rcv_mbx
ref_alm
ref_cfg
ref cyc
ref_dtq
ref_flg

ref _isr
ref_mbf
ref_mbx
ref_mpf
ref_mpl
ref_ovr
ref_por
ref_rdv
ref_ sem
ref_sys
ref tex
ref_tsk
ref tst
ref_ver
rel_mpf
rel_mpl
rel_wai
rot_rdq
rpl_rdv
rsm_tsk
set _flg
set_tim

Ver. 4.00.00
LOCK the CPU ..ottt 270
LOCK MULEX ....ooviiiiiciesiceteeicee ettt 177
Accept Rendezvous (POIING)......ccooieiinineneeeeesese e 203
Acquire Fixed-Sized Memory Block (Polling) ........cccceevneeniernnnee. 219
Acquire Variable-Sized Memory Block (Polling)........ccccccceevveuneee. 229
Lock MUteX (POHING) ....cc.eeeeieiiiereserieseseeee s 177
Wait for Eventflag (Polling) .......cccooevieneriinieneee e 142
Acquire Semaphore Resource (Polling)........ccceevvveenieeieseeseciee 131
Receive from Data Queue (PolliNg) .......cccceoerieneneniseneeceeeene 155
Receive from Message Buffer (POIliNg)........ccooeeiiiineninnieieeee 189
Receive from Mailbox (POIING) ......ccovevveieeiieiecececeee e, 166
Send to Data Queue (POHING) .....oovvereririeeeere e 151
Send to Message buffer (Polling) ........ccovoeereriiiieninie e 187
Raise Task Exception Handling ..........cccovecvveevece e, 119
Receive from Dala QUEUE..........cc.eeeereereee et 155
Receive from Message BUfer ... 189
Receive from MailboX..........cooviiiiiniiieee e 166
Reference Alarm Handler State..........ccooveveveeveeie e 257
Reference Configuration INnformation ............ccoceeevreeneeieneeseenenne 301
Reference Cyclic Handler State.........ccooveceveevecce e, 249
Reference Data QUEUE SEALE ..........c.eceeveeeeereereee e 157
Reference Eventflag Status ..........ccccoveiiriineeneceeee e 144
Reference Interrupt Service Routine State...........cccceveececeeseennene, 287
Reference Message Buffer State..........ocvvveeveeieveneseseseseeeee 191
Reference Mailbox State..........cooceeiiveininiiieeeee e 168
Reference Fixed-Sized Memory Pool State...........cccevveeeveeieeenene, 222
Reference Variable-Sized Memory Pool State..........c.ccocevevereeneee. 233
Reference Overrun Handler State ..o 264
Reference Rendezvous POrt State.........coveeeeeeevene v 212
Reference ReNdezvouS STate.........ccovvevieeeeveerieee e 213
Reference Semaphore State .........oocvveereeieneeneeeeeee e 133
Reference System State.........ccveveeeeceere e 278
Reference Task Exception Handling State..........cccooevvvevencnceenne 124
Reference Task SEate........c.oveeieriineeeee e 97
Reference Task State (Simplified Version).........cccceeeveeceveeseennene, 100
Reference Version Information ...........cccceecvveeveeceseeseesesee s 302
Release Fixed-Sized Memory BIOCK.........cccoceverienienenieneeeeee 221
Release Variable-Sized Memory BIOCK.........cccccvevvieenecceiieseeee, 231
Release Task from Waiting...........ccoeeererininereee e 106
Rotate Task PreCedenCe..........ovovvriiieeninie e 267
Terminate RENUEZVOUS..........cooeririirisirieseeee e 210
Resume Suspended TasK .........ccccoererereninenieeee s 109
Set EVENtflag .....cooveeeeceee e 139
St SYSEEM TIME...ceeciice e 237

Xiv



M TRON4.0 Specification

sig_sem
slp_tsk
snd_dtq
snd_mbf
snd_mbx
sns_ctx
sns_dpn
sns_dsp
sns_loc
sns_tex
sta_alm
sta_cyc
sta_ovr
sta_tsk
stp_alm
stp_cyc
stp_ovr
sus_tsk
tacp_por
tcal_por
ter_tsk
tget_mpf
tget_mpl
tloc_mtx
trcv_dtq
trcv_mbf
trcv_mbx
tslp_tsk
tsnd_dtq
tsnd_mbf
twai_flg
twai_sem
unl_cpu
unl_mtx
wai_flg
wai_sem
wup_tsk

Ver. 4.00.00

Release Semaphore RESOUICE. .........ccveiivecieeiie e 130
PUL TASK 10 SIEED ..ot 103
Send to Data QUEUE............coieeeeeeeeeeeie et 151
Send to Message DUFFEr ........cceeviiiiecee e 187
SENd 10 MAITDOX ...t e 165
Reference CONLEXIS........cov e 274
Reference Dispatch Pending State ..........cccceevvevieeveecceccie e 277
Reference Dispatching State .........coooveceveeveecesiece e, 276
Reference CPU SEae........ccccoviiierieeee s 275
Reference Task Exception Handling State..........cccocveceeveeccieesieene, 123
Start Alarm Handler Operation ...........cccceeveveeresceeseeseseeseese e 255
Start Cyclic Handler Operation...........ccoooevenereneeieesesesesee e 247
Start Overrun Handler Operation ...........cccvveveveesieevee e 262
Activate Task (with a Start Code).........ccceeveververerieseere e 89
Stop Alarm Handler Operation............ccoeoerenereneeieeiesesese e 256
Stop Cyclic Handler Operation ...........ccceceevieeiiesiieesee e esiee e 248
Stop Overrun Handler Operation ...........ccvceveereeceeseeseeieeseeseesnens 263
SUSPENT TASK ...ttt 108
Accept Rendezvous (With TIMEOUL) .......cccveeveeiiiiiiieceesee e 203
Call Rendezvous (With TIMEOUL).........eecevieereerieseeseereeeeseeesee e 200
TEMINGLE TASK ....eeieieieeieeee et 92
Acquire Fixed-Sized Memory Block (with Timeout) ...................... 219
Acquire Variable-Sized Memory Block (with Timeout) .................. 229
Lock Mutex (With TIMEOUL) .........cceeeeiieeinieresieseeee e 177
Receive from Data Queue (with Timeout) .........ccccceveeeveevecciecieenee. 155
Receive from Message Buffer (with Timeout) ...........ccceeeevvecveceenee. 189
Receive from Mailbox (wWith TIMEOUL)...........ccecerererieierereseree 166
Put Task to Sleep (With TIMEOUL) ........cccveeveeiecieie e 103
Send to Data Queue (With TIMEOUL).......cccvcveveerieeee e 151
Send to Message buffer (with TIMeout) ..........cccceveeieienencninee 187
Wait for Eventflag (With TIMeoUL) .......ccocveveeiecieie e, 142
Acquire Semaphore Resource (with Timeout) ........cccccvcvevvececeeenee. 131
UNIOCK the CPU .....ceeiiiieiieeee et 271
UNIOCK MULEX ......eoiiieiiesie et 179
Wait for EVENtflag........ccooveveeieiiere e 142
Acquire Semaphore RESOUICE..........ccoierererereeeeee e 131
WEKEUD TBSK....ueecveeiecee sttt ete ettt te et e s sre e esre e 104

XV



pI TRON4.0 Specification

Ver. 4.00.00

Static API Index

Thisisan index of the static APIs defined in the Wl TRON4.0 Specification.

ATT_INI
ATT_ISR
CRE_ALM
CRE_CYC
CRE_DTQ
CRE_FLG
CRE_MBF
CRE_MBX
CRE_MPF
CRE_MPL
CRE_MTX
CRE_POR
CRE_SEM
CRE_TSK
DEF_EXC
DEF_INH
DEF_OVR
DEF_SVC
DEF_TEX

Attach Initialization ROULINE..........ccoooevenininineee s 304
Attach Interrupt Service ROULINE ........ccovirererieeeee e 284
Create Alarm Handler .........ccoovieeniiieeee e 252
Create Cyclic HandIer .........ccoevveeeiece e 243
Create Data QUEUE ..........ooiuiiiieeiee ettt 148
Create EVENtIlag ......coov et 136
Create Message BUFfEr ........ccvvceceece e 184
Create MailboX........ccovieiiereeesees e 161
Create Fixed-Sized Memory P00l ..o 216
Create Variable-Sized Memory Pool ...........ccccceeeeveeieviesece e 226
Create MULEX .....coceieiie ettt 174
Create ReNdezvoUS POrt .........ccccoieeiiiiieieesee e e 197
Create SEMaPNOre........c.co v 127
(O (SN =S 83
Define CPU Exception Handler ..........ccccooovveeniniinieneee e 299
Define Interrupt Handler ...........coooveeeeeece e 282
Define Overrun Handler ...........cooveeeeeie e 260
Define Extended Service Call ... 294
Define Task Exception Handling Routine............cccccevvevievvevieenee. 117

XVi



M TRON4.0 Specification Ver. 4.00.00

Chapter 1 Background of pITRON4.0
Specification

1.1 TRON Project

1.1.1 What is the TRON Project?

TRON, which stands for “The Real-time Operating system Nucleus,” is a project
started by Dr. Sakamura of University of Tokyo in 1984 in an aim to establish an ideal
computer architecture. Through collaboration between industrial world and universi-
ties, the TRON Project is aiming to produce an entirely new concept computer archi-
tecture.

In an effort to reconstruct the computer architecture, the TRON Project envisions the
future to be a highly computerized society: a cyber society. In acyber society, micro-
computers are embedded in a majority of equipments, facilities, and tools that we
encounter in our daily life. These devices are connected through a computer network
and they work together in order to support our activities in various situations. Equip-
ments with built-in computer and connected to the network are called “Intelligent
Objects’ while the overall system where intelligent objects are connected and work
together is called “Highly Functional Distributed System” (HFDS). The realization of
the HFDS is the most important goal of the TRON Project.

The TRON Project, divided into basic sub-projects and application sub-projects, is cur-
rently in progress. In the basic sub-projects, research is being conducted on the com-
puter system, a component of HFDS. Specifically, the following sub-projects are
currently in progress. ITRON (specifications of real-time OS for embedded systems
and the related specifications), BTRON (specifications of OS for personal computers
and workstations and the related specifications), CTRON (OS interface specification
for communication control and information processing), and TRON HMI (standard
guidelines for a human-machine interface of various products).

In the application sub-projects, analysis and evaluation are currently being conducted
to solve problems associated with establishing a realistic application system in HFDS.
A simulation of the future computerized society is also conducted as a basis for evalua
tion of the architecture developed in the basic sub-projects. The application
sub-projects use the results of the basic sub-projects to solve the said problems while
the basic sub-projects, in turn, make use of the feedback coming from the application
sub-projects to further its research.



M TRON4.0 Specification Ver. 4.00.00

Toward the 21st Century

The TRON Project aims to establish an ideal computer architecture based on the tech-
nology of the 21st century. Our goal isto implement atop of the von Neumann-type
architecture using VLSI technology, while giving utmost importance to real-time oper-
ations and cost performance. We adapt a new integrated design approach to a wide
range of applications such as home electronics, industrial robots, personal computers,
work stations, main frames, and private branch exchange (PBX).

Open Architecture

The basic policy of the TRON Project is to make the results of its research available
through open specifications. Everyone can then freely develop and market his or her
own products based on these specifications. This policy is essential in achieving the
goal of developing HDFS. The TRON Association was established as the central orga-
nization to develop the TRON Specifications and to certify conformance to the specifi-
cations. Anyone can be a member of the TRON Association if they are in agreement
with the concept of TRON and operate within the rules of the TRON Association.

Loose Standardization

The TRON Specifications define the interface of a computer, not the hardware or soft-
wareit isfounded on. It also defines the interface of the OS, but not the OS itself. The
specifications are geared towards minimizing the development cost and upgrading the
educational effects on users and programmers by implementing program and data com-
patibility. Thus, the TRON Association adapts the |oose standardization, where only
the design concept is defined. A developer can then freely implement a specific system
that conforms to the design concept standard. Using aloose standard is a compromise
between implementing the compatibility between HFDS components and allowing for
the adaptation of new technologies.

The interface is defined in a layered structure, consisting of: the microprocessor
instruction set, OS kernel, OS outer kernel, data formats, communication interface
between objects, programmable interface, and the human-machine interface (HMI).
With the layered structure of the specifications, various developers can independently
implement different layers. Even in one system, different layers can be developed by
different companies, and under free competition, same layers can be developed by dif-
ferent companies.

Future Compatibility

In order to realize the upward compatibilities in the future, the TRON Project is not
affected by the compatibilities with the past. Many existing computer systems today
are an enhancement of their early architectures. In other words, they are like houses
renovated several times to make them larger. TRON, based on advanced VLSI technol-



M TRON4.0 Specification Ver. 4.00.00

ogy, is an al-new architecture. TRON defines the standard data format, TAD (TRON
Application Databus) to ensure compatibility for data that are transmitted between
applications. The TAD format provides ameans for TRON and other OS to coexist.

Standardization of Operation

Another goal of the TRON Project is to design computers anyone can operate, just like
cars. Anyone can drive cars regardless of their manufacturer or model. The standard-
ization of the HMI, just like in cars, is especially important for personal computers asit
makes further knowledge unnecessary when a change or a revision in hardware and/or
software components occur.

1.1.2 Basic Sub-Projects

ITRON (Industrial TRON) and JTRON

ITRON is an architecture for real-time operating systems (RTOS) for embedded sys
tems. Details of the ITRON Specifications are provided in the following sections.

The JTRON Specification is a merger of the ITRON Specifications, which have been
around for over 10 years, and the Java run-time environment, which excels in portabil-
ity and network transparency. In application systemswith the JTRON Specifications, it
is easy to develop programs that uses the strengths of both ITRON and Java. More
concretely, ITRON functions can be used to implement real-time control programs that
have severe timing constraints, while Java functions can be used to manage GUI and
other network-related functionalities. The JTRON Specifications have the following
advantages. A real-time system with network functionalities can be constructed with
the ITRON Specifications and Java. Components that need performance tuning can be
coded with the RTOS's native code. On the other hand, components where portability
is significant can be coded with the Java language. Thus, these components can be
developed and debugged on a personal computer or a workstation.

The JTRON1.0 Specification was released in 1997, and the conforming products have
already been released. The JTRONZ2.0 Specification strengthens the communication
functionalities between the I TRON-Specification RTOS and the Java run-time envirorn-
ment.

BTRON (Business TRON)

BTRON refers to the architecture of personal computers and workstations that
smoothly exchange information between humans and machines. It isimportant to
guarantee data compatibility using a uniform HMI and TRON Application Database
(TAD).

The main feature of the BTRON HMI is the GUI that supports keyboards and elec-
tronic pens as input devices. A touch panel can also be used instead of an electronic



pI TRON4.0 Specification Ver. 4.00.00

pen. BTRON is currently developing an HMI guideline that only supports pens.

TAD implements data compatibility between computers designed under the TRON
architecture. Itisageneric dataformat that can handle documents, graphics, and other
real-time data (e.g. audio and video) for various environments.

BTRON1, BTRON2, BTRON3, and uBTRON Specifications have been released to
meet our goals mentioned above. BTRONL is designed to be implemented on alimited
hardware resource. On the other hand, BTRONZ2 and BTRON3 are designed to make
full use of the hardware resources of powerful computer systems. uBTRON is a
BTRON Specification for PDAs and it provides power management function.

The BTRON1-Specification OS, which runs on a notebook type computer, was first
released in 1991. TRON-Specification keyboards have also been developed for
BTRON-Specification computers. They are designed for easier use and are less fatigu-
ing than previous keyboard models. Electronic digitized pens are al'so used as a point-
ing device because they are more capable for handwritten character inputs and picture
drawings compared to mice.

TRON-Specification keyboards were first sold in 1991. Now research is being con-
ducted on the following areas: a new window system architecture for BTRON, TRON
Application Control Language (TACL) which implements batch processing of graphi-
cal applications under BTRON, multi-media TAD specification, and TRON code that
has a multi-language and multi-lingual support.

CTRON (Communication and Central TRON)

CTRON is an operating system interface that can be commonly applied to every
exchange, communication, and information processing node on a communication net-
work. Sincethe 1980s, which is said to be the start of the information society era, eval-
uation experiments have been conducted on CTRON interface specification, software
portability and real time features.

The first version of CTRON Interface Specification was released in 1988. Since then,
various works have been done to enhance and decrease the size of the specification, and
in 1993, it was published as the new edition of “Original CTRON Specification Series.”
The certification system of the CTRON-Specification OS was started in 1989, and up
to this date more than 20 products have been certified.

From 1990 to 1992, an experiment on software portability was thoroughly executed.
The objective of this experiment was to quantitatively evaluate the portability of the
products conforming to the CTRON Interface Specifications. As aresult, software
portability was proven to be high, athough some problems regarding software portabil-
ity were also found. These problems have been reflected to the CTRON Specifications.

As mentioned above, CTRON was established as the basic software platform for com-
munication networksin the 1990s. Now it is being considered as the core of communi-
cation networks essential to the multi-media generation of the 21st century.

4



M TRON4.0 Specification Ver. 4.00.00

TRON HMI

The HFDS is intended to help humans cope with daily lives by having multiple intelli-
gent objects work together to provide support for humans. The TRON Project needs a
uniform HMI in all HFDS environments. The purpose of this sub-project is to create
an HMI guideline for intelligent objects, such as personal computers, electronic prod-
ucts, and automotive components.

The TRON HMI Guidelines describe the physical interactive parts that can be handled
by users or used in applications such as buttons, switches, and handles. Enableware
specification, and multi-language specifications are also available for a wide range of
users. Enableware specification is for handicapped users while multi-language specifi-
cation is for users who want to be able to control the computer in their own language.
With an HMI made according to this guideline, a user can switch to other systems eas
ily without worrying about system differences such as compatibility.

The result of this sub-project was presented as “TRON Human-Machine Interface
Specifications” 1n 1992 and 1993, the sub-project held competitions on HMI design in
order to evaluate its usefulness.

1.1.3 Application Sub-Projects

Up to this date, experiments and research have been conducted on various application
sub-projects, with the results taken as feedbacks to the basic sub-projects. Examples of
application sub-projects are the TRON-Concept Intelligent House, the TRON-Concept
Intelligent Building, and the TRON-Based Autotraffic Information System. The fol-
lowing sections introduce the four most recent application sub-projects being con-
ducted.

Computer Augmented Environment

The computer augmented environment refers to an environment where computers are
embedded in every machine, and each machine, in turn, is connected to a network, thus
expanding the functionalities of the real environment. It is being studied by many
researchers throughout the world. The term HFDS discussed above actually refers to
the computer augmented environment, and its construction is the TRON Project’s final
objective.

In order to realize the computer augmented environment, we are currently developing a
“Computer Augmented Environment Control Script” designed to handle the control
embedded devices from personal computers and servers.

Multi-Media Network Service Platform (MNP)

The rapid spread of the internet and intranet provides an opportunity for networked
multi-media services.



pI TRON4.0 Specification Ver. 4.00.00

Since 1994, much work has been done to adapt CTRON to multi-media network ser-
vices. CTRON is focusing on the usage flexible resources and implementation of
real-time control functions on a network and its peripherals (such as nodes and routers
for gateway functions, servers and multi-mediaterminals.) New OS interface rules
have been added and technical problems regarding control functions required by the
focus mentioned above are being continuously examined since 1994,

Digital Museum

The digital museum is a futuristic museum that uses digital technology in every opera
tion phase, including exhibits and presentations. The digital museum is not a virtual
exhibit on the web. Virtual exhibition, itself, is a part of adigital museum. The con-
cept of the digital museum is to extend and strengthened the real space of a physical
museum using cyberspace tools, such as computers and the Internet, thereby overcom-
ing the limitations imposed on a real museum and at the same time increasing its
appeal.

The digital museum is an example of an HFDS application. The required computer
technology in constructing the digital museum is actually BTRON’s goal. This fact
shows the exclusiveness of BTRON technology and at the same time indicates that the
direction of the hypermedia technology developed under BTRON sub-project is cor-
rect.

Distributed Software Platform for Information Home Electronics

The digitalization of home electronics and the use of home networking have rapidly
advanced in the recent years while software is needed to control information home
electronics are getting more and more complex. On the other hand, much shorter time
for the development of devices are being imposed, thus heightening the need for soft-
ware platforms to increase software development efficiency.

Middleware groups have been built to connect information home electronics to net-
works, using pl TRON-Specification RTOS. The WITRON Specifications provide a
foundation for efficient software development while ensuring the connectivity and
operability of embedded products.

1.2 History and Current Status of the ITRON
Specifications

1.2.1 Current State and Features of Embedded System

With the progress in microprocessor technology, the range of applications in which
embedded systems are practically used has significantly increased. During the early
days, embedded systems were mainly limited to industrial applications such as produc-

6



M TRON4.0 Specification Ver. 4.00.00

tion line control. Now, embedded systems are rapidly spreading to office electronics,
communication products, and most recently, to consumer products like automobiles,
audio/video systems, televisions, cellular phones, electronic instruments, games, laun-
dry machines, air conditioners, and lighting systems. The term embedded system now
applies to most of the electronic products we encounter in our daily lives.

With the increased range of applications for embedded systems, the functions that
these systems must perform become more complex. In addition, the recent trend
towards digitalization and the increase in number of software-implemented process on
highly functional microprocessors makes embedded systems more significant.

In general, small-scale embedded systems, usually consumer products, are produced in
large quantities compared to large-scale embedded systems typically found in indus-
trial products, making the cost per product comparatively cheaper. While decreasing
the development costs for large embedded systems is given importance, decreasing the
manufacturing costs of small-scale embedded systems is significant. In particular,
because of the tight competition on product development, attempts are made to shorten
the development time of consumer products. In addition, sold softwares are rarely
redesigned, which resultsin a very short life cycle for system development.

In most small-scale embedded systems, the core processor, ROM and RAM, general 1/
O devices, and some other devicesareal in achip called MCU (Micro Controller Unit,
sometime called “one chip micro processor.”) Since the development cost of the final
product is to be kept as low as possible, hardware resources on a MCU, especially the
memory, are very limited. This limitation becomes a problem when devel oping soft-
wares on aMCU. The highly efficient MCU has various kinds of processors optimized
and designed for applications.

In small scale embedded systems, improving software productivity isimportant in han-
dling largely scaled and highly complex softwares. It isalso significant in reducing the
software development time. It is often to use a high-level language like C, and an
RTOS, like a ul TRON-Specification RTOS.

1.2.2 Requirements for RTOS on Embedded System

To keep up with the progress of high performance microprocessors technology, it is
very important for embedded systems to be cost-effective, especially since they are
now widely applied to consumer products. Also the number of software engineers
working on RTOS is also increasing as embedded systems are being applied to more
and more areas, making their education alot more significant.

In a survey conducted by the TRON association every year from 1996, the survey
shows the greatest problem encountered by most engineers using an RTOS in an
embedded system is regarding education and standardization. The survey shows that
there are very few engineers who can handle RTOS and that the specifications of differ-
ent operating systems are so large that switching to another OS would take a lot of

7



pI TRON4.0 Specification Ver. 4.00.00

work. The survey also shows that the OS size and resources are too large, and most of
its features and functions do not meet actual requirements, leading to problems in
matching an OS with an application.

The TRON Project, giving importance to education from aspect that standardization of
concept and technical-term, has decided to provide a standardized RTOS specification
that can easily be applied in many embedded systems.

The most difficult problem encountered in providing a standardized RTOS specifica
tion for embedded systemsiis finding the balance between providing the highest perfor-
mance that the hardware allows and upgrading software development productivity. On
MCU based systems with tight limitations on hardware resources, reaching the maxi-
mum hardware performance will only be achieved by carefully selecting the appropri-
ate RTOS. On the other hand, improving software development productivity involves
increasing the abstraction of OS services and guaranteeing software portability regard-
less of the hardware in use would increase the gap between OS services and the hard-
ware architecture. This gap would cause significant overhead and getting a high
performance from hardware would be alot more difficult.

The compromise between these two goals highly depends on the performance of
embedded products. Particularly, it is meaningless to lower the runtime performance
of small scale embedded systems just to keep the final product’s cost low and improve
its portability. On the contrary, since large scale systems are often recycled, portability
isavery important issue. The optimal solution to this problem is not well defined and
the optimal balance point changes with the progress of microprocessors.

Small and large scale embedded systems often require different RTOS features. Small
scale systems would often suffer decreased performance and increased program size
from using an RTOS with many high-level features that are really unnecessary. On the
other hand, an OS with many high-level featuresis useful for large-scale embedded
systems, as it helps improve software devel opment productivity.

As seen from above, the requirements for an RTOS differ depending on the scale and
the necessary features of each embedded system. It would be possible to define an
RTOS specification for each application scale or required feature sets. However, in
considering the education of software engineers, the software circulation, and the sup-
port for development tools, defining a scalable OS specification that can adapt to the
needs of avariety of embedded systems, would be very useful.

The following is a summary of the requirements for the specification of an RTOS on
embedded systems:

* To be able to get the maximum performance from the hardware.
* To be useful inincreasing productivity for software.
* To be able to adapt to any system scale (scalability).

In addition to the above technical requirements, it is also important that the specifica
tion be open. Because embedded systems are involved in all the electronics products

8



M TRON4.0 Specification Ver. 4.00.00

that we encounter daily, it is necessary not only to make the specification available to
every one, but also to make it royalty free so that anyone can implement and sell prod-
ucts based on the specification.

1.2.3 Current Status of the ITRON Specifications

The ITRON Project started in 1984, and it has developed and released a series of
ITRON Real-Time Kernel Specifications. The project gave utmost importance to the
standardization of kernel specifications because small scale systems often only use just
the kernel functions.

The first ITRON specification was developed in 1987 as the ITRON1 Specification.
Many real-time kernels were developed based on the ITRON1 Specification, and they
served to be useful in verifying the specification’s usability. Later, in 1989, the ITRON
Project released two specifications: the Wl TRON Specification (ver. 2.0) and the
ITRONZ2 Specification. The uITRON Specification is for small systems on an 8 or
16-bit MCUs. One of its characteristics is limited the kernel functionality. The
ITRONZ2 Specification, on the other hand, is designed for larger systems on 32-bit
MCUs. The pITRON Specifications have been implemented on many different MCUs
with limited memory and limited computational resources. It isalso used on awide
variety of embedded systems and it provides practical functionality without large mem-
ory requirements. In fact, ul TRON-Specification kernels have been developed on most
major MCUs used in embedded systems.

In order to apply the ITRON Specifications to awide range of fields, functionality and
performance are necessary. Even though the ul TRON Specifications was not designed
for 32-bit processors, the Ul TRON-Specification kernel is now being implemented on
32-bit MCUs since the kernel does not consume significant memory. Because of this,
the specification was revised to make it scalable on MCUs ranging from 8-bits to
32-hits. The revised edition was the pl TRON3.0 Specification, released in 1993. The
M TRONS3.0 Specification includes connection functions that allow a single embedded
system to be implemented over a network. |EEE CS Press published the English ver-
sion of the Wl TRON3.0 Specification under the title “ I TRON3.0: An Open and Porta-
ble Real-Time Operating System for Embedded Systems.”

At present, there are approximately 50 ITRON real-time kernel products for 35 proces
sors registered to the TRON association. Thereisaso aU. S. software vendor that has
developed a Ul TRON-Specification kernel. Since the ul TRON-Specification kernel is
small and is easy to implement, many users have developed their own versions for
in-house use. There are also several implementations that besides products, and some
versions of the WITRON kernel are distributed as free software.

The reason that Wl TRON kernels are used in so many instances is that it supports a
wide range of applications. Table 1-1 shows examples of some devices that use
ITRON kernels. From the survey mentioned in the previous section, the ITRON Spec-



pI TRON4.0 Specification Ver. 4.00.00

ifications are used often in consumer products and it has become the standard among
industrial companies. Many companies develop their own I TRON-Specification ker-
nel, which indicates that the ITRON Specifications are truly open standards.

Table 1-1. Major Fields where ITRON-Specification Kernels are Applied

Audio/Visual Equipment, Home Appliance

TVs, VCREs, digital cameras, STBs, audio components, micro-
wave ovens, rice cookers, air-conditioners, washing machines

Personal Information Appliance, Entertainment/Education

PDAs (Personal Digital Assistants), personal organizers, car navi-
gation systems, game gear, electronic musical instruments

PC Peripheral, Office Equipment

printers, scanners, disk drives, CD-ROM drives, copiers, FAX,
word processors

Communication Equipment
answer phones, ISDN telephones, cellular phones, PCS terminals,
ATM switches, broadcasting equipment, wireless systems, satel -
lites

Transportation, Industrial Control, and Others
automobiles, plant control, industrial robots, elevators, vending
machines, medical equipment, dataterminals

In addition to the real-time kernel specifications, the ITRON Project also provides the
ITRON/FILE Specification that provides file management features compatible with the
BTRON-Specification file system.

Many widely used products use processors with the ITRON Real-Time Kernel Specifi-
cation. The pI TRON-Specification kernel has been especially useful on MCUSs, which
were not previously used on RTOS due to memory and speed restrictions. The
M TRON Specification brings us closer to achieving the standard real-time kernel spec-
ification possible.

The object of standardization is now widened to include, not just the kernel, but also
software components, development tools, and related specifications. Also, research
and standardization on each application field isin progress (see Section 1.4.1). The
research and studies conducted by the TRON Project are al directed to realizing its
ultimate goal: the HFDS.

10



M TRON4.0 Specification Ver. 4.00.00

1.3 ITRON Specification Design Policy

The following policies are adapted in designing the ITRON Specifications. These pol-
icies satisfy the requirements for an RTOS given in Section 1.2.2.

» Excessive hardware virtualization should be avoided in order to increase adaptability
to the hardware.

In order to maximize the performance of the hardware and thus, acquire high
real-time efficiency, excessive hardware virtualization should be avoided. The
phrase “ adaptability to hardware” refers to improving the performance of the whole
system by modifying the RTOS specifications and/or RTOS internal implementation
according to the hardware’s performance and characteristics.

More specifically in the ITRON Specifications, items that should be standardized
regardless of the hardware structure are clearly divided from the items that can be
optimized according to the hardware’s performance and characteristics. Standard-
ized items includes task-scheduling rules, system call names, system call functional-
ities, names, order, and meanings of system call parameters, and names and
meanings of error codes. On the other hand, items that would cause a declinein per-
formance are not forcibly standardized, instead, standardization and virtualization
are purposely avoided. For instance, bit width of parameters and methods for invok-
ing interrupt handlers are decided on each implementation.

 Adaptability to applications should be considered.

Adaptability to application refers to the approach to improve the over all system per-
formance by modifying the kernel specifications and internal implementation meth-
ods in response to the kernel functionalities performance required by applications.
Since the object code for the OS is created for each application, adaptability to
applications approach works well in embedded systems.

The specification is designed in such away that each kernel function is kept inde-
pendent to each other as possible so that only the required function for each applica
tion are actually used. Providing a single functionality to each system call makes
incorporating of only the required functions easier. Most Il TRON-specification
kernels are provided as libraries and only the required modules are extracted and
linked with application programs.

 Education of software engineers should be given importance.

Compatibility and portability are not of a great concern to softwares developed for
small embedded systems because the software is not likely to be reused. However,
standardizing the kernel specification is more important because it helps to educate
software engineers. It also make communications between software engineers eas-
ier because by unifying technical terms and concepts.

In the ITRON Specification, the education of software engineers is given impor-

11



pI TRON4.0 Specification Ver. 4.00.00

tance. By standardization, an engineer can widely apply what he learns once. The
usage of terms and naming of system calls, for example, are made as consistent as
possible. Educational text books for engineers are also in progress.

* A series of specifications should be developed and support levels should be defined
in a specification.
In order for applications to adapt to various hardwares, a series of specifications that
allow different scalable levels of support are created. The series of real-time kernel
specifications made up to this date includes Wl TRON Specification (Ver. 2.0) for 8to
16 bit MCUs and ITRON2 for 32 hit processors. With these specifications, the user
can scale each functionality as needed and include only those functionalities when
implementing the kernel. The Wl TRON3.0 specification separates the systems calls
into different levels of support to cover both small-scale and big-scale processors
within one specification.

Specifications for distributed systems over a network, and multi-processor systems
are also being considered for standardization under the ITRON Specification series.

« Various functionalities should be provided.

The ITRON Specifications provide alarge set of primitives with different properties
to cover awide range of functionality instead of limiting the number of primitives.
Using the primitives according to the natures and characteristics of the application
and hardwares, improve performance during execution and makes program coding
easier.
The common concept among the above design policiesis “loose standardization.”
L oose standardization means that some parts of the specification that would reduce the
hardware performance are not forcibly standardized and are left to the developer to
implement on hardware and/or application. With loose standardization, maximum per-
formance for various hardware platforms is achieved as shown in Figure 1-1.

1.4 Position of the LITRON4.0 Specification

1.4.1 Second Phase Standardization Activities of the ITRON
Project

As mentioned previously, the ITRON Project has been focusing on standardization of
real-time kernel specifications. As the embedded systems become larger and more
complex, the need for standardization on the surrounding environments of the real-time
kernel isincreasing. 1n 1996, the ITRON Project started its second phase: expanding
standardization from kernel specification to the kernel’s related specifications, espe-
cially on software components for embedded systems.

In standardizing software components, not only the conditions for advancing the devel-
opment and distribution of software components but also the interface for different

12



M TRON4.0 Specification Ver. 4.00.00

Functions defined in the pI TRON Specification

task event data
management flag queue

semaphore mailbox | others...

Adaptation to the processor architecture
Adaptation to application domains

HI TRON-Specification kernel adapted to Processor X

task data - implementation-
management semaphore queue mailbox | others specific

¢ Adaptation to the application requirements

Kl TRON-Specification kernel adapted to Application A

task data impl.-
mgmt. semaphore queue specF:)ific

Figure 1-1. Adaptation according the JITRON Specifications

fields are being considered.

The following two issues are being discussed to prepare the conditions for advancing
the development and distribution of the components. Thefirst problem isregarding the
distribution of software components. The difference in implementation among
MITRON kernels makes it difficult to ensure the distribution of software components.
To solve this problem, it is necessary to raise the level of kernel standardization while
keeping the advantages of loose standardization. The second problem is regarding the
support for software components with real-time capability. Many software compo-
nents are required to have real-time capabilities and aframework is needed to allow the
coexistence of software components and application while satisfying software compo-
nents’ real-time restrictions. The framework also allows multiple software compo-
nents to be used together.

The discussion results regarding these two problems are reflected in the pI TRON4.0
Specification. A standard method for designing embedded systems with real-time ker-
nel is also proposed. A guideline for designing applications supporting software com-
ponents with hard real-time capability is being created.

Standardization of software component interface in every field currently in progress
includes API (Application Program Interface) for TCP/IP protocol stacks and standard
interface for Java execution environments.

The TCP/IP protocol stack has taken an increasing significance in the field of embed-
ded systems, recently. Though the socket interface is in wide use today as a TCP/IP
API, it isnot appropriate for embedded systems (particularly small-scale ones) because
of such problems asits large overhead and the necessity of dynamic memory manage-

13



pI TRON4.0 Specification Ver. 4.00.00

ment within the protocol stack. The ITRON TCP/IPAPI Specification, which is a stan-
dard TCP/IP API for embedded systems, has been designed to solve these problems of
the socket interface and to enable a compact and efficient implementation of the TCP/
IP protocol stack. The ITRON TCP/IP API Specification has been published on May,
1998.

Java technology is also drawing interest these days. A practical approach for applying
Java technology to embedded real-time systems is to implement the Java runtime envi-
ronment on an I TRON-specification kernel. Then, build an application system
whereby the parts for which Javais best suited are implemented as Java programs, and
the parts taking advantage of the | TRON-specification kernel strengths are imple-
mented as ITRON tasks. A key issue hereis the standardization of the communication
interface between Java programs and I TRON tasks. The JTRON2.0 Specification has
been designed to define this interface standard and published on Oct., 1998.

Besides software component support, defining the requirements for ITRON kernels
designed for automotive control and gathering proposals for the standard specification
were also conducted. The results are included in the W TRON4.0 Specification.

Works on standardizing interface between | TRON-Specification kernels and debugging
environments, and guidelines for designing device drivers are currently in progress.
Furthermore, C++ language bindings for the ITRON kernel are also being surveyed.

1.4.2 Necessity of the pFITRON4.0 Specification

The need for reconsidering the real-time kernel specification arose during the ITRON
Project’s second phase mentioned in the last section and as a result, the pl TRON4.0
Specification was created. This specification is considered as the 4th generation of
ITRON Specifications. The four main reasons why it was necessary to design the
U TRONA4.0 Specification is outlined below.

(a) To improve software portability

Embedded software continues to grow in complexity and size. The need for appli-
cations to easily switch to different kernels isincreasing. Portability of softwares
developed on an ITRON kernel is also an important issue in the distribution of soft-
ware components.

(b) To add functionality for supporting software components

The original WITRON Specifications left out some functionality to create software
components that are intended for the market. For example, the functionality to find
the context where a service routine of a software component is called was only
available on the extension level.

(¢) To include new requirements and results of studies

From November 1996 to March 1998 a research group on hard real-time support
studied functionalities needed by areal-time kernel to make it easier to build a hard

14



M TRON4.0 Specification Ver. 4.00.00

real-time system. The RTOS automotive application technique committee, from
June 1997 to March 1998, sorted out the requirements for real time kernels on auto-
motive control applications. The results of these new requirements and studies
must be included in real time kernel specification.

(d) To include enhancements allowed by improved semi-conductor technology

Six years after the release of the ul TRON3.0 Specification, the semi-conductor
technology has dramatically progressed and so is the performance of embedded
processors. The available memory size on processors has also drastically increased.
Some useful kernel functions that were left pending on the release of the
M TRON3.0 Specification due to their overhead, can now be implemented with the
current technol ogy.

1.4.3 Introduction of the Standard Profile

In order to improve software portability, the set of functions required for implementa
tion and the functional specification of each service call should be strictly regulated. In
other words, the grade of specification standardization must be made stronger.

The standardization of I TRON Specifications has been done along the “loose stan-
dardization” policy which gives more importance to adaptability on hardwares and pro-
cessors rather than software portability by reducing overheads and memory size during
execution time. “L oose standardization” policy has made I TRON Specifications scal -
able and acceptable across a wide range of processors ranging from 8bits to 64bits.
This is one of the important reasons why the I TRON Specifications are widely
accepted. However, improving software portability and realizing scalability have many
contradicting aspects. It is difficult to realize both requirements at the same time
within one specification.

To address the issue of portability while maintaining the “loose standardization” policy,
the WITRON4.0 Specification strictly defines the set of standard functions and their
specifications. This set of standard functions is called the “ Standard Profile” A
large-scal e system was assumed when defining the Standard Profile for the ul TRON4.0
Kernel Specification. Thisis because larger systems require a more portable software.

Defining the Standard Profile leads to encouraging the building of softwares using only
functions provided by the Standard Profile, in cases where the portability of software
components is significant. It also leads to encouraging the implementation of kernels,
where the portability of software components are important, based on the Standard
Profile.

Within the Standard Profile, the specification is made to maximize software portability
while maintaining scalability. Asan example, amechanism for improving the portabil-
ity of interrupt handlers while keeping overheads small, has been introduced. Previous
M TRON Specifications did not provide away to maintain portability in prohibiting the

15



pI TRON4.0 Specification Ver. 4.00.00

nesting of higher priority interrupts from within an interrupt handler. However, the
U TRONA4.0 Specification does.

In realizing scalability, service calls are made as independent to each other as possible,
and many sets of functions are made available, but only the necessary functions are
actually linked using the library link mechanism. This method is the same as that of
previous WITRON Specifications. When it is difficult to link only the necessary func-
tions using the library link mechanism, then the kernel is supposed to provide, only the
necessary primitives required to support more complex functions. This enables the
support of complex function without modifying the kernel, while minimizing the over-
head in an application requiring no complex functions.

The Standard Profile assumes the following system image.

» The Standard Profile assumes the following system image.

» High-end 16 or 32-bit processor is used.

» The kernel code sizeis about 10 to 20KB when al functions are included.
» Thewhole system is linked into one module.

» The kernel object is statically generated.

Since the whole system is linked into a single module, service calls are invoked using
subroutine calls. The system does not have any particular protection mechanism.

The functions to be supported in Standard Profile includes all the level S functions
(with modifications and expansions in some functions) and a part of level E functions
(such as service calls with timeout, fixed-sized memory pool, cyclic handlers with
specification sorted out) of the Wl TRON3.0 Specification, and newly introduced func-
tions (task exception handling, data queues, system state reference function, and so
on). The static APl used to state object creation information (to be described later) is
also supported.

1.4.4 Realization of a Wider Scalability

As described in the previous sections, the Ul TRON4.0 Specification maintains a policy
of “loose standardization” and at the same time aims to provide awider scalability than
the previous ones.

It defines a minimum function set that can be made more compact than the previous
M TRON Specifications and more adaptable to small systems. Specifically the waiting
state that was mandatory in the pfI TRON3.0 is no longer required. It is, however,
replaced by the dormant state, which is mandatory. A kernel without the waiting state
allows tasks to operate within the same stack space. This reduces required memory
area and overhead on context switches.

In order to support the requirements over the Standard Profile, the full set of
M TRON4.0 Specification provides more functions than the full set of the previous
specifications. Specifically it includes almost all the functions of the Wl TRON3.0

16



M TRON4.0 Specification Ver. 4.00.00

Specification excluding the connection functions. Newly introduced functions in
M TRON4.0 Specification includes. the new functions in the Standard Profile (task
exception handling, data queue, system state reference function), object creation func-
tions for automatic assignment of 1D number, interrupt service routine functions
enabling interrupt handling written while keeping portability, mutex to support priority
inheritance/ceiling protocols, overrun handler to detect the time left assigned to a task.
The full set of Wl TRONA4.0 Specification is no less than the full set of ITRON2 Specifi-
cation in terms of functionality.

In addition to the Standard Profile, an “Automotive Control Profile” is also defined.
The Automotive Control Profile targets automotive control applications. It isaso con-
sidered as afunction set that increases the software portability for systems smaller than
those targeted by the Standard Profile. Specifically, Standard Profile functionalities,
such as functions with timeouts, suspended states, task exception handling, mail boxes,
and fixed-sized memory pools are unnecessary and therefore was omitted. On the
other hands, atask called a restricted task, is uniquely defined in the Automotive Con-
trol Profile. Restricted tasks do not enter the waiting state so restricted tasks with equal
priority can share the same stack area, reducing memory use. Unlessthereisno depen-
dency on errors occurring from invoking a service call that enters the waiting state,
restricted tasks can be replaced by normal tasks, and the resulting behavior does not
change. The Automotive Control Profile is backward compatible with the Standard
Profile, even with the specific functionality of restricted tasks.

Figure 1-2 illustrates the pl TRON4.0 supported function levels relative to the
M TRONS3.0 Specification. Compared to previous specifications, the pl TRON4.0
Specification is more applicable to smaller and larger systems.

Full set

Level En
1 Standard
Profile

Level S+

X Automotive
Control Profile

Level R* .\
UITRON3.0 Spec. Minimum set
HITRON4.0 Spec.

Figure 1-2. Function Levels of pFITRON4.0 Compared to pITRON3.0

1.4.5 New Functions in the JITRON4.0 Specification

New functions were added to the pl TRON4.0 Specification are described bel ow.

17



pI TRON4.0 Specification Ver. 4.00.00

Exception Handling Functions

The I TRONA4.0 Specification defines the frame for exception handling, which was | eft
as implementation-dependent under the previous U TRON Specifications.

When the processor detects an exception condition, the processor starts a CPU excep-
tion handler. CPU exception handlers can be defined for each type of exception in the
application. Since a CPU exception handler is global in the overall system, it is possi-
ble to check the context or the situation where an exception occurs, from within the
Task exception handling function is like asimplified version of a UNIX signal function
and is similar to the ITRON2 compulsion exception. The following isalist of typical
applications using task exception handling functions:

» Signa CPU exception, such as division by zero error, to atask.
» Send atask termination request to another task.
 Notify atask that the deadline has been reached.

Functionalities defined by the Wl TRON4.0 Specification for exception handling are
designed so that they can be used as primitives in implementing more complicated
exception handlers.

Data Queues

A data queue is a mechanism to communicate with a single word data message. The
M TRON3.0 Specification permitted use of either alinked list or aring buffer to imple-
ment a mailbox. However, in the Wl TRONA4.0 Specification, the implementation of a
mailbox is limited to alinked list. In addition, a data queue, which is equivalent to a
mailbox implemented with aring buffer, isintroduced as a separate object.

Data queue feature was strongly required by the Automotive Control Profile and was at
first, introduced as a unique feature of the Automotive Control Profile. However, since
data queues are useful to other application areas and programs not requiring data
gueues can be implemented without linking them to data queues, the date queue feature
was included in the Standard Profile.

System State Reference Functions

When creating software components assuming they are called by applications devel-
oped elsewhere, each service routine in each software component should work regard-
less of the context where it is called. However, in the Wl TRON3.0 Specification, only
the level E system call, ref_sys, was able to ook at the present system state. Many
implementations do not support ref_sys, and even in cases where ref_sys is sup-
ported, the large overhead caused by reference to unnecessary information was a prob-
lem.

In response to this problem, 5 new service calls of the form sns_yyy have been intro-
duced in the WITRON4.0 Specification. These service calls can refer the current state

18



M TRON4.0 Specification Ver. 4.00.00

of the system with small overheads. They can be invoked from any context and will
return a Boolean value (They will never return an error.) Asan example, it is possible
to check, without worrying about overheads, whether a service call that enters waiting
state can be invoked or not.

Also, to handle processing that requires mutual exclusion, these service calls facilitate
the locking CPU (or disabling dispatch) temporarily, and then restore the system back
to the original state after the processing is finished. The W' TRON3.0 Specification has
no feature to restore the system to its original state once loc_cpu was invoked during
the dispatching disabled state. 1n the pl TRON4.0 Specification, on the other hand, dis-
patching disabled state and CPU locked state are independent from each other so no
problems arise in locking the CPU.

Object Creation Functions for Automatic ID Number Assignment

In the WITRON3.0 Specification, the ID number must be provided in creating an object
dynamically. In large-scale systems, managing unused ID numbersistedious. Inthe
M TRONA4.0 Specification, service calls are introduced to create an object using the ID
number assigned by the kernel instead of the ID number specified by the application.
The service calls return the assigned |D number.

Interrupt Service Routines

The interrupt handling architecture depends on processors and systems, and is a diffi-
cult part to standardize. The previous I TRON Specifications did not standardize the
coding of interrupt handlers and was determined and optimized for each processor and
system. However in order to improve portability of device drivers, a method to write
portable device driversis required.

The WITRON4.0 Specification introduced an interrupt service routine functions to
write interrupt handling while preserving the portability aswell as the interrupt handler
functions in the previous specifications. The specification of interrupt service routine
is being designed with the goal of writing interrupt routines that depend only on inter-
rupt generating devices.

Mutexes

Priority inheritance protocols and priority ceiling protocols are necessary to prevent
priority inversions in a system with severe real-time constraints. Mutex is a mutual
exclusion mechanism that supports priority inheritance protocols and priority ceiling
protocols. It is a new feature of Wl TRON4.0 Specification. The mutex feature in the
real-time extension of POSIX real-time was referred to when designing the mutex for
the WITRON4.0 Specification.

19



M TRON4.0 Specification Ver. 4.00.00

Overrun Handler

Overrun handler is another feature required in building a system with severe real-time
constraints. Overrun handler detects whether the amount of processing time assigned
to atask has been used up.

The simplest method to detect that atiming constraint has not been met in a system is
by checking if the processing does not finish by the designated deadline. This can be
done using an alarm handler. However, this method do not prevent higher priority tasks
from continuing to run until its deadline, and as a chain reaction result, lower priority
tasks may not meet their deadlines. To solve this problem, a mechanism to detect when
atask has used up given amount of timeis required.

Standard Configuration Method

The Standard Profile assumes that the kernel objects, such as tasks and semaphores, are
created statically. In order to port the application software written on a kernel con-
forming to the Standard Profile to another conforming kernel, in addition to the appli-
cation program itself, object creation information must also be ported to the new
kernel.

Previous I TRON Specifications did not standardize descriptions for the creation of
information in the kernel causing incompatibility in between kernels. For example,
one product may write the object information using C data structures, while another
product may write the object information statically through a GUI configuration utility.
When porting a large scaled application to another kernel under such conditions, the
amount of work on the porting of creation information can no longer be ignored.
Although the actual work of rewriting itself is not big, attention should be paid to the
fact that the amount of time required to learn a different way of writing for different
products must be included in the total amount of work.

The W'TRONA4.0 Specification standardizes the coding of object creation information
and the way to configure the kernel or software components based on those informa-
tion. The method of writing object creation information in the system configuration
fileiscalled static APl. The names of static APIs are the same as names of the service
calls with the corresponding function, but they are written in upper case letter. Static
APIs and service calls share the same parameters except that each element of a packet
iswritten within “{” and “}” instead of passing a pointer to the packet. Because of this,
learning either the static API or the service call means learning the other. Thisis
intended for educational purposes.

The configurator which processes static APIs must have a function to automatically
assign 1D number to the object with no ID number given. This allows omission of han-
dling of automatic 1D assignment, even when building an application with separately
developed modules and is very useful for large scale application development.

Static APIs for software components as well as static APIs for the kernel can be

20



M TRON4.0 Specification Ver. 4.00.00

described in one system configuration file. Thisis another feature of the configuration
method of the uI TRON4.0 Specification. By having the system configuration file pro-
cessed by the software component configurator first, and then by the kernel configura-
tor, complicated situations, such as the case where software components require
different kernel objects on their configuration, can be handled.

In addition to the new features introduced above, the Wl TRON4.0 Specification also
reduces implementation-dependency by defining those items that were left ambiguous
or implementation-dependent in each service call function under the pul TRON3.0 Spec-
ification in order to improve the software portability. Also many improvements have
been made over the I TRON3.0 Specification, such as sorting out terms and concepts,
sorting out datatypes of parameters, sorting out error codes, reassigning function codes
to service calls, standardizing constants and macros to retrieve kernel configuration,
and standardizing system initialization process.

21



pI TRON4.0 Specification Ver. 4.00.00

22



M TRON4.0 Specification Ver. 4.00.00

Chapter 2 ITRON General Concepts,
Rule, and Guidelines

The ITRON general concepts, rules, and guidelines stated in this chapter are common
to the LITRON4.0 Specification and the software component specifications standard-
ized to be consistent with WITRON4.0. These specifications are referred to as the
ITRON Specifications. Inthe ITRON general concepts, rules and guidelines, the “ker-
nel specification” refers to the ul TRON4.0 Specification and the “ Standard Profile”
refers to the Standard Profile of the ul TRON4.0 Specification.

[Supplemental Information]

As mentioned above, the concepts, rules, and guidelines in this chapter are applicable
to software component specifications aswell. However, to make the pul TRON4.0 Spec-
ification more understandable, we refer to certain areas specific to the Wl TRON4.0
Specification and its Standard Profile when necessary.

2.1 ITRON General Concepts

2.1.1 Terminologies

Terminologies used in this specification are defined bel ow.

» Implementation-Defined: Items that are covered in the functional description of the
ITRON Specifications but are not standardized by the specifications. All implemen-
tation-defined items should be defined and described by the implementation’s docu-
mentation, such asthe product manuals. The portability of any part of an application
program that depends on implementation-defined items is not guaranteed.

» Implementation-Dependent: Items covered in the functional description of the
ITRON Specifications, but whose behavior varies depending on the implementation
and on the system operating conditions. The specifications do not guarantee the
behavior of an application program that relies on implementation-dependent items.

» Undefined: Situations with no guaranteed behavior. That is, a system failure might
occur in any undefined situation. Items not mentioned in the specifications are gen-
erally undefined. Thereis no guarantee in the specification for the behavior of an
application program that generates an undefined situation.

* Implementation-Specific: Functionalities, which are beyond the scope of the ITRON
Specifications and are defined by the implementation.

[Supplemental Information]
Features defined by the implementation do not need to be internally consistent within

23



M TRON4.0 Specification Ver. 4.00.00

the implementation and may vary according to the kernel or software component con-
figurations. In the case where variations in feature definitions exists due to the kernel
or software system configuration, implementation documents such as product manuals,
should describe the feature definitions for each configuration, as well the steps in con-
figuring the kernel or the software component.

2.1.2 Elements of an API

An APl (Application Program Interface) isamethod used by an application program to
interface to the kernel or a software component. An APl consists of the following ele-
ments:

(A) Service Cdlls

The interface used by an application program to call a kernel or a software component
isreferred to as a service call. The ITRON Specifications standardize the names and
functions of service calls, as well as the types, orders, names, and data types of their
parameters and return parameters.

In a C language API, a service cal is defined as a function call. However, it may be
implemented in other forms such as a preprocessor macro as long as it has the same
functionality.

[Differences from the pITRON3.0 Specification]

In the WITRON3.0 Specification, the service call concept was referred to as a system
call. The concept name has changed to service call in order to include software compo-
nents as well as kernel functionalities. The term system call may still be used to refer
to akernel service call.

(B) Callbacks

The interface used by a software component to call a routine registered by an applica-
tion program is referred to as a callback. The registered routine is called a callback
routine. The ITRON Specifications standardize the names and functionality of call-
back routines, as well as the types, order, names, and data types of their parameters and
return parameters.

The context in which a callback routine is executed is defined in each software compo-
nent specification.

[Supplemental Information]
Callbacks are not used in the kernel specification.
(C) StaticAPIs

Static API refers to the interface used in both determining the kernel or software com-
ponent configuration and defining the initial states of objects within a system configu-

24



M TRON4.0 Specification Ver. 4.00.00

ration file. The ITRON Specifications standardize the names and functionalities of
static APIs aswell as the types and order of their parameters.

Service calls, such as those used to register objects, may have a corresponding static
API. Thefunctionality of astatic APl is equivalent to executing the corresponding ser-
vice calls during system initialization, in the order listed in the system configuration
file. Some static APIs, like the ITRON general static APIs commonly used by kernel
and software components, do not correspond to any service call at all.

(D) Parameters and Return Parameters

Parameters are data passed to service calls, callback routines, and static APIs. Return
parameters, on the other hand, are data returned by service calls or callback routines.
The ITRON Specifications standardize the names and data types of parameters and
return parameters.

In a C language API, the return parameters, except the return value of afunction, are
returned either through a pointer passed as an argument to a C language function, or as
a data structure containing multiple parameters or return parameters. This type of
structure is called a packet. The pointer that points to the area holding the return
parametersis not listed as a parameter. In the case where a pointer is pointing to asin-
gle return parameter, that pointer is not listed as a parameter, while a pointer to a
packet, on the other hand, is listed as a parameter. In a C language API, an argument
pointing to an area holding a certain return parameter is named by prefixing the return
parameter’s name with “p_." If the return parameter’s name starts with “pk_,” the
pointer to the return parameter starts with “ppk_." When parameters are too large to
pass as an argument, a pointer to the data area holding the parameter may be passed
instead. The naming convention for return parameters applies for parameters as well.

Asageneral rule, the data areas used to hold the parameters and return parameters of a
service call can be reused by the application once the service call returns. Also, data
areas used to hold callback routine parameters and return parameters for a software
component can be reused by the software component once the callback routine returns.
Exceptions to these rules are explicitly mentioned in the functional descriptions of ser-
vice calls and callbacks.

[Rationale]

Standardizing the argument and return value names of functions is actually not neces-
sary since they do not affect any kernel or software component API functionality.
However, the names of C language function arguments and function return values are
standardized in the ITRON Specifications because they are used frequently throughout
the specification and product manuals.

(E) Data Types

The ITRON Specifications standardize the names and meanings of parameter and

25



M TRON4.0 Specification Ver. 4.00.00

return parameter datatypes. Some data type definitions are standardized in the ITRON
Specifications.

(F) Constants

The ITRON Specifications standardize the names, meanings, and values of the con-
stants used as parameters, return parameters, and function codes for service cals. Ina
C language API, constants are defined using preprocessor macros.

(G) Macros

A macro is an interface to convert values which are not bound to the system state with-
out calling the kernel or software components. The ITRON Specifications standardize
the names and meanings of macros. In a C language API, macros are defined using
Preprocessor macros.

(H) Header Files

There isone or more header filesfor each kernel and each software component contain-
ing declarations of service calls and definitions of data types, constants, and macros.
The ITRON Specifications standardize the names of these header files. If there are
more than one header file, the standardization also covers which header files contain
which declarations and definitions.

A header file containing the definitions of data types, constants, and macros specified
in the ITRON Genera Definitions section should be included in header files prepared
for each kernel and software component.

The configurator automatically assigning object ID numbers generates an automatic
assignment header file to contain the generated IDs. I TRON Specifications standardize
the names of these header files.

The header files standardized in the ITRON Specifications can be divided into more
than one file depending on the implementation. Care should be taken so that no error
arises even when the same header file is included multiple of times.

[Supplemental Information]

To prevent errors due to multiple inclusion of the same header file, define a specific
header identifier, for instance “KERNEL_H_,” as a preprocessor macro (“#define
_KERNEL_H_") at the top of the header file, and then enclose the whole header file
with “#ifndef _KERNEL_H_" and “#endif.”

2.1.3 Object ID Numbers and Object Numbers

The resources on which a kernel or a software component operates are generally
referred to as objects. Objects of each type are uniquely identified by numbers. In the
case where only akernel or a software component APl uses the object identifier and the
application is allowed to freely assign numbers, the identifier numbers are called ID

26



M TRON4.0 Specification Ver. 4.00.00

numbers. On the other hand, identifier numbers are called object numbersif they are
assigned according to an internal or external condition of the kernel or a software com-
ponent.

Objects identified by ID numbers are registered to the kernel or a software component
when the application creates them. Objects identified with object numbers, however,
cannot be created since their characteristics are determined by the internal and external
condition of the kernel or a software component. Registering these objects to the ker-
nel or a software component is referred to as defining objects.

In general, positive serial numbers starting from 1 are used as object IDs. When the
objects are classified for protection mechanism reasons into user objects and system
objects, increasing positive serial numbers starting from 1 are used for user object ID
numbers, and decreasing negative serial numbers starting from (-5) are used for system
object ID numbers. In this case, only user objects are subject to automatic ID assign-
ment. 1D numbers from (—4) to O are reserved for special purposes.

[Standard Profile]

The Standard Profile does not require object classification nor does it require support
for negative ID numbers. At the very least, positive ID numbers from 1 to 255 must be
supported.

[Supplemental Information]

Interrupt handlers and rendezvous are examples of objects identified by object num-
bers. Object numbers are assigned to interrupt handlers according to hardware require-
ments while for rendezvous, object numbers are assigned based on the kernel’s internal
requirements. For these two types of objects, the application cannot freely assign num-
bers.

2.1.4 Priorities

Priorities are parameters determined by applications to control the processing order of
tasks, messages, and so on. Positive serial numbers starting from 1 are used to repre-
sent priorities, where a smaller number indicates a higher precedence.

[Standard Profile]

In the Standard Profile, the kernel must support at least 16 different levels of task prior-
ity (from 1 through 16). The number of message priority levels must be equal to or
greater than the number of task priority levels.

[Differences from the pITRON3.0 Specification]

The WITRONS.0 Specification alowed negative numbers to be used for system priori-
ties; however, since negative values were seldom used, system priorities are limited to
positive numbers in the Wl TRON4.0 Specification. Negative priorities are allowed but
they are implementation-specific. Pl TRON3.0 requires at least 8 priority levels (1-8).

27



pI TRON4.0 Specification Ver. 4.00.00

While the WITRON4.0 Specification does not specify the minimum number of priority
levels, the Standard Profile requiresit to support at least 16 priority levels (1-16).

2.1.5 Function Codes

Function codes are numbers assigned to identify service calls. Invoking a service call
from a software interrupt, for instance, makes use of a function code. However func-
tion codes are not necessary in invoking a service call from a subroutine.

In the ITRON Specifications, each service call of akernel or a software component is
assigned a unique negative number as afunction code. However, (—4) to 0 are reserved
for special purposes. Positive function codes represent extended service calls.

2.1.6 Return Values of Service Calls and Error Codes

In principle, the return value of aservice call isasigned integer. If an error occurs dur-
ing the execution of a service call, an error code with a negative value is returned. A
service call returns E_OK (= 0) or a positive integer if it completes its execution nor-
mally. Each service call specifies the meaning of its return value during normal com-
pletion. However service calls returning boolean values (BOOL type) and service
calls that never return are exceptions. A service call that never returns should be
declared as a function without areturn value (i.e. avoid type function) in a C language
API.

An error code is divided into two parts, the main error code represented by the lower 8
bits, and the sub error code represented by the remaining bits. Both the main error
code and the sub error code are negative, where the value of the sub error code is the
result of arithmetically shifting the error code to the right by 8 bits. The resulting com-
bined error code is also negative. The names, meanings, and values of the main error
codes, defined under the ITRON General Definitions section, are common among the
kernel and software components. Main error codes are classified into error classes,
according to the situations in which they occur and also according to the need for error
detection.

In the functional descriptions of service callsin the ITRON Specifications, only the
main error codes returned by service calls are described, while sub error codes are
implementation-defined. Sub error codes are also specified in some software compo-
nent specifications. Descriptions, such as “an E_XXXXX error is returned” or “an
E_XXXXX error occurs,” included within the functional descriptions of service calls
indicate that the service call returns an error code with a main error code of
E_XXXXX.

In principle, unless the main error code is classified as a warning class error, side
effects due to a service call that returns an error code do not arise. In other words, the
invocation of a service call does not change the system state. However, service calls

28



M TRON4.0 Specification Ver. 4.00.00

with unavoidable side effects are exceptions to the above principle. Side effects due to
aservice call must be explicitly specified in the service call’s functional description.

The ITRON Specifications allows an implementation to omit detection of some errors
in order to reduce kernel overhead. In principle, the main error code’s class determines
if the error detection can be omitted. Each error class explicitly mentions if the detec-
tion of its errors can be omitted. Exceptionsto this principle are explicitly described in
the service call’s functional description. In the case where an error that should have
been detected but was not because the error detection was omitted, the resulting system
behavior is undefined.

The following main error codes occur in many, or almost all, of the service calls, thus
they are not described in every service call.

E_SYS System error

E_NOSPT Unsupported function

E _RSFN Reserved function code
E CTX Context error

E_MACV Memory access violation
E_OACV Object access violation

E_NOMEM I nsufficient memory

However, if these errors occur as aresult unique to a service cal, they are listed in the
service call’s description.

The error code returned by a service call that detects multiple errors is implementa-
tion-dependent.

[Supplemental Information]

Thereturn value of E_OK (= 0) represents normal completion and is not an error code.
However, for convince reasons, there are cases where it is described as an error code
returned from a service call.

It isinsufficient to sSimply examine the lower 8 bits of areturn value for a negative num-
ber to determine whether the service call returned an error or not. Thisis because the
lower 8 bits can be negative even when the service call completes normally and returns
apositive value.

[Differences from the pITRON3.0 Specification]

In the WITRONA4.0 Specification, an error code now consists of two parts, the main
error code and the sub error code. Main error codes are shared between the kernel and
software components. Sub error codes are intended to report the detailed cause of
errors, and to be used mainly for debugging purposes. For example, when the main
error code is E_PAR (parameter error), the sub error code can be used to indicate
which parameter has an incorrect value. E_OK isnot regarded as an error code.

Omitting error detection is explicitly permitted depending on the error class. Error
codes which are not listed in each service call have been revised.

29



Ml TRON4.0 Specification Ver. 4.00.00

The pI TRON3.0 Specification assumed the case where the return value of a service call
is positive even though there were no service calls with a positive returned value. In
the WITRONA4.0 Specification, however, kernel service calls with positive return values
exist. Also service callsthat return boolean values have been introduced.

2.1.7 Object Attributes and Extended Information

Objects identified with ID numbers have object attributes while objects identified with
object numbers, on the other hand, may or may not have object attributes. Object
attributes that determine the operational mode and initial state of an object are defined
when an object is registered. An object with an attribute value TA_XXXXX is called
“an object with the TA_XXXXX attribute” There is no interface available to read the
object attributes after the object is registered.

The values and meanings of available object attributes are defined in the functional
descriptions of the service calls or static APIs that register the objects. TA_ NULL
(= 0) is used when there is no need to specify the object attribute.

A processing unit object may have extended information. The extended information is
specified at registration and is passed as a parameter when the object starts to execute.
Extended information does not have any effects on the operation of the kernel or a soft-
ware component. Thereis no interface available to read the extended information from
a specific object.

[Supplemental Information]

Examples of processing unit objects with extended information are tasks, interrupt ser-
vice routines, and time event handlers such as cyclic handlers.

[Differences from the pITRON3.0 Specification]

In the WITRON3.0 Specification, objects identified with 1D numbers must have
extended information, whereas in the pl TRON4.0 Specification extended information
isonly provided when necessary. Extended information is now passed as a parameter
when the object starts to execute and it cannot be read by object state reference service
cals.

2.1.8 Timeout and Non-Blocking

Timeout or non-blocking features, when necessary, can be made available to service
calls that might enter the WAITING state.

When a service call’s process is not completed within a specified time, the timeout fea
ture cancels any further processing and returns from the service call immediately. In
this case, the service call returnsan E_TMOUT error. Since there are no side effects
due to service calls returning an error, the system state, upon returning from the
timed-out service call remains unchanged. However, some service calls due to their

30



M TRON4.0 Specification Ver. 4.00.00

natures might prevent the system from proper restoration after the timeout cancellation.
These exceptional cases should be explicitly specified in the service call’s functional
description.

When the timeout duration of a service call is set to O, the service call does not enter
the WAITING state even though it should. Setting the timeout duration of a service
call to Oiscaled polling. Service calls that execute polling never enter the WAITING
state. The polling feature differs from the non-blocking feature described below in that
polling cancels processing of the service call while non-blocking continues processing
the service call.

In the non-blocking feature, a service call that enters the WAITING state returnsimme-
diately with an E_WBLK error but the processing still continues. The application pro-
gram is notified by some means when the process completes or when it is canceled.
Since the service call continues operating even after returning fromits call, packets and
data areas used for parameters and return parameters should not be used for other pur-
poses until the process completes.

Processing of aservice call isreferred to as“pending” whenitisin the WAITING state
within the service call or when it continues operation due to a non-blocking service
call.

The functional descriptions of the service callsin the ITRON Specifications describes
the behavior when the service calls have no timeout, that is the behavior when the ser-
vice calls wait forever. The description “entering the WAITING state” or “moved to
the WAITING state” in the functional descriptions of the service calls do not imply any
specific waiting duration. When a service call isinvoked with atimeout duration, the
service cal returnswith E_TMOUT as the main error code when the duration expires.
In the case of polling, the service call does not enter the WAITING state and returns
immediately with E_TMOUT as the main error code. With the non-blocking feature,
the service call does not enter the WAITING state and returns E_ WBLK as the main
error code.

When specifying the timeout duration, TMO type, a positive value specifies the length
of the timeout duration, TMO_POL (= 0) specifies polling, and TMO_FEVR (=-1)
specifies the timeout duration should be forever. TMO_NBLK (= —2) can also be
specified to indicate the non-blocking feature, depending on the service call. When the
timeout duration is specified, it must be guaranteed that the timeout action occurs after
at least the timeout duration has elapsed from the time the service call isinvoked.

[Supplemental Information]

Kernel service calls do not have the non-blocking feature. Since a service call that exe-
cutes polling never enters the WAITING state, the precedence of the invoking task
remains unchanged.

In typical implementations, if the timeout duration is set to 1, the timeout action will
occur at the second time tick after the service call isinvoked. Since the timeout dura

31



pI TRON4.0 Specification Ver. 4.00.00

tion cannot be set to 0 (because 0 is assigned to TMO_POL), the system never times
out on the first time tick after the service call isinvoked.

2.1.9 Relative Time and System Time

Relative time of RELTIM type is used when specifying the time for an event to occur
with respect to a certain time such as the time when a service call isinvoked. When
relative time is used, it must be guaranteed that the event occurs after at |east the speci-
fied duration time el apsed.

Relative time can also be used to specify time-related actions other than event times,
such as time intervals between events, where the meaning of relative time is define for
each case.

System time of SYSTIM typeis used when specifying absolute time. A function to set
the current system time is available in the kernel specification. Changing the system
time using this kernel function will not change the time in the real world (called real
time) when an event specified using relative timeisto occur. However, the system time
when an event occurs will change.

[Supplemental Information]

In typical implementations, if the relative timeis set to 1, the event will take place on
the second time tick after the service call isinvoked. If therelativetimeis set to O, the
event will take place on the first time tick after the service call isinvoked.

2.1.10 System Configuration File

A system configuration file defines the configuration of the kernel and software compo-
nents aswell astheinitia state of objects. It can contain static APIs for the kernel and
software components, ITRON general static APIs (called general static APIs hereafter)
and also C language preprocessor directives. A tool that interprets static APIsin asys
tem configuration file and configures the kernel or a software component is called a
configurator.

The steps in processing a system configuration file is as follows (see Figure 2-1). The
system configuration file is first passed to the C language preprocessor. Then, it is
passed on to each of the software component configurators and then, finally to the ker-
nel configurator.

The software component configurator interprets the static APIs pertaining to itself and
other general static APIs included in the file passed from the C preprocessor or from
other previous configurators. The configurator then generates a source file, writtenin C
language, that is necessary for configuring and initializing the software component
itself. The software component configurator then adds static APIs for the next configu-
rators when needed and removes the static APIs pertaining to itself to and from the
passed files, before passing it on to the next configurator.

32



M TRON4.0 Specification Ver. 4.00.00

system.cfg

System configuration fil

C laguage preprocessor www_cfg.c
Configuration file for
/ the software component
Software component )
configurator \ www_id.h
¢ Automatic assignment
header file

! kernel_cfg.c

' Configuration file
/ for the kernel

|

Kernel configurator kernel id.h

\ Automatic assignment
header file

A

Figure 2-1. Processing Procedure for a System Configuration File

The kernel configurator interprets all static APIs included in the passed file and then
generates a C language source file required for configuring and initializing the kernel.
If it detects statements that cannot be interpreted either as a static API for the kernel or
ageneral static API, the kernel configurator reports an error.

Kernel and software component configurators ignore any lines starting with a“#” sign.
Software component configurators pass any lines starting with a“#” unchanged on to
the next configurator.

[Supplemental Information]

Static APIs added by a software component configurator for the next configurators
should not use preprocessor macros that are defined in the system configuration file and
other files included through the preprocessor directive “#include.” The reason is that
these preprocessor macros are already expanded after going through the C language
Preprocessor.

[Rationale]

The steps in processing a system configuration file is standardized to effectively deal
with cases where the kernel and software components are devel oped independently.

33



pI TRON4.0 Specification Ver. 4.00.00

Passing the system configuration filefirst to the C language preprocessor makes the fol-

lowing things possible.

* It allows a system configuration file to be divided into multiple files through the use
of the “#include” directive. For example, when embedding a software component
into a system, the necessary static APIs can be written in independent files. Those
files can then be included in the system configuration file.

« |t allows macros to be used instead of raw integers to define object ID numbers and
object numbers.

* It alows conditional inclusion of configuration statements through the use of direc-
tives such as “#ifdef.” Inturn, it makes the changing of kernel and software compo-
nent configurations and the initial states of objects possible.

Configurators ignore lines starting with “#” because these lines usually pertain to
information generated by the preprocessor regarding the source file. However, config-
urators can still use these lines for informational purposes, such as generating error

messages.

2.1.11 Syntax and Parameters of Static APIs

The syntax of the static APIs is based on the syntax of the C language function call.
The parameters of a static API is based on the parameters of the corresponding service
call in the C language API. However, if a parameter is a pointer to a packet, the ele-
ments of the packet should be separated with acomma*,” and enclosed with braces“{”
and“}”

The static APl parameters are classified into the following four classes, according to
available expressions:

(@) Integer Parameters with Automatic Assignment

A parameters of this class can be an integer (including a negative integer), an iden-
tifier, or a preprocessor macro (other than the restrictions mentioned below) which
expands to either an integer or an identifier. Example parameters of this class are
object ID numbers that are automatically assigned.

When a parameter of this class takes on the form of an identifier, the configurator
responsible for processing the static API containing that identifier assigns an integer
to that identifier. This assignment is called automatic ID number assignment by a
configurator. The configurator generates a header file containing the macro defini-
tions assigning integers to each identifier. Once the configurator assigns an integer
to an identifier, the identifier can be used in the same manner as a preprocessor
macro which expands to the assigned integer within static APIs that are processed
by the configurator itself and by the following configurators.

(b) Integer Parameters without Automatic Assignment
A parameter of this class can only be an integer (including a negative integer) or a

34



M TRON4.0 Specification Ver. 4.00.00

preprocessor macro (other than the restrictions mentioned bel ow) which expands to
an integer. Example parameters of this class are object ID numbers that cannot be
automatically assigned and object numbers.

(c) Preprocessor Constant Expression Parameters

A parameter of this class is a constant expression that can be interpreted by a pre-
processor. Only constants, macros, and operators that can be interpreted by a pre-
processor can be used. Example parameters of this class are object attributes.

(d) General Constant Expression Parameters

A parameter of this classis any constant expression allowable in the C language.
Most parameters belong to this class.

Each static API defines the class of its parameters. Integer parameters with or without
automatic assignment and preprocessor constant expression parameters should be
explicitly mentioned in the functional descriptions of static APIs. Other parameters not
mentioned are assumed to be general constant expression parameters.

An ITRON genera static API exists to include afile. Thus, there are two methods of
including afile in a system configuration file: using the preprocessor directive
“#include” or using the general static API. The differences between these two meth-
ods are described below:

* If preprocessor macros are used to define integer parameters with or without auto-
matic assignment (hereafter, simply called integer parameters), only preprocessor
macros defined in the system configuration file or other filesincluded through a pre-
processor directive can be used.

* Filesincluded using preprocessor directives can contain only static APIs and prepro-
cessor directives. In contrast, files included using general static APIs can only con-
tain preprocessor directives and declarations and definitionsin the C language.

NULL, which is often used to indicate that the kernel must allocate a memory area, is
recognized as a symbol for static APl parameters. A constant expression with avalue O
isnot aways interpreted asNULL. The behavior of such constant expressionisimple-
mentation-dependent. Therefore, a NULL must not be macro-expanded by a prepro-
cessor before a configurator processesit. In other words, NULL should not be defined
as a preprocessor macro in a system configuration file or other files included through
preprocessor directives.

The configurator reports errors when it detects syntax errors or incorrect number of
parameters in static APIs. The method of handling errors found during the processing
of static APIsisimplementation-defined.

[Standard Profile]

In most static APIs, implementation-specific parameters can be added. In order for
such implementations to conform to the Standard Profile, the configurator must cor-
rectly process the static API's even when no implementation-specific parameters appear

35



pI TRON4.0 Specification Ver. 4.00.00

in the system configuration file. One of the methods to realize thisis by supplying
default values for implementation-specific parameters.

[Supplemental Information]

Static APIs can be written in free format inside a system configuration file. There may
be white spaces, new lines and comments between words. The semicolon “;” is
required at the end of each static API statement.

Since C language enumerated constants and “sizeof” cannot be interpreted by a pre-
processor, they cannot be used in preprocessor constant expression parameters.

Removing a NULL preprocessor macro definition from a file that is included into the
system configuration file through a preprocessor directive is sometimes difficult
because of the file's structure. This problem can be solved in the following way.
Define a specific identifier (for example, “CONFIGURATOR”) as a preprocessor
macro (“#define CONFIGURATOR?”) at the top of the system configuration file.
Then, enclose the NULL preprocessor macro definition within “#ifndef CONFIGU-
RATOR” and “#endif” directives.

[Rationale]

In order to simplify configurator implementations, static APl parameters are classified
into four classes. A configurator must be able to determine object ID numbers and
object numbers properly so, excluding those that can be automatically assigned, object
ID numbers and object numbers are limited to those expanded to integers after prepro-
cessing (integer value parameter). Some parameters, such as object attributes, may
have an effect on aregistered object’s structure depending on its value. To be able to
use conditional directives based on these parameters in a C source file generated by a
configurator, only expressions whose values can be determined by the preprocessor are
allowed (preprocessor constant expression parameters). For other parameters, any con-
stant expression in the C language is allowed (general constant expression parameters).
If a configurator is implemented in this manner, it would not be able to determine all

parameter values. Thus, its error checking capability is limited. Determining all the
parameter values are possible by calling a compiler from the configurator and convert-
ing the constant expressions to values. However, since this approach requires modify-
ing the configurator for each compiler, it has not been adopted as the standard method.

2.2 APl Naming Convention

2.2.1 Software Component ldentifiers

Software component identifiers are used to distinguish one set of standardized software
component APIs from another. The software component identifier is made up of two to
four characters. If a software component contains more than one functiona unit, each

36



M TRON4.0 Specification Ver. 4.00.00

individual unit may have a software component identifier. Software component identi-
fiers are defined in the software component specification.

Software components that define their own APIs are not subject to this convention.
However, to avoid naming conflicts with standardized software components, making
the software component identifiers 5 or more characters long, or prefixing the identifier
with “v” is recommended.

Hereafter, software component identifiers in lowercase are described as www, and
those in uppercase as WWW.

2.2.2 Service Calls

The standard form of akernel service call name takes the form of xxx_yyy, where xxx
represents an operational procedure and yyy represents the target object of the opera-
tion. A service call derived from an xxx_yyy service call should be prefixed with the
letter z resulting in aname of zxxx_yyy. If aservicecall isderived from apreviously
derived service call zxxx_yyy, the name becomes zzxxx_yyy.

Names of service calls for software components take the form of www_xxx_yyy or
WWW_ZXXX_YVY.

For naming implementation-specific service calls, the convention is to prefix “v”
before xxx or zxxx. This creates standard names of the form vXXX_yyy, VZXXX_VyY,
WWW_VXXX_YYY, Of WWW_VzZXXX_YyYyy. However, in the kernel specification, when
aservice call begins with an “i”, which indicates that the service call can be invoked
from interrupt handlers, the service call’s name takes the form ivxxx_yyy instead of

VIXXX_YVYY.
[Supplemental Information]

Table 2-1 shows the abbreviations of the form xxx, yyy, and z used in the uITRON4.0
Specification and their English origin.

2.2.3 Callbacks

Since callback names are used as parameters, the naming convention for callbacksis
the same as that of parameters.

2.2.4 Static APIs

Generally, static APIs are named by capitalizing all the letters of the corresponding ser-
vice call names. The names of static APIs that have no corresponding service call fol-
low the naming convention of service calls, with the names still capitalized.

The names and meanings of ITRON general static APIsthat are used both by the kernel
and software components are specified in the ITRON General Definitions section.

37



pI TRON4.0 Specification Ver. 4.00.00

Table 2-1. Abbreviations used in the pITRON4.0 Specification and English origin

XXX English origin yyy English origin
acp accept alm alarm handler
act* activate cfg configuration
att attach cpu CPU
cal call ctx context
can cancel cyc cyclic handler
chg change dpn | dispatch pending
clr clear dsp dispatch
cre create dtq data queue
def define exc exception
del delete flg eventflag
dis disable inh interrupt handler
dly delay ini initialization
ena enable int interrupt
exd exit and delete isr interrupt service routine
ext exit mbf | message buffer
fwd forward mbx | mail box
get get mpf | fixed-sized memory pool
loc* lock mpl memory pool
pol poll mtx mutex
ras raise ovr overrun handler
rcv receive por port
ref refer pri priority
rel release rdq ready queue
rot rotate rdv rendezvous
rpl reply sem semaphore
rsm resume Sys system
set Set svc service call
sig signd tex task exception
slp sleep tid task ID
snd send tim time
sns sense tsk task
sta start tst task status
stp stop ver version
sus suspend
ter terminate z English origin
unl unlock a auto ID assign
wai* | wait f force
wup* | wake up I interrupt
p poll
t timeout

* Abbreviations with asterisks (*) are also used as ayyy abbreviation.

38



M TRON4.0 Specification Ver. 4.00.00

2.2.5 Parameter and Return Parameter

The names of parameters and return parameters are al lowercase and are four to seven
charactersin length. The following conventions apply to parameter and return parame-
ter names:

—id —ID (object ID number, ID type)

-no — number (object number)

—atr — attribute (object attribute, ATR type)

—stat — state (object state, STAT type)

—mode —mode (service call operational mode, MODE type)

—pri — priority (priority, PRI type)

-sz —size (in bytes, SIZE type or UINT type)

—cnt —count (in units, UINT type)

—ptn — pattern

—tim —time

—cd —code

i— initial value of —

max— maximum —

min— minimum —

left— quantity left of —

p_— pointer to the memory area of areturn parameter (or a param-

eter)

pk — pointer to a packet
pk_cyyy pointer to a packet passed to cre_yyy
pk_dyyy pointer to a packet passed to def_yyy
pk_ryyy pointer to a packet passed to ref_yyy
pk_ www_cyyy  pointer to a packet passed to www_cre_yyy
pk_ www_dyyy pointer to a packet passed to www_def yyy
pk_ www_ryyy  pointer to a packet passed to www_ref yyy

ppk_— pointer to the memory area of a pointer to a packet

If the names of the parameters and return parameters are identical, they are generally
the same data type.

2.2.6 Data Types

The names of data types are all uppercase and are two to ten charactersin length. The
following conventions apply to data type names:

—P Pointer data type

T - Packet (data structure) type
T CYYY Packet type passed to cre_yyy
T RYYY Packet type passed to ref_yyy

39



pI TRON4.0 Specification Ver. 4.00.00

T_WWW _— Data structure used by software components
T WWW_CYYY  Packet type passed to www_cre_yyy
T WWW_RYYY  Packet type passed to www_ref yyy

The names and meanings of ITRON genera datatypes that are used by both the kernel
and software components are specified in the ITRON General Definitions section.

2.2.7 Constants
The names of constants are all uppercase and follow the convention described bel ow.

(A) ITRON Genera Constants

The names of ITRON general constants that are used both by the kernel and software
components have no particular naming convention. The names and their respective
meanings and values are specified in the ITRON General Definitions section.

(B) Error Codes

Main error codes defined in the ITRON Specifications take the form E_XXXXX,
where XXXXX is approximately two to five characters in length. The form
EV_XXXXX is used for implementation-specific main error codes.

Sub error codes have no particular naming convention.

Error classes take the form EC_XXXXX, where XXXXX is approximately two to five
characters.

(C) Other Constants

Other constants take the form TUU_XXXXX or TUU_WWW _XXXXX, where UU is
approximately one to three characters in length, and XXXXX is approximately two to
seven characters in length. Constants used for the same type of parameters or return
parameters should have the same identifier UU. TUU can be omitted for software com-
ponent constants that are frequently used in many service calls and callbacks. In this
case, such constants take the form WWW _XXXXX.

In addition to the above conventions, the following conventions apply to other constant
names:

TA — Object attribute

TFEN — Service call function code
TEN_XXX_YYY Function code of xxx_yyy
TEN_WWW_XXX_YYY  Function code of Www_XXX_yyy

TSZ — size of —

TBIT — bit size of —

TMAX - maximum —

TMIN_— minimum —

40



M TRON4.0 Specification Ver. 4.00.00

2.2.8 Macros

The names of macros are al uppercase and conform to the naming convention for con-
stants. The names and meanings of ITRON general macros that are used by both the
kernel and software components are specified in the ITRON Genera Definitions sec-
tion.

2.2.9 Header Files

The header file containing the definitions of data types, constants and macros, and
other definitions specified in ITRON General Definitions section is named “itron.h.”
The header file containing all the service call declarations, data types, constants, and
macro definitions specified in the kernel specification are named “kernel.h.” The
automatic assignment header file generated by the kernel configurator is named
“kernel_id.h.

Header files containing service call declarations and other definitions specified in a
software component specification are generally named beginning with the software
component identifier. The automatic assignment header file generated by the software
component configurator is named in asimilar manner. The names of these header files
are specified in the software component specification.

2.2.10 Kernel and Software Component Internal Identifiers

Internal identifiers are symbols registered to an object file's symbol table for external
access. They are used within the kernel or a software component usually to refer to
routines and memory areas. Kernel and software component internal identifiers should
adhere to the naming convention defined below to avoid conflicts with other identifiers
of an application program.

The names of kernel internal identifiers should begin with _kernel or KERNEL _ at
the C language level. The names of software component internal identifiers should
beginwith_www_or  WWW _ at the C language level.

2.3 ITRON General Definitions

2.3.1 ITRON General Data Types

The ITRON general datatypes are as follows:
Signed 8-hit integer

Signed 16-bit integer
Signed 32-bit integer
Signed 64-bit integer

USTIW®

41



pI TRON4.0 Specification Ver. 4.00.00

uB
UH
uw
ub

VB
VH
VW
VD

VP
FP

INT
UINT

BOOL

FN

ER

1D
ATR
STAT
MODE
PRI
SIZE

TMO

RELTIM

SYSTIM

VP_INT

ER_BOOL
ER_ID

ER_UINT

Unsigned 8-bit integer

Unsigned 16-bit integer
Unsigned 32-bit integer
Unsigned 64-bit integer

8-hit value with unknown data type

16-bit value with unknown data type
32-bit value with unknown data type
64-bit value with unknown data type

Pointer to an unknown data type
Processing unit start address (pointer to afunction)

Signed integer for the processor
Unsigned integer for the processor

Boolean value (TRUE or FALSE)

Function code (signed integer)

Error code (signed integer)

Object ID number (signed integer)

Object attribute (unsigned integer)

Object state (unsigned integer)

Service call operational mode (unsigned integer)
Priority (signed integer)

Memory area size (unsigned integer)

Timeout (signed integer, unit of time is implementa
tion-defined)
Relative time (unsigned integer, unit of time is implementa
tion-defined)
System time (unsigned integer, unit of time is implementa
tion-defined)

Pointer to an unknown data type, or a signed integer for the
processor

Error code or a boolean value (signed integer)

Error code or an object ID number (signed integers and nega-
tive ID numbers cannot be represented)

Error code or an unsigned integer (the number of available
bits for an unsigned integer is one bit shorter than UINT)

VB, VH, VW, VD, and VP_INT types are implementation-defined. Explicit type cast
is necessary during access or assignment of values to variables of these data types.

In the case where the number of bits needed to represent the system time exceeds the
number of bits of an integer, SYSTIM can be defined as a data structure where the

42



M TRON4.0 Specification Ver. 4.00.00

structure’s contents are implementation-defined.

[Standard Profile]
In the Standard Profile, 64-bit integer data types (D, UD, and VD) included in the
ITRON genera datatypes need not be supported.

In addition, the Standard Profile defines the minimum number of bits and the unit of
time of the ITRON general datatypes asfollows:

INT 16 or more bits

UINT 16 or more bits

FN 16 or more bits

ER 8 or more bits

ID 16 or more bits

ATR 8 or more bits

STAT 16 or more bits

MODE 8 or more hits

PRI 16 or more bits

SIZE egual to the number of bitsin a pointer
TMO 16 or more bits, unit of timeis 1 msec
RELTIM 16 or more bits, unit of timeis 1 msec
SYSTIM 16 or more bits, unit of timeis 1 msec

[Supplemental Information]

SIZE isused to refer to the size of alarge memory area, such asthe stack size of atask
or an entire variable memory pool size. UINT is used to refer to the size of asmaller
memory area like a message length.

When SYSTIM is defined as a structure, variables of SYSTIM type cannot be manip-
ulated by operators such as “+” and “~." In order to maintain the portability of an
application program even in this case, operationson SYSTIM variables should be done
using C language function calls and an operation module compatible with the defini-
tion of SYSTIM should be made available for each implementation.

[Differences from the pJITRON3.0 Specification]

CYCTIME, ALMTIME, and DLYTIME are replaced by RELTIM. SYSTIME has
been renamed to SYSTIM. STAT, MODE, and SIZE have been added. Complex
data types VP_INT, ER_BOOL, ER_ID, and ER_UINT have been added while
BOOL_ID has been removed. The size of a memory area is now handled using
unsigned integers.

43



pI TRON4.0 Specification Ver. 4.00.00

2.3.2 ITRON General Constants

(1) General Constants

The ITRON general constants are as follows:

NULL 0 Invalid pointer
TRUE 1 True

FALSE 0 False

E_OK 0 Normal completion

[Differences from the pITRON3.0 Specification]

The invalid pointer has been changed from NADR (= -1) to NULL (= 0) for compati-
bility with the C language.

(2) Main Error Codes

There are ten classes of main error codes as defined below:

(A) Internal Error Class (EC_SYS, from -5 to —8)
This class represents internal errors occurring inside the kernel or a software compo-
nent. Omission of error detection of this class is implementation-defined.

E_SYS -5 System error

This error code indicates an internal error of unknown cause occurred inside the
kernel or a software component.

(B) Unsupported Error Class (EC_NOSPT, from -9 to —16)

This class represents errors due to functions that are either not specified in the ITRON
Specifications or are not supported by the implementation. Omission of error detection
of this class isimplementation-defined.

E_NOSPT -9 Unsupported function

This error code indicates that the function is specified in the ITRON Specifica
tions but is not supported by the implementation. This error isreturned if a part
of or all of the service call functionality is not supported. Errors falling under
E_RSFN and E_RSATR are not covered by this error code.

E_RSFN -10 Reserved function code

This error code indicates that a specified function code is not supported either in
the ITRON Specifications or by the implementation. This error occurs when a
service call isinvoked from a software interrupt.

E RSATR -11 Reserved attribute

This error code indicates that an attribute value is not supported either in the



M TRON4.0 Specification Ver. 4.00.00

ITRON Specifications or by the implementation.

(C) Parameter Error Class (EC_PAR, from —17 to —24)

This class represents errors due to parameters assigned with incorrect values. These
errors can usually be detected statically. Omission of error detection of this classis
implementation-defined.
E_PAR =17 Parameter error
This error code indicates that a parameter has an incorrect value that is usually
statically detected. Errorsfalling under E_ID are not covered by this error
code.
E ID -18 Invalid ID number

This error code indicates that an object ID number isinvalid. This error only
occurs for objects identified by an ID numbers.

(D) Invoking Context Error Class (EC_CTX, from —25 to —32)
This class represents errors due to invocation of service calls from incorrect contexts.
Omission of error detection of this class isimplementati on-defined.

E CTX 25 Context error

This error code indicates that the context in which the service call isinvoked is
incorrect. Errorsfalling under E_MACYV, E_OACV or E_ILUSE are not cov-
ered by this error code.

E_MACV —26 Memory access violation

This error code indicates that the specified memory area cannot be accessed
from the context where the service call isinvoked. Thiserror isalso returned if
the specified memory area does not exist.

E_OACV =27 Object access violation

This error code indicates that the specified object cannot be accessed from the
context where the service call isinvoked. When the objects are classified into
user objects and system objects, this error is returned if a system object is
accessed from a context where access to system objects is prohibited.

E_ILUSE -28 Illegal service call use

Thiserror code indicates that the use of the service call isincorrect. Occurrence
of this error depends on the context from which the service call isinvoked or on
the state of the target object.

(E) Insufficient Resource Error Class (EC_NOMEM, from —33 to —40)

This class represents errors due to insufficient resources needed to execute the service
call. Detection of errors of this class cannot be omitted.

45



M TRON4.0 Specification Ver. 4.00.00

E_NOMEM -33 I nsufficient memory

This error code indicates that the service call failed to dynamically allocate
enough memory for amemory area.

E_NOID =34 No ID number available

This error code indicates that there is no ID number available for the target
object. Thiserror isreturned by the service call creating an object with an auto-
matically assigned ID number.

(F) Object State Error Class (EC_OBJ, from —41 to —48)

This class represents errors due to the service call failing to execute because of the state
of the target object. Since the occurrence of these errors depends on the state of the tar-
get object, they do not necessarily occur every time the same service call is invoked.
Thus, dynamically checking for these errorsis necessary. Error detection of this class
cannot be omitted.

E OBJ —41 Object state error
This error code indicates that the service call cannot be executed due to the state

of the target object. Errors falling under E_ NOEXS and E_QOVR are not
covered by this error code.

E_NOEXS —42 Non-existent object

This error code indicates that the service call is not able to access the target
object because the object does not exist. Since this error is returned only when
the specified object ID number iswithin avalid range, the object can be created
by specifying the same ID number that caused the error.

E_QOVR 43 Queue overflow
This error code indicates that the maximum queue limit or nesting level has
been exceeded.

(G) Waiting Released Error Class (EC_RLWAI, from —49 to -56)

This class represents errors due to a waiting task being released from the WAITING
state before its release condition is met. Detection of errors of this class cannot be
omitted.

E_RLWAI —49 Forced release from waiting

This error code indicates that the waiting task is forcibly released from waiting
or that the waiting processis cancelled.

E_TMOUT =50 Polling failure or timeout

This error code indicates that the polling service call has failed or that the ser-
vice call made with atimeout has expired.

46



M TRON4.0 Specification Ver. 4.00.00

E DLT -51 Waiting object deleted

This error code indicates that the object the task is waiting for has been deleted.
E CLS -52 Waiting object state changed

This error code indicates that the service call cannot be executed due to a
change in the state of the object the service call is waiting for. When the state

change happened before the service call isinvoked, the invoking task immedi-
ately returns with this error without moving into the WAITING state.

[Supplemental Information]

An example of the E_CLS error usage isin a service call that receives data through a
communication line. E_CLS can be used to indicate that the connection is abnormally
disconnected while the service call iswaiting to receive data. The same error code can
also be used even when the abnormal disconnection occurred before the service call
was invoked.

(H) Warning Class (EC_WARN, from -57 to —64)

This class represents errors indicating that there are warnings associated with the ser-
vice call’s execution. Errorsin this class are exceptions to the general rule stating that
there are no side effects on the system state when a service call returns an error. That
is, execution of service calls returning errors of this class can cause side effects on the
system state. Detection of errors of this class cannot be omitted.

E WBLK 57 Non-blocking call accepted

This error code indicates that the non-blocking service call is currently being
executed.

E_BOVR -58 Buffer overflow

This error code indicates that a part of the received data was discarded due to
buffer overflow.

(I) Reserved Error Codes (from —5 to —96 except those defined above)

These main error codes are reserved for future versions of the ITRON Specifications.

(J) Implementation-Specific Error Codes (from —97 to —128)

These main error codes are used for implementation-specific errors. The names of
these main error codes must be of the form EV_XXXXX.

[Differences from the pITRON3.0 Specification]

Main error codes E_ILUSE and E_NOID have been added for new functionalities of
the kernel specification, and E_CLS, E_WBLK, and E_ BOVR have been added for
software component specifications. Connection function errors of the form
EN_XXXXX, and E_INOSPT, which were exclusive to ITRON/FILE Specification,
have been removed. Some of the main error codes were reclassified and their values

47



pI TRON4.0 Specification Ver. 4.00.00

reassigned. Because the main error code is in the lower 8-bits of the error code, the
assigned value is designed so that its value as an 8-bit signed integer remains negative.
The error number (errno) has been removed.

(3) Object Attribute

The ITRON general object attributeis:
TA_NULL 0 Object attribute unspecified

(4) Timeout Specification

The ITRON timeout specifications are as follows:

TMO_POL 0 Polling
TMO _FEVR -1 Waiting forever
TMO_NBLK -2 Non-blocking

2.3.3 ITRON General Macros

(1) Error Code Retrieving Macros

ER mercd = MERCD ( ER ercd)

This macro retrieves the main error code from an error code.

ER sercd = SERCD ( ER ercd)
This macro retrieves the sub error code from an error code.

2.3.4 ITRON General Static APIs

(1) File Inclusion

INCLUDE ( string ) ;
This static API includes the file containing preprocessor macro definitions, the C lan-
guage declarations, and the definitions necessary to interpret preprocessor constant
expressions and general constant expression parameters. The INCLUDE static AP
must be specified in a system configuration file. The parameter string must be of a
form that can be placed after the preprocessor directive “#include” once the
INCLUDE static API is processed.

[Supplemental Information]
Examples of file inclusion using the static API are as follows:

INCLUDE ( "<itron.h>") ;
INCLUDE ( "\"memory.h\"") ;

48



M TRON4.0 Specification Ver. 4.00.00

[Rationale]

The reason string parameters are used is to prevent the file name from being expanded
by the preprocessor before the system configuration file is passed to the configurator.

49



Ml TRON4.0 Specification Ver. 4.00.00

50



M TRON4.0 Specification Ver. 4.00.00

Chapter 3 Concepts and Common
Definitions in WITRON4.0

3.1 Glossary of Basic Terms

(1) Task and Invoking Task

The term “task” refersto a unit of concurrent processing. While program statements
inside asingle task are executed sequentially, statements of different tasks are executed
concurrently. Multiple tasks are executed concurrently when seen from an applica
tion’s point of view. However, the tasks do not actually run in parallel but rather, they
are executed one by one under the control of the kernel, using time-sharing techniques.

The task that invokes a service call is called the “invoking task.”

(2) Dispatching and Dispatcher

The act of switching the currently executing task on a processor with another, non-exe-
cuting task is called “dispatching” (or “task dispatching”). The mechanism in the ker-
nel that performs dispatching is called the “dispatcher” (or the “task dispatcher”).

(3) Scheduling and Scheduler

The process that determines which task isto be executed next is called “ scheduling” (or
“task scheduling”). The mechanism in the kernel that executes scheduling is called the
“scheduler” (or the “task scheduler”). In typical implementations, the scheduler is
included in service call routines and/or in the dispatcher.

(4) Context

The environment in which a program executes is generally called the program’s “con-
text.” When two programs have the same context, then at |least the processor mode and
stack space should be the same. The term context, however, is from an application’s
point of view and there can be tasks which execute in independent contexts but actually
run in the same processor mode and the same stack space.

(5) Precedence

The criterion used to determine the order of program execution is called “ precedence.”
In principle, when a higher precedence program becomes executable, it will begin exe-
cuting in place of the currently executing lower precedence program.

51



pI TRON4.0 Specification Ver. 4.00.00

[Supplemental Information]
A “priority” is aparameter given by an application to control the order of task execu-
tion and the order of message delivery, while precedence is used to clarify the order of

program execution in this specification. The precedence between tasks is determined
by the task priorities.

3.2 Task States and Scheduling Rule

3.2.1 Task States

Task states are classified into five broad categories. The blocked state category can be

further broken down into three sub-states. The RUNNING state and the READY state

are both generically referred to as the runnable state.

(8) RUNNING state
When atask isin the RUNNING state, the task is currently executing. When
non-task contexts, such as interrupt handlers, take over execution, the task that was
executing remainsin the RUNNING state unless otherwise specified.

(b) READY state
When atask isin the READY state, the task is ready to execute but it cannot,
because a task with higher precedence is already executing. In other words, the
task can execute at any time once its precedence becomes the highest among the
tasks in the runnable state.

(c) Blocked state
When atask isin the blocked state, the task cannot execute because the conditions
necessary for its execution have not yet been met. The task is waiting for specific
conditions to be met before it can continue execution. When a task enters the
blocked state, the task’s execution environment including the program counter and
registers are saved. When the task resumes executing from the blocked state, the
program counter and registers are restored to their previous values. The blocked
state can be further classified into three sub-states:

(c.1) WAITING state
When atask isin the WAITING state, the execution is blocked due to the invocation
of aservice call. The service call specifies the conditions that must be met before
the task continues execution.

(c.2) SUSPENDED state
When atask isin the SUSPENDED state, the task has been forcibly made to halt
execution by another task. However, the invoking task can also suspend itself in the
Ml TRONA4.0 Specification.

(c.3) WAITING-SUSPENDED state

52



M TRON4.0 Specification Ver. 4.00.00

When atask isin the WAITING-SUSPENDED state, the task is both waiting for a
condition to be met and suspended. A task in the WAITING state will be moved to
the WAITING-SUSPENDED state if there is a request to move it to the SUS
PENDED state.

(d) DORMANT state

When atask isin the DORMANT state, the task is either not yet executing or has
aready finished. The context information of atask will not be saved while the task
isinthe DORMANT state. When atask is activated from the DORMANT state, it
will begin executing from the task’s start address. The contents of the registers
when the task begins executing are not guaranteed unless otherwise specified.

(6) NON-EXISTENT state

Thisindicates avirtual state where the task in question does not exist in the system,
either because it has not yet been created or because it has already been deleted.

There may be other transitional states, depending on the implementation, that cannot
be classified into any states listed above. (see Section 3.5.6).

If atask which has been moved to the READY state has higher precedence than the
task in the RUNNING state, the lower precedence task will be moved to the READY
state and the higher precedence task will be dispatched and moved to the RUNNING
state. In this case, we say that the task that was in the RUNNING state has been pre-
empted by the task that was moved to the RUNNING state. Even if the functional
description of a service call mentions that “a task is moved to the READY state,” it
may be moved directly to the RUNNING state depending on the task precedence.

Task activation means that a task in the DORMANT state is moved to the READY
state. All states other than the DORMANT state and the NON-EXISTENT state are
generically referred to as active states. Task termination means that atask in the active
state is moved to the DORMANT state.

Releasing atask from waiting means that if the task isin the WAITING state, it will be
moved to the READY state, and if the task isin the WAITING-SUSPENDED state, the
task will be moved to the SUSPENDED state. Resuming a suspended task mean that if
the task isin the SUSPENDED state, it will be moved to the READY state, and if the
task isin the WAITING-SUSPENDED state, it will be moved to the WAITING state.

Figure 3-1 shows the task state transitions for typical implementations. There may be

other state transitions, depending on the implementation, that are not shown in thisfig-
ure.

[Supplemental Information]

The WAITING state and the SUSPENDED state are independent of each other. There-
fore arequest to move atask to the SUSPENDED state does not affect the release con-
dition of the task. In other words, a waiting task’s release condition does not change
whether or not the task is in the WAITING state or in the WAITING-SUSPENDED

53



pI TRON4.0 Specification Ver. 4.00.00

dispatch -
READY |= RUNNING
-— preempted
A A ;
rel ease from wait |
waiting !
WAITING !
suspendl Tresume E
1 WAITING- |
SUSPENDED |
release from :
waiting !
suspend < suspend [
SUSPENDED
resume |
forcibly
activate terminate
——————
DORMANT <
forcibly terminate exit
createT ldel ete
G ' exitand delete

' NON-EXISTENT =

Figure 3-1. Task State Transitions

state. Therefore, if atask that iswaiting for a resource (such as a semaphore resource
or amemory block) is suspended and moved to the WAITING-SUSPENDED state, the
task will still acquire the resource under the same conditions as it would in the WAIT-
ING state.

[Differences from the pJITRON3.0 Specification]

The task state names are now in the adjective form. They have been renamed from
RUN to RUNNING, from WAIT to WAITING, from SUSPEND to SUSPENDED, and
from WAIT-SUSPEND to WAITING-SUSPENDED.

An invoking task can now move itself to the SUSPENDED state. This feature facili-
tates implementing APIs that do not distinguish self-suspension from suspension of
other tasks (such as those for POSIX and Java threads) on I TRON4.0 Specification
kernels



M TRON4.0 Specification Ver. 4.00.00

[Rationale]

The ITRON Specifications distinguishes the WAITING state from the SUSPENDED
state because a task can exist in both states at the same time. Defining the overlapped
state as the WAITING-SUSPENDED state makes the task state transition clearer and
makes the understanding of service calls easier. Because tasks in the WAITING state
cannot invoke service calls, they will never be in more than one kind of WAITING
state, e.g. sleeping while waiting for a semaphore resource. In the ITRON Specifica
tions, the SUSPENDED state is the only blocked state that can be caused by other
tasks. Tasks may be suspended multiple times by other tasks. Thisis handled through
nesting of the suspend requests.

3.2.2 Task Scheduling Rules

In the ITRON Specification, the preemptive, priority-based task scheduling is con-
ducted based on the priorities assigned to tasks. If there are a number of tasks with the
same priority, scheduling is conducted on a “first come, first served” (FCFS) basis.
This task scheduling rule is defined using the precedence between tasks based on task
priorities as described below.

If more than one runnable task exists, the highest precedence task will be in the RUN-
NING state, and the rest in the READY state. Among the tasks with different priori-
ties, the task with the higher priority has higher precedence. Among tasks of the same
priority, the task that entered the runnable (RUNNING or READY) state earlier has
higher precedence. However, the precedence between tasks of the same priority may
change due to the invocation of some service calls.

When atask is given precedence over any other runnable tasks, a dispatch will occur
immediately, and the task in the RUNNING state will be switched with the new task.
However, when the system isin a state where dispatching does not occur, the switch of
the task in the RUNNING state will wait until dispatching is allowed.

[Supplemental Information]

In the ITRON Specifications, as long as the highest precedence task is in the runnable
state, no lower precedence tasks are allowed to execute. No other tasks will execute
unless the highest precedence task cannot be executed for some reason, such as being
placed in the WAITING state. In this respect, the scheduling rule of the ITRON Speci-
fications differs entirely from TSS (Time-Sharing Systems), which attempts to execute
multiple tasks as equally as possible. However, the precedence between tasks with the
same priority may be modified through service calls. Applications can execute in a
round-robin fashion, a common scheduling system for TSS, by using those service
cals.

Figure 3-2 shows that among tasks of the same priority, the task that becomes runnable
first has the highest precedence. Figure 3-2 (a) shows the precedence between tasks

55



pI TRON4.0 Specification Ver. 4.00.00

precedence —

priority 1 1 Task A —|

priority2 | Task B |—®| Task C [—¥| TaskD —|

priority3 = Task E [—»

(a) Precedence in thefirst state

precedence —

priority2 ] Task B |—»| TaskC |—®| TaskD —|

priority3 = TaskE |[—»

(b) Precedence after Task B becomes the RUNNING state

precedence —

priority2 | Task C » Task D _|

priority3 = Task E |[—»

(c) Precedence after Task B becomes the blocked state

precedence —

priority2 L] Task C

'

Task D |—®| TaskB —|

priority 3 L Task E |—»

(d) Precedence after Task B is released from waiting

Figure 3-2. Precedence between Tasks

after Task A (priority 1), Task E (priority 3), and Task B, C and D (priority 2), have
been activated in this order. Task A, with the highest precedence, isin the RUNNING
State.

When Task A terminates, Task B, the task with the second highest precedence, moves
to the RUNNING state (Figure 3-2 (b)). If Task A isreactivated, Task B will be pre-
empted and return to the READY state. However, since Task B will be in the runnable
state before Task C and Task D, it will have the highest precedence among the tasks

56



M TRON4.0 Specification Ver. 4.00.00

with the same priority. This means that the priorities between tasks will go back to the
state shown in Figure 3-2 (a).

When Task B changes from the runnable state to the WAITING state, the organization
of the tasks will change from Figure 3-2 (b) to Figure 3-2 (c). If Task B is released
from waiting, the priority of Task B will be the lowest among tasks of the same priority
because Task B becomes runnable after Task C and Task D. This stateisillustrated in
Figure 3-2 (d).

To summarize, if atask in the READY state moves to the RUNNING state and then
goes back to the READY state, it will have the highest precedence among tasks of the
same priority. On the other hand, when atask in the RUNNING state moves to the
WAITING state, and then back to the READY state, the task will have the lowest pre-
cedence among the tasks of the same priority.

[Differences from the pITRON3.0 Specification]

The ready queue is a concept related to the implementation, so in the specification
“precedence” is used instead of “ready queue” to describe the scheduling rule.

To reduce implementation dependencies, atask that is moved from the SUSPENDED
state to the READY state, will have the lowest precedence among the tasks of the same
priority.

3.3 Interrupt Process Model

3.3.1 Interrupt Handlers and Interrupt Service Routines

In the WITRONA4.0 Specification, interrupt handlers and interrupt service routines are
processing units started by external interrupts (ssmply called as interrupts below).

Basically, execution of an interrupt handler depend on the processor architecture.
Therefore, the interrupt handler, not the kernel, should be the one to control the Inter-
rupt Request Controller (IRC). The implementation of an interrupt handler isimple-
mentation-defined because it generally depends on the processor interrupt architecture
and the IRC. Aninterrupt handler cannot be ported asis to adifferent system.

An interrupt serviceroutine isaroutine started by an interrupt handler. It can beimple-
mented independently from the processor architecture and the IRC used. This means
that there is no need for the interrupt service routine to control the IRC since the inter-
rupt handler starting the interrupt service routine already controls the IRC.

The WITRON4.0 Specification defines the APIs to register an interrupt handler pre-
pared by the application, such as DEF_INH, and the APIs to register an interrupt ser-
vice routine, such as ATT_ISR. An implementation should provide either one set of
APlIsor both sets. If the APIsfor registering an interrupt handler are provided, the ker-
nel can provide a glue routine for the interrupt handler that includes processes to be

57



pI TRON4.0 Specification Ver. 4.00.00

done before and after the interrupt handler executes. Depending on the interrupt han-
dler attribute, the interrupt handler can be started through the provided glue routine. If
only the APIs for registering an interrupt service routine are provided, the kernel must
provide the interrupt handler that starts the interrupt service routine. Although both
APlIs are allowed at the same time, the behavior when both APIs are used is implemen-
tation-defined.

Depending on the implementation, the kernel does not control interrupts with higher
priorities than a threshold priority level, including non-maskable interrupts. These
kinds of interrupts are called non-kernel interrupts. The method for defining the
threshold priority level isimplementation-defined. No kernel service calls can be
invoked from interrupt handlers started by non-kernel interrupts. In this specification
document, the term “interrupt” and “interrupt handler” do not include non-kernel inter-
rupts and interrupt handlers started by non-kernel interrupts, respectively.

Figure 3-3 shows the interrupt processing model in the ul TRON4.0 Specification. This
figure only outlines a conceptual model. The actual method used to realize interrupt
processing depends on the application and implementation.

Interrupt handler

lue routine
External 9
interrupt | Interrupt

handler
Control of IRC Interrupt service
routine
|
return 7'
task dispatch

Figure 3-3. Interrupt Processing Model

[Supplemental Information]

The responsibilities of the interrupt handler glue routine include saving and restoring
registers used within the handler, switching stack space, task dispatching, and returning
from the interrupt. The operations actually performed by the glue routine depend on
the implementation. The operations that are included in the glue routine and those that

58



M TRON4.0 Specification Ver. 4.00.00

are included in the interrupt handler prepared by the application are implementa
tion-defined and determined by the interrupt handler attributes.

The responsibilities of the interrupt handler that startsinterrupt service routines include
reading the cause of the interrupt from the IRC, branching based on the cause, clearing
the edge trigger, and clearing the in-service flag of the IRC. In addition, the CPU must
be unlocked before starting an interrupt service routine.

In order to reduce the overhead associated with an interrupt service routine, the inter-
rupt handler glue routine and the interrupt handler can be merged. Interrupt service
routines can be directly embedded in-line within the interrupt handler.

[Standard Profile]

The Standard Profile requires support for either the APIsto register an interrupt handler
or the APIsto register an interrupt service routine.

[Rationale]

Interrupt service routines are introduced to improve the portability of an application’s
interrupt processing. Interrupt handlers, which are less portable, remain so that a ker-
nel can be provided that isindependent of an IRC.

3.3.2 Ways to Designate an Interrupt

In the Wl TRON4.0 Specification, there are two ways to designate an interrupt: by using
an interrupt number and by using an interrupt handler number. In addition, an interrupt
service routineisidentified by an 1D number.

The interrupt handler number, INHNO type, is used to designate the interrupt that is
handled by an interrupt handler registered with the kernel. The designated interrupt
should be able to be determined without referencing the IRC. The interrupt handler
number corresponds to the interrupt vector number of the processor in typical imple-
mentations. When the processor does not have interrupt vectors, there may be only one
available interrupt handler number.

Theinterrupt number, INTNO type, is used to designate the interrupt that is handled by
an interrupt service routine registered with the kernel. The interrupt number is also
used as a parameter to some service cals, such asdis_int and ena_int, to disable and
enable each interrupt individually. Because starting an interrupt service routine and
individually disabling/enabling interrupts are executed by controlling the IRC, the
interrupt number corresponds to the interrupt request line of the IRC.

An interrupt service routine is bound to a specific interrupt request line from a device.
Since the interrupt reguest line to the IRC can be connected to more than one device,
more than one interrupt service routine can be registered to a single interrupt number.
If the interrupt designated by the interrupt number occurs, all interrupt service routines
bound to the interrupt number will be called one by one. The order in which the inter-
rupt service routines are called is implementation-dependent. Multiple interrupt ser-

59



pI TRON4.0 Specification Ver. 4.00.00

vice routines bound to a single interrupt number are distinguished by interrupt service
routine ID numbers.

[Supplemental Information]

For the case when multiple devices are connected to a single interrupt request line to
the IRC, the devices may supply an interrupt vector number used by the processor to
determine the actual source of the interrupt. In this case, interrupt sources supplying
different vector numbers can have different interrupt numbers.

3.4 Exception Process Model

3.4.1 Exception Processing Framework

The WI'TRON4.0 Specification defines the CPU exception handling and the task excep-
tion handling functions.

A CPU exception handler is started when the processor detects an exception. A CPU
exception handler can be registered by the application for each kind of CPU exception.
The kernel can provide a glue routine for the CPU exception handler that includes pro-
cesses to be done before and after the CPU exception handler executes. Depending on
the CPU exception handler attribute, the CPU exception handler can be started through
the provided glue routine.

Because the CPU exception handlers are common to the whole system, the context and
the state at the point when the CPU exception occurred can be probed by the CPU
exception handler. When a CPU exception occurs within atask, the CPU exception
handler can let the task’s exception handling routine handle the exception if desired.

The task exception handling functions are used to stop the normal execution of the
specified task and to start the task’s exception handling routine. The task’s exception
handling routine is executed within the same context as the task. When returning from
the task exception handling routine, the execution of the interrupted execution will con-
tinue. The application can register one task exception handling routine for each task.
The task exception handling functions will be explained in Section 4.3.

[Standard Profile]

The CPU exception handling routine and the task exception handler must be supported
in the Standard Profile.

3.4.2 Operations within a CPU Exception Handler

The implementation method of a CPU exception handler is implementation-defined,
because it generally depends on the processor exception handling architecture and the
kernel implementation. A CPU exception handler cannot be ported to a different sys-

60



M TRON4.0 Specification Ver. 4.00.00

tem without changes.

The service calls that can be invoked in a CPU exception handler are implementa
tion-defined. However, a CPU exception handler must be able to perform the opera-
tions described below. The method to perform these operations is
implementation-defined.

A CPU exception handler must be able to:

(a) Read the context and system state when the CPU exception occurred. The kernel
must provide a method to reference the system state information when the CPU
exception occurred that would normally be obtained through sns_yyy service
callsinvoked just prior to the CPU exception.

(b) Read the task ID of the task in which the CPU exception occurred, if the exception
occurred while atask was executing.

(c) Request task exception handling. This operation is equivalent to invoking ras_tex
within the CPU exception handler.

If the exception occurs while the CPU is locked, it is not necessary to support (b) and

(©).

3.5 Context and System State

3.5.1 Processing Units and Their Contexts

In the Wl TRONA4.0 Specification, the kernel controls the execution of the following pro-
cessing units:
(@) Interrupt handlers
(a.1) Interrupt service routines
(b) Time event handlers
(c) CPU exception handlers
(d) Extended service call routines
(e) Tasks
(e.1) Task exception handling routines
Interrupt handlers and interrupt service routines execute in their own independent con-
texts. For the remainder of this section, the descriptions about interrupt handlers apply
to interrupt service routines as well, unless a specific description about interrupt service
routines is provided.

Time event handlers are started by atime trigger. There are three kinds of time event
handlers: cyclic handlers, alarm handlers, and overrun handlers. Time event handlers
execute in their own independent contexts. Cyclic handlers are explained in Section
4.7.2, alarm handlers are explained in Section 4.7.3, and overrun handlers are
explained in Section 4.7.4.

61



pI TRON4.0 Specification Ver. 4.00.00

A CPU exception handler executes in an independent context determined by the CPU
exception and by the context in which the CPU exception occurred.

Extended service call routines are registered by the application and are started by
invoking extended service calls. An extended service call routine executes in an inde-
pendent context determined by the extended service call and by the context from which
the extended service call isinvoked. Extended service call routines are explained in
Section 4.10.

Tasks execute in their own independent contexts. A task exception handling routine
executes in the associated task’s context. In the remainder of this section, the descrip-
tions about tasks apply to task exception handling routines as well, unless a specific
description about task exception handling routines is provided.

Kernel processes are not classified into the processing units mentioned above. The ker-
nel processes include service call execution, the dispatcher, glue routines for interrupt
handlers (or interrupt service routines), and glue routines for CPU exception handlers.
The context in which the kernel processes execute is not specified because it does not
affect the behavior of the application.

[Differences from the uITRON3.0 Specification]

The term “time event handler” is now used instead of “timer handler.” The term
“extended service call routing” is now used instead of “extended SV C handler.”

3.5.2 Task Contexts and Non-Task Contexts

Contexts that can be regarded as a part of atask are generically called task contexts,
while other contexts are generically called non-task contexts.

Contexts in which tasks execute are classified as task contexts. Contexts in which
interrupt handlers and time event handlers execute are classified as non-task contexts.
Contexts for CPU exception handlers and for extended service call routines depend on
the contexts where they occur or where they are invoked. These contexts are defined
bel ow.

When CPU exceptions occur in task contexts, the CPU exception handlers can execute
either in task contexts or in non-task contexts. In this case, the context in which a CPU
exception handler executes isimplementation-defined. When CPU exceptions occur in
non-task contexts, the CPU exception handlers execute in non-task contexts.

When extended service calls are invoked from task contexts, the extended service rou-
tines execute in task contexts. When extended service calls are invoked from non-task
contexts, the extended service routines execute in non-task contexts.

In the LITRON4.0 Specification, service calls that can be invoked in task contexts and
service callsthat can be invoked in non-task contexts are distinguished from each other.
Theinvocation of service callsin non-task contextsis described in Section 3.6.

The service calls that can move the invoking task to the blocked state and the service

62



M TRON4.0 Specification Ver. 4.00.00

callswhere the invoking task areimplicitly specified may not be invoked from non-task
contexts. If such service calls are invoked, an E_CTX error isreturned. Using the
parameter TSK_SELF (= 0), which designates the invoking task as a parameter of the
service call, is also prohibited from non-task contexts. If TSK_SELF is used from
non-task contexts, an E_ID error isreturned.

[Supplemental Information]

As mentioned in Section 3.5.3, dispatching does not occur during a CPU exception
handler execution, because the precedence of the CPU exception handler is higher than
the precedence of the dispatcher. Therefore, in implementations where the CPU excep-
tion handler executes within task contexts, the behavior of service calls that may move
the task to the blocked state is undefined in this specification. If an error should be
reported under these conditions, an E_CTX error is returned.

[Differences from the pITRON3.0 Specification]

The terms “task contexts’ and “non-task contexts’ are now used instead of “task por-
tions” and “task-independent portions.” The term “transitional state” has been
removed because the context in which the kernel is executed is not specified. In the
I TRONA4.0 Specification, the concept of quasi-task portions is undefined and is
included in task contexts, because the processor mode is not specified.

3.5.3 Execution Precedence and Service Call Atomicity

In the I TRONA4.0 Specification, the precedence for executing each processing unit and
the dispatcher is specified as follows:

(2) Interrupt handlers, time event handlers, CPU exception handlers

(2) Dispatcher (one of the kernel processes)

(3) Tasks
The precedence of interrupt handlers is higher than the precedence of the dispatcher.
The precedence between interrupt handlers and interrupt service routines is implemen-
tation-defined, depending on interrupt priorities.
The precedence of time event handlers is implementation-defined. However, time
event handlers cannot have higher precedence than interrupt handlers invoking
isig_tim, and it must be higher than the precedence of the dispatcher.

The precedence of CPU exception handlers is higher than the precedence of the pro-
cessing unit where the CPU exception occurs and higher than the precedence of the
dispatcher. The precedence of CPU exception handlers relative to the precedence of
interrupt handlers and time event handlers is implementation-defined.

The precedence of extended service call routines is higher than the precedence of the
processing unit that invokes the extended service calls and islower than the precedence
of any processing unit that has a higher precedence than the invoking processing unit.

63



pI TRON4.0 Specification Ver. 4.00.00

The precedence of tasks is lower than the precedence of the dispatcher. The relative
precedence of tasksis defined by the task scheduling rule.

Basically, kernel service calls are executed atomically and the state of ongoing service
call processesis invisible. However, the implementation may choose to modify this
behavior to improve system response. In this case, service call operation must still
appear to be executed atomically as far as the application can determine using service
calls. Thisbehavior is called the service call atomicity guarantee. Service call atomic-
ity may be difficult to guarantee while maintaining a high level of response with imple-
mentation-specific functions not covered in this specification. If thisis so, then
loosening the principle of service call atomicity is permitted.

When kernel service calls are executed atomically, their precedence is highest. When
the atomicity is loosened as described above, the precedence of service call processes
is implementation-dependent as long as their precedence is higher than the processing
unit invoking the service calls.

Other kernel processes than service call processes such as the dispatcher, glue routines
for interrupt and exception handler are treated similarly.

[Standard Profile]

The Standard Profile requires service calls that are part of the Standard Profile must be
guaranteed to operate atomically.

[Supplemental Information]

Since the precedence of the dispatcher is lower than the precedence of interrupt han-
dlers, dispatching does not occur until all activated interrupt handlers are processed.
Thiswas called the “delayed dispatching” rule. The same applies to time event han-
dlers and CPU exception handlers.

3.5.4 CPU Locked State

The CPU state of the system isin either the locked or unlocked state. In the CPU
locked state, interrupt handlers (except for those started by a non-kernel interrupt) and
time event handlers are not started and dispatching does not occur. The CPU locked
state can be considered as the state in which the precedence of the executing processing
unit is highest. There might be atransitional state that is neither the CPU locked state
nor the CPU unlocked state, depending on the implementation.

The transition to the CPU locked state is called “locking the CPU,” while the transition
to the CPU unlocked stateis called “unlocking the CPU."

In the CPU locked state, the following service calls can be invoked:

loc_cpu/iloc_cpu lock the CPU
unl_cpu/iunl_cpu unlock the CPU
sSNs_ctx reference contexts

64



M TRON4.0 Specification Ver. 4.00.00

sns_loc reference CPU state

sns_dsp reference dispatching state

sns_dpn reference dispatch pending state
sns_tex reference task exception handling state

where loc_cpul/iloc_cpu means that loc_cpu may be called from task contexts and
iloc_cpu from non-task contexts (the same rule appliesto unl_cpu/iunl_cpu). The
behavior of other service callsinvoked from a CPU locked state is undefined. When an
error should be reported, an E_CTX error will be returned.

The CPU state is implementation-dependent after an interrupt handler starts (either in
the CPU locked state, in the CPU unlocked state, or in atransitional state). However, it
is implementation-defined how to enter the CPU unlocked state in interrupt handlers.
It is also implementation-defined how to return correctly from interrupt handlers after
the system has entered the CPU unlocked state. The behavior is undefined when inter-
rupt handlers do not return according to the method specified by the implementation.

The system isin the CPU unlocked state after interrupt service routines and time event
handlers start. When returning from these routines/handlers, the system must be in the
CPU unlocked state. The behavior is undefined when returning from these routines/
handlersin the CPU locked state.

The start of and the return from CPU exception handlers do not change the CPU state.
In other words, after CPU exception handlers start, the system is in the CPU locked
(unlocked) state when the CPU exception occurs in the CPU locked (unlocked) state.
When the CPU state is changed in CPU exception handlers, it should be returned to the
previous state before returning from the CPU exception handlers. The behavior is
undefined when returning from CPU exception handlers without returning to the previ-
ous state.

The start of and the return from extended service call routines do not change the CPU
state. In other words, after extended service call routines start, the system isin the
CPU locked (unlocked) state when the extended service calls are invoked in the CPU
locked (unlocked) state. After returning from the extended call routines, the CPU state
remains the same as set by the routines.

After tasks start, the system isin the CPU unlocked state. When tasks exit, the system
must be in the CPU unlocked state. The behavior is undefined when tasks exit whilein
the CPU locked state.

The start of and the return from task exception handling routines do not change the
CPU state. However, it is not specified whether task exception handling routines are
started in the CPU locked state. After returning from the task exception handling rou-
tines, the CPU state remains the same as set by the routines.

[Supplemental Information]

Interrupts are usually, but not always, allowed in the CPU unlocked state.

65



pI TRON4.0 Specification Ver. 4.00.00

[Differences from the pITRON3.0 Specification]

The meaning of the CPU state has changed. In the Wl TRON3.0 Specification, the CPU
locked state was considered the state where interrupts and task dispatching were dis-
abled. However, in the Wl TRONA4.0 Specification, the CPU locked state is treated con-
ceptually as a state independent of interrupts and task dispatching. In the CPU locked
state only afew service cals can be invoked.

3.5.5 Dispatching Disabled State

The dispatching state of the system is either disabled or enabled. Dispatching does not
occur in the dispatching disabled state. The dispatching disabled state can be consid-
ered as the state in which the precedence of the executing processing unit is higher than
that of the dispatcher. There might be atransitional state that is neither the dispatching
disabled state nor the dispatching enabled state, depending on the implementation.

The transition to the dispatching disabled state is called “disabling dispatching,” while
the transition to dispatching enabled stateis called “ enabling dispatching.”

In the dispatching disabled state, service calls that can be invoked from task contexts
have the following restrictions. While in the dispatching disabled state, the behavior
caused by invoking service calls that can move the invoking task to the blocked stateis
undefined, unless otherwise specified. When an error should be reported, an E_CTX
error will be returned. On the other hand, service calls that can be invoked from
non-task contexts do not have restrictions even in the dispatching disabled state.

The start of and the return from interrupt handlers, interrupt service routines, time
event handlers, and CPU exception handlers do not change the dispatching state. In
other words, after these handlers/routines start, the system is in the dispatching dis-
abled (enabled) state when these handlers/routines start in the dispatching disabled
(enabled) state. When the dispatching state is changed in these handlers/routines, it
should be returned to the previous state before returning from these handlers/routines.
The behavior is undefined when returning from these handlers/routines without return-
ing to the previous state.

The start of and the return from the extended service call routines do not change the
dispatching state. In other words, after the extended service call routines start, the sys-
tem is in the dispatching disabled (enabled) state when the extended service call rou-
tines are invoked from the dispatching disabled (enabled) state. After returning from
the extended call routines, the dispatching state remains the same as set by the routines.

After tasks start, the system is in the dispatching enabled state. When tasks exit, the
system must be in the dispatching enabled state. The behavior is undefined when tasks
exit in the dispatching disabled state.

The start of and the return from the task exception handling routines do not change the
dispatching state. In other words, after task exception handling routines start, the sys-

66



M TRON4.0 Specification Ver. 4.00.00

temisin the dispatching disabled (enabled) state when the task exception handling rou-
tines start from the dispatching disabled (enabled) state. After returning from the task
exception handling routines, the dispatching state remains the same as set by the rou-
tines.

The dispatching state is treated independent of the CPU state.

[Supplemental Information]

The restriction that behavior is undefined when service calls that can move the invok-
ing task to the blocked state are invoked while in the dispatching disabled state applies
to aservice call as awhole, unless otherwise specified. For example, service calls for
polling, e.g. pol_sem, can be invoked in the dispatching disabled state because there
is no possibility that the invoking task will enter the WAITING state. On the other
hand, the behavior of service calls that may cause a task to enter the WAITING state,
e.g. twai_sem, isundefined even if they are invoked with TMO_POL (polling) in the
timeout parameter.

There are no service calls that change the dispatching state in non-task contexts in the
M TRONA4.0 Specification. Therefore, it isimpossible to change the dispatching state
within interrupt handlers and time event handlers unless an implementation-specific
extension is provided. The same rule appliesto CPU exception handlers when they are
executed in non-task contexts.

The dispatching state is treated independently from the CPU state. Therefore, for
example, if the system is in the dispatching disabled state and the CPU state changes
from the locked state to the unlocked state, the system remains in the dispatching dis-
abled state. The dispatching state can still be sensed while the system isin the CPU
locked state.

[Differences from the pITRON3.0 Specification]

The meaning of the dispatching disabled state has been changed. The dispatching state
is defined as a state treated independently of the CPU state.

3.5.6 Task State during Dispatch Pending State

Dispatching does not occur during execution of processing units with higher prece-
dence than that of the dispatcher, and while in the CPU locked state or in the dispatch-
ing disabled state. These three conditions are collectively called the dispatch pending
state. Thetask statesin the dispatch pending state are defined bel ow.

In the dispatch pending state, even in the situation where the task in the RUNNING
state should be preempted, the task that should run will not be dispatched. The dis
patch for the task that should run will be pending until the system isin a state where
dispatching can occur. While dispatching is pending, the task that has been running
remains in the RUNNING state, while the task waiting for dispatching remainsin the
READY dtate.

67



pI TRON4.0 Specification Ver. 4.00.00

Task states during the dispatch pending state can be affected by implementation-spe-
cific extensions. More precisely, extensions may allow non-task contextsto invoke ser-
vice calls that move the task in the RUNNING state to the SUSPENDED state or the
DORMANT state. In addition, extensions may allow the service calls to move the
invoking task to the SUSPENDED state while in the dispatching disabled state. Task
states for these cases are described bel ow.

When the task in the RUNNING state is to be moved to the SUSPENDED state or the
DORMANT state, the transition is pending until the system state allows dispatching to
occur. While the state transition is pending, the task that has been in the RUNNING
state is considered to be in atransitional state. The treatment of atask in this transi-
tional state is implementation-dependent. The task that should be in the RUNNING
state remains in the READY state until the dispatch occurs.

[Supplemental Information]

Figure 3-4 explains the task state during the dispatch pending state. Suppose that Task
B is activated from the interrupt handler that was invoked by the interrupt that occurred
during execution of Task A when the priority of Task B is higher than the priority of
Task A. Since the precedence of the interrupt handler is higher than that of the dis-
patcher, the system isin the dispatch pending state while the interrupt handler is exe-
cuting. Therefore dispatching does not occur. When the interrupt handler execution
terminates, the dispatcher is executed and the task that should run switches from Task
A to Task B.

Task A Task B Dispatch Interrupt
(low priority)  (high priority) spacher handler

oy
|

———————————————— iact_tsk( Task B)

- |

RUNNING
A

RUNNING READY

READY

Figure 3-4. Dispatch Pending State and Task States

Even after Task B is activated, Task A isin the RUNNING state and Task B isin the
READY state until the dispatcher is started. After the dispatcher executes, Task B isin

68



M TRON4.0 Specification Ver. 4.00.00

the RUNNING state, and Task A isin the READY state. Because the dispatcher should
be executed atomically, task states during the dispatcher execution are not specified in
this specification.

3.6 Service Call Invocation from Non-Task Contexts

3.6.1 Service Calls that can be Invoked from Non-Task Contexts

Service callsthat can be invoked from non-task contexts have the letter “i” added to the
beginning of their names so they can be distinguished from service calls that can be
invoked from task context. Service calls that can be invoked from both non-task con-
texts and task contexts have a different naming convention as described below. 1n other
words, the service calls are classified into the following three categories:

(a) Service calsfor non-task contexts

Service calls whose names begin with “i” are called service calls for non-task contexts.
They may be invoked from non-task contexts.

[Supplemental Information]
The following service calls belong to this category:

lact_tsk activate task

iwup_tsk wakeup task

irel_wai rel ease task from waiting
iras_tex raise task exception handling
isig_sem rel ease semaphore resource
iset_flg set eventflag

ipsnd_dtq send to data queue (polling)
ifsnd_dtq forced send to data queue
isig_tim supply time tick

irot_rdq rotate task precedence
iget_tid reference task ID in the RUNNING state
iloc_cpu lock the CPU

iunl_cpu unlock the CPU

The behavior of the service calls for non-task contexts invoked from task contextsis
undefined. When an error should be reported, an E_CTX error is returned.

(b) Service callsthat can be invoked from any contexts
Service calls whose names are of the form sns_yyy can be invoked from any con-
texts. They may be invoked from both task contexts and non-task contexts.
[Supplemental Information]
The following service calls belong to this category:

sns_ctx reference contexts

69



pI TRON4.0 Specification Ver. 4.00.00

sns_loc reference CPU state

sns_dsp reference dispatching state

sns_dpn reference dispatch pending state
sns_tex reference task exception handling state

(c) Service calsfor task contexts

The remaining service calls are called service calls for task contexts. They may be
invoked from task contexts.

The behavior of the service calls for task contexts invoked from non-task contextsis
undefined. When an error should be reported, an E_CTX error is returned.
[Differences from the pITRON3.0 Specification]

Service calls for non-task contexts are specified to have names that begin with “i.”
Invoking service calls for task contexts from non-task contexts is permitted as an
implementation-specific extension.

3.6.2 Delayed Execution of Service Calls

The execution of service calls invoked from non-task contexts may be delayed at most
until the processing units that have higher precedence than the dispatcher have termi-
nated. This makes it possible to guarantee the atomicity of service calls without dis-
abling interrupts for too long. Thisis called delayed execution of service calls.

However, the following service calls are not allowed to have their execution delayed:

iget_tid reference task 1D in the RUNNING state
iloc_cpu lock the CPU

iunl_cpu unlock the CPU

sns_ctx reference contexts

sns_loc reference CPU state

sns_dsp reference dispatching state

sns_dpn reference dispatch pending state
sns_tex reference task exception handling state

When the service calls have their execution delayed, the processing order of the service
calls must correspond to the order in which the service calls were invoked, excluding
those service calls that are not alowed to have their execution delayed.

There are situations in which the service calls that are invoked from non-task contexts
and that have their execution delayed cannot return some error codes. Thisis because
the detection of some errors depends on the target object’s state and the object’s state
cannot be referenced when the service call’s execution is delayed. In these situations,
E_OK can bereturned instead of the error code that would be returned for non-delayed
execution. The error codes that may not be returned when execution is delayed are
defined for each service call.

The kernel must store service calls that have their execution delayed. If there is insuffi-

70



M TRON4.0 Specification Ver. 4.00.00

cient memory to store a service call for delayed execution, the service call must return
an E_NOMEM error.

[Supplemental Information]

The point at which the service call executes after having its execution delayed is up to
the implementation as long as the behavior of the delayed execution is the same as
described by the specification. A specific case iswhere service callsinvoked during the
dispatch pending state may be delayed until the system enters a state where dispatching
can occur. Note that there are situations in which iras_tex must be executed even in
the dispatching disabled state. See the supplemental information of iras_tex for more
details.

When service calls that have their execution delayed return E_OK, it must be guaran-
teed that those service calls will be executed later.

[Differences from the uITRON3.0 Specification]
The specification regarding delayed execution of service calls has been clarified.

3.6.3 Adding Service Calls that can be Invoked from Non-Task
Contexts

When a service call for task contexts with the name xxx_yyy (or zxxx_yyy) is
defined in the Wl TRONA4.0 Specification, an implementation may add a service call for
non-task contexts which has the same functionality. In this case the name of the new
service call should be ixxx_yyy (or izxxx_yyy) regardless of the rule that the names
of implementation-specific service calls should begin with the letter “v.” The new ser-
vice call is still considered to have the same functionality even when some error codes
are not returned due to delayed execution of the service call invoked from non-task
contexts.

When a service call for task contexts is made invokable from non-task contexts using
its original name as an implementation-specific extension, the implementation must
also provide a service cal wherethe letter “i” is added at the beginning of its name that
is invokable from non-task contexts. On the other hand, when a service call for
non-task contexts is made invokable from task contexts using its original name as an
implementation-specific extension, the implementation must also provide a service call
where the letter “i” is removed from the beginning of its name that is invokable from
task contexts.

These rules apply to implementation-specific service calls aswell. When thereisan
implementation-specific service call with the name vxxx_yyy and a service call with
the same functionality can be invoked from non-task contexts, it must be invokable
with the name ivxxx_yyy.

71



pI TRON4.0 Specification Ver. 4.00.00

3.7 System Initialization Procedure

System initialize procedure is modeled as follows (Figure 3-5):

'

Hardware-dependent
initialization process

'

Kernel initialization
process

v

Static API process
— Object registrations
— Execution of initialization routines

'

Start of kernel operation
— System time initialization
— Enabling interrupts
— Beginning task executions

Figure 3-5. System Initialization Procedure

The hardware-dependent initialization process is executed after the system is reset.
The application prepares the hardware-dependent initialization process, which is out-
side of the kernel’s control. The kernel initialization processis called at the end of the
hardware-dependent initialization process. The method used to call the kernel initial-
ization process is implementation-defined.

Once the kernel initialization process is called, the kernel itself, such as the kernel’s
internal data structures, isinitialized. Then, the static APIs, such as object registra-
tions, are processed. The static APIs, except for ATT_INI, are processed in the order
described in the system configuration file. The method used to handle errors detected
during the static APl processes is implementation-defined.

The processing of the static APIs includes the execution of initialization routines. The
initialization routines are prepared by the application and registered with the kernel by
using ATT_INI. The initialization routines are executed with all interrupts disabled
except for non-kernel interrupts. Disabling non-kernel interrupts is implementa-
tion-defined. Allowing initialization routines to invoke service calls and which service
calls are invokable are implementation-defined. The initialization routines are exe-
cuted in the order described with ATT_INI in the system configuration file. Therela-

72



M TRON4.0 Specification Ver. 4.00.00

tive order between the execution of initialization routines and the processing of other
static APIs isimplementation-defined.

After the processing of the static APIs, the kernel operation is started. Specifically,
tasks begin execution. At this point interrupts are enabled for the first time and the sys-
tem timeisinitialized to 0.

The above description provides only a conceptual model. Thereal system initialization
procedure may be optimized in an implementation-dependent manner as long as the
behavior conforms to this conceptual model.

3.8 Object Registration and Release

An object identified by an ID number is registered to the kernel by a static API
(CRE_YYY) or by aservice call (cre_yyy) that creates the object. An object is
released from the kernel by a service call (del_yyy) that deletes the object. After an
object is deleted, a new object can be created with the same ID number. When an
object is created, the ID number and the necessary information for creating the object
are specified. When an object is deleted, the ID number for the object is specified.

The maximum number of objects and the range of the ID numbers that can be regis-
tered are implementation-defined. The maximum number of objects that can be cre-
ated by using service calls and the procedure to designate the range of 1D numbers are
also implementati on-defined.

When astatic APl (ATT_YYY) attaches an object to the kernel, it creates and registers
the object without specifying an ID number. Objects registered in this way cannot be
referred by 1D numbers because the created objects do not have ID numbers, which
means that objects created in this way cannot be deleted.

The service call that creates an object and assigns an ID number automatically
(acre_yyy) assigns the object ID number by selecting an ID number that is not
already associated with an object. The ID number assigned to the created object is
returned to the application as the return value. The ID number assigned in thisway is
limited to a positive number because a negative return value from a service call indi-
cates an error occurred. |If thereisno ID number that can be assigned, the service call
returnsan E_NOID error.

The method an implementation employs to designate the range of ID numbers avail-
able for automatic assignment is implementation-defined. The method used to auto-
matically assign available ID numbers to objects is implementation-dependent.

A synchronization and communication object can be deleted even if there is a task
waliting for a condition to be met associated with the object. In thiscase, thetask that is
waiting for the condition associated with the deleted object is released from waiting.
The service call that placed the task in the WAITING state returnsan E_DLT error to

73



pI TRON4.0 Specification Ver. 4.00.00

the released task. If more than one task is waiting, the tasks are released from waiting
in the order in which they reside in the wait queue for the synchronization and commu-
nication object. Therefore, among tasks with the same priority that are moved into the
READY state, tasks closer to the head of the wait queue have higher precedence. In
case the synchronization and communication object has multiple wait queues, the order
that tasks are released from different wait queues is implementati on-dependent.

[Standard Profile]

The Standard Profile requires an implementation to support at least ID numbers from 1
to 255. Also, the Standard Profile requiresthat at least 255 objects can be registered for
objects that are referenced by ID numbers and are part of the Standard Profile.

3.9 Description Format for Processing Unit

The WITRON4.0 Specification specifies the format for writing each of the following
processing units in the C language: interrupt service routines, time event handlers
(cyclic handlers, alarm handlers, overrun handlers), extended service call routines,
tasks, and task exception handling routines. If TA_HLNG (processing unit started
through a high-level language interface) is specified as the object attribute when the
processing unit is registered with the kernel, the processing unit is started assuming it is
written in the specified format.

On the other hand, the Wl TRON4.0 Specification does not specify the format for writ-
ing processing units in assembly language. If TA_ASM (processing unit started
through an assembly language interface) is specified as the object attribute when the
processing unit is registered with the kernel, the processing unit is started assuming it is
written in the format specified by the implementation.

The format for writing interrupt handlers and CPU exception handlers and the object
attributes used to register them with the kernel are implementation-defined and are not
specified in the Wl TRON4.0 Specification.

[Supplemental Information]

The W'TRON4.0 Specification does not specify the service call that returns from inter-
rupt handlers (ret_int in the previous specifications). Thisis not because the process
executed by ret_int in the previous specifications is no longer needed, but rather
because how to write interrupt handlers is now implementation-defined. There may be
acase where a service call corresponding to ret_int may be provided by an implemen-
tation. Thisalso appliesto returning from CPU exception handlers.

The WITRONA4.0 Specification does not specify the service call that returns from time
event handlers (ret_tmr in the previous specifications). Thisis not because the process
executed by ret_tmr in the previous specifications is no longer needed, but rather
because it is now possible to return simply from time event handlers written in the C

74



M TRON4.0 Specification Ver. 4.00.00

language. There may be a case where a service call corresponding to ret_tmr is pro-
vided by an implementation in order to return from time event handlers written in
assembly language. This also applies to returning from interrupt service routines,
extended service call routines, and task exception handling routines.

[Differences from the pITRON3.0 Specification]

The WITRONA4.0 Specification specifies the format for writing each processing unit in
the C language, but does not specify service calls (ret_yyy) for returning from pro-
cessing units, because they are only needed when the processing units are written in
assembly language.

3.10 Kernel Configuration Constants and Macros

Applications use kernel configuration constants and macros to reference the kernel
configuration in order to improve application program portability. The method used to
define kernel configuration constants and macros is implementati on-dependent as long
as they can be referenced from an application program

Kernel configuration constants and macros are not defined when functions related to
them are not supported.

[Supplemental Information]

Kernel configuration constants and macros may be defined as fixed values in kernel
header files or may be generated by a configurator. Alternatively they may be defined
in header files prepared by the application and then used to configure the kernel.

[Differences from the pITRON3.0 Specification]

The W TRON4.0 Specification newly introduces kernel configuration constants and
Macros.

3.11 Kernel Common Definitions

3.11.1 Kernel Common Constants

(1) Object Attributes

TA HLNG 0x00  Start a processing unit through a high-level language

interface
TA ASM 0x01  Start aprocessing unit through an assembly language
interface

TA _TFIFO 0x00  Task wait queueisin FIFO order
TA_TPRI 0x01  Task wait queueisin task priority order

75



pI TRON4.0 Specification Ver. 4.00.00

TA_MFIFO 0x00  Message queueisin FIFO order
TA_MPRI 0x02 Message queue isin message priority order

[Differences from the JITRON3.0 Specification]
Thevauesof TA_HLNG and TA_ASM have been exchanged.

(2) Main Error Codes Used in Kernel

The kernel uses the main error codes specified in Section 2.3.2, except for the three
codes, E_CLS, E_WBLK, and E_BOVR.

[Standard Profile]

In the Standard Profile the following main error codes are generated and must be
detected:

E_OBJ Object state error
E QOVR Queue overflow
E_RLWAI Forced release from waiting

E TMOUT Polling failure or timeout
Applications that need to be portable across kernels adhering to the Standard Profile
must not depend on detecting errors beyond those listed above.
[Supplemental Information]

In the Standard Profile the following main error codes are not generated or need not be
detected:

(@) Error codes not used by the kernel
E_CLS, E_WBLK, E_BOVR
(b) Error codes not generated by Standard Profile functions
E_OACV, E_NOID, E_NOEXS, E_DLT
(c) Error codes that are implementation-dependent
E_SYS, E_RSFN, E_NOMEM
(d) Error codes whose detection can be omitted
E_NOSPT, E_ RSATR, E PAR,E_ID,E_CTX, E_MACYV, E_ILUSE

(3) Service Call Function Codes

Function codes ranging from (—0xe0) to (—0x05) are assigned to kernel service calls.
However, a function code is not assigned to cal_svc. The assignment of function
codesis specified in each function in Chapter 4.

Function codes within the range from (—0xe0) to (—0x05) that are not assigned in the
specification are reserved for the kernel function extensions in the future. Function
codes ranging from (—0x100) to (—0xel) can be used for implementation-specific ser-
vice calls. Function codes ranging from (—0x200) to (—0x101) are reserved for kernel

76



M TRON4.0 Specification Ver. 4.00.00

function extensions in the future. However, they can be used for implementation-spe-
cific service callsif needed.

[Differences from the pJITRON3.0 Specification]
The values of function codes have been reassigned.

[Rationale]

Function codes of service callsincluded in the Standard Profile range from (—0x80) to
(—Ox05) in order to fit within 8 bits.

(4) Other Kernel Common Constants

TSK_SELF 0 Specifying invoking task
TSK_NONE O No applicable task

[Differences from the pITRON3.0 Specification]

TSK_NONE has been added. In the WITRON3.0 Specification, FALSE (= 0) was
used when there was no applicable task available.

3.11.2 Kernel Common Configuration Constants

(1) Priority Range

TMIN_TPRI Minimum task priority (= 1)
TMAX_TPRI Maximum task priority
TMIN_MPRI Minimum message priority (= 1)
TMAX_MPRI M aximum message priority

[Standard Profile]

These kernel configuration constants must be defined in the Standard Profile.
TMAX_TPRI must not be less than 16 and TMAX_MPRI must not be less than
TMAX_TPRI.

[Supplemental Information]

Although TMIN_TPRI and TMIN_MRI are fixed as 1 in this specification, implemen-
tation-specific extensions may configure the kernel to use a value other than 1.

(2) Version Information

TKERNEL_MAKER Kernel maker code
TKERNEL_PRID | dentification number of the kernel
TKERNEL_SPVER Version number of the ITRON Specification
TKERNEL_PRVER Version number of the kernel

[Standard Profile]

These kernel configuration constants must be defined in the Standard Profile.

77



pI TRON4.0 Specification Ver. 4.00.00

[Supplemental Information]

See the functional description of ref_ver for the constant values that represent version
information.

78



M TRON4.0 Specification Ver. 4.00.00

Chapter 4 uITRON4.0 Functions

4.1 Task Management Functions

Task management functions provide direct control of task states and reference to the
task states. Task management functions include the ability to create and delete a task,
to activate and terminate a task, to cancel activation requests, and to reference the state
of atask. A task isan object identified by an ID number. The ID number of atask is
called thetask ID. See Section 3.2 for rules governing task scheduling and state transi-
tions.

A task has a base priority and a current priority for controlling the order of task execu-
tion. In this specification, the words “task priority” refer to the task’s current priority.
When the task is activated, the base priority is set to the task’sinitial priority as defined
when the task is created. If mutexes are not used, the current priority and the base pri-
ority are always equal. Therefore, the current priority of atask isset to itsinitia prior-
ity when the task is activated. For more information about how mutexes change the
current priority, see Section 4.5.1.

Activation requests for a task are queued. In other words, if atask has already been
activated and an activation request is made for the task, the new request is recorded.
When the task terminates under this situation, the task will be automatically activated
again. However, activation requests will not be queued when the service call that acti-
vates atask with the specified start code (sta_tsk) isused. A task includes an activa-
tion request count to realize the activation request queuing. This count is cleared to O
when the task is created.

When atask is activated, its extended information (exinf) is passed as a parameter.
However, when atask is activated by the service call with a start code (sta_tsk), the
specified start code is passed through the parameter instead of the extended informa-
tion.

When a task terminates, the kernel does not release resources that the task acquired
such as semaphore resources and memory blocks. However, the kernel unlocks
mutexes acquired by the task. The application program is responsible for releasing
resources acquired by the task when the task terminates.

The following actions must be taken when creating, activating, terminating, and del et-
ing atask. When atask is created, the activation request count is cleared, the task’s
exception handling routine is set to undefined (see Section 4.3), and the task’s proces-
sor time limit is set to undefined (see Section 4.7.4). When atask is activated, the
task’s base priority and current priority are initialized, the task’s wakeup request count
is cleared (see Section 4.2), the task’s suspension count is cleared (see Section 4.2), the
task’s pending exception code is cleared (see Section 4.3), and the task’s exception

79



pI TRON4.0 Specification Ver. 4.00.00

handling is disabled (see Section 4.3). When atask is terminated, all mutexes locked
by the task are unlocked (see Section 4.5.1) and the processor time limit is set to unde-
fined (see Section 4.7.4). When atask is deleted, the task’s stack spaceis released if
the stack space was allocated by the kernel when the task was created.

The format to write atask in the C language is shown below:

void task ( VP_INT exinf)

{
/* Body of thetask */

ext tsk () ;
}

The behavior of atask returning from its main routine isidentical to invoking ext_tsk,
i.e. the task terminates. exd_tsk deletes the invoking task in addition to terminating
the task.

The following kernel configuration constant is defined for use with task management
functions:

TMAX_ACTCNT Maximum activation request count
The following data type packets are defined for creating and referencing tasks:
typedef struct t_ctsk {

ATR tskatr ; /* Task attribute */
VP_INT exinf ; /* Task extended information */
FP task ; /* Task start address */
PRI itskpri ; /* Task initial priority */
SIZE stksz ; /* Task stack size (in bytes) */
VP stk ; /* Base address of task stack space */
/* Other implementation specific fields may be added. */
} T _CTSK ;
typedef struct t_rtsk {
STAT tskstat;  /* Task state */
PRI tskpri ; /* Task current priority */
PRI tskbpri;  /* Task base priority */
STAT tskwait ; /* Reason for waiting */
ID wobjid ; /* Object ID number for which thetask is
waiting */
TMO lefttmo ;  /* Remaining time until timeout */
UINT actent ; /* Activation request count */
UINT wupcnt ;  /* Wakeup request count */
UINT suscnt;  /* Suspension count */
/* Other implementation specific fields may be added. */
}T_RTSK;
typedef struct t_rtst {
STAT tskstat;  /* Task state */
STAT tskwait ; /* Reason for waiting */
/* Other implementation specific fields may be added. */
}T_RTST;

80



M TRON4.0 Specification Ver. 4.00.00

The following represents the function codes for the task management service calls.

TFN_CRE_TSK —0x05 Function code of cre_tsk
TFN_ACRE_TSK —0xcl Function code of acre_tsk
TFEN_DEL _TSK —0x06 Function code of del_tsk
TFN_ACT_TSK —0x07  Function code of act_tsk
TFEN_IACT_TSK —0x71 Function code of iact_tsk
TFN_CAN_ACT —0x08 Function code of can_act
TFN_STA TSK —0x09 Function code of sta_tsk
TEN_EXT_TSK —0x0a Function code of ext_tsk
TEN_EXD_TSK —0x0b  Function code of exd_tsk
TFN_TER_TSK —0x0c  Function code of ter_tsk
TFN_CHG_PRI —0x0d  Function code of chg_pri
TFN_GET_PRI —0x0e Function code of get_pri
TFN_REF_TSK —0x0f  Function code of ref_tsk
TEN_REF_TST —0x10 Function code of ref_tst

[Standard Profile]

The Standard Profile requires support for task management functions except for
dynamic creation and deletion of atask (cre_tsk, acre_tsk, del_tsk), activation of a
task with the specified start code (sta_tsk), termination and deletion of a task
(exd_tsk), and reference of atask state (ref _tsk, ref_tst).

The Standard Profile requires support for an activation request count of one or more.

Therefore, TMAX_ACTCNT must be at least 1.

[Supplemental Information]

The contexts and states under which tasks execute are summarized as follows:

TMAX_ACTCNT must be 0 if activation request queuing of atask is not supported.

 Tasks executein their own independent contexts (see Section 3.5.1). The contextsin
which tasks execute are classified as task contexts (see Section 3.5.2).

 Tasks execute at |lower precedence than the dispatcher (see Section 3.5.3).

 After tasks start, the system is both in the CPU unlocked state and in the dispatching
enabled state. When tasks exit, the system must be both in the CPU unlocked state
and in the dispatching enabled state (see Sections 3.5.4 and 3.5.5).

TMAX_ACTCNT must be 0 if activation request queuing of atask is not supported.

[Differences from the pITRON3.0 Specification]

Functions that directly operate on tasks and that have no relation with waiting states are
classified as task management functions. Functions that change task precedence
(rot_rdq), referencethe ID of the task in the RUNNING state (get_tid), and enable or
disable task dispatching (ena_dsp, dis_dsp) are now classified as system state man-
agement functions. The function releasing atask from awaiting state (rel_wai) is now

81



pI TRON4.0 Specification Ver. 4.00.00

classified as a task dependent synchronization function.

Service calls for requesting task activation and canceling the activation requests have
been added (act_tsk, can_tsk). The service call for starting a task with the specified
start code (sta_tsk) has not been removed to maintain backward compatibility with
M TRONS3.0; however, this service call is not required in the Standard Profile.

The concept of task base priorities is introduced due to the addition of mutexes. If
mutexes are not used, the behavior is the same as in Wl TRON3.0 because the base pri-
ority isaways equal to the current priority.

Returning from atask’s main routine now terminates the task.

82



M TRON4.0 Specification Ver. 4.00.00

CRE_TSK  Create Task (Static API) [S]
cre_tsk Create Task
acre_tsk Create Task (ID Number Automatic Assignment)

[Static API]
CRE_TSK ( ID tskid, { ATR tskatr, VP_INT exinf, FP task,
PRI itskpri, SIZE stksz, VP stk }) ;

[C Language API]
ER ercd = cre_tsk ( ID tskid, T_CTSK *pk_ctsk) ;
ER_ID tskid = acre_tsk ( T_CTSK *pk_ctsk ) ;

[Parameter]
ID tskid ID number of the task to be created (except
acre_tsk)
T CTSK* pk _ctsk Pointer to the packet containing the task creation
information (In CRE_TSK, the contents must be

directly specified.)
pk_ctsk includes (T_CTSK type)
ATR tskatr Task attribute
VP_INT exinf Task extend information
FP task Task start address
PRI itskpri Task initial priority
SIZE stksz Task stack size (in bytes)
VP stk Base address of task stack space

(Other implementation specific information may be added.)

[Return Parameter]

cre_tsk:
ER ercd E_OK for norma completion or error code
acre_tsk:
ER_ID tskid ID number (positive value) of the created task or
error code
[Error Code]
E ID Invalid ID number (tskid is invalid or unusable; only
cre_tsk)
E_NOID No ID number available (there is no task ID assignable; only
acre_tsk)
E_NOMEM Insufficient memory (stack space or other memory cannot be
allocated)

E _RSATR Reserved attribute (tskatr isinvalid or unusable)

83



pI TRON4.0 Specification Ver. 4.00.00

E_PAR Parameter error (pk_ctsk, task, itskpri, stksz, or stk is
invalid)
E OBJ Object state error (task is already registered; only cre_tsk)

[Functional Description]

These service calls create a task with an 1D number specified by tskid based on the
information contained in the packet pointed to by pk_ctsk. The task is moved from
the NON-EXISTENT state to either the DORMANT state or the READY state. In
addition, the actions that must be taken at task creation time are performed. tskatr is
the attribute of the task. exinf isthe extended information passed as a parameter to the
task when the task is started. task isthe start address of the task. itskpriistheinitial
value of the task’s base priority when the task is activated. stksz isthe stack sizein
bytes of thetask. stk isthe base address of the task’s stack space.

In CRE_TSK, tskid is an integer parameter with automatic assignment. tskatr isa
preprocessor constant expression.

acre_tsk assigns atask ID from the pool of unassigned task 1Ds and returns the
assigned task ID.

tskatr can be specified as (TA_HLNG || TA_ASM) | [TA_ACT]). If TA_HLNG
(= 0x00) is specified, the task is started through the C language interface. If TA_ASM
(= 0x01) is specified, the task is started through the assembler language interface.
After the creation, the task is moved to the READY stateif TA_ACT (= 0x02) is spec-
ified, and is moved to the DORMANT state otherwise.

The memory area defined by the base address stk and the size stksz is used by the
task for its stack space during execution. If stk isNULL (= 0), the kernel allocates a
memory areawith size stksz for use as the task’s stack space.

[Standard Profile]

The Standard Profile does not require support for when TA_ASM is specified in
tskatr. It also does not require support for when other values than NULL are speci-
fied in stk.

[Supplemental Information]

Several processing units besides the task, such as service calls invoked by the task and
interrupt handlers started during the task’s execution, may use the task’s stack space
depending on the implementation. The implementation’s documentation, such as the
product manuals, should describe how to calculate the necessary stack size.

The base address of the task stack’s space indicates the lowest address of the memory
area used as the task stack space. Therefore, in general, the initial value of the task’s
stack pointer does not correspond to the base address of the stack.

A task cannot specify its own task ID in tskid. If atask does specify its own task ID,
cre_tsk returnsan E_OBJ error because the task is aready registered.

84



M TRON4.0 Specification Ver. 4.00.00

[Differences from the pITRON3.0 Specification]
The base address of the task’s stack space, stk, has been added. stk should be set to
NULL if compatibility isrequired with pl TRON3.0.

The order of tskatr and exinf in the task’s creation information packet has been
exchanged. The data type of exinf has been changed from VP to VP_INT. The data
type of stksz has been changed from INT to SIZE.

The ability to move atask directly to the READY state has been added through the use
of the added task attribute TA_ACT. Thisisuseful for the case when atask is statically
created. The task attributes indicating the task uses co-processors have been removed.
When necessary, such attributes can be added as implementati on-specific.

acre_tsk has been newly added.

85



pI TRON4.0 Specification Ver. 4.00.00

del tsk Delete Task

[C Language API]
ER ercd = del_tsk ( ID tskid ) ;

[Parameter]
ID tskid ID number of the task to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]

E ID Invalid ID number (tskid isinvalid or unusable)

E_NOEXS Non-existent object (specified task is not registered)

E OBJ Object state error (specified task is not in the DORMANT
state)

[Functional Description]

This service call deletes the task specified by tskid. The deleted task is moved from
the DORMANT state to the NON-EXISTENT state and the actions that must be taken
at task deletion time are performed.

If thetask isnot inthe DORMANT state, an E_OBJ error isreturned. However, if the
task is not registered, an E_NOEXS error is returned.

[Supplemental Information]

A task cannot specify its own task ID in tskid. If atask does specify itsown task ID,
del_tsk returns an E_OBJ error because the task is not in the DORMANT state.
exd_tsk can be used by atask to terminate and del ete itself.

86



M TRON4.0 Specification Ver. 4.00.00

act_tsk Activate Task [S]
lact_tsk [S]

[C Language API]
ER ercd = act_tsk ( ID tskid ) ;
ER ercd = iact_tsk ( ID tskid ) ;

[Parameter]
ID tskid ID number of the task to be activated

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E QOVR Queue overflow (overflow of activate request queuing count)

[Functional Description]

These service calls activate the task specified by tskid. The task is moved from the
DORMANT state to the READY state and the actions that must be taken at task activa:
tion time are performed. The extended information of the task is passed to thetask asa
parameter.

If the task is not in the DORMANT state, the activation request for the task is queued.
(However, if the task in the NON-EXISTENT state, an E_NOEXS error is returned.)
Specifically, the activation request count isincremented by 1. If the count then exceeds
the maximum possible count, an E_ QOVR error is returned.

If the service call isinvoked from non-task contexts and has its execution delayed, an
E_QOVR error may not be returned.

If tskid isTSK_SELF (= 0), theinvoking task is specified. If TSK_SELF is speci-
fied when this service call is invoked from non-task contexts, an E_ID error is
returned.

[Supplemental Information]

The Standard Profile requires the maximum activation request count to be at least 1.
Thisimplies that a kernel that is compatible with the Standard Profile may not always
return an E_QOVR error even if these service calls are invoked on a task with queued
activation requests.

[Differences from the pITRON3.0 Specification]

These service calls have been newly added.

87



pI TRON4.0 Specification Ver. 4.00.00

can_act Cancel Task Activation Requests [S]

[C Language API]
ER_UINT actcnt = can_act ( ID tskid ) ;

[Parameter]
ID tskid ID number of the task for cancelling activation
requests

[Return Parameter]
ER_UINT actcnt Activation request count (positive value or 0) or
error code

[Error Code]
E ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)

[Functional Description]

This service call cancels all queued activation requests for the task specified by tskid
and returns the cancelled request count for the task. Specifically, the activation request
count for thetask is cleared to 0. The value returned is the count before it was cleared.

If tskid isTSK_SELF (= 0), the invoking task is specified.

[Supplemental Information]

This service call may specify atask in the DORMANT state. In this case, the service
call returns a count of 0 because activation requests are not queued for the task.

This service call can be used to check if atask completes a process within a cycle cor-
rectly when the task is activated cyclically. Specifically, can_act should be invoked
when the task completes the process. A return value of 1 or more from can_act indi-
cates that the next activation is requested before the task completes the process in the
previous cycle. The task can take measures for this case.

[Differences from the pITRON3.0 Specification]
This service call has been newly added.

88



M TRON4.0 Specification Ver. 4.00.00

sta_tsk Activate Task (with a Start Code)

[C Language API]
ER ercd = sta_tsk ( ID tskid, VP_INT stacd ) ;

[Parameter]
ID tskid ID number of the task to be activated
VP_INT stacd Start code of the task

[Return Parameter]

ER ercd E_OK for norma completion or error code
[Error Code]
E ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E OBJ Object state error (specified task is not in the DORMANT
state)

[Functional Description]

This service call activates the task specified by tskid. The task is moved from the
DORMANT state to the READY state and the actions that must be taken at task activa:
tion time are performed. The start code, stacd, is passed to the task as a parameter.

If the task is not in the DORMANT state, the service call does not queue a request for
activation and returnsan E_OBJ error. If thetask isin the NON-EXISTENT state, it
returns an E_NOEXS error.

[Supplemental Information]

A task cannot specify its own task ID in tskid. If atask does specify its own task ID,
sta_tsk returnsan E_OBJ error because the task is not in the DORMANT state.
[Differences from the uITRON3.0 Specification]

The data type for stacd has been changed from INT to VP_INT.

89



pI TRON4.0 Specification Ver. 4.00.00

ext _tsk Terminate Invoking Task [S]

[C Language API]
void ext_tsk () ;

[Parameter]
None

[Return Parameter]
This service call does not return.

[Functional Description]

This service call terminates the invoking task. The invoking task is moved from the
RUNNING state to the DORMANT state and the actions that must be taken at task ter-
mination time are performed.

If activation requests are queued, that is, if the activation request count for the invoking
task is 1 or more, the count is decremented by 1 and the task is moved to the READY
state. In this case, the actions that must be taken at task activation time are performed.
The extended information of the task is passed to the task as a parameter.

This service call never returns; therefore, no error code is returned even if an error is
encountered in the service call. The behavior of the service call when an error is
detected is implementation-defined.

[Supplemental Information]

When activation requests are queued for the invoking task, this service call will reacti-
vate the task after it has been terminated. Thisimplies that all mutexes locked by the
task are unlocked and the processing time limit is set to undefined. In addition the base
priority, the current priority, the wakeup request count, the suspension count, the pend-
ing exception code, and the task exception handling state are all reset to their initial val-
ues. Thetask has the lowest precedence among all tasks with the same priority in the
READY dtate.

When an error is detected in the service call, the information regarding the error can be
logged.

The behavior of atask returning from its main routine isidentical to invoking ext_tsk.

[Differences from the pJITRON3.0 Specification]

Tasks that invoke ext_tsk may be reactivated due to the addition of the activation
request count.

90



M TRON4.0 Specification Ver. 4.00.00

exd_tsk Terminate and Delete Invoking Task

[C Language API]
void exd_tsk () ;

[Parameter]
None

[Return Parameter]
This service call does not return.

[Functional Description]

This service call terminates and deletes the invoking task. The task is moved from the
RUNNING state to the NON-EXISTENT state and the actions that must be taken at
task termination and deletion time are performed.

This service call never returns; therefore, no error code is returned even if an error is
encountered in the service call. The behavior of the service call when an error is
detected is implementation-defined.

[Supplemental Information]

This service call terminates and deletes the invoking task even if activation requests are
queued for the invoking task. The activation request count has no meaning when the
task isin the NON-EXISTENT state.

When an error is detected in the service call, the information regarding the error can be
logged.

91



pI TRON4.0 Specification Ver. 4.00.00

ter _tsk Terminate Task [S]

[C Language API]
ER ercd = ter_tsk ( ID tskid ) ;

[Parameter]
ID tskid ID number of the task to be terminated

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_ILUSE Illegal service call use (specified task is an invoking task)

E OBJ Object state error (specified task isin the DORMANT state)

[Functional Description]

This service call terminates the task specified by tskid. The task is moved to the
DORMANT state and the actions that must be taken at task termination time are per-
formed.

If activate requests are queued, that is, if the activation request count for the specified
task is 1 or more, the count is decremented by 1 and the task is moved to the READY
state. In this case, the actions that must be taken at task activation time are performed.
The extended information of the task is passed to the task as a parameter.

If thetask isin the DORMANT state, an E_OBJ error isreturned. A task cannot ter-
minate itself with this service call. If atask specifiesits own task ID in tskid, an
E_ILUSE error isreturned.

[Supplemental Information]

This service call forces the specified task to terminate even if the task isin the blocked
state. When the task iswaiting in await queue, the task is removed from the queue. In
this case, some other tasks that are in the wait queue may need to be released from
waiting. Seethe functional descriptions of snd_mbf and get_mpl.

When activation requests are queued for the specified task, this service call will reacti-
vate the task after it has been terminated. Thisimplies that all mutexes locked by the
task are unlocked and the processing time limit is set to undefined. In addition the base
priority, the current priority, the wakeup request count, the suspension count, the pend-
ing exception code, and the task exception handling state are all reset to their initial val-
ues. Thetask has the lowest precedence among all tasks with the same priority in the
READY dtate.

92



M TRON4.0 Specification Ver. 4.00.00

[Differences from the pITRON3.0 Specification]

The main error code when the invoking task is specified has been changed from
E OBJtoE_ILUSE.

This service call may reactivate the specified task due to the addition of the activation
request count.

93



pI TRON4.0 Specification Ver. 4.00.00

chg_pri Change Task Priority [S]

[C Language API]
ER ercd = chg_pri ( ID tskid, PRI tskpri ) ;

[Parameter]
ID tskid ID number of the task whose priority is to be
changed
PRI tskpri New base priority of the task
[Return Parameter]
ER ercd E_OK for norma completion or error code
[Error Code]
E ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E PAR Parameter error (tskpriisinvalid)
E_ILUSE Illegal service call use (priority ceiling violation)
E OBJ Object state error (specified task isin the DORMANT state)

[Functional Description]

This service call changes the base priority of the task specified by tskid to the priority
value specified by tskpri. The current priority can aso be changed.

If tskid isTSK_SELF (= 0), the priority of theinvoking task is changed. If tskpriis
TPRI_INI (= 0), the base priority is changed to the task’s initial priority.

If the invocation of this service call resultsin equal base and current priorities, whichis
always the case if mutexes are not used, the following actions are performed. If the
task is runnable, the task’s precedence is changed to reflect the new priority. The task
will have the lowest precedence among tasks with the same priority. If the task iswait-
ing in await queue, the task’s position in the queue is changed to reflect the new prior-
ity. Thetask will be placed last among tasks with the same priority.

If the task locked mutexes with the TA_CEILING attribute and the new base priority,

tskpri, is higher than one of the ceilings of the mutexes, an E_ILUSE error is
returned.

[Supplemental Information]

When the task is waiting in await queue, this service call may change the task’s order
in the wait queue. In this case, some other tasks that are in the wait queue may need to
be released from waiting. See the functional descriptions of snd_mbf and get_mpl.

If the specified task is waiting for a mutex with the TA_INHERIT attribute, transitive
priority inheritance needs to be applied as the result of changing the base priority of the
task.

94



M TRON4.0 Specification Ver. 4.00.00

When mutexes are not used and when this service call isinvoked with the invoking task
in tskid and its base priority in tskpri, the task will have the lowest precedence among
all tasks with the same priority. Therefore, this service call can be used to yield the
execution privilege to another task.

[Differences from the pITRON3.0 Specification]

chg_pri now changes the base priority of a task due to the addition of mutexes.
Allowing tskpri to be set to TPRI_INI is now standard.

95



M TRON4.0 Specification Ver. 4.00.00

get _pri Reference Task Priority [S]

[C Language API]
ER ercd = get_pri ( ID tskid, PRI *p_tskpri ) ;

[Parameter]
ID tskid ID number of the task to reference
[Return Parameter]
ER ercd E_OK for normal completion or error code
PRI tskpri Current priority of specified task
[Error Code]
E ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E OBJ Object state error (specified task isin the DORMANT state)

[Functional Description]

This service call returns the current priority of the task specified by tskid through
tskpri.

If tskid isTSK_SELF (= 0), the current priority of the invoking task is returned.
[Supplemental Information]

get_pri refersto the task’s current priority while chg_pri changes the task’s base pri-
ority.

[Differences from the uITRON3.0 Specification]

This service call has been newly added, because a method is required to obtain an
invoking task’s priority with minimal overhead when the priority of a message to be
sent should be set to the task’s priority.

[Rationale]

The priority is returned through tskpri as opposed to areturn value in order for the
service call to be consistent with other similar service calls (get_yyy) and in order to
allow an implementation-specific extension to use negative values for priorities.

96



M TRON4.0 Specification Ver. 4.00.00

ref_tsk Reference Task State

[C Language API]
ER ercd = ref_tsk ( ID tskid, T_RTSK *pk_rtsk) ;

[Parameter]
ID tskid ID number of the task to be referenced
T RTSK* pk_rtsk Pointer to the packet returning the task state

[Return Parameter]

ER ercd E_OK for norma completion or error code
pk_rtsk includes (T_RTSK type)
STAT tskstat  Task state
PRI tskpri Task current priority
PRI tskbpri  Task base priority
STAT tskwait  Reason for waiting
ID wobjid Object ID number for which the task is waiting
TMO lefttmo Remaining time until timeout
UINT actcent Activation request count
UINT wupcnt  Wakeup request count
UINT suscnt Suspension count
(Other implementation specific information may be added.)
[Error Code]
E ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_PAR Parameter error (pk_rtsk isinvalid)

[Functional Description]

This service call references the state of the task specified by tskid. The state of the
task is returned through the packet pointed to by pk_rtsk. If the specified task isin
the NON-EXISTENT state, an E_ NOEXS error isreturned.

One of the following codesisreturned through tskstat to indicate the state of the task:

TTS_RUN 0x01  RUNNING state

TTS_RDY 0x02 READY state

TTS_WAI 0x04  WAITING state

TTS_SUS 0x08  SUSPENDED state
TTS_WAS 0xOc  WAITING-SUSPENDED state
TTS_DMT 0x10 DORMANT state

If the task is not in the DORMANT state, the current priority is returned through
tskpri and the base priority is returned through tskbpri. If thetask isin the DOR-
MANT state, the values returned through tskpri and tskbpri are implementa-

97



pI TRON4.0 Specification Ver. 4.00.00

tion-dependent.

If the task isin the WAITING state, including the WAITING-SUSPENDED state, one
of the following codes is returned through tskwait to indicate the reason of the task’s
waiting. If thetask isnot inthe WAITING state, the value returned through tskwait is
implementation-dependent.

TTW_SLP 0x0001  Sleeping state

TTW_DLY 0x0002  Delayed state

TTW_SEM 0x0004  Waiting state for a semaphore resource
TTW_FLG 0x0008  Waiting state for an eventflag

TTW_SDTQ 0x0010  Sending waiting state for a data queue
TTW_RDTQ 0x0020 Receiving waiting state for a data queue
TTW_MBX 0x0040  Receiving waiting state for a mailbox
TTW_MTX 0x0080  Waiting state for a mutex

TTW_SMBF 0x0100  Sending waiting state for a message buffer
TTW_RMBF 0x0200 Receiving waiting state for a message buffer
TTW_CAL 0x0400  Calling waiting state for a rendezvous
TTW_ACP 0x0800  Accepting waiting state for a rendezvous
TTW_RDV 0x1000  Terminating waiting state for a rendezvous
TTW_MPF 0x2000  Waiting state for afixed-sized memory block
TTW_MPL 0x4000  Waiting state for a variable-sized memory block

If the task isin the WAITING state, including the WAITING-SUSPENDED state, the
ID of the object the task iswaiting for is returned through wobjid. This does not apply
when the task isin the sleeping state, the delayed state, or the termination waiting state
for arendezvous. In these states, the value returned through wobjid is implementa-
tion-dependent. If the task is not in the WAITING state, the value returned through
wobjid is also implementation-dependent.

When the task is in the WAITING state, including the WAITING-SUSPENDED state,
but not in the delayed state, the amount of time remaining for the task to timeout is
returned through the parameter lefttmo. The value of lefttmo is calculated by sub-
tracting the current time from the time at which the task will timeout. The value
returned through lefttmo, however, must be less than or equal to the actual amount of
time until timeout. This means that if the timeout happens at the next time tick, O is
returned through lefttmo. If the task isin the WAITING state forever (that is, waiting
without atimeout), TMO_FEVR isreturned through lefttmo. If thetask isnot in the
WAITING state or isin the delayed state, the value returned through lefttmo is imple-
mentation-dependent.

The service call returns the task’s activation request count through actcnt.

If the task is not in the DORMANT state, the wakeup request count and suspension
count are returned through wupcnt and suscnt respectively. If the task isin the
DORMANT state, the values returned through wupcnt and suscnt are implementa

98



M TRON4.0 Specification Ver. 4.00.00

tion-dependent.
If tskid isTSK_SELF (= 0), the state of the invoking task is referenced.

[Differences from the pITRON3.0 Specification]

Referencing many pieces of information in the pl TRON3.0 specification was imple-
mentation-dependent, but is now considered standard. The return parameter wid has
been changed to wobjid. In addition the following items have been added: task base
priority (tskbpri), remaining time until timeout (lefttmo), and activation request
count (actcnt). The extended information has been removed from the list.

The order of tskstat and tskpri in pk_rtsk has been exchanged. The data type for
tskstat has been changed from UINT to STAT. The order of parameters and of
return parameters has been changed.

The return values are now implementation-dependent under cases where parameters
have no meaning for specific tasks states. For example, if the task isin the DOR-
MANT state, the value returned through tskpri isimplementation-dependent.

The values returned through tskwait have been reassigned.

[Rationale]

If the task isin the delayed state, the value returned through lefttmo is implement-
dependent because the delayed time data type used by dly_tsk isRELTIM (unsigned
integer) and it cannot be always returned through lefttmo which is of TMO (signed

integer).

99



M TRON4.0 Specification Ver. 4.00.00

ref _tst Reference Task State (Simplified Version)

[C Language API]
ER ercd = ref_tst (ID tskid, T_RTST *pk_rtst) ;

[Parameter]
ID tskid ID number of the task to be referenced
T RTST* pk rtst Pointer to the packet returning the task state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rtstincludes (T_RTST type)
STAT tskstat  Task state
STAT tskwait  Reason for waiting
(Other implementation specific information may be added.)
[Error Code]
E ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E PAR Parameter error (pk_rtstisinvalid)

[Functional Description]

This service call references the minimum task state information for the task specified
by tskid. The state of the task is returned through the packet pointed to by pk_rtst.

This service call is a simplified version of ref_tsk. The same values returned by
ref_tsk through tskstat and tskwait apply to ref_tst aswell.

If tskidis TSK_SELF (= 0), the state of the invoking task is referenced.

[Rationale]

A task’s information can be referenced with ref_tsk. However, if only minimum
information is required, an overhead on data space is incurred for the rest of the possi-
bleinformation. A new servicecal, ref_tst, has been added in order to extract just the
minimum task information.

[Differences from the pITRON3.0 Specification]

This service call has been newly added.

100



M TRON4.0 Specification Ver. 4.00.00

4.2 Task Dependent Synchronization Functions

Task dependent synchronization functions provide direct control of task states to syn-
chronize tasks. Task dependent synchronization functions include the ability to put a
task to the sleeping state, to wakeup a task from the sleeping state, to cancel wakeup
requests, to forcibly release a task from waiting, to suspend a task, to resume a task
from the SUSPENDED state, and to delay the execution of the invoking task.

Wakeup requests for atask are queued. In other words, if atask is not in the sleeping
state and a wakeup request is made for the task, the new request is recorded. When the
task enters the sleeping state under this situation, the task will not be put in the sleeping
state. A task includes a wakeup request count to realize the wakeup request queuing.
This count is cleared to 0 when the task is activated.

Suspension requests for atask are nested. In other words, if atask has already been in
the SUSPENDED state, including WAITING-SUSPENDED state, and an attempt is
made to put the task in the SUSPENDED state again, the new request is recorded.
When an attempt is made to resume the task from SUSPENDED state under this situa
tion, the task will not be resumed. A task includes a suspension count to realize the
suspension request nesting. This count is cleared to 0 when the task is activated.

The following kernel configuration constants are defined for use with task dependent
synchronization functions:

TMAX_WUPCNT Maximum wakeup request count
TMAX_SUSCNT M aximum suspension count

The following represents the function codes for the task dependent synchronization
service cals:

TFN_SLP_TSK —0x11 Function code of slp_tsk
TFN_TSLP_TSK —0x12 Function code of tslp_tsk
TFN_WUP_TSK —0x13 Function code of wup_tsk
TEN_IWUP_TSK —0x72  Function code of iwup_tsk
TFN_CAN_WUP —-0x14  Function code of can_wup

TFN_REL_WAI —0x15 Function code of rel_wai
TFN_IREL_WAI —0x73  Function code of irel_wali
TFN_SUS TSK —0x16 Function code of sus_tsk

TFN_RSM_TSK —0x17 Function code of rsm_tsk
TFEN_FRSM_TSK —0x18 Function code of frsm_tsk
TFEN_DLY_TSK —-0x19 Function code of dly_tsk

[Standard Profile]

The Standard Profile requires support for task dependent synchronization functions.

The Standard Profile requires support for a wakeup request count of one or more. It
also requires support for the SUSPENDED state for a task. Therefore, each of

101



pI TRON4.0 Specification Ver. 4.00.00

TMAX_WUPCNT and TMAX_SUSCNT must be at least 1.

[Supplemental Information]

TMAX_WUPCNT isundefined if the sleeping state for atask is not supported and isO
if the wakeup request queuing is not supported. TMAX_SUSCNT is undefined if the
SUSPENDED state for atask is not supported, thus, TMAX_SUSCNT is never 0.

[Differences from the pJITRON3.0 Specification]

The functionsfor releasing atask from waiting, rel_wai, and for delaying the invoking
task’s execution, dly_tsk, are now classified as task dependent synchronization func-
tions.

102



M TRON4.0 Specification Ver. 4.00.00

slp_tsk Put Task to Sleep [S]
tslp_tsk Put Task to Sleep (with Timeout) [S]

[C Language API]
ER ercd =slp_tsk () ;
ER ercd = tslp_tsk ( TMO tmout ) ;

[Parameter]
TMO tmout Specified timeout (only for tslp_tsk)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E _PAR Parameter error (tmout isinvalid; only for tslp_tsk)
E_RLWAI Forced release from waiting (accept rel_wai while waiting)
E TMOUT Polling failure or timeout (only tslp_tsk)

[Functional Description]

These service calls move the invoking task to the sleeping state. However, if wakeup
requests are queued, that is, if the wakeup request count for the invoking task is 1 or
more, the count is decremented by 1 and the invoking task continues execution.

tslp_tsk has the same functionality as slp_tsk with an additional timeout feature.
tmout can be set to a positive number indicating a timeout duration or it can be set to
TMO_POL (=0) or TMO_FEVR (=-1).

[Supplemental Information]

These service calls do not move the invoking task to the WAITING state if wakeup
requests for the invoking task are queued. Thus the precedence of the invoking task is
not changed.

No polling service call is provided for slp_tsk. If asimilar feature is necessary, it can
be implemented using can_wup.

103



pI TRON4.0 Specification Ver. 4.00.00

wup_tsk Wakeup Task [S]
iwup_tsk [S]

[C Language API]
ER ercd = wup_tsk ( ID tskid ) ;
ER ercd = iwup_tsk ( ID tskid ) ;

[Parameter]
ID tskid ID number of the task to be woken up
[Return Parameter]
ER ercd E_OK for normal completion or error code
[Error Code]
E ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_OBJ Object state error (specified task isin the DORMANT state)
E QOVR Queue overflow (overflow of wakeup request count)

[Functional Description]
These service callswake up the task specified by tskid from sleeping. The service call
that placed the task in the WAITING state will return E_OK to the task.

If the task is not in the sleeping state, the wakeup request for the task is queued. (How-
ever, if thetask isinthe NON-EXISTENT state, an E_NOEXS error isreturned and if
the task isin the DORMANT state, an E_OBJ error isreturned.) Specifically, the
wakeup request count is incremented by 1. If the count then exceeds the maximum
possible count, an E_QOVR error is returned.

If this service call isinvoked from non-task contexts and has its execution delayed, an
E_OBJ error and an E_QOVR error may not be returned.

If tskid isTSK_SELF (= 0), theinvoking task is specified. If TSK_SELF is specified
when this service call isinvoked from non-task contexts, an E_ID error isreturned.

[Supplemental Information]

The Standard Profile requires the maximum wakeup request count to be at least 1. This
implies that akernel that is compatible with the Standard Profile may not always return
an E_QOVR error even if these service calls are invoked on a task with queued
wakeup requests.

[Differences from the pITRON3.0 Specification]

The invoking task can now be specified in this service call for the consistency with
act_tsk.

104



M TRON4.0 Specification Ver. 4.00.00

can_wup Cancel Task Wakeup Requests [S]

[C Language API]
ER_UINT wupcnt = can_wup ( ID tskid ) ;

[Parameter]
ID tskid ID number of the task for cancelling wakeup
requests

[Return Parameter]
ER_UINT wupcnt  Wakeup request count (positive value or 0) or error

code
[Error Code]
E ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_OBJ Object state error (specified task isin the DORMANT state)

[Functional Description]

This service call cancels all queued wakeup requests for the task specified by tskid
and returns the cancelled request count for the task. Specifically, the wakeup request
count for thetask is cleared to 0. The value returned is the count before it was cleared.

If tskid isTSK_SELF (= 0), the invoking task is specified.
[Supplemental Information]

This service call can be used to check if atask completes a process within a cycle cor-
rectly when the task iswoken up cyclically. Specifically, can_wup should be invoked
when the task completes the process. A return value of 1 or more from can_wup indi-
cates that the next wakeup request is done before the task completes the process in the
previous cycle. Thetask can take measures for this case.

[Differences from the pJITRON3.0 Specification]
The wakeup request count (wupcnt) is now the return value of this service call.

105



pI TRON4.0 Specification Ver. 4.00.00

rel_wai Release Task from Waiting [S]
irel_wai [S]

[C Language API]
ER ercd = rel_wai ( ID tskid) ;
ER ercd = irel_wai ( ID tskid ) ;

[Parameter]
ID tskid ID number of the task to be released from waiting
[Return Parameter]
ER ercd E_OK for normal completion or error code
[Error Code]
E ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_OBJ Object state error (specified task isin the DORMANT state)

[Functional Description]

These service calls forcibly release the task specified by tskid from waiting. Specifi-
cally, if thetask isin the WAITING state, it ismoved to the READY state. If thetask is
in the WAITNG-SUSPENDED state, it is moved to the SUSPEDED state. When the
task is released from waiting by these service calls, the service call that placed the task
in the WAITING state will return an E_RLWAI error to the task.

If the task is not in the WAITING state, including the WAITING-SUSPENDED state,
an E_OBJ error isreturned. However, if the task isin the NON-EXISTENT state, an
E_NOEXS error code is returned. If this service call isinvoked from non-task con-
texts and has its execution delayed, an E_OBJ error may not be returned.

[Supplemental Information]

A task cannot specify its own task ID in tskid. If atask does specify its own task ID,
these service calls return an E_OBJ error because the task is not in the WAITING
state.

These service calls do not cause a task in the SUSPENDED state to resume.
frsm_tsk (or rsm_tsk) should be used to forcibly resume a suspended task.

If the task iswaiting in await queue, the task is removed from the queue. In this case,
some other tasks that are in the wait queue may need to be released from waiting. See
the functional descriptions of snd_mbf and get_mpl.

The following describes the differences between rel_wai and wup_tsk:

* rel_wal releases atask from any waiting state, while wup_tsk only releases a task
from the sleeping state.

» To the task in the sleeping state, a success (E_OK) is returned when the task is

106



M TRON4.0 Specification Ver. 4.00.00

released from sleeping with slp_tsk, while an error (E_RLWAI) is returned when
the task isforcibly released from waiting with rel_wai.

» wup_tsk will increment the wakeup request count if the task is not in the sleeping
state. On the other hand, rel_wai will return an E_OBJ error if the task is not wait-

ing.

107



pI TRON4.0 Specification Ver. 4.00.00

sus_tsk Suspend Task [S]

[C Language API]
ER ercd = sus_tsk ( ID tskid ) ;

[Parameter]
ID tskid ID number of the task to be suspended

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E ID Invalid ID number (tskid isinvalid or unusable)
E CTX Context error (the invoking task is specified while under dis-
patching disabled state; any other context error)
E_NOEXS Non-existent object (specified task is not registered)
E OBJ Object state error (specified task isin the DORMANT state)
E QOVR Queue overflow (overflow of suspension count)

[Functional Description]

This service call suspends the task specified by tskid. Specifically, if the task is run-
nable, it is moved to the SUSPENDED state. If the task isin the WAITING state, it is
moved to the WAITING-SUSPENDED state. In addition, the suspension count is
incremented by 1. If the count then exceeds the maximum possible count, an
E_QOVR error isreturned.

This service call can be invoked under the dispatching disabled state. However, under
the dispatching disabled state, if this service call is invoked specifying the invoking
task, an E_CTX error isreturned.

If tskid isTSK_SELF (= 0), theinvoking task is specified.
[Supplemental Information]

This service cal may be invoked under the dispatching disabled state even though the
invoking task may be moved to the SUSPENDED state as specified in the parameter.
Therefore thisis an exception to the principle stating that “ The restriction that behavior
is undefined when service calls that can move the invoking task to the blocked state are
invoked while in the dispatching disabled state appliesto a service asawhole”

The Standard Profile requires the maximum suspension count to be at least 1. This
implies that akernel that is compatible with the Standard Profile may not always return
an E_QOVR error even if this service call isinvoked on atask in the SUSPENDED
State.

[Differences from the pITRON3.0 Specification]

The invoking task can now be specified in tskid.

108



M TRON4.0 Specification Ver. 4.00.00

rsm_tsk Resume Suspended Task [S]
frsm_tsk Forcibly Resume Suspended Task [S]

[C Language API]
ER ercd = rsm_tsk ( ID tskid ) ;
ER ercd = frsm_tsk ( ID tskid ) ;

[Parameter]
ID tskid ID number of the task to be resumed

[Return Parameter]
ER ercd E_OK for norma completion or error code

[Error Code]

E_ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E OBJ Object state error (specified task is neither in the SUS

PENDED state nor WAITING-SUSPENDED state)

[Functional Description]

These service calls release the task specified by tskid from the SUSPENDED state
and allows the task to continue its normal processing. Specifically, the following
actions are performed.

rsm_tsk decrements the suspension count of the task by 1. If the count becomes O,
the task is moved according to the following: if the task isin the SUSPEDED state, itis
moved to the READY state; if the task isin the WAITING-SUSPENDED state, it is
moved to the WAITING state. If the count remainsto be 1 or more, the state of the task
is not changed.

frsm_tsk clears the suspension count to 0 and forcibly moves the task according to
the following: if the task isin the SUSPEDED state, it is moved to the READY state; if
the task isin the WAITING-SUSPENDED state, it is moved to the WAITING state.

If the specified task is neither in the SUSPENDED state nor WAITING-SUSPENDED
state, an E_OBJ error isreturned. However, if the task isin the NON-EXISTING
state, an E_ NOEXS error isreturned.

[Supplemental Information]

A task cannot specify its own task ID in tskid. If atask does specify its own task ID,
these service callsreturn an E_OBJ error because the task is not in the SUSPENDED
state. When an implementation-specific service cal is capable of moving atask to the
SUSPENDED state from non-task contexts or moving the invoking task to the SUS-
PENDED state under the dispatching disabled state, the invoking task may have the
suspension count of 1 or more. The behavior of rsm_tsk and frsm_tsk in thiscaseis

109



pI TRON4.0 Specification Ver. 4.00.00

implementation-dependent.

[Differences from the uITRON3.0 Specification]

After atask is moved from the SUSPENDED state to the READY state, the task has
the lowest precedence among all tasks with the same priority in the READY state. See
Section 3.2.1 for more details.

110



M TRON4.0 Specification Ver. 4.00.00

dly tsk Delay Task [S]

[C Language API]
ER ercd = dly_tsk ( RELTIM dlytim ) ;

[Parameter]
RELTIM dlytim Amount of time to delay the invoking task (relative
time)
[Return Parameter]
ER ercd E_OK for norma completion or error code
[Error Code]
E PAR Parameter error (dlytim isinvalid)
E_RLWAI Forced release from waiting (accept rel_wai while waiting)

[Functional Description]

This service call delays the execution of the invoking task for the amount of time spec-
ified in dlytim. Specifically, the invoking task is set to be released from waiting when
the specified relative time has passed since the invocation of this service call, and then
it is moved to the delayed state. When the task is released from waiting after the rela
tive time expires, the service call completes and returns E_OK.

dlytim is the relative time when the task is released from the delayed state with
respect to the time when the service call isinvoked.

[Supplemental Information]

Therelease of atask from the delayed state depends on the system time. Therefore, the
task is released at the first time tick after the specified time has passed. The system
must guarantee that the release of the task occurs after an elapsed time equal to or
greater than the specified time (see Section 2.1.9). This service call movesthe invoking
task to the delayed state even if dlytim isO.

The delayed state is a kind of the WAITING state and can be forcibly released with
rel_wai. The delayed time includes the time atask spends in the WAITING-SUS
PENDED state.

This service call is different from tslp_tsk in that it returns E_OK when the specified
time expires. Also, an invocation of wup_tsk for the task will not release the task
from the delayed state. Only ter_tsk and rel_wai can release the task from the
delayed state before the time expires.

[Differences from the pITRON3.0 Specification]
The data type of dlytim has been changed from DLYTIME to RELTIM.

111



pI TRON4.0 Specification Ver. 4.00.00

4.3 Task Exception Handling Functions

Task exception handling functions provide handling task exceptions within the task’s
context. Task exception handling functions include the ability to define a task excep-
tion handling routine, to request a task exception handling, to enable and disable task
exception handling, and to reference the state of atask exception handling.

When atask’s exception handling is requested, the task suspends processing and the
task exception handling routine is started. The handling routine runs within the same
context as the task itself. Once the task exception handling routine returns, the task
resumes processing. An application can register a task exception handling routine for
each task. A task exception handling routine is not registered when the task is created.

When atask exception handling is requested, the task exception code representing the
type of exception is specified. For each task, the kernel manages the exception code
representing the exceptions that have been requested but have not been processed yet.
This code is referred to as the pending exception code. The pending exception code is
0 if no unprocessed exception request exists. When a task exception handling is
requested for atask that has unprocessed exception requests, the task’s pending excep-
tion code is bit-wise ORed with the requested exception code. The pending exception
code is cleared to O when the task is activated.

A task can be in either the task exception disabled state or the task exception enabled
state. Moving atask to the task exception disabled state is called “disabling task
exceptions.” Moving atask to the exception enabled state is called “enabling task
exceptions.” Just after atask starts, it isin the task exception disabled state.

The following behavior is implementation-defined. The kernel disables task excep-
tions when an extended service routine is started and restores the original state when
the routine returns. In addition, if ena_tex isinvoked from an extended service call
routine, an E_CTX error is returned because task exceptions should be kept disabled
during the execution of the routine.

A task’s exception handling routine is started when the following four conditions are
met: task exceptions are enabled for the task, the task’s pending exception code is not
0, thetask isin the RUNNING state, and non-task contexts or CPU exception handlers
are not being executed. The pending exception code (texptn) and the task’s extended
information (exinf) are passed to the task exception handling routine as parameters.
At this point, task exceptions are disabled and the pending exception code is cleared to
0.

When the task exception handling routine returns, the task resumes executing the pro-
cess that was executing before the routine was started. At this point, the task excep-
tions are enabled. If the pending exception code is not 0, the task exception handling
routine is restarted.

The following data type is used for task exception handling functions:

112



M TRON4.0 Specification Ver. 4.00.00

TEXPTN Bit pattern for the task exception code (unsigned integer)
The format to write atask exception handling routine in C language is shown below:

void texrtn ( TEXPTN texptn, VP_INT exinf)
{

}
The following kernel configuration constant is defined for use with task exception han-
dling functions:
TBIT_TEXPTN The number of bits in the task exception code (the
number of bits of TEXPTN type)
The following packet data types are defined for defining and referencing task exception
handling routines:

/* Body of the task exception handling routine */

typedef struct t_dtex {

ATR texatr ; /* Task exception handling routine
attribute */
FP texrtn ; /* Task exception handling routine start
address */
/* Other implementation specific fields may be added. */
} T_DTEX ;
typedef struct t_rtex {
STAT texstat;  /* Task exception state */

TEXPTN  pndptn; /* Pending exception code */
/* Other implementation specific fields may be added. */
}T_RTEX ;

The following represents the function codes for the task exception handling service
cals:

TFEN_DEF_TEX —Ox1b  Function code of def_tex
TFN_RAS TEX —0x1c Function code of ras_tex
TFN_IRAS TEX —0x74  Function code of iras_tex
TFN_DIS TEX —0Ox1d Function code of dis_tex
TFN_ENA_TEX —Ox1le Function code of ena_tex
TFN_SNS TEX —0x1f  Function code of sns_tex
TFEN_REF_TEX —0x20 Function code of ref_tex

[Standard Profile]

The Standard Profile requires support for task exception handling functions except for
dynamic definition of an exception handling routine (def_tex) and reference of atask
exception handling routine state (ref_tex).

The Standard Profile also requires the bit-width for the bit pattern data type to be at
least 16 bits:

TEXPTN 16 bits or more
Therefore, TBIT_TEXPTN must be 16 or more.

113



pI TRON4.0 Specification Ver. 4.00.00

[Supplemental Information]

The specification does not specify whether a task exception handling routine is started
in the CPU locked state because the behavior of service calls that request task excep-
tion handling in the CPU locked state is undefined. On the other hand, atask exception
handling routine must be started if the four task exception handling conditions are met
and even if dispatching is disabled.

The context and states under which task exception handling routines execute are sum-
marized below:

» Task exception handling routines execute in the same context as the tasks (see Sec-
tion 3.5.1). The contexts in which the task exception handling routines execute are
classified as task contexts.

» The start of and the return from the task exception handling routines do not change
the CPU state or the dispatching state (see Sections 3.5.4 and 3.5.5). However, the
specification does not specify whether atask exception handling routine is started in
the CPU locked state.

The circumstances regarding enabling and disabling task exceptions are summarized
below:

» When atask is activated, task exceptions for the task are disabled.

* When a task exception handling routine is started, task exceptions are disabled.
Task exceptions are enabled upon the return from the task exception handling rou-
tine.

* Invoking dis_tex disables task exceptions and invoking ena_tex enables task
exceptions.

* When the definition of a task exception handling routine is released with def _tex,
task exceptions are disabled.

Task exception handling routines may execute a non-local jump by invoking longjmp
from the standard C library. Thisis allowed because the exception handling routine
executes within the context of the task. When a non-local jump is used to terminate a
task exception handling routine, the kernel does not enable task exceptions because the
kernel cannot detect whether the task exception handling routine terminates. The
application may enable the task exceptions by invoking ena_tex. In addition if an
application executes a non-local jump from the task exception handling routine, the
application must disable task exceptions in order to maintain integrity of global data
structures (see Rationale below).

A task exception handling routine may be restarted just after it returns. Inthis case, the
stack pointer must be the same as the stack pointer when the routine is started previ-
ously. Thisimpliesthereis no wasted stack space when the task exception handling
routine is restarted after its completion. If thiswere not the case, it would be impossi-
ble to bound the size of the stack area used by a succession of task exception handling

114



M TRON4.0 Specification Ver. 4.00.00

routines.

The WI TRON4.0 Specification does not provide the functionality to mask atask’s
exception code bit by bit. However, an application could still realize this functionality
through the specified task exception handling functions as described below. An appli-
cation manages the task exception handling mask for each task. At the beginning of the
task exception handling routine, the application checks if the passed task exception
code is masked or not. If the code is masked, the routine must record that the routine
was started with the exception code and return immediately. To be accurate, the routine
must handle the case where some part of the code is masked and some part of the code
is not masked. Later, when the application changes the task exception handling mask,
the application must check if the exception handling routine was started with a previ-
ously masked exception code. If there is arecord of a masked exception, the task
exception handling routine is started by the application to handle the exception.

Task exception handling routines are not nested because task exceptions are disabled at
the start of the task exception handling routine. If task exception handling routines are
complex, especially when the task can enter the WAITING state, there are cases when
the routine may need to be nested because an exception could occur while the excep-
tion routine is executing. In cases like this, the exception routine can be nested by
invoking ena_tex within the task exception handling routine. However, some mea
sures must be taken to avoid starting an unlimited number of nested task exception han-
dling routines. An example measure is to mask the currently processing exceptions
with the exception handling mask described above.

If a CPU exception occurs while atask exception handling routine is executing, the
CPU exception handler begins executing. Once the CPU exception handler returns, the
task exception handler resumes even if the CPU exception handler requests task excep-
tion handling. Thisis because the task exceptions were disabled when the task excep-
tion handling routine started. If the cause of the CPU exception is not removed within
the CPU exception handler, the CPU exception is raised again just after the handler
returns. Asaresult, the CPU exception will continue forever. This aso appliesto any
CPU exceptions that occurred while in the task exception disabled state.

In principle the application must avoid cases where a CPU exception occurs while in
the task exception disabled state, when the CPU exception handler requests task excep-
tion handling. However, CPU exceptions may not be avoidable due to software and/or
hardware malfunctions. In order to avoid continuous CPU exceptions where CPU
exceptions are unavoidable, the CPU exception handler must reference the task excep-
tion handling state and perform special handling when task exceptions are disabled.
Nesting the execution of task exception handling routines using the previously
described method, may also be necessary to shorten the duration task exceptions are
disabled.

In an implementation where different stack spaces are used for the application and the

115



pI TRON4.0 Specification Ver. 4.00.00

kernel, information stored in the kernel stack space or in the task control block (TCB)
must often be moved to the application stack space in order to support the nesting of
task exception handling routines. For instance, if atask exception handling request
occurs while atask is being preempted, the exception routine will start the next time
when the task enters the READY state. In this case, the task’s states before the pre-
emption, which is stored in the kernel stack space or in the TCB, must be moved to the
application’s stack space. When the task exception handling routine returns, the task
states must be restored based on the information stored in the application’s stack space.

[Differences from the pITRON3.0 Specification]
Task exception handling functions have been newly added.

[Rationale]

The WITRONA4.0 Specification only includes basic task exception handling functions.
An application can realize more complex exception handling based on the provided
functions when necessary. This allows the application to gain more powerful support
while keeping the kernel compact.

The specification only states that task exception handling routines execute in the same
context as the task. The description regarding non-local jumps via longjmp is
included in the supplemental information because easy use of longjmp from the task
exception handling routine is dangerous for the reason described in the next paragraph.
A task exception handling routine can safely be terminated forcibly through ext_tsk.
This method is considered to be sufficient for the scope of the Standard Profile.

An easy use of longjmp can result to the following. If atask exception handling rou-
tine is started while a global data structure is being operated on and if the task exits the
task exception handling routine with a longjmp, the possibility exists that the datais
corrupted. In such cases, users should be very careful when using of longjmp to exit
the task exception handling routine. Specifically, task exceptions must be disabled
while aglobal data structure is inconsistent.

116



M TRON4.0 Specification Ver. 4.00.00

DEF _TEX  Define Task Exception Handling Routine (Static API) [S]
def tex Define Task Exception Handling Routine
[Static API]

DEF_TEX ( ID tskid, { ATR texatr, FP texrtn }) ;

[C Language API]
ER ercd = def_tex ( ID tskid, T_DTEX *pk_dtex ) ;

[Parameter]
ID tskid ID number of the task to be defined
T DTEX* pk _dtex Pointer to the packet containing the task exception
handling routine definition information (in
DEF_TEX, the contents must be directly speci-

fied.)
pk_dtex includes (T_DTEX type)
ATR texatr Task exception handling routine attribute
FP texrtn Task exception handling routine start address

(Other implementation specific information may be added.)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E RSATR Reserved attribute (texatr isinvalid or unusable)
E PAR Parameter error (pk_dtex or texrtn isinvalid)

[Functional Description]

This service call defines the task exception handling routine for the task specified by
tskid based on the information contained in the packet pointed to by pk_dtex.
texatr is the attribute of the task exception handling routine. texrtn is the start
address of the task exception handling routine.

In DEF_TEX, tskid isan integer parameter without automatic assignment. texatr is
a preprocessor constant expression parameter.

If pk_dtex isNULL (= 0), the task exception handling routine currently defined is
released and the task exception handling routine becomes undefined. At thistime, the
pending exception code is cleared to 0 and task exception are disabled. When a new
task exception handling routine is defined over top of an old one, the old oneisreleased
and the new one takes its place. Under this condition, the pending exception code is
not cleared and task exceptions are not disabled.

117



pI TRON4.0 Specification Ver. 4.00.00

When tskid is TSK_SELF (= 0), the task exception handling routine is defined for
the invoking task.

texatr can be specified as (TA_HLNG || TA_ASM). If TA_HLNG (= 0x00) is speci-
fied, the task exception handling routine is started through the C language interface. If
TA_ASM (= 0x01) is specified, the routine is started through an assembly language
interface.

[Standard Profile]

The Standard Profile does not require support for when TA_ASM is specified in
texatr.

[Supplemental Information]

The task exception handling routine remains effective until def_tex is invoked with
pk_dtex set to NULL or until the task is deleted.

When DEF_TEX is used to define a task exception handling routine for atask, the
task must be created with CRE_TSK appearing before DEF_TEX in the system con-
figuration file.

[Rationale]

When the definition of the task exception handling routine is cancelled, the pending
exception code is cleared and task exceptions are disabled. Thisis done to keep the
pending exception code to 0 and task exceptions to the disabled state, when the task
exception handling routine is not defined. Once atask exception handling routine
becomes undefined, these conditions are kept because the pending exception code can-
not be set and because task exceptions cannot be enabled.

118



M TRON4.0 Specification Ver. 4.00.00

ras_tex Raise Task Exception Handling [S]
iras_tex [S]

[C Language API]
ER ercd = ras_tex ( ID tskid, TEXPTN rasptn ) ;
ER ercd = iras_tex ( ID tskid, TEXPTN rasptn ) ;

[Parameter]
ID tskid ID number of the task requested
TEXPTN rasptn Task exception code to be requested

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]

E ID Invalid ID number (tskid isinvalid or unusable)

E_NOEXS Non-existent object (specified task is not registered)

E PAR Parameter error (rasptn isinvalid)

E OBJ Object state error (specified task is in the DORMANT state,

task exception handling routine is not defined)

[Functional Description]

These service calls request task exception handling for the task specified by tskid.
The task exception code is specified by the bit pattern in rasptn. Specifically, the
task’s pending exception code is bit-wise ORed with the requested exception code.

If tskid is TSK_SELF (= 0), the invoking task is specified. If TSK_SELF is speci-
fied when this service call is invoked from non-task contexts, an E_ID error is
returned.

If the task isin the DORMANT state or if the task exception handling routine for the
task is undefined, an E_OBJ error is returned. If the service call isinvoked from
non-task contexts and has its execution delayed, an E_OBJ error may not be returned.

If rasptn is0, an E_PAR error is returned.

[Supplemental Information]
These service calls start the task exception handling routine if al the conditions for
starting the routine are met.

If the task isin the blocked state, these service calls only update the pending exception
code, and do not release the task from waiting nor from the SUSPENDED state. If the
task must be released from the block state, the application can use rel_wai or
frsm_tsk (or rsm_tsk) to do so.

There are many service calls that when invoked from non-task contexts can have their
execution delayed until the system isin a state where dispatching can occur. However,

119



pI TRON4.0 Specification Ver. 4.00.00

this service call must be executed even if the system isin the dispatching disabled state.
For example, if an interrupt handler requests a task exception handling for the task in
the RUNNING state while in the dispatching disabled state, the task exception han-
dling routine must be started just after the return from the interrupt handler. Thisis
useful for stopping a malfunctioning task running with dispatching disabled by
requesting a task exception handling from an interrupt handler. However, thisis not
useful for stopping a task running with the CPU locked or a task running with task
exceptions and dispatching disabled.

120



M TRON4.0 Specification Ver. 4.00.00

dis_tex Disable Task Exceptions [S]

[C Language API]
ER ercd = dis_tex () ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for norma completion or error code

[Error Code]
E OBJ Object state error (task exception handling routine is not
defined)

[Functional Description]

This service call moves the invoking task to the task exception disabled state. If the
task exception handling routine is not defined for the invoking task, an E_OBJ error is
returned.

121



Ml TRON4.0 Specification Ver. 4.00.00

ena_tex Enable Task Exceptions [S]

[C Language API]
ER ercd = ena_tex () ;

[Parameter]
None

[Return Parameter]

ER ercd E_OK for normal completion or error code
[Error Code]
E _OBJ Object state error (the task exception handling routine is not
defined)
E CTX Context error (invoked from a context not capable of enabling

task exceptions, any other context errors)

[Functional Description]

This service call moves the invoking task to the task exception enabled state. If the
task exception handling routine is not defined for the invoking task, an E_OBJ error is
returned.

For an implementation that does not allow task exceptions enabled within an extended
service call routing, an E_CTX error is returned if this service cal is invoked from an
extended service call routine.

[Supplemental Information]

This service call starts the task exception handling routineif all the conditions for start-
ing the routine are met.

122



M TRON4.0 Specification Ver. 4.00.00

sns_tex Reference Task Exception Handling State [S]

[C Language API]
BOOL state = sns_tex () ;

[Parameter]
None

[Return Parameter]
BOOL state Task exception disabled state

[Functional Description]

This service cal returns TRUE if task exceptions are disabled for the task in the RUN-
NING state (which corresponds to the invoking task when this service call invoked
from task contexts) and returns FALSE if task exceptions are enabled. If this service
call isinvoked from non-task contexts and there is no task in the RUNNING state,
TRUE isreturned.

[Supplemental Information]

Tasks that have no defined task exception handling routine always have task exceptions
disabled. Therefore, when the invoking task has no defined task exception handling
routine, this service call returns TRUE.

123



M TRON4.0 Specification Ver. 4.00.00

ref_tex Reference Task Exception Handling State

[C Language API]
ER ercd = ref_tex ( ID tskid, T_RTEX *pk_rtex ) ;

[Parameter]
ID tskid ID number of the task to be referenced
T RTEX* pk rtex Pointer to the packet returning the task exception
handling state
[Return Parameter]
ER ercd E_OK for norma completion or error code
pk_rtex includes (T_RTEX type)
STAT texstat Task exception handling state

TEXPTN pndptn  Pending exception code
(Other implementation specific information may be added.)

[Error Code]
E ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E _PAR Parameter error (pk_rtex isinvalid)
E _OBJ Object state error (specified task is in the DORMANT state,

the task exception handling routine is not defined)

[Functional Description]

This service call references the state of the task exception handling for the task speci-
fied by tskid. The state of the task exception handling is returned through the packet
pointed to by pk_rtex.

texstat can take on any of the following values:

TTEX ENA  0x00 Task exception enabled state
TTEX _DIS 0x01  Task exception disabled state

The pending exception code is returned through pndptn. 1f no unprocessed exception
request exists, pndptn isO.

If tskid isTSK_SELF (= 0), the state of the invoking task is referenced.

If the task isin the DORMANT state or the task exception handling routine is not
defined for the task, an E_OBJ error isreturned.

124



M TRON4.0 Specification Ver. 4.00.00

4.4 Synchronization and Communication Functions

Synchronization and communication functions provide synchronization and communi-
cation between tasks through objects that are independent of the tasks. The objects are
semaphores, data queues, event flags, and mailboxes.

[Differences from the pITRON3.0 Specification]

Implementation of mailboxes are now limited to linked lists. Data queues have been
newly introduced and provide the same functionality as mailboxes but are implemented
with ring buffers.

4.4.1 Semaphores

A semaphore is an object used for mutual exclusion and synchronization. A semaphore
indicates availability and the number of unused resources by a resource count. Sema
phore functions include the ability to create and delete a semaphore, to acquire and
release resources, and to reference the state of a semaphore. A semaphore is an object
identified by an ID number. The ID number of a semaphore is called the semaphore
ID.

A semaphore has an associated resource count and a wait queue. The resource count
indicates the resource availability or the number of unused resources. The wait queue
manages the tasks waiting for resources from the semaphore. When atask releases a
semaphore resource, the resource count isincremented by 1. When atask acquires a
semaphore resource, the resource count is decremented by 1. If a semaphore has no
resources available or more precisely the resource count is 0, a task attempting to
acquire aresource will wait in the wait queue until a resource is returned to the sema-
phore.

In order to avoid the case where too many resources are returned to a sesmaphore, each
semaphore has a maximum resource count indicating the maximum number of unused
resources available to the semaphore. If more resources are returned to the semaphore
than its maximum resource count, an error will be returned.

The following kernel configuration constant is defined for use with semaphore func-
tions:

TMAX_MAXSEM Maximum value of the maximum definable semaphore
resource count

The following data type packets are defined for creating and referencing semaphores:
typedef struct t_csem {

ATR sematr ;  /* Semaphore attribute */
UINT isemcnt ; /* Initial semaphore resource count */
UINT maxsem ; /* Maximum semaphore resource count */

/* Other implementation specific fields may be added. */

125



pI TRON4.0 Specification Ver. 4.00.00

} T_CSEM ;
typedef struct t_rsem {
ID wtskid ; /* 1D number of the task at the head of the
semaphore’ s wait queue */
UINT semcnt ;  /* Current semaphore resource count */
/* Other implementation specific fields may be added. */
} T_RSEM ;

The following represents the function codes for the semaphore service calls:

TFN_CRE_SEM —-0x21 Function code of cre_sem
TEN_ACRE_SEM  —0Oxc2 Function code of acre_sem
TFEN_DEL_SEM —0x22 Function code of del_sem

TFN_SIG_SEM —0x23  Function code of sig_sem
TFEN_ISIG_SEM —0x75 Function code of isig_sem
TFN_WAI_SEM —0x25 Function code of wai_sem

TFN_POL_SEM —0x26 Function code of pol_sem
TEN_TWAI_SEM —0x27  Function code of twai_sem
TFN_REF_SEM —0x28 Function code of ref_sem

[Standard Profile]

The Standard Profile requires support for semaphore functions except for dynamic cre-
ation and deletion of a semaphore (cre_sem, acre_sem, del_sem) and reference of
asemaphore state (ref_sem).

The Standard Profile requires that maximum resource count can be set to at |east
65535. Although TMAX_MAXSEM does not have to be defined, if it is defined, it
must be equal to or greater than 65535.

[Rationale]

TMAX_MAXSEM is only used when semaphores are dynamically created. Since
dynamic semaphore creation does not have to be supported in the Standard Profile,
TMAX_MAXSEM does not have to be defined in this case.

126



M TRON4.0 Specification Ver. 4.00.00

CRE_SEM  Create Semaphore (Static API) [S]
cre_sem Create Semaphore
acre_sem Create Semaphore (ID Number Automatic Assignment)

[Static API]
CRE_SEM ( ID semid, { ATR sematr, UINT isemcnt,
UINT maxsem }) ;

[C Language API]
ER ercd = cre_sem ( ID semid, T_CSEM *pk_csem ) ;
ER_ID semid = acre_sem ( T_CSEM *pk_csem ) ;

[Parameter]
ID semid ID number of the semaphore to be created (except
acre_sem)
T_CSEM * pk_csem Pointer to the packet containing the semaphore cre-
ation information (in CRE_SEM, packet contents

must be directly specified.)
pk_csem includes (T_CSEM type)
ATR sematr  Semaphore attribute
UINT isemcnt  Initial semaphore resource count
UINT maxsem Maximum semaphore resource count

(Other implementation specific information may be added.)

[Return Parameter]

cre_sem:
ER ercd E_OK for normal completion or error code
acre_sem:
ER_ID semid ID number (positive value) of the created sema
phore or error code
[Error Code]
E_ID Invalid ID number (semid is invalid or unusable; only
cre_sem)
E_NOID No ID number available (there is no semaphore ID assignable;

only acre_sem)
E RSATR Reserved attribute (sematr isinvalid or unusable)

E _PAR Parameter error (pk_csem, isemcnt, or maxsem is
invalid)
E OBJ Object state error (specified semaphore is already registered;

only cre_sem)

127



pI TRON4.0 Specification Ver. 4.00.00

[Functional Description]

These service calls create a semaphore with an ID number specified by semid based
on the information contained in the packet pointed to by pk_csem. sematr isthe
attribute of the semaphore. isemcntistheinitial value of the resource count after cre-
ation of the semaphore. maxsem is the maximum resource count of the semaphore.
In CRE_SEM, semid is an integer parameter with automatic assignment. sematr is
a preprocessor constant expression parameter.

acre_sem assigns a semaphore ID from the pool of unassigned semaphore IDs and
returns the assigned semaphore ID.

sematr can be specified as (TA_FIFO || TA_TPRI). If TA_FIFO (= 0x00) is speci-
fied, the semaphore’s wait queue will bein FIFO order. If TA_TPRI (= 0x01) is spec-
ified, the semaphore’s wait queue will bein task priority order.

[Differences from the pITRON3.0 Specification]

The extended information has been removed from the semaphore creation information.
The data types of isemcnt and maxsem have been changed from INT to UINT.

acre_sem has been newly added.

128



M TRON4.0 Specification Ver. 4.00.00

del sem Delete Semaphore

[C Language API]
ER ercd = del_sem ( ID semid) ;

[Parameter]
ID semid ID number of the semaphore to be deleted

[Return Parameter]
ER ercd E_OK for norma completion or error code

[Error Code]
E ID Invalid ID number (semid isinvalid or unusable)
E_NOEXS Non-existent object (specified semaphore is not registered)
[Functional Description]
This service call deletes the semaphore specified by semid.

[Supplemental Information]

See Section 3.8 for information regarding handling tasks that are waiting for a resource
in a semaphore's wait queue when the semaphore is del eted.

129



pI TRON4.0 Specification Ver. 4.00.00

sig_sem Release Semaphore Resource [S]
Isig_sem [S]

[C Language API]
ER ercd = sig_sem ( ID semid ) ;
ER ercd = isig_sem ( ID semid ) ;

[Parameter]
ID semid ID number of the semaphore to which resource is
released
[Return Parameter]
ER ercd E_OK for normal completion or error code
[Error Code]
E ID Invalid ID number (semid isinvalid or unusable)
E_NOEXS Non-existent object (specified semaphore is not registered)
E QOVR Queue overflow (release will exceed maximum resource

count)

[Functional Description]

These service calls release one resource to the semaphore specified by semid. If any
tasks are waiting for the specified semaphore, the task at the head of the semaphore’s
wait queue is released from waiting. When this happens, the associated semaphore
resource count is not changed. The released task receives E_OK from the service call
that caused it to wait in the semaphore’s wait queue. If no tasks are waiting for the
specified semaphore, the semaphore resource count isincremented by 1.

These service calls return an E_QOVR error if incrementing the resource count by 1
will cause the count to exceed the maximum semaphore resource count. If this service
call isinvoked from non-task contexts and has its execution delayed, an E_ QOVR
error may not be returned, however the condition must still be checked.

130



M TRON4.0 Specification Ver. 4.00.00

wai_sem Acquire Semaphore Resource [S]
pol_sem Acquire Semaphore Resource (Polling) [S]
twai_sem Acquire Semaphore Resource (with Timeout) [S]

[C Language API]
ER ercd = wai_sem ( ID semid ) ;
ER ercd = pol_sem ( ID semid ) ;
ER ercd = twai_sem ( ID semid, TMO tmout ) ;

[Parameter]
ID semid ID number of the semaphore from which resourceis
acquired
TMO tmout Specified timeout (only twai_sem)
[Return Parameter]
ER ercd E_OK for norma completion or error code
[Error Code]
E ID Invalid ID number (semid isinvalid or unusable)
E_NOEXS Non-existent object (specified semaphore is not registered)
E PAR Parameter error (tmout isinvalid; only twai_sem)
E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except pol_sem)

E TMOUT Polling failure or timeout (except wai_sem)

E DLT Waiting object deleted (semaphore is deleted while waiting;
except pol_sem)

[Functional Description]

There service calls acquire one resource from the semaphore specified by semid. If
the resource count of the specified semaphoreis 1 or more, the associated resource
count is decremented by 1. In this case, the invoking task is not moved to the WAIT-
ING state, but rather receives a normal return from the service call. If, on the other
hand, the resource count of the specified semaphoreis O, the invoking task is placed in
the semaphore’s wait queue and is moved to the waiting state for the semaphore. In
this case, the resource count remains unchanged at O.

If there are already tasks in the wait queue, the invoking task is placed in the wait queue
as described below. When the semaphore's attribute has TA_TFIFO (= 0x00) set, the
invoking task is placed in the tail of the wait queue. When the attribute has TA_TPRI
(= 0x01) set, theinvoking task is placed in the wait queue in the order of the task’s pri-
ority. If the wait queue contains tasks with the same priority as the invoking task, the
invoking task is placed after those tasks.

pol _sem is a polling service call with the same functionality as wai_sem.

131



M TRON4.0 Specification Ver. 4.00.00

twai_sem has the same functionality as wai_sem with an additional timeout feature.
tmout can be set to a positive number indicating a timeout duration or it can be set to
TMO_POL (=0) or TMO_FEVR (=-1).

[Supplemental Information]

twai_sem acts the same as pol_sem if TMO_POL is specified in tmout aslong as
no context error occurs. Also, twai_sem actsthe sameaswai_sem if TMO_FEVR
is specified in tmout.

[Differences from the pITRON3.0 Specification]
The name of the polling service call has been changed from preq_sem to pol_sem.

132



M TRON4.0 Specification Ver. 4.00.00

ref_ sem Reference Semaphore State

[C Language API]
ER ercd = ref_sem ( ID semid, T_RSEM *pk_rsem ) ;

[Parameter]
ID semid ID number of the semaphore to be referenced
T RSEM * pk_rsem Pointer to the packet returning the semaphore state

[Return Parameter]

ER ercd E_OK for norma completion or error code
pk_rsem includes (T_RSEM type)
ID wtskid ID number of the task at the head of the sema
phore’'swait queue
UINT semcnt  Current semaphore resource count

(Other implementation specific information may be added.)

[Error Code]
E ID Invalid ID number (semid isinvalid or unusable)
E_NOEXS Non-existent object (specified semaphore is not registered)
E _PAR Parameter error (pk_rsem isinvalid)

[Functional Description]

This service call references the state of the semaphore specified by semid. The state
of the semaphore is returned through the packet pointed to by pk_rsem.

The ID number of the task at the head of the semaphore’s wait queue is returned
through wtskid. If no tasks are waiting for the semaphore’s resource, TSK_NONE
(= 0) isreturned instead.

The semaphore’s current resource count is returned through semcnt.

[Supplemental Information]
A semaphore cannot have wtskid #Z TSK_NONE and semcnt # 0 at the sametime.

[Differences from the pITRON3.0 Specification]

The extended information has been removed from the reference information. The ID
number of the task at the head of the wait queue is now returned instead of a boolean
value indicating whether atask iswaiting or not. Based on this replacement, the name
and data type of the return parameter has been changed.

The data type of semcnt has been changed from INT to UINT. The order of parame-
ters and of return parameters has been changed.

133



pI TRON4.0 Specification Ver. 4.00.00

4.4.2 Eventflags

An eventflag is a synchronization object that consists of multiple bits in a bit pattern
where each bit represents an event. Eventflag functionsinclude the ability to create and
delete an eventflag, to set and clear an eventflag, to wait for an eventflag, and to refer-
ence the state of an eventflag. An eventflag is an object identified by an ID number.
The ID number of an eventflag is called the eventflag ID.

An eventflag has an associated bit pattern expressing the state of its events, and a wait
queue for tasks waiting on these events. Sometimes the bit pattern of an eventflag is
simply called an eventflag. A task isable to set specified bits when an event occurs and
is able to clear specified bits when necessary. Tasks waiting for events to occur will
wait until every specified bit in the eventflag bit pattern is set. Tasks waiting for an
eventflag are placed in the eventflag’s wait queue.

The following datatype is used for eventflag functions:
FLGPTN Bit pattern of the eventflag (unsigned integer)

The following kernel configuration constant is defined for use with eventflag functions:
TBIT_FLGPTN The number of bitsin an eventflag

The following kernel configuration constant is defined for use with eventflag functions:
typedef struct t_cflg {

ATR flgatr ; /* Eventflag attribute */
FLGPTN  iflgptn ; /* Initia value of the eventflag bit
pattern */
/* Other implementation specific fields may be added. */
} T_CFLG;
typedef struct t_rflg {
ID wtskid ; /* 1D number of the task at the head of the
eventflag’'s wait queue */
FLGPTN  flgptn ; /* Current eventflag bit pattern */
/* Other implementation specific fields may be added. */
}T_RFLG;

The following represents the function codes for the eventflag service cals:

TFN_CRE_FLG —0x29 Function code of cre_flg
TFN_ACRE_FLG —0xc3 Function code of acre_flg

TEN_DEL_FLG —Ox2a  Function code of del_flg
TFEN_SET FLG —0x2b  Function code of set_flg
TEN_ISET_FLG —0x76  Function code of iset_flg
TFN_CLR_FLG —0x2c  Function code of clr_flg
TEN_WAI_FLG —0x2d  Function code of wai_flg
TFEN_POL_FLG —0x2e  Function code of pol_flg
TEN_TWAI_FLG —Ox2f  Function code of twai_flg
TFN_REF_FLG —0x30 Function code of ref flg

134



M TRON4.0 Specification Ver. 4.00.00

[Standard Profile]

The Standard Profile requires support for eventflag functions except for dynamic cre-
ation and deletion of an eventflag (cre_flg, acre_flg, del _flg) and reference of an
eventflag state (ref_flg).

The Standard Profile does not require support for multiple tasks waiting for an event-
flag, i.e. eventflags with the TA_WMUL éttribute.

The Standard Profile requires support for an eventflag's bit pattern of at least 16 bits.
Therefore, TBIT_FLGPTN must be defined to be at least 16. The minimum bit width
of the data type for eventflag functionsis as follows:

FLGPTN 16 bits or more

[Supplemental Information]

There is no limitation to the number of bits supported by an eventflag except when
implementing the Standard Profile. Therefore it is possible to supply an eventflag that
supportsonly 1 bit. Because the C language does not support a data type with an arbi-
trary bit width, the number of bitsin avariable of FLGPTN type may actually be more
than the number of bits defined in TBIT_FLGPTN (the number of bitsin an
eventflag).

[Differences from the pITRON3.0 Specification]

The data type of the parameter holding an eventflag bit pattern has been changed from
UINT to the new datatype FLGPTN.

135



pI TRON4.0 Specification Ver. 4.00.00

CRE_FLG  Create Eventflag (Static API) [S]
cre_flg Create Eventflag

acre_flg Create Eventflag (ID Number Automatic Assignment)

[Static API]

CRE_FLG ( ID flgid, { ATR flgatr, FLGPTN iflgptn } ) ;

[C Language API]
ER ercd = cre_flg ( ID flgid, T_CFLG *pk_cflg) ;
ER_ID flgid = acre_flg ( T_CFLG *pk_cflg ) ;

[Parameter]
ID flgid ID number of the eventflag to be created (except
acre_flg)
T CFLG * pk cflg Pointer to the packet containing the eventflag cre-
ation information (in CRE_FLG, packet contents

must be directly specified.)
pk_cflg includes (T_CFLG type)
ATR flgatr Eventflag attribute

FLGPTN iflgptn Initial value of eventflag bit pattern
(Other implementation specific information may be added.)

[Return Parameter]

cre_flg:

ER ercd E_OK for normal completion or error code
acre_flg:

ER_ID flgid ID number (positive value) of the created eventflag

or error code

[Error Code]
E ID Invalid ID number (flgid isinvalid or unusable; only cre_flg)
E _NOID No ID number available (there is no eventflag ID assignable;
only acre_flg)
E RSATR Reserved attribute (flgatr isinvalid or unusable)

E_PAR Parameter error (pk_cflg or iflgptn isinvalid)
E OBJ Object state error (specified eventflag is already registered;
only cre_flg)

[Functional Description]

These service calls create an eventflag with an ID number specified by flgid based on
the information contained in the packet pointed to by pk_cflg. flgatr is the attribute
of the eventflag. iflgptn istheinitial value of the bit pattern after creation of the event-

136



M TRON4.0 Specification Ver. 4.00.00

flag.
In CRE_FLG, flgid is an integer parameter with automatic assignment. flgatr isa
preprocessor constant expression parameter.

acre_flg assigns an eventflag ID from the pool of unassigned eventflag IDs and returns
the assigned eventflag ID.

flgatr can be specified as (TA_TFIFO || TA_TPRI) | (TA_WSGL || TA_WMUL) |
[TA_CLR]). If TA_TFIFO (= 0x00) is specified, the eventflag’s wait queue will bein
FIFO order. If TA_TPRI (= 0x01) is specified, the eventflag’s wait queue will be in
task priority order. If TA_WSGL (= 0x00) is specified, only asingletask isallowed to
be in the waiting state for the eventflag. If TA_ WMUL (= 0x02) is specified, multiple
tasks are allowed to be in the waiting state for the eventflag. If TA_CLR (= 0x04) is
specified, the eventflag’s entire bit pattern will be cleared when atask is released from
the waiting state for the eventflag.

[Standard Profile]

The Standard Profile does not require support for when TA_WMUL is specified in
flgatr.

[Supplemental Information]

A task in the waiting state for an eventflag is not always released from waiting accord-
ing to its order in the wait queue. Thisis because when the task satisfies the release
condition, it is released from waiting even if it is not at the head of the wait queue. For
example, even if an eventflag's attribute has TA_TFIFO set, tasks are not always
released from the wait queue in FIFO order.

If TA_WSGL is specified in flgatr, the eventflag with the TA_TFIFO attribute
behaves the same as the eventflag with the TA_TPRI attribute.

Multiple tasks cannot be released from the waiting state for an eventflag with the
TA_CLR attribute. Thisisbecause when atask isreleased from waiting, all of the bits
in the eventflag is cleared.

[Differences from the pITRON3.0 Specification]

The specification of clearing an eventflag has been moved from the wait mode parame-
ter in wai_flg to the eventflag attribute. This change has been made because there is
almost never a case where some waiting tasks will require the bit pattern to be cleared
and some tasks will require the bit pattern to remain intact.

The functionality allowing the eventflag’s wait queue to be ordered by task priority
with the TA_TPRI attribute has been added.

The extended information has been removed from the eventflag creation information.
The data type of iflgptn have been changed from the UINT to FLGPTN. The vaue
of TA_WMUL has been changed.

acre_flg has been newly added.

137



pI TRON4.0 Specification Ver. 4.00.00

del flg Delete Eventflag

[C Language API]
ER ercd = del _flg ( ID flgid ) ;

[Parameter]
ID flgid ID number of the eventflag to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (flgid isinvalid or unusable)
E_NOEXS Non-existent object (specified eventflag is not registered)
[Functional Description]
This service call deletes the eventflag specified by flgid.

[Supplemental Information]

See Section 3.8 for information regarding handling tasks that are waiting in an
eventflag’'s wait queue when the eventflag is deleted.

138



M TRON4.0 Specification Ver. 4.00.00

set _flg Set Eventflag [S]
iset_flg [S]

[C Language API]
ER ercd = set_flg ( ID flgid, FLGPTN setptn ) ;
ER ercd = iset_flg ( ID flgid, FLGPTN setptn ) ;

[Parameter]
ID flgid ID number of the eventflag to be set
FLGPTN setptn Bit pattern to set

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (flgid isinvalid or unusable)
E_NOEXS Non-existent object (specified eventflag is not registered)
E _PAR Parameter error (setptn isinvalid)

[Functional Description]

These service calls set the bits specified by setptn in the eventflag specified by flgid.
Specifically, the bit pattern of the eventflag is updated to the bit-wise OR of its bit pat-
tern before the invocation of the service call with the value specified in setptn.

After the eventflag's bit pattern is updated, any tasks that satisfy their release condi-
tions are released from waiting. Specifically, each task in the eventflag's wait queueis
checked starting from the head and is released from waiting if its release condition is
satisfied. Each of the released tasks receives E_ OK from the service call that caused it
to wait in the eventflag’swait queue. It also receivesthe bit pattern of the eventflag sat-
isfying the task’s releasing condition. If the eventflag's attribute has TA_CLR
(= 0x04) set, the service calls complete after clearing the entire bit pattern of the event-
flag. If TA_CLR isnot specified, the remaining tasks in the wait queue are checked to
see if they satisfy their release conditions. The service calls terminate after all tasks
have been checked. See the functional description of wai_flg for information about
tasks' release conditions.

Multiple tasks can be released by a single invocation of set_flg if the eventflag's
attribute has the TA_WMUL (= 0x02) attribute but not the TA_CLR attribute set.
When multiple tasks are released, they are released in the same order as in the event-
flag’'s wait queue. Therefore, among the same priority tasks that are moved to the
READY state, atask closer to the head of the wait queue will have higher precedence.

[Supplemental Information]
No action isrequired when all of the bits of setptn are 0.

139



pI TRON4.0 Specification Ver. 4.00.00

[Differences from the pITRON3.0 Specification]
The data type of setptn has been changed from UINT to FLGPTN.

140



M TRON4.0 Specification Ver. 4.00.00

clr_flg Clear Eventflag [S]

[C Language API]
ER ercd = clr_flg ( ID flgid, FLGPTN clrptn ) ;

[Parameter]
ID flgid ID number of the eventflag to be cleared
FLGPTN clrptn Bit pattern to clear (bit-wise negated)

[Return Parameter]

ER ercd E_OK for norma completion or error code
[Error Code]

E ID Invalid ID number (flgid isinvalid or unusable)

E_NOEXS Non-existent object (specified eventflag is not registered)

E _PAR Parameter error (clrptn isinvalid)

[Functional Description]

This service call clears the bits in the eventflag specified by flgid that correspond to O
bit in clrptn. Specifically, the bit pattern of the eventflag is updated to the bit-wise
AND of its bit pattern before the invocation of the service call with the value specified
inclrptn.

[Supplemental Information]

No action isrequired when all of the bits of clrptn are 1.

[Differences from the pITRON3.0 Specification]
The datatype of clrptn has been changed from UINT to FLGPTN.

141



pI TRON4.0 Specification Ver. 4.00.00

wai_flg Wiait for Eventflag [S]
pol _flg Wiait for Eventflag (Polling) [S]
twai_flg Wait for Eventflag (with Timeout) [S]

[C Language API]
ER ercd = wai_flg ( ID flgid, FLGPTN waiptn, MODE wfmode,
FLGPTN *p_flgptn ) ;
ER ercd = pol_flg ( ID flgid, FLGPTN waiptn, MODE wfmode,
FLGPTN *p_flgptn ) ;
ER ercd = twai_flg ( ID flgid, FLGPTN waiptn, MODE wfmode,
FLGPTN *p_flgptn, TMO tmout ) ;

[Parameter]
ID flgid ID number of the eventflag to wait for
FLGPTN waiptn Wait bit pattern
MODE wfmode  Wait mode

TMO tmout Specified timeout (only twai_flg)
[Return Parameter]
ER ercd E_OK for normal completion or error code
FLGPTN flgptn Bit pattern causing a task to be released from wait-
ing
[Error Code]
E_ID Invalid ID number (flgid isinvalid or unusable)
E_NOEXS Non-existent object (specified eventflag is not registered)
E_PAR Parameter error (waiptn, wfmode, p_flgptn, or tmout is
invalid)
E ILUSE Illegal service call use (there is already a task waiting for an
eventflag with the TA_WSGL attribute)
E_RLWAI Forced release from waiting (accept rel_wai while waiting;
except pol_flg)
E TMOUT Polling failure or timeout (except wai_flg)
E DLT Waiting object deleted (eventflag is deleted while waiting;
except pol_flg)

[Functional Description]

These service calls cause invoking task to wait until the eventflag specified by flgid
satisfies the release condition. The release condition is determined by the bit pattern
specified by waiptn and the wait mode specified by wfmode. Once the release con-
dition is satisfied, the bit pattern causing the release is returned through flgptn. Spe-
cifically, the following actions are performed.

142



M TRON4.0 Specification Ver. 4.00.00

If the release condition is aready satisfied when the service calls are invoked, the ser-
vice calls complete without causing the invoking task to wait. The eventflag bit pattern
is still returned to the invoking task through flgptn. In addition, when the eventflag's
attribute has TA_CLR set, al the bitsin the eventflag’s bit pattern are cleared.

If the release condition is not satisfied, the invoking task is placed in the eventflag's
wait queue and is moved to the waiting state for the eventflag.

When the eventflag’s attribute has TA_ WSGL (= 0x00) set and another task is already
waiting in the eventflag’swait queue, an E_ILUSE error isreturned. Thisapplies even
if the release condition is already satisfied.

wfmode can be specified as (TWF_ANDW || TWF_ORW). When wfmode has
TWF_ANDW (= 0x00) set, the release condition requires all the bitsin waiptn to be
set. Conversely, when wfmode has TWF_ORW (= 0x01) set, the release condition
only requires at least one bit in waiptn to be set.

If there are already tasksin the wait queue, the invoking task is placed in the wait queue
as described below. When the eventflag's attribute has TA_TFIFO (= 0x00) set, the
invoking task is placed in the tail of the wait queue. When the attribute has TA_TPRI
(= 0x01) set, the invoking task is placed in the wait queue in the order of the task’s pri-
ority. If the wait queue contains tasks with the same priority as the invoking task, the
invoking task is placed after those tasks.

pol_flg isapolling service call with the same functionality as wai_flg. twai_flg has
the same functionality as wai_sem with an additional timeout feature. tmout can be
set to a positive number indicating a timeout duration or it can be set to TMO_POL
(=0) or TMO_FEVR (=-1).

If waitpn is 0O, an E_PAR error isreturned.

[Supplemental Information]

twai_flg acts the same as pol_flg if TMO_POL is specified in tmout as long as no
context error occurs. Also, twai_flg actsthesameaswai_flg if TMO_FEVR is spec-
ified in tmout.

[Differences from the pJITRON3.0 Specification]

The order of parameters and the return parameter have been changed. The data type of
waiptn and flgptn has been changed from UINT to FLGPTN, and the data type of
wfmode has been changed from UINT to MODE.

The clear specification in the wait mode (TWF_CLR) has been removed. Instead, an
eventflag attribute TA_CLR has been added. The value of TWF_ORW has been
changed.

[Rationale]

The reason that an E_PAR error is returned when waiptn is O is because the release
condition will never be satisfied.

143



pI TRON4.0 Specification Ver. 4.00.00

ref flg Reference Eventflag Status

[C Language API]
ER ercd = ref_flg ( ID flgid, T_RFLG *pk_rflg ) ;

[Parameter]
ID flgid ID number of the eventflag to be referenced
T RFLG * pk rflg Pointer to the packet returning the eventflag state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rflg includes (T_RFLG type)
ID wtskid ID number of the task at the head of the eventflag’'s
wait queue

FLGPTN flgptn Eventflag's current bit pattern
(Other implementation specific information may be added.)

[Error Code]
E ID Invalid ID number (flgid isinvalid or unusable)
E_NOEXS Non-existent object (specified eventflag is not registered)
E_PAR Parameter error (pk_rflg isinvalid)

[Functional Description]
This service call references the state of the eventflag specified by parameter flgid. The
state of the eventflag is returned through the packet pointed to by pk_rflg.

The ID number of the task at the head of the eventflag’s wait queue is returned through
wtskid. If no tasks are waiting for the eventflag, TSK_NONE (= 0) is returned
instead.

The eventflag’s current bit pattern is returned through flgptn.

[Differences from the pITRON3.0 Specification]

The extended information has been removed from the reference information. The ID
number of the task at the head of the wait queue is now returned instead of a boolean
value indicating whether atask iswaiting or not. Based on this replacement, the name
and data type of the return parameter has been changed.

The data type of flgptn has been changed from UINT to FLGPTN. The order of
parameters and of return parameters has been changed.

144



M TRON4.0 Specification Ver. 4.00.00

4.4.3 Data Queues

A data queue is an object used for synchronization and communication by sending or
receiving a one word message, called a data element. Data queue functions include the
ability to create and delete a data queue, to send, force-send and receive a data element
to/from a data queue, and to reference the state of a data queue. A data queueis an
object identified by an ID number. The ID number of a data queue is called the data
queue ID.

A data queue has an associated wait queue for sending a data element (send-wait
gueue) and an associated wait queue for receiving a data element (recelve-wait queue).
Also, a data queue has an associated data queue area used to store sent data elements.
A task sending a data element (notifying the occurrence of an event) places the data
element in the data queue. If thereisno room in the data queue area, the task will bein
the sending waiting state for a data queue until there isroom for the data element in the
dataqueue area. The task waiting to send the data element is placed in the data queue’s
send-wait queue. A task receiving a data element (waiting for an occurrence of an
event) removes a data element from the data queue. If thereis no datain the data
gueue, the task will be in the receiving waiting state until a data element is sent to the
data queue. The task waiting to receive a data element from the data queueis placed in
the data queue's receive-wait queue.

Synchronous message passing can be performed by setting the number of data ele-
ments that can be stored in the data queue areato 0. The sending task and the receiving
task wait until the other calls the complimentary service call, at which time the data
element is transferred.

The one word data element to be sent and received can be an integer or the address of a
message located in a memory area shared by the sender and the receiver. A data ele-
ment that is sent and received is copied from the sender to the receiver.

The following kernel configuration macro is defined for use with the data queue func-
tions:
SIZE dtqsz = TSZ_DTQ ( UINT dtqgcnt)
This macro returns the total required size of the data queue area in bytes neces
sary to store dtgcnt data elements.
The following date types packets are defined for creating and referencing data queues:
typedef struct t_cdtq {

ATR dtgatr ; /* Data queue attribute */
UINT dtgent ; /* Capacity of the data queue area (the
number of data elements) */
VP dtq ; /* Start address of the data queue area */
/* Other implementation specific fields may be added. */
}T_CDTQ;

typedef struct t_rdtq {

145



pI TRON4.0 Specification

ID stskid ;
ID rtskid ;
UINT sdtgent ;

Ver. 4.00.00

/* 1D number of thetask at the head of the
data queue’s send-wait queue */

/* 1D number of thetask at the head of the
data queue’s recelve-wait queue */

/* The number of data elementsin the data
queue */

/* Other implementation specific fields may be added. */

} T_RDTQ;

The following represents the function codes for the data queue service calls:

TEN_CRE_DTQ —0x31
TFN_ACRE_DTQ  -Oxc4
TFN_DEL_DTQ —0x32
TFN_SND_DTQ —0x35
TFN_PSND DTQ  -0x36
TEN_IPSND_DTQ  -0x77
TEN_TSND _DTQ  -0x37
TFN_FSND DTQ  -0x38
TFN_IFSND_DTQ  -0x78
TFN_RCV_DTQ —0x39
TFN_PRCV_DTQ  -Ox3a
TFN_TRCV_DTQ  -0x3b
TEN_REF_DTQ —0x3c

[Standard Profile]

Function code of cre_dtq
Function code of acre_dtq
Function code of del_dtq
Function code of snd_dtq
Function code of psnd_dtq
Function code of ipsnd_dtq
Function code of tsnd_dtq
Function code of fsnd_dtq
Function code of ifsnd_dtq
Function code of rcv_dtq
Function code of prcv_dtq
Function code of trcv_dtq
Function code of ref_dtq

The Standard Profile requires support for data queue functions except for dynamic cre-
ation and deletion of a data queue (cre_dtq, acre_dtq, del_dtq) and reference of a

data queue state (ref_dtq).

The Standard Profile does not require TSZ_DTQ to be defined.

[Supplemental Information]

Figure 4-1 shows the behavior of a data queue when the number of data elements that
can be stored in the data queueis set to 0. Inthisfigure, task A and task B are assumed

to be running asynchronously.

* |If task A invokes snd_dtq first, task A is moved to the WAITING state until task B
invokes rcv_dtq. During thistime, task A isin the sending waiting state for a data

queue.

« |If, on the other hand, task B invokes rcv_dtq first, task B is moved to the WAITING
state until task A invokes snd_dtqg. During thistime, task B isin the receiving

waliting state for a data queue.

* When task A invokes snd_dtg and task B invokes rcv_dtq, the data transfer from
task A to task B takes place. After this, both tasks are moved to the runnable state.

A data queue is assumed to be implemented as aring buffer.

146



M TRON4.0 Specification

Task A

snd_dtqg

(dtqid )

Ver. 4.00.00

Task B

rcv_dtq

(dtqid )

Figure 4-1. Synchronous Communication through a Data Queue

[Differences from the pITRON3.0 Specification]

This functionality has been newly added and has the same functionality as the mailbox
of the ITRON3.0 Specification implemented with aring buffer.

147



pI TRON4.0 Specification Ver. 4.00.00

CRE_DTQ  Create Data Queue (Static API) [S]
cre_dtq Create Data Queue
acre_dtq Create Data Queue (ID Number Automatic Assignment)

[Static API]
CRE_DTQ ( ID dtqid, { ATR dtgatr, UINT dtgcnt, VP dtq }) ;

[C Language API]
ER ercd = cre_dtq ( ID dtqid, T_CDTQ *pk _cdtq) ;
ER_ID dtqid = acre_dtq ( T_CDTQ *pk_cdtq ) ;

[Parameter]
ID dtqgid ID number of the data queue to be created (except
acre_dtq)
T CDTQ * pk _cdtqg Pointer to the packet containing the data queue cre-
ation information (in CRE_DTQ, packet contents

must be directly specified.)
pk_cdtq includes (T_CDTQ type)
ATR dtgatr Data queue attribute
UINT dtgcnt Capacity of the data queue area (the number of data
elements)
VP dtq Start address of the data queue area

(Other implementation specific information may be added.)

[Return Parameter]

cre_dtq:
ER ercd E_OK for normal completion or error code
acre_dtq:
ER_ID dtqgid ID number (positive value) of the created data
queue or error code
[Error Code]
E ID Invalid ID number (dtqid is invalid or unusable; only
cre_dtq)
E_NOID No ID number available (there is no data queue ID assignable;

only acre_dtq)

E_NOMEM Insufficient memory (data queue area cannot be allocated)

E RSATR Reserved attribute (dtgatr isinvalid or unusable)

E PAR Parameter error (pk_cdtq, dtqcnt, or dtqg isinvalid)

E OBJ Object state error (specified data queue is already registered;
only cre_dtq)

148



M TRON4.0 Specification Ver. 4.00.00

[Functional Description]

These service calls create a data queue with an 1D number specified by dtqid based on
the information contained in the packet pointed to by pk_cdtq. dtgatr isthe attribute
of the dataqueue. dtgcnt isthe capacity of the data queue area: the maximum number
of data elements that may be stored in the data queue area. dtq is the start address of
the data queue area.

InCRE_DTQ, dtgid is an integer parameter with automatic assignment. dtgatr isa
preprocessor constant expression parameter.

acre_dtq assigns a data queue ID from the pool of unassigned data queue IDs and
returns the assigned data queue ID.

dtgatr can be specified as (TA_TFIFO || TA_TPRI). If TA_TFIFO (= 0x00) is spec-
ified, the data queue’s send-wait queue will be in FIFO order. If TA_TPRI (= 0x01) is
specified, the data queue’'s send-wait queue will be in task priority order.

The necessary area to hold up to dtqcnt data elements starts from dtq and is used as
the data queue area. An application program can calculate the size of the data queue
area necessary to hold dtqcnt number of data elements by using the TSZ DTQ
macro. If dtg isNULL (= 0), the kernel alocates the necessary memory area. dtgcnt
may be specified as 0.

[Standard Profile]

The Standard Profile does not require support for when other values than NULL are
specified in dtq.

[Supplemental Information]

The data queue's receive-wait queue always utilizes FIFO ordering. Also, a data ele-
ment sent to a data queue does not have apriority. The dataelementsin adata queueis
awaysin FIFO order. However, when snd_dtq and fsnd_dtq are used at the same
time, there are cases where the data element sent by fsnd_dtqg would be ahead of the
data element earlier sent by snd_dtq.

149



pI TRON4.0 Specification Ver. 4.00.00

del _dtq Delete Data Queue

[C Language API]
ER ercd = del_dtq ( ID dtqid ) ;

[Parameter]

ID dtgid ID number of the data queue to be deleted
[Return Parameter]

ER ercd E_OK for normal completion or error code
[Error Code]

E ID Invalid ID number (dtqid isinvalid or unusable)

E_NOEXS Non-existent object (specified data queue is not registered)

[Functional Description]

This service call deletes the data queue specified by dtqid. If the data queue area was
allocated by the kernel, the areais released.

[Supplemental Information]

The data elements in the data queue will be discarded. See Section 3.8 for information
regarding handling tasks that are waiting in the data queue’s send-wait queue and
receive-wait queue when the data queue is deleted.

150



M TRON4.0 Specification Ver. 4.00.00

snd_dtq Send to Data Queue [S]
psnd_dtq Send to Data Queue (Polling) [S]
ipsnd_dtq [S]
tsnd_dtq Send to Data Queue (with Timeout) [S]

[C Language API]
ER ercd = snd_dtq ( ID dtqid, VP_INT data ) ;
ER ercd = psnd_dtq ( ID dtqgid, VP_INT data ) ;
ER ercd = ipsnd_dtq ( ID dtqid, VP_INT data) ;
ER ercd = tsnd_dtq ( ID dtgid, VP_INT data, TMO tmout ) ;

[Parameter]
ID dtqid ID number of the data queue to which the data ele-
ment is sent
VP_INT data Data element to be sent
TMO tmout Specified timeout (only tsnd_dtq)
[Return Parameter]
ER ercd E_OK for normal completion or error code
[Error Code]
E_ID Invalid ID number (dtqgid isinvalid or unusable)
E_NOEXS Non-existent object (specified data queue is not registered)
E PAR Parameter error (tmout isinvalid; only tsnd_dtq)
E_RLWAI Forced release from waiting (accept rel_wai while waiting;

only snd_dtq and tsnd_dtq)

E TMOUT Polling failure or timeout (except snd_dtq)

E DLT Waiting object deleted (data queue is deleted while waiting;
only snd_dtq and tsnd_dtq)

[Functional Description]

These service calls send the data element specified by data to the data queue specified
by dtgid. Specificaly, the following actions are performed.

If there are already tasks in the data queue’s receive-wait queue, these service calls
send the data element to the task at the head of the recelve-wait queue and release the
task from waiting. The released task receives E_OK from the service call that caused
it to wait in the receive-wait queue. It also receives the data element from the data
gueue through data.

If no tasks are waiting in the data queue’'s receive-wait queue, these service calls place
the data element to be sent at the tail of the data queue. If there is no room in the data
gueue area, the invoking task is placed in the send-wait queue and is moved to the
sending waiting state for the data queue.

151



pI TRON4.0 Specification Ver. 4.00.00

If there are already tasks in the send-wait queue, the invoking task is placed in the
send-wait queue as described below. When the data queue’s attribute has TA_FIFO
(= 0x00) set, the invoking task is placed at the tail of the send-wait queue. When the
data queue’s attribute has TA_TPRI (= 0x01) set, the invoking task is placed in the
send-wait queue in the order of the task’s priority. If the send-wait queue contains
tasks with the same priority as the invoking task, the invoking task is placed after those
tasks.

psnd_dtqg and ipsnd_dtq are polling service calls with the same functionality as
snd_dtq. tsnd_dtq has the same functionality as snd_dtq with an additional time-
out feature. tmout can be set to a positive number indicating a timeout duration or it
can be set to TMO_POL (=0) or TMO_FEVR (=-1).

psnd_dtg and ipsnd_dtq return an E_TMOUT error if no tasks are waiting in the
receive-wait queue and if there is no room for the data element in the data queue area.
If the service call isinvoked from non-task contexts and has its execution delayed, an
E_TMOUT error may not be returned.

[Supplemental Information]

tsnd_dtq actsthe same as psnd_dtq if TMO_POL is specified in tmout aslong as
no context error occurs. Also, tsnd_dtq actsthe sameassnd_dtq if TMO_FEVR is
specified in tmout.

152



M TRON4.0 Specification Ver. 4.00.00

fsnd_dtq Forced Send to Data Queue [S]
ifsnd_dtq [S]

[C Language API]
ER ercd = fsnd_dtq ( ID dtqid, VP_INT data ) ;
ER ercd = ifsnd_dtq ( ID dtqid, VP_INT data ) ;

[Parameter]
ID dtqid ID number of the data queue to which the data ele-
ment is sent
VP_INT data Data element to be sent to the data queue
[Return Parameter]
ER ercd E_OK for norma completion or error code
[Error Code]
E ID Invalid ID number (dtqgid isinvalid or unusable)
E_NOEXS Non-existent object (specified data queue is not registered)
E ILUSE Illegal service call use (the capacity of the data queue areais

0)
[Functional Description]

These service calls forcibly send the data element specified by data to the data queue
specified by dtqid. Specifically, the following actions are performed.

If there are already tasks in the data queue’s receive-wait queue, these service calls
send the data element to the task at the head of the receive-wait queue and release the
task from waiting. The released task receives E_OK from the service call that caused
it to wait in the receive-wait queue. It also receives the data element from the data
gueue through data.

If no tasks are waiting in the data queue's receive-wait queue, these service calls place
the data element to be sent at the tail of the data queue. If there is no room in the data
gueue area, these service calls reserve a space for the new data element by deleting the
first data element in the data queue. The new data element is still placed at the tail of
the data queue.

These service calls cannot forcibly send a data element when the capacity of the data
gqueue areais 0. If the capacity of the data queue areais 0, an E_ILUSE error is
returned.

[Supplemental Information]

These service calls force the data to be sent even if there are aready tasks waiting to
send data in the send-wait queue.

If the capacity of the data queue areais 0, an E_ILUSE error is returned even if there

153



pI TRON4.0 Specification Ver. 4.00.00

isatask waiting in the recelve-wait queue.

154



M TRON4.0 Specification Ver. 4.00.00

rcv_dtq Receive from Data Queue [S]
prcv_dtq Receive from Data Queue (Polling) [S]
trcv_dtq Receive from Data Queue (with Timeout) [S]

[C Language API]
ER ercd = rcv_dtqg ( ID dtqid, VP_INT *p_data ) ;
ER ercd = prcv_dtq ( ID dtgid, VP_INT *p_data ) ;
ER ercd = trcv_dtq ( ID dtqid, VP_INT *p_data, TMO tmout) ;

[Parameter]
ID dtqid ID number of the data queue from which a data ele-
ment is received
TMO tmout Specified timeout (only trcv_dtq)
[Return Parameter]
ER ercd E_OK for normal completion or error code
VP_INT data Data element received from the data queue
[Error Code]
E ID Invalid ID number (dtqgid isinvalid or unusable)
E_NOEXS Non-existent object (specified data queue is not registered)
E _PAR Parameter error (p_data or tmout isinvalid)
E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except prcv_dtq)

E_TMOUT Polling failure or timeout (except rcv_dtq)

E DLT Waiting object deleted (data queue is deleted while waiting;
except prcv_dtq)

[Functional Description]

These service calls receive a data element from the data queue specified by dtqid and
returns the data element through data. Specifically, the following actions are per-
formed.

If the data queue already has data elements, these service calls remove the first data ele-
ment from the data queue and return it through data. If thereis atask in the data
gueue's send-wait queue, these service calls place the data element from the first task in
the send-wait queue at the tail of the data queue and release the task from waiting. The
released task receives E_OK from the service call that caused it to wait in the
send-wait queue.

If there are no data elements in the data queue and if there are tasks in the data queue’s
send-wait queue (this occurs when the capacity of the data queue areais 0), the data
element from the task at the head of the send-wait queue is returned through data, and
the task is released from waiting. The released task receives E_OK from the service

155



pI TRON4.0 Specification Ver. 4.00.00

call that caused it to wait in the send-wait queue.

If there are no data elements in the data queue and if there are no tasks in the send-wait
gueue, the invoking task is placed in the receive-wait queue and moved to the receiving
waiting state for the data queue. If there are already tasksin the receive-wait queue, the
invoking task is placed at the tail of the receive-wait queue.

prcv_dtq isapolling service call with the same functionality as rcv_dtq. trcv_dtq
has the same functionality as rcv_dtq with an additional timeout feature. tmout can
be set to a positive number indicating a timeout duration or it can be set to TMO_POL
(=0) or TMO_FEVR (=-1).

[Supplemental Information]

trcv_dtq acts the same as prcv_dtq if TMO_POL is specified in tmout as long as
no context error occurs. Also, trcv_dtq actsthe same asrcv_dtq if TMO_FEVR is
specified in tmout.

156



M TRON4.0 Specification Ver. 4.00.00

ref_dtq Reference Data Queue State

[C Language API]
ER ercd = ref_dtq ( ID dtqid, T_ RDTQ *pk_rdtq ) ;

[Parameter]
ID dtgid ID number of the data queue to be referenced
T RDTQ * pk _rdtg Pointer to the packet returning the data queue state

[Return Parameter]

ER ercd E_OK for norma completion or error code
pk_rdtq includes (T_RDTQ type)
ID stskid ID number of the task at the head of the send-wait
queue
ID rtskid ID number of the task at the head of the
receive-wait queue
UINT sdtgcnt  The number of data elementsin the data queue

(Other implementation specific information may be added.)
[Error Code]

E ID Invalid ID number (dtqgid isinvalid or unusable)
E_NOEXS Non-existent object (specified data queue is not registered)
E PAR Parameter error (pk_rdtq isinvalid)

[Functional Description]

This service call references the state of the data queue specified by dtqid. The state of
the data queue is returned through the packet pointed to by pk_rdtq.

The ID number of the task at the head of the data queue’s send-wait queue is returned
through stskid. If no tasks are waiting to send a data element, TSK_NONE (= 0) is
returned instead.

The ID number of the task at the head of the data queue’s receive-wait queue is
returned through rtskid. If no tasks are waiting to receive a data element,
TSK_NONE (= 0) isreturned instead.

The number of data elements currently in the data queue is returned through sdtqcent.

[Supplemental Information]

A data queue cannot have rtskid # TSK_NONE and sdtqgcnt # O at the same time.
When stskid # TSK_NONE, sdtqcnt isequal to the capacity of the data queue area.

157



pI TRON4.0 Specification Ver. 4.00.00

4.4.4 Mailboxes

A mailbox is an object used for synchronization and communication by sending or
receiving a message placed in a shared memory. Mailbox functions include the ability
to create and delete a mailbox, to send and receive a message to/from a mailbox, and to
reference the state of a mailbox. A mailbox is an object identified by an ID number.
The ID number of amailbox is called the mailbox ID.

A mailbox has an associated message queue used to store sent messages and an associ-
ated wait queue for receiving messages. A task sending a message (notifying the
occurrence of an event) places the message to be sent in the message queue. A task
receiving a message from the mailbox (waiting for an occurrence of an event) removes
the first message from the message queue. If thereis no message in the message queue,
the task will be in the receiving waiting state until a message is sent to the mailbox.
The task waiting to receive a message from the mailbox is placed in the mailbox’s wait
queue.

With mailbox functions, only the start address of the message placed in a shared mem-
ory is actually passed between tasks. The message itself is not copied.

The kernel maintains the messages in the message queue using alinked list. The appli-
cation program must reserve an area to be used by the kernel for the linked list at the
head of each sent message. Thisreserved areais called the message header. A mes-
sage packet is the area consisting of a message header followed by an areathat is used
by the application to store a message body. The start address of the message packet is
passed as a parameter to the service calls that send a message, and it is returned as a
return parameter from the service calls that receive amessage. An areafor the message
priority isincluded in the message header when the message queue is ordered by mes-
sage priorities.

The kernel modifies the contents of a message header, except the area for the message
priority, while the message is in a message queue (and when the message is to be
placed in amessage queue). On the other hand, the application program must not mod-
ify the contents of a message header, including the message priority, while the message
isin amessage queue. If the application modifies the contents of a message header, the
resulting behavior is undefined. In addition to the case where the application program
directly modifies the contents of a message header, this rule also applies to the case
where the application program passes the address of the message header to the kernel
and makes the kernel modify its contents. Therefore, the behavior when a message
already in amessage queue is resent to a mailbox is undefined.

The following data types are used for message headers:

T MSG Message header for a mailbox
T _MSG_PRI  Message header with a message priority for a mailbox

The definition and size of the T_MSG type are implementation-defined. The

158



M TRON4.0 Specification Ver. 4.00.00

T _MSG_PRI typeisdefined using T_MSG type as follows:

typedef struct t_msg_pri {
T _MSG msgque ; /* Message header */
PRI msgpri ;  /* Message priority */
} T_MSG_PRI ;

The following kernel configuration macro is defined for use with mailbox functions:

SIZE mprihdsz = TSZ_MPRIHD ( PRI maxmpri )
This macro returns the total required size in bytes of the areafor message queue
headers for each message priority, when the maximum message priority is
maxmpri.

The following data types packets are defined for creating and referencing mailboxes:
typedef struct t_cmbx {

ATR mbxatr ;  /* Mailbox attribute */

PRI maxmpri ; /* Maximum message priority */

VP mprihd ; /* Start address of the area for message
gueue headers for each message
priority */

/* Other implementation specific fields may be added. */

} T_CMBX ;
typedef struct t_ rmbx {
ID wtskid ; /* 1D number of the task at the head of

mailbox’s wait queue */
T MSG* pk._msg; /* Start address of the message packet at
the head of the message queue */
/* Other implementation specific fields may be added. */
} T_RMBX;

The following represents the function codes for the mailbox service calls:

TFEN_CRE_MBX —0x3d  Function code of cre_mbx
TFN_ACRE_MBX  -0xc5 Function code of acre_mbx
TFN_DEL_MBX —0x3e Function code of del_mbx
TFN_SND_MBX —0x3f  Function code of snd_mbx
TEN_RCV_MBX —0x41  Function code of rcv_mbx
TEN_PRCV_MBX  -0x42 Function code of prcv_mbx
TFEN_TRCV_MBX  -0x43 Function code of trcv_mbx
TFN_REF_MBX —0x44  Function code of ref_mbx

[Standard Profile]

The Standard Profile requires support for mailbox functions except for dynamic cre-
ation and deletion of amailbox (cre_mbx, acre_mbx, del_mbx) and reference of a
mailbox state (ref_mbx).

The Standard Profile does not require TSZ_MPRIHD to be defined.
[Supplemental Information]

159



M TRON4.0 Specification Ver. 4.00.00

In the mailbox functions, the number of messages that can be stored in a message
gueue has no upper limit because the application program has the responsibility to
reserve the area for message headers. Service calls for sending a message will not
move the invoking task to the WAITING state.

To make an application program portable to different kernels with different definitions
and sizes for message headers, the message packet should be defined as a C language
structure, and afield of T_MSG typeor T_MSG_PRI type should be allocated at the
top of the message packet. In addition the message priority should be assigned to the
msgpri field in T_MSG_PRI type. sizeof ( T_MSG ) or sizeof ( T_MSG_PRI )
can be used to determine the size of the message header.

The areafor amessage packet may be dynamically allocated from afixed-sized or vari-
able-sized memory pool. Itisalso possible to allocate the area statically. A common
practice is that the sending task allocates a memory block from a memory pool and
sends the block as a message packet to a mailbox, while the receiving task releases the
memory block which is received as a message packet from the mailbox to the memory
pool.

[Differences from the pITRON3.0 Specification]

I mplementations of mailboxes are now limited to linked lists.

160



M TRON4.0 Specification Ver. 4.00.00

CRE_MBX Create Mailbox (Static API) [S]
cre_mbx Create Mailbox
acre_mbx  Create Mailbox (ID Number Automatic Assignment)

[Static API]
CRE_MBX ( ID mbxid, { ATR mbxatr, PRI maxmpri,
VP mprihd }) ;

[C Language API]
ER ercd = cre_mbx ( ID mbxid, T_CMBX *pk_cmbx ) ;
ER_ID mbxid = acre_mbx ( T_CMBX *pk_cmbx ) ;

[Parameter]
ID mbxid ID number of the mailbox to be created (except:
acre_mbx)
T CMBX * pk_cmbx Pointer to the packet containing the mailbox cre-
ation information (in CRE_MBX, packet contents

must be directly specified.)
pk_cmbx includes (T_CMBX type)
ATR mbxatr  Mailbox attribute
PRI maxmpri Maximum message priority
VP mprihd  Start address of the area for message queue headers
for each message priority

(Other implementation specific information may be added.)

[Return Parameter]

cre_mbx:
ER ercd E_OK for normal completion or error code
acre_mbx:
ER_ID mbxid ID number (positive value) of created mailbox or
error code
[Error Code]
E_ID Invalid ID number (mbxid is invalid or unusable; only
cre_mbx)
E_NOID No ID number available (there is no mailbox ID assignable;

only acre_mbx)
E_NOMEM Insufficient memory (message queue header area cannot be

allocated)

E RSATR Reserved attribute (mbxatr isinvalid or unusable)

E_PAR Parameter error (pk_cmbx, maxmpri, or mprihd is
invalid)

161



pI TRON4.0 Specification Ver. 4.00.00

E OBJ Object state error (specified mailbox is already registered;
only cre_mbx)

[Functional Description]

These service calls create a mailbox with ID number specified by mbxid based on the
information contained in the packet pointed to by pk_cmbx. mbxatr is the attribute
of the mailbox. maxmpri is the maximum message priority of messages sent to the
mailbox. mprihd is the start address of the area for message queue headers for each
message priority. maxmpri and mprihd are valid only when TA_MPRI (= 0x02) is
specified in mbxatr.

In CRE_MBX, mbxid is an integer parameter with automatic assignment. mbxatr
and maxmpri are preprocessor constant expression parameters.

acre_mbx assigns a mailbox 1D from the pool of unassigned mailbox IDs and and
returns the asigned mailbox ID.

mbxatr can be specified as (TA_TFIFO || TA_TPRI) | (TA_MFIFO || TA_MPRI)).
If TA_TFIFO (= 0x00) is specified, the mailbox’s wait queue will bein FIFO order. If
TA_TPRI (= 0x01) is specified, the mailbox’s wait queue will be in task priority order.
Similarly, if TA_MFIFO (= 0x00) is specified, the mailbox’s message queue will bein
FIFO order, and if TA_MPRI (= 0x02) is specified, the message queue will be in mes-
sage priority order.

If TA_MPRI is specified in mbxatr, the necessary area to hold the message queue
headers for each of the message priorities up to maxmpri starts from mprihd. An
application program can calculate the size of the necessary message queue header area
when the maximum message priority is maxmpri by using TSZ_MPRIHD macro.
If mprihd is NULL (= 0), the kernel allocates the necessary memory area.
maxmpri cannot be specified as 0. If specified, an E_PAR error is returned.

[Standard Profile]

The Standard Profile does not require support for when other values than NULL is
specified in mprihd.

[Supplemental Information]

The following must be considered when amessage queue is prepared for each message
priority level using the message queue header area.

Preparing a message queue for each message priority level is effective when the num-
ber of the message priority levelsis small. When the number of allowed message pri-
ority levelsislarge, this method requires alarge memory area and thusis not practical.
Therefore, in order to handle the case where the message priority levelsis large, the
structure of the message queue should be varied depending on the number of message
priority levels. For example, when the maximum priority level is below a certain
threshold value, a message queue is prepared for each message priority level. When
the maximum priority level falls above this threshold, all messages are managed in a

162



M TRON4.0 Specification Ver. 4.00.00

single queue. Inthiscase, TSZ_MPRIHD will return the same value for al values of
maxmpri that are above the threshold value. maxmpri parameter to CRE_MBX is
defined to be a preprocessor constant expression parameter in order for the kernel con-
figurator to create conditional directives involving maxmpri in the C language source
code and to modify the data structure in the kernel when maxmpri is above the
threshold value.

It isalso possible to manage all messagesin a single queue without using separate mes-
sage queues for each message priority. In this kind of implementations,
TSZ_MPRIHD should be defined so that it returns a constant value, regardless of
maxmpri.

[Differences from the pJITRON3.0 Specification]

The maximum message priority (maxmpri) and the start address of the area for mes-
sage queue headers for each message priority (mprihd) have been added to the mail-
box creation information. The extended information and the ring buffer size (an
implementation-dependent information) have been removed.

acre_mbx has been newly aded.

163



pI TRON4.0 Specification Ver. 4.00.00

del_mbx Delete Mailbox

[C Language API]
ER ercd = del_mbx ( ID mbxid ) ;

[Parameter]
ID mbxid ID number of the mailbox to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (mbxid isinvalid or unusable)
E_NOEXS Non-existent object (specified mailbox is not registered)
[Functional Description]
This service call deletes the mailbox specified by mbxid. If the area for message
gueue headers for each message priority was allocated by the kernel, it is rel eased.
[Supplemental Information]

The messages in the message queue will be discarded. See Section 3.8 for information
regarding handling tasks that are waiting to receive a message in a mailbox’s wait
gueue when the mailbox is deleted.

164



M TRON4.0 Specification Ver. 4.00.00

snd_mbx Send to Mailbox [S]

[C Language API]
ER ercd = snd_mbx ( ID mbxid, T_MSG *pk_msg ) ;

[Parameter]
ID mbxid ID number of the mailbox to which the message is
sent
T MSG* pk msg Start address of the message packet to be sent to the
mailbox
[Return Parameter]
ER ercd E_OK for normal completion or error code
[Error Code]
E ID Invalid ID number (mbxid isinvalid or unusable)
E_NOEXS Non-existent object (specified mailbox is not registered)
E_PAR Parameter error (pk_msg is invalid, the message priority in

the message packet (msgpri) isinvalid)
[Functional Description]

This service call sends the message whose start address is specified by pk_msg to the
mailbox specified by mbxid. Specifically, the following actions are performed.

If there are already tasks in the mailbox’s wait queue, this service call sends the start
address of the message packet to the task at the head of the wait queue and releases the
task from waiting. The released task receives E_OK from the service call that caused
it to wait in the wait queue. It also receives the start address of the message packet
from the mailbox through pk_msg.

If no tasks are waiting in the mailbox’s wait queue, this service call places the message
packet to the message queue. When the mailbox’s attribute has TA_ MFIFIO (= 0x00)
set, the message packet is placed at the tail of the message queue. When the mailbox’s
attribute has TA_MPRI (= 0x02) set, the message packet is placed in the message
gueue in the order of its message priority. If the message queue contains messages
with the same priority as the newly sent message, the message is placed after those
messages.

When the mailbox’s attribute has TA_MPRI (= 0x02) set, the message header of
T_MSG_PRI typeis assumed to be at the head of the message packet pointed to by
pk_msg. The message's priority is obtained from the msgpri field in the message
header.

[Differences from the pITRON3.0 Specification]
The name of the service call has been changed from snd_msg into snd_mbx.

165



pI TRON4.0 Specification Ver. 4.00.00

rcv_mbx Receive from Mailbox [S]
prcv_mbx  Receive from Mailbox (Polling) [S]
trcv_mbx  Receive from Mailbox (with Timeout) [S]

[C Language API]
ER ercd = rcv_mbx ( ID mbxid, T_MSG **ppk_msg ) ;
ER ercd = prcv_mbx ( ID mbxid, T_MSG **ppk_msg ) ;
ER ercd = trcv_mbx ( ID mbxid, T_MSG **ppk_msg,

TMO tmout) ;
[Parameter]
ID mbxid ID number of the mailbox from which amessage is
received
TMO tmout Specified timeout (only trcv_mbx)
[Return Parameter]
ER ercd E_OK for normal completion or error code
T MSG* pk. msg Start address of the message packet received from
the mailbox
[Error Code]
E ID Invalid ID number (mbxid isinvalid or unusable)
E_NOEXS Non-existent object (specified mailbox is not registered)
E _PAR Parameter error (ppk_msg or tmout isinvalid)
E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except prcv_mbx)
E TMOUT Polling failure or timeout (except rcv_mbx)
E DLT Waiting object deleted (mailbox is deleted while waiting;
except prcv_mbx)
[Functional Description]
These service calls receive a message from the mailbox specified by mbxid and return
its start address through pk_msg. Specifically, the following actions are performed.

If the mailbox’s message queue already has messages, these service calls remove the
first message packet from the message queue and return its start address through
pk_msg.

If there are no messages in the message queue, the invoking task is placed in the wait
gueue and moved to the receiving waiting state for the mailbox.

If there are already tasks in the wait queue, the invoking task is placed in the wait queue
as described below. When the mailbox’s attribute has TA_TFIFO (= 0x00) set, the
invoking task is placed at the tail of the wait queue. When the mailbox’s attribute has
TA_TPRI (= 0x01) set, the invoking task is placed in the wait queue in the order of the

166



M TRON4.0 Specification Ver. 4.00.00

task’s priority. If the wait queue contains tasks with the same priority as the invoking
task, the invoking task is placed after those tasks.

prcv_mbx is a polling service call with the same functionality as rcv_mbx.
trcv_mbx has the same functionality as rcv_mbx with an additional timeout feature.
tmout can be set to a positive number indicating a timeout duration or it can be set to
TMO_POL (=0) or TMO_FEVR (=-1).

[Supplemental Information]

trcv_mbx acts the same as prcv_mbx if TMO_POL is specified in tmout as long
as no context error occurs. Also, trcv_mbx acts the same as rcv_mbx if
TMO_FEVR is specified in tmout.

[Differences from the pITRON3.0 Specification]

The names of the service calls have been changed from rcv_msg, prcv_msg,
trcv_msg to rcv_mbx, prcv_mbx, trcv_mbx, respectively. The order of parame-
ters and of return parameters has been changed.

167



pI TRON4.0 Specification Ver. 4.00.00

ref_mbx Reference Mailbox State

[C Language API]
ER ercd = ref_mbx ( ID mbxid, T_RMBX *pk_rmbx ) ;

[Parameter]
ID mbxid ID number of the mailbox to be referenced
T RMBX * pk_rmbx Pointer to the packet returning the mailbox state

[Return Parameter]

ER ercd E_OK for norma completion or error code
pk_rmbx includes (T_RMBX type)

ID wtskid ID number of the task at the head of the mailbox’s
wait queue

T MSG* pk msg Start address of the message packet at the head of
message queue

(Other implementation specific information may be added.)

[Error Code]

E ID Invalid ID number (mbxid isinvalid or unusable)

E_NOEXS Non-existent object (specified mailbox is not registered)

E_PAR Parameter error (pk_rmbx isinvalid)

[Functional Description]
This service call references the state of the mailbox specified by mbxid. The state of
the mailbox is returned through the packet pointed to by pk_rmbx.

The ID number of the task at the head of the mailbox’s wait queue is returned through
wtskid. If no tasks are waiting to receive a message, TSK_NONE (= 0) is returned
instead.

The start address of the message packet at the head of the mailbox’s message queue is
returned through pk_msg. If there is no message in the message queue, NULL (= 0)
isreturned instead.

[Supplemental Information]

A mailbox cannot have wtskid # TSK_NONE and pk_msg # NULL at the same
time.

[Differences from the pITRON3.0 Specification]

The extended information has been removed from the reference information. The ID
number of the task at the head of the wait queue is now returned instead of a boolean
value indicating whether atask iswaiting or not. Based on this replacement, the name
and data type of the return parameter has been changed.

168



M TRON4.0 Specification Ver. 4.00.00

The order of parameters and of return parameters has been changed.

169



pI TRON4.0 Specification Ver. 4.00.00

4.5 Extended Synchronization and Communication
Functions

Extend synchronization and communication functions provide advanced synchroniza
tion and communication between tasks through objects that are independent of the
tasks. The objects are mutexes, message buffers, and rendezvous ports.

[Standard Profile]

The Standard Profile does not require support for extended synchronization and com-
munication functions.

[Differences from the ITRON3.0 Specification]
Mutex is a newly added feature.

4.5.1 Mutexes

A mutex is an object used for mutual exclusion of a shared resource among tasks.
Mutex supports the priority inheritance protocol and the priority ceiling protocol to
avoid unbounded priority inversions among tasks competing for a shared resource.
Mutex functions includes the ability to create and delete a mutex, to lock and unlock a
mutex, and to reference the state of a mutex. A mutex is an object identified by an ID
number. The ID number of amutex is called the mutex ID.

A mutex has alocked and unlocked state. It also has a wait queue for tasks waiting to
lock the mutex. The kernel manages the task that locks each mutex and also the set of
mutexes atask locks. A task will try to lock amutex before using a shared resource. In
case amutex is aready locked by another task, the task will be placed in the WAITING
state until the mutex isreleased. A task unlocks the mutex after using the shared
resource.

A mutex uses the priority inheritance protocol when its attribute has TA_INHERIT
(= 0x02) set, and it uses the priority ceiling protocol when its attribute has
TA _CEILING (= 0x03) set. During mutex creation, if the TA_CEILING attribute is
specified, the ceiling priority parameter should be set to the maximum priority of the
tasks that may lock the mutex. When a task tries to lock a mutex with the
TA_CEILING attribute and it has a higher base priority than the ceiling priority of the
mutex, an E_ILUSE error isreturned. If chg_pri isinvoked to set the base priority of
atask that has locked a mutex with the TA_CEILING attribute to a higher value than
the mutex’s ceiling priority, chg_pri will return an E_ILUSE error.

When using these protocols, mutex operations change the current priority of tasksin
order to prevent unbounded priority inversion. The priority inheritance protocol and
the priority ceiling protocol require that the current priority of atask should aways be
equal to the highest of the three priorities below:

170



M TRON4.0 Specification Ver. 4.00.00

» The base priority of the task

» The highest current priority among tasks waiting to lock one of the mutexes
with the TA_INHERIT attribute that are locked by the task

» The highest ceiling priority among mutexes with the TA_CEILING attribute
that are locked by the task

Thisruleiscalled the strict priority control rule.

If the current priority of atask waiting for a mutex with the TA_INHERIT attributeis
changed by mutex operations or is changed by having its base priority changed by
chg_pri, the task that has the mutex locked may have to have its current priority
changed. Such achange of priority is called transitive priority inheritance. Moreover,
if the latter task iswaiting for a second mutex with the TA_INHERIT attribute, transi-
tive priority inheritance needs to be applied to the task that has the second mutex
locked.

In addition to the strict priority control rule, the pI TRONA4.0 Specification defines
another priority control rule, called the simplified priority control rule, which limits the
conditions under which the current priority is changed. The priority control rule used
isimplementation-defined. Under the simplified priority control rule, when the current
priority of atask should be raised, it must be raised. However, when the current prior-
ity of atask should be lowered, it must be lowered only when the task no longer locks
any mutexes. In the case where the current priority of the task islowered, it is changed
back to its base priority. More specifically, the current priority of atask is changed
under the following conditions:

*» When a higher-priority task begins to wait for a mutex with the
TA_INHERIT attribute that islocked by the task.

* When the current priority of a task waiting for a mutex with the
TA_INHERIT attribute that is locked by the task is changed to a higher pri-
ority than the task.

* When the task locks a mutex with the TA_CEILING attribute and with a
higher ceiling priority than the task’s current priority.

* When the task releases the last mutex that it locked.

The following actions are taken when the current priority of atask has been changed by
mutex operations. When a task whose priority has been changed is in the runnable
state, the precedence of the task is changed according to its new priority. The resulting
precedence of the task among the tasks with the same priority is implementa-
tion-dependent. When a task whose priority has been changed is in a priority-ordered
wait queue, the task’s position in the wait queue is changed according to the new prior-
ity. The resulting position of the task among the tasks of the same priority isimple-
mentation-dependent.

If atask terminates whileit still has mutexes locked, the kernel unlocks all the mutexes
that it locked. The order of unlocking the mutexes is implementation-dependent. For

171



pI TRON4.0 Specification Ver. 4.00.00

more details about unlocking a mutex, see the functional description of unl_mtx.
The following data type packets are defined for creating and referencing mutexes:
typedef struct t_ cmtx {

ATR mtxatr ;  /* Mutex attribute */
PRI ceilpri ; /* Mutex ceiling priority */
/* Other implementation specific fields may be added. */
}T_CMTX ;
typedef struct t_rmtx {
ID htskid ; /* 1D number of the task that locks the
mutex */
ID wtskid ; /* 1D number of the task at the head of the

mutex’s wait queue */
/* Other implementation specific fields may be added. */
} T_RMTX ;
The following represents the function codes for the mutex service calls:

TFN_CRE_MTX —0x81 Function code of cre_mtx
TFN_ACRE_MTX  -0xc6 Function code of acre_mtx
TEN_DEL_MTX —0x82  Function code of del_mtx
TFEN_LOC _MTX —0x85 Function code of loc_mtx
TFEN_PLOC_MTX —0x86 Function code of ploc_mtx
TFN_TLOC_MTX —0x87  Function code of tloc_mtx
TFN_UNL_MTX —0x83  Function code of unl_mtx
TFN_REF_MTX —0x88 Function code of ref_mtx

[Supplemental Information]

A mutex with the attribute TA_TFIFO or TA_TPRI has a similar functionality as a
semaphore whose maximum count is 1: abinary semaphore. The differences are that a
mutex can only be unlocked by the task that locked it and that a mutex is unlocked by
the kernel when the locking task terminates.

The definition of the priority ceiling protocol described here is different from the prior-
ity ceiling protocol proposed in literature. More strictly, this protocol is sometimes
referred to as the highest locker protocol.

When mutex operations change the current priority of atask, and when the order of the
task within a wait queue is changed, the kernel may need to release the task or other
tasks in the wait queue from waiting. See the functional descriptions of snd_mbf and
get_mpl for details.

[Differences from the JITRON3.0 Specification]

The mutex is newly added feature. Mutexes are introduced as objects independent
from semaphores because supporting priority inheritance protocol for counting sema-
phoresis difficult.

172



M TRON4.0 Specification Ver. 4.00.00

[Rationale]

When mutex operations change the current priority of atask, the precedence among the
tasks with the same priority are made implementation-dependent for the following rea-
sons. Some applications might require frequent changes of the current priority through
the use of mutexes, resulting in frequent task switches, which in turn is not desirable.
If precedence of the task among tasks of the same priority is determined to the lowest,
unnecessary task switches may occur. Ideally, precedence (and not priority) should be
inherited. However, such a specification would require a large overhead. For thisrea
son, the precedence among tasks is left up to the implementation.

173



pI TRON4.0 Specification Ver. 4.00.00

CRE_MTX  Create Mutex (Static API)
cre_mitx Create Mutex
acre_mtx Create Mutex (ID Number Automatic Assignment)

[Static API]
CRE_MTX ( ID mtxid, { ATR mtxatr, PRI ceilpri }) ;

[C Language API]
ER ercd = cre_mtx ( ID mtxid, T_ CMTX *pk_cmtx ) ;
ER_ID mtxid = acre_mtx ( T_CMTX *pk_cmtx ) ;

[Parameter]
ID mtxid ID number of the mutex to be created (except
acre_mtx)
T CMTX * pk_cmtx Pointer to the packet containing the mutex creation
information (in CRE_MTX, the packet contents

must be directly specified.)
pk_cmtx includes (T_CMTX type)
ATR mtxatr Mutex attribute
PRI ceilpri Mutex ceiling priority

(Other implementation specific information may be added.)

[Return Parameter]

cre_mtx:
ER ercd E_OK for normal completion or error code
acre_mtx:
ER_ID mtxid ID number (positive value) of the created mutex or
error code
[Error Code]
E ID Invalid ID number (mtxid is invalid or unusable; only
cre_mtx)
E _NOID No ID number available (there is no mutex ID assignable;

only acre_mtx)
E RSATR Reserved attribute (mtxatr isinvalid or unusable)

E_PAR Parameter error (pk_cmtx or ceilpri isinvalid)
E OBJ Object state error (mutex is dready registered; only
cre_mtx)

[Functional Description]

These service cals create a mutex with an ID number specified by mtxid based on the
information contained in the packet pointed to by pk_cmtx. mtxatr is the attribute

174



M TRON4.0 Specification Ver. 4.00.00

of the mutex. ceilpri isthe mutex ceiling priority. ceilpriisonly valid when mtxatr
has TA_CEILING (= 0x03) set.

In CRE_MTX, mtxid is an integer parameter with automatic assignment. mtxatr is
apreprocessor constant expression parameter.

acre_mtx assigns a mutex 1D from the pool of unassigned mutex 1Ds and returns the
assigned mutex ID.

mtxatr can be specified as (TA_TFIFO || TA_TPRI || TA_INHERIT ||
TA_CEILING). If TA_FIFO (= 0x00) is specified, the mutex’s wait queue will bein
FIFO order. Otherwise, the mutex’s wait queue will be in task priority order. If
TA_INHERIT (= 0x02) is set, the current priority of atask is changed according to the
priority inheritance protocol. If TA_CEILING (= 0x03) is set, the current priority of a
task is changed according to the priority ceiling protocol.

175



pI TRON4.0 Specification Ver. 4.00.00

del _mtx Delete Mutex

[C Language API]
ER ercd = del_mtx ( ID mtxid ) ;

[Parameter]
ID mtxid ID number of the mutex to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_ID Invalid ID number (mtxid isinvalid or unusable)
E_NOEXS Non-existent object (specified mutex is not registered)

[Functional Description]
This service call deletes the mutex specified by mtxid.

[Supplemental Information]

If the specified mutex has been locked by atask, del_mtx forces the task to unlock the
mutex it has locked. Therefore, if the mutex has either the TA_INHERIT or
TA_CEILING attribute, the current priority of the task that has locked the mutex may
need to be changed. When the simplified priority control rule is applied, the current
priority of the locking task is changed only if after the deletion, no mutex remains
locked by the task.

The task that locked the mutex is not notified about the deletion of the mutex. Rather,
it will receive an error when it tries to unlock the mutex. If deleting amutex will cause
an undesirable result for the task that is locking the mutex, atask that triesto delete the
mutex should first lock the mutex itself and then deleteit.

See Section 3.8 for information regarding handling tasks that are waiting to lock a
mutex when the mutex is deleted.

176



M TRON4.0 Specification Ver. 4.00.00

loc_mtx Lock Mutex
ploc_mtx Lock Mutex (Polling)
tloc_mtx Lock Mutex (with Timeout)

[C Language API]
ER ercd = loc_mtx ( ID mtxid ) ;
ER ercd = ploc_mtx ( ID mtxid ) ;
ER ercd = tloc_mtx ( ID mtxid, TMO tmout) ;

[Parameter]
ID mtxid ID number of the mutex to be locked
TMO tmout Specified timeout (only tloc_mtx)

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]

E ID Invalid ID number (mtxid isinvalid or unusable)

E_NOEXS Non-existent object (specified mutex is not registered)

E_PAR Parameter error (tmout isinvalid; only tloc_mtx)

E ILUSE Illegal service call use (multiple locking of a mutex, ceiling
priority violation)

E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except ploc_mtx)

E_TMOUT Polling failure or timeout (except loc_mtx)

E DLT Waiting object deleted (mutex is deleted while waiting; except
ploc_mtx)

[Functional Description]

These service callslock the mutex specified by mtxid. Specifically, if the mutex is not
locked, the service calls et the invoking task lock the mutex and return without moving
the invoking task to the WAITING state. If the mutex is locked, the invoking task is
placed in the mutex’s wait queue and is moved to the waiting state for the mutex.

If there are already tasks in the wait queue, the invoking task is placed in the wait queue
as described below. When the mutex’s attribute has TA_TFIFO (= 0x00) set, the
invoking task is placed at the tail of the wait queue. Otherwise, the invoking task is
placed in the wait queue in the order of the task’s priority. If the wait queue contains
tasks with the same priority as the invoking task, the invoking task is placed after those
tasks.

If the invoking task has already locked the mutex, these service calls return an
E_ILUSE error. An E_ILUSE error will also be returned if the mutex has
TA_CEILING attribute set and if the invoking task has a base priority higher than the

177



M TRON4.0 Specification Ver. 4.00.00

celling priority of the mutex.

ploc_mtx isapolling service call with the same functionality asloc_mtx. tloc_mtx
has the same functionality as loc_mtx with an additional timeout feature. tmout can
be set to a positive number indicating a timeout duration or it can be set to TMO_POL
(=0) or TMO_FEVR (=-1).

[Supplemental Information]

When atask invokes these service calls on the mutex with TA_INHERIT attribute that
islocked and is moved to the WAITING state, the current priority of the task that locks
amutex is changed to the current priority of theinvoking task if the latter’s current pri-
ority islower than the current priority of the invoking task.

The current priority of atask that locks a mutex with TA_INHERIT attribute may
need to be changed when atask that is waiting for the mutex is released from waiting
dueto atimeout or with rel_wai. The simplified priority control rule does not perform
such a change.

When atask invokes these service calls on the mutex with TA_CEILING attribute and

locks it successfully, the current priority of the task is changed to the ceiling priority of
the mutex if the ceiling priority is higher than the task’s current priority.

tloc_mtx acts the same as ploc_mtx if TMO_POL is specified in tmout aslong as
no context error occurs. Also, tloc_mtx actsthe sameasloc_mtx if TMO_FEVR is
specified in tmout.

178



M TRON4.0 Specification Ver. 4.00.00

unl_mtx Unlock Mutex

[C Language API]
ER ercd = unl_mtx ( ID mtxid ) ;

[Parameter]
ID mtxid ID number of the mutex to be unlocked

[Return Parameter]
ER ercd E_OK for norma completion or error code

[Error Code]

E ID Invalid ID number (mtxid isinvalid or unusable)
E_NOEXS Non-existent object (specified mutex is not registered)
E ILUSE Illegal service call use (the invoking task does not have the

specified mutex locked)

[Functional Description]

This service call unlocks the mutex specified by mtxid. Specifically, if there are tasks
waiting to lock the mutex, the service call release the task at the head of the mutex’s
wait queue from waiting and let the released task lock the mutex. The task receives
E_OK from the service call that caused it to wait in the mutex’s wait queue. If no task
iswaiting to lock the mutex, the service call moves the mutex to the unlocked state.

When the invoking task does not have the mutex locked, this service call returns an
E_ILUSE error.
[Supplemental Information]

The current priority of the task invoking this service call may need to be changed when
the specified mutex hasthe TA_INHERIT or TA_CEILING attribute set. If the sim-
plified priority control ruleis applied, the service call changes the current priority of
the invoking task only when no mutex remains locked by the task.

179



pI TRON4.0 Specification Ver. 4.00.00

ref_mtx Reference Mutex State

[C Language API]
ER ercd = ref_mtx ( ID mtxid, T_RMTX *pk_rmtx ) ;

[Parameter]
ID mtxid ID number of the mutex to be referenced
T RMTX * pk_rmtx Pointer to the packet returning the mutex state

[Return Parameter]

ER ercd E_OK for norma completion or error code
pk_rmtx includes (T_RMTX type)
ID htskid ID number of the task locking the mutex
ID wtskid ID number of the task at the head of the mutex’s
wait queue

(Other implementation specific information may be added.)

[Error Code]
E ID Invalid ID number (mtxid isinvalid or unusable)
E_NOEXS Non-existent object (specified mutex is not registered)
E _PAR Parameter error (pk_rmtx isinvalid)

[Functional Description]

This service call references the state of the mutex specified by mtxid. The state of the
mutex is returned through the packet pointed to by pk_rmtx.

The ID number of the task that has the mutex locked is returned through htskid. If no
task has the mutex locked, TSK_NONE (= 0) isreturned instead.

The ID number of the task at the head of the mutex’s wait queue is returned through
wtskid. If no tasks are waiting to lock the mutex TSK_NONE (= 0) is returned
instead.

[Supplemental Information]

A mutex cannot have htskid = TSK_NONE and wtskid # TSK_NONE at the same
time.

180



M TRON4.0 Specification Ver. 4.00.00

4.5.2 Message Buffers

A message buffer is an object used for synchronization and communication by sending
and receiving a variable-sized message. Message buffer functions include the ability to
create and delete a message buffer, to send and receive a message to/from a message
buffer, and to reference the state of a message buffer. A message buffer is an object
identified by an ID number. The ID number of a message buffer is called the message
buffer ID.

A message buffer has an associated wait queue for sending a message (send-wait
gueue) and an associated wait queue for receiving a message (receive-wait queue).
Also, a message buffer has an associated message buffer area to store the sent mes-
sages. A task sending a message (notifying the occurrence of an event) copies the mes-
sage into the message buffer. If thereis no room in the message buffer area, the task
will be in the sending waiting state for a message buffer until thereis room for the mes-
sage in the message buffer area. The task waiting to send the message is placed in the
message buffer’'s send-wait queue. A task receiving a message (waiting for an occur-
rence of an event) removes a message from the message buffer. If there is no message
in the message buffer, the task will be in the receiving waiting state until a message is
sent to the message buffer. The task waiting to receive a message from the message
buffer is placed in the message buffer’s receive-wait queue.

Synchronous message passing can be performed by setting the size of the message
buffer areato 0. The sending task and the receiving task wait until the other calls the
complimentary service call, at which time the message is transferred.

The following kernel configuration macro is defined for use with message buffer func-
tions:
SIZE mbfsz = TSZ_MBF ( UINT msgcnt, UINT msgsz )
This macro returns the approximate required size of the message buffer areain
bytes necessary to store msgcnt messages each consisting of msgsz bytes.

This macro is only an estimation for determining the size of a message buffer area. It
cannot be used to determine the total required size of a message buffer area to store
messages with different sizes.

The following data type packets are defined for creating and referencing message buff-
ers.

typedef struct t_cmbf {

ATR mbfatr ;  /* Message buffer attribute */
UINT maxmsz ; /* Maximum message size (in bytes) */
SIZE mbfsz ; /* Size of message buffer area (in bytes) */
VP mbf ; /* Start sddress of message buffer area */
/* Other implementation specific fields may be added. */

} T_CMBF ;

typedef struct t_rmbf {

181



pI TRON4.0 Specification

1D
ID
UINT

SIZE

stskid ;
rtskid ;
smsgent ;

fmbfsz ;

Ver. 4.00.00

/* 1D number of the task at the head of the
message buffer’s send-wait queue */

/* 1D number of the task at the head of the
message buffer’s receive-wait queue */

/* The number of messages in the message
buffer */

/* Size of free message buffer areain bytes,
without the minimum control areas */

/* Other implementation specific fields may be added. */

} T_RMBF ;

The following represents the function codes for the message buffer service calls:

TFN_CRE_MBF
TFN_ACRE_MBF
TFN_DEL_MBF
TFN_SND_MBF
TEN_PSND_MBF
TFN_TSND_MBF
TFN_RCV_MBF
TFN_PRCV_MBF
TFN_TRCV_MBF
TFN_REF_MBF

[Supplemental Information]

—0x89
—0xc7
—0x8a
—0x8d
—0x8e
—Ox8f

—0x91
—0x92
—0x93
—0x94

Function code of cre_mbf
Function code of acre_mbf
Function code of del_mbf
Function code of snd_mbf
Function code of psnd_mbf
Function code of tsnd_mbf
Function code of rcv_mbf
Function code of prcv_mbf
Function code of trcv_mbf
Function code of ref_mbf

Figure 4-2 shows the behavior of a message buffer when the size of the message buffer
areais0. Inthisfigure, task A and task B are assumed to be running asynchronously.

snd_mbf ( mbfid )

Task A

Task B

rcv_mbf ( mbfid )

Figure 4-2. Synchronous Communication through a Message Buffer

o If task A invokes snd_mbf first, task A is moved to the WAITING state until task B
invokes rcv_mbf. During thistime, task A isin the sending waiting state for ames-

sage buffer.

« |If, on the other hand, task B invokes rcv_mbf first, task B is moved to the WAIT-
ING state until task A invokes snd_mbf. During thistime, task B isin the receiv-

182



M TRON4.0 Specification Ver. 4.00.00

ing waiting state for a message buffer.

* When task A invokes snd_mbf and task B invokes rcv_mbf, the message transfer
from task A and task B takes place. After this, both tasks are moved to the runnable
state.

Tasks that are waiting to send a message to a message buffer will send their messages
in the order that the tasks are placed in the wait queue. An exampleiswhen task A tries
to send a 40 byte message to a message buffer, and task B tries to send a 10 byte mes-
sage to the same message buffer. Assume that these tasks are placed in the wait queue
so that task A is ahead of task B. A third task then receives a message 20 byte long,
resulting in 20 bytes of available areain the message buffer. Even though task B only
needs 10 bytes to send its message, it cannot do so until task A has sent its message.
However, an implementation-specific extension can add an attribute to the message
buffer that will allow task B to send its message before task A in this example.

A message buffer transfers a variable-sized message through copying. It is different
from a data queue in that it transfers variable-sized messages. It is different from a
mailbox in that it copies the messages.

A message buffer is assumed to be implemented as aring buffer.

If amessage buffer is used for the kernel’s error log (for recording errors that cannot be
reported to the processing unit that invoked a service call), a message buffer with an 1D
number of (—4) can be used. Furthermore, message buffers with ID numbers (—3) and
(—=2) can be used when message buffers are used inside the kernel to communicate with
debug support functions. Limiting the access to these message buffers from applica
tion programs s also allowed.

[Differences from the pITRON3.0 Specification]

Whether tasks should send messages according to their order in the wait queue or
according to which task can send a message first was implementation-dependent in the
M TRON3.0 Specification. The Wl TRON4.0 Specifications has determined the former
order to be standard.

183



pI TRON4.0 Specification Ver. 4.00.00

CRE_MBF Create Message Buffer (Static API)
cre_mbf Create Message Buffer
acre_mbf Create Message Buffer (ID Number Automatic Assignment)

[Static API]
CRE_MBF ( ID mbfid, { ATR mbfatr, UINT maxmsz, SIZE mbfsz,
VP mbf});

[C Language API]
ER ercd = cre_mbf ( ID mbfid, T_CMBF *pk_cmbf ) ;
ER_ID mbfid = acre_mbf ( T_CMBF *pk_cmbf ) ;

[Parameter]
ID mbfid ID number of the message buffer to be created
(except acre_mbf)
T CMBF * pk _cmbf Pointer to the packet containing the message buffer
creation information (in CRE_MBF, packet con-
tents must be directly specified.)

pk_cmbf includes (T_CMBF type)

ATR mbfatr Message buffer attribute

UINT maxmsz Maximum message size (in bytes)
SIZE mbfsz Size of message buffer area (in bytes)
VP mbf Start address of message buffer area

(Other implementation specific information may be added.)

[Return Parameter]

cre_mbf:
ER ercd E_OK for normal completion or error code
acre_mbf:
ER_ID mbfid ID number (positive value) of the created message
buffer or error code
[Error Code]
E_ID Invalid ID number (mbfid is invalid or unusable; only
cre_mbf)
E_NOID No ID number available (there is no message buffer ID

assignable; only acre_mbf)
E_ NOMEM I nsufficient memory (message buffer area cannot be all ocated)
E RSATR Reserved attribute (mbfatr isinvalid or unusable)

E_PAR Parameter error (pk_cmbf, maxmsz, mbfsz, or mbf is
invalid)
E OBJ Object state error (message buffer is already registered; only

184



M TRON4.0 Specification Ver. 4.00.00

cre_mbf)

[Functional Description]

These service calls create a message buffer with an 1D number specified by mbfid
based on the information contained in the packet pointed to by pk_cmbf. mbfatr is
the attribute of the message buffer. maxmsz isthe maximum sizein bytes of the mes-
sage that can be sent to the message buffer. mbfsz is the size of the message buffer
areain bytes. mbf isthe start address of the message buffer area.

In CRE_MBF, mbfid is an integer parameter with automatic assignment. mbfatr is
a preprocessor constant expression parameter.

acre_mbf assigns a message buffer ID from the pool of unassigned message buffer
IDs and returns the assigned message buffer ID.

mbfatr can be specified as (TA_TFIFO || TA_TPRI). If TA_TFIFO (= 0x00) is
specified, the message buffer’'s send-wait queue will be in FIFO order. If TA_TPRI
(= 0x01) is specified, the message buffer’s send-wait queue will be in task priority
order.

The memory area starting from mbf and whose size is mbfsz is used as the message
buffer area. Because the information for message management is also placed in the
message buffer area, the whole message buffer area cannot be used to store messages.
An application program can estimate the size to be specified in mbfsz by using the
TSZ _MBF macro. If mbf isNULL (= 0), the kernel allocates the necessary memory
areain bytes specified by mbfsz. mbfsz may be specified as 0.

When maxmsz is specified as 0, an E_PAR error is returned.

[Supplemental Information]

The message buffer’s receive-wait queue always utilizes the FIFO ordering. Also, the
messages in a message buffer is alwaysin FIFO order.

[Differences from the pITRON3.0 Specification]

In WITRON3.0, the TA_TPRI attribute of a message buffer indicated that the
receive-wait queue is priority-ordered. In WITRON4.0, it has changed to indicate that
the send-wait queue is priority-ordered. Thisis because the priority-ordered send-wait
gueue is more effective than priority-ordered receive-wait queue.

The start address of the message buffer area (mbf) has been added to the message
buffer creation information. The extended information has been removed. The param-
eter name has been changed from bufsz to mbfsz and the order of maxmsz and
mbfsz in the creation information packet has been exchanged. The data type of
maxmsz has been changed from INT to UINT and that of mbfsz has been changed
from INT to SIZE.

acre_mbf has been newly added.

185



pI TRON4.0 Specification Ver. 4.00.00

del_mbf Delete Message Buffer

[C Language API]
ER ercd = del_mbf ( ID mbfid ) ;

[Parameter]
ID mbfid ID number of the message buffer to be deleted
[Return Parameter]
ER ercd E_OK for normal completion or error code
[Error Code]
E ID Invalid ID number (mbfid isinvalid or unusable)
E_NOEXS Non-existent object (specified message buffer is not regis
tered)

[Functional Description]

This service call deletes the message buffer specified by mbfid. If the message buffer
areawas allocated by the kernel, the areais released.

[Supplemental Information]

The messages in the message buffer will be discarded. See Section 3.8 for information
regarding handling tasks that are waiting in the message buffer’s send-wait queue and
receive-wait queue when the message buffer is deleted.

186



M TRON4.0 Specification Ver. 4.00.00

snd_mbf Send to M essage buffer
psnd_mbf  Sendto Message buffer (Polling)
tsnd_mbf  Sendto Message buffer (with Timeout)

[C Language API]
ER ercd = snd_mbf ( ID mbfid, VP msg, UINT msgsz ) ;
ER ercd = psnd_mbf ( ID mbfid, VP msg, UINT msgsz ) ;
ER ercd = tsnd_mbf ( ID mbfid, VP msg, UINT msgsz,

TMO tmout) ;
[Parameter]
ID mbfid ID number of the message buffer to which the mes-
sageis sent
VP msg Start address of the message to be sent
UINT msgsz Size of the message to be sent (in bytes)
TMO tmout Specified timeout (only tsnd_mbf)
[Return Parameter]
ER ercd E_OK for normal completion or error code
[Error Code]
E ID Invalid ID number (mbfid isinvalid or unusable)
E_NOEXS Non-existent object (specified message buffer is not regis
tered)
E PAR Parameter error (msg, msgsz, tmout isinvalid)
E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except psnd_mbf)

E TMOUT Polling failure or timeout (except snd_mbf)

E DLT Waiting object deleted (message buffer is deleted while wait-
ing; except psnd_mbf)

[Functional Description]

These service calls send a message to the message buffer specified by mbfid. The
message to be sent is placed in the memory area starting from the address specified by
msg and itssizein bytesis specified by msgsz. Specificaly, the following actions are
performed.

If there are already tasks in the message buffer’s receive-wait queue, the task at the
head of the receive-wait queue is selected to receive the message. These service calls
copy the sent message to the memory area specified by the task for recelving a message
and release the task from waiting. The released task receives the size of the sent mes-
sage (msgsz) as the return value of the service call that caused it to wait in the
receive-wait queue.

187



pI TRON4.0 Specification Ver. 4.00.00

If no tasks are waiting in the message buffer’s receive-wait queue, the behavior of these
service calls depends on whether there is a task already waiting to send its message
before the invoking task. These service calls will copy the sent message to the tail of
the message buffer if either: 1) no task is waiting to send a message to the specified
message buffer, or 2) the message buffer hasthe TA_TPRI (= 0x01) attribute set and
the priorities of the other tasks that are waiting to send messages are lower than the
invoking task. If neither of these conditions is satisfied, or if there is no room in the
message buffer area to store the sent message, the invoking task is placed in the
send-wait queue and is moved to the sending waiting state for the message buffer.

If there are already tasks in the message buffer’s send-wait queue, the invoking task is
placed in the send-wait queue as described below. When the message buffer’s attribute
has TA_TFIFO (= 0x00) set, the invoking task is placed at the tail of the send-wait
gueue. When the message buffer’s attribute has TA_TPRI (= 0x01) set, the invoking
task is placed in the send-wait queue in the order of the task’s priority. If the send-wait
gueue contains tasks with the same priority as the invoking task, the invoking task is
placed after those tasks.

When the first task in the send-wait queue has changed as the result of releasing a task
in the wait queue from waiting with rel_wai, ter_tsk, or atimeout, the actions, when
possible, to make the tasks send messages starting from the new first task in the wait
gueue are necessary. Since the specific actions are similar to the actions to be taken
after rcv_mbf has removed a message from the message buffer, see the functional
description of rcv_mbf for more details. The same actions are also necessary when
the first task in the send-wait queue has changed as the result of changing the priority
of atask in the wait queue by chg_pri or mutex operations.

psnd_mbf is a polling service call with the same functionality as snd_mbf.
tsnd_mbf has the same functionality as snd_mbf with an additional timeout feature.
tmout can be set to a positive number indicating a timeout duration or it can be set to
TMO_POL (= 0) or TMO_FEVR (= -1).

When msgsz is larger than the maximum message size of the message buffer, an
E_PAR errorisreturned. An E_PAR error is also returned when msgsz isO.

[Supplemental Information]

tsnd_mbf acts the same as psnd_mbf if TMO_POL is specified in tmout as long
as no context error occurs. Also, tsnd_mbf acts the same as snd_mbf if
TMO_FEVR is specified in tmout.

[Differences from the pITRON3.0 Specification]

The order of the parameters has been changed. The data type of msgsz has been
changed from INT to UINT.

188



M TRON4.0 Specification Ver. 4.00.00

rcv_mbf Receive from Message Buffer
prcv_mbf  Receive from Message Buffer (Polling)
trcv_mbf Receive from Message Buffer (with Timeout)

[C Language API]
ER_UINT msgsz = rcv_mbf ( ID mbfid, VP msg) ;
ER_UINT msgsz = prcv_mbf ( ID mbfid, VP msg ) ;
ER_UINT msgsz = trcv_mbf ( ID mbfid, VP msg, TMO tmout ) ;

[Parameter]
1D mbfid ID number of the message buffer from which ames-
sageisreceived
VP msg Start address of the memory area to store the
received message
TMO tmout Specified timeout (only trcv_mbf)

[Return Parameter]
ER_UINT msgsz Size of the received message (in byte, positive
value) or error code

[Error Code]
E ID Invalid ID number (mbfid isinvalid or unusable)
E_NOEXS Non-existent object (specified message buffer is not regis
tered)
E _PAR Parameter error (msg or tmout isinvalid)
E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except prcv_mbf)

E_ TMOUT Polling failure or timeout (except rcv_mbf)

E DLT Waiting object deleted (message buffer is deleted while wait-
ing; except prcv_mbf)

[Functional Description]

These service calls receive a message from the message buffer specified by mbfid and
stores it in the memory area starting from the address specified by msg. The size of
the received message in bytes is returned through msgsz. Specifically, the following
actions are performed.

If the message buffer already has messages, these service calls copy the first message to
the memory area starting from the address specified by msg and return the message
size through msgsz. The copied message is deleted from the message buffer area. If
there are tasks in the message buffer’s send-wait queue, the service calls check if there
is enough room for the message of the task at the head of the wait queue after deleting
the received message. If there is enough room, the message of the task at the head of

189



M TRON4.0 Specification Ver. 4.00.00

the wait queue is copied to the tail of the message buffer and the task is released from
waiting. The released task receives E_OK from the service call that caused it towait in
the wait queue. When some tasks till remain in the send-wait queue after the release
of the task, the same actions must be repeated on the new head task in the wait queue.

If there are no messages in the message buffer and if there are tasks in the message
buffer’s send-wait queue (this occurs when the size of the message buffer area is too
small for the message of the task at the head of the wait queue), the message from the
task at the head of the send-wait queue is copied to the memory area starting from the
address specified by msg. The size of the copied message is returned through msgsz.
The task is released from waiting and receives E_OK from the service call that caused
it to wait in the send-wait queue.

If there are no messages in the message buffer and if there are no tasksin the send-wait
gueue, the invoking task is placed in the receive-wait queue and moved to the receiving
waiting state for the message buffer. If there are already tasks in the receive-wait
gueue, the invoking task is placed at the tail of the receive-wait queue.

prcv_mbf is a polling service call with the same functionality as rcv_mbf.
trcv_mbf has the same functionality as rcv_mbf with an additional timeout feature.
tmout can be set to a positive number indicating a timeout duration or it can be set to
TMO_POL (0) or TMO_FEVR (-1).

[Supplemental Information]

If these service calls release more than one task from waiting, the order of release cor-
responds with the order in which the tasks are placed in the wait queue. Therefore,
among the same priority tasks moved to the runnable state, the task closer to the head
of the wait queue has higher precedence.

trcv_mbf actsthe same as prcv_mbf if TMO_POL is specified in tmout as long as
no context error occurs. Also, trcv_mbf actsthe sameasrcv_mbf if TMO_FEVR is
specified in tmout.

[Differences from the pITRON3.0 Specification]

The size of the received message (msgsz) is now returned as the return value of the
service calls. The order of parameters has been changed. The data type of msgsz has
been changed from INT to UINT (the actual type though is ER_UINT).

190



M TRON4.0 Specification Ver. 4.00.00

ref_mbf Reference Message Buffer State

[C Language API]
ER ercd = ref_mbf ( ID mbfid, T_RMBF *pk_rmbf) ;

[Parameter]
ID mbfid ID number of the message buffer to be referenced
T RMBF * pk _rmbf Pointer to the packet returning the message buffer
State
[Return Parameter]
ER ercd E_OK for normal completion or error code
pk_rmbfincludes (T_RMBF type)
ID stskid ID number of the task at the head of the send-wait
queue
ID rtskid ID number of the task at the head of the
receive-wait queue
UINT smsgcnt  The number of messages in the message buffer
SIZE fmbfsz Size of free message buffer area in bytes, without

the minimum control areas
(Other implementation specific information may be added.)

[Error Code]
E ID Invalid ID number (mbfid isinvalid or unusable)
E_NOEXS Non-existent object (specified message buffer is not regis
tered)
E_PAR Parameter error (pk_rmbf isinvalid)

[Functional Description]

This service call references the state of the message buffer specified by mbfid. The
state of the message buffer is returned through the packet pointed to by pk_rmbf.

The ID number of the task at the head of the message buffer’s send-wait queue is
returned through stskid. If no tasks are waiting to send a message, TSK_NONE
(= 0) isreturned instead.

The ID number of the task at the head of the message buffer’'s receive-wait queue is
returned through rtskid. If no tasks are waiting to receive a message, TSK_NONE
(= 0) isreturned instead.

The number of messages currently in the message buffer is returned through
smsgcnt.

The size of the minimum control area subtracted from the size of the free message
buffer areain bytesis returned through fmbfsz. Specifically, fmbfsz isthe maximum

191



pI TRON4.0 Specification Ver. 4.00.00

message size that can be stored in the free message buffer area when there is not
enough room for a message with the maximum message size. If the message buffer has
enough room to store a message with the maximum message size, fmbfsz is the
approximate total size of messages that can be stored in the free message buffer area.

[Supplemental Information]

A message with smaller size than fmbfsz may not always be sent at once without
entering the WAITING state. This happensif there are tasks already waiting to send a
message to the message buffer (when stskid # TSK_NONE).

A message buffer cannot have tskid Z TSK_NONE and smsgcnt # 0 at the same
time. When stskid # TSK_NONE, fmbfsz is smaller than the maximum message
size.

[Differences from the pITRON3.0 Specification]

The extended information has been removed from the reference information. The ID
number of the task at the head of each wait queue is now returned instead of a boolean
value indicating whether atask iswaiting or not. The number of messages in the mes-
sage buffer is now returned instead of the size of the message to be received next.
Based on these replacements, the names and data types of the return parameters have
been changed. The size of the minimum control areais excluded from the size returned
through fmbfsz in order to make the returned value strictly standardized to the mes-
sage size when the free message buffer areais small.

The name of the return parameter frbufsz has been changed to fmbfsz and its data
type has been changed from INT to SIZE. The order of parameters and of return
parameters has been changed.

192



M TRON4.0 Specification Ver. 4.00.00

4.5.3 Rendezvous

The rendezvous feature is used for synchronization and communication between tasks.
It supports a procedure to handle a processing request from one task to another task and
the return of the result to the requesting task. The object used to coordinate this task
interaction is called a rendezvous port. The rendezvous feature is typically used to
realize a client/server model communication, but it also provides a more flexible syn-
chronous communication model.

Rendezvous functions include the ability to create and delete a rendezvous port, to
request a processing at a rendezvous port (calling rendezvous), to accept a processing
request at a rendezvous port (accepting rendezvous), to return a processed result (termi-
nating rendezvous), to forward a processing request to another rendezvous port (for-
warding rendezvous), and to reference the state of a rendezvous port and of a
rendezvous. A rendezvous port is an object identified with an ID number. The ID
number of arendezvous port is called the rendezvous port ID.

A task which requests a processing at a rendezvous port (the client task) callsfor aren-
dezvous by specifying a rendezvous port, a rendezvous condition, and a message that
contains information about the requested processing. The message isreferred to asthe
calling message. A task that receives a processing request (the server task) accepts the
rendezvous by specifying the rendezvous port and the rendezvous condition.

A rendezvous condition is specified by a bit pattern. A rendezvous is only established
when the bit patterns of the rendezvous conditions of both the calling task and the
accepting task match. The match is performed by taking the logical AND of the corre-
sponding bits. If the result isnot O, the rendezvous is established. The calling task will
be in the calling waiting state for the rendezvous until the rendezvous is established.
On the other hand, the accepting task will be in the accepting waiting state for the ren-
dezvous until the rendezvous is established.

When arendezvous is established, the calling message is transferred from the calling
task to the accepting task. The calling task is moved to the termination waiting state
for the rendezvous and waits for the processing to be completed. The accepting task is
released from the accepting waiting state for the rendezvous and executes the requested
processing. Once the accepting task completes its processing, it returns the result to
the calling task as a return message, and the rendezvous is terminated. At thistime, the
calling task is released from the termination waiting state for the rendezvous.

A rendezvous port has an associated call-wait queue to hold the tasks in the calling
waiting state for a rendezvous and an accept-wait queue to hold the tasks in the accept-
ing waiting state for arendezvous. Once arendezvous is established, the two tasks are
detached from the rendezvous port. A rendezvous port does not have a wait queue to
hold the tasks that are in the termination waiting state for arendezvous. Also, it does
not have information about the two tasks involved with the requested processing.

193



pI TRON4.0 Specification Ver. 4.00.00

The kernel assigns an object number to a rendezvous in order to distinguish multiple
rendezvous. The object number of arendezvousis called the rendezvous number. The
process for assigning rendezvous numbers is implementation-dependent. However, the
rendezvous number should at least include information regarding the task that called
the rendezvous. Each rendezvous should have a unique rendezvous number if possible.
For example, if the same task calls arendezvous port twice, the first and second rendez-
vous should have different rendezvous numbers.

The following data types are used for rendezvous functions:

RDVPTN Bit pattern of the rendezvous condition (unsigned integer)
RDVNO Rendezvous number

The following kernel configuration constant is defined for use with rendezvous func-
tions:

TBIT_RDVPTN The number of bits in a rendezvous condition (the
number of bits of RDVPTN type)

The following data type packets are defined for creating and referencing rendezvous
ports and rendezvous:

typedef struct t_cpor {

ATR poratr ; /* Rendezvous port attribute */
UINT maxcmsz ; /* Maximum calling message size (in
bytes) */
UINT maxrmsz ; /* Maximum return message size (in
bytes) */
/* Other implementation specific fields may be added. */
} T_CPOR;
typedef struct t_rpor {
ID ctskid ; /* 1D number of the task at the head of the
rendezvous port’s call-wait queue */
ID atskid ; /* 1D number of the task at the head of the

rendezvous port’s accept-wait queue */
/* Other implementation specific fields may be added. */

} T_RPOR ;
typedef struct t_rrdv {
ID wtskid ; /* |D number of the task in the termination

waiting state for the rendezvous */
/* Other implementation specific fields may be added. */
} T_RRDV ;

The following represents the function codes for rendezvous service cals:

TFN_CRE_POR —0x95 Function code of cre_por
TFN_ACRE_POR —0xc8  Function code of acre_por
TFN_DEL_POR —0x96 Function code of del_por
TFN_CAL_POR —0x97  Function code of cal_por
TFN_TCAL_POR —0x98 Function code of tcal_por

194



M TRON4.0 Specification Ver. 4.00.00

TFN_ACP_POR —-0x99 Function code of acp_por
TFN_PACP_POR —0x9a Function code of pacp_por
TFN_TACP_POR —0x9b  Function code of tacp_por
TFN_FWD_RDV —0x9c  Function code of fwd_rdv
TFN_RPL_RDV —0x9d  Function code of rpl_rdv
TFN_REF_POR —0x9 Function code of ref_por
TFN_REF_RDV —0x9f  Function code of ref_rdv

[Supplemental Information]

A rendezvous is a synchronization and communication function which was introduced
by the ADA language specification and is based on CSP (Communicating Sequential
Processes). However, the ADA rendezvous is a part of the language specification and
its premise is different from the ul TRON4.0 Specification rendezvous. In particular,
the rendezvous offered by areal-time kernel is intended to be a primitive for realizing
the language rendezvous. There are several differences between the ADA rendezvous
and the I TRONA4.0 Specification rendezvous. Because of this, the rendezvous port of
the I TRON4.0 Specification cannot always be used in realizing the ADA rendezvous.

Figure 4-3 shows the behavior of arendezvous. In thisfigure, task A and task B are
assumed to be running asynchronously.

Task A Task B
acp_por ( porid)
cal_por ( porid)

rpl_rdv ( rdvno)

Figure 4-3. Rendezvous Operation

* |f task A invokes cal_por first, task A is moved to the WAITING state until task B
invokes acp_por. During thistime, task A isin the calling waiting state for the ren-
dezvous.

« |If, on the other hands, task B invokes acp_por first, task B is moved to the WAIT-
ING state until task A invokes cal_por. During thistime, task B isin the accepting
waiting state for the rendezvous.

* When task A invokes cal_por and task B invokes acp_por, the rendezvous is
established. When this happens, task B is released from waiting while task A
remains in the WAITING state. Task A, at this time, isin the termination waiting
state for the rendezvous.

195



pI TRON4.0 Specification Ver. 4.00.00

* Once task B invokes rpl_rdv, task A is released from waiting. Both tasks are
moved to the runnable state.

One example of assigning arendezvous number isto use the ID number of the task that
called the rendezvous as the lower bits, and then assign a serial number to the remain-
ing upper bits. So if the task ID is a 16-bit value, the rendezvous number should be
made 32 bits by adding a 16-bit serial value.

[Differences from the pITRON3.0 Specification]
The term rendezvous port is now used instead of port.

The data type of the parameter that contains the rendezvous condition bit pattern has
been changed from UINT to the new datatype RDVPTN. The datatype for arendez-
vous number has been changed from RNO to RDVNO.

[Rationale]

Although arendezvous feature can be realized by combining other synchronization and
communication features, writing application programs involving return messages with
rendezvous functions is much easier and more efficient. For example, a rendezvous
does not need an area to store messages because the two tasks wait until the message
transfer is completed.

When atask calls a rendezvous port multiple times, each rendezvous number must be
unigue if possible for the following reason. Assume that atask isin the termination
waiting state for a rendezvous and that the task is released from waiting due to timeout
or forced release. After being released, if it calls a rendezvous port again that is suc-
cessfully established, the rendezvous numbers of the previous and the current rendez-
vous would be the same. When another task triesto terminate the previous rendezvous,
the current one would be terminated by mistake if they have the same number. By
assigning two different numbers to two different rendezvous and by recording the ren-
dezvous number with the waiting task, an error can be detected when the first rendez-
VOUS is terminated.

196



M TRON4.0 Specification Ver. 4.00.00

CRE_POR  Create Rendezvous Port (Static API)
cre_por Create Rendezvous Port
acre_por Create Rendezvous Port (ID Number Automatic Assignment)

[Static API]
CRE_POR ( ID porid, { ATR poratr, UINT maxcmsz,
UINT maxrmsz }) ;

[C Language API]
ER ercd = cre_por ( ID porid, T_CPOR *pk_cpor ) ;
ER_ID porid = acre_por ( T_CPOR *pk_cpor ) ;

[Parameter]
ID porid ID number of the rendezvous port to be created
(except acre_por)
T CPOR * pk_cpor Pointer to the packet containing the rendezvous port
creation information (in CRE_POR, packet con-
tents must be directly specified.)

pk_cpor includes (T_CPOR type)

ATR poratr Rendezvous port attribute
UINT maxcmsz Maximum calling message size (in bytes)
UINT maxrmsz Maximum return message size (in bytes)

(Other implementation specific information may be added.)

[Return Parameter]

cre_por:
ER ercd E_OK for normal completion or error code
acre_por:
ER_ID porid ID number (positive value) of the created rendez-
VOuS port or error code
[Error Code]
E_ID Invalid ID number (porid is invalid or unusable; only
cre_por)
E_NOID No ID number available (there is no rendezvous port 1D

assignable; only acre_por)
E RSATR Reserved attribute (poratr isinvalid or unusable)

E _PAR Parameter error (pk_cpor, maxcmsz, or maxrmsz is
invalid)
E OBJ Object state error (specified rendezvous port is aready regis

tered; only cre_por)

197



pI TRON4.0 Specification Ver. 4.00.00

[Functional Description]

These service calls create a rendezvous port with an 1D number specified by porid
based on the information contained in the packet pointed to by pk_cpor. poratr is
the rendezvous port attribute. maxcmsz is the maximum size in bytes of a calling
message. maxrmsz isthe maximum size in bytes of a returned message.

In CRE_POR, porid isan integer parameter with automatic assignment. poratr isa
preprocessor constant expression parameter.

acre_por assigns a rendezvous port 1D from the pool of unassigned rendezvous port
IDs and returns the assigned rendezvous port 1D.

poratr can be specified as (TA_TFIFO || TA_TPRI). If TA_TFIFO (= 0x00) is spec-
ified, the rendezvous port’s call-wait queue will be in FIFO order. If
TA_TPRI(= 0x01) is specified, the rendezvous port’s call-wait queue will be in task
priority order.

maxcmsz and maxrmsz may be specified as 0.

[Supplemental Information]
The rendezvous port’s accept-wait queue always utilizes FIFO ordering.

[Differences from the pITRON3.0 Specification]

By specifying the TA_TRPI attribute, a rendezvous port’s call-wait queue will now be
in task priority order.
The extended information has been removed from the rendezvous port creation infor-

mation. The datatypes of maxcmsz and maxrmsz have been changed from INT to
UINT.

acre_por has been newly added.

198



M TRON4.0 Specification Ver. 4.00.00

del_por Delete Rendezvous Port

[C Language API]
ER ercd = del_por ( ID porid) ;

[Parameter]
ID porid ID number of the rendezvous port to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]

E ID Invalid ID number (porid isinvalid or unusable)
E_NOEXS Non-existent object (specified rendezvous port is not regis
tered)

[Functional Description]
This service call deletes the rendezvous port specified by porid.

[Supplemental Information]

Deleting a rendezvous port does not affect an already established rendezvous. The
deletion is not reported to a task that has accepted a rendezvous and is already execut-
ing the requested processing. The task that called the rendezvous and isin the termina
tion waiting state for the rendezvous will still continue waiting. Moreover, a
termination of the rendezvous is executed normally even if the rendezvous port is
already deleted.

See Section 3.8 for information regarding handling tasks that are waiting to call or
accept arendezvous at the rendezvous port when the rendezvous port is deleted.

199



pI TRON4.0 Specification

Ver. 4.00.00

cal_por Call Rendezvous
tcal _por Call Rendezvous (with Timeout)

[C Language API]

ER_UINT rmsgsz = cal_por ( ID porid, RDVPTN calptn, VP msg,

UINT cmsgsz ) ;

ER_UINT rmsgsz = tcal_por ( ID porid, RDVPTN calptn, VP msg,

[Parameter]
ID porid
RDVPTN  calptn

VP msg
UINT cmsgsz
TMO tmout

[Return Parameter]
ER_UINT rmsgsz

[Error Code]

UINT cmsgsz, TMO tmout) ;

ID number of the rendezvous port to be called

Bit pattern of the rendezvous condition at the call-
ing side

Start address of the calling message and of the
memory areato store the return message

Calling message size (in bytes)

Specified timeout (only tcal_por)

Return message size (in bytes, positive value or 0)
or error code

E ID Invalid ID number (porid isinvalid or unusable)

E_NOEXS Non-existent object (specified rendezvous port is not regis
tered)

E _PAR Parameter error (calptn, msg, cmsgsz, or tmout is
invalid)

E_RLWAI Forced release from waiting (accept rel_wai while waiting)

E TMOUT Polling failure or timeout (only tcal_por)

E DLT Waiting object deleted (rendezvous port is deleted while wait-
ing)

[Functional Description]

These service calls call for arendezvous at the port specified by porid with the rendez-
vous condition specified by calptn. The start address of the calling message is speci-
fied by msg and its size in bytes is specified by cmsgsz. The service calls store the
return message in the memory area starting from msg and return its size in bytes
through rmsgsz. Specifically, the following actions are performed.

If there is atask in the accepting waiting state for the rendezvous at the rendezvous
port, these service calls establish a rendezvous if the rendezvous conditions of the
invoking task and the waiting task match. If there are more than one task in the accept-

200



M TRON4.0 Specification Ver. 4.00.00

ing waiting state for the rendezvous, these service calls check their rendezvous condi-
tions one by one starting from the task at the head of the accept-wait queue. The
service calls establish arendezvous with the first task that matches the rendezvous corn-
dition.

When a rendezvous is established, these service calls assign a rendezvous number to
the established rendezvous and move the invoking task to the termination waiting state
for the rendezvous. The service calls also copy the calling message into the memory
area specified by the accepting task, which was in the accepting waiting state for the
rendezvous. The service calls then release the task from waiting. The released task
receives the calling message size (cmsgsz) as the return value of the service call that
caused it to wait in the accept-wait queue and the assigned rendezvous number through
rdvno.

If no tasks are waiting to accept a rendezvous at the specified rendezvous port, or if
none of the waiting tasks has a matching rendezvous condition, the invoking task is
placed in the call-wait queue and is moved to the calling waiting state for the rendez-
VOous.

If there are already tasks in the rendezvous port’s call-wait queue, the invoking task is
placed in the call-wait queue as described below. When the rendezvous port’s attribute
has TA_TFIFO (= 0x00) set, the invoking task is placed at the tail of the call-wait
gueue. When rendezvous port’s attribute has TA_TPRI (= 0x01) set, the invoking task
is placed in the call-wait queue in the order of the task’s priority. If the call-wait queue
contains tasks with the same priority as the invoking task, the invoking tasks is placed
after those tasks.

tcal_por has same functionality as cal_por with an additional timeout feature. If the
rendezvous does not terminate after a period specified by tmout starting from when
tcal_poriscalled, tcal _por returnsan E_TMOUT error. tmout can be set to
TMO_FEVR (=-1) in addition to a positive number indicating a timeout duration.
When TMO_POL (= 0) is specified, an E_PAR error isreturned.

If tcal_por isinvoked and resultsin atimeout after it establishes arendezvous, the sta-
tus of the rendezvous cannot be recovered to its former state before it was established.
Thisisan exception to the rule stating that “ side effects due to a service call that returns
an error code do not arise” In this case, an error is reported to the accepting task when
the task tries to terminate the rendezvous. This also applies to the case where atask is
forcibly released from the termination waiting state for the rendezvous with rel_wai.
In this case, the service call returnsan E_RLWAI error. On the contrary, since deleting
a rendezvous port does not affect an already established rendezvous, the service call
never returnsan E_DLT error once the rendezvous is established.

An E_PAR error is returned when calptn is 0 or when cmsgsz exceeds the maxi-
mum calling message size. cmsgsz may be specified as 0.

201



pI TRON4.0 Specification Ver. 4.00.00

[Supplemental Information]

When there is a possibility that a rendezvous might be forwarded, the application
should allocate enough memory area, starting from the address specified by msg, to
store a return message with the maximum size regardless of the expected return mes-
sage size. The application should aso assume that the contents of the allocated mem-
ory area will be destroyed. This is because when the rendezvous is forwarded, the
calling message may be copied to the memory area starting from the address specified
by msg.

tcal_por actsthe same ascal_por if TMO_FEVR is specified in tmout.

[Differences from the pITRON3.0 Specification]

The interpretation of timeout in tcal_por has been changed. As aresult, pcal_por
became unnecessary and is removed from the Wl TRON4.0 Specification. tcal_por
returnsan E_PAR error if TMO_POL is specified in tmout.

A calling message with asize of 0 isnow allowed.

The return message size (rmsgsz) is now returned as the return value of the service
calls. The datatype of calptn has been changed from UINT to RDVPTN. The data
types of cmsgsz and rmsgsz have been changed from INT to UINT (the actual type
though is ER_UINT for rmsgsz). The order of parameters and of return parameters
has been changed.

[Rationale]

Thereason an E_PAR error isreturned when 0 is specified for calptn isthat arendez-
vous is never established in this case, which in turn would never release the invoking
task from calling waiting state for the rendezvous.

202



M TRON4.0 Specification Ver. 4.00.00

acp_por Accept Rendezvous
pacp_por Accept Rendezvous (Polling)
tacp_por Accept Rendezvous (with Timeout)

[C Language API]
ER_UINT cmsgsz = acp_por ( ID porid, RDVPTN acpptn,
RDVNO *p_rdvno, VP msg ) ;
ER_UINT cmsgsz = pacp_por ( ID porid, RDVPTN acpptn,
RDVNO *p_rdvno, VP msg ) ;
ER_UINT cmsgsz = tacp_por ( ID porid, RDVPTN acpptn,
RDVNO *p_rdvno, VP msg, TMO tmout ) ;

[Parameter]
ID porid ID number of the rendezvous port where a rendez-
vous is accepted
RDVPTN  acpptn Bit pattern of the rendezvous condition at the

accepting side

VP msg Start address of the memory areato store the calling
message

TMO tmout Specified timeout (only tacp_por)

[Return Parameter]
ER_UINT cmsgsz  Calling message size (in bytes, positive value or 0)
or error code
RDVNO rdvno Rendezvous number of the established rendezvous

[Error Code]
E ID Invalid ID number (porid isinvalid or unusable)
E_NOEXS Non-existent object (specified rendezvous port is not regis
tered)
E _PAR Parameter error (acpptn, msg, or tmout isinvalid)
E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except pacp_por)
E TMOUT Polling failure or timeout (except acp_por)
E DLT Waiting object deleted (rendezvous port is deleted while wait-
ing; except pacp_por)
[Functional Description]
These service calls accept arendezvous at the rendezvous port specified by porid with
the rendezvous condition specified by acpptn. The calling message is stored in the
memory area starting from the address specified by msg and its size in bytesis
returned through cmsgsz. The rendezvous number of the established rendezvousis

203



M TRON4.0 Specification Ver. 4.00.00

returned through rdvno. Specifically, the following actions are performed.

If there is atask in the calling waiting state for the rendezvous at the rendezvous port,
these service calls establish a rendezvous if the rendezvous conditions of the invoking
task and the waiting task match. If there are more than one task in the calling waiting
state for the rendezvous, these service calls check their rendezvous conditions one by
one starting from the task at the head of the call-wait queue. The service calls establish
arendezvous with the first task that matches the rendezvous condition.

When arendezvous is established, these service calls assign a rendezvous number to
the established rendezvous and return the rendezvous number through rdvno. The
service calls aso copy the calling message of the calling task, which was in the calling
waiting state for the rendezvous, to the memory area starting from the address specified
by msg and return the calling message size through cmnsgsz. The task is then
removed from the rendezvous port’s call-wait queue and is moved to the termination
waliting state for the rendezvous.

If no tasks are waiting to call arendezvous at the specified rendezvous port, or if none
of the waiting tasks has a matching rendezvous condition, the invoking task is placed in
the accept-wait queue and is moved to the accepting waiting state for the rendezvous.
If there are already tasks in the accept-wait queue, the invoking task is placed at the tail
of the accept-wait queue.

pacp_por is a polling service call with the same functionality as acp_por.
tacp_por has the same functionality as acp_por with an additional timeout feature.
tmout can be set to a positive number indicating a timeout duration or it can be set to
TMO_POL (=0) or TMO_FEVR (=-1).

An E_PAR error isreturned when acpptn isO.

[Supplemental Information]

A task that has established a rendezvous with another task with acp_por may accept a
rendezvous again with acp_por before the previous rendezvous has been terminated.
The new rendezvous can be accepted at either the same rendezvous port as the previ-
ously established one or at another rendezvous port. If the same rendezvous port is
used, the task can have multiple established rendezvous at the same rendezvous port.
Furthermore, the calling task of the previously established rendezvous can be released
from waiting either by timeout or forced release. When the task calls the rendezvous
again, the task can have multiple rendezvous with the other task at the same rendezvous
port.

tacp_por actsthe same as pacp_por if TMO_POL is specified in tmout aslong as
no context error occurs. Also, tacp_por actsthe sameasacp_por if TMO_FEVR is
specified in tmout.

[Differences from the pITRON3.0 Specification]

The calling message size (cmsgsz) is now returned as the return value of the service

204



M TRON4.0 Specification Ver. 4.00.00

calls. The datatype of acpptn has been changed from UINT to RDVPTN. The data
type of rdvno has been changed from RNO to RDVNO. The data type of cmsgsz
has been changed from INT to UINT (the actual type thoughisER_UINT). The order
of parameters and of return parameters has been changed.

[Rationale]

The reason an E_PAR error is returned when 0 is specified for acpptn is that a ren-
dezvous is never established in this case, which in turn would never release the invok-
ing task from accepting waiting state for the rendezvous.

205



pI TRON4.0 Specification Ver. 4.00.00

fwd_por Forward Rendezvous

[C Language API]
ER ercd = fwd_por ( ID porid, RDVPTN calptn, RDVNO rdvno,
VP msg, UINT cmsgsz ) ;

[Parameter]
ID porid ID number of the rendezvous port to which the ren-
dezvousis forwarded
RDVPTN  calptn Bit pattern of the rendezvous condition at the call-

ing side
RDVNO rdvno Rendezvous number to be forwarded
VP msg Start address of the calling message
UINT cmsgsz  Calling message size (in bytes)
[Return Parameter]
ER ercd E_OK for norma completion or error code
[Error Code]
E ID Invalid ID number (porid isinvalid or unusable)
E_NOEXS Non-existent object (specified rendezvous port is not regis-
tered)
E _PAR Parameter error (calptn, msg, or cmsgsz isinvalid)
E_ILUSE Illegal service call use (maximum return message size of the
rendezvous port to which the rendezvous is forwarded is too
large)
E OBJ Object state error (rdvno isinvalid)

[Functional Description]

This service call forwards the rendezvous specified by rdvno with the rendezvous con-
dition specified by calptn to the rendezvous port specified by porid. The start
address of the calling message after forwarding is specified by msg and its size in
bytesis specified by cmsgsz.

When fwd_por isinvoked, the result is the same as if the task that called the rendez-
vous specified by rdvno (called task A below) has called the rendezvous port specified
by portid with the rendezvous condition calptn and the calling message msg.

The operations of fwd_por is described in detail asfollows.

If atask iswaiting to accept a rendezvous at the rendezvous port to which the rendez-
vous is forwarded, and if the rendezvous condition of the waiting task and that speci-
fied by calptn match, this service call establishes a rendezvous between the task and
task A. If there are more than one task waiting to accept a rendezvous, this service call
check their rendezvous conditions one by one starting from the task at the head of the

206



M TRON4.0 Specification Ver. 4.00.00

accept-wait queue. The service call establishes a rendezvous with the first task that
matches the rendezvous condition.

When arendezvous is established, this service call assigns a rendezvous number to the
established rendezvous and moves task A to the termination waiting state for the ren-
dezvous. The service call also copies the calling message specified by msg and
cmsgsz into the memory area specified by the accepting task, which was in the
accepting waiting state for the rendezvous. The service call then releases the task from
waiting. The released task receives the calling message size (cmsgsz) as the return
value of the service call that caused it to wait in the accept-wait queue and the assigned
rendezvous number through rdvno.

If no tasks are waiting to accept a rendezvous at the rendezvous port to which the ren-
dezvous isforwarded, or if none of the waiting tasks has a matching rendezvous condi-
tion, task A is placed in the call-wait queue of the rendezvous port to which the
rendezvous is forwarded, and is moved to the calling waiting state for the rendezvous.
The calling message specified by msg and cmsgsz is copied to the memory area
specified by task A to store the return message.

If there are already tasks in the rendezvous port’s call-wait queue, task A is placed in
the call-wait queue as described below. If the rendezvous port’s attribute has
TA _TFIFO (= 0x00) set, task A is placed at the tail of the call-wait queue. If the ren-
dezvous port’s attribute has TA_TPRI (= 0x01) set, task A is placed in the call-wait
gueue in the order of the task’s priority. If the call-wait queue contains tasks with the
same priority astask A, task A is placed after those tasks.

The maximum return message size of the rendezvous port to which the rendezvousis
forwarded must be smaller than or equal to that of the rendezvous port at which the ren-
dezvous was established. Otherwise an E_ILUSE error is returned.

When cmsgsz islarger than the maximum calling message size of the rendezvous port
to which the rendezvous is forwarded, or when cmsgsz is larger than the return mes-
sage size of the rendezvous port at which the rendezvous was established, an E_PAR
error isreturned. cmsgsz may be specified as 0.

A rendezvous number accepted by another task may also be specified in rdvno. In
other words, the task that invokes fwd_por and forwards the rendezvous does not nec-
essarily correspond to the task that has accepted the rendezvous.

If the task that has called the rendezvous specified by rdvno is not in the termination
waiting state for the same rendezvous, an E_OBJ error isreturned. An E_OBJ error
is also returned when the value specified by rdvno cannot be interpreted as a rendez-
vous number.

An E_PAR error isreturned when calptn isO.

[Supplemental Information]
Sincethe result of invoking fwd_por isthe same asif task A has called the rendezvous

207



pI TRON4.0 Specification Ver. 4.00.00

port, the record of forwarding a rendezvous is not necessary. For this reason, afor-
warded rendezvous can be forwarded again.

Since the execution of fwd_por ends immediately, the task that invokes fwd_por
never enters the WAITING state. The application can reuse the area in which the call-
ing message was stored for other purposes after fwd_por returns because the calling
message specified by msg and cmsgsz is copied to another area during the execution
of fwd_por. After fwd_por returns, the task that invoked fwd_por is detached from
the following: the rendezvous port at which the rendezvous was established, the ren-
dezvous port to which the rendezvous is forwarded, the forwarded rendezvous, and the
newly established rendezvous if any.

A timeout specified for tcal_por applies to the interval from the invocation of
tcal_por to the termination of the rendezvous. Therefore, if task A called a rendez-

vous by tcal_por, the specified timeout continues to be valid after the rendezvous is
forwarded.

The rendezvous port to which the rendezvous is forwarded may be the same rendez-
vous port at which the rendezvous was originally established. In this case, the accepted
rendezvousisreturned to the original state before it was established. However, the ren-
dezvous pattern and the calling message are changed to those specified for fwd_por.
Even if the task that has called the rendezvous is released from the termination waiting
state for the rendezvous due to a timeout or a forced release after the rendezvousis
established, its release would not be notified to the task that has accepted the rendez-
vous. Inthiscase, an E_OBJ error isreturned if the task that accepted the rendezvous
invokes fwd_por and triesto forward the rendezvous. The task can determine whether
the calling task for the rendezvous is still in the termination waiting state by invoking
ref_rdv.

Figure 4-4 illustrates a server distribution task using fwd_por.

[Differences from the pITRON3.0 Specification]

When task A is moved to the calling waiting state for arendezvous, the calling message
specified by msg and cmsgsz is now defined to be stored in the area in which task A
stores the return message.

The handling of timeout in fwd_por has been changed according to the changed inter-
pretation of timeout for tcal_por.

Thefact that atask other than the task that has accepted the rendezvous can forward the
rendezvous is now clarified.

The calling message size can now be specified as 0.

The data types of calptn, rdvno, and cmsgsz have been changed from UINT to
RDVPTN, from RNO to RDVNO, and from INT to UINT, respectively.

[Rationale]

In order to reduce the number of states the system should handle, the specification does

208



M TRON4.0 Specification Ver. 4.00.00

Client task
j Server distribution task

|

cal_por \O/ acp_por

port

Vo

i fwd_por fwd_por fwd_por

! AN / / >~
i port port q port q

i acp_por acp_por acp_por

! A A + A +

l Server Server Server

l task for task for task for

i Service A Service B Service C
E rpl_rdv rpl_rdv rpl_rdv

Figure 4-4. Server Distribution Task using fwd_por

not require the record of forwarding a rendezvous. In cases where the record is neces
sary, the rendezvous may be called, instead of forwarded by fwd_por, using nested
cal_por.

The following states the reason why an error is returned when the maximum return
message size of the rendezvous port to which the rendezvous is forwarded is larger
than that of the rendezvous port at which the rendezvous was established. Task A must
allocate a memory area that can hold a return message of the maximum allowed size
from the rendezvous port that task A first called. If the maximum return message size
of the rendezvous port to which the rendezvous is forwarded is larger, the return mes-
sage may not fit in the allocated area.

An error isreturned if csgsz is larger than the maximum return message size of the
rendezvous port at which the rendezvous was established. Thisis because when task A
is moved to the calling waiting state for a rendezvous, task A copies the calling mes-
sage specified by msg and cmsgsz to the area it allocated for storing the return mes-

sage.

209



pI TRON4.0 Specification Ver. 4.00.00

rpl_rdv Terminate Rendezvous

[C Language API]
ER ercd = rpl_rdv ( RDVNO rdvno, VP msg, UINT rmsgsz ) ;

[Parameter]

RDVNO rdvno Rendezvous number to be terminated

VP msg Start address of the return message

UINT rmsgsz  Return message size (in bytes)
[Return Parameter]

ER ercd E_OK for norma completion or error code
[Error Code]

E PAR Parameter error (msg or rmsgsz isinvalid)

E OBJ Object state error (rdvno isinvalid)

[Functional Description]

This service call terminates the rendezvous specified by rdvno. The start address of
the return message is specified by msg and its sizein bytesis specified by rmsgsz.
Specifically, if the task which has called the rendezvous specified by rdvno isin the
termination waiting state for the rendezvous, this service call copies the return message
specified by msg and rmsgsz to the area allocated by the calling task to store the
return message. The service call then releases the task from waiting. The released task
receives the return message size (rmsgsz) as the return value of the service call that
caused it to wait.

If the task that has called the rendezvous specified by rdvno is not in the termination
waiting state for the same rendezvous, an E_OBJ error isreturned. An E_OBJ error
is also returned when the value specified by rdvno cannot be interpreted as a rendez-
vous number.

A rendezvous number accepted by another task may also be specified in rdvno. In
other words, the task that invokes rpl_rdv and terminates the rendezvous does not nec-
essarily correspond to the task that has accepted the rendezvous.

When rmsgsz is larger than the maximum return message size of the rendezvous port
to which the rendezvous was established, an E_PAR error is returned. rmsgsz may
be specified as 0.

[Supplemental Information]

Even if the task that has called the rendezvous is released from the termination waiting
state for the rendezvous due to a timeout or a forced release after the rendezvousis
established, its release would not be notified to the task that has accepted the rendez-
vous. Inthiscase, an E_OBJ error isreturned if the task that accepted the rendezvous

210



M TRON4.0 Specification Ver. 4.00.00

invokes rpl_rdv and tries to terminate the rendezvous. The task can determine
whether the calling task for the rendezvous is still in the termination waiting state by
invoking ref_rdv.

After the rendezvous is established, both the calling and accepting tasks are detached
from the rendezvous port. However, the maximum return message size for the rendez-
vous port is necessary for checking if the return message size (rmsgsz) is smaller than
or equal to the maximum size. For this reason, the maximum return message size must
be saved in conjunction with the rendezvous. The maximum size, for example, can be
stored in the TCB of the task in the calling waiting state or in an area (such as the stack
areq) that can be referenced from the TCB.

[Differences from the JITRON3.0 Specification]

The fact that a task other than the task that has accepted the rendezvous can terminate
the rendezvousis now clarified.

The return message size can now be specified as 0.

The data types of rdvno and rmsgsz have been changed from RNO to RDVNO and
from INT to UINT, respectively.

[Rationale]

A rendezvous port ID is not passed as a parameter to rpl_rdv because the task that has
called the rendezvous is detached from the rendezvous port once the rendezvousis
established.

When rdvno isinvalid, an E_OBJ error isreturned instead of an E_PAR error. This
is because an invalid value of rdvno cannot be detected statically.

211



pI TRON4.0 Specification Ver. 4.00.00

ref_por Reference Rendezvous Port State

[C Language API]
ER ercd = ref_por ( ID porid, T_RPOR *pk_rpor ) ;

[Parameter]
ID porid ID number of the rendezvous port to be referenced
T RPOR * pk _rpor Pointer to the packet returning the rendezvous port
State
[Return Parameter]
ER ercd E_OK for norma completion or error code
pk_rpor includes (T_RPOR type)
ID ctskid ID number of the task at the head of the call-wait
queue
1D atskid ID number of the task at the head of the accept-wait
queue

(Other implementation specific information may be added.)

[Error Code]
E_ID Invalid ID number (porid isinvalid or unusable)
E_NOEXS Non-existent object (specified rendezvous port is not regis-
tered)
E_PAR Parameter error (pk_rpor isinvalid)

[Functional Description]

This service call references the state of the rendezvous port specified by porid. The
state of the rendezvous port is returned through the packet pointed to by pk_rpor.

The ID number of the task at the head of the rendezvous port’s call-wait queue is
returned through ctskid. If no tasks are waiting to call arendezvous at the rendezvous
port, TSK_NONE (= 0) is returned instead.

The ID number of the task at the head of the rendezvous port’s accept-wait queue is
returned through atskid. If no tasks are waiting to accept a rendezvous at the rendez-
vous port, TSK_NONE (= 0) isreturned instead.

[Differences from the pITRON3.0 Specification]

The extended information has been removed from the reference information. The ID
number of the task at the head of each wait queue is now returned instead of a boolean
value indicating whether atask iswaiting or not. Based on this replacement, the names
and data types of the return parameters have been changed. The order of parameters
and of return parameters has been changed.

212



M TRON4.0 Specification Ver. 4.00.00

ref_rdv Reference Rendezvous State

[C Language API]
ER ercd = ref_rdv ( RDVNO rdvno, T_RRDV *pk_rrdv ) ;

[Parameter]
RDVNO rdvno Rendezvous number of the rendezvous to be refer-
enced
T RRDV * pk _rrdv Pointer to the packet returning the rendezvous state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rrdv includes (T_RRDV type)
ID wtskid ID number of the task in the termination waiting

state for the rendezvous
(Other implementation specific information may be added.)

[Error Code]
E _PAR Parameter error (pk_rrdv isinvalid)

[Functional Description]

This service call references the state of the rendezvous to which the rendezvous num-
ber specified by rdvno isassigned. The state of the rendezvousis returned through the
packet pointed to by pk_rrdv.

When the task that has called the rendezvous specified by rdvno isin the termination
waiting state for the same rendezvous, the ID number of the task is returned through
wtskid. If thetask is not in the termination waiting state for the same rendezvous, or
if the rdvno cannot be interpreted as a rendezvous number, TSK_NONE (=0) is
returned instead.

[Supplemental Information]

When this service call invoked with a rendezvous number returns a task ID through
wtskid, rpl_rdv or fwd_por invoked with the same rendezvous number never
returnsan E_OBJ error.

[Differences from the pJITRON3.0 Specification]

ref_rdv has been newly added. The ITRONZ2 Specification had a corresponding ser-
vicecdl, rdv_sts.

213



pI TRON4.0 Specification Ver. 4.00.00

4.6 Memory Pool Management Functions

Memory pool management functions provide dynamic memory management by soft-
ware. Memory pool management functions include fixed-sized memory pool and vari-
able-sized memory pool.

[Supplemental Information]

The WITRONA4.0 Specification does not specify functions for multiple logical memory
spaces or hardware memory management unit (MMU).

4.6.1 Fixed-Sized Memory Pools

A fixed-sized memory pool is an object for dynamically managing fixed-sized memory
blocks. The fixed-sized memory pool functions include the ability to create and delete
a fixed-sized memory pool, to acquire and release a memory block to/from a
fixed-sized memory pool, and to reference the state of a fixed-sized memory pool. A
fixed-sized memory pool is an object identified by an ID number. The ID number of a
fixed-sized memory pool is called the fixed-sized memory pool ID.

A fixed-sized memory pool has an associated memory area where fixed-sized memory
blocks are allocated (thisis called fixed-sized memory pool area or simply memory
pool area) and an associated wait queue for acquiring a memory block. If there are no
memory blocks available, atask trying to acquire a memory block from the fixed-sized
memory pool will be in the waiting state for a fixed-sized memory block until a mem-
ory block isreleased. Thetask waiting to acquire a fixed-sized memory block is placed
in the fixed-sized memory pool’s wait queue.

The following kernel configuration macro is defined for use with the fixed-sized mem-
ory pool functions:

SIZE mpfsz = TSZ_MPF ( UINT blkcnt, UINT blksz )

This macro returns the total required size of the fixed-size memory pool areain

bytes necessary to alocate blkcnt memory blocks each of size blksz bytes.
The following data type packets are defined for creating and referencing fixed-sized
memory pools:

typedef struct t_cmpf {

ATR mpfatr ;  /* Fixed-sized memory pool attribute */
UINT blkcnt ; /* Total number of memory blocks */
UINT blksz ; /* Memory block size (in bytes) */
VP mpf ; /* Start address of the fixed-sized memory
pool area */
/* Other implementation specific fields may be added. */
} T_CMPF ;

typedef struct t_rmpf {

214



M TRON4.0 Specification

ID witskid ;

UINT fblkent ;

Ver. 4.00.00

/* 1D number of the task at the head of the
fixed-sized memory pool’s wait
queue */

/* Number of free memory blocksin the
fixed-sized memory pool */

/* Other implementation specific fields may be added. */

} T_RMPF ;

The following represents the functions codes for the fixed-sized memory pool service

cdls:

TFN_CRE_MPF —0x45
TEN_ACRE_MPF  -Oxc9
TEN_DEL_MPF —0x46
TFN_GET_MPF —0x49
TFN_PGET MPF  -Ox4a
TFN_TGET MPF  —Ox4b
TFN_REL_MPF —Ox47
TFN_REF_MPF —Ox4c

[Standard Profile]

Function code of cre_mpf
Function code of acre_mpf
Function code of del_mpf
Function code of get_mpf
Function code of pget_mpf
Function code of tget_mpf
Function code of rel_mpf
Function code of ref_mpf

The Standard Profile requires support for fixed-sized memory pool functions except for
dynamic creation and deletion of a fixed-sized memory pool (cre_mpf, acre_mpf,
del_mpf) and reference of afixed-sized memory pool state (ref_mpf).

The Standard Profile does not require TSZ_MPF to be defined.

[Supplemental Information]

When using fixed-sized memory pool functions for memory blocks of different sizes, a
fixed-sized memory pool should be created for each size.

215



M TRON4.0 Specification Ver. 4.00.00

CRE_MPF  Create Fixed-Sized Memory Pool (Static API) [S]
cre_mpf Create Fixed-Sized Memory Pool
acre_mpf Create Fixed-Sized Memory Pool (ID Number Automatic Assignment)

[Static API]
CRE_MPF ( ID mpfid, { ATR mpfatr, UINT blkcnt, UINT blksz,
VP mpf});

[C Language API]
ER ercd = cre_mpf ( ID mpfid, T_CMPF *pk_cmpf ) ;
ER_ID mpfid = acre_mpf ( T_CMPF *pk_cmpf) ;

[Parameter]
ID mpfid ID number of the fixed-sized memory pool to be
created (except acre_mpf)
T CMPF * pk _cmpf Pointer to the packet containing the fixed-sized
memory pool creation information (in CRE_MPF,
packet contents must be directly specified.)

pk_cmpf includes (T_CMPF type)

ATR mpfatr Fixed-sized memory pool attribute

UINT blkcnt Total number of memory blocks

UINT blksz Memory block size (in bytes)

VP mpf Start address of the fixed-sized memory pool area

(Other implementation specific information may be added.)

[Return Parameter]

cre_mpf:
ER ercd E_OK for normal completion or error code
acre_mpf:
ER_ID mpfid ID number (positive value) of the created
fixed-sized memory pool or error code
[Error Code]
E_ID Invalid ID number (mpfid is invalid or unusable; only
cre_mpf)
E_NOID No ID number available (there is no fixed-sized memory pool
ID assignable; only acre_mpf)
E_ NOMEM I nsufficient memory (memory pool area cannot be allocated)
E RSATR Reserved attribute (mpfatr isinvalid or unusable)
E_PAR Parameter error (pk_cmpf, blkcnt, blksz, or mpf is
invalid)
E _OBJ Object state error (specified fixed-sized memory pool is

216



M TRON4.0 Specification Ver. 4.00.00

aready registered; only cre_mpf)
[Functional Description]

These service calls create a fixed-sized memory pool with an ID number specified by
mpfid based on the information contained in the packet pointed to by pk_cmpf.
mpfatr isthe attribute of the fixed-sized memory pool. blkcnt isthe total number of
memory blocks. blksz is size of each memory block. mpf is the start address of the
fixed-sized memory pool area.

In CRE_MPF, mpfid is an integer parameter with automatic assignment. mpfatr is
a preprocessor constant expression parameter.

acre_mpf assigns a fixed-sized memory pool 1D from the pool of unassigned
fixed-sized memory pool 1Ds and returns the assigned fixed-sized memory pool ID.

mpfatr can be specified as (TA_TFIFO || TA_TPRI). If TA_TFIFO (= 0x00) is
specified, the fixed-sized memory pool’s wait queue will be in FIFO order. If
TA_TPRI (= 0x00) is specified, the fixed-sized memory pool’s wait queue will bein
task priority order.

The necessary area to hold up to blkcnt memory blocks, each of size blksz bytes,
starts from mpf and is used as the fixed-size memory pool area. An application pro-
gram can calculate the size of the memory pool area necessary to hold blkcnt number
of memory blocks, each of size blksz bytes, by usingthe TSZ_MPF macro. If mpfis
NULL (= 0), the kernel allocates the necessary memory area. When blkent or blksz
isspecified as 0, an E_PAR error isreturned.

[Standard Profile]

The Standard Profile does not require support for when other values than NULL is
specified in mpf.

[Differences from the pITRON3.0 Specification]

The start address of the memory pool area (mpf) has been added to the fixed-sized
memory pool creation information. The extended information has been removed. The
names of the parameters have been changed from mpfcnt to blkcnt and from blfsz
to blksz, respectively. In addition, their data types have been changed from INT to
UINT.

acre_mpf has been newly added.

217



pI TRON4.0 Specification Ver. 4.00.00

del_mpf Delete Fixed-Sized Memory Pool

[C Language API]
ER ercd = del_mpf ( ID mpfid ) ;

[Parameter]
ID mpfid ID number of the fixed-sized memory pool to be
deleted
[Return Parameter]
ER ercd E_OK for normal completion or error code
[Error Code]
E ID Invalid ID number (mpfid isinvalid or unusable)
E_NOEXS Non-existent object (specified fixed-sized memory pool is not
registered)

[Functional Description]

This service call deletes the fixed-sized memory pool specified by mpfid. If the mem-
ory pool areawas allocated by the kernel, the areais released.

[Supplemental Information]

See Section 3.8 for information regarding handling tasks that are waiting for a memory
block from the fixed-sized memory pool when the fixed-sized memory pool is deleted.

218



M TRON4.0 Specification Ver. 4.00.00

get_mpf Acquire Fixed-Sized Memory Block [S]
pget _mpf Acquire Fixed-Sized Memory Block (Polling) [S]
tget_mpf Acquire Fixed-Sized Memory Block (with Timeout) [S]

[C Language API]
ER ercd = get_mpf ( ID mpfid, VP *p_blk) ;
ER ercd = pget_mpf ( ID mpfid, VP *p_blk) ;
ER ercd = tget_mpf ( ID mpfid, VP *p_blk, TMO tmout) ;

[Parameter]
ID mpfid ID number or the fixed-sized memory pool from
which a memory block is acquired
TMO tmout Specified timeout (only tget_mpf)
[Return Parameter]
ER ercd E_OK for normal completion or error code
VP blk Start address of the acquired memory block
[Error Code]
E ID Invalid ID number (mpfid isinvalid or unusable)
E_NOEXS Non-existent object (specified fixed-sized memory pool is not
registered)
E _PAR Parameter error (p_blk or tmout isinvalid)
E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except pget_mpf)

E TMOUT Polling failure or timeout (except get._mpf)

E DLT Waiting object deleted (fixed-sized memory pool is deleted
while waiting; except pget_mpf)

[Functional Description]

These service calls acquire a memory block from the fixed-sized memory pool speci-
fied by mpfid. The size of the memory block is specified during the creation of the
fixed-sized memory pool. The start address of the memory block is returned through
blk. Specifically, when free memory blocks are available in the memory pool area,
one of the memory blocks is selected and takes on an acquired status. If there are no
memory blocks available, the invoking task is placed in the fixed-sized memory pool’s
wait queue and is moved to the waiting state for a fixed-sized memory block.

If there are already tasks in the fixed-sized memory pool’s wait queue, the invoking
task is placed in the wait queue as described below. When the fixed-sized memory
pool’s attribute has TA_TFIFO (= 0x00) set, the invoking task is placed at the tail of
the wait queue. When the fixed-sized memory pool’s attribute has TA_TPRI (= 0x01)
set, the invoking task is placed in the wait queue in the order of the task’s priority. If

219



pI TRON4.0 Specification Ver. 4.00.00

the wait queue contains tasks with the same priority as the invoking tasks, the invoking
task is placed after those tasks.

pget_mpfisapolling service call with the same funcionality asget_mpf. tget_mpf
has the same functionality as get_mpf with an additional timeout feature. tmout can
be set to a positive number indicating a timeout duration or it can be set to TMO_POL
(=0) or TMO_FEVR (=-1).

[Supplemental Information]

The size of the acquired memory block may be larger than the memory block size that
was specified during the creation of the fixed-sized memory pool. Since these service
calls do not clear the memory block, its contents are undefined.

tget_mpf actsthe same as pget_mpf if TMO_POL is specified in tmout aslong as
no context error occurs. Also, tget_ mpf actsthe sameasget_ mpfif TMO_FEVR is
specified in tmout.

[Differences from the pITRON3.0 Specification]

The names of the service calls have been changed from get_blf, pget_blf, and
tget_blf to get_mpf, pget_mpf, and tget_mpf, respectively. The order of parame-
ters and of return parameters has been changed.

220



M TRON4.0 Specification Ver. 4.00.00

rel_mpf Release Fixed-Sized Memory Block [S]

[C Language API]
ER ercd = rel_mpf ( ID mpfid, VP blk) ;

[Parameter]
ID mpfid ID number of the fixed-sized memory pool to which
the memory block is released
VP blk Start address of the memory block to be released
[Return Parameter]
ER ercd E_OK for normal completion or error code
[Error Code]
E ID Invalid ID number (mpfid isinvalid or unusable)
E_NOEXS Non-existent object (specified fixed-sized memory pool is not
registered)
E _PAR Parameter error (blk isinvalid, release to a different memory
pool, specified address is not the start address of a memory

block)

[Functional Description]

This service call releases the memory block starting from the address specified by blk
to the fixed-sized memory pool specified by mpfid.

If there are aready tasks in the fixed-sized memory pool’s wait queue, this service call
lets the task at the head of the wait queue acquire the released memory block and
releases the task from waiting. The released task receives E_OK from the service call
that caused it to wait in the fixed-sized memory pool’s wait queue. It also receives the
value specified by blk as the start address of the acquired memory block.

The fixed-sized memory pool to which the memory block is released must be the same
fixed-sized memory pool from which the memory block was acquired. Otherwise, an
E_PAR error isreturned.

The start address of the memory block to be released must be the start address of an
acquired memory block returned by get_mpf, pget_mpf, or tget_mpf. In addition,
the memory block must not be a released memory block. The behavior is undefined
when other addresses are specified in blk. When an error should be reported, an
E_PAR error isreturned.

[Differences from the uITRON3.0 Specification]

The name of the service call has been changed from rel_blf to rel_mpf. The name of
the parameter has been changed from blf to blk.

221



pI TRON4.0 Specification Ver. 4.00.00

ref_mpf Reference Fixed-Sized Memory Pool State

[C Language API]
ER ercd = ref_mpf ( ID mpfid, T_RMPF *pk_rmpf) ;

[Parameter]
ID mpfid ID number of the fixed-sized memory pool to be
referenced
T RMPF * pk_rmpf Pointer to the packet returning the fixed-sized mem-
ory pool state
[Return Parameter]
ER ercd E_OK for norma completion or error code
pk_rmpfincludes (T_RMPF type)
ID wtskid ID number of the task at the head of the wait queue
UINT fblkent Number of free memory blocks

(Other implementation specific information may be added.)

[Error Code]
E ID Invalid ID number (mpfid isinvalid or unusable)
E_NOEXS Non-existent object (specified fixed-sized memory pool is not
registered)
E_PAR Parameter error (pk_rmpfisinvalid)

[Functional Description]

This service call references the state of the fixed-sized memory pool specified by
mpfid. The state of the fixed-sized memory pool is returned through the packet
pointed to by pk_rmpf.

The ID number of the task at the head of the fixed-sized memory pool’s wait queue is
returned through wtskid. If no tasks are waiting to acquire a memory block,
TSK_NONE (= 0) isreturned instead.

The number of free memory blocks in the fixed-sized memory pool areais returned
through fblkcnt.

[Supplemental Information]

A fixed-sized memory pool cannot have wtskid # TSK_NONE and fblkcnt # O at
the same time.

[Differences from the pITRON3.0 Specification]

The extended information has been removed from the reference information. The ID
number of the task at the head of the wait queue is now returned instead of a boolean
value indicating whether atask is waiting or not. Based on this replacement, the name
and data type of the return parameter has been changed.

222



M TRON4.0 Specification Ver. 4.00.00
The name of the return parameter has been changed from frbcnt to fblkent, and its

data type has been changed from INT to UNIT. The order of parameters and of return
parameters has been changed.

223



pI TRON4.0 Specification Ver. 4.00.00

4.6.2 Variable-Sized Memory Pools

A variable-sized memory pool is an object for dynamically managing variable-sized
memory blocks. The variable-sized memory pool functions include the ability to cre-
ate and delete a variable-sized memory pool, to acquire and release a memory block to/
from avariable-sized memory pool, and to reference the state of a variable-sized mem-
ory pool. A variable-sized memory pool is an object identified by an ID number. The
ID number of avariable-sized memory pool is called the variable-sized memory ID.

A variable-sized memory pool has an associated memory area where variable-sized
memory blocks are allocated (thisis called variable-sized memory pool area or ssmply
memory pool area) and an associated wait queue for acquiring a memory block. If
there are no memory blocks available, atask trying to acquire amemory block from the
variable-sized memory pool will be in the waiting state for a variable-sized memory
block until enough memory blocks are released. The task waiting to acquire a vari-
able-sized memory block is placed in the variable-sized memory pool’s wait queue.

The following kernel configuration macro is defined for use with variable-sized mem-
ory pool functions:
SIZE mplsz = TSZ_MPL ( UINT blkcnt, UINT blksz )
This macro returns an approximate size in bytes necessary to allocate blkcnt
memory blocks each of size blksz bytes.

This macro is only an estimation for determining the size of the memory pool area. It
cannot be used to determine the total required size of a memory pool areato allocate
memory blocks with different sizes. In addition, when the memory pool area becomes
fragmented, the specified number of memory blocks cannot be all ocated.

The following data type packets are defined for creating and referencing variable-sized
memory pools:

typedef struct t_cmpl {

ATR mplatr ;  /* Variable-sized memory pool attribute */

SIZE mplsz ; /* Size of the variable-sized memory pool
area (in bytes) */

VP mpl ; /* Start address of the variable-sized

memory pool area */
/* Other implementation specific fields may be added. */

} T_CMPL ;
typedef struct t_rmpl {

ID wtskid ; /* 1D number of the task at the head of the
variable-sized memory pool’s wait
gqueue */

SIZE fmplsz ; /* Total size of free memory blocksin the
variable-sized memory pool (in
bytes) */

224



M TRON4.0 Specification Ver. 4.00.00

UINT fblksz ; /* Maximum memory block size available
(in bytes) */
/* Other implementation specific fields may be added. */
} T_RMPL ;

The following represents the functions codes for the variable-sized memory pool ser-
vicecals:

TFN_CRE_MPL —-0Oxal Function code of cre_mpl
TFN_ACRE_MPL —Oxca  Function code of acre_mpl
TFN_DEL_MPL —0xa2 Function code of del_mpl
TFN_GET_MPL —0xab  Function code of get_mpl
TFEN_PGET_MPL —Oxa6 Function code of pget_mpl
TEN_TGET_MPL —Oxa7  Function code of tget_mpl
TFN_REL_MPL —0xa3  Function code of rel_mpl
TFN_REF_MPL —0Oxa8 Function code of ref_mpl

[Standard Profile]

The Standard Profile does not require support for variable-sized memory pool func-
tions.

[Supplemental Information]

Tasks that are waiting for a memory block from a variable-sized memory pool will
acquire a memory block in the order that the tasks are placed in the wait queue. An
example iswhen task A tries to acquire 400 byte memory block from a variable-sized
memory pool and task B tries to acquire 100 byte memory block from the same vari-
able-sized memory pool. Assume that these tasks are placed in the wait queue so that
task A isahead of task B. A third task then releases 200 byte memory block to the vari-
able-sized memory pool, resulting in 200 bytes of available area in the variable-sized
memory pool. Even though task B only needs 100 bytes to acquire a memory block, it
cannot do so until task A has acquired a memory block. However, an implementa
tion-specific extension can add an attribute to the variable-sized memory pool that will
allow task B to acquire amemory block before task A in this example.

[Differences from the pITRON3.0 Specification]

Whether tasks should acquire memory blocks according to their order in the wait queue
or according to which task can acquire a memory block first was implementa-
tion-dependent in the WITRON3.0 Specification. The WITRON4.0 Specifications has
determined the former order to be standard.

225



pI TRON4.0 Specification Ver. 4.00.00

CRE_MPL  CreateVariable-Sized Memory Pool (Static API)
cre_mpl Create Variable-Sized Memory Pool
acre_mpl Create Variable-Sized Memory Pool (ID Number Automatic Assignment)

[Static API]
CRE_MPL ( ID mplid, { ATR mplatr, SIZE mplsz, VP mpl }) ;

[C Language API]
ER ercd = cre_mpl ( ID mplid, T_CMPL *pk_cmpl ) ;
ER_ID mplid = acre_mpl ( T_CMPL *pk_cmpl ) ;

[Parameter]
ID mplid ID number of the variable-sized memory pool to be
created (except acre_mpl)
T CMPL * pk _cmpl Pointer to the packet containing the variable-sized
memory pool creation information (in CRE_MPL,
packet contents must be directly specified.)

pk_cmpl includes (T_CMPL type)

ATR mplatr Variable-sized memory pool attribute

SIZE mplsz Size of the variable-sized memory pool area (in
bytes)

VP mpl Start address of the variable-sized memory pool
area

(Other implementation specific information may be added.)

[Return Parameter]

cre_mpl:
ER ercd E_OK for normal completion or error code
acre_mpl:
ER_ID mplid ID number (positive value) of the created vari-
able-sized memory pool or error code
[Error Code]
E_ID Invalid ID number (mplid is invalid or unusable; only
cre_mpl)
E_NOID No ID number available (there is no variable-sized memory
pool ID assignable; only acre_mpl)
E_NOMEM I nsufficient memory (memory pool area cannot be allocated)
E RSATR Reserved attribute (mplatr isinvalid or unusable)
E_PAR Parameter error (pk_cmpl, mplsz, or mpl isinvalid)
E OBJ Object state error (specified variable-sized memory pool is

already registered; only cre_mpl)

226



M TRON4.0 Specification Ver. 4.00.00

[Functional Description]

These service calls create a variable-sized memory pool with an ID number specified
by mplid based on the information contained in the packet pointed to by pk_cmpl.
mplatr is the attribute of the variable-sized memory pool. mplsz is the size of the
variable-sized memory pool areain bytes. mpl is the start address of the vari-
able-sized memory pool area.

In CRE_MPL, mplid is an integer parameter with automatic assignment. mplatr is
apreprocessor constant expression parameter.

acre_mpl assigns a variable-sized memory pool ID from the pool of unassigned vari-
able-sized memory pool 1Ds and returns the assigned variable-sized memory pool ID.

mplatr can be specified as (TA_TFIFO || TA_TPRI). If TA_TFIFO (= 0x00) is
specified, the variable-sized memory pool’s wait queue will be in FIFO order. If
TA_TPRI (= 0x00) is specified, the variable-sized memory pool’swait queue will bein
task priority order.

The memory area starting from mpl and whose size is mplsz is used as the memory
pool area. Because the information for memory block management is also placed in
the memory pool area, the whole memory pool area cannot be used to allocate memory
blocks. An application program can estimate the size to be specified in mplsz by using
the TSZ_MPL macro. If mplisNULL (= 0), the kernel alocates the necessary mem-
ory areain bytes specified by mplsz. When mplsz is specified as 0, an E_PAR error
is returned.

[Differences from the pITRON3.0 Specification]

The start address of the memory pool area (mpl) has been added to the variable-sized
memory pool creation information. The extended information has been removed. The
datatype of mplsz has been changed from INT to SIZE.

acre_mpl has been newly added.

227



pI TRON4.0 Specification Ver. 4.00.00

del_mpl Delete Variable-Sized Memory Pool

[C Language API]
ER ercd = del_mpl (ID mplid ) ;

[Parameter]
ID mplid ID number of the variable-sized memory pool to be
deleted
[Return Parameter]
ER ercd E_OK for norma completion or error code
[Error Code]
E ID Invalid ID number (mplid isinvalid or unusable)
E_NOEXS Non-existent object (specified variable-sized memory pool is
not registered)

[Functional Description]

This service call deletes the variable-sized memory pool specified by mplid. If the
memory pool areawas allocated by the kernel, the areais rel eased.

[Supplemental Information]

See Section 3.8 for information regarding handling tasks that are waiting for a memory
block from the variable-sized memory pool when the variable-sized memory pool is
deleted.

228



M TRON4.0 Specification Ver. 4.00.00

get_mpl Acquire Variable-Sized Memory Block
pget_mpl Acquire Variable-Sized Memory Block (Polling)
tget_mpl Acquire Variable-Sized Memory Block (with Timeout)

[C Language API]
ER ercd = get_mpl ( ID mplid, UINT blksz, VP *p blk) ;
ER ercd = pget_mpl ( ID mplid, UINT blksz, VP *p_blk ) ;
ER ercd = tget_mpl ( ID mplid, UINT blksz, VP *p_blk,

TMO tmout) ;
[Parameter]
ID mplid ID number of the variable-sized memory pool from
which amemory block is acquired
UINT blksz Memory block size to be acquired (in bytes)
TMO tmout Specified timeout (only tget_mpl)
[Return Parameter]
ER ercd E_OK for norma completion or error code
VP blk Start address of the acquired memory block
[Error Code]
E ID Invalid ID number (mplid isinvalid or unusable)
E_NOEXS Non-existent object (specified variable-sized memory pool is
not registered)
E PAR Parameter error (p_blk, tmout isinvalid)
E_RLWAI Forced release from waiting (accept rel_wai while waiting;

except pget_mpl)

E TMOUT Polling failure or timeout (except get_mpl)

E DLT Waiting object deleted (variable-sized memory pool is deleted
while waiting; except pget_mpl)

[Functional Description]

These service calls acquire a memory block whose size is specified by blksz from the
variable-sized memory pool specified by mplid. The start address of the memory
block is returned through blk.

Specific actions to be performed depend on whether there is atask waiting to acquire a
memory block with precedence over the invoking task. If no tasks are waiting to
acquire amemory block from the variable-sized memory block, or if the variable-sized
memory pool’s attribute has TA_TPRI (= 0x01) set and the invoking task has higher
priority than all of the waiting tasks, a memory block of size blksz bytes is acquired
from the memory pool area. If the conditions are not satisfied or if the free memory
areais insufficient for acquiring a memory block, the invoking task is placed in the

229



pI TRON4.0 Specification Ver. 4.00.00

variable-sized memory pool’s wait queue and is moved to the waiting state for a vari-
able-sized memory block.

If there are aready tasks in the variable-sized memory pool’s wait queue, the invoking
task is placed in the wait queue as described below. When the variable-sized memory
pool’s attribute has TA_TFIFO (= 0x00) set, the invoking task is placed at the tail of
the wait queue. When the variable-sized memory pool’s attribute has TA_TPRI
(= 0x01) set, the invoking task is placed in the wait queue in the order of the task’s pri-
ority. If the wait queue contains tasks with the same priority as the invoking tasks, the
invoking task is placed after those tasks.

When the first task in the wait queue has changed as the result of releasing atask in the
wait queue from waiting with rel_wai, ter_tsk, or atimeout, the actions, when possi-
ble, to make the tasks acquire memory blocks starting from the new first task in the
wait queue are necessary. Since the specific actions are similar to the actions to be
taken after rel_mpl has released a memory block to the variable-sized memory pool,
see the functional description of rel_mpl for more details. The same actions are also
necessary when the first task in the wait queue has changed as the result of changing
the priority of atask in the wait queue by chg_pri or mutex operations.

pget_mpl isapolling service call with the same funcionality asget_mpl. tget_mpl
has the same functionality as get_mpl with an additional timeout feature. tmout can
be set to a positive number indicating a timeout duration or it can be set to TMO_POL
(=0) or TMO_FEVR (= -1).

[Supplemental Information]

The size of the acquired memory block may be larger than the size specified by blksz.
Since these service calls do not clear the memory block, its contents are undefined.

tget_mpl acts the same as pget_mpl if TMO_POL is specified in tmout aslong as
no context error occurs. Also, tget_ mpl actsthe sameasget_mpl if TMO_FEVR is
specified in tmout.

[Differences from the pITRON3.0 Specification]

The names of the service calls have been changed from get_blk, pget_blk, and
tget_blk to get_mpl, pget_mpl, and tget_mpl, respectively. The data type of
blksz has been changed from INT to UINT. The order of parameters and of return
parameters has been changed.

230



M TRON4.0 Specification Ver. 4.00.00

rel_mpl Release Variable-Sized Memory Block

[C Language API]
ER ercd = rel_mpl ( ID mplid, VP blk ) ;

[Parameter]
ID mplid ID number of the variable-sized memory pool to
which the memory block is rel eased
VP blk Start address of memory block to be released
[Return Parameter]
ER ercd E_OK for normal completion or error code
[Error Code]
E ID Invalid ID number (mplid isinvalid or unusable)
E_NOEXS Non-existent object (specified variable-sized memory pool is
not registered)
E_PAR Parameter error (blk isinvalid, release to a different memory
pool, specified address is not the start address of a memory

block)

[Functional Description]

This service call release the memory block starting from the address specified by blk
to the variable-sized memory pool specified by mplid.

If there are already tasks in the variable-sized memory pool’s wait queue, this service
call checksif, asaresult of releasing the memory block, the first task in the wait queue
can acquire amemory block of the requested size. If the requested size is met, the ser-
vice call lets the task acquire the memory block and releases the task from waiting.
The released task receives E_ OK from the service call that caused it to wait in the vari-
able-sized memory pool’swait queue. It also receives the start address of the acquired
memory block. When some tasks still remain in the wait queue after the release of the
task, the same actions must be repeated on the new head task in the wait queue.

The variable-sized memory pool to which the memory block is released must be the
same variable-sized memory pool from which the memory block was acquired. Other-
wise, an E_PAR error isreturned.

The start address of the memory block to be released must be the start address of an
acquired memory block returned by get_mpl, pget_mpl, or tget_mpl. In addition,
the memory block must not be a released memory block. The behavior is undefined
when other addresses are specified in blk. When an error should be reported, an
E_PAR error isreturned.

231



pI TRON4.0 Specification Ver. 4.00.00

[Supplemental Information]

If this service call releases more than one task from waiting, the order of release corre-
sponds with the order in which the tasks are placed in the wait queue. Therefore,
among the same priority tasks moved to the runnable state, the task closer to the head
of the wait queue has higher precedence.

[Differences from the pITRON3.0 Specification]

The name of the service call has been changed from rel_blk to rel_mpl.

232



M TRON4.0 Specification Ver. 4.00.00

ref_mpl Reference Variable-Sized Memory Pool State

[C Language API]
ER ercd = ref_mpl ( ID mplid, T_RMPL *pk_rmpl ) ;

[Parameter]
ID mplid ID number of the variable-sized memory pool to be
referenced
T RMPL* pk rmpl Pointer to the packet returning the variable-sized
memory pool state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rmpl includes (T_RMPL type)

ID wtskid ID number of the task at the head of the wait queue

SIZE fmplsz Total size of free memory blocks (in bytes)

UINT fblksz Maximum memory block size available (in bytes)

(Other implementation specific information may be added.)
[Error Code]

E_ID Invalid ID number (mplid isinvalid or unusable)

E_NOEXS Non-existent object (specified variable-sized memory pool is
not registered)

E PAR Parameter error (pk_rmpl isinvalid)

[Functional Description]

This service call references the state of the variable-sized memory pool specified by
mplid. The state of the memory pool is returned through the packet pointed to by
pk_rmpl.

The ID number of the task at the head of the variable-sized memory pool’s wait queue
is returned through wtskid. If no tasks are waiting to acquire a memory block,
TSK_NONE (= 0) isreturned instead.

The current total size of free memory blocks in the variable-sized memory pool in
bytesis returned through fmplsz.

The size of the largest free memory block in bytes that can be acquired immediately
from the variable-sized memory pool is returned through fblksz. When the size of the
memory block istoo large to represent with UINT type, the maximum value that can fit
in UINT typeisreturned through fblksz.

[Supplemental Information]

If the kernel uses dynamic memory management internally, this service call can be
used as an API to reference the kernel’s dynamic memory area. Specificaly, this ser-

233



pI TRON4.0 Specification Ver. 4.00.00

vice call returns the information on the kernel’s dynamic memory area when invoked
with an ID number of (—4). However, wtskid does not have ameaning inthiscase. In
addition, if the kernel manages more than one dynamic memory area, these can be ref-
erenced through ID numbers (-3) and (-2).

[Differences from the pITRON3.0 Specification]

The extended information has been removed from the reference information. The ID
number of the task at the head of the wait queue is now returned instead of a boolean
value indicating whether atask iswaiting or not. Based on this replacement, the names
and data types of the return parameters have been changed.

The names of the return parameters have been changed from frsz to fmplsz and from
maxsz to fblksz. The datatypes of fmplsz and fblksz have been changed from INT
to SIZE and from INT to UINT, respectively. The order of parameters and of return
parameters has been changed.

234



M TRON4.0 Specification Ver. 4.00.00

4.7 Time Management Functions

Time management functions provide time-dependent processing. The time manage-
ment functions include system time management, cyclic handlers, alarm handlers, and
overrun handlers. Cyclic handlers, alarm handlers, and overrun handlers are generi-
cally called time event handlers.

[Supplemental Information]

The contexts and states under which time event handlers execute are summarized as
follows:

» Time event handlers execute in their own independent contexts (see Section 3.5.1).
The contextsin which time event handlers execute are classified as non-task contexts
(see Section 3.5.2).

» Time event handlers execute at lower precedence than the interrupt handler that
called isig_tim, but at higher precedence than the dispatcher (see Section 3.5.3).

o After time event handlers start, the system is in the CPU unlocked state. When
returning from time event handlers, the system must be in the CPU unlocked state
(see Section 3.5.4).

» The start of and the return from time handlers do not change the dispatching state.
When the dispatching state is changed within time event handlers, the original state
must be restored before returning (see Section 3.5.5).

[Differences from the JITRON3.0 Specification]

The name cyclic handler has been changed from cyclic activation handler. Overrun
handler is a newly added feature. The delay task function (del_tsk) has been moved
from time management functions to task dependent synchronization functions.
ret_tmr has been removed (see Section 3.9).

4.7.1 System Time Management

System time management functions provide control over system time. System time
management functions include the ability to set and get the system time and to supply a
timetick for updating the system time.

System time initializes to 0 when the system is started (see Section 3.7) and will be
updated every time isig_tim isinvoked by the application. The amount of time added
to the system time when isig_tim isinvoked is implementation-defined. The fre-
guency of caling isig_tim from the application must be correlated with the amount of
time added to the system time. If the kernel has a mechanism of updating the system
time, isig_tim need not be supported.

The following features depend on the system time: processing of timeouts, releasing
tasks from waiting after a call to dly_tsk, and activation of cyclic handlers and alarm

235



pI TRON4.0 Specification Ver. 4.00.00

handlers. The execution order of multiple processes that start at the same system time
tick is implementation-dependent.

Thefollowing kernel configuration constants are defined for use with system time man-
agement functions:

TIC_NUME Time tick period numerator
TIC_DENO Time tick period denominator

These constants allow the application to reference the approximate time precision of
the system time. TIC_NUME/TIC_DENO isthe time tick period measured in the
same units as the system time. If the system time is not updated periodically, the con-
stants should still be defined so that they reflect the characteristic of the system time
precision.

The following represents the function codes for the system time management service
cals:

TFN_SET TIM —0x4d  Function code of set_tim
TFN_GET_TIM —Ox4e  Function code of get_tim
TEN_ISIG_TIM —Ox7d  Function code of isig_tim

[Standard Profile]

The Standard Profile requires support for the system time management functions.
However, if the kernel has a mechanism of updating the system time, isig_tim need
not be supported.

[Supplemental Information]

Another method to define TIC_NUME and TIC_DENO isto alow the application to
define them in the system configuration file or in header files prepared by the applica
tion. The kernel determines the period that isig_tim is invoked by the application
from these constants.

[Differences from the pITRON3.0 Specification]

The name system time has been changed from system clock. The service call to supply
atimetick (isig_tim) has been newly added. Thisallows the kernel to be independent
of timer hardware.

The recommended number of bits used to represent the value of the system timeis not
specified. In the W' TRON3.0 Specification it was 48 bits. Now the system issetto O
upon initialization. In the WITRON3.0 Specification, the recommended start date for
absolute time was January 1st, 1985, 0:00 am GMT.

236



M TRON4.0 Specification Ver. 4.00.00

set_tim Set System Time [S]

[C Language API]
ER ercd = set_tim ( SYSTIM *p_systim ) ;
[Parameter]

SYSTIM systim Time to set as system time

[Return Parameter]
ER ercd E_OK for norma completion or error code

[Error Code]
E_PAR Parameter error (p_systim or systim isinvalid)
[Functional Description]

This service call setsthe system time to the value specified by systim.

[Supplemental Information]

Changing the system time using this service call will not change the time in the real
world when an event specified using relative time is to occur. However, the system
time when that event occurs will change (see Section 2.1.9).

[Differences from the pJITRON3.0 Specification]

The data type of the system time has been changed from SYSTIME to SYSTIM. The
parameter name in the C language APl has changed from pk_tim to p_systim.

[Rational€]

systim is passed through a pointer because passing the parameter value may reduce
system efficiency when SYSTIM is defined as a data structure.

237



pI TRON4.0 Specification Ver. 4.00.00

get_tim Reference System Time [S]

[C Language API]
ER ercd = get_tim ( SYSTIM *p_systim ) ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for normal completion or error code
SYSTIM systim Current system time

[Error Code]
E _PAR Parameter error (p_systim isinvalid)

[Functional Description]
This service call returns the current system time through systim.

[Differences from the pITRON3.0 Specification]

The data type of the system time has been changed from SYSTIME to SYSTIM. The
parameter name in the C language APl has changed from pk_tim to p_systim.

238



M TRON4.0 Specification Ver. 4.00.00

Isig_tim Supply Time Tick [S]

[C Language API]
ER ercd = isig_tim () ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for norma completion or error code

[Error Code]
No errors specific to this service call

[Functional Description]
This service call updates the system time.

[Standard Profile]

The Standard Profile does not require support for this service call if the kernel has a
mechanism of updating the system time.

[Supplemental Information]

This service call may start processes that depend on the system time. This does not
mean that these processes must be executed within this service call. Thisimplies that
these processes do not necessarily complete before the service call returns.

[Differences from the pJITRON3.0 Specification]
This service call has been newly added.

239



pI TRON4.0 Specification Ver. 4.00.00

4.7.2 Cyclic Handlers

A cyclic handler is atime event handler activated periodically. Cyclic handler func-
tions include the ability to create and delete a cyclic handler, to start and stop a cyclic
handler’s operation, and to reference the state of a cyclic handler. A cyclic handler is
an object identified by an ID number. The ID number of a cyclic handler is called the
cyclic handler ID.

The activation cycle and activation phase are set at the creation of the cyclic handler.
The kernel determines the next time the handler will be activated based on the activa
tion cycle and the activation phase. When the cyclic handler is created, the first activa-
tion time is calculated by adding the activation phase to the time at which the cyclic
handler was created. At the cyclic handler’s activation time, the cyclic handler is called
with its extended information (exinf) passed as a parameter. At thistime the next acti-
vation time is calculated by adding the activation cycle to the current activation time.
In addition, the next activation time may be recalculated when the cyclic handler’s
operation is started.

Generally, a cyclic handler’s activation phase is less than its activation cycle. The
behavior is implementation-dependent when the activation phase is longer than the
activation cycle.

A cyclic handler is either in an operational state or a non-operational state. When a
cyclic handler isin anon-operational state, the cyclic handler is not activated at its acti-
vation time. Instead, its next activation time is determined. When the service call that
starts the operation of a cyclic handler (sta_cyc) is invoked, the cyclic handler is
moved to an operational state and its next activation time is recalculated if necessary.
When the service call that stops the operation of a cyclic handler (stp_cyc) isinvoked,
the cyclic handler is moved to a non-operational state. After the creation of a cyclic
handler, the cyclic handler’s attribute determines the operational state of the cyclic han-
dier.

The activation phase is the relative time from the time when the cyclic handler was cre-
ated to the first activation time. If the cyclic handler is created through a static API, the
creation time is considered to be the system initialization time. The activation cycleis
the relative time from the last activation time to the next activation time. The last acti-
vation time may not have been the actual time of activation, but rather the last expected
activation time. An actual interval between actual activations can possibly be shorter
than the activation cycle. However, in the long term, the average actual activation
interval will correspond with the activation cycle.

The format to write a cyclic handler in the C language is shown below:

void cychdr ( VP_INT exinf)
{

}

/* Body of the cyclic handler */

240



M TRON4.0 Specification Ver. 4.00.00

The following data type packets are defined for creating and referencing cyclic han-
dlers:

typedef struct t_ccyc {

ATR cycatr ; /* Cyclic handler attribute */
VP_INT exinf ; /* Cyclic handler extended information */
FP cychdr ;  /* Cyclic handler start address */

RELTIM  cyctim ; /* Cyclic handler activation cycle */
RELTIM  cycphs; /* Cyclic handler activation phase */
/* Other implementation specific fields may be added. */

}T_CCYC;
typedef struct t_rcyc {
STAT cycstat ;  /* Cyclic handler operational state */

RELTIM lefttim ; /* Time |eft before the next activation */
/* Other implementation specific fields may be added. */
} T_RCYC;

The following represents the function codes for the cyclic handler service cals:

TFEN_CRE_CYC —Ox4f  Function code of cre_cyc
TEN_ACRE_CYC —Oxcb  Function code of acre_cyc
TFEN_DEL _CYC —0x50  Function code of del_cyc

TFN_STA _CYC —0x51 Function code of sta_cyc
TEN_STP_CYC —0x52  Function code of stp_cyc
TFN_REF_CYC —0x53  Function code of ref_cyc

[Standard Profile]

The Standard Profile requires support for cyclic handler functions except for dynami-
cally creation and deletion of a cyclic handler (cre_cyc, acre_cyc, del_cyc) and ref-
erence of acyclic handler state (ref_cyc).

The Standard Profile does not require support for preserving the activation phase,
which is specified by TA_PHS in the cyclic handler’s attribute.

[Supplemental Information]

When the activation phase is preserved, the activation time is determined so that the
quantity (((activation time) — (creation time)) % (activation cycle)) is constant. Figure
4-5 show how the cyclic handler is activated after it is created with TA_STP specified
in its attribute and then it is moved to an operational state with sta_cyc. When the
activation phase is preserved, the activation time is always determined base on the cre-
ation time (Figure 4-5 (a)). When the activation phase is not preserved the activation
time is determined base on the time when sta_cyc isinvoked (Figure 4-5 (b)).

The activation of cyclic handlers depends on the system time. Therefore, these han-
diers are activated at the first time tick after the activation time has passed. The activa-
tion phase is the relative time from when the cyclic handler was created. This means
that the first activation of the cyclic handler occurs after an elapsed time equal to or
greater than the activation phase (as long as the cyclic handler is in an operational

241



pI TRON4.0 Specification Ver. 4.00.00

cre_cyc (TA_STA not specified) sta_cyc Cyclic handler iscalled.
| ] ] + T >
= D | | 1

activcation phase activation cycle activation cycle

(&) when the activation phase is preserved (TA_PHS specified)

cre_cyc (TA_STA not specified) sta_cyc Cyclic handler is called.
R e — —t
activcation phase activation cycle activation cycle

(b) when the activation phase is not preserved (TA_PHS not specified)

Figure 4-5. Preserving Activation Phase

state). The activation cycle is the relative time from the last activation time. This
means that the n-th activation of the cyclic handler must occur after an elapsed time
equal to or greater than ((activation phase) + (activation cycle) * (n-1)) from the cre-
ation time. For example, for a system with a 10 millisecond time tick where a cyclic
handler is created through the static APl with the activation phase set to 15 millisec-
onds and the activation cycle set to 25 milliseconds, then the activation times will be at
20, 40, 70, 90, and 120 milliseconds and so on. See Section 2.1.9 for how to handle
events specified with relative times.

This specification describes the calculation of the next activation time even when a

cyclic handler isin a non-operational state. This calculation can be omitted in an
implementation as long as the behavior of cyclic handlers do not change.

[Differences from the pITRON3.0 Specification]

The name cyclic handler has been changed from cyclic activation handler. Cyclic han-
dlers are now identified by ID numbers. Cyclic handlers are now objects created by
cre_cyc rather than defined by def_cyc. The service call to delete a cyclic handler
(del_cyc) has been newly added.

The service call to control the operational state of a cyclic handler (act_cyc) has been
divided into a service call that starts the operation of a handler (sta_cyc) and one that
stops the operation of a handler (stp_cyc).

242



M TRON4.0 Specification Ver. 4.00.00

CRE_CYC  Create Cyclic Handler (Static API) [S]
cre_cyc Create Cyclic Handler
acre_cyc Create Cyclic Handler (ID Number Automatic Assignment)

[Static API]
CRE_CYC ( ID cycid, { ATR cycatr, VP_INT exinf, FP cychdr,
RELTIM cyctim, RELTIM cycphs }) ;

[C Language API]
ER ercd = cre_cyc ( ID cycid, T_CCYC *pk_ccyc) ;
ER_ID cycid = acre_cyc ( T_CCYC *pk_ccyc) ;

[Parameter]
ID cycid ID number of the cyclic handler to be created
(except acre_cyc)
T CCYC* pk _ccyc Pointer to the packet containing the cyclic handler
creation information (In CRE_CYC, the contents

must be directly specified.)
pk_ccyc includes (T_CCYC type)
ATR cycatr Cyclic handler attribute
VP_INT exinf Cyclic handler extended information
FP cychdr Cyclic handler start address

RELTIM cyctim Cyclic handler activation cycle
RELTIM cycphs Cyclic handler activation phase
(Other implementation specific information may be added.)

[Return Parameter]

cre_cyc:

ER ercd E_OK for normal completion or error code
acre_cyc:

ER_ID cycid ID number (positive value) of the created cyclic

handler or error code

[Error Code]

E ID Invalid ID number (cycid is invalid or unusable; only
cre_cyc)
E _NOID No ID number available (there is no cyclic handler ID assign-

able; only acre_cyc)
E RSATR Reserved attribute (cycatr isinvalid or unusable)

E PAR Parameter error (pk_ccyc, cychdr, cyctim, or cycphs is
invalid)
E OBJ Object state error (cyclic handler is already registered; only

243



pI TRON4.0 Specification Ver. 4.00.00

cre_cyc)
[Functional Description]

These service calls create a cyclic handler with an ID number specified by cycid based
on the information contained in the packet pointed to by pk_ccyc. cycatr isthe
attribute of the cyclic handler. exinf isthe extended information passed as a parameter
to the cyclic handler when it is called. cychdr isthe start address of the cyclic han-
dier. cyctim isthe activation cycletime. cycphs isthe activation phase.

In CRE_CYC, cycid isan integer parameter with automatic assignment. cycatr isa
preprocessor constant expression parameter.

acre_cyc assigns acyclic handler ID from the pool of unassigned cyclic handler IDs
and returns the assigned cyclic handler ID.

cycatr can be specified as ((TA_HLNG || TA_ASM) | [TA_STA] | [TA_PHS]). If
TA_HLNG (= 0x00) is specified, the cyclic handler is called through the C language
interface. If TA_ASM (= 0x01) is specified, the cyclic handler is called through an
assembly language interface. If TA_STA (= 0x02) is specified, the handler isin an
operational state when it is created, otherwise it is in a non-operational state. If
TA_PHS (= 0x04) is specified, the next activation time is determined preserving the
activation phase when the cyclic handler is moved to an operational state. See the
functional description of sta_cyc for the actions to be taken when a cyclic handler is
moved to an operational state.

The first activation time of the cyclic handler is the time when the service call is
invoked plus the activation phase. For the static API, the system initialization timeis
used as the invoking time.

When cyctim is 0, an E_PAR error isreturned. The behavior of the system when the
value of cycphs is greater than cyctim isimplementation-dependent. When an error
should be reported, an E_PAR error isreturned.

[Standard Profile]

The Standard Profile does not require support for when T_PHS or TA_ASM is speci-
fied in cycatr.

[Supplemental Information]

The cyclic handler activation phase (cycphs) does not have any meaning when neither
TA_STA nor TA_PHS are specified in cycatr.

[Differences from the pJITRON3.0 Specification]

Cyclic handlers are now objects created by cre_cyc rather than defined by def _cyc.
The functionality for specifying the activation phase has been newly added. The acti-
vation phase (cycphs) has been added to the cyclic handler creation information. The
method for specifying the cyclic handler’s operational state after creation has been
changed.

244



M TRON4.0 Specification Ver. 4.00.00

The order of cycatr and exinf in the creation information packet has been exchanged.
The data type of exinf has been changed from VP to VP_INT and the data type of
cyctim has been changed from CYCTIME to RELTIM.

acre_cyc has been newly added.

245



pI TRON4.0 Specification Ver. 4.00.00

del _cyc Delete Cyclic Handler

[C Language API]
ER ercd = del_cyc ( ID cycid ) ;

[Parameter]
ID cycid ID number of the cyclic handler to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]

E ID Invalid ID number (cycid isinvalid or unusable)

E_NOEXS Non-existent object (specified cyclic handler is not registered)
[Functional Description]
This service call deletes the cyclic handler specified by cycid.

[Differences from the pITRON3.0 Specification]

This service call has been newly added. In the WITRON3.0 Specification, the def_cyc
service call can be used for releasing a handler as well as defining a handler.

246



M TRON4.0 Specification Ver. 4.00.00

sta _cyc Start Cyclic Handler Operation [S]

[C Language API]
ER ercd = sta_cyc ( ID cycid ) ;

[Parameter]
ID cycid ID number of the cyclic handler operation to be
started
[Return Parameter]
ER ercd E_OK for norma completion or error code
[Error Code]
E ID Invalid ID number (cycid isinvalid or unusable)

E_NOEXS Non-existent object (specified cyclic handler is not registered)

[Functional Description]
This service call moves the cyclic handler specified by cycid to an operational state.

If the handler’s attribute does not have TA_PHS (= 0x04) specified, the next activation
time is the time when sta_cyc isinvoked plus the activation cycle.

If the cyclic handler is already in an operationa state and TA_PHS is not specified in
the attribute, the activation time is recalculated. If the cyclic handler is aready in an
operational state and TA_PHS is specified in the attribute, no action is required.

[Differences from the pJITRON3.0 Specification]

The service call to control the operational state of a cyclic handler (act_cyc) has been
divided into a service call that starts the operation of a handler (sta_cyc) and one that
stops the operation of ahandler (stp_cyc). Inthe WITRON3.0 Specification, when the
act_cyc servicecal isinvoked with TCY _INI specified, the activation time is recal cu-
lated. A similar functionality is achieved through the use of TA_PHS.

247



pI TRON4.0 Specification Ver. 4.00.00

stp_cyc Stop Cyclic Handler Operation [S]

[C Language API]
ER ercd = stp_cyc ( ID cycid ) ;

[Parameter]
ID cycid ID number of the cyclic handler operation to be
stopped
[Return Parameter]
ER ercd E_OK for norma completion or error code

[Error Code]

E ID Invalid ID number (cycid isinvalid or unusable)

E_NOEXS Non-existent object (specified cyclic handler is not registered)
[Functional Description]

This service call moves the cyclic handler specified by cycid to a non-operational
state. No action is required when the specified cyclic handler is aready in a non-oper-
ational state.

[Differences from the pITRON3.0 Specification]

The service call to control the operational state of a cyclic handler (act_cyc) has been
divided into a service call that starts the operation of a handler (sta_cyc) and one that
stops the operation of a handler (stp_cyc).

248



M TRON4.0 Specification Ver. 4.00.00

ref_cyc Reference Cyclic Handler State

[C Language API]
ER ercd = ref_cyc ( ID cycid, T_RCYC *pk_rcyc) ;

[Parameter]
ID cycid ID number of the cyclic handler to be referenced
T RCYC* pk_rcyc Pointer to the packet returning the cyclic handler
State
[Return Parameter]
ER ercd E_OK for normal completion or error code

pk_rcyc includes (T_RCYC type)
STAT cycstat  Cyclic handler operationa state
RELTIM lefttim Time left before the next activation
(Other implementation specific information may be added.)

[Error Code]
E ID Invalid ID number (cycid isinvalid or unusable)
E_NOEXS Non-existent object (specified cyclic handler is not registered)
E _PAR Parameter error (pk_rcyc isinvalid)

[Functional Description]

This service call references the state of the cyclic handler specified by cycid. The state
of the cyclic handler is returned through the packet pointed to by pk_rcyc.

One of the following values is returned through cycstat depending on the operational
state of the cyclic handler:

TCYC_STP 0x00 Cyclic handler isin anon-operational state
TCYC_STA 0x01  Cyclic handler isin an operationa state

The amount of time remaining before the cyclic handler’s next activation time is
returned through lefttim if the cyclic handler isin an operational state. This meansthe
time returned is the next activation time minus the current time. The value returned
will be less than the time it will take to activate the cyclic handler. Therefore, if Ois
returned, the cyclic handler will be activated on the next time tick. The value returned
through lefttim when the cyclic handler is a non-operational state is implementa-
tion-dependent.

[Differences from the JITRON3.0 Specification]

The extended information has been removed from the reference information. The
method to reference the operational state has been changed. The data type of lefttim
has been changed from CYCTIME to RELTIM. The order of parameters and of
return parameters has been changed.

249



M TRON4.0 Specification Ver. 4.00.00

4.7.3 Alarm Handlers

An alarm handler is atime event handler activated at a specified time. Alarm handler
functions include the ability to create and delete an alarm handler, to start and stop an
alarm handler’s operation, and to reference the state of an alarm handler. An alarm
handler is an object identified by an ID number. The ID number of an alarm handler is
called the alarm handler ID.

The time at which the alarm handler is activated, called the activation time of the alarm
handler, can be set for each handler. At the darm handler’'s activation time, the alarm
handler is called with its extended information (exinf) passed as a parameter.

The activation time of the alarm handler is not set when the handler is created. There-
fore, the operation of the alarm handler is stopped. The service call that starts the oper-
ation of an alarm handler (sta_alm) sets the activation time relative to the time when
the service call isinvoked. In addition, the alarm handler is moved to an operational
state. When the service call that stops the operation of an alarm handler (stp_alm) is
invoked, the activation time is released and the alarm handler is moved to a non-opera-
tional state. When an alarm handler is called, the activation time is released and the
alarm handler is moved to a non-operational state.

The format to write an alarm handler in the C language is shown below:

void almhdr ( VP_INT exinf)
{

}

The following data type packets are defined for creating and referencing alarm han-
dlers:

/* Body of the alarm handler */

typedef struct t_calm {

ATR almatr ; /* Alarm handler attribute */
VP_INT exinf ; /* Alarm handler extended information */
FP almhdr ;  /* Alarm handler start address */
/* Other implementation specific fields may be added. */
} T_CALM ;
typedef struct t_ralm {
STAT almstat ; /* Alarm handler operational state */

RELTIM lefttim ; /* Time |eft before the activation */
/* Other implementation specific fields may be added. */
} T_RALM ;

The following represents the function codes for the alarm handler service calls:

TFEN_CRE_ALM —-0xa9 Function code of cre_alm
TFN_ACRE_ALM —Oxcc  Function code of acre_alm
TFN_DEL _ALM —Oxaa Function code of del_alm
TFN_STA_ALM —Oxab  Function code of sta_alm
TFN_STP_ALM —Oxac  Function code of stp_alm

250



M TRON4.0 Specification Ver. 4.00.00

TFEN_REF_ALM —Oxad Function code of ref_alm

[Standard Profile]
The Standard Profile does not require support for alarm handlers.

[Supplemental Information]

The activation of alarm handlers depends on the system time. Therefore, these han-
dlers are activated at the first time tick after the activation time has passed. The system
must guarantee that the activation of the alarm handler occurs after an elapsed time
equal to or greater than the specified time (see Section 2.1.9).

The activation time is released when the alarm handler is called but before the alarm
handler is executed. If an implementation allows non-task contexts to invoke the ser-
vice call to start the alarm handler operation, the alarm handler can reset the activation
time and move itself to an operational state.

[Differences from the pITRON3.0 Specification]

Alarm handlers are now identified by 1D numbers. Alarm handlers are now objects cre-
ated by cre_alm rather than defined by def_alm. The service call to delete an alarm
handler (del_alm) has been newly added.

For the case when an alarm handler is created statically, the activation time of the alarm
handler is now specified with the newly added service call (sta_alm) instead of the
create alarm handler service call or the static API. The service call to stop the opera-
tion of aalarm handler (stp_alm) has been newly added.

The ability to set an alarm handler activation time to an absolute time has been
removed.

251



pI TRON4.0 Specification Ver. 4.00.00

CRE_ALM  Create Alarm Handler (Static API)
cre_alm Create Alarm Handler
acre_alm Create Alarm Handler (ID Number Automatic Assignment)

[Static API]
CRE_ALM ( ID almid, { ATR almatr, VP_INT exinf, FP almhdr }) ;

[C Language API]
ER ercd = cre_alm ( ID almid, T_CALM *pk_calm ) ;
ER_ID almid = acre_alm ( T_CALM *pk_calm ) ;

[Parameter]
ID almid ID number of the alarm handler to be created
(except acre_alm)
T CALM * pk_calm Pointer to the packet containing the alarm handler
creation information (In CRE_ALM, the contents

must be directly specified.)
pk_calm includes (T_CALM type)
ATR almatr Alarm handler attribute
VP_INT exinf Alarm handler extended information
FP almhdr  Alarm handler start address

(Other implementation specific information may be added.)

[Return Parameter]

cre_alm:
ER ercd E_OK for norma completion or error code
acre_alm:
ER_ID almid ID number (positive value) of the created aarm
handler or error code
[Error Code]
E ID Invalid ID number (almid is invalid or unusable; only
cre_alm)
E_NOID No ID number available (thereis no alarm handler 1D assign-

able; only acre_alm)
E_RSATR Reserved attribute (almatr isinvalid or unusable)

E_PAR Parameter error (pk_calm or almhdr isinvalid)
E OBJ Object state error (alarm handler is aready registered; only
cre_alm)

[Functional Description]
These service calls create an alarm handler with an ID number specified by almid

252



M TRON4.0 Specification Ver. 4.00.00

based on the information contained in the packet pointed to by pk_calm. almatr is
the attribute of the alarm handler. exinf is the extended information passed as a
parameter to the alarm handler when it is called. almhdr isthe start address of the
alarm handler.

In CRE_ALM, almid is an integer parameter with automatic assignment. almatr is
apreprocessor constant expression parameter.

acre_alm assigns an darm handler 1D from the pool of unassigned alarm handler IDs
and returns the assigned alarm handler ID.

After the alarm handler is created, the activation time is not set and the alarm handler is
in anon-operational state.

almatr can be specified as (TA_HLNG || TA_ASM). If TA_HLNG (= 0x00) is spec-
ified, the alarm handler is called through the C language interface. If TA_ASM
(= 0x01) is specified, the alarm handler is called through an assembly language inter-
face.

[Differences from the pITRON3.0 Specification]

Alarm handlers are now objects created by cre_alm rather than defined by def_alm.
For the case when an alarm handler is created statically, the activation time of the alarm
handler is not specified by the create alarm handler service call or the static API.

The order of almatr and exinf in the creation information packet has been exchanged.
The data type of exinf has been changed from VP to VP_INT.

acre_alm has been newly added.

253



pI TRON4.0 Specification Ver. 4.00.00

del alm Delete Alarm Handler

[C Language API]
ER ercd = del_alm ( ID almid) ;

[Parameter]
ID almid ID number of the alarm handler to be deleted

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E ID Invalid ID number (almid isinvalid or unusable)
E_NOEXS Non-existent object (specified alarm handler is not registered)
[Functional Description]
This service call deletes the alarm handler specified by almid.
[Supplemental Information]
If the alarm handler isin an operational state, the activation time is released and the
alarm handler is moved to a non-operational state.
[Differences from the pITRON3.0 Specification]

This service call has been newly added. Inthe Wl TRON3.0 Specification, the def_alm
service call can be used for releasing a handler as well as defining a handler.

254



M TRON4.0 Specification Ver. 4.00.00

sta_alm Start Alarm Handler Operation

[C Language API]
ER ercd = sta_alm ( ID almid, RELTIM almtim ) ;

[Parameter]
ID almid ID number of the alarm handler operation to be
started
RELTIM almtim  Activation time of the alarm handler (relative time)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]
E ID Invalid ID number (almid isinvalid or unusable)
E_NOEXS Non-existent object (specified alarm handler is not registered)
E _PAR Parameter error (almtim isinvalid)

[Functional Description]

This service call setsthe activation time of the alarm handler specified by almid. The
activation time is set to the time when the service call isinvoked plus the relative time
specified by almtim. The alarm handler is also moved to an operational state.

If the alarm handler is aready in an operational state, the previous activation time is
released and a new activation timeis set.

almtim is the relative time from when this service call is invoked to the activation
time of the darm handler.
[Differences from the pITRON3.0 Specification]

This service call has been newly added. The uITRON3.0 Specification allowed
def_alm to set the activation time of an alarm handler.

255



pI TRON4.0 Specification Ver. 4.00.00

stp_alm Stop Alarm Handler Operation

[C Language API]
ER ercd = stp_alm ( ID almid ) ;

[Parameter]
ID almid ID number of the alarm handler operation to be
stopped
[Return Parameter]
ER ercd E_OK for norma completion or error code
[Error Code]
E_ID Invalid ID number (almid isinvalid or unusable)

E_NOEXS Non-existent object (specified darm handler is not registered)

[Functional Description]

This service call releases the activation time of the alarm handler specified by almid
and moves the alarm handler to a non-operational state. If the dlarm handler is already
in anon-operational state, no action is required.

[Differences from the pITRON3.0 Specification]

This service call has been newly added. The Wl TRON3.0 specification did not allow an
alarm handler to be stopped by any other means than releasing the registration of the
alarm handler.

256



M TRON4.0 Specification Ver. 4.00.00

ref_alm Reference Alarm Handler State

[C Language API]
ER ercd = ref_alm ( ID almid, T_RALM *pk_ralm ) ;

[Parameter]
ID almid ID number of the alarm handler to be referenced
T RALM * pk_ralm Pointer to the packet returning the alarm handler
State
[Return Parameter]
ER ercd E_OK for normal completion or error code

pk_ralm includes (T_RALM type)
STAT almstat  Alarm handler operational state
RELTIM lefttim Time |eft before the activation
(Other implementation specific information may be added.)

[Error Code]
E ID Invalid ID number (almid isinvalid or unusable)
E_NOEXS Non-existent object (specified alarm handler is not registered)
E_PAR Parameter error (pk_ralm isinvalid)

[Functional Description]

This service call references the state of the alarm handler specified by almid. The
state of the alarm handler is returned through the packet pointed to by pk_ralm.

One of the following values will be returned through almstat depending on the opera-
tional state of the alarm handler:

TALM_STP 0x00  Alarm handler isin anon-operationa state
TALM_STA  0x01 Alarm handler isin an operational state

The amount of time remaining before the alarm handler’s activation time is returned
through lefttim if the alarm handler is in an operational state. This means the time
returned is the activation time minus the current time. The value returned will be less
than the time it will take to activate the alarm handler. Therefore, if O is returned, the
alarm handler will be activated on the next time tick. The value returned through
lefttim when the alarm handler is a non-operational state is implementation-depen-
dent.

[Differences from the pJITRON3.0 Specification]

The alarm handler operational state (almstat) has been added to the reference infor-
mation. The extended information has been removed from the reference information.
The data type of lefttim has been changed from ALMTIME to RELTIM. The order
of the parameters and of the return parameters has been changed.

257



pI TRON4.0 Specification Ver. 4.00.00

4.7.4 Overrun Handler

The overrun handler is atime event handler activated when atask has been executed by
the processor longer than a specified amount of time. Overrun handler functions
include the ability to define the overrun handler, to start and stop the overrun handler’'s
operation, and to reference the state of the overrun handler.

The amount of time used to determine the activation condition, called the processor
time limit, can be specified for each task. Once atask has a processor time limit set,
the kernel keeps track of the accumulated processor time consumed by the task, called
the processor time used, until the consumed time exceeds the time limit. Once this
occurs, the overrun handler is called. Because only one overrun handler can be defined
for the whole system, the task ID number (tskid) and the task’s extended information
(exinf) are passed as parameters to the overrun handler.

The task’s processor time limit is not set when the task is created. When the service
call to start the overrun handler operation (sta_ovr) isinvoked for a specified task, the
processor time limit is set for the task. In addition, the processor time used for the task
iscleared to 0. Oncethe service call to stop the overrun handler operation (stp_ovr) is
invoked for a specified task, the processor time limit for the task is released. The pro-
cessor time limit for atask is aso released when the overrun handler is called for the
task or when the task is terminated.

The processor time used by atask includes the time consumed by the task, by the task’s
exception handling routine, and by all service calls invoked by the task. On the other
hand, the time consumed by the other tasks, by their exception handling routines, and
by all the service calls they invoke are not included in the processor time used by the
task. The decision to include the time for task dispatching and for interrupt processing
isimplementation-dependent. In addition, the accuracy of the measured processor time
used is implementation-dependent. Nevertheless, the overrun handler is activated only
when the processor time used exceeds the specified processor time limit.

The following data type is used within the overrun handler functions:
OVRTIM Processor time (unsigned integer, unit of time is implementa
tion-defined)
The format to write an overrun handler in the C language is shown below:

void ovrhdr ( ID tskid, VP_INT exinf)
{

}

The following data type packets are defined for defining and referencing overrun han-
dlers:

/* Body of the overrun handler */

typedef struct t_dovr {
ATR ovratr ; /* Overrun handler attribute */
FP ovrhdr ; /* Overrun handler start address */

258



M TRON4.0 Specification Ver. 4.00.00

/* Other implementation specific fields may be added. */

} T_DOVR;
typedef struct t_rovr {
STAT ovrstat ;  /* Overrun handler operational state */

OVRTIM leftotm ; /* Remaining processor time */
/* Other implementation specific fields may be added. */
} T_ROVR;
The following represents the function codes for the overrun handler service calls:

TFN_DEF_OVR —Oxbl Function code of def_ovr

TFN_STA_OVR —0xb2 Function code of sta_ovr

TFN_STP_OVR —0xb3  Function code of stp_ovr

TFN_REF_OVR —0xb4  Function code of ref_ovr
[Standard Profile]

The Standard Profile does not require support for the overrun handler.

[Supplemental Information]

The activation of the overrun handler does not depend on the system time. Thisimplies
the handler is not necessarily called synchronously with the time tick. Implementa
tions may call the overrun handler synchronously with the time tick.

A task’s processor time limit is released when the handler is called but before the over-
run handler is executed. If an implementation allows non-task contexts to invoke the
service call to start the overrun handler operation, the overrun handler can reset the pro-
cessor time limit for the task that causes the overrun handler’s activation.

The overrun handler can raise atask’s exception. Then, the task’s exception handling
routine is started by the kernel within the task’s context to handle the overrun situation.

[Differences from the pITRON3.0 Specification]
Overrun handler is a newly added feature.

259



M TRON4.0 Specification Ver. 4.00.00

DEF_OVR  Define Overrun Handler (Static API)
def ovr Define Overrun Handler

[Static API]
DEF_OVR ({ ATR ovratr, FP ovrhdr }) ;

[C Language API]
ER ercd = def_ovr ( T_DOVR *pk_dovr) ;

[Parameter]
T DOVR * pk_dovr Pointer to the packet containing the overrun handler
definition information (in DEF_OVR, the contents

must be directly specified.)
pk_dovr includes (T_DOVR type)
ATR ovratr Overrun handler attribute
FP ovrhdr Overrun handler start address

(Other implementation specific information may be added.)

[Return Parameter]

ER ercd E_OK for norma completion or error code
[Error Code]

E RSATR Reserved attribute (ovratr isinvalid or unusable)

E _PAR Parameter error (pk_dovr or ovrhdr isinvalid)

[Functional Description]

This service call defines the overrun handler based on the information contained in the
packet pointed to by pk_dovr. ovratr isthe attribute of the overrun handler. ovrhdr
isthe start address of the overrun handler.

In DEF_OVR, ovratr is apreprocessor constant expression parameter.

If pk_dovr isNULL (= 0), the overrun handler currently defined is released and the
overrun handler becomes undefined. At thistime, the processor time limitsfor all tasks
are also released. When a new overrun handler is defined over top of an old one, the
old oneisreleased and the new one takes its place. Under this condition, the processor
time limits for the tasks are not rel eased.

ovratr can be specified as (TA_HLNG || TA_ASM). If TA_HLNG (= 0x00) is spec-
ified, the overrun handler is called through the C language interface. If TA_ASM
(= 0x01) is specified, the overrun handler is called through an assembly language inter-
face.

[Rationale]

The reason why the processor time limit is released for atask when the definition of the
handler is released is to ensure that there is no processor time limit set while the over-

260



M TRON4.0 Specification Ver. 4.00.00

run handler is undefined.

261



pI TRON4.0 Specification Ver. 4.00.00

sta _ovr Start Overrun Handler Operation

[C Language API]
ER ercd = sta_ovr ( ID tskid, OVRTIM ovrtim) ;

[Parameter]
ID tskid ID number of the task where the overrun handler
should start operation
OVRTIM ovrtim Processor time limit for the task to be set

[Return Parameter]

ER ercd E_OK for norma completion or error code
[Error Code]

E ID Invalid ID number (tskid isinvalid or unusable)

E_NOEXS Non-existent object (specified task is not registered)

E _PAR Parameter error (ovrtim isinvalid)

E OBJ Object state error (overrun handler is not defined)

[Functional Description]

This service call starts the operation of the overrun handler for the task specified by
tskid. It also sets the processor time limit for the task as specified by ovrtim. In
addition, the processor time used by the task is cleared to O.

Even if the task already has a processor time limit set, the processor time limit will be
reset to the new value and the processor time used will be cleared to O.

If tskid is TSK_SELF (= 0), the task that invoked the service call will be the target
task.

262



M TRON4.0 Specification Ver. 4.00.00

stp_ovr Stop Overrun Handler Operation

[C Language API]
ER ercd = stp_ovr ( ID tskid ) ;

[Parameter]
ID tskid ID number of the task on which the overrun handler
should stop operation
[Return Parameter]
ER ercd E_OK for norma completion or error code
[Error Code]
E ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E OBJ Object state error (overrun handler is not defined)

[Functional Description]

This service call stops the operation of the overrun handler for the task specified by
tskid by releasing the processor time limit for the task. If the specified task does not
have a processor time limit set, no action is required.

If tskid is TSK_SELF (= 0), the task that invoked the service call will be the target
task.

263



pI TRON4.0 Specification Ver. 4.00.00

ref_ ovr Reference Overrun Handler State

[C Language API]
ER ercd = ref_ovr ( ID tskid, T_ROVR *pk_rovr ) ;

[Parameter]
ID tskid ID number of the task for which the overrun han-
dier's state should be referenced
T ROVR * pk_rovr Pointer to the packet returning the overrun handler

State
[Return Parameter]
ER ercd E_OK for normal completion or error code
pk_rovr includes (T_ROVR type)
STAT ovrstat  Overrun handler operational state

OVRTIM leftotm Remaining processor time
(Other implementation specific information may be added.)

[Error Code]
E ID Invalid ID number (tskid isinvalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_PAR Parameter error (pk_rovr isinvalid)
E_OBJ Object state error (overrun handler is not defined)

[Functional Description]

This service call references the state of the overrun handler for the task specified by
tskid. The state of the overrun handler is returned through the packet pointed to by
pk_rovr.

The operational state of the overrun handler is returned through ovrstat. One of the
following valuesis returned depending on whether the processor time limit has been
set for the task:

TOVR_STP 0x00  Processor time limit is not set
TOVR_STA  0xO1  Processor timelimit isset

The processor time remaining until the overrun handler is called for the specified task
is returned through leftotm if the processor time limit is set for the specified task.
This means the value returned is the processor time limit minus the processor time
used. The value returned will be less than the actual remaining processor time which
can be consumed by the task until the overrun handler is called. Therefore, O can be
returned through leftotm if this service call isinvoked just before the overrun handler is
caled. Thevaluereturned through leftotm when the processor time limit is not set for
the specified task is implementati on-dependent.

264



M TRON4.0 Specification Ver. 4.00.00

If tskid is TSK_SELF (= 0), the task that invoked the service call will be the target
task.

265



M TRON4.0 Specification Ver. 4.00.00

4.8 System State Management Functions

System state management functions provide control of and reference to the various sys-
tem states. System state management functions include the ability to rotate task prece-
dence, to reference the ID of the task in the RUNNING state, to lock and unlock the
CPU, to enable and disable dispatching, and to reference the context and the system
state.
The following data type packet is defined for referencing system state:

typedef struct t_rsys {

/* Implementation specific fields */

} T_RSYS;
The following represents the function codes for the system state management service
cals:

TFN_ROT_RDQ —0x55  Function code of rot_rdq
TFEN_IROT_RDQ —0x79 Function code of irot_rdq
TFN_GET_TID —0x56 Function code of get_tid
TFN_IGET_TID —0Ox7a  Function code of iget_tid
TFN_LOC_CPU —0x59 Function code of loc_cpu
TEN_ILOC_CPU —0x7b  Function code of iloc_cpu

TFEN_UNL_CPU —Ox5a  Function code of unl_cpu
TFEN_IUNL_CPU —0x7c  Function code of iunl_cpu
TFN_DIS _DSP —0x5b  Function code of dis_dsp
TFN_ENA_DSP —0x5c  Function code of ena_dsp
TFN_SNS CTX —0x5d  Function code of sns_ctx
TFEN_SNS_LOC —0Ox5e  Function code of sns_loc
TFN_SNS_DSP —Ox5f  Function code of sns_dsp
TFN_SNS_DPN —0x60 Function code of sns_dpn
TFN_REF_SYS —0x61 Function code of ref_sys

[Standard Profile]

The Standard Profile requires support for system state management functions except
for the reference of the system state (ref_sys).

[Differences from the pITRON3.0 Specification]
The category of system state management functions has been newly added.

266



M TRON4.0 Specification Ver. 4.00.00

rot_rdq Rotate Task Precedence [S]
irot_rdq [S]

[C Language API]
ER ercd = rot_rdq ( PRI tskpri ) ;
ER ercd = irot_rdq ( PRI tskpri ) ;

[Parameter]
PRI tskpri Priority of the tasks whose precedenceis rotated

[Return Parameter]
ER ercd E_OK for norma completion or error code

[Error Code]
E_PAR Parameter error (tskpri isinvalid)

[Functional Description]

These service calls rotate the precedence of the tasks with the priority specified by
tskpri. In other words, the task with the highest precedence of all the runnable tasks
with the specified priority will have the lowest precedence among the tasks with the
same priority after the precedence rotation.

If tskpri isTPRI_SELF (= 0), the base priority of the invoking task becomes the tar-
get priority. An E_PAR error isreturned if TPRI_SELF is specified when the service
call isinvoked from non-task contexts.

[Supplemental Information]

Round-robin scheduling can be achieved by invoking this service call periodically. No
actionisrequired if thereisasingle task at the target priority or no tasks at the target
priority (no error is reported).

When the service call isinvoked with the current priority of the invoking task as the
target priority while in the dispatching enabled state, the invoking task’s precedence
becomes the lowest among the tasks with the same priority. This means the invoking
task may yield it execution privilege to another task. Whilein the dispatching disabled
state, the task with the highest precedence among the tasks with the same priority may
not necessarily be the running task. Therefore, the invoking task’s precedence may not
become the lowest among the tasks with the same priority using thisyield method. The
yield method can be realized by invoking the service call with TPRI_SELF specified
for tskpri when the current priority of the invoking task equals its base priority, asis
always the case when mutex functions are not used.

[Differences from the pITRON3.0 Specification]

The ability to rotate the tasks precedence at the running task’s priority from non-task
contexts has been removed. Therefore, TPRI_RUN has been changed to

267



pI TRON4.0 Specification Ver. 4.00.00

TPRI_SELF. TPRI_SELF now specifiesthe base priority of the invoking task due to
the introduction of mutex functions.

268



M TRON4.0 Specification Ver. 4.00.00

get tid Reference Task ID in the RUNNING State [S]
iget_tid [S]

[C Language API]
ER ercd = get_tid ( ID *p_tskid) ;
ER ercd = iget_tid ( ID *p_tskid ) ;
[Parameter]
None

[Return Parameter]
ER ercd E_OK for normal completion or error code
ID tskid ID number of the task in the RUNNING state

[Error Code]
No errors specific to this service call

[Functional Description]

These service calls reference the ID number of the task in the RUNNING state (this
corresponds to the invoking task when the service call is invoked from task contexts)
and return the task ID through tskid. If no task isin the RUNNING state when the
service call isinvoked from non-task contexts, TSK_NONE (= 0) isreturned instead.

[Supplemental Information]

Some kernel implementations employ an idle task that runs when no application tasks
are runnable. When the service call isinvoked for such akernel implementation while
anidletask isinthe RUNNING state, TSK_NONE isreturned instead of the ID num-
ber of theidle task.

[Differences from the pITRON3.0 Specification]

This service call has been changed from returning the invoking task ID to returning the
task ID of the task in the RUNNING state. Asaresult, the behavior upon invoking this
service call from non-task contexts has been changed.

[Rationale]

The reason why tskid is not returned through the return value of the service cal is
because negative task ID numbers can be supported.

269



pI TRON4.0 Specification Ver. 4.00.00

loc_cpu L ock the CPU [S]
iloc_cpu [S]

[C Language API]
ER ercd = loc_cpu () ;
ER ercd =iloc_cpu () ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
No errors specific to this service call

[Functional Description]

These service calls transition the system to the CPU locked state. If the systemisinthe
CPU locked state, no action is required.

[Supplemental Information]

The system is released from the CPU locked state when unl_cpu or iunl_cpu is
invoked once, even if multiple calls of loc_cpu or iloc_cpu have been made. There-
fore, if apair of loc_cpu or iloc_cpu and unl_cpu or iunl_cpu need to be nested,
the following method may be required:

{
BOOL cpu_locked = sns_loc () ;

if (!Icpu_locked )

loc_cpu () ;
/* work to do in the CPU locked state */
if (Icpu_locked )

unl_cpu () ;

}

[Differences from the pITRON3.0 Specification]

The meaning of the CPU locked state has been changed (see Section 3.5.4). In addi-
tion, the service call may now be invoked from non-task contexts.

270



M TRON4.0 Specification Ver. 4.00.00

unl_cpu Unlock the CPU [S]
iunl_cpu [S]

[C Language API]
ER ercd = unl_cpu () ;
ER ercd = iunl_cpu () ;
[Parameter]
None

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
No errors specific to this service call
[Functional Description]
These service calls transition the system to the CPU unlocked state. If the systemisin
the CPU unlocked state, no action is required.
[Differences from the pITRON3.0 Specification]

The meaning of the CPU unlocked state has been changed (see Section 3.5.4). Now,
invoking this service call does not necessarily transition the system to the dispatching
enabled state. I1n addition, the service call may now be invoked from non-task contexts.

271



M TRON4.0 Specification Ver. 4.00.00

dis_dsp Disable Dispatching [S]

[C Language API]
ER ercd = dis_dsp () ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
No errors specific to this service call

[Functional Description]

This service call transitions the system to the dispatching disabled state. If the system
isin the dispatching disabled state, no action is required.

[Supplemental Information]

The system is released from the dispatching disabled state when ena_dsp isinvoked
once, even if multiple calls of dis_dsp have been made. Therefore, if a pair of
dis_dsp and ena_dsp need to be nested, the following method may be required:

{
BOOL dispatch_disabled = sns_dsp () ;

if (!dispatch_disabled )
dis_dsp () ;
/* work to do in the dispatching disabled state */
if (!dispatch_disabled )
ena _dsp () ;
}

[Differences from the pITRON3.0 Specification]
The meaning of the dispatching state has been changed (see Section 3.5.5).

272



M TRON4.0 Specification Ver. 4.00.00

ena_dsp Enable Dispatching [S]

[C Language API]
ER ercd =ena dsp () ;

[Parameter]
None

[Return Parameter]
ER ercd E_OK for norma completion or error code

[Error Code]
No errors specific to this service call

[Functional Description]

This service call transitions the system to the dispatching enabled state. If the systemis
in the dispatching enabled state, no action is required.

[Differences from the pITRON3.0 Specification]
The meaning of the dispatching state has been changed (see Section 3.5.5).

273



pI TRON4.0 Specification Ver. 4.00.00

sns_ctx Reference Contexts [S]

[C Language API]
BOOL state = sns_ctx () ;

[Parameter]
None

[Return Parameter]
BOOL state Context

[Functional Description]

This service call returns TRUE if invoked from non-task contexts and returns FALSE
if invoked from task contexts.

[Differences from the pITRON3.0 Specification]

This service call has been newly added.

274



M TRON4.0 Specification Ver. 4.00.00

sns_loc Reference CPU State [S]

[C Language API]
BOOL state = sns_loc () ;

[Parameter]
None

[Return Parameter]
BOOL state CPU state

[Functional Description]

This service call returns TRUE if the system isin the CPU locked state and returns
FALSE if the systemisin the CPU unlocked state.

[Differences from the pITRON3.0 Specification]
This service call has been newly added.

275



M TRON4.0 Specification Ver. 4.00.00

sns_dsp Reference Dispatching State [S]

[C Language API]
BOOL state = sns_dsp () ;

[Parameter]
None

[Return Parameter]
BOOL state Dispatching state

[Functional Description]

This service call returns TRUE if the system isin the dispatching disabled state and
returns FALSE if the system isin the dispatching enabled state.

[Differences from the pITRON3.0 Specification]
This service call has been newly added.

276



M TRON4.0 Specification Ver. 4.00.00

sns_dpn Reference Dispatch Pending State [S]

[C Language API]
BOOL state = sns_dpn () ;

[Parameter]
None

[Return Parameter]

BOOL state Dispatch pending state
[Functional Description]
This service call returns TRUE if the system is in the dispatch pending state and
returns FALSE in any other states. In other words, it returns TRUE, while a process-
ing unit with higher precedence than the dispatcher is executing, while in the CPU
locked state, or while in the dispatching disabled state.
[Supplemental Information]
If the system is in the condition where this service call returns FALSE, those service
calls which possibly put the invoking task into the WAITING state may be invoked.
[Differences from the pJITRON3.0 Specification]
This service call has been newly added.

277



pI TRON4.0 Specification Ver. 4.00.00

ref_sys Reference System State

[C Language API]
ER ercd = ref_sys ( T_RSYS *pk_rsys ) ;
[Parameter]
T RSYS* pk rsys Pointer to the packet returning the system state

[Return Parameter]

ER ercd E_OK for normal completion or error code

pk_rsys includes (T_RSYS type)

(Implementation-specific information)
[Error Code]

E _PAR Parameter error (pk_rsys isinvalid)
[Functional Description]
This service call references the system state and returnsit through the packet pointed to
by pk_rsys. The specific information referenced is implementation-defined.
[Supplemental Information]

Possible information that may be referenced by this service call includes: states which
can be referenced by other reference service calls (get_tid, sns_ctx, sns_loc,
sns_dsp, sns_dpn), priority of the task in the RUNNING state, interrupt enabled or
disabled state, interrupt mask, processor execution mode, and other information
depending on the target processor’s architecture.

[Differences from the ITRON3.0 Specification]

In the LITRON4.0 Specification, the information returned by the reference service calls
(sns_ctx, sns_loc, sns_dsp) replace the information returned by ref _sys
(sysstat) in the pI TRON3.0 Specification.

278



M TRON4.0 Specification Ver. 4.00.00

4.9 Interrupt Management Functions

Interrupt management functions provide management for interrupt handlers and for
interrupt service routines started by external interrupts. The interrupt management
functions include ability to define an interrupt handler, to create and delete an interrupt
service routine, to reference the state of an interrupt service routine, to disable and
enable an interrupt, and to change and reference the interrupt mask. An interrupt ser-
vice routine is an object identified by an ID number. The ID number of an interrupt
service routine is called the interrupt service routine ID.

The following data types are used for interrupt management functions:

INHNO Interrupt handler number
INTNO Interrupt number
IXXXX Interrupt mask

The XXXX portion of the interrupt mask data type is implementation-defined and
should be an appropriate character string for the target processor’s architecture.

The format to write an interrupt handler isimplementation-defined.
When calling an interrupt service routine, the extended information (exinf) of the

interrupt service routine is passed as a parameter. The format to write an interrupt ser-
vice routine in the C language is shown below:

void isr ( VP_INT exinf)
{

}

The following data type packets are defined for defining interrupt handlers and for cre-
ating and referencing interrupt service routines:

/* Body of the interrupt service routine */

typedef struct t_dinh {

ATR inhatr ; /* Interrupt handler attribute */
FP inthdr ; /* Interrupt handler start address */
/* Other implementation specific fields may be added. */
} T_DINH ;
typedef struct t_cisr {
ATR isratr ; /* Interrupt service routine attribute */
VP_INT exinf ; /* Interrupt service routine extended
information */
INTNO intno ; /* Interrupt number to which the interrupt
service routine is to be attached */
FP isr ; /* Interrupt service routine start sddress */
/* Other implementation specific fields may be added. */
}T_CISR ;

typedef struct t_risr {
/* Implementation-specific fields */
}T RISR ;

279



M TRON4.0 Specification Ver. 4.00.00

The following represents the function codes for the interrupt management service calls:

TFN_DEF_INH —0x65  Function code of def_inh
TFEN_CRE_ISR —0x66  Function code of cre_isr
TFEN_ACRE_ISR —Oxcd  Function code of acre_isr
TFEN_DEL_ISR —0x67 Function code of del_isr
TFN_REF_ISR —0x68 Function code of ref _isr
TFN_DIS_INT —0x69  Function code of dis_int
TEN_ENA_INT —0Ox6a  Function code of ena_int
TEN_CHG_IXX —0x6b  Function code of chg_ixx
TEN_GET_IXX —Ox6¢c  Function code of get_ixx

[Standard Profile]

The Standard Profile requires support for the static API to define an interrupt handler
(DEF_INH). If the implementation supports the static APl that attaches an interrupt
service routine to the kernel (ATT _ISR), the implementation does not have to support
DEF_INH.

[Supplemental Information]

The contexts and states under which interrupt handlers execute are summarized as fol-
lows:

* Interrupt handlers execute in their own independent contexts (see Section 3.5.1).
The contexts in which interrupt handlers execute are classified as non-task contexts
(see Section 3.5.2).

* Interrupt handlers execute at higher precedence than the dispatcher (see Section
3.5.3).

* After interrupt handlers start, whether the system isin the CPU locked state or in the
CPU unlocked state is implementation-dependent. However, the implementation
must provide a means to unlock the CPU in an interrupt service routine aswell asa
means to correctly return from the interrupt handler after unlocking the CPU (see
Section 3.5.4).

» The start of and the return from interrupt handlers do not change the dispatching
state. When the dispatching state is changed within interrupt handlers, the original
state must be restored before returning (see Section 3.5.5).

The contexts and states under which interrupt service routines execute are summarized
asfollows:

* Interrupt service routines execute in their own independent contexts (see Section
3.5.1). The contexts in which interrupt service routines execute are classified as
non-task contexts (see Section 3.5.2).

* Interrupt service routines execute at higher precedence than the dispatcher (see Sec-
tion 3.5.3).

* After interrupt service routines start, the system isin the CPU unlocked state. When

280



M TRON4.0 Specification Ver. 4.00.00

returning from interrupt service routines, the system must be in the CPU unlocked
state (see Section 3.5.4).

» The start of and the return from interrupt service routines do not change the dis
patching state. When the dispatching state is changed within interrupt service rou-
tines, the original state must be restored before returning (see Section 3.5.5).

[Differences from the pJITRON3.0 Specification]

loc_cpu and unl_cpu are now classified as system state management functions.
ret_int and ret_wup have been removed (see Section 3.9).

The data type of the parameter and the return parameter for an interrupt mask has been
changed from UINT to a newly added data type IXXXX.

281



M TRON4.0 Specification Ver. 4.00.00

DEF_INH Define Interrupt Handler (Static API) [S]
def inh Define Interrupt Handler
[Static API]

DEF_INH ( INHNO inhno, { ATR inhatr, FP inthdr }) ;

[C Language API]
ER ercd = def_inh ( INHNO inhno, T_DINH *pk_dinh ) ;

[Parameter]

INHNO inhno Interrupt handler number to be defined

T DINH* pk _dinh Pointer to the packet containing the interrupt han-
dler definition information (in DEF_INH, packet
contents must be directly specified.)

pk_dinh includes (T_DINH type)

ATR inhatr Interrupt handler attribute

FP inthdr Interrupt handler start address

(Other implementation specific information may be added.)

[Return Parameter]

ER ercd E_OK for normal completion or error code
[Error Code]

E RSATR Reserved attribute (inhatr isinvalid or unusable)

E_PAR Parameter error (inhno, pk_dinh, or inthdr isinvalid)

[Functional Description]

This service call assigns an interrupt handler to the interrupt handler number specified
by inhno based on the information contained in the packet pointed to by pk_dinh.
inhatr isthe interrupt handler attribute. inthdr is the start address of the interrupt
handler.

In DEF_INH, inhno is an integer parameter without automatic assignment. inhatr
IS apreprocessor constant expression parameter.

The specific meaning of inhno is implementation-defined, but it corresponds to the
processor’s interrupt vector number in typical implementations. If aprocessor does not
have interrupt vectors, only one interrupt handler number may be available.

If pk_dinh isNULL (= 0), theinterrupt handler currently defined isreleased. When a
new interrupt handler is defined over top of an old one, the old one is released and the
new takesits place.

The possible values and meanings of inhatr are implementation-defined.

282



M TRON4.0 Specification Ver. 4.00.00

[Standard Profile]

The Standard Profile does not require support for DEF_INH if the implementation
supports ATT_ISR.

[Differences from the uITRON3.0 Specification]

The abbreviation of interrupt handler has been changed from int to inh. Therefore,
the name of this service call has been changed from def_int to def_inh. The possible
values and meanings of inhatr are now left to the implementation.

283



pI TRON4.0 Specification Ver. 4.00.00

ATT ISR Attach Interrupt Service Routine (Static API)

cre_isr Create Interrupt Service Routine
acre_isr Create Interrupt Service Routine (ID Number Automatic Assignment)
[Static API]

ATT_ISR ({ ATR isratr, VP_INT exinf, INTNO intno, FP isr}) ;

[C Language API]
ER ercd = cre_isr (ID isrid, T_CISR *pk_cisr) ;
ER_ID isrid = acre_isr ( T_CISR *pk_cisr ) ;

[Parameter]
ID isrid ID number of the interrupt service routine to be cre-
ated (only cre_isr)
T CISR* pk _cisr Pointer to the packet containing the interrupt service
routine creation information (in ATT_ISR, packet
contents must be directly specified.)

pk_cisr includes (T_CISR type)

ATR isratr Interrupt service routine attribute

VP_INT exinf Interrupt service routine extended information

INTNO intno Interrupt number to which the interrupt service rou-
tine isto be attached

FP isr Interrupt service routine start address

(Other implementation specific information may be added.)

[Return Parameter]

cre_isr:
ER ercd E_OK for normal completion or error code
acre_isr:
ER_ID isrid ID number (positive value) of the created interrupt
service routine or error code
[Error Code]
E_ID Invalid ID number (isrid is invalid or unusable; only
cre_isr)
E_NOID No ID number available (there is no interrupt service routine

ID assignable; only acre_isr)

E RSATR Reserved attribute (isratr isinvalid or unusable)

E PAR Parameter error (pk_cisr, intno, or isr isinvalid)

E OBJ Object state error (interrupt service routine is already regis-
tered; only cre_isr)

284



M TRON4.0 Specification Ver. 4.00.00

[Functional Description]

These service calls create an interrupt service routine with an ID number specified by
isrid based on the information contained in the packet pointed to by pk_cisr. isratr
is the attribute of the interrupt service routine. exinf is the extended information
passed as a parameter to the interrupt service routine when it is called. intno isthe
number of the interrupt associated with the interrupt service routine. isr isthe start
address of interrupt service routine.

ATT_ISR is used to attach an interrupt service routine without assigning isrid. The
interrupt service routines specified in this way have no ID numbers. In ATT_ISR,
isratr is apreprocessor constant expression parameter. intno is an integer parameter
without automatic assignment.

acre_isr assigns an interrupt service routine ID from the pool of unassigned interrupt
service routine I Ds and returns the assigned interrupt service routine ID.

isratr can be specified as (TA_HLNG || TA_ASM). If TA_ HLNG (= 0x00) is speci-
fied, the interrupt service routine is called through the C language interface. If
TA_ASM (= 0x01) is specified, the interrupt service routine is called through an
assembly language interface.

[Standard Profile]

The Standard Profile does not require support for DEF_INH if the implementation
supports ATT_ISR. In this case, the Standard Profile does not require support for
when TA_ASM is specified in isratr.

[Supplemental Information]

Multiple interrupt service routines may be attached to the same interrupt number. See
Section 3.3.2 for information on how to handle multiple interrupt service routines
attached to the same interrupt number.

[Differences from the pJITRON3.0 Specification]
This service call has been newly added.

285



pI TRON4.0 Specification Ver. 4.00.00

del isr Delete Interrupt Service Routine

[C Language API]
ER ercd = del_isr (ID isrid ) ;

[Parameter]
ID isrid ID number of the interrupt service routine to be
deleted
[Return Parameter]
ER ercd E_OK for norma completion or error code
[Error Code]
E ID Invalid ID number (isrid isinvalid or unusable)
E_NOEXS Non-existent object (specified interrupt service routine is not
registered)

[Functional Description]
This service all deletes the interrupt service routine specified by isrid.

[Supplemental Information]

Interrupt service routines attached through ATT_ISR cannot be deleted with this ser-
vice call because they do not have ID numbers.

[Differences from the pITRON3.0 Specification]

This service call has been newly added.

286



M TRON4.0 Specification Ver. 4.00.00

ref_isr Reference Interrupt Service Routine State

[C Language API]
ER ercd = ref_isr ( ID isrid, T_RISR *pk_risr) ;

[Parameter]
ID isrid ID number of the interrupt service routine to be ref-
erenced
T RISR* pk_risr  Pointer a packet returning the interrupt service rou-
tine state
[Return Parameter]
ER ercd E_OK for normal completion or error code

pk_risrincludes (T_RISR type)
(Implementation-specific information)

[Error Code]
E ID Invalid ID number (isrid isinvalid or unusable)
E_NOEXS Non-existent object (specified interrupt service routine is not
registered)
E _PAR Parameter error (pk_risr isinvalid)

[Functional Description]

The service call references the state of the interrupt service routine specified by isrid.
The state of the interrupt service routine is returned through the packet pointed to by
pk_risr. The specific information returned is implementation-defined.

[Differences from the pJITRON3.0 Specification]
This service call has been newly added.

287



pI TRON4.0 Specification Ver. 4.00.00

dis_int Disable Interrupt

[C Language API]
ER ercd = dis_int ( INTNO intno ) ;

[Parameter]
INTNO intno Interrupt number to be disabled

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_PAR Parameter error (intno isinvalid)

[Functional Description]

This service call disables the interrupt specified by intno. The specific meaning of
intno isimplementation-defined. In typical implementations, intno corresponds to
the interrupt request line to the IRC.

[Supplemental Information]

Thisservice call isintended to control the IRC. This service call does not transition the
system to the CPU locked state nor does it transition the system to the dispatching dis-
abled state. Therefore, dispatching still occurs even if al interrupts are disabled due to
this service call. In addition, if interrupts are disabled, they remain disabled after task
dispatching.

[Differences from the pITRON3.0 Specification]

Because this service call isintended to control the IRC, the meaning of intno is
defined more strictly than in the pI TRON3.0 Specification. The datatype of intno has
been changed from UINT to INTNO.

288



M TRON4.0 Specification Ver. 4.00.00

ena_int Enable Interrupt

[C Language API]
ER ercd = ena_int ( INTNO intno ) ;

[Parameter]
INTNO intno Interrupt number to be enabled

[Return Parameter]
ER ercd E_OK for norma completion or error code

[Error Code]
E_PAR Parameter error (intno isinvalid)

[Functional Description]

This service call enables the interrupt specified by intno. The specific meaning of
intno is implementation-defined. In typical implementations, intno corresponds to
the interrupt request line to the IRC.

[Supplemental Information]

Thisservice call isintended to control the IRC. This service call does not transition the
system to the CPU unlocked state nor does it transition the system to the dispatching
enabled state. Therefore, this service call does not necessarily result in a state where
interrupts will be accepted by the processor.

[Differences from the pITRON3.0 Specification]

Because this service call isintended to control the IRC, the meaning of intno is
defined more strictly than in the pl TRON3.0 Specification. The datatype of intno has
been changed from UINT to INTNO.

289



pI TRON4.0 Specification Ver. 4.00.00

chg_ixx Change Interrupt Mask

[C Language API]
ER ercd = chg_ixx ( IXXXX ixxxx) ;

[Parameter]
IXXXX IXXXX Interrupt mask desired

[Return Parameter]
ER ercd E_OK for normal completion or error code

[Error Code]
E_PAR Parameter error (ixxxx isinvalid)

[Functional Description]

This service call changes the processor’s interrupt mask (also referred to as interrupt
level or interrupt priority) to the value specified by ixxxx.

The xx portion of the service call name and the xxxx portion of the parameter name
are implementation-defined and should be appropriate character strings for the target
processor’s architecture.

Depending on the value specified by ixxxx, this service call may cause the transition
between the CPU locked state and the CPU unlocked state and/or the transition
between the dispatching disabled state and the dispatching enabled state. The value
causing these transitions and the transition caused by this service call are implementa-
tion-defined.

[Supplemental Information]

In implementations where the CPU state is managed with the interrupt mask, changing
the interrupt mask may cause the transition between the CPU states or the transition
between the dispatching states. In implementations where these states are managed by
a combination of the interrupt mask and a variable, the variable's value must be
updated to reflect the change in the interrupt mask.

[Differences from the pITRON3.0 Specification]
The data type for ixxxx has been change from UINT to IXXXX.

290



M TRON4.0 Specification Ver. 4.00.00

get_ixx Reference Interrupt Mask

[C Language API]
ER ercd = get_ixx ( IXXXX *p_ixXxXXX ) ;

[Parameter]
None

[Return Parameter]

ER ercd E_OK for norma completion or error code
IXXXX IXXXX Current interrupt mask

[Error Code]
E PAR Parameter error (p_ixxxx isinvalid)

[Functional Description]

This service call references the processor’s interrupt mask (also referred to as interrupt
level or interrupt priority) and returnsit through ixxxx.

The xx portion of the service call name and the xxxx portion of the parameter name
are implementation-defined and should be appropriate character strings for the target
processor’s architecture.

[Differences from the JITRON3.0 Specification]

The name of this service call has been changed from ref_ixx to get_ixx. The data
type for ixxxx has been change from UINT to IXXXX.

291



pI TRON4.0 Specification Ver. 4.00.00

4.10 Service Call Management Functions

Service call management functions provide definition and invocation of extended ser-
vice calls. The ahility to invoke extended service calls may a so be used to invoke stan-
dard service calls.

An extended service call is afunction that allows the invocation of another module
when the entire system is not linked to a single module. When an extended service call
isinvoked, the extended service call routine defined by the application is called.

The format to write an extended service call routine in the C language is shown below:

ER_UINT svcrtn ( VP_INT parl, VP_INT par2, ...)
{

}

Only the necessary parameters for the extended service call routine (parl, par2, and
S0 on) may be specified. There may be an implementation-defined limit on the number
of parameters for extended service calls. However, at least one parameter must be sup-
ported.

The following data type packets are used for defining extended service cals:

/* Body of the extended service call routine */

typedef struct t_dsvc {

ATR svcatr ; /* Extended service call attribute */
FP svcrtn ; /* Extended service cal routine start
address */
/* Other implementation specific fields may be added. */
} T_DSVC;

The following represents the function codes for service call management service calls.
cal_svc has no function code.

TFEN_DEF_SVC —0x6d  Function code of def_svc

[Standard Profile]
The Standard Profile does not require support for service call management functions.

[Supplemental Information]

The contexts and states under which extended service call routines execute are summa:
rized as follows:

» An extended service call routine executesin its own independent context determined
by the extended service call and by the context from which the extended service call
isinvoked (see Section 3.5.1). The context in which an extended service call routine
executes is classified as task contexts when the invoking context is classified as task
contexts. It isclassified as non-task contexts when the invoking context is classified
as non-task contexts (See Section 3.5.2).

» The precedence of extended service call routinesis higher than the precedence of the

292



M TRON4.0 Specification Ver. 4.00.00

processing unit that invokes the extended service calls and is lower than the prece-
dence of any processing unit that has a higher precedence than the invoking process-
ing unit (see Section 3.5.3).

* The start of and the return from extended service call routines do not change the
CPU state and the dispatching state (See Sections 3.5.4 and 3.5.5).

» Executing extended service call routines with task exceptions disabled is implemen-
tation-defined (see Section 4.3).

[Differences from the pJITRON3.0 Specification]

The category of service call management functions has been newly added.

The terms extended SV C and extended SV C handler have been changed to extended
service call and extended service call routine, respectively. The contexts and states
under which extended service call routines execute is more strictly defined compared to
the I TRON3.0 Specification.

293



M TRON4.0 Specification Ver. 4.00.00

DEF _SVC Define Extended Service Call (Static API)
def svc Define Extended Service Call

[Static API]
DEF_SVC ( FN fncd, { ATR svcatr, FP svcrtn }) ;

[C Language API]
ER ercd = def_svc ( FN fncd, T_DSVC *pk_dsvc) ;

[Parameter]

FN fncd Function code of the extended service call to be
defined

T DSVC * pk_dsvc Pointer to the packet containing the extended ser-
vice call definition information (in DEF_SVC,
packet contents must be directly specified.)

pk_dsvc includes (T_DSVC type)

ATR svcatr Extended service call attribute

FP svcrtn Extended service call routine start address

(Other implementation specific information may be added.)

[Return Parameter]

ER ercd E_OK for normal completion or error code
[Error Code]

E RSATR Reserved attribute (svcatr isinvalid or unusable)

E_PAR Parameter error (fncd, pk_dsvc, or svcatr isinvalid)

[Functional Description]

This service call defines an extended service call for the function code specified by
fncd based on the information contained in the packet pointed to by pk_dsvc.
svcatr is the attribute of the extended service call. svcrtn isthe start address of the
extended service call routine.

In DEF_SVC, fncd isan integer parameter without automatic assignment. svcatr is
a preprocessor constant expression parameter.

This service call and this static API can define an extended service call with a positive
value of fncd. If anegative value is specified in fncd, an E_PAR error is reported.

If pk_dsvc isNULL (= 0), the extended service cal currently defined is released and
the extended service call becomes undefined. When a new extended service call is
defined over top of an old one, the old one isreleased and the new takes its place.
svcatr can be specified as (TA_HLNG || TA_ASM). If TA_ HLNG (= 0x00) is speci-
fied, the extended service call routine is called through the C language interface. If
TA_ASM (= 0x01) is specified, the extended service call routine is called through an

294



M TRON4.0 Specification Ver. 4.00.00

assembly language interface.

[Differences from the pJITRON3.0 Specification]
The name of the parameter has been changed from svchdr to svcrtn.

295



pI TRON4.0 Specification Ver. 4.00.00

cal _svc Invoke Service Call

[C Language API]
ER_UINT ercd = cal_svc ( FN fncd, VP_INT parl, VP_INT par2,

DE

[Parameter]
FN fncd Function code of the service call to be invoked
VP_INT parl The first parameter of the service call
VP_INT par2 The second parameter of the service call

(up to the necessary number of parameters)

[Return Parameter]

ER_UINT ercd The service call’s return value
[Error Code]
E RSFN Reserved function code (fncd isinvalid or unusable)

[Functional Description]

This service call invokes the service call specified by fncd with the parameters parl,
par2, and so on, and returns the return value of the invoked service call.

There may be an implementation-defined limit greater than or equal to 1 on the number
of parameters that can be passed to the service call. If the service call’s parameters are
not of VP_INT type, this service call converts the parameters to the appropriate data
types while preserving their values. If the service call’sreturn valueis of ER, BOOL,
or ER_BOOL type, this service call convertsthe return valueto ER_UINT type while
preserving its value.

In addition to an extended service call, allowing this service call to invoke a standard
service call isimplementation-defined. If this service call cannot invoke a standard ser-
vice call, it returns an E_RSFN error.

[Supplemental Information]

Standard service calls are distinguished from extended service calls because the former
have negative function codes. Since cal_svc does not have a function code, cal_svc
cannot be used to invoke itself.

[Differences from the pITRON3.0 Specification]
This service call has been newly added.

296



M TRON4.0 Specification Ver. 4.00.00

4.11 System Configuration Management Functions

System configuration management functions include the ability to define a CPU excep-
tion handler, to reference the system configuration and version information, and to
define an initialization routine. The initialization routine executes during system ini-
tialization. See Section 3.7 for the timing and contexts of initialization routine execu-
tion.

The following data types are used for system configuration management functions:
EXCNO CPU exception handler number
The format to write a CPU exception handler is implementation-defined.

When calling an initialization routine, the extended information (exinf) of the initial-
ization routine is passed as a parameter. The format to write an initialization routine in
the C language is shown below:

void inirtn ( VP_INT exinf)

{

}

The following data type packets are defined for defining CPU exception handlers and
for referencing the configuration and version information.

/* Body of theinitialization routine */

typedef struct t_dexc {

ATR excatr ; /* CPU exception handler attribute */
FP exchdr ;  /* CPU exception handler start address */
/* Other implementation specific fields may be added. */

} T_DEXC;

typedef struct t_rcfg {
/* Implementation specific fields */

} T_RCFG;
typedef struct t_rver {
UH maker ; /* Kernel maker’s code */
UH prid ; /* ldentification number of the kernel */
UH spver ; /* Version number of the ITRON
Specification */
UH prver ; /* Version number of the kernel */
UH prno[4] ; /* Management information of the kernel
product */
} T_RVER;

The following represents the function codes for the system configuration management
service cals:

TFN_DEF_EXC —0Ox6e  Function code of def_exc

TFN_REF_CFG —0x6f  Function code of ref_cfg

TFN_REF_VER —0x70 Function code of ref_ver

297



pI TRON4.0 Specification Ver. 4.00.00

[Standard Profile]

The Standard Profile requires support for the static API defining an CPU exception
handler (DEF_EXC) and the static API defining an initiaization routine (ATT_INI).

[Supplemental Information]

The contexts and states under which CPU exception handlers execute are summarized
asfollows:

» The service calsthat can be invoked from within CPU exception handlers are imple-
mentation-defined (see Section 3.4.2).

» A CPU exception handler executesin its own independent context determined by the
CPU exception and by the context in which the CPU exception occurred (see Sec-
tion 3.5.1). When a CPU exception occursin task contexts, whether the CPU excep-
tion handler executes in task contexts or in non-task contexts is
implementation-defined. When a CPU exception occurs in non-task contexts, the
CPU exception handler executes in non-task contexts (see Section 3.5.2).

» The precedence of CPU exception handlersis higher than the precedence of the pro-
cessing unit where the CPU exception occurs and higher than the precedence of the
dispatcher (see Section 3.5.3).

» The start of and the return from CPU exception handlers do not change the CPU
state and the dispatching state. When the CPU state or the dispatching state is
changed in CPU exception handlers, they should be returned to their previous states
before returning from the CPU exception handlers (see Sections 3.5.4 and 3.5.5).

298



M TRON4.0 Specification Ver. 4.00.00

DEF EXC  Define CPU Exception Handler (Static API) [S]
def _exc Define CPU Exception Handler
[Static API]

DEF_EXC ( EXCNO excno, { ATR excatr, FP exchdr }) ;

[C Language API]
ER ercd = def_exc ( EXCNO excno, T_DEXC *pk_dexc) ;

[Parameter]

EXCNO excno CPU exception handler number to be defined

T DEXC * pk_dexc Pointer to the packet containing the CPU exception
handler definition information (in DEF_EXC,
packet contents must be directly specified.)

pk_dexc includes (T_DEXC type)

ATR excatr CPU exception handler attribute

FP exchdr CPU exception handler start address

(Other implementation specific information may be added.)

[Return Parameter]

ER ercd E_OK for normal completion or error code
[Error Code]

E RSATR Reserved attribute (excatr isinvalid or unusable)

E _PAR Parameter error (excno, pk_dexc, and exchdr isinvalid)

[Functional Description]

This service call assigns a CPU exception handler to the CPU exception handler num-
ber specified by excno based on the information contained in the packet pointed to by
pk_dexc. excatr isthe attribute of CPU exception handler attribute. exchdr isthe
start address of the CPU exception handler.

In DEF_EXC, excno is an integer parameter without automatic assignment. excatr
IS a preprocessor constant expression parameter.

The specific meaning of excno is implementation-defined, but it corresponds to the
processor’s exception in typical implementations.

If pk_dexc isNULL (= 0), the CPU exception handler currently defined is released.
When a new CPU exception handler is defined over top of an old one, the old oneis
released and the new takes its place.

The possible values and meanings of excatr are implementati on-defined.

[Differences from the pITRON3.0 Specification]

This service call is now specified for defining a CPU exception handler. The object

299



pI TRON4.0 Specification Ver. 4.00.00
number for identifying a CPU exception handler is now the CPU exception handler

number (excno) of EXCNO type. The possible values and meanings of excatr are
now |eft to the implementation.

300



M TRON4.0 Specification Ver. 4.00.00

ref _cfg Reference Configuration Information

[C Language API]
ER ercd = ref _cfg (T_RCFG *pk_rcfg ) ;

[Parameter]
T RCFG * pk rcfg Pointer to the packet returning the configuration
information

[Return Parameter]
ER ercd E_OK for norma completion or error code
pk_rcfg includes (T_RCFG type)
(Implementation-specific information)

[Error Code]
E_PAR Parameter error (pk_rcfg isinvalid)

[Functional Description]

This service call references the static information and configuration information of the
system. The information is returned through the packet pointed to by pk_rcfg. The
specific information referenced is implementation-defined.

[Supplemental Information]

Possible information that may be referenced by this service call includes: the kernel
configuration constants, the range of ID numbers for each object, overview of the
memory map, available memory size, information on peripheral chips and /O devices,
and time unit and precision of the data types to specify the time.

301



pI TRON4.0 Specification Ver. 4.00.00

ref ver Reference Version Information

[C Language API]
ER ercd = ref_ver ( T_RVER *pk_rver) ;

[Parameter]
T RVER* pk_rver Pointer to the packet returning the version informa
tion
[Return Parameter]
ER ercd E_OK for norma completion or error code
pk_rver includes (T_RVER type)
UH maker Kernel maker’s code
UH prid | dentification number of the kernel
UH spver Version number of the ITRON Specification
UH prver Version number of the kernel
UH prno[4]  Management information of the kernel product
[Error Code]
E PAR Parameter error (pk_rver isinvalid)

[Functional Description]

This service call references the version information of the kernel. The information is
returned through the packet pointed to by pk_rver. Specifically, the following infor-
mation can be referenced.

maker isthe code that represents the kernel maker. See Section 5.4 for definitions of
maker codes.

prid is the number for identifying the kernel. The kernel maker can assign values to
prid. A particular kernel implementation should be uniquely identified by the combi-
nation of maker and prid codes.

The upper four bits of spver identify the type of the TRON Specification, and the
lower 12 bits indicate the version number of the specification. The upper four bits of
spver are assigned as follows:

0x0 Common specification for TRON (such as TAD)

Ox1 ITRON Specifications (ITRON1, ITRON2)

0x2 BTRON Specifications

0x3 CTRON Specifications

0x5 MITRON Specifications (U TRON2.0, Wl TRON3.0, W TRON4.0)
0x6 MBTRON Specifications

The lower 12 bits of spver represent the upper 3 digits of the specification version
number. The upper 3 digits of the specification version number are represented in

302



M TRON4.0 Specification Ver. 4.00.00

binary coded decimal (BCD) format and each digit is 4 bit long. Version numbers for
draft specifications or specifications under discussion can include an alphabet letter. In
this case, the letter isinterpreted as a hexadecimal number. See Section 5.3 for further
description on version numbers of the ITRON Specification.

prver is the version number of the particular kernel implementation. The kernel
maker can assign valuesto prver.

prno isareturn parameter that may contain the kernel product’s management informa
tion, product number, and others. The kernel maker determines its definition.

[Supplemental Information]

As an example, the value of spver for a kernel conformant to the Ul TRON4.0 Specifi-
cation Ver.4.02.10 is 0x5402, and its value for a kernel conformant to Ver. 4. A1.01 is
0x54A1. Thisexample shows that a newer version of the specification does not always
have alarger value of spver when a draft specification is involved.

The returned information except prno can be referenced with the kernel configuration
macros. TKERNEL_MAKER, TKERNEL_PRID, TKERNEL_SPVER, and
TKERNEL_PRVER.

[Differences from the pITRON3.0 Specification]

The name of the service call has been changed from get_ver to ref_ver. Referencing
the CPU information and the variation descriptor have been removed. The specifica-
tion of the prver format has been removed. The name of the return parameter has been
changed from id to prid.

[Rationale]

The values stored in spver include only the upper 3 digits of the specification version
number and do not include the remaining digits. Thisis because the remaining digits
only refer to the notation of the specification and not the contents.

303



pI TRON4.0 Specification Ver. 4.00.00

ATT _INI Attach Initialization Routine (Static API) [S]
[Static API]

ATT_INI ({ ATR iniatr, VP_INT exinf, FP inirtn }) ;
[Parameter]

ATR iniatr Initialization routine attribute

VP_INT exinf Initialization routine extended information

FP inirtn Initialization routine start address

(Other implementation specific information may be added.)

[Functional Description]

This static API registers an initialization routine based on the specified parameters.
iniatr isthe attribute of the initialization routine. exinf is the extended information
passed as a parameter to the initialization routine. inirtn isthe start address of theini-
tialization routine.

In ATT_INI, iniatr is apreprocessor constant expression parameter.

The registered initialization routine is executed as a part of the processing of the static
APIsduring systeminitialization. See Section 3.7 for a detailed description of this pro-
CesS.

iniatr can be specified as (TA_HLNG || TA_ASM). If TA_ HLNG (= 0x00) is speci-
fied, the initialization routine is called through the C language interface. If TA_ASM
(= 0x01) is specified, the initialization routine is called through an assembly language
interface.

[Standard Profile]

The Standard Profile does not require support for when TA_ASM is specified in
iniatr.

[Supplemental Information]

The system configuration file can include more than one ATT_INI. See Section 3.7 for
the execution order of the initialization routines when more than one ATT_INI are
described.

[Differences from the pITRON3.0 Specification]
This static API has been newly added.

304



M TRON4.0 Specification Ver. 4.00.00

Chapter 5 Additional Specifications

5.1 The Specification Requirements for the
MITRONA4.0 Specification

5.1.1 Basic Concept

The pITRON Specifications are specifications which are based on a loose standardiza-
tion concept. It emphasizes applicability to awide range of hardwares and applications
rather than portability of application programs, and aims at standardization for the edu-
cation of software engineers. Therefore, aslong as the OS specification meets the min-
imum requirements of areal-time kernel, the realization of the functionality defined in
this specification and the addition of extended functionalities are |eft to the implemen-
tation.

Specifically, the following conditions must be satisfied for the implementation of the
M TRON4.0 Specification.

(@ It must have the minimum functionalities that are required to satisfy the
M TRONA4.0 Specification (see Section 5.1.2).

(b) If it contains functionalities similar to those described in the Wl TRON4.0 Specifica-
tion, the functionality specifications must match the Wl TRON4.0 Specification.
However, if the implementation does not provide a configurator, conforming to the
static API specification of the Wl TRON4.0 Specification is not necessary.

(c) If it contains functionalities not specified by the WITRON4.0 Specification, the
functionality specifications must satisfy the conditions for implementation-depen-
dent extensions specified by the pl TRON4.0 Specification. However, if the imple-
mentation supports several sets of APIs, this condition is not applied to sets of APIs
other than the pl TRONA4.0 Specification APIs.

If the implementation provides subsetting of service call functionalities or functionality
restrictions, or if it has special implementation functions that are not specified by the
I TRONA4.0 Specification, the product manual must contain the description of the
implementation for clarification.

The profile rule defines the minimum function requirements that must be satisfied by
the kernel for the portability of application programs that are written in a high-level
language. In order for an implementation based on the Ul TRON4.0 Specification to
conform to a certain profile rule, it must have all the functionalities specified by the
profile, and it must agree with all the rules related to the profile. It can contain func-
tionalities that are not included by the profile and implementation-specific extensions.
However, application programs that are written to operate using only the functionalities
included in the profile must operate without modification.

305



pI TRON4.0 Specification Ver. 4.00.00

Moreover, when embedding the implemented kernel to an application, embedding only
the functions needed by the application is possible.

[Standard Profile]

The Standard Profile is one of the profile specifications of the uITRON4.0 Specifica-
tion.

[Supplemental Information]

The conditions under which an implementation satisfies the Wl TRON4.0 Specification
isillustrated by the following example. If the implementation has semaphore func-
tions, the names and functionalities of the service calls, the types, orders, and names of
the parameters and return parameters, and the types and names of main error codes
must all agree with the semaphore functionsthat are specified by the pul TRON4.0 Spec-
ification. In this case, subsetting of service call functions is permitted at the cost of
portability of application programs. If the implementation adds a functionality that is
not specified by the I TRON4.0 Specification (like counting semaphores with priority
inheritance), the functionality definition is freely decided by the implementation.
Moreover, in situations where subsets or implementati on-specific extensions are made,
adding and/or deleting parameters and return parameters is permitted.

The conditions of this section do not specify a kernel configured for a particular appli-
cation. When akernel conforming to the Standard Profile is embedded to an applica
tion, the kernel functionalities may be limited to those functions needed by the
application and the range of 1D numbers and priorities may be limited.

5.1.2 Minimum Required Functionalities

The minimum functionalities that are required to satisfy the W' TRON4.0 Specification
are asfollows:

(a) Creation of tasks. The task must at least be able to be in the RUNNING state, the
READY state, and the DORMANT state.

(b) Task scheduling conforming to the pITRON4.0 Specification scheduling rule.
However, restricting the number of tasks to one for each priority level or restricting
the priority level to only oneis allowed.

(c) Registration of interrupt handlers (or interrupt service routines).

(d) A method to activate tasks (changing the state from the DORMANT state to the
READY state) from tasks and interrupt handlers (or interrupt service routines).

(e) A method for atask to terminate itself (changing the state from the READY state to
the DORMANT state).
[Supplemental Information]

As an example, the minimum functionalities above can be satisfied if the implementa
tion provides the service calls and static APIs below, and if its task scheduling rule fol-

306



M TRON4.0 Specification Ver. 4.00.00

lows the specification.

CRE_TSK create task (static API)
act_tsk/iact_tsk activate task

ext_tsk terminate invoking task

DEF_INH define interrupt handler (static API)

In this case, defining an interrupt handler (DEF _INH) can be replaced by attaching an
interrupt service routine (ATT_ISR). If a configurator is not provided, providing
equivalent methods with the static APIs instead of the static APIs conforming to the
specification is sufficient. Also act_tsk and iact_tsk do not have to support queuing
of activation requests. ext_tsk can be replaced by areturn from the main routine.

[Differences from the pITRON3.0 Specification]

The minimum set of states for atask is changed from the RUNNING state, the READY
state, and the WAITING state to the RUNNING state, the READY state, and the DOR-
MANT state. The service callsrequired to be supported (level R) is not defined.

5.1.3 Extension of the pITRON4.0 Specification

When adding implementation-specific service calls to realize a new functionality
which is not specified by the Wl TRON4.0 Specification, a “v” must be added in front of
the name of the new service call. The names of the static API for implementation-spe-
cific functions are also based on this rule. However, the names for implementa-
tion-specific service calls that can be called from non-task contexts are exceptions to
this rule (see Section 3.6.3). The value of the function code for any implementa
tion-specific service call must be within the range provided.

When adding implementation-specific main error codes, the form of the name must be
EV_XXXXX and the value of the main error code must be defined within the range
provided. Also if there are implementation-specific data types, constants (except for
error codes), and/or macros defined, identifying those that are not defined by the
M TRONA4.0 Specification by inserting a “V” into the name is recommended.

In the pl TRONA4.0 Specification, the constants that specify the object attributes and ser-
vice call operational modes are assigned values that can be expressed in 8 bits. Also
the constants that express the object states are assigned 8-bit values, with afew excep-
tions. The lower 8-bit values of the parameters or return parameters are reserved for
future extensions of the ITRON Specifications. When assigning bit values to the
implementation-specific constants for those parameters and return parameters, the bit
values that cannot be used are the bits which are used by the constants defined by this
specification and the reserved lowest 8 bits. The remaining values in the upper 8 bits
should be used.

Also if there are rules that specify methods for implementation-specific extensions,
such as the packet for object registration information and object reference information,

307



M TRON4.0 Specification Ver. 4.00.00

these rules must be followed.

5.2 Automotive Control Profile

The Automotive Control Profile of the u TRON4.0 Specification is one of the
Ml TRONA4.0 Specification profile rules and is mainly targeted at automotive control
applications. In order to realize the goal of reducing kernel overhead and memory
usage, a subsetting of the specification functions and additional functions for reducing
memory consumption are provided.

Compared to the Standard Profile, the Automotive Control Profile does not need to sup-
port the following functionalities:

* Service calls with timeouts

Wait queuesin task priority order
The SUSPENDED state

Task exception handling functions
Mailboxes

Fixed-sized memory pools

» Some other service calls

In order to reduce the memory usage, restricted task functions are added. Restricted
tasks are tasks whose functionalities are restricted compared to conventional tasks. As
long as the application does not depend on an E_NOSPT error returned when
restricted functions are used, the application should behave the same way if the
restricted tasks are replaced with conventional tasks. In this sense, the Automotive
Control Profiles have alower compatibility to the Standard Profile even if restricted
task functions are added.

5.2.1 Restricted Tasks

By restricting some functionalities of tasks, a restricted task can share the same stack
space with other restricted tasks. This reduces the memory arearequired for task stack.
A restricted task differs from a conventional task as follows:

* A restricted task can not enter the WAITING state.

When a restricted task invokes a service call that might enter the WAITING state,
the behavior isundefined. When an error should be reported, an E_NOSPT error is
returned.

» The priority of arestricted task cannot be changed.

The behavior of changing arestricted task’s priority by invoking chg_pri is unde-
fined. When an error should be reported, an E_NOSPT error is returned.

* A restricted task cannot be terminated by a service call.

308



M TRON4.0 Specification Ver. 4.00.00

A restricted task can only be terminated by returning from the task’s main routine.
The behavior when a restricted task terminate itself by invoking ext_tsk and the
behavior when arestricted task is forcibly terminated through ter_tsk are unde-
fined. When an error should be reported, an E_NOSPT error is returned.

Whether the task is restricted or not is determined by the task attribute specified during
task creation. Specifically, the task will be arestricted task if the task is created by
specifying TA_RSTR (= 0x04) in the task attribute.

[Supplemental Information]

Specifying the task stack size, which isincluded in the task creation information, is
also valid for arestricted task. For example, if the same stack areais shared by several
restricted tasks of the same priority, setting the maximum value of each task’s stack
size to the size of the stack area allocated by the kernel is necessary. Like the Standard
Profile, the Automotive Control Profile does not require support for when other values
than NULL are specified as the start address of atask stack space.

5.2.2 Functionalities Included in the Automotive Control Profile

All the functionalities of the Automotive Control Profile except for the restricted task
functions are included in the Standard Profile. The Automotive Control Profile must
support the following static APIs and service calls.

(1) Task management functions

CRE_TSK create task (static API)
act_tsk/iact_tsk activate task
can_act cancel task activation requests
ext_tsk terminate invoking task
ter_tsk terminate task
chg_pri change task priority
get_pri reference task priority

(2) Task dependent synchronization functions
slp_tsk put task to sleep
wup_tsk /iwup_tsk wakeup task
can_wup cancel task wakeup requests
rel_wai/irel_wai release task from waiting

(4) Synchronization and communication functions

Semaphores
CRE_SEM create semaphore (static API)
sig_sem/isig_sem rel ease semaphore resource
wai_sem acquire semaphore resource
pol_sem acquire semaphore resource (polling)

309



pI TRON4.0 Specification Ver. 4.00.00

Eventflags

CRE_FLG create eventflag (static API)

set flg/iset flg set eventflag

clr_flg clear eventflag

wai_flg wait for eventflag

pol_flg wait for eventflag (polling)
Data queues

CRE_DTQ create data queue (static API)

psnd_dtq/ipsnd_dtq  send to data queue (polling)
fsnd_dtq / ifsnd_dtq forced send to data queue
rcv_dtq receive from data queue
prcv_dtq receive from data queue (polling)

(7) Time management functions

System time management

isig_tim supply time tick
* If the kernel has a mechanism of updating the system time, isig_tim need
not be supported.
Cyclic handlers
CRE_CYC create cyclic handler (static API)
sta_cyc start cyclic handler operation
stp_cyc stop cyclic handler operation
(8) System state management functions
get_tid/iget_tid reference task ID in the RUNNING state
loc_cpu /iloc_cpu lock the CPU
unl_cpu /iunl_cpu unlock the CPU
dis_dsp disable dispatching
ena_dsp enable dispatching
sns_ctx reference contexts
sns_loc reference CPU state
sns_dsp reference dispatching state
sns_dpn reference dispatch pending state

(9) Interrupt management functions
DEF_INH define interrupt handler (static API)

* If ATT_ISR issupported, DEF_INH need not be supported.
(11) System configuration management functions

DEF _EXC define CPU exception handler (static API)
ATT_INI attach initialization routine (static API)

Among these static APIs or service calls, the functions that should be supported by the
Automotive Control Profile but are restricted or extended compared to the Standard

310



M TRON4.0 Specification Ver. 4.00.00

Profile are as follows.
e CRE_TSK

TA _RSTR (= 0x04) can be specified in the task attribute. When TA_RSTR is spec-
ified, arestricted task is created.

* CRE_SEM, CRE_FLG, CRE_DTQ
The Automotive Control Profile does not require support for when TA_TPRI is
specified in each object attribute.

e ext_tsk
The behavior when invoked from restricted tasks is undefined. When an error
should be reported, an E_NOSPT error is returned.

* ter_tsk, chg_pri
The behavior when invoked with a restricted task is undefined. When an error
should be reported, an E_NOSPT error is returned.

» slp_tsk, wai_sem, wai_flg, rcv_dtq
The behavior when invoked from a restricted task is undefined. When an error
should be reported, an E_NOSPT error is returned.

[Supplemental Information]

Within the Automotive Control Profile, the behavior when TA_TFIFO is specified as
the eventflag attribute isthe same aswhen TA_TPRI is specified. In addition, since the
task cannot enter the sending waiting state for a data queue, specifying TA_TFIFO or
TA_TPRI for the data queue attribute is meaningless. Therefore, the restriction that
TA_TPRI cannot be specified for the eventflag attribute and the data queues attribute
practically means that when TA_TPRI is specified, an error should be returned.

5.3 Version Number of the Specifications

The version number of the ITRON Specificationsisin the following form:
Ver. X.YY.ZZ [ WW]

X represents the major version number of the ITRON Specifications. The numbers
below are assigned to the kernel specifications:

1 ITRON1

2 ITRON2 or pITRON (Ver. 2.0)
3 LI TRON3.0

4 1 TRON4.0

YY indicates the version number of the updated specification when modifications or
additions are made to its contents. Once the specification is published, YY is updated
to YY =00, 01, 02, and so on for each version of the specification. For draft specifica-
tions or specifications under discussion, on the other hand, one of the lettersin YY

311



pI TRON4.0 Specification Ver. 4.00.00

should be‘A’, ‘B, or ‘' C'.

The X.YY portion in the version number can be referenced through the kernel configu-
ration macro TKERNEL_SPVER and through the return parameter spver of ref_ver
servicecal. If YY contains‘A’, ‘B’, or ‘C’, the hexadecimal representation of ‘A’, ‘B’
or ‘C’ isused, respectively.

ZZ is anumber identifying the version relating to the specification notation. When
structural changes are made to the specification document or chapters, or when typo-
graphical errors are corrected, ZZ is updated to ZZ = 00, 01, 02, and so on.

WW may be used for minor classifications on notations in the specification document.
If WW isomitted, WW isregarded as 00.

5.4 Maker Codes

The TRON Association assigns the maker codes referenced through the kernel configu-
ration macro TKERNEL_MAKER and through the return parameter maker of
ref ver servicecall.

At the time of the publication of this specification document, the following maker
codes are assigned:

0x0000 No maker code (such as experimental systems)
0x0001 University of Tokyo

0x0008 Individuals (or personal businesses)
0x0009 FUJTSU LIMITED

0x000a Hitachi, Ltd.

0x000b Matsushita Electric Industrial Co., Ltd.
0x000c Mitsubishi Electric Corporation

0x000d NEC Corporation

0x000e Oki Electric Industry Company, Limited
0x000f Toshiba Corporation

0x0010 ALPSELECTRIC Co., Ltd.

0x0011 WACOM Co., Ltd.

0x0012 Personal Media Corporation

0x0013 Sony Corporation

0x0014 Motorola, Inc.

0x0015 National Semiconductor Corporation
0x0101 OMRON Corporation

0x0102 Seiko Precision Inc.

0x0103 System Algo Co., Ltd.

0x0104 TOKYO COMPUTER SERVICE Co., Ltd.
0x0105 Yamaha Corporation

0x0106 MORSON JAPAN

312



M TRON4.0 Specification Ver. 4.00.00

0x0107
0x0108
0x0109
0x010a
0x010b
0x010c
0x010d
0x010e
Ox010f

0x0110
0x0111
0x0112

Toshiba Information Systems (JAPAN) Corporation
MiSPO Co., Ltd.

Three Ace Computer Corporation
FIRMWARE SYSTEMS Inc.

eSOL Co., Ltd.

U S Software Corporation

ACCESS CO., LTD.

FUJTSU DEVICESINC.
Accelerated Technology Incorporated
ELMIC SYSTEMS, INC.

FJB Web Technology Ltd.

A. |. Corporation

For the kernels implemented by individuals (or personal businesses), 0x0008 is used as
the maker code. For further identification of the kernel implementor, unique values are
assigned to each individual in the upper 8 bits of the identification number of the ker-
nel, which can be referenced through the kernel configuration macro
TKERNEL_PRID and through the return parameter prid of ref _ver service call.

313



pI TRON4.0 Specification Ver. 4.00.00

314



M TRON4.0 Specification Ver. 4.00.00

Chapter 6 Appendix

6.1 Conditions for Using the Specification and the
Specification Document

The conditions for using the I TRON4.0 Specification and its specification document
are asfollows:

Conditions for Using the Specification

The WITRON4.0 Specification is an open specification. Anyone may freely develop,
use, distribute, and sell software that conforms to the pl TRON4.0 Specification. There
isno need to pay alicense fee or register to the ITRON Committee of the TRON Asso-
ciation.

However, the ITRON Committee of the TRON Association strongly recommends that
the following statements (or statements with the same meaning) be included in the doc-
umentation of the software, such as the product manuals, conforming to the
I TRONA4.0 Specification:

* TRON isthe abbreviation of “ The Real-time Operating system Nucleus”

* ITRON isthe abbreviation of “Industrial TRON.”

* WTRON isthe abbreviation of “Micro Industrial TRON.”

* TRON, ITRON, and WITRON do not refer to any specific product or prod-

ucts.

The ITRON Committee of the TRON Association also recommends that the following
statements (or statements with the same meaning) be included in the documentation of
the software, such as the product manuals, conforming to the pl TRON4.0 Specifica-
tion:

The WITRON4.0 Specifications is an open real-time kernel specification devel -
oped by the ITRON Committee of the TRON Association. The I TRON4.0
Specification document can be obtained from the ITRON Project web site
(http://www.itron.gr.jp/).

If you receive permission to modify the specification document to create product man-
uals (described later), or if you register products to the I TRON-Specification Product
Registration System (see Section 6.2), you are obliged to include the statements
described above.

Conditions for Using the Specification Document

The copyright of the ul TRON4.0 Specification document belongs to the ITRON Com-

315



pI TRON4.0 Specification Ver. 4.00.00

mittee of the TRON Association.

The ITRON Committee of the TRON Association grants the permission to copy the
whole or a part of the uI'TRON4.0 Specification document and to redistribute it intact
without charge or with a distribution fee. However, when a part of the yITRON4.0
Specification document is redistributed, it must clearly state (1) that it is a part of the
M TRONA4.0 Specification document, (2) which part it was taken, and (3) the method to
obtain the whole ul TRON4.0 Specification document.

Modification of the Wl TRON4.0 Specification document without prior written permis-
sion from the ITRON Committee of the TRON Association is strongly prohibited.

The ITRON Committee of the TRON Association permits the members of the TRON
Association to modify the Wl TRON4.0 Specification document to create, distribute,
and sell product manuals. Contact the ITRON Committee for the conditions and the
procedure to get the permission.

Disclaimer

The ITRON Committee of the TRON Association disclaims all warranties with regard
to the WITRON4.0 Specification and its document including all implied warranties.
The ITRON Committee of the TRON Association is not liable for any direct or indirect
damages caused by using the ul TRONA4.0 Specification or its document.

The ITRON Committee of the TRON Association may revise the il TRON4.0 Specifi-
cation documentation without notice.

6.2 Maintenance of the Specification and Related
Information

Maintenance of the ITRON Specifications and Contact Information

The ITRON Specifications and their documents are developed and maintained by the
ITRON Committee of the TRON Association. Any questions regarding the specifica
tions and their documents should be directed to the following:
ITRON Committee, TRON Association

Katsuta Building 5F

3-39, Mita 1-chome, Minato-ku,

Tokyo 108-0073, JAPAN

TEL: +81-3-3454-3191

FAX: +81-3-3454-3224

ITRON Project Web Site

The ITRON Committee of the TRON Association maintains the ITRON Project web

316



M TRON4.0 Specification Ver. 4.00.00

site for distributing information regarding the ITRON Project and Specifications. Vari-
ous ITRON Specifications and other documents are available at the web site, such as:
introduction to the ITRON Project, the ITRON Newsletter, status of standardization
activities, results of the survey on RTOS uses, list of products registered to the
I TRON-Supplications Product Registration System, information on seminars and trade
show participation, presentation materials used in lectures, and the list of the ITRON
Committee members.

The URL of the ITRON Project Web Site is:
http://www.itron.gr.jp/

The ITRON Newsletter

The ITRON Committee of the TRON Association publishes the ITRON Newsletter
bimonthly to widely distribute the latest information regarding the ITRON Project and
the activities of the ITRON Committee. The ITRON Newsletter has both Japanese and
English versions. Information regarding additions or corrections to the ITRON Speci-
fications, and information regarding corrections to the books published by the ITRON
Committee are notified with the ITRON Newsletter. The ITRON Newsletter is also
used to introduce products, books, and documents related to the ITRON Specifications,
and to notify the events such as seminars and trade shows.

The ITRON Newsdletter is included in the TRONWARE magazine (only in Japanese)
and the periodicals by the TRON Association. The ITRON Newsletter isalso available
at the ITRON Project web site.

ITRON-Specification Product Registration System

In order to promote the use and development of the ITRON Specifications, the ITRON
Committee of the TRON Association provides the I TRON-Specification Product Reg-
istration System. The purpose of this system isto create and maintain alist of products
developed by companies that conform to the ITRON Specifications and to promote the
use of the ITRON Specifications and the conforming products. This system isdifferent
from the so-called certification system. It is not intended to certify registered products
to be conformant to the ITRON Specifications.

Thelist of products registered to the system is available at the ITRON Project web site.
Contact the ITRON Committee if you are interested in registering products that con-
form to the ITRON Specifications.

Reference documents

“THE TRON PROJECT” is published by the TRON Association as a reference for the
entire TRON Project. This document includes an introduction to the activities of each
TRON basic and application sub-project, the history of the TRON Project, and the list
of the reference regarding the TRON Project.

317



pI TRON4.0 Specification Ver. 4.00.00

For the latest information on the TRON Project, refer to “TRONWARE,” a TRON
Project technical information magazine published bimonthly by Personal Media Cor-
poration. For the research results of the TRON Project, refer to the proceedings of the
annual TRON Project International Symposium.

The ITRON Committee of the TRON Association publishes the ITRON Specification
Guidebook as a textbook regarding the ITRON Specifications.

“ITRON Specification Guidebook 2,” supervised by Ken Sakamura, Personal
Media Corporation, 1994 (I1SBN4-89362-133-5).

“ITRON Specifications Guidebook 2" is based on the WITRON3.0 Specification and
does not correspond to the Wl TRON4.0 Specification. However, the ITRON Commit-
teeis planning to publish an edition that corresponds to the ul TRON4.0 Specification.

6.3 Background and Development Process of the
Specification

Background and Development Process of the Specification

The ITRON Committee of the TRON Association started the pl TRON4.0 Specification
Study Group to develop the next generation Wl TRON Specification following the
results of the Hard Real-Time Support Study Group (from November 1996 to March
1998) and of the RTOS Automotive Application Technical Committee (from June 1997
to March 1998). The I TRON4.0 Specification Study Group was an open group where
anyone, including non-members of either the ITRON Committee or the TRON Associ-
ation, was welcome to participate, thus promoting the involvement of active engineers
from various fields of embedded system devel opment.

The Kernel Specification Working Group established under the Wl TRON4.0 Specifica-
tion Study Group developed the I TRON4.0 Specification. The Kernel Specification
Working Group started the development in April 1998. It organized meetings once or
twice amonth until June 1999, when the official specification document was published.
Email discussions were aso conducted for the development.

The I TRON4.0 Specification also reflects the requirements and ideas derived from the
following investigations: the ITRON TCP/IP API Specification by the Embedded TCP/
IP Technical Committee, the JTRONZ2.0 Specification by Java Technology on
I TRON-Specification OS Technical Committee, and investigations by the Device
Driver Design Guideline Working Group of the WITRON4.0 Specification Study
Group.

Member List of the ITRON Committee of the TRON Association (in al phabetical
order)

John Cheuck (Metrowerks Co., Ltd.)

318



M TRON4.0 Specification Ver. 4.00.00

Shouichi Hachiya (Aplix Corporation)

Makoto Hirayama (Hewlett-Packard Japan, Ltd.)
Noboru Hirose (FIRMWARE SY STEMSInc.)
Shigeru Honma (Yamaha Corporation)

Katsuhiko Ishida (Hitachi, Ltd.)

Hidehiro Ishii (YDC Corporation)

Norihiko Ito (Nihon Cygnus Solutions)

Tomihisa Kamada (ACCESS Co., Ltd.)

Tatsuya Kamei (Mitsubishi Electric Corporation)
Kenji Kudou (FUJITSU DEVICES Inc.), Vice-Chair
AkiraMatsui (Personal Media Corporation)

Hiroshi Monden (NEC Corporation)

Tetsuo Oe (Oki Electric Industry Company, Limited)
Ken Sakamura (University of Tokyo)

Kazuo Sato (Toshiba Information Systems (JAPAN) Corporation)
Tetsu Shibashita (Mentor Graphics Japan Co., Ltd.)
Hiroaki Takada (Toyohashi University of Technology), Secretary
Tetsuo Takagi (DENSO CREATE Inc.)

Tohru Takeuchi (TRON Association), Secretariat
Kiichiro Tamaru (Toshiba Corporation), Chair
Yasutaka Tsunakawa (Sony Corporation)

Yiroyuki Watanabe (Seiko Instruments Inc.)

Member List of the Kernel Specification Working Group of the pITRON4.0
Specification Study Group (in aphabetical order)

Yoshitaka Adachi (Matsushita Electric Industry Co., Ltd.)
Yoshihiko Aoki (Sanyo Engineering & Construction Inc.)
ShigemasaAsai (Aisin Seiki Co., Ltd.)

Akihito Chiba (NIPPON TELECOMMUNICATIONS CONSULTING
Co., Ltd)

Kazuhiro Ibuka (Motorola Japan Ltd.)

Jun’ichi lijima, Secretery

Kazutoyo Inamitsu (FUJTSU DEVICES Inc.)

Katsuhiko Ishida (Hitachi, Ltd.)

Masanori Ishikawa (Y DC Corporation)

Kazunori 1somoto (Mazda Motor Corporation)

Norihiko Ito (Nihon Cygnus Solutions)

Takanao Ito (Fuji Electric Mie Design Co., Ltd.)
Yoshihisa lwaki (HondaR&D Co., Ltd.)

Shouichi Hachiya (Aplix Corporation )

Shin’ichi Hashimoto (ACCESS Co., Ltd.)

319



pI TRON4.0 Specification Ver. 4.00.00

Osamu Higashihara (NEC Information Systems, Ltd.)

Hiroki Hihara (NEC Corporation)

Michitaro Horiuchi (ACCESS Co., Ltd.)

Hiroshi Kako (DENSO CORPORATION)

Hironori Kaneda (Data Technology Inc.)

Hiroshi Kawaguchi (HANAZUKA ELECTRIC INDUSTRY Co., Ltd.)
Tuyoshi Kodama (Alpine Information System Inc.)

Manabu Kobayakawa (Hitachi, Ltd.)

Masakazu Kobayashi (Hitachi ULSI Systems Co., Ltd.)
Yasuhiro Kobayashi (FUJTSU LIMITED)

Takahiro Kudo (Data Technology Inc.)

Kenji Kudou (FUJITSU DEVICES Inc.)

Tadakatsu Masaki (Matsushita Information Systems Research Labora
tory Hiroshima Co., Ltd.)

Takayuki Matsunaga (Yazaki Corporation)

Atsushi Miki (Sumitomo Electric Industries, Ltd.)

Tetsuo Miyauchi (NEC Microcomputer Technology, Ltd.)
Hisaya Miyamoto (Toshiba Corporation)

Hisanori Miyazaki (MiSPO Co., Ltd.)

Kohei Mugitani (Sharp Corporation )

Hiroyuki Muraki (Mitsubishi Electric Semiconductor Systems Corpora-
tion)

Hiroyuki Nagasaku (CRESCO Ltd.)

Ryuichi Naito (Nippon Business Solution)

Yuiku Nakai (DENSAN Co., Ltd.)

Ken'ichi Nakamura (Nihon Cygnus Solutions)

Shigeki Nankaku (Mitsubishi Electric Corporation)

Tomo Onozawa (Aishin Seiki Co., Ltd.)

Masayuki Osgjima (ACCESS Co., Ltd.)

Hideto Sakamoto (EST K.K.)

Koji Sato (Toyota Motor Corporation)

Shuji Sato (Toshiba Engineering Corporation)

Tsutomu Sawada (Erg Co., Ltd.), Secretary

Masanobu Shigeta (Fuji Denki Co., Ltd.)

Kazu Shimazaki (SENNET, Inc.)

Masahiro Shukuguchi (Mitsubishi Electric Micro-Computer Application
Software Co., Ltd.)

Hideaki Suganuma (Toyota Motor Corporation)

Kenji Suganuma (DENSO CORPORATION)

Akihiko Sugimoto (Data Technology Inc.)

Hiroaki Takada (Toyohashi University of Technology), Secretary

320



M TRON4.0 Specification Ver. 4.00.00

Shuji Takanashi (Toshiba Corporation)

Yosuke Takano (NEC Corporation)

Tohru Takeuchi (TRON Association), Secretariat

Noriaki Tanaka (DENSO CREATE Inc.)

Kazuhiko Taoka (MiSPO Co., Ltd.)

Kazuhiro Terauchi (Toshiba Information Systems (JAPAN) Corporation)
Shin’ichi Tsunashima (ACCESS Co., Ltd.)

Naotaka Uehara (Casio)

Masakazu Uemura (Fuji Electric Mie Design)

Shinjiro Yamada (Hitachi, Ltd.)

Tatsuo Yamada (Motorola Japan Ltd.)

Masaru Yamanaka (Nihon Cygnus Solutions)

AkiraYokozawa (Toshiba Corporation)

Tomoaki Yoshida (Toshiba Corporation)

Miyoko Yoshimura (ERG. Co., Ltd)

Yukio Yoshino (Communication And Technology Systems, Inc.)
Masahiko Watanabe (Communication And Technology Systems, Inc.)

Contributors to the English Translation of the pJITRON4.0 Specification

EvaAustria Barcelon (Toyohashi University of Technology)
Christopher G. Brown (U S Software)

Donald Dunstan (U S Software)

Tadahiro Fukaya (FIRMWARE SY STEMS Inc.)

Shin’ichi Hashimoto (ACCESS Co., Ltd.)

Kazutoyo Inamitsu (FUJTSU DEVICES Inc.)

Kazuhiro Inaoka (Mitsubishi Electric Semiconductor Systems Corpora
tion)

Takeshi Kaneko (A.l.Corporation)

Hiroyuki Kato (A.l.Corporation)

Tsutomu Kindaichi (ELMIC SYSTEMS, INC)

Isao Kubota (ERG Co., Ltd.)

AkiraMatsui (Personal Media Corporation)

Koji Mugita (GRAPE SYSTEMSINC.)

Hiroyuki Muraki (Mitsubishi Electric Semiconductor Systems Corpora
tion)

Kohichi Nakamoto (NEC Corporation)

Nicholas James Withcy (U S Software)

Takuya Nomura (Matsushita Electric Industrial Co., Ltd.)
Tatsuo Obata (A.l.Corporation)

Tsutomu Sawada (ERG Co., Ltd.)

Hiroaki Takada (Toyohashi University of Technology)

321



M TRON4.0 Specification

Ver. 4.00.00

Tetsuo Takagi (DENSO CREATE Inc.)

Tohru Takeuchi (TRON Association)

Shinjiro Yamada (Hitachi, Ltd.)

Koichi Yasutake (Matsushita Electric Industrial Co., Ltd.)
AkiraYokozawa (Toshiba Corporation)

6.4 Version History

May 10, 1999

May 17, 1999
June 1, 1999

June 10, 1999
June 30, 1999

Ver. 4.A0.00

Ver. 4.A1.00
Ver. 4.B0.00
Ver. 4.81.00
Ver. 4.00.00

A draft version released for public com-
ments

Unfinished portion completed

(Working Group internal version)

(Working Group internal version)

Official release published

322



M TRON4.0 Specification

Chapter 7 References

7.1 Service Call List

(1) Task management functions
ER ercd = cre_tsk ( ID tskid, T_CTSK *pk_ctsk) ;

ER_ID tskid = acre_tsk ( T_CTSK *pk_ctsk ) ;
ER ercd = del_tsk ( ID tskid ) ;

ER ercd = act_tsk ( ID tskid ) ;

ER ercd = iact_tsk ( ID tskid ) ;

ER_UINT actcnt = can_act ( ID tskid ) ;

ER ercd = sta_tsk ( ID tskid, VP_INT stacd ) ;
void ext_tsk () ;

void exd_tsk () ;

ER ercd = ter_tsk ( ID tskid ) ;

ER ercd = chg_pri ( ID tskid, PRI tskpri ) ;

ER ercd = get_pri ( ID tskid, PRI *p_tskpri ) ;
ER ercd = ref_tsk ( ID tskid, T_RTSK *pk_rtsk) ;
ER ercd = ref_tst (ID tskid, T_ RTST *pk_rtst) ;

(2) Task dependent synchronization functions

ER ercd =slp_tsk () ;

ER ercd = tslp_tsk ( TMO tmout ) ;
ER ercd = wup_tsk ( ID tskid ) ;

ER ercd = iwup_tsk ( ID tskid ) ;
ER_UINT wupcnt = can_wup ( ID tskid ) ;
ER ercd = rel_wai ( ID tskid) ;

ER ercd = irel_wai ( ID tskid ) ;

ER ercd = sus_tsk ( ID tskid ) ;

ER ercd = rsm_tsk ( ID tskid ) ;

ER ercd = frsm_tsk ( ID tskid ) ;

ER ercd = dly_tsk ( RELTIM dlytim) ;

(3) Task exception handling functions
ER ercd = def_tex ( ID tskid, T_DTEX *pk_dtex ) ;

ER ercd = ras_tex ( ID tskid, TEXPTN rasptn ) ;

ER ercd = iras_tex ( ID tskid, TEXPTN rasptn ) ;
ER ercd = dis_tex () ;

ER ercd = ena_tex () ;

BOOL state = sns_tex () ;

ER ercd = ref_tex (ID tskid, T_ RTEX *pk_rtex ) ;

323

Ver. 4.00.00



M TRON4.0 Specification Ver. 4.00.00

(4) Synchronization and communication functions

Semaphores
ER ercd = cre_sem ( ID semid, T_CSEM *pk_csem ) ;
ER_ID semid = acre_sem ( T_CSEM *pk_csem ) ;
ER ercd = del_sem ( ID semid ) ;
ER ercd = sig_sem ( ID semid ) ;
ER ercd = isig_sem ( ID semid ) ;
ER ercd = wai_sem ( ID semid ) ;
ER ercd = pol_sem ( ID semid ) ;
ER ercd = twai_sem ( ID semid, TMO tmout ) ;
ER ercd = ref_sem ( ID semid, T_RSEM *pk_rsem) ;

Eventflags
ER ercd = cre_flg ( ID flgid, T_CFLG *pk_cflg ) ;
ER_ID flgid = acre_flg ( T_CFLG *pk_cflg) ;
ER ercd = del _flg ( ID flgid ) ;
ER ercd = set_flg ( ID flgid, FLGPTN setptn ) ;
ER ercd = iset_flg ( ID flgid, FLGPTN setptn ) ;
ER ercd = clr_flg ( ID flgid, FLGPTN clrptn ) ;
ER ercd = wai_flg ( ID flgid, FLGPTN waiptn, MODE wfmode,
FLGPTN *p_flgptn ) ;
ER ercd = pol_flg ( ID flgid, FLGPTN waiptn, MODE wfmode,
FLGPTN *p_flgptn ) ;
ER ercd = twai_flg ( ID flgid, FLGPTN waiptn, MODE wfmode,
FLGPTN *p_flgptn, TMO tmout ) ;
ER ercd = ref_flg ( ID flgid, T_RFLG *pk_rflg ) ;
Data queues
ER ercd = cre_dtq ( ID dtqid, T_CDTQ *pk_cdtq) ;
ER_ID dtqid = acre_dtq ( T_CDTQ *pk_cdtq ) ;
ER ercd = del_dtqg ( ID dtqid ) ;
ER ercd = snd_dtq ( ID dtqid, VP_INT data ) ;
ER ercd = psnd_dtq ( ID dtqid, VP_INT data ) ;
ER ercd = ipsnd_dtq ( ID dtqid, VP_INT data ) ;
ER ercd = tsnd_dtq ( ID dtqgid, VP_INT data, TMO tmout ) ;
ER ercd = fsnd_dtq ( ID dtqid, VP_INT data ) ;
ER ercd = ifsnd_dtqg ( ID dtqgid, VP_INT data ) ;
ER ercd = rcv_dtqg ( ID dtqid, VP_INT *p_data ) ;
ER ercd = prcv_dtq ( ID dtgid, VP_INT *p_data ) ;
ER ercd = trcv_dtqg ( ID dtqid, VP_INT *p_data, TMO tmout) ;
ER ercd = ref_dtq ( ID dtqid, T_RDTQ *pk_rdtq ) ;
Mailboxes
ER ercd = cre_mbx ( ID mbxid, T_CMBX *pk_cmbx ) ;

324



M TRON4.0 Specification Ver. 4.00.00

ER_ID mbxid = acre_mbx ( T_CMBX *pk_cmbx ) ;

ER ercd = del_mbx ( ID mbxid ) ;

ER ercd = snd_mbx ( ID mbxid, T_MSG *pk_msg ) ;

ER ercd = rcv_mbx ( ID mbxid, T_MSG **ppk_msg ) ;

ER ercd = prcv_mbx ( ID mbxid, T_MSG **ppk_msg ) ;

ER ercd = trcv_mbx ( ID mbxid, T_MSG **ppk_msg,
TMO tmout) ;

ER ercd = ref_mbx ( ID mbxid, T_ RMBX *pk_rmbx ) ;

(5) Extended synchronization and communication functions

Mutexes
ER ercd = cre_mtx ( ID mtxid, T_ CMTX *pk_cmtx ) ;
ER_ID mtxid = acre_mtx ( T_CMTX *pk_cmtx ) ;
ER ercd = del_mtx ( ID mtxid ) ;
ER ercd = loc_mtx ( ID mtxid ) ;
ER ercd = ploc_mtx ( ID mtxid ) ;
ER ercd = tloc_mtx ( ID mtxid, TMO tmout ) ;
ER ercd = unl_mtx ( ID mtxid ) ;
ER ercd = ref_mtx ( ID mtxid, T_RMTX *pk_rmtx ) ;

Message buffers
ER ercd = cre_mbf ( ID mbfid, T_CMBF *pk_cmbf ) ;
ER_ID mbfid = acre_mbf ( T_CMBF *pk_cmbf) ;
ER ercd = del_mbf ( ID mbfid ) ;
ER ercd = snd_mbf ( ID mbfid, VP msg, UINT msgsz ) ;
ER ercd = psnd_mbf ( ID mbfid, VP msg, UINT msgsz ) ;
ER ercd = tsnd_mbf ( ID mbfid, VP msg, UINT msgsz,

TMO tmout) ;

ER_UINT msgsz = rcv_mbf ( ID mbfid, VP msg) ;
ER_UINT msgsz = prcv_mbf ( ID mbfid, VP msg ) ;
ER_UINT msgsz = trcv_mbf ( ID mbfid, VP msg, TMO tmout) ;
ER ercd = ref_mbf ( ID mbfid, T_RMBF *pk_rmbf) ;

Rendezvous

ER ercd = cre_por ( ID porid, T_CPOR *pk_cpor ) ;

ER_ID porid = acre_por ( T_CPOR *pk_cpor ) ;

ER ercd = del_por ( ID porid) ;

ER_UINT rmsgsz = cal_por ( ID porid, RDVPTN calptn, VP msg,
UINT cmsgsz ) ;

ER_UINT rmsgsz = tcal_por ( ID porid, RDVPTN calptn, VP msg,
UINT cmsgsz, TMO tmout ) ;

ER_UINT cmsgsz = acp_por ( ID porid, RDVPTN acpptn,
RDVNO *p_rdvno, VP msg ) ;

325



pI TRON4.0 Specification Ver. 4.00.00

ER_UINT cmsgsz = pacp_por ( ID porid, RDVPTN acpptn,
RDVNO *p_rdvno, VP msg ) ;

ER_UINT cmsgsz = tacp_por ( ID porid, RDVPTN acpptn,
RDVNO *p_rdvno, VP msg, TMO tmout ) ;

ER ercd = fwd_por ( ID porid, RDVPTN calptn, RDVNO rdvno,
VP msg, UINT cmsgsz ) ;

ER ercd = rpl_rdv ( RDVNO rdvno, VP msg, UINT rmsgsz ) ;

ER ercd = ref_por ( ID porid, T_RPOR *pk_rpor ) ;

ER ercd = ref rdv ( RDVNO rdvno, T_RRDV *pk_rrdv) ;

(6) Memory pool management functions

Fixed-sized memory pools
ER ercd = cre_mpf ( ID mpfid, T_CMPF *pk_cmpf) ;
ER_ID mpfid = acre_mpf ( T_CMPF *pk_cmpf) ;
ER ercd = del_mpf ( ID mpfid ) ;
ER ercd = get_mpf ( ID mpfid, VP *p_blk) ;
ER ercd = pget_mpf ( ID mpfid, VP *p_blk ) ;
ER ercd = tget_mpf ( ID mpfid, VP *p_blk, TMO tmout) ;
ER ercd = rel_mpf ( ID mpfid, VP blk) ;
ER ercd = ref_mpf ( ID mpfid, T_RMPF *pk_rmpf) ;
Variable-sized memory pools
ER ercd = cre_mpl ( ID mplid, T_CMPL *pk_cmpl ) ;
ER_ID mplid = acre_mpl ( T_CMPL *pk_cmpl ) ;
ER ercd = del_mpl ( ID mplid) ;
ER ercd = get_mpl ( ID mplid, UINT blksz, VP *p_blk) ;
ER ercd = pget_mpl ( ID mplid, UINT blksz, VP *p_blk ) ;
ER ercd = tget_mpl ( ID mplid, UINT blksz, VP *p_blk,
TMO tmout) ;
ER ercd = rel_mpl ( ID mplid, VP blk ) ;
ER ercd = ref_mpl ( ID mplid, T_RMPL *pk_rmpl ) ;

(7) Time management functions

System time management
ER ercd = set_tim ( SYSTIM *p_systim ) ;
ER ercd = get_tim ( SYSTIM *p_systim ) ;
ER ercd =isig_tim () ;
Cyclic handlers
ER ercd = cre_cyc ( ID cycid, T_CCYC *pk_ccyc) ;
ER_ID cycid = acre_cyc ( T_CCYC *pk_ccyc) ;
ER ercd = del _cyc (ID cycid ) ;
ER ercd = sta _cyc ( ID cycid) ;
ER ercd = stp_cyc ( ID cycid ) ;

326



M TRON4.0 Specification Ver. 4.00.00

ER ercd = ref_cyc ( ID cycid, T_RCYC *pk_rcyc) ;
Alarm handlers

ER ercd = cre_alm ( ID almid, T_CALM *pk_calm ) ;

ER_ID almid = acre_alm ( T_CALM *pk_calm ) ;

ER ercd = del_alm ( ID almid) ;

ER ercd = sta_alm ( ID almid, RELTIM almtim ) ;

ER ercd = stp_alm ( ID almid ) ;

ER ercd = ref_alm ( ID almid, T_RALM *pk_ralm ) ;

Overrun handler
ER ercd = def _ovr ( T_DOVR *pk_dovr) ;
ER ercd = sta_ovr ( ID tskid, OVRTIM ovrtim ) ;
ER ercd = stp_ovr ( ID tskid ) ;
ER ercd = ref_ovr ( ID tskid, T_ROVR *pk_rovr ) ;

(8) System state management functions
ER ercd = rot_rdqg ( PRI tskpri ) ;
ER ercd = irot_rdq ( PRI tskpri ) ;
ER ercd = get_tid ( ID *p_tskid) ;
ER ercd = iget_tid ( ID *p_tskid ) ;
ER ercd = loc_cpu () ;

ER ercd = iloc_cpu () ;

ER ercd = unl_cpu () ;

ER ercd = iunl_cpu () ;

ER ercd = dis_dsp () ;

ER ercd =ena dsp () ;

BOOL state = sns_ctx () ;

BOOL state = sns_loc () ;

BOOL state = sns_dsp () ;

BOOL state = sns_dpn () ;

ER ercd = ref_sys ( T_RSYS *pk_rsys) ;

(9) Interrupt management functions
ER ercd = def_inh ( INHNO inhno, T_DINH *pk_dinh ) ;
ER ercd = cre_isr (ID isrid, T_CISR *pk_cisr) ;
ER_ID isrid = acre_isr ( T_CISR *pk_cisr ) ;
ER ercd = del_isr (ID isrid) ;
ER ercd = ref_isr (ID isrid, T_RISR *pk _risr) ;
ER ercd = dis_int ( INTNO intno ) ;
ER ercd = ena_int ( INTNO intno) ;
ER ercd = chg_ixx ( IXXXX ixxxx ) ;
ER ercd = get_ixx ( IXXXX *p_ixxxx ) ;

327



pI TRON4.0 Specification Ver. 4.00.00

(10) Service call management functions
ER ercd = def_svc ( FN fncd, T_DSVC *pk_dsvc) ;
ER_UINT ercd = cal_svc ( FN fncd, VP_INT parl, VP_INT par2,

o)

(11) System configuration management functions
ER ercd = def_exc ( EXCNO excno, T_DEXC *pk_dexc ) ;
ER ercd = ref_cfg ( T_RCFG *pk_rcfg ) ;
ER ercd = ref _ver ( T_RVER *pk_rver) ;

7.2 Static API List

(1) Task management functions
CRE_TSK ( ID tskid, { ATR tskatr, VP_INT exinf, FP task,
PRI itskpri, SIZE stksz, VP stk }) ;

(3) Task exception handling functions
DEF_TEX ( ID tskid, { ATR texatr, FP texrtn }) ;

(4) Synchronization and communication functions
CRE_SEM ( ID semid, { ATR sematr, UINT isemcnt,
UINT maxsem }) ;
CRE_FLG ( ID flgid, { ATR flgatr, FLGPTN iflgptn } ) ;
CRE_DTQ ( ID dtqid, { ATR dtgatr, UINT dtqcnt, VP dtq }) ;
CRE_MBX ( ID mbxid, { ATR mbxatr, PRI maxmpri,
VP mprihd }) ;

(5) Extended synchronization and communication functions
CRE_MTX ( ID mtxid, { ATR mtxatr, PRI ceilpri }) ;
CRE_MBF ( ID mbfid, { ATR mbfatr, UINT maxmsz, SIZE mbfsz,
VP mbf});
CRE_POR ( ID porid, { ATR poratr, UINT maxcmsz,
UINT maxrmsz }) ;

(6) Memory pool management functions
CRE_MPF ( ID mpfid, { ATR mpfatr, UINT blkcnt, UINT blksz,
VP mpf});
CRE_MPL ( ID mplid, { ATR mplatr, SIZE mplsz, VP mpl }) ;

(7) Time management functions
CRE_CYC ( ID cycid, { ATR cycatr, VP_INT exinf, FP cychdr,
RELTIM cyctim, RELTIM cycphs }) ;
CRE_ALM ( ID almid, { ATR almatr, VP_INT exinf, FP almhdr }) ;
DEF_OVR ({ ATR ovratr, FP ovrhdr }) ;

328



M TRON4.0 Specification Ver. 4.00.00

(9) Interrupt management functions
DEF_INH ( INHNO inhno, { ATR inhatr, FP inthdr }) ;
ATT_ISR ({ ATR isratr, VP_INT exinf, INTNO intno, FP isr}) ;

(10) Service call management functions
DEF_SVC ( FN fncd, { ATR svcatr, FP svcrtn }) ;

(11) System configuration management functions
DEF_EXC ( EXCNO excno, { ATR excatr, FP exchdr }) ;
ATT_INI ({ ATR iniatr, VP_INT exinf, FP inirtn }) ;

7.3 Static APIs and Service Calls in the Standard
Profile

(1) Task management functions

CRE_TSK Create Task (Static API)
act_tsk/iact_tsk Activate Task
can_act Cancel Task Activation Requests
ext_tsk Terminate Invoking Task
ter_tsk Terminate Task
chg_pri Change Task Priority
get_pri Reference Task Priority

(2) Task dependent synchronization functions
slp_tsk Put Task to Sleep
tslp_tsk Put Task to Sleep (with Timeout)
wup_tsk /iwup_tsk Wakeup Task
can_wup Cancel Task Wakeup Requests
rel_wai/irel_wai Release Task from Waiting
sus_tsk Suspend Task
rsm_tsk Resume Suspended Task
frsm_tsk Forcibly Resume Suspended Task
dly_tsk Delay Task

(3) Task exception handling functions
DEF_TEX Define Task Exception Handling Routine (Static

API)

ras_tex/iras_tex Raise Task Exception Handling
dis_tex Disable Task Exceptions
ena_tex Enable Task Exceptions
sns_tex Reference Task Exception Handling State

329



pI TRON4.0 Specification Ver. 4.00.00

(4) Reference Task Exception Handling State

Semaphores
CRE_SEM Create Semaphore (Static API)
sig_sem/isig_sem Release Semaphore Resource

wai_sem

Acquire Semaphore Resource

pol_sem Acquire Semaphore Resource (Polling)

twai_sem Acquire Semaphore Resource (with Timeout)
Eventflags

CRE_FLG Create Eventflag (Static API)

set _flg/iset flg Set Eventflag

clr_flg Clear Eventflag

wai_flg Wait for Eventflag

pol_flg Wait for Eventflag (Polling)

twai_flg Wait for Eventflag (with Timeout)
Data queues

CRE_DTQ Create Data Queue (Static API)

snd_dtq Send to Data Queue

psnd_dtq/ipsnd_dtq

Send to Data Queue (Polling)

tsnd_dtq Send to Data Queue (with Timeout)

fsnd_dtq/ ifsnd_dtq Forced Send to Data Queue

rcv_dtq Receive from Data Queue

prcv_dtqg Receive from Data Queue (Polling)

trcv_dtq Receive from Data Queue (with Timeout)
Mailboxes

CRE_MBX Create Mailbox (Static API)

snd_mbx Send to Mailbox

rcv_mbx Receive from Mailbox

prcv_mbx Receive from Mailbox (Polling)

trcv_mbx Receive from Mailbox (with Timeout)

Fixed-sized memory pools
CRE_MPF

(6) Memory pool management functions

Create Fixed-Sized Memory Pool (Static API)

get_mpf Acquire Fixed-Sized Memory Block

pget_mpf Acquire Fixed-Sized Memory Block (Polling)

tget_mpf Acquire Fixed-Sized Memory Block (with Time-
out)

rel_mpf Release Fixed-Sized Memory Block

(7) Time management functions

System time management
set_tim

Set System Time

330



M TRON4.0 Specification Ver. 4.00.00

get_tim Reference System Time
isig_tim Supply Time Tick
* If the kernel has a mechanism of updating the system time, isig_tim need
not be supported.
Cyclic handlers
CRE_CYC Create Cyclic Handler (Static API)
sta_cyc Start Cyclic Handler Operation
stp_cyc Stop Cyclic Handler Operation
(8) System state management functions
rot_rdq/irot_rdq Rotate Task Precedence
get_tid/iget_tid Reference Task ID in the RUNNING State
loc_cpu /iloc_cpu Lock the CPU
unl_cpu/iunl_cpu Unlock the CPU
dis_dsp Disable Dispatching
ena_dsp Enable Dispatching
sns_ctx Reference Contexts
sns_loc Reference CPU State
sns_dsp Reference Dispatching State
sns_dpn Reference Dispatch Pending State

(9) Interrupt management functions
DEF_INH Define Interrupt Handler (Static API)

* |If ATT_ISR issupported, DEF_INH need not be supported.

(11) System configuration management functions
DEF_EXC Define CPU Exception Handler (Static API)
ATT_INI Attach Initialization Routine (Static API)

7.4 Data Types

The data types, except those for packets, defined in the Wl TRON4.0 Specification are as
follows:

B Signed 8-hit integer

H Signed 16-bit integer

W Signed 32-bit integer

D Signed 64-bit integer

uB Unsigned 8-bit integer

UH Unsigned 16-bit integer
uw Unsigned 32-bit integer
uD Unsigned 64-bit integer

331



pI TRON4.0 Specification

VB
VH
VW
VD

VP
FP

INT
UINT

BOOL

FN

ER

ID
ATR
STAT
MODE
PRI
SIZE

TMO

RELTIM

SYSTIM

VP_INT

ER_BOOL
ER_ID

ER_UINT

TEXPTN
FLGPTN
T _MSG
T_MSG_PRI
RDVPTN
RDVNO
OVRTIM

Ver. 4.00.00

8-hit value with unknown data type

16-bit value with unknown data type
32-bit value with unknown data type
64-bit value with unknown data type

Pointer to an unknown data type
Processing unit start address (pointer to a function)

Signed integer for the processor
Unsigned integer for the processor

Boolean value (TRUE or FALSE)

Function code (signed integer)

Error code (signed integer)

Object ID number (signed integer)

Object attribute (unsigned integer)

Object state (unsigned integer)

Service call operational mode (unsigned integer)
Priority (signed integer)

Memory area size (unsigned integer)

Timeout (signed integer, unit of time is implementa
tion-defined)
Relative time (unsigned integer, unit of time is implementa
tion-defined)
System time (unsigned integer, unit of time is implementa
tion-defined)

Pointer to an unknown data type, or a signed integer for the
processor

Error code or a boolean value (signed integer)

Error code or an object ID number (signed integers and nega
tive ID numbers cannot be represented)

Error code or an unsigned integer (the number of available
bits for an unsigned integer is one bit shorter than UINT)

Bit pattern for the task exception code (unsigned integer)

Bit pattern of the eventflag (unsigned integer)

Message header for a mailbox

M essage header with a message priority for a mailbox

Bit pattern of the rendezvous condition (unsigned integer)
Rendezvous number

Processor time (unsigned integer, unit of time is implementa
tion-defined)

332



M TRON4.0 Specification Ver. 4.00.00

INHNO Interrupt handler number
INTNO Interrupt number

IXXXX Interrupt mask

EXCNO CPU exception handler number

Among the above data types, the definition of the following data type is standardized:

typedef struct t_msg_pri {
T _MSG msgque ; /* Message header */
PRI msgpri ;  /* Message priority */
} T_MSG_PRI ;

[Standard Profile]

The data types, except those for packets, that must be defined in the Standard Profile,
their minimum number of bits, and their unit of time are as follows:

B Signed 8-bit integer

H Signed 16-bit integer

W Signed 32-bit integer

uB Unsigned 8-bit integer

UH Unsigned 16-bit integer

uw Unsigned 32-bit integer

VB 8-bit value with unknown data type

VH 16-bit value with unknown data type

VW 32-bit value with unknown data type

VP Pointer to an unknown data type

FP Processing unit start address (pointer to afunction)

INT Signed integer for the processor (16 or more bits)

UINT Unsigned integer for the processor (16 or more bits)

BOOL Boolean value (TRUE or FALSE)

FN Function code (signed integer, 16 or more bits)

ER Error code (signed integer, 8 or more bits)

ID Object ID number (signed integer, 16 or more bits)

ATR Object attribute (unsigned integer, 8 or more hits)

STAT Object state (unsigned integer, 16 or more hits)

MODE Service call operationa mode (unsigned integer, 8 or more
bits)

PRI Priority (signed integer, 16 or more bits)

SIZE Memory area size (unsigned integer, equal to the number of
bitsin a pointer)

TMO Timeout (signed integer, 16 or more bits, unit of time is 1
MSeC)

333



pI TRON4.0 Specification Ver. 4.00.00

RELTIM

SYSTIM

VP_INT

ER_UINT

TEXPTN

FLGPTN

T _MSG

T _MSG_PRI
INHNO
INTNO
EXCNO

Relative time (unsigned integer, 16 or more bits, unit of time
is1 msec)

System time (unsigned integer, 16 or more bits, unit of timeis
1 msec)

Pointer to an unknown data type, or a signed integer for the
processor

Error code or an unsigned integer (the number of available
bits for an unsigned integer is one bit shorter than UINT)

Bit pattern for the task exception code (unsigned integer, 16 or
more bits)

Bit pattern of the eventflag (unsigned integer, 16 or more bits)
Message header for a mailbox

Message header with a message priority for a mailbox
Interrupt handler number (when DEF_INH is supported)
Interrupt number (when ATT _ISR is supported)

CPU exception handler number

7.5 Packet Formats

(1) Task management functions

Task creation information packet:
typedef struct t_ctsk {

ATR
VP_INT
FP

PRI
SIZE
VP

tskatr ; /* Task attribute */

exinf ; /* Task extended information */
task ; /* Task start address */

itskpri ; /* Task initial priority */

stksz ; /* Task stack size (in bytes) */

stk ; /* Base address of task stack space */

/* Other implementation specific fields may be added. */

}T_CTSK ;
Task state packet:

typedef struct t_rtsk {

STAT
PRI
PRI
STAT
ID

TMO
UINT
UINT
UINT

tskstat;  /* Task state */

tskpri ; /* Task current priority */

tskbpri ;  /* Task base priority */

tskwait ; /* Reason for waiting */

wobjid ; /* Object ID number for which thetask is
waiting */

lefttmo ;  /* Remaining time until timeout */

actent ; /* Activation request count */

wupcnt ;  /* Wakeup request count */

suscnt;  /* Suspension count */

334



M TRON4.0 Specification Ver. 4.00.00
/* Other implementation specific fields may be added. */
} T_RTSK;

Task state packet (ssimplified version):
typedef struct t_rtst {

STAT tskstat;  /* Task state */

STAT tskwait ; /* Reason for waiting */

/* Other implementation specific fields may be added. */
}T_RTST;

(3) Task exception handling functions

Task exception handling routine definition information packet:
typedef struct t_dtex {

ATR texatr ; /* Task exception handling routine
attribute */
FP texrtn ; /* Task exception handling routine start
address */
/* Other implementation specific fields may be added. */
} T_DTEX;

Task exception handling state packet:

typedef struct t_rtex {
STAT texstat ;  /* Task exception state */
TEXPTN  pndptn; /* Pending exception code */
/* Other implementation specific fields may be added. */
}T_RTEX;

(4) Synchronization and communication functions

Semaphore creation information packet:
typedef struct t_csem {

ATR sematr ;  /* Semaphore attribute */
UINT isemcnt ; /* Initial semaphore resource count */
UINT maxsem ; /* Maximum semaphore resource count */
/* Other implementation specific fields may be added. */

} T_CSEM;

Semaphore state packet:

typedef struct t_rsem {

ID wtskid ; /* 1D number of the task at the head of the
semaphore’s wait queue */

UINT semcnt ;  /* Current semaphore resource count */
/* Other implementation specific fields may be added. */

} T_RSEM ;

Eventflag creation information packet:
typedef struct t_cflg {

ATR flgatr ; /* Eventflag attribute */
FLGPTN  iflgptn ; /* Initia value of the eventflag bit
pattern */

/* Other implementation specific fields may be added. */

335



pI TRON4.0 Specification Ver. 4.00.00

} T CFLG;
Eventflag state packet:
typedef struct t_rflg {

ID wtskid ; /* 1D number of the task at the head of the
eventflag’'s wait queue */

FLGPTN  flgptn ; /* Current eventflag bit pattern */

/* Other implementation specific fields may be added. */

} T_RFLG;
Data queue creation information packet:
typedef struct t_cdtq {

ATR dtgatr ; /* Data queue attribute */

UINT dtgent ; /* Capacity of the data queue area (the
number of data elements) */

VP dtq ; /* Start address of the data queue area */

/* Other implementation specific fields may be added. */

} T _CDTQ;
Data queue state packet:
typedef struct t_rdtq {

ID stskid ; /* 1D number of the task at the head of the
data queue’s send-wait queue */

ID rtskid ; /* 1D number of the task at the head of the
data queue's recelve-wait queue */

UINT sdtqcnt ;  /* The number of data elements in the data
queue */

/* Other implementation specific fields may be added. */

} T_RDTQ ;
Mailbox creation information packet:
typedef struct t_cmbx {

ATR mbxatr ;  /* Mailbox attribute */

PRI maxmpri ; /* Maximum message priority */

VP mprihd ;  /* Start address of the area for message
gueue headers for each message
priority */

/* Other implementation specific fields may be added. */

} T_CMBX ;

Mailbox state packet:

typedef struct t_rmbx {
ID wtskid ; /* 1D number of the task at the head of
mailbox’s wait queue */
T MSG* pk_msg; /* Start addressof the message packet at
the head of the message queue */
/* Other implementation specific fields may be added. */
} T_RMBX ;

336



M TRON4.0 Specification Ver. 4.00.00

(5) Extended synchronization and communication functions

Mutex creation information packet:
typedef struct t_cmtx {

ATR mtxatr ;  /* Mutex attribute */
PRI ceilpri ; /* Mutex ceiling priority */
/* Other implementation specific fields may be added. */

}T_CMTX ;

Mutex state packet:

typedef struct t_rmtx {

ID htskid ; /* 1D number of the task that locks the
mutex */

ID wtskid ; /* ID number of the task at the head of the

mutex’s wait queue */
/* Other implementation specific fields may be added. */
}T_RMTX;
Message buffer creation information packet:
typedef struct t_cmbf {

ATR mbfatr ; /* Message buffer attribute */
UINT maxmsz ; /* Maximum message size (in bytes) */
SIZE mbfsz ; /* Size of message buffer area (in bytes) */
VP mbf ; /* Start sddress of message buffer area */
/* Other implementation specific fields may be added. */
} T_CMBF ;
Message buffer state packet:
typedef struct t_rmbf {
ID stskid ; /* 1D number of the task at the head of the
message buffer’s send-wait queue */
ID rtskid ; /* 1D number of the task at the head of the
message buffer’s receive-wait queue */
UINT smsgcnt ;  /* The number of messages in the message
buffer */
SIZE fmbfsz ; /* Size of free message buffer areain bytes,

without the minimum control areas */
/* Other implementation specific fields may be added. */
} T_RMBF ;

Rendezvous port creation information packet:
typedef struct t_cpor {

ATR poratr ; /* Rendezvous port attribute */
UINT maxcmsz ; /* Maximum calling message size (in
bytes) */
UINT maxrmsz ; /* Maximum return message size (in
bytes) */
/* Other implementation specific fields may be added. */
} T_CPOR;

337



pI TRON4.0 Specification Ver. 4.00.00

Rendezvous port state packet:
typedef struct t_rpor {
ID ctskid ; /* 1D number of the task at the head of the
rendezvous port’s call-wait queue */
ID atskid ; /* ID number of the task at the head of the

rendezvous port’s accept-wait queue */
/* Other implementation specific fields may be added. */
} T_RPOR;

Rendezvous state packet:

typedef struct t_rrdv {
ID wtskid ; /* 1D number of the task in the termination
waiting state for the rendezvous */
/* Other implementation specific fields may be added. */
} T_RRDV ;

(6) Memory pool management functions

Fixed-sized memory pool creation information packet:
typedef struct t_cmpf {

ATR mpfatr ;  /* Fixed-sized memory pool attribute */
UINT blkent ; /* Total number of memory blocks */
UINT blksz ; /* Memory block size (in bytes) */
VP mpf ; /* Start address of the fixed-sized memory
pool area */
/* Other implementation specific fields may be added. */
} T_CMPF ;

Fixed-sized memory pool state packet:
typedef struct t_rmpf {

ID wtskid ; /* 1D number of the task at the head of the
fixed-sized memory pool’s wait
queue */

UINT fblkent ;  /* Number of free memory blocksin the

fixed-sized memory pool */
/* Other implementation specific fields may be added. */
} T_RMPF ;
Variable-sized memory pool creation information packet:
typedef struct t_cmpl {

ATR mplatr ;  /* Variable-sized memory pool attribute */

SIZE mplsz ; /* Size of the variable-sized memory pool
area (in bytes) */

VP mpl ; /* Start address of the variable-sized

memory pool area */
/* Other implementation specific fields may be added. */
} T_CMPL ;

Variable-sized memory pool state packet:
typedef struct t_rmpl {

338



M TRON4.0 Specification Ver. 4.00.00

ID wtskid ; /* 1D number of the task at the head of the
variable-sized memory pool’s wait
queue */

SIZE fmplsz ; /* Total size of free memory blocksin the
variable-sized memory pool (in
bytes) */

UINT fblksz ; /* Maximum memory block size available
(in bytes) */

/* Other implementation specific fields may be added. */

} T_RMPL ;

(7) Time management functions

Cyclic handler creation information packet:
typedef struct t_ccyc {

ATR cycatr ; /* Cyclic handler attribute */
VP_INT exinf ; /* Cyclic handler extended information */
FP cychdr ;  /* Cyclic handler start address */

RELTIM  cyctim ; /* Cyclic handler activation cycle */

RELTIM  cycphs; /* Cyclic handler activation phase */

/* Other implementation specific fields may be added. */
}T_CCYC;

Cyclic handler state packet:

typedef struct t_rcyc {
STAT cycstat ;  /* Cyclic handler operational state */
RELTIM lefttim ; /* Time |eft before the next activation */
/* Other implementation specific fields may be added. */

} T_RCYC;

Alarm handler creation information packet:
typedef struct t_calm {

ATR almatr ; /* Alarm handler attribute */
VP_INT exinf ; /* Alarm handler extended information */
FP almhdr ;  /* Alarm handler start address */
/* Other implementation specific fields may be added. */
} T_CALM ;

Alarm handler state packet:

typedef struct t_ralm {
STAT almstat ; /* Alarm handler operational state */
RELTIM lefttim ; /* Time |eft before the activation */
/* Other implementation specific fields may be added. */

} T_RALM ;

Overrun handler definition information packet:
typedef struct t_dovr {

ATR ovratr ; /* Overrun handler attribute */
FP ovrhdr ; /* Overrun handler start address */
/* Other implementation specific fields may be added. */

} T_DOVR ;

339



pI TRON4.0 Specification Ver. 4.00.00

Overrun handler state packet:
typedef struct t_rovr {
STAT ovrstat ;  /* Overrun handler operational state */
OVRTIM leftotm ; /* Remaining processor time */
/* Other implementation specific fields may be added. */
} T_ROVR;

(8) System state management functions

System state packet:

typedef struct t_rsys {
/* Implementation specific fields */
} T_RSYS;

(9) Interrupt management functions

Interrupt handler definition information packet:
typedef struct t_dinh {

ATR inhatr ; /* Interrupt handler attribute */
FP inthdr ; /* Interrupt handler start address */
/* Other implementation specific fields may be added. */

} T_DINH ;

Interrupt service routine creation information packet:
typedef struct t_cisr {

ATR isratr ; /* Interrupt service routine attribute */

VP_INT exinf ; /* Interrupt service routine extended
information */

INTNO intno ; /* Interrupt number to which the interrupt
service routine is to be attached */

FP isr ; /* Interrupt service routine start sddress */

/* Other implementation specific fields may be added. */

}T_CISR ;

Interrupt service routine state packet:

typedef struct t_risr {
/* Implementaion-specific fields */
}T_RISR ;

(10) Service call management functions

Extended service call definition information packet:
typedef struct t_dsvc {

ATR svcatr ; /* Extended service call attribute */
FP svcrtn ; /* Extended service call routine start
address */
/* Other implementation specific fields may be added. */
} T_DSVC;

340



M TRON4.0 Specification Ver. 4.00.00

(11) System configuration management functions

CPU exception handler definition information packet:
typedef struct t_dexc {

ATR excatr ; /* CPU exception handler attribute */
FP exchdr ;  /* CPU exception handler start address */
/* Other implementation specific fields may be added. */

} T_DEXC ;

Configuration information packet:
typedef struct t_rcfg {
/* Implementation specific fields */
} T_RCFG;
Version information packet:
typedef struct t_rver {

UH maker ; /* Kernel maker’'s code */

UH prid ; /* |dentification number of the kernel */

UH spver ; /* Version number of the ITRON
Specification */

UH prver ; /* Version number of the kernel */

UH prnol[4] ; /* Management information of the kernel
product */

}T_RVER ;

7.6 Constants and Macros

(1) Object Attributes

TA HLNG 0x00  Start a processing unit through a high-level language

interface
TA_ASM Ox01  Start aprocessing unit through an assembly language
interface

TA TFIFO 0x00  Task wait queueisin FIFO order

TA TPRI 0x01  Task wait queueisin task priority order
TA _MFIFO 0x00  Message queueisin FIFO order
TA_MPRI 0x02  Message queueisin message priority order
TA_ACT 0x02  Task isactivated after the creation

TA_RSTR 0x04  Restricted task
TA WSGL 0x00  Only onetask isallowed to be in the waiting state for

the eventflag

TA WMUL 0x02  Multiple tasks are allowed to be in the waiting state
for the eventflag

TA CLR 0x04 Eventflag's bit pattern is cleared when a task is

341



pI TRON4.0 Specification

TA_INHERIT
TA_CEILING

TA_STA

TA _PHS

0x02
0x03

0x02

0x04

Ver. 4.00.00

released from the waiting state for that eventflag

Mutex uses the priority inheritance protocol
Mutex uses the priority ceiling protocol

Cyclic handler isin an operational state after the cre-
ation
Cyclic handler is activated preserving the activation
phase

(2) Service Call Operational Mode

TWF_ANDW
TWF_ORW

(3) Object States

TTS_RUN
TTS_RDY
TTS_WAI

TTS_SUS
TTS_WAS
TTS_DMT

TTW_SLP
TTW_DLY
TTW_SEM
TTW_FLG
TTW_SDTQ
TTW_RDTQ
TTW_MBX
TTW_MTX
TTW_SMBF
TTW_RMBF
TTW_CAL
TTW_ACP
TTW_RDV
TTW_MPF
TTW_MPL

TTEX_ENA
TTEX_DIS

TCYC_STP
TCYC_STA

TALM_STP

0x00
0x01

0x01
0x02
0x04
0x08
0x0c
0x10

0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x0040
0x0080
0x0100
0x0200
0x0400
0x0800
0x1000
0x2000
0x4000

0x00
0x01

0x00
0x01

0x00

AND waiting condition for an eventflag
OR waiting condition for an eventflag

RUNNING state

READY state

WAITING state

SUSPENDED state
WAITING-SUSPENDED state
DORMANT state

Sleeping state

Delayed state

Waiting state for a semaphore resource
Waiting state for an eventflag

Sending waiting state for a data queue
Recelving waiting state for a data queue
Receiving waiting state for a mailbox
Waiting state for a mutex

Sending waiting state for a message buffer
Receiving waiting state for a message buffer
Calling waiting state for a rendezvous
Accepting waiting state for a rendezvous
Terminating waiting state for a rendezvous
Waiting state for a fixed-sized memory block
Waiting state for a variable-sized memory block

Task exception enabled state
Task exception disabled state

Cyclic handler isin anon-operational state
Cyclic handler isin an operational state

Alarm handler isin anon-operational state

342



M TRON4.0 Specification

TALM_STA  0x0O1
TOVR_STP 0x00
TOVR_STA  0x01

(4) Other constants

TSK_ SELF 0
TSK_NONE 0
0
0

TPRI_SELF
TPRI_INI

(5) Macros

Ver. 4.00.00

Alarm handler isin an operationa state

Processor time limit is not set
Processor time limit is set

Specifying invoking task

No applicable task

Specifying the base priority of the invoking task
Specifying the initial priority of the task

ER mercd = MERCD ( ER ercd)
This macro retrieves the main error code from an error code.

ER sercd = SERCD ( ER ercd)
This macro retrieves the sub error code from an error code.

7.7 Kernel Configuration Constants and Macros

(1) Priority Range

TMIN_TPRI
TMAX_TPRI

TMIN_MPRI
TMAX_MPRI

(2) Version Information

TKERNEL_MAKER
TKERNEL_PRID

Minimum task priority (= 1)
Maximum task priority
Minimum message priority (= 1)
M aximum message priority

Kernel maker code
I dentification number of the kernel

TKERNEL_SPVER Version number of the ITRON Specification
TKERNEL_PRVER Version number of the kernel

(3) Maximum Nesting/Queueing Count

TMAX_ACTCNT
TMAX_WUPCNT
TMAX_SUSCNT

Maximum activation request count
Maximum wakeup request count
M aximum suspension count

(4) Number of Bits in Bitpatterns

TBIT_TEXPTN

Number of bitsin the task exception code

343



pI TRON4.0 Specification Ver. 4.00.00

TBIT_FLGPTN Number of bitsin an eventflag
TBIT_RDVPTN Number of bitsin arendezvous condition

(5) Time Tick Period

TIC_NUME Timetick period numerator
TIC_DENO Time tick period denominator

(6) Required Memory Size

SIZE dtgsz = TSZ_DTQ ( UINT dtqcnt )

Total required size of the data queue area in bytes necessary to store dtgcnt
data elements

SIZE mprihdsz = TSZ_MPRIHD ( PRI maxmpri )

Total required size in bytes of the areafor message queue headers for each mes-
sage priority, when the maximum message priority is maxmpri

SIZE mbfsz = TSZ_MBF ( UINT msgcnt, UINT msgsz )

Approximate required size of the message buffer areain bytes necessary to store
msgcnt messages each consisting of msgsz bytes

SIZE mpfsz = TSZ_MPF ( UINT blkcnt, UINT blksz )

Total required size of the fixed-size memory pool area in bytes necessary to
allocate blkcnt memory blocks each of size blksz bytes

SIZE mplsz = TSZ_MPL ( UINT blkcnt, UINT blksz )

Approximate size in bytes necessary to allocate blkcnt memory blocks each of
size blksz bytes

(7) Others

TMAX_MAXSEM Maximum value of the maximum definable semaphore
resource count

7.8 Error Code List

E_SYS -5 System error
E_NOSPT -9 Unsupported function
E RSFN -10 Reserved function code
E _RSATR -11 Reserved attribute
E_PAR =17 Parameter error

E_ID -18 Invalid ID number

E CTX 25 Context error



M TRONA4.0 Specification Ver. 4.00.00

E_MACV —26 Memory access violation

E_OACV 27 Object access violation

E_ILUSE -28 [llegal service call use

E_NOMEM -33 I nsufficient memory

E_NOID =34 No ID number available

E OBJ —41 Object state error

E_NOEXS 42 Non-existent object

E QOVR —43 Queue overflow

E_RLWAI —49 Forced release from waiting

E TMOUT -50 Polling failure or timeout

E DLT 51 Waiting object deleted

E CLS 52 Waiting object state changed

E WBLK 57 Non-blocking call accepted

E BOVR -58 Buffer overflow

7.9 Function Code List
-0 -1 -2 -3

—0x01 reserved reserved reserved reserved
—0x05 cre_tsk del tsk act_tsk can_act
—0x09 sta_tsk ext_tsk exd_tsk ter_tsk
—0x0d chg_pri get_pri ref _tsk ref_tst
—-0x11 slp_tsk tslp_tsk wup_tsk can_wup
—0x15 rel_wai sus_tsk rsm_tsk frsm_tsk
—0x19 dly tsk reserved def tex ras_tex
-0x1d dis_tex ena_tex sns_tex ref tex
—0x21 cre_sem del_sem sig_sem reserved
—0x25 wai_sem pol_sem twai_sem ref sem
—0x29 cre_flg del flg set flg clr_flg
—0x2d wai_flg pol_flg twai_flg ref flg
—0x31 cre_dtq del_dtq reserved reserved
—0x35 snd_dtq psnd_dtg | tsnd_dtq fsnd_dtq
—0x39 rcv_dtq prcv_dtq trcv_dtq ref _dtq
—0x3d cre_mbx del_mbx snd_mbx reserved
—0x41 rcv_mbx | prcv_mbx | trcv_mbx ref_mbx
—0x45 cre_mpf del_mpf rel_mpf reserved
—0x49 get_mpf pget_ mpf | tget mpf ref_mpf
—0x4d set_tim get_tim cre_cyc del_cyc
—0x51 sta_cyc stp_cyc ref_cyc reserved

345




Ver. 4.00.00

M TRONA4.0 Specification
—0x55 rot_rdq get_tid reserved reserved
—0x59 loc_cpu unl_cpu dis_dsp ena_dsp
—0x5d sns_ctx sns_loc sns_dsp sns_dpn
—0x61 ref_sys reserved reserved reserved
—0x65 def inh cre_isr del _isr ref _isr
—0x69 dis_int ena_int chg_ixx get_ixx
—0Ox6d def svc def_exc ref _cfg ref ver
—0x71 jact_tsk iwup_tsk irel_wai iras_tex
—0x75 isig_sem iset_flg ipsnd_dtq | ifsnd_dtq
—0x79 irot_rdq iget_tid iloc_cpu iunl_cpu
—0x7d isig_tim reserved reserved reserved
—0x81 cre_mtx del_mtx unl_mtx reserved
—0x85 loc_mtx ploc_mtx tloc_mtx ref_mtx
—0x89 cre_mbf del_mbf reserved reserved
—0x8d snd_mbf | psnd _mbf | tsnd_mbf reserved
—0x91 rcv_mbf prcv_mbf | trcv_mbf ref_mbf
—0x95 cre_por del_por cal_por tcal_por
—0x99 acp_por pacp_por | tacp_por fwd_por
—0x9d rpl_rdv ref_por ref_rdv reserved
—Oxal cre_mpl del_mpl rel_mpl reserved
—0xab get_mpl pget_mpl tget_mpl ref_mpl
—0xa9 cre_alm del_alm sta_alm stp_alm
—Oxad ref_alm reserved reserved reserved
—0Oxb1 def ovr sta_ovr stp_ovr ref_ovr
—0xb5 reserved reserved reserved reserved
—0xb9 reserved reserved reserved reserved
—Oxbd reserved reserved reserved reserved
—0xcl acre_tsk | acre_sem acre_flg acre_dtq
—0xc5 acre_mbx | acre_mtx | acre_mbf | acre_por
—0xc9 acre_mpf | acre_mpl acre_cyc acre_alm
—Oxcd acre_isr reserved reserved reserved
—0Oxd1 reserved reserved reserved reserved
—0xd5 reserved reserved reserved reserved
—0xd9 reserved reserved reserved reserved
—Oxdd reserved reserved reserved reserved
—Oxel implementation-specific service calls
—0xeb implementation-specific service calls
—0xe9 implementation-specific service calls
—Oxed implementation-specific service calls

346




M TRON4.0 Specification

Ver. 4.00.00

—Oxf1l

implementation-specific service calls

—0xf5

implementation-specific service calls

—0xf9

implementation-specific service calls

—Oxfd

implementation-specific service calls

347



pI TRON4.0 Specification Ver. 4.00.00

348



M TRON4.0 Specification Ver. 4.00.00

Index

Thisis an index of the terms used in the main body of the Wl TRON4.0 Specification
(Chapter 2 to Chapter 5). The number refers to the page where the term is defined or
explained.

A
2o A7 Lo g I (o) = S 2 TSRS 53
ACHIVALION FEQUESE COUNL ....eouveeciieciee ettt e e e e ne e snreeneeenes 79
BCLIVE STAIES ...ttt bbbttt et e b 53
AAM NANAIEY ... s 250
N SRS 24
2 (0111 | TSP 25
atomicCity (Of SEVICE Call) ..veeeieeee e 64
attachment (Of ODJECL) ...ovveeiee e 73
automatic assignment header file ..o 26
automatic 1D number assignment (by configurator) .........cccccceveeeeeieesieernseeseenens 34
automatic 1D number assignment (by service call) ... 73
Automotive Control Profile ..........oooveeiiie e e 308
B
(07215 SN 00 1 Y PR SR 79
DIOCKED STALE ... bbb 52
C
(07 1 0 oSS 24
calling message (Of FENAEZVOUS) ........cccevviruirierinieieie e 193
(00010 U] 1 0] SRRSO 32
(0002 | PR RT PRSP 26
(60 012 RS T PR PR 51
CPU exception NanIEr .........c.ooeeiice e 60, 297
(O U [0Te: (= o [ = (S 64
CPU SEALE ..ttt ettt st e b e st e et s e e e b e nneeneas 64
CPU UNIOCKEA SLALE .....oveeieeeieiee ettt e 64
creation (Of ODJECL) ..eoeeiceece 27,73
(001 = 01 0T 0] YOS 79
[0,V ox ol 7= o = S 240
D
(012 2= o (U= USSPV 145
(072 22 0 1Y 0= URRSPR 25
definition (Of ODJECL) .....ocveeiie e e e 27



pI TRON4.0 Specification Ver. 4.00.00

delayed execution (Of SErVICE Call) .....oocvereiiiiie e 70
(005 e S 0 [ = (RSSO 111
deletion (Of ODJECL) ....ccveeeececee e 73
dispatch PENdiNG SLALE ........cccceeiiieeieiee e ne s 67
(0117 (0 = ST P PR PRPRPR 51
(011" (0 111 0o SO P PSPPSR 51
dispatching disabled SEALE .........ccueiieiieiece e 66
dispatching enabled SLALE ..........ceeiieiiiiiie e 66
iSPAChING SLALE ..o s ne s 66
DORMANT SEAE ..o.vieeiiieiieieie ettt sttt st b e enes 53
E
LS 0] 0 = SRS 28
LS 0] g 000 [ USRTRS 28
EVENLTIAG .o 134
exXtended INFOIMELION ..ot 30
extended SEIVICE Call ..o s 292
extended SErVICE Call FOULINE ........ccueieiieeeee et e e 62, 292
F
O TS 55
fixed-sized MemMOry POOI .........ocuieiie e s 214
FUNCLION COOR ..ottt bbb 28
G
general constant eXPressioN PAraMELES .........cccoerererenenenieeee e 35
glue routine (for CPU exception handler) ... 60
glue routine (for interrupt haNAIEr) .........cocee e 57
H
NEAAEN Tl ... e 26
I
0 00 01T SRS 26
implementation-defiNed ..o 23
implementation-dePeNdENT ..o 23
IMPIeMENtatiON-SPECITIC ....ccveeieie et 23
INItIAlIZALTION FOULINE ....voviveiieeiieieeee et s 72,297
INSUFTiCIENt rESOUICE EITON ClaSS ....c..iiviiiiiiieieeiieee ettt 45
INEEJEN PAIBIMELEN ....oeiiiiieetieteeee ettt b e bttt e et bbb ne e 35
integer parameter with automatic aSSIGNMENT .........ooeierenerieeee e 34
integer parameter without automatiC aSSIgNMENT ........ccevererierieererere e 34
INEEINEI EITOI CLASS ..o ee s 44



M TRON4.0 Specification Ver. 4.00.00

INEENEl TAENTIFTEN ... e 41
1= (1o S 57
L1 0] o1 7= | = SRS 57, 279
interrupt handler NUMDEL ..........oiiie s 59
INEEITUPE NUMDET ...ttt n e e 59
INEETUPL SEIVICE FOULINE .....veeiiiiieiee ettt sttt sae e 57, 279
INVOKING CONLEXE EITON ClESS ......eciiieiiicciie et 45
LYo T g0 = S 2SS 51
LR et e b A bbbt h ettt nae b e 57
ITRON general concepts, rules, and guidelings ...........ccoererenininieenenese s 23
ITRON general CONSIANT .........coiiieiiieriesie sttt 44
ITRON general dafatyIe ......cooueeeeiieeiiiiesiee ettt 41
ITRON geNneral MACIO .....c.coccuieiiiiiiiecie ettt s ste b e s aeesreesnneens 438
ITRON general StatiC APl .......ooeeeeeece st 48
K
kernel configuration CONSEANT ..........ccovererererenieee e 75
kernel configuration MBCTO .......cc.oovireriinereeeeeeee et 75
L
100Se StANAArTiZALTION ......cooveiiiiieeee s 305
M
7= o 0 PSPPSR 26
0= ) G 158
(0= A= g 0 o0 0 [ 28, 44
00T 0070V o0 o PR 214
QIS0 SN o i = SR 181
MESSAPE NEALEN .....c.veceeeceeece et et r e nns 158
MESSAGE PACKEL ....eevieeiecieeiie et e st e st e e e s b e et e sreesaeenesneenneenns 158
0101 TSROSO 170
N
nesting (of task SUSPENtiON FEQUESES) ......ceeruiriereeie et 101
(7ol o [oox (] oo PSSR 31
NON-EXISTENT SELE .....coveieiieiieiiesiisiesieseses et sse e s sne e 53
NON-KErNEl INEEITUPL .....ccveeieeieeece et 58
NON=TOCAl JUM ..ttt e nnenne s 114
NON-TASK CONLEXES ....vvvieiveeieeiiesieeie et see e ste e te e sre e ae s esteetesreesreeneesseenseeneesreenes 62
O
(0] o] = of AR 26
(o] o 1= et A= 11 ] 11 = RSOSSN 30



pI TRON4.0 Specification Ver. 4.00.00

ODJECE NUMDEY ...t s ne s 27
(0] o)1= o B = (=X < 1 o e = SRS 46
OVEITUN NANAIEY ..t 258
P
87201 K. ST PP PRSI 25
S22 2T 11 PO PR 25
PArAMELEr ©ITOFN CIESS ....oivieeieieeiesie ettt see e nee e 45
PeNding EXCEPLION COUE ......c.uiiiieiiectee et e e nree s 112
070 1T o OSSR 31
QTS0 0 (= Tor SRS 51
precedence (between ProCeSSING UNITS) .....c.ceceeereereresierieseseseesee e 63
precedence (DEEWEEN TASKS) .......coveririeririirieeee et 55
(1S, 1 0] L PRSP UPRR 53
preprocessor constant eXpPressionN PAraMELer .........ccveiveeveeiieeeireesee e see e see s 35
010 1 YOS 27
(LA L0 gAY (0] =S O SSPS 79
Priority CelliNG ProtOCOI .........coiierieieieiere e 170
priority iNheritance ProtoCOl ............ccoceierirererereee e 170
PriOILY INVEISIONS ....ouiiieieieeiiesteeiesteesee e e e e saeesae et e sseesbeenessreesteeneesseenneeneenes 170
[100101= 10T U [T PSR 61
ProCeSSOr tIME [IMIT ......coveiieceece et 258
ProCESSON tHME USEA .....eoveeiieciieitieie sttt e ettt et esreenn e e neeaeeneenns 258
PIrOFHETUIE ..ot 305
Q
gueueing (Of task activation rEQUESES) .......ccoeerererrieeiesee e e 79
gueueing (Of task Wakeup reQUESES) .......covuereerieriinie et 101
R
READY SEBLE ....veveitiiieiiieiieee ettt sttt sttt sr s 52
== I U0 TSRS 32
registration (Of ODJECL) .....ooeeieiee e 27
FRIAHIVE TIME ...ttt ettt e seesreeneeeneesneene s 32
release task froM Wating .......ccvecveeiie i 53
1= 010 (7AYo U SRS PRRRPSN 193
FENAEZVOUS NUIMDES ...ttt sttt e e bbb b b nesseeneas 194
L= 016 (<74Y [0 18 S oo g SRS 193
=S Lo =0 = S QS 308
restriction (of service call funCtioNality) .......ccocoovereriirieiieee e 305
resume (Of suSPEeNded task) .........cccoviiiieiie e 53
return message (Of rENdEZVOUS) .........cccoeeeeieeiice et 193



M TRON4.0 Specification Ver. 4.00.00

S U gl 0= = 10 01 (= SRR 25
return value (Of SErVICE Call) ....cuvevieee e 28
round-robin SCheduling ........ccooveiiei e 55, 267
FUNNGDIE SLALE .....c.veeeeeeee ettt e et sreesne e e e s re e neeneenreenes 52
RUNNING SEAE ...ovecveceieeieieiesies ettt ste e e e e e aesseseesaesnennens 52
S
S0 1 0 U] PSPPSRI 51
5o 10 U] 11 [OOSR 51
o010 (U] 11 0T [ (0= USSR 55
S < 017210 00 S USSP 125
S VLo o | R SRUSPR 24
service Calls for NON-Task CONLEXLS .........covvrirrieiiniesie e e 69
Service CalS for task CONLEXLS ........ccociiieiiriirieriee e e 70
simplified priority CONLrol FUIE .........ccoviieiieie e 171
S LSS o1 010 R = = 103
software CompPONENt IAENTITIEN .........ccoiiririreeeee e 36
S = 0 T0 = ol 0 = R 306
Sz 00 (X (o) = S 2 ISP 79
state tranSitioNS (OF tASK) .......eecieeiieciieiie e 53
S o o OSSO 24
£z ol A o I 0 (0= SRR 72
StriCt Priority CONIOl TUIE ....oeeeeieeeeeee e 171
ST oI (0] g ol o [ STSPRN 28
subsetting (of service call functionalities) ..........ccooveiereneeiireeee e, 305
SUSPENDED SEAE .....vecveeveeiieiieieiesie sttt st st se e saesse s snas 52
TS 1< 0150 0 1o U | S 101
SYSLEM Call ..o e e nreene e 24
System configuration fIl@ ..o e 32
SYSLEM ODJECT ... e 27
YA (= 1 4 (] 1SS 32,235
T
L6215 QRSSO 51
L6215 Q00 11> £ TSSO 62
task CONtrol DIOCK (TCB) ....cooviiiriirieriesierierieeiee et 116
t8SK QISPAICNEY ... 51
1225 1Q0 (1S 7= (6 1 oo IR S URTSTR 51
taSK EXCEPLION COUR ......ueeiirieiee ettt st e e n e neas 112
task exception disabled State .........ccccceeeieiiiicce e 112
task exception enabled SLALE .........cccveeeiceecee e 112
task exception handling FOULINE ..........coeeeeieieriese s 60, 112



pI TRON4.0 Specification Ver. 4.00.00

tASK SCHEAUIEY ... e 51
taSK SCNEAUIING ... eb e snneeree s 51
162 5 QR = (= S 52
termination (Of TASK) .....c.ccveeeiice e s 53
tIME EVENE NANAIES ... e e s 61, 235
TIME TICK ettt aeete e e e sreeeeeneesreenne s 235
L0070 L SR 30
transitive Priority INNENTANCE .......cccevieiiieceece e e 171
U
01070 = 11 [PPSR 23
UNSUPPOITE EITOF CLASS ... 44
0 g0 o] = TSP PRPRPR 27
Vv
variable-sized memory POOI ........cooeeiiiiie e 224
w
Waiting rel€aSed EITON ClESS .......cccvieeciecie et 46
WAITING SEBLE ....ecuveveeieiecie ettt st e e e s aestesresnesneeneennennas 52
WAITING-SUSPENDED SEate ......c.ceiieieieiesie sttt et eneeneas 52
WaKEUP FEQUESE COUNT .....ovieeieieeiiesteeie et eee ettt et esreesneeneesneeeeas 101
(V= 1 e [ = SRS 47

354



	A Word from the Project Leader
	Preface
	Organization of the Specification Document
	Description Format of the Specification Document
	Table of Contents
	Service Call Index
	Static API Index
	Chapter 1 Background of µITRON4.0 Specification
	1.1 TRON Project
	1.1.1 What is the TRON Project?
	Toward the 21st Century
	Open Architecture
	Loose Standardization
	Future Compatibility
	Standardization of Operation

	1.1.2 Basic Sub-Projects
	ITRON (Industrial TRON) and JTRON
	BTRON (Business TRON)
	CTRON (Communication and Central TRON)
	TRON HMI

	1.1.3 Application Sub-Projects
	Computer Augmented Environment
	Multi-Media Network Service Platform (MNP)
	Digital Museum
	Distributed Software Platform for Information Home Electronics


	1.2 History and Current Status of the ITRON Specifications
	1.2.1 Current State and Features of Embedded System
	1.2.2 Requirements for RTOS on Embedded System
	1.2.3 Current Status of the ITRON Specifications

	1.3 ITRON Specification Design Policy
	1.4 Position of the µITRON4.0 Specification
	1.4.1 Second Phase Standardization Activities of the ITRON Project
	1.4.2 Necessity of the µITRON4.0 Specification
	1.4.3 Introduction of the Standard Profile
	1.4.4 Realization of a Wider Scalability
	1.4.5 New Functions in the µITRON4.0 Specificatio
	Exception Handling Functions
	Data Queues
	System State Reference Functions
	Object Creation Functions for Automatic ID Number Assignment
	Interrupt Service Routines
	Mutexes
	Overrun Handler
	Standard Configuration Method



	Chapter 2 ITRON General Concepts, Rule, and Guidelines
	2.1 ITRON General Concepts
	2.1.1 Terminologies
	2.1.2 Elements of an API
	2.1.3 Object ID Numbers and Object Numbers
	2.1.4 Priorities
	2.1.5 Function Codes
	2.1.6 Return Values of Service Calls and Error Codes
	2.1.7 Object Attributes and Extended Information
	2.1.8 Timeout and Non-Blocking
	2.1.9 Relative Time and System Time
	2.1.10 System Configuration File
	2.1.11 Syntax and Parameters of Static APIs

	2.2 API Naming Convention
	2.2.1 Software Component Identifiers
	2.2.2 Service Calls
	2.2.3 Callbacks
	2.2.4 Static APIs
	2.2.5 Parameter and Return Parameter
	2.2.6 Data Types
	2.2.7 Constants
	2.2.8 Macros
	2.2.9 Header Files
	2.2.10 Kernel and Software Component Internal Identifiers

	2.3 ITRON General Definitions
	2.3.1 ITRON General Data Types
	2.3.2 ITRON General Constants
	(1) General Constants
	(2) Main Error Codes
	(3) Object Attribute
	(4) Timeout Specification

	2.3.3 ITRON General Macros
	(1) Error Code Retrieving Macros

	2.3.4 ITRON General Static APIs
	(1) File Inclusion



	Chapter 3 Concepts and Common Definitions in µITR
	3.1 Glossary of Basic Terms
	(1) Task and Invoking Task
	(2) Dispatching and Dispatcher
	(3) Scheduling and Scheduler
	(4) Context
	(5) Precedence

	3.2 Task States and Scheduling Rule
	3.2.1 Task States
	3.2.2 Task Scheduling Rules

	3.3 Interrupt Process Model
	3.3.1 Interrupt Handlers and Interrupt Service Routines
	3.3.2 Ways to Designate an Interrupt

	3.4 Exception Process Model
	3.4.1 Exception Processing Framework
	3.4.2 Operations within a CPU Exception Handler

	3.5 Context and System State
	3.5.1 Processing Units and Their Contexts
	3.5.2 Task Contexts and Non-Task Contexts
	3.5.3 Execution Precedence and Service Call Atomicity
	3.5.4 CPU Locked State
	3.5.5 Dispatching Disabled State
	3.5.6 Task State during Dispatch Pending State

	3.6 Service Call Invocation from Non-Task Contexts
	3.6.1 Service Calls that can be Invoked from Non-Task Contexts
	3.6.2 Delayed Execution of Service Calls
	3.6.3 Adding Service Calls that can be Invoked from Non-Task Contexts

	3.7 System Initialization Procedure
	3.8 Object Registration and Release
	3.9 Description Format for Processing Unit
	3.10 Kernel Configuration Constants and Macros
	3.11 Kernel Common Definitions
	3.11.1 Kernel Common Constants
	(1) Object Attributes
	(2) Main Error Codes Used in Kernel
	(3) Service Call Function Codes
	(4) Other Kernel Common Constants

	3.11.2 Kernel Common Configuration Constants
	(1) Priority Range
	(2) Version Information



	Chapter 4 µITRON4.0 Functions
	4.1 Task Management Functions
	CRE_TSK
	cre_tsk
	acre_tsk
	del_tsk
	act_tsk
	iact_tsk
	can_act
	sta_tsk
	ext_tsk
	exd_tsk
	ter_tsk
	chg_pri
	get_pri
	ref_tsk
	ref_tst

	4.2 Task Dependent Synchronization Functions
	slp_tsk
	tslp_tsk
	wup_tsk
	iwup_tsk
	can_wup
	rel_wai
	irel_wai
	sus_tsk
	rsm_tsk
	frsm_tsk
	dly_tsk

	4.3 Task Exception Handling Functions
	DEF_TEX
	def_tex
	ras_tex
	iras_tex
	dis_tex
	ena_tex
	sns_tex
	ref_tex

	4.4 Synchronization and Communication Functions
	4.4.1 Semaphores
	CRE_SEM
	cre_sem
	acre_sem
	del_sem
	sig_sem
	isig_sem
	wai_sem
	pol_sem
	twai_sem
	ref_sem

	4.4.2 Eventflags
	CRE_FLG
	cre_flg
	acre_flg
	del_flg
	set_flg
	iset_flg
	clr_flg
	wai_flg
	pol_flg
	twai_flg
	ref_flg

	4.4.3 Data Queues
	CRE_DTQ
	cre_dtq
	acre_dtq
	del_dtq
	snd_dtq
	psnd_dtq
	ipsnd_dtq
	tsnd_dtq
	fsnd_dtq
	ifsnd_dtq
	rcv_dtq
	prcv_dtq
	trcv_dtq
	ref_dtq

	4.4.4 Mailboxes
	CRE_MBX
	cre_mbx
	acre_mbx
	del_mbx
	snd_mbx
	rcv_mbx
	prcv_mbx
	trcv_mbx
	ref_mbx


	4.5 Extended Synchronization and Communication Functions
	4.5.1 Mutexes
	CRE_MTX
	cre_mtx
	acre_mtx
	del_mtx
	loc_mtx
	ploc_mtx
	tloc_mtx
	unl_mtx
	ref_mtx

	4.5.2 Message Buffers
	CRE_MBF
	cre_mbf
	acre_mbf
	del_mbf
	snd_mbf
	psnd_mbf
	tsnd_mbf
	rcv_mbf
	prcv_mbf
	trcv_mbf
	ref_mbf

	4.5.3 Rendezvous
	CRE_POR
	cre_por
	acre_por
	del_por
	cal_por
	tcal_por
	acp_por
	pacp_por
	tacp_por
	fwd_por
	rpl_rdv
	ref_por
	ref_rdv


	4.6 Memory Pool Management Functions
	4.6.1 Fixed-Sized Memory Pools
	CRE_MPF
	cre_mpf
	acre_mpf
	del_mpf
	get_mpf
	pget_mpf
	tget_mpf
	rel_mpf
	ref_mpf

	4.6.2 Variable-Sized Memory Pools
	CRE_MPL
	cre_mpl
	acre_mpl
	del_mpl
	get_mpl
	pget_mpl
	tget_mpl
	rel_mpl
	ref_mpl


	4.7 Time Management Functions
	4.7.1 System Time Management
	set_tim
	get_tim
	isig_tim

	4.7.2 Cyclic Handlers
	CRE_CYC
	cre_cyc
	acre_cyc
	del_cyc
	sta_cyc
	stp_cyc
	ref_cyc

	4.7.3 Alarm Handlers
	CRE_ALM
	cre_alm
	acre_alm
	del_alm
	sta_alm
	stp_alm
	ref_alm

	4.7.4 Overrun Handler
	DEF_OVR
	def_ovr
	sta_ovr
	stp_ovr
	ref_ovr


	4.8 System State Management Functions
	rot_rdq
	irot_rdq
	get_tid
	iget_tid
	loc_cpu
	iloc_cpu
	unl_cpu
	iunl_cpu
	dis_dsp
	ena_dsp
	sns_ctx
	sns_loc
	sns_dsp
	sns_dpn
	ref_sys

	4.9 Interrupt Management Functions
	DEF_INH
	def_inh
	ATT_ISR
	cre_isr
	acre_isr
	del_isr
	ref_isr
	dis_int
	ena_int
	chg_ixx
	get_ixx

	4.10 Service Call Management Functions
	DEF_SVC
	def_svc
	cal_svc

	4.11 System Configuration Management Functions
	DEF_EXC
	def_exc
	ref_cfg
	ref_ver
	ATT_INI


	Chapter 5 Additional Specifications
	5.1 The Specification Requirements for the µITRON
	5.1.1 Basic Concept
	5.1.2 Minimum Required Functionalities
	5.1.3 Extension of the µITRON4.0 Specification

	5.2 Automotive Control Profile
	5.2.1 Restricted Tasks
	5.2.2 Functionalities Included in the Automotive Control Profile

	5.3 Version Number of the Specifications
	5.4 Maker Codes

	Chapter 6 Appendix
	6.1 Conditions for Using the Specification and the Specification Document
	Conditions for Using the Specification
	Conditions for Using the Specification Document
	Disclaimer

	6.2 Maintenance of the Specification and Related Information
	Maintenance of the ITRON Specifications and Contact Information
	ITRON Project Web Site
	The ITRON Newsletter
	ITRON-Specification Product Registration System
	Reference documents

	6.3 Background and Development Process of the Specification
	Background and Development Process of the Specification
	Member List of the ITRON Committee of the TRON Association (in alphabetical order)
	Member List of the Kernel Specification Working G
	Contributors to the English Translation of the µI

	6.4 Version History

	Chapter 7 References
	7.1 Service Call List
	7.2 Static API List
	7.3 Static APIs and Service Calls in the Standard Profile
	7.4 Data Types
	7.5 Packet Formats
	7.6 Constants and Macros
	(1) Object Attributes
	(2) Service Call Operational Mode
	(3) Object States
	(4) Other constants
	(5) Macros

	7.7 Kernel Configuration Constants and Macros
	(1) Priority Range
	(2) Version Information
	(3) Maximum Nesting/Queueing Count
	(4) Number of Bits in Bitpatterns
	(5) Time Tick Period
	(6) Required Memory Size
	(7) Others

	7.8 Error Code List
	7.9 Function Code List

	Index

