

ITRON TCP/IP API
Specification

Ver. 2.00.00

Supervised by Ken Sakamura
Edited and Published by

TRON ASSOCIATION

ITRON TCP/IP API Specification (Ver. 2.00.00) __

The copyright of this specification document belongs to TRON Association.

§ TRON is the abbreviation of "The Real-time Operating system Nucleus."
§ ITRON is the abbreviation of "Industrial TRON."
§ TRON, ITRON, and T-Kernel do not refer to any specific product or products.

Copyright(C)2007 by TRON ASSOCIATION

ITRON TCP/IP API Specification Ver. 2.00.00

Preface

Networks constitute absolutely indispensable infrastructure for realizing ubiquitous computing

environments.

Enjoyment of information services by anyone, anytime, and anywhere requires that various

devices be interconnected through networks, constantly exchanging the most up-to-date

information, and functioning in harmony.

TCP/IP is the major network protocol for such ubiquitous computing environments. Thus far, a

socket interface has been the typical API for TCP/IP. Since it was originally developed for servers

and personal computers, however, it has been unable to fully satisfy the requirements of systems

that have strict limitations on hardware resources, such as embedded systems. The TRON project

thus designed the ITRON TCP/IP API Specification as an API specification that is optimal for

embedded use. Version 1.0 was created in 1998. In the eight years since then, this specification

has established a place as a representative API for the use of embedded systems on networks and

been incorporated in many products.

Networking and embedded-system technologies have changed greatly compared with those

available eight years ago. For example, the household Internet penetration rate in Japan was then

about 10%, but is now over 85%. Most remarkable is the growth in the number of users accessing

the Internet through embedded systems such as mobile phones or PDAs; in statistics at the end of

2005, the number of users going through embedded systems to access the Internet had surpassed

the number going through personal computers. Thus, the demand has come to be for embedded

systems with complexity and advanced functionality, including functionality for network

connection, rather than the conventional simple ones. In response to this demand for advanced

embedded systems, the TRON Project deployed µITRON4.0 and then the T-Kernel as real-time

kernel specifications. TCP/IP which forms the base of the Internet has also greatly changed. The

IPv6 specification was still under development when we created version 1.0 of the ITRON

TCP/IP API Specification; now, the specification has been settled and is being applied for actual

operation.

These changes in the technological situations for networks and embedded systems have made it

necessary to adapt the ITRON TCP/IP API Specification in response to new technologies. We

have thus revised the ITRON TCP/IP API Specification to produce Version 2.0 with a focus on

ITRON TCP/IP API Specification Ver. 2.00.00

support for the T-Kernel, and µITRON4.0, and the IPv6 specification.

To enable the reuse of software based on the earlier version, we have also tried to maintain

maximum compatibility with the earlier specification while revising it to support new

technologies. We have also carefully considered facilitating the porting of software for earlier

versions to the new real-time OS with reference to this new specification. We certainly want to see

existing software developed under Version 1.0 of the ITRON TCP/IP API Specification ported to

run under current operating systems such as the T-Kernel.

Networking technology will be indispensable in developing embedded systems of the future, and

it is not hard to envisage almost all embedded systems incorporating networking functions.

I will be pleased if this specification is able to meet the needs of many embedded-system

engineers in the future.

July, 2006
Ken Sakamura

Project Leader, TRON Project

ITRON TCP/IP API Specification Ver. 2.00.00

Contents
Chapter 1 Introduction 1

1.1 Background and Scope of Standardization....................................1
1.2 Requirements for Embedded Systems...2
1.3 API Design Policies ..3
1.4 General Concepts ..3

1.4.1 API Levels and Static APIs..3
1.4.2 API Return Values and Error Codes ..3
1.4.3 Communication End Point...4
1.4.4 Timeout and Non-Blocking Calls ..4
1.4.5 Callbacks..5
1.4.6 Relationships between APIs and Tasks..6

1.5 General Definitions...6
1.5.1 Data Structures and Data Types ...6

(1) Data Structure for Containing an IP Address and a Port Number.....6
(2) Data Structures for Creating Objects ...6

1.5.2 Utility Functions and Macros ..7
(1) Byte Order Converting Functions and Macros..................................7
(2) Error Code Retrieving Functions and Macros...................................7

1.5.3 Constants..8
(1) General Constant..8
(2) API Function Codes and Event Codes ..8
(3) Main Error Codes (see Appendix for details)....................................8
(4) Timeout Specification (see Appendix for details)9
(5) Special IP Address and Port Numbers ...10

Chapter 2 APIs for TCP 11
2.1 Overview... 11
2.2 Creating and Deleting TCP Reception Points12

TCP_CRE_REP ...12
tcp_cre_rep...12
tcp_del_rep...13

2.3 Creating and Deleting TCP Communication End Points.............14
tcp_CRE_CEP..14
tcp_cre_cep ..14
tcp_del_cep ..15

2.4 Connecting and Disconnecting ...15
tcp_acp_cep..15
tcp_con_cep ...17
tcp_sht_cep...18
tcp_cls_cep...19

2.5 Transmitting and Receiving Data (Standard APIs)21
tcp_snd_dat ..21
tcp_rcv_dat...22

2.6 Transmitting and Receiving Data (Copy-Saving APIs)...............23
tcp_get_buf...23
tcp_snd_buf..24
tcp_rcv_buf ..24
tcp_rel_buf ...25

i

ITRON TCP/IP API Specification Ver. 2.00.00

2.7 Transmitting and Receiving Urgent Data....................................26
tcp_snd_oob ...26
tcp_rcv_oob..27

2.8 Other APIs ..28
tcp_can_cep..28
tcp_set_opt ...29
tcp_get_opt...30

2.9 Callbacks...31
Common Specifications ...31
Reporting End of Non-Blocking Call ..31
Receiving Urgent Data...32

Chapter 3 APIs for UDP 33
3.1 Overview...33
3.2 Creating and Deleting UDP Communication End Points33

UDP_CRE_CEP...33
udp_cre_cep ...33
udp_del_cep ...34

3.3 Transmitting and Receiving Data..35
udp_snd_dat ...35
udp_rcv_dat..36

3.4 Other APIs ..38
udp_can_cep...38
udp_set_opt ..38
udp_get_opt..39

3.5 Callbacks...40
Common Specifications ...40
Reporting End of Non-Blocking Call ..41
Receiving UDP Packet...41

Chapter 4 APIs for TCP/IPv6 43
4.1 Overview...43
4.2 General Definitions...43

4.2.1 Data Structures and Data Types ...43
(1) Data Structures for Containing an IP Address and a Port Number .43
(2) Data Structure for Creating Objects ..44
(3) Special IP Address and Port Numbers ...45
(4) Creating Reception Points ...45
(5) Connecting and Disconnecting ..45
(6) Creating and Deleting UDP Communication End Points................46
(7) Transmitting and Receiving Data ..46

Chapter 5 Conditions for Using the Specification 47
5.1 Open Specification, No Warranty, Copyright..............................47
5.2 Contact Information ..47

Appendix A Version History 49
Appendix B Relations with the Socket Interface 50

B.1 Major Differences from the Socket Interface50
Appendix C Sample Programs 52

C.1 Sample Implementation of read and write by
 TCP Copy-Saving APIs...52

ii

ITRON TCP/IP API Specification Ver. 2.00.00

C.2 Sample Implementation of getc and putc by
 TCP Copy-Saving APIs...53
C.3 Example of UDP Callback Routine...54

Appendix D Type Definition Macros 57
D.1 Differences in Type Definition Macros57

Appendix E Differences in Constants According to
 Target OS 58

E.1 Differences in Error Codes..58
E.2 Differences in Timeout Specifications ..58

Appendix F Notes on Implementation 59
F.1 Implementation of ER Type ..59
F.2 NADR Value ...59

Appendix G Differences between Specifications for
 IPv4 and IPv6 60

G.1 Differences in Specifications ..60

iii

ITRON TCP/IP API Specification Ver. 2.00.00

Chapter 1

1.1

Introduction

Background and Scope of Standardization

The trend towards growing scale and complexity for functions incorporated in the
embedded systems of recent years has been creating an increasingly broad
consciousness of the importance of software components for embedded systems due to
the necessity of improving the basic conditions of application software development. As
software components are used in an ever-wider range of applications, standardization of
the components has become a key issue. Against this background, TRON Association
has been working on standardization of the interfaces for software components, with a
focus on selected fields that have the strongest needs in relation to the
ITRON-specification OS.

One of the most important software components for an embedded system is a TCP/IP
protocol stack. The socket interface is currently in widespread use as the TCP/IP
application program interface (API). However, its disadvantages in terms of application
in embedded systems (and particularly in small-scale embedded systems) have created
the need to standardize a TCP/IP API that is more suitable for embedded systems.

To satisfy this need, in 1997 TRON Association formed a specialized group to study the
standardization of a TCP/IP API suitable for embedded systems. This was based on a
proposal by the ITRON Technical Committee of that time (today’s ITRON Specification
Study Group). The group continued the study from March 1997 to April 1998 and
determined Version 1.0 of the TCP/IP API Specification, which was approved as an
ITRON specification. Version 1.0 is a standard specification of a C-language API for
TCP and UDP protocols on IPv4. In keeping with the basic policy of the TRON project,
this specification is open to anyone and carries no license fee.

When we were drawing up Version 1.0, we had the µITRON3.0 specifications, after
which we went to µITRON4.0 and then also deployed the T-Kernel. As the IPv6
specification had not been completed at the time, we left the application of IPv6 for later
consideration. In the five years since its development, Version 1.0 has been widely
recognized as a TCP/IP API that is suitable for embedded systems, and many products
that conform to this specification have appeared. The permeation of this specification
has been accompanied by requests from users for the support for the latest
ITRON-specification OS and IPv6. We have thus reviewed the TCPI/IP API
Specification and implemented Version 2.0 to support the T-Kernel, µITRON4.0, and
IPv6 specifications while maintaining maximum compatibility with Version 1.0.

In addition to the API functions prescribed in this specification, the TCP/IP protocol
stack in practical use requires further API functions for interface control (IP address,

1

ITRON TCP/IP API Specification Ver. 2.00.00

netmask, and broadcast address setting and reference), routing table setting and
reference, and ARP table setting and reference, but this version of the specification does
not prescribe a standard for such functions. Handling of ICMP is not prescribed in this
specification and is left implementation-dependent.

1.2 Requirements for Embedded Systems

Embedded systems have the following general characteristics.

(1) Hardware resources are strictly limited (i.e., processor capabilities and memory
capacity). The program and data must thus be as small as possible to draw full
performance from the processor.

(2) Some kind of real-time capability will be required. Fine control of the protocol
stack is also required.

(3) High reliability.

Specifically, a protocol stack for embedded systems should have the following features:

(a) minimization of the memory area for buffers and the number of times data are
copied;

(b) no dynamic memory management done within the protocol stack is desirable;

(c) support for an asynchronous interface or non-blocking calls; and

(d) comprehensibility of detailed information on errors for the respective API
functions is desirable.

The socket interface does not satisfy all of these requirements. For example, the socket
management block and the memory area for queuing the received UDP packets have to
be managed dynamically. In addition, the maximum size of the latter area is not
specifiable on the basis of the protocol, so that situations where memory becomes
insufficient for the protocol stack area are not avoidable. Such a problem (memory
becoming insufficient in regions that are not visible from the application program) is not
acceptable for embedded systems, which must always operate in the expected manner.

The socket interface has another disadvantage in that it was designed to match the
UNIX process model and thus does not work well with the task model supported by a
real-time OS such as the ITRON-specification OS.

Note: UNIX is a registered trademark in the United States and other countries, licensed exclusively

through X/OPEN Company Limited.

2

ITRON TCP/IP API Specification Ver. 2.00.00

1.3

•

•

•

1.4

1.4.1
•

•

1.4.2
•

•

•

API Design Policies

The goal of the TCP/IP API defined in this specification is to implement the TCP/IP
protocol stack that satisfies the requirements described above. In addition, we had the
following design policies.

The specification should be based on the socket interface, since this is familiar to
many programmers and has been used in developing many software products. The
design of the API thus had to be such that an API compatible with the socket
interface is realizable as a library on top of it.

Consideration should be given to allowing some small-scale embedded systems to
require only static settings to be made at the time of system configuration.

Although usage on top of an ITRON-specification OS should be the prime
assumption and the API should be prescribed in line with the conventions of the
ITRON specification, applicability to other real-time OSs should also be
considered.

General Concepts

API Levels and Static APIs

APIs and their functions are classified into standard functions and extended
functions according to the level of necessity. The TCP/IP protocol stacks that will
be available on the market should at least implement the standard functions.

Each object-creating API provides a static method (called a static API) for
specifying object creation information in the system configuration file; the object
specified in the system configuration file is automatically created when the protocol
stack is initialized. The names of static APIs are written in upper case letters and
thus they are distinguished from standard APIs (called dynamic APIs).

API Return Values and Error Codes

According to the conventions of the ITRON and T-Kernel specifications (called the
kernel specifications), each API returns a negative-value error code if an error
occurs, or 0 or a positive value if it completes execution normally. The meaning of
the return value for normal completion is defined for each API.

An error code consists of a main error code and a sub-error code. Both the main
error code and sub-error code are negative, and the resulting combined error code is
also negative.

The mnemonics, meanings, and values of the main error codes are standardized to
be the same as those of the error codes defined in the kernel specification. The error
codes that are required for TCP/IP API but not defined in the kernel specification
(E_WBLK, E_CLS, and E_BOVR in the µITRON3.0 Specification and T-Kernel
Specification) are defined additionally. The values of the error codes are defined in

3

ITRON TCP/IP API Specification Ver. 2.00.00

eight bits (negative values from -128 to -1) in accordance with the kernel
specification.

•

•

1.4.3
•

•

•

•

1.4.4
•

•

Sub-error codes are implementation-dependent. This specification defines only the
main error codes as the error codes to be returned by each API. To clarify an error
cause, sub-error codes should be used.

The following error codes can be returned by all APIs, thus they are not shown in
the description of each API in this specification. It is implementation-dependent
which particular APIs actually return which error codes.

 E_SYS System error (internal error in the protocol stack)

 E_NOMEM Insufficient memory

 E_NOSPT Unsupported function

 E_MACV Memory access violation

Communication End Point

A communication end point for each protocol, which is identified by an IP address
and a port number, is considered to be equivalent to an object in the ITRON kernel
specification. Communication end points are classified into several types according
to the protocol and function. In this aspect, communication end points are at a lower
level of abstraction than sockets although communication end points are the
equivalent of sockets in the socket interface.

Communication end points are identified by ID numbers uniquely assigned within
each communication end point type throughout the entire system.

This specification does not adopt abstraction equivalent to the file descriptor feature
in the socket interface; APIs directly manipulate communication end points in this
specification. This difference is most noticeable in the TCP disconnection
procedure. In the socket interface, the close function returns as soon as data
transmission ends without waiting for the end of the disconnection procedure, to
cancel the association between the file descriptor and a socket, and the file
descriptor can be used for another purpose immediately after the close function has
returned. In contrast, the tcp_cls_cep execution (without timeout setting) in this
specification waits until the communication end point becomes ready for reuse.

This specification assumes that TCP communication end point transmit/receive
buffers are window buffers. Whether transmit/receive buffers are prepared by the
application or by the protocol stack depends on the implementation. Refer to the
description of the tcp_cre_cep function for creating a TCP communication end
point.

Timeout and Non-Blocking Calls

Timeout and non-blocking call features are made available to APIs that might enter
the waiting state.

When an API's process is not completed within a specified time, the timeout feature
cancels any further processing and the API immediately returns. In this case, the

4

ITRON TCP/IP API Specification Ver. 2.00.00

API returns an E_TMOUT error. The object state remains unchanged upon
returning from the timed-out API. However, there are some exceptional cases where
an API due to its nature might prevent the object from proper restoration after
cancellation of the processing.

•

•

•

•

•

1.4.5
•

•

•

•

In the non-blocking call feature, an API that should enter the waiting state
immediately returns with an E_WBLK error but the processing continues. The
application program is reported through a callback (to be described later) when the
process is completed or when it is canceled. When an API with the non-blocking
feature is called to pass a data area pointer, the area should not be used for another
purpose until the process is completed because the processing continues even after
the API has returned.

The timeout processing with the timeout duration set to 0 is referred to as "polling".
The polling feature differs from the non-blocking call feature in that polling cancels
the processing while non-blocking continues the processing.

Processing of an API is referred to as "pending" when it is in the waiting state
within the API or when it continues operation due to a non-blocking call.

The functional descriptions of the APIs in this specification contain the behavior
when the APIs have no timeout setting; that is, the behavior when the APIs wait
forever. When an API is called with a timeout duration set, the description "entering
(moved to) the waiting state" in the functional descriptions of the APIs do not imply
waiting forever; the waiting state is canceled and the API returns with E_TMOUT
as the return value when the duration expires. When an API is called with the
non-blocking feature, the API does not enter the waiting state but immediately
returns with E_TMOUT as the return value.

The timeout should be specified in accordance with the ITRON kernel
specification; a positive value specifies the length of the timeout duration
(millisecond is recommended as the unit of setting), TMO_POL specifies polling,
and TMO_FEVR specifies that the timeout duration should be forever.
TMO_NBLK specifies the non-blocking call feature.

Callbacks

Callbacks are used to report the application program that an event has occurred in
the protocol stack. Callback events are broadly classified into non-blocking call
completion report and other events.

Callback routines are defined by the application program and executed only in task
contexts.

A single callback routine is defined for each communication end point, except for
TCP reception points, which do not have callback routines. The type of the event
that has generated a callback is passed to the callback routine as an argument.

The callback routine for one communication end point is never nested; that is, for a
communication end point, no other callback routine is called until the current
callback routine returns.

5

ITRON TCP/IP API Specification Ver. 2.00.00

[Rationale]

Although the callbacks of this specification have a disadvantage in that they provide a
low level of safety with respect to the software architecture, they offer high run-time
efficiency, which should have a priority in small-scale embedded systems that are the
main target of the ITRON-specification OS.

1.4.6
•

•

1.5

1.5.1

Relationships between APIs and Tasks

Each API of this specification always works in the same manner given the same
parameters, regardless of the task that calls it; that is, the API of this specification
does not assign any resource to tasks. This means that there is no resource that the
protocol stack should release when a task processing is completed.

When rel_wai is issued to a task that has entered the waiting state in execution of an
API of this specification, the API returns an E_RLWAI error. When ter_tsk is issued
in the same situation, the behavior is implementation-dependent.

General Definitions

Data Structures and Data Types

(1) Data Structure for Containing an IP Address and a Port Number

 typedef struct t_ipv4ep {

 UW ipaddr; /* IP address */

 UH portno; /* Port number */

 } T_IPV4EP;

[Supplemental Information]

An IP address should be assigned to the ipaddr field in the network order (big endian). A
value can be directly assigned without using memory copy functions such as a "bcopy".

(2) Data Structures for Creating Objects

 typedef struct t_tcp_crep {
 ATR repatr; /* TCP reception point attribute */
 T_IPV4EP myaddr; /* Local IP address and port number */
 (Other implementation-dependent fields may be added)
 } T_TCP_CREP;

 typedef struct t_tcp_ccep {
 ATR cepatr; /* TCP communication end point attribute */
 VP sbuf; /* Start address of transmit window buffer */
 INT sbufsz; /* Size of transmit window buffer */
 VP rbuf; /* Start address of receive window buffer */
 INT rbufsz; /* Size of receive window buffer */
 FP callback; /* Callback routine */

6

ITRON TCP/IP API Specification Ver. 2.00.00

 (Other implementation-dependent fields may be added)
 } T_TCP_CCEP;

 typedef struct t_udp_ccep {
 ATR cepatr; /* UDP communication end point attribute */
 T_IPV4EP myaddr; /* Local IP address and port number */
 FP callback; /* Callback routine */
 (Other implementation-dependent fields may be added)
 } T_UDP_CCEP;

[Supplemental Information]

A desired operation can be precisely specified for each object through the attributes of
the communication end point; for example, the initial value can be specified for each
communication end point.

1.5.2 Utility Functions and Macros

(1) Byte Order Converting Functions and Macros

 UW nl = htonl(UW hl) Converts a 32-bit value arranged in the host
byte order into one arranged in the network byte
order.

 UH ns = htons(UH hs) Converts a 16-bit value arranged in the host
byte order into one arranged in the network byte
order.

 UW hl = ntohl(UW nl) Converts a 32-bit value arranged in the network
byte order into one arranged in the host byte
order.

 UH hs = ntohs(UH ns) Converts a 16-bit value arranged in the network
byte order into one arranged in the host byte
order.

(2) Error Code Retrieving Functions and Macros

 ER mercd = mainercd(ER ercd) Retrieves the main error code from an
error code.

 ER sercd = subercd(ER ercd) Retrieves the sub-error code from an
error code.

7

ITRON TCP/IP API Specification Ver. 2.00.00

1.5.3 Constants

(1) General Constant

 NADR Invalid address (See Appendix for details)

(2) API Function Codes and Event Codes

 TFN_TCP_CRE_REP –0x201 (0xfdff)
 TFN_TCP_DEL_REP –0x202 (0xfdfe)
 TFN_TCP_CRE_CEP –0x203 (0xfdfd)
 TFN_TCP_DEL_CEP –0x204 (0xfdfc)
 TFN_TCP_ACP_CEP –0x205 (0xfdfb)
 TFN_TCP_CON_CEP –0x206 (0xfdfa)
 TFN_TCP_SHT_CEP –0x207 (0xfdf9)
 TFN_TCP_CLS_CEP –0x208 (0xfdf8)
 TFN_TCP_SND_DAT –0x209 (0xfdf7)
 TFN_TCP_RCV_DAT –0x20a (0xfdf6)
 TFN_TCP_GET_BUF –0x20b (0xfdf5)
 TFN_TCP_SND_BUF –0x20c (0xfdf4)
 TFN_TCP_RCV_BUF –0x20d (0xfdf3)
 TFN_TCP_REL_BUF –0x20e (0xfdf2)
 TFN_TCP_SND_OOB –0x20f (0xfdf1)
 TFN_TCP_RCV_OOB –0x210 (0xfdf0)
 TFN_TCP_CAN_CEP –0x211 (0xfdef)
 TFN_TCP_SET_OPT –0x212 (0xfdee)
 TFN_TCP_GET_OPT –0x213 (0xfded)
 TFN_TCP_ALL 0

 TEV_TCP_RCV_OOB 0x201 TCP urgent data reception
 (Other events should be defined by the implementation)

 TFN_UDP_CRE_CEP –0x221 (0xfddf)
 TFN_UDP_DEL_CEP –0x222 (0xfdde)
 TFN_UDP_SND_DAT –0x223 (0xfddd)
 TFN_UDP_RCV_DAT –0x224 (0xfddc)
 TFN_UDP_CAN_CEP –0x225 (0xfddb)
 TFN_UDP_SET_OPT –0x226 (0xfdda)
 TFN_UDP_GET_OPT –0x227 (0xfdd9)
 TFN_UDP_ALL 0

 TEV_UDP_RCV_DAT 0x221 UDP packet reception
 (Other events should be defined by the implementation)

(3) Main Error Codes (see Appendix for details)

 E_OK Normal completion
 E_SYS System error
 E_NOMEM Insufficient memory
 E_NOSPT Unsupported function

8

ITRON TCP/IP API Specification Ver. 2.00.00

 E_RSATR Reserved attribute
 E_PAR Parameter error
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_OBJ Object state error
 E_MACV Memory access violation
 E_QOVR Queuing overflow
 E_DLT Waiting object deleted
 E_WBLK Non-blocking call accepted
 E_TMOUT Polling failure or timeout
 E_RLWAI Forced release from waiting
 E_CLS Disconnected
 E_BOVR Buffer overflow

[Supplemental Information]

The error codes other than E_OK and their values are defined in each kernel
specification. Note that the error codes not defined in the kernel specification
(E_WBLK, E_CLS, and E_BOVR) should be additionally defined.

E_WBLK indicates that a non-blocking call has been accepted and has returned but the
processing continues. The completion or cancellation of the processing is reported
through a callback.

E_CLS indicates that the connection has been abnormally disconnected. In some cases,
an abnormal disconnection might occur while waiting for completion of a processing
such as transmission or reception. If necessary, the waiting state should be canceled in
such a case.

E_BOVR indicates that there is no sufficient area to hold the received data. The amount
of received data that fits into the available area has been stored and the remaining data
has been discarded. Unlike other errors, if this error code is returned, the API processing
has been done and the object state has been changed.

[Rationale]

The error code for abnormal disconnection has been added because this error involves
release from the waiting state so E_OBJ is not suitable. Although a possible alternative
specification is to return an E_OBJ error if preceded the function call and to return an
E_CLS error if disconnection followed entry to the waiting state, handling of this
method by applications was considered difficult.

(4) Timeout Specification (see Appendix for details)

 TMO_POL Polling
 TMO_FEVR Waiting forever

9

ITRON TCP/IP API Specification Ver. 2.00.00

 TMO_NBLK Non-blocking call

(5) Special IP Address and Port Numbers

 IPV4_ADDRANY 0 IP address specification omitted
 TCP_PORTANY 0 TCP port number specification omitted
 UDP_PORTANY 0 UDP port number specification omitted

10

ITRON TCP/IP API Specification Ver. 2.00.00

Chapter 2

2.1
•

•

•

APIs for TCP

Overview
Two types of end points are available for use with TCP; TCP reception points
(abbreviated to rep) for waiting for connection requests from remote hosts and TCP
communication end points (abbreviated to cep) to be used as the end points for
connection.

A TCP communication end point makes transitions among eight states in the API
specification: the "non-existent", "unused", "passive-open-waiting",
"active-open-waiting", "connected", "transmission-end", "disconnected", and
"closing" states (see figure 1). The seven states other than the non-existent state are
collectively called "existent", the six states other than the non-existent and unused
states are called "in-use", and the five states other than the connected,
transmission-end, and disconnected states are called "unconnected".

In addition to the APIs equivalent to read and write in the socket interface, efficient
APIs that can reduce the data copying count should be available. These are called
copy-saving APIs.

tcp_cre_cep tcp_del_cep

tcp_acp_cep call tcp_con_cep call

tcp_acp_cep

completed

tcp_con_cep

completed

tcp_sht_cep

tcp_cls_cep

call

tcp_cls_cep completed or canceled

tcp_cls_cep

call

Failed or

canceled

Passive-open-waiting

Connected

Unused

Non-existent

Active-open waiting

Transmission-endDisconnected

Abnormally

disconnected
Abnormally

disconnected

Closing

tcp_cls_cep

call

Figure 1. State Transition of TCP Communication End Point

[Rationale]
The copy-saving APIs available in this specification allow the user to directly access the
buffers managed by the protocol stack. Another more efficient method is to allow the

11

ITRON TCP/IP API Specification Ver. 2.00.00

protocol stack to directly use the buffers managed by the application. Although this
alternative method is effective, the application program becomes complex and
efficiency is not always improved when the data length is short. Accordingly, this
method is not adopted in this specification.

The standard APIs can be implemented by using the copy-saving APIs as shown in
Appendix C.1. In this specification, however, both types of API are prepared because
such copy-saving API use is not always efficient depending on the method of
protocol-stack implementation.

2.2 Creating and Deleting TCP Reception Points

TCP_CRE_REP Create TCP Reception Point
 Static API...[Standard Function]
tcp_cre_rep Dynamic API...[Extended Function]

[Static API]
 TCP_CRE_REP(ID repid, { ATR repatr, { UP myipaddr, UH myportno }});

[C Language API]
 ER ercd = tcp_cre_rep(ID repid, T_TCP_CREP *pk_crep);

[Parameter]
 ID repid TCP reception point ID
 T_TCP_CREP *pk_crep TCP reception point creation information

 pk_crep includes
 ATR repatr TCP reception point attribute
 T_IPV4EP myaddr Local IP address (myipaddr) and port number

(myportno)
 (Other implementation-dependent parameters may be added)

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_RSATR Reserved attribute
 E_PAR Parameter error (pk_crep address, IP address, or port

number is invalid)
 E_OBJ Object state error (a TCP reception point is already created

for the specified ID, the specified port number is already in
use, or there is a privileged port violation)

12

ITRON TCP/IP API Specification Ver. 2.00.00

[Functional Description]
These APIs create a TCP reception point with the specified ID and move the reception
point to the waiting state for connection with the specified IP address and port number.
When IPV4_ADDRANY is specified as the local IP address, the reception point waits
for connection requests to all IP addresses assigned to the local host. When a particular
IP address is specified, the reception point waits for only the connection request to the
specified IP address.

Usage of the TCP reception point attribute and details of privileged ports are
implementation-dependent.

[Rationale]
This specification does not provide a standard method for specifying an individual
maximum count of connection requests to be queued for each TCP reception point.
Queuing connection requests is important, but simply specifying one maximum count to
be applied in common to all reception points will be sufficient for the purpose, and
specifying an individual maximum count for each reception point is left
implementation-dependent.

tcp_del_rep Delete TCP Reception Point
 Dynamic API...[Extended Function]

[C Language API]
 ER ercd = tcp_del_rep(ID repid);

[Parameter]
 ID repid TCP reception point ID

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_NOEXS Non-existent object

[Functional Description]
This API deletes the specified TCP reception point and cancels the waiting state for
connection. An E_DLT error will be returned to the tcp_acp_cep that is waiting for a
connection request at the deleted TCP reception point.

13

ITRON TCP/IP API Specification Ver. 2.00.00

2.3 Creating and Deleting TCP Communication End Points

tcp_CRE_CEP Create TCP Communication End Point
 Static API...[Standard Function]
tcp_cre_cep Dynamic API...[Extended Function]

[Static API]
 TCP_CRE_CEP(ID cepid, { ATR cepatr, VP sbuf, INT sbufsz, VP rbuf,
 INT rbufsz, FP callback });

[C Language API]
 ER ercd = tcp_cre_cep(ID cepid, T_TCP_CCEP *pk_ccep);

[Parameter]
 ID cepid TCP communication end point ID
 T_TCP_CCEP *pk_ccep TCP communication end point creation

information

 pk_ccep includes
 ATR cepatr TCP communication end point attribute
 VP sbuf Start address of the transmit window buffer
 INT sbufsz Size of the transmit window buffer
 VP rbuf Start address of the receive window buffer
 INT rbufsz Size of the receive window buffer
 FP callback Callback routine address. Specify NULL

when not using a callback routine.
 (Other implementation-dependent parameters may be added)

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_RSATR Reserved attribute
 E_PAR Parameter error (pk_ccep address, sbuf, sbufsz, rbuf,

rbufsz, or callback is invalid)
 E_OBJ Object state error (a TCP communication end point is

already created for the specified ID)

[Functional Description]
These APIs create a TCP communication end point with the specified ID. The created
TCP communication end point can be used both for a passive open and an active open.

In the implementation in which the protocol stack allocates window buffers, NADR

14

ITRON TCP/IP API Specification Ver. 2.00.00

should be specified as the start address of window buffers. Setting window buffer sizes
is valid even in this case. Another possible implementation is to allocate a window
buffer in the protocol stack only when NADR is specified and otherwise to use a given
buffer. Usage of the TCP communication end point attribute is
implementation-dependent.

tcp_del_cep Delete TCP Communication End Point
 Dynamic API...[Extended Function]

[C Language API]
 ER ercd = tcp_del_cep(ID cepid);

[Parameter]
 ID cepid TCP communication end point ID

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_OBJ Object state error (the specified TCP communication end

point is already in use)

[Functional Description]
This API deletes the specified TCP communication end point. If the TCP
communication end point specified for deletion is already in use, an E_OBJ error will
be returned.

2.4 Connecting and Disconnecting

tcp_acp_cep Wait for Connection Request (Passive Open)
 [Standard Function]

[C Language API]
 ER ercd = tcp_acp_cep(ID cepid, ID repid, T_IPV4EP *p_dstaddr, TMO

tmout);

[Parameter]
 ID cepid TCP communication end point ID
 ID repid TCP reception point
 TMO tmout Timeout

15

ITRON TCP/IP API Specification Ver. 2.00.00

[Return Parameter]
 T_IPV4EP dstaddr Remote IP address and port number
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (dstaddr address or tmout is invalid)
 E_OBJ Object state error (the specified TCP communication end

point is already in use)
 E_DLT TCP reception point that is waiting for a connection request

has been deleted
 E_WBLK Non-blocking call accepted
 E_TMOUT Polling failure or timeout
 E_RLWAI Forced release from waiting

[Functional Description]
This API makes the specified TCP reception point wait for a connection request. When
a connection request comes, the connection processing is started at the specified TCP
communication end point and the API returns the remote IP address and port number.
The API remains in the waiting state until the connection processing is completed.

Multiple tcp_acp_cep calls can be issued to a single TCP reception point. How to
choose a TCP communication end point for receiving the connection request in this case
is implementation-dependent.

The TCP communication end point enters the passive-open-waiting state when a
tcp_acp_cep call is issued, and enters the connected state when the API processing is
completed. If the tcp_acp_cep processing is canceled due to a timeout or a tcp_can_cep
call, the TCP communication end point will return to the unused state.

[Supplemental Information]
If a tcp_acp_cep call is issued to a TCP communication end point while another
tcp_acp_cep processing is pending at the same end point, an E_OBJ error will be
returned because the TCP communication end point is already in use.

16

ITRON TCP/IP API Specification Ver. 2.00.00

tcp_con_cep Wait for Connection Request (Active Open)
 [Standard Function]

[C Language API]
 ER ercd = tcp_con_cep(ID cepid, T_IPV4EP *p_myaddr,
 T_IPV4EP *p_dstaddr, TMO tmout);

[Parameter]
 ID cepid TCP communication end point ID
 T_IPV4EP myaddr Local IP address and port number
 T_IPV4EP dstaddr Remote IP address and port number
 TMO tmout Timeout

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (myaddr address, dstaddr address, IP

address, port number, or tmout is invalid)
 E_OBJ Object state error (the specified TCP communication end

point is already in use, the specified port number is already
in use, or there is a privileged port violation)

 E_WBLK Non-blocking call accepted
 E_TMOUT Polling failure, timeout specified by tmout, or timeout

determined by the protocol
 E_RLWAI Forced release from waiting
 E_CLS Connection request rejected

[Functional Description]
This API makes a connection between the specified TCP communication end point and
the specified remote IP address and port number. This API remains in the waiting state
until the connection processing is completed.

When IPV4_ADDRANY is specified as the local IP address or TCP_PORTANY is
specified as the port number, the protocol stack should determine an IP address or a port
number. When myaddr is set to NADR, the protocol stack should determine both IP
address and port number. Details of privileged ports are implementation-dependent.

The TCP communication end point enters the active-open-waiting state when a
tcp_con_cep call is issued, and enters the connected state when the API processing is
completed. If the tcp_con_cep processing is canceled due to a timeout or a tcp_can_cep
call, the TCP communication end point will return to the unused state.

17

ITRON TCP/IP API Specification Ver. 2.00.00

[Supplemental Information]
If a tcp_con_cep call is issued to a TCP communication end point while another
tcp_con_cep processing is pending at the same end point, an E_OBJ error will be
returned because the TCP communication end point is already in use.

[Rationale]
Although polling specified as the timeout feature is not effective because the connection
processing is never completed immediately, we decided not to actively eliminate the
polling feature.

tcp_sht_cep Terminate Data Transmission [Standard Function]

[C Language API]
 ER ercd = tcp_sht_cep(ID cepid);

[Parameter]
 ID cepid TCP communication end point ID

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_OBJ Object state error (the specified TCP communication end

point is unconnected)

[Functional Description]
This API terminates data transmission at the specified TCP communication end point.
Specifically, this API arranges the processing to send FIN and start the disconnection
procedure after the data in the transmission buffer has been transmitted. As tcp_sht_cep
only arranges the disconnection procedure, the processing never enters the waiting state
within this API.

After a tcp_sht_cep call, the TCP communication end point is in the transmission-end
state and no further data can be transmitted. If transmission is attempted in this state, an
E_OBJ error will be returned. Data can still be received at the TCP communication end
point.

[Supplemental Information]
If tcp_sht_cep is called multiple times for a single TCP communication end point, an
E_OBJ error will be returned for the second and subsequent calls because the TCP
communication end point is in the transmission-end state. If the pending state of the
specified TCP communication end point needs to be indicated, a sub-error code should
be used.

18

ITRON TCP/IP API Specification Ver. 2.00.00

tcp_cls_cep Close Communication End Point [Standard Function]

[C Language API]
 ER ercd = tcp_cls_cep(ID cepid, TMO tmout);

[Parameter]
 ID cepid TCP communication end point ID
 TMO tmout Timeout

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (tmout is invalid)
 E_OBJ Object state error (the specified TCP communication end

point is unconnected)
 E_WBLK Non-blocking call accepted
 E_TMOUT Polling failure or timeout
 E_RLWAI Forced release from waiting

[Functional Description]
This API makes a disconnection for the TCP communication end point with the
specified ID by sending FIN after waiting until the data in the transmit buffer has been
transmitted. After the TCP communication end point enters the unused state, the data
remaining in the receive buffer and the incoming data after that is discarded. As
tcp_cls_cep returns only after the TCP communication end point enters the unused state,
the TCP communication end point is ready for another purpose immediately after the
return.

If the tcp_cls_cep processing is canceled due to a timeout or a tcp_can_cep call, it
makes a forced disconnection by sending RST through the specified TCP
communication end point and returns E_TMOUT or E_RLWAI, respectively. If RST
cannot be sent immediately, this API only arranges RST transmission. If not even this
arrangement is possible, RST transmission is omitted. In either case, the TCP
communication end point is in the unused state when tcp_cls_cep returns (when the
callback routine for reporting the completion is called if the non-blocking feature is
specified).

[Supplemental Information]
Unlike the file descriptor in the socket interface, the communication end point of this
specification does not become ready for another purpose until the TCP connection is
completely terminated. Terminating the connection completely may take several
minutes according to the TCP/IP protocol standard.

19

ITRON TCP/IP API Specification Ver. 2.00.00

With a straightforward implementation of tcp_cls_cep, tcp_cls_cep does not return
while the TCP port is in the TIMED-WAIT state in the protocol. If this implementation
is adopted in a server for example, the server is unresponsive for a long time. An
effective implementation to avoid this problem is to copy the TIMED-WAIT port (data
structure for the communication end point) to another data structure for separate
management, release the communication end point (data structure), and make
tcp_cls_cep immediately return.

If a tcp_cls_cep call is issued to a TCP communication end point while another
tcp_cls_cep processing is pending at the same end point, an E_OBJ error will be
returned because the TCP communication end point is unconnected.

tcp_cls_cep is an exception to the principle that the object state remains unchanged
upon returning from the timed-out API.

20

ITRON TCP/IP API Specification Ver. 2.00.00

2.5 Transmitting and Receiving Data (Standard APIs)

tcp_snd_dat Send Data [Standard Function]

[C Language API]
 ER ercd = tcp_snd_dat(ID cepid, VP data, INT len, TMO tmout);

[Parameter]
 ID cepid TCP communication end point ID
 VP data Start address of the data to be transmitted
 INT len Length of the data to be transmitted
 TMO tmout Timeout

[Return Parameter]
 ER ercd Length of the data stored in the transmit

buffer/error code

[Error Code]
 Positive value Normal completion (length of the data stored in the

transmit buffer)
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (data, len, or tmout is invalid)
 E_OBJ Object state error (the specified TCP communication end

point is in the unconnected or transmission-end state, or
tcp_snd_dat or tcp_get_buf is pending)

 E_WBLK Non-blocking call accepted
 E_TMOUT Polling failure or timeout
 E_RLWAI Forced release from waiting
 E_CLS TCP connection disconnected

[Functional Description]
This API transmits data through the specified TCP communication end point. This API
returns when data is stored in the transmit buffer. If the free area in the transmit buffer is
shorter than the length of the data to be transmitted, this API stores the amount of data
that fits into the available area and returns the length of the stored data. If the transmit
buffer has no free area, this API remains in the waiting state until a free area becomes
available.

tcp_snd_dat might send only part of the specified data and return a smaller byte count
than the specified size. In contrast, the send function in the socket interface blocks other
processed until all data has been transmitted.

If a tcp_snd_dat call is issued to a TCP communication end point while a tcp_snd_dat or

21

ITRON TCP/IP API Specification Ver. 2.00.00

tcp_get_buf processing is pending at the same end point, an E_OBJ error will be
returned.

tcp_rcv_dat Receive Data [Standard Function]

[C Language API]
 ER ercd = tcp_rcv_dat(ID cepid, VP data, INT len, TMO tmout);

[Parameter]
 ID cepid TCP communication end point ID
 VP data Start address of the area to store the received

data
 INT len Length of the data to be received
 TMO tmout Timeout

[Return Parameter]
 ER ercd Length of the read data/error code

[Error Code]
 Positive value Normal completion (length of the read data)
 0 End of data (correctly disconnected)
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (data, len, or tmout is invalid)
 E_OBJ Object state error (the specified TCP communication end

point is unconnected, or tcp_rcv_dat or tcp_rcv_buf is
pending)

 E_WBLK Non-blocking call accepted
 E_TMOUT Polling failure or timeout
 E_RLWAI Forced release from waiting
 E_CLS TCP connection disconnected and receive buffer is empty

[Functional Description]
This API receives data through the specified TCP communication end point. This API
ends operation when data is read from the receive buffer. If the data stored in the receive
buffer is shorter than the expected length of the data to be received, this API reads data
until the receive buffer becomes empty and returns the length of the read data. If the
receive buffer has no data, this API remains in the waiting state until data is received.
After the connection is correctly disconnected by the remote host and all data is read
from the receive buffer, this API returns 0.

If a tcp_rcv_dat call is issued to a TCP communication end point while a tcp_rcv_dat or
tcp_rcv_buf processing is pending at the same end point, an E_OBJ error will be
returned.

[Supplemental Information]

22

ITRON TCP/IP API Specification Ver. 2.00.00

Even after the TCP connection is abnormally disconnected, data can be read by a
tcp_rcv_dat call as long as the receive buffer has data.

2.6 Transmitting and Receiving Data (Copy-Saving APIs)

tcp_get_buf Get Transmit Buffer [Standard Function]

[C Language API]
 ER ercd = tcp_get_buf(ID cepid, VP *p_buf, TMO tmout);

[Parameter]
 ID cepid TCP communication end point ID
 TMO tmout Timeout

[Return Parameter]
 VP buf Start address of the free area
 ER ercd Length of the free area/error code

[Error Code]
 Positive value Normal completion (length of the free area)
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (p_buf or tmout is invalid)
 E_OBJ Object state error (the specified TCP communication end

point is in the unconnected or transmission-end state, or
tcp_snd_dat or tcp_get_buf is pending)

 E_WBLK Non-blocking call accepted
 E_TMOUT Polling failure or timeout
 E_RLWAI Forced release from waiting
 E_CLS TCP connection disconnected

[Functional Description]
This API returns the start address of a free area in the transmit buffer where the next
data for transmission can be stored and also returns the length of the continuous free
area starting from the returned address. If the transmit buffer has no free area, this API
remains in the waiting state until a free area becomes available.

As the internal state of the protocol stack remains unchanged after a tcp_get_buf call,
the same area is returned if tcp_get_buf is called repeatedly in succession (the length of
the free area might become longer). In contrast, the internal state of the protocol stack is
changed by a tcp_snd_dat or tcp_snd_buf call. After either of these APIs is called, the
information returned by a tcp_get_buf that was called previously is invalid.

If a tcp_get_buf call is issued to a TCP communication end point while a tcp_snd_dat or
tcp_get_buf processing is pending at the same end point, an E_OBJ error will be

23

ITRON TCP/IP API Specification Ver. 2.00.00

returned.

tcp_snd_buf Send Data from Buffer [Standard Function]

[C Language API]
 ER ercd = tcp_snd_buf(ID cepid, INT len);

[Parameter]
 ID cepid TCP communication end point ID
 INT len Length of the data to be transmitted

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (len is invalid)
 E_OBJ Object state error (the specified TCP communication end

point is in the unconnected or transmission-end state, or len
is too long)

 E_CLS TCP connection disconnected

[Functional Description]
This API arranges the processing to transmit, for the length specified by len, the data
stored in the buffer that was acquired by a tcp_get_buf call. As tcp_snd_buf only
arranges transmission, the processing never enters the waiting state within this API.

[Supplemental Information]
The error code should be E_OBJ if the specified len exceeds the length of the
continuous free area to store the transmit data (the length acquired by a tcp_snd_buf
call), or E_PAR if the len value is not appropriate for any condition (a negative value,
for example), in principle.

tcp_rcv_buf Receive Buffer Containing Data
 [Standard Function]

[C Language API]
 ER ercd = tcp_rcv_buf(ID cepid, VP *p_buf, TMO tmout);

[Parameter]
 ID cepid TCP communication end point ID

24

ITRON TCP/IP API Specification Ver. 2.00.00

 TMO tmout Timeout

[Return Parameter]
 VP buf Start address of the received data
 ER ercd Length of the received data/error code

[Error Code]
 Positive value Normal completion (length of the received data)
 0 End of data (correctly disconnected)
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (p_buf or tmout is invalid)
 E_OBJ Object state error (the specified TCP communication end

point is unconnected, or tcp_rcv_dat or tcp_rcv_buf is
pending)

 E_TMOUT Polling failure or timeout
 E_RLWAI Forced release from waiting
 E_CLS TCP connection disconnected and receive buffer is empty

[Functional Description]
This API returns the start address of the buffer that contains received data and also
returns the length of continuous data starting from the returned address. If the receive
buffer has no data, this API remains in the waiting state until data is received. After the
connection is correctly disconnected by the remote host and all data is read from the
receive buffer, this API returns 0.

As the internal state of the protocol stack remains unchanged after a tcp_rcv_buf call,
the same area is returned if tcp_rcv_buf is called repeatedly in succession (the length of
the data might become longer). In contrast, the internal state of the protocol stack is
changed by a tcp_rcv_dat or tcp_rel_buf call. After either of these APIs is called, the
information returned by a tcp_rcv_buf that was called previously is invalid.

If a tcp_rcv_buf call is issued to a TCP communication end point while a tcp_rcv_dat or
tcp_rcv_buf processing is pending at the same end point, an E_OBJ error will be
returned.

[Supplemental Information]
Even after the TCP connection is abnormally disconnected, the start address and length
of the received data can be acquired by a tcp_rcv_buf call as long as the receive buffer
has data.

tcp_rel_buf Release Receive Buffer [Standard Function]

[C Language API]
 ER ercd = tcp_rel_buf(ID cepid, INT len);

25

ITRON TCP/IP API Specification Ver. 2.00.00

[Parameter]
 ID cepid TCP communication end point ID
 INT len Length of the data

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (len is invalid)
 E_OBJ Object state error (the specified TCP communication end

point is unconnected or len is too long)

[Functional Description]
This API discards, for the length specified by len, the data in the buffer acquired by a
tcp_rcv_buf call. The processing never enters the waiting state within this API.

[Supplemental Information]
The error code should be E_OBJ if the specified len exceeds the length of the received
data stored in the continuous area (the length acquired by a tcp_rcv_buf call), or E_PAR
if the len value is not appropriate for any condition (a negative value, for example), in
principle.

2.7

•

Transmitting and Receiving Urgent Data

In this API specification, urgent data should be handled as out-of-band data in a
standard way, but this specification also allows an additional
implementation-dependent way of handling it as in-band data by specifying
attributes and options for TCP communication end points.

tcp_snd_oob Send Urgent Data [Extended Function]

[C Language API]
 ER ercd = tcp_snd_oob(ID cepid, VP data, INT len, TMO tmout);

[Parameter]
 ID cepid TCP communication end point ID
 VP data Start address of the data to be transmitted
 INT len Length of the data to be transmitted
 TMO tmout Timeout

[Return Parameter]

26

ITRON TCP/IP API Specification Ver. 2.00.00

 ER ercd Length of the data stored in the transmit
buffer/error code

[Error Code]
 Positive value Normal completion (length of the data stored in the

transmit buffer)
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (data, len, or tmout is invalid)
 E_OBJ Object state error (the specified TCP communication end

point is in the unconnected or transmission-end state, or
tcp_snd_oob is pending)

 E_WBLK Non-blocking call accepted
 E_TMOUT Polling failure or timeout
 E_RLWAI Forced release from waiting
 E_CLS TCP connection disconnected

[Functional Description]
This API transmits urgent data through the specified TCP communication end point.
This API remains in the waiting state until the data is stored in the transmit buffer.

If a tcp_snd_oob call is issued to a TCP communication end point while another
tcp_snd_oob processing is pending at the same end point, an E_OBJ error will be
returned.

tcp_rcv_oob Receive Urgent Data [Extended Function]

[C Language API]
 ER ercd = tcp_rcv_oob(ID cepid, VP data, INT len);

[Parameter]
 ID cepid TCP communication end point ID
 VP data Start address of the area to store the received

data
 INT len Length of the area to store the received data

[Return Parameter]
 ER ercd Length of the read data/error code

[Error Code]
 Positive value Normal completion (length of the read data)
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (data or len is invalid)
 E_OBJ Object state error (the specified TCP communication end

27

ITRON TCP/IP API Specification Ver. 2.00.00

point is unconnected, or urgent data has not been received)
 E_BOVR Buffer overflow

[Functional Description]
This API reads the urgent data that was received through the specified TCP
communication end point and returns the length of the read data. If the length of the
area to store the received data is shorter than the length of the received urgent data, this
API stores the amount of data that fits into the available area, discards the remaining
data, and returns E_BOVR. If no urgent data has been received, it will return an E_OBJ
error.

[Supplemental Information]
This API is assumed to be called from the callback routine for receiving urgent data.

2.8 Other APIs

tcp_can_cep Cancel Pending Processing [Standard Function]

[C Language API]
 ER ercd = tcp_can_cep(ID cepid, FN fncd);

[Parameter]
 ID cepid TCP communication end point ID
 FN fncd Function code of the API to be canceled

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (fncd is invalid)
 E_OBJ Object state error (the processing specified by fncd is not

pending at the specified TCP communication end point)

[Functional Description]
This API cancels the specified processing pending at the specified TCP communication
end point. An E_RLWAI error will be returned to the canceled API. When a
non-blocking call is canceled, the callback routine for reporting the end of processing
will be called.

The following is a list of the API names and function codes of the processing that can be
canceled. When TFN_TCP_ALL is specified, all processing pending at the specified
TCP communication end point can be canceled.

28

ITRON TCP/IP API Specification Ver. 2.00.00

 API Name Function code
 tcp_acp_cep TFN_TCP_ACP_CEP
 tcp_con_cep TFN_TCP_CON_CEP
 tcp_cls_cep TFN_TCP_CLS_CEP
 tcp_snd_dat TFN_TCP_SND_DAT
 tcp_rcv_dat TFN_TCP_RCV_DAT
 tcp_get_buf TFN_TCP_GET_BUF
 tcp_rcv_buf TFN_TCP_RCV_BUF
 tcp_snd_oob TFN_TCP_SND_OOB
 All TFN_TCP_ALL

tcp_set_opt Set TCP Communication End Point Option
 [Extended Function]

[C Language API]
 ER ercd = tcp_set_opt(ID cepid, INT optname, VP optval, INT optlen);

[Parameter]
 ID cepid TCP communication end point ID
 INT optname Option type
 VP optval Address of the area that stores the option

value
 INT optlen Length of the option value

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (optname, optval, or optlen is invalid)
 E_OBJ Object state error (specified option cannot be set in the

current state)

[Functional Description]
This API sets the option value (equivalent to the socket option) for the specified TCP
communication end point. optname specifies the option type to be set, optval specifies
the address of the area that stores the option value, and optlen specifies the length of the
option value. The types and functions of the options that can be specified for TCP
communication end points are implementation-dependent.

[Supplemental Information]
This API should be used to provide a facility to specify IP options.

[Rationale]

29

ITRON TCP/IP API Specification Ver. 2.00.00

For TCP reception points, no APIs are provided to set or read options because they are
not considered necessary in most cases. When static option settings are required for TCP
reception point creation, TCP reception point attributes can be used; for example, the
TCP reception point attribute can be used to implement a facility equivalent to the
SO_REUSEADDR socket option that allows reuse of a local IP address or port number.

tcp_get_opt Get TCP Communication End Point Option
 [Extended Function]

[C Language API]
 ER ercd = tcp_get_opt(ID cepid, INT optname, VP optval, INT optlen);

[Parameter]
 ID cepid TCP communication end point ID
 INT optname Option type
 VP optval Address of the area to store the option value
 INT optlen Length of the area to store the option value

[Return Parameter]
 ER ercd Length of the read option value/error code

[Error Code]
 0 or a positive value Normal completion (length of the read option value)
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (optname, optval, or optlen is invalid,

or the area to store the option value is too short)
 E_OBJ Object state error (the specified option cannot be read

in the current state)

[Functional Description]
This API reads the option value (equivalent to the socket option) for the specified TCP
communication end point. optname specifies the option type to be read, optval specifies
the address of the area to store the option value, and optlen specifies the length of the
area to store the option value. If the area to store the option value is shorter than the
length of the option value to be read, an E_PAR error will be returned. The types and
functions of the options that can be read for TCP communication end points are
implementation-dependent.

[Supplemental Information]
This API should be used to provide a facility to read IP options. It should also be used to
provide a facility to read the state of TCP communication end points for debugging
purposes.

30

ITRON TCP/IP API Specification Ver. 2.00.00

2.9 Callbacks

Common Specifications

[C Language API]
 ER ercd = callback(ID cepid, FN fncd, VP p_parblk);

[Common Parameter]
 ID cepid TCP communication end point ID
 FN fncd Event type

[Specific Parameter]
 VP p_parblk Address of the parameter block specific to the

event

[Return Value]
 Depends on the event type

[Description]
The ID of the TCP communication end point where an event has occurred, the event
type, and the parameters specific to the event are passed to this callback routine. The
parameter block specific to the event can be referred to only in the callback routine.
Usage of the return value from the callback routine depends on the event type.

The following describes the standard callbacks. Support of callbacks for other events is
implementation-dependent.

Reporting End of Non-Blocking Call [Standard Function]

[Event Type]
 Function code of the ended API processing

[Specific Parameter]
 (The following parameter is passed through a parameter block)
 ER ercd Return value from API

[Return Value]
 Not used

[Function of Callback]
This routine is called when the non-blocking call processing is completed or canceled.
The return value from the API is passed through a parameter block. The other
parameters returned from the API are stored in the areas specified when the API was
called.

31

ITRON TCP/IP API Specification Ver. 2.00.00

[Supplemental Information]
When the tcp_rcv_buf processing with a non-blocking feature is completed, for example,
the length of the continuous received data stored in the buffer is passed through ercd
and the start address of the buffer is stored in the area indicated by the p_buf parameter
that was specified when tcp_rcv_buf was called.

Receiving Urgent Data [Extended Function]

[Event Type]
 TEV_TCP_RCV_OOB

[Specific Parameter]
 (The following parameter is passed through a parameter block)
 INT len Length of urgent data

[Return Value]
 Not used

[Function of Callback]
This routine is called when urgent data is received. The urgent data should be read by
using tcp_rcv_oob in this callback routine (if urgent data is not read before the callback
routine returns, the data is discarded).

32

ITRON TCP/IP API Specification Ver. 2.00.00

Chapter 3

3.1

•

•

•

3.2

APIs for UDP

Overview

UDP communication end points (abbreviated to cep) are available for use with
UDP.

This specification does not provide a facility to specify in advance the remote IP
address and port number for a UDP communication end point (equivalent to the
connected UDP socket in the socket interface).

The packet sent to the broadcast address for an interface is broadcast through the
interface. The packet sent to address 255.255.255.255 is broadcast through all
interfaces that support the broadcast function.

[Rationale]
A facility to specify in advance the remote address and port number for a UDP
communication end point is realizable as a library on top of the APIs of this
specification. Accordingly, this specification does not provide this facility in order to
simplify the APIs.

Creating and Deleting UDP Communication End Points

UDP_CRE_CEP Create UDP Communication End Point
 Static API...[Standard Function]
udp_cre_cep Dynamic API...[Extended Function]

[Static API]
 UDP_CRE_CEP(ID cepid, { ATR cepatr, { UP myipaddr, UH myportno },
 FP callback });

[C Language API]
 ER ercd = udp_cre_cep(ID cepid, T_UDP_CCEP *pk_ccep);

[Parameter]
 ID cepid UDP communication end point ID to be

created
 T_UDP_CCEP *pk_ccep UDP communication end point creation

information
 pk_ccep includes
 ATR cepatr UDP communication end point attribute
 T_IPV4EP myaddr Local IP address (myipaddr) and port number

(myportno)
 FP callback Callback routine address. Specify NULL

when not using a callback routine.

33

ITRON TCP/IP API Specification Ver. 2.00.00

 (Other implementation-dependent parameters may be added)

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_RSATR Reserved attribute
 E_PAR Parameter error (pk_ccep address, IP address, port number,

or callback is invalid)
 E_OBJ Object state error (a UDP communication end point is

already created for the specified ID, the specified port
number is already in use, or there is a privileged port
violation)

[Functional Description]
These APIs create a UDP communication end point with the specified ID. When
IPV4_ADDRANY is specified as the local IP address, the UDP packets that are sent to
all local IP addresses or broadcast are received, and the protocol stack should determine
the local IP address to be contained in transmit packets. When UDP_PORTANY is
specified as the port number, the protocol stack should determine a port number. Usage
of the UDP communication end point attribute and details of privileged ports are
implementation-dependent.

udp_del_cep Delete UDP Communication End Point
 Dynamic API...[Extended Function]

[C Language API]
 ER ercd = udp_del_cep(ID cepid);

[Parameter]
 ID cepid UDP communication end point ID

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_NOEXS Non-existent object

[Functional Description]
This API deletes the UDP communication end point with the specified ID. An E_DLT
error will be returned to the API that is waiting for data transmission/reception at the
deleted UDP communication end point.

34

ITRON TCP/IP API Specification Ver. 2.00.00

3.3 Transmitting and Receiving Data

udp_snd_dat Send Packet [Standard Function]

[C Language API]
 ER ercd = udp_snd_dat(ID cepid, T_IPV4EP *p_dstaddr, VP data,
 INT len, TMO tmout);

[Parameter]
 ID cepid UDP communication end point ID
 T_IPV4EP dstaddr Remote IP address and port number
 VP data Start address of the packet to be transmitted
 INT len Length of the packet to be transmitted
 TMO tmout Timeout

[Return Parameter]
 ER ercd Zero or a positive value that indicates the

length of the data stored in the transmit
buffer/error code

[Error Code]
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (dstaddr address, IP address, port number,

data, len, or tmout is invalid)
 E_OBJ Object state error (udp_snd_dat is pending)
 E_QOVR Queuing overflow
 E_DLT UDP communication end point that is waiting for

transmission has been deleted
 E_WBLK Non-blocking call accepted
 E_TMOUT Polling failure or timeout
 E_RLWAI Forced release from waiting

[Functional Description]
This API transmits a packet from the specified UDP communication end point to the
specified remote IP address and port number. This API remains in the waiting state until
data is stored in the transmit buffer.

Multiple udp_snd_dat calls can be issued to a single UDP communication end point. A
limit can be placed on the maximum number of udp_snd_dat calls to be queued if the
implementation requires. When such a limit is set, an E_QOVR error is returned if
udp_snd_dat calls have exceeded the limit.

[Rationale]
Queuing multiple udp_snd_dat calls requires a memory area for the queue. If there is no
limit on the queued calls, the maximum memory area cannot be controlled. To avoid

35

ITRON TCP/IP API Specification Ver. 2.00.00

this, this specification allows a limitation on the queued calls depending on the necessity
for the implementation.

[Supplemental Information]
As data is sent in packet units in UDP, note that the return value (length of the data
stored in the transmit buffer) does not necessarily indicate the length of the data actually
received by the destination.

udp_rcv_dat Receive Packet [Standard Function]

[C Language API]
 ER ercd = udp_rcv_dat(ID cepid, T_IPV4EP *p_dstaddr, VP data,
 INT len, TMO tmout);

[Parameter]
 ID cepid UDP communication end point ID
 VP data Start address of the area to store the received

packet
 INT len Length of the area to store the received packet
 TMO tmout Timeout

[Return Parameter]
 T_IPV4EP dstaddr Remote IP address and port number
 ER ercd Length of the read data/error code

[Error Code]
 Positive value Normal completion (length of the read data)
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (dstaddr address, data, len, or tmout is

invalid)
 E_OBJ Object state error (udp_rcv_dat is pending)
 E_QOVR Queuing overflow
 E_DLT UDP communication end point that is waiting for reception

has been deleted
 E_WBLK Non-blocking call accepted
 E_TMOUT Polling failure or timeout
 E_RLWAI Forced release from waiting
 E_BOVR Buffer overflow

[Functional Description]
This API receives a packet through the specified UDP communication end point and
returns the remote IP address and port number. If no packet has been received, this API
remains in the waiting state until a packet is received. If the area to store the received
packet is shorter than the length of the received packet, this API stores the amount of

36

ITRON TCP/IP API Specification Ver. 2.00.00

data that fits into the available area, discards the remaining data, and returns E_BOVR.

Multiple udp_rcv_dat calls can be issued to a single UDP communication end point. A
limit can be placed on the maximum number of udp_rcv_dat calls to be queued if the
implementation requires. When such a limit is set, an E_QOVR error is returned if
udp_rcv_dat calls have exceeded the limit.

[Rationale]
Queuing multiple udp_rcv_dat calls requires a memory area for the queue. If there is no
limit on the queued calls, the maximum memory area cannot be controlled. To avoid
this, this specification allows a limitation on the queued calls depending on the necessity
for the implementation.

37

ITRON TCP/IP API Specification Ver. 2.00.00

3.4 Other APIs

udp_can_cep Cancel Pending Processing [Standard Function]

[C Language API]
 ER ercd = udp_can_cep(ID cepid, FN fncd);

[Parameter]
 ID cepid UDP communication end point ID
 FN fncd Function code of the API to be canceled

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (fncd is invalid)
 E_OBJ Object state error (the processing specified by fncd is not

pending at the specified UDP communication end point)

[Functional Description]
This API cancels the specified processing pending at the specified UDP communication
end point. An E_RLWAI error will be returned to the canceled API. When a
non-blocking call is canceled, the callback routine for reporting the end of processing
will be called.

The following is a list of the API names and function codes of the processing that can be
canceled. When TFN_UDP_ALL is specified, all processing pending at the specified
UDP communication end point can be canceled.

 API Name Function code
 udp_snd_dat TFN_UDP_SND_DAT
 udp_rcv_dat TFN_UDP_RCV_DAT
 All TFN_UDP_ALL

udp_set_opt Set UDP Communication End Point Option
 [Extended Function]

[C Language API]
 ER ercd = udp_set_opt(ID cepid, INT optname, VP optval, INT optlen);

38

ITRON TCP/IP API Specification Ver. 2.00.00

[Parameter]
 ID cepid UDP communication end point ID
 INT optname Option type
 VP optval Address of the area that stores the option

value
 INT optlen Length of the option value

[Return Parameter]
 ER ercd Error code

[Error Code]
 E_OK Normal completion
 E_ID Invalid ID number
 E_NOEXS Non-existent object
 E_PAR Parameter error (optname, optval, or optlen is invalid)
 E_OBJ Object state error (specified option cannot be set in the

current state)

[Functional Description]
This API sets the option value (equivalent to the socket option) for the specified UDP
communication end point. optname specifies the option type to be set, optval specifies
the address of the area that stores the option value, and optlen specifies the length of the
option value. The types and functions of the options that can be specified for UDP
communication end points are implementation-dependent.

[Supplemental Information]
This API should be used to provide a facility to specify IP options.

udp_get_opt Get UDP Communication End Point Option
 [Extended Function]

[C Language API]
 ER ercd = udp_get_opt(ID cepid, INT optname, VP optval, INT optlen);

[Parameter]
 ID cepid UDP communication end point ID
 INT optname Option type
 VP optval Address of the area to store the option value
 INT optlen Length of the area to store the option value

[Return Parameter]
 ER ercd Length of the read option value/error code

[Error Code]
 0 or a positive value Normal completion (length of the read option value)
 E_ID Invalid ID number

39

ITRON TCP/IP API Specification Ver. 2.00.00

 E_NOEXS Non-existent object
 E_PAR Parameter error (optname, optval, or optlen is invalid,

or the area to store the option value is too short)
 E_OBJ Object state error (the specified option cannot be read

in the current state)

[Functional Description]
This API reads the option value (equivalent to the socket option) for the specified UDP
communication end point. optname specifies the option type to be read, optval specifies
the address of the area to store the option value, and optlen specifies the length of the
area to store the option value. If the area to store the option value is shorter than the
length of the option value to be read, an E_PAR error will be returned. The types and
functions of the options that can be read for UDP communication end points are
implementation-dependent.

[Supplemental Information]
This API should be used to provide a facility to read IP options. It should also be used to
provide a facility to read the state of UDP communication end points for debugging
purposes.

3.5 Callbacks

Common Specifications

[C Language API]
 ER ercd = callback(ID cepid, FN fncd, VP p_parblk);

[Common Parameter]
 ID cepid UDP communication end point ID
 FN fncd Event type

[Specific Parameter]
 VP p_parblk Address of the parameter block specific to the

event

[Return Value]
 Depends on the event type

[Description]
The ID of the UDP communication end point where an event has occurred, the event
type, and the parameters specific to the event are passed to a callback routine. The
parameter block specific to the event can be referred to only in the callback routine.
Usage of the return value from the callback routine depends on the event type.

The following describes the standard callbacks. Support of callbacks for other events is
implementation-dependent.

40

ITRON TCP/IP API Specification Ver. 2.00.00

Reporting End of Non-Blocking Call [Standard Function]

[Event Type]
 Function code of the ended API processing

[Specific Parameter]
 (The following parameter is passed through a parameter block)
 ER ercd Return value from API

[Return Value]
 Not used

[Function of Callback]
This routine is called when the non-blocking call processing is completed or canceled.
The return value from the API is passed through a parameter block. The other
parameters returned from the API are stored in the areas specified when the API was
called.

[Supplemental Information]
When the udp_rcv_dat processing with a non-blocking feature is completed, for
example, the length of the read data stored in the buffer is passed through ercd and the
remote IP address and port number are stored in the area indicated by the p_dstaddr
parameter that was specified when udp_rcv_dat was called.

Receiving UDP Packet [Standard Function]

[Event Type]
 TEV_UDP_RCV_DAT

[Specific Parameter]
 (The following parameter is passed through a parameter block)
 INT len Length of packet

[Return Value]
 Not used

[Function of Callback]
This routine is called when a UDP packet is received while udp_rcv_dat is not pending.
The received UDP packet should be read by using udp_rcv_dat in the callback routine
(if the packet is not read before the callback routine returns, the data is discarded).

41

ITRON TCP/IP API Specification Ver. 2.00.00

Chapter 4

4.1

•

•

4.2

4.2.1

APIs for TCP/IPv6

Overview

This chapter describes the API specification supporting IPv6. This specification
was developed based on the API design policies and specifications supporting IPv4,
which were described in Version 1.0.

As this specification is an extension of the specification described in chapters 2 and
3, this chapter only describes the differences between the APIs for IPv4 and IPv6.

General Definitions

Data Structures and Data Types

(1) Data Structures for Containing an IP Address and a Port Number

In the following data structure for containing an IP address and a port number that was
described in section 1.5.1,

 typedef struct t_ipv4ep {
 UW ipaddr; /* IP address */
 UH portno; /* Port number */
 } T_IPV4EP;

the representation of the IP address should be changed. To represent an IP address for
IPv6, the T_IN6_ADDR data structure is defined as follows:

 typedef struct t_in6_addr {
 union {
 UB __u6_addr8[16];
 UH __u6_addr16[8];
 UW __u6_addr32[4];
 }; __u6_addr;
 } T_IN6_ADDR;

Using this definition, the T_IPV6EP data structure for IPv6 is defined as follows:

 typedef struct t_ipv6ep {
 T_IN6_ADDR ipaddr; /* IP address */
 UH portno; /* Port number */
 } T_IPV6EP;

43

ITRON TCP/IP API Specification Ver. 2.00.00

[Supplemental Information]

An IP address and a port number should be assigned in the network order (big endian)
to the ipaddr field and portno field, respectively.

(2) Data Structure for Creating Objects

The following T_TCP_CREP data structure for creating objects described in section
1.5.1 have a general name, but the data structure for containing an IP address and a port
number for IPv4 is used as a member of T_TCP_CREP.

 typedef struct t_tcp_crep {
 ATR repatr; /* TCP reception point attribute */
 T_IPV4EP myaddr; /* Local IP address and port number */
 (Other implementation-dependent fields may be added)
 } T_TCP_CREP;

To adapt this T_TCP_CREP definition to IPv6, a new data structure for IPv6 is defined
as follows:

 typedef struct t_tcp_crep_ipv6 {
 ATR repatr; /* TCP reception point attribute */
 T_IPV6EP myaddr; /* Local IP address and port number */
 } T_TCP_CREP_IPV6;

In the same way, the T_UDP_CCEP data structure for creating objects described in
section 1.5.1 have a general name, but the data structure for containing an IP address
and a port number for IPv4 is used as a member of T_UDP_CCEP.

 typedef struct t_udp_ccep {
 ATR cepatr; /* UDP communication end point attribute */
 T_IPV4EP myaddr; /* Local IP address and port number */
 FP callback; /* Callback routine */
 (Other implementation-dependent fields may be added)
 } T_UDP_CCEP;

T_UDP_CCEP_IPV6 is defined as a new data structure for IPv6 as follows:

 typedef struct t_udp_ccep_ipv6 {
 ATR cepatr; /* UDP communication end point attribute */
 T_IPV6EP myaddr; /* Local IP address and port number */
 FP callback; /* Callback routine */
 (Other implementation-dependent fields may be added)
 } T_UDP_CCEP_IPV6;

44

ITRON TCP/IP API Specification Ver. 2.00.00

(3) Special IP Address and Port Numbers

As described in item (5), Special IP Address and Port Numbers, in section 1.5.3,
Constants, IPV4_ADDRANY is a constant for IPv4.
 IPV4_ADDRANY0 IP address specification omitted

The equivalent data for IPv6 is defined as follows:

 #define IPV6_ADDR_UNSPECIFIED_INIT \
 {{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }}
 #define IPV6_ADDRANY IPV6_ADDR_UNSPECIFIED_INIT

In addition, the protocol stack defines data CONST_IPV6_ADDR_ANY as follows so
that the user can choose a convenient one in the programs.

 const struct i_in6_addr __ipv6_addr_unspecified_init =
 {{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }}
 #define CONST_IPV6_ADDRANY __ipv6_addr_unspecified

(4) Creating Reception Points

As described in section 2.2, Creating and Deleting TCP Reception Points, the
TCP_CRE_REP static API has a general name, but it includes an address specification
for IPv4.

[Static API]
 TCP_CRE_REP(ID repid, { ATR repatr, { UP myipaddr, UH myportno }});

To adapt it to IPv6, the following API is defined.
 TCP_CRE_REP_IPV6(ID repid, { ATR repatr, { T_IN6_ADDR myipaddr,

UH myportno }});

(5) Connecting and Disconnecting

As described in section 2.4, Connecting and Disconnecting, the TCP_ACP_CEP API for
waiting for connection requests and the TCP_CON_CEP API for requesting connection
have general names, but they include an address specification for IPv4.

[C Language API]
 ER ercd = tcp_acp_cep(ID cepid, ID repid, T_IPV4EP *p_dstaddr, TMO

tmout);
 ER ercd = tcp_con_cep(ID cepid, T_IPV4EP *p_myaddr,
 T_IPV4EP *p_dstaddr, TMO tmout);

45

ITRON TCP/IP API Specification Ver. 2.00.00

To adapt them to IPv6, the following APIs are defined.
 ER ercd = tcp_acp_cep_ipv6(ID cepid, ID repid, T_IPV6EP *p_dstaddr,

TMO tmout);
 ER ercd = tcp_con_cep_ipv6(ID cepid, T_IPV6EP *p_myaddr,
 T_IPV6EP *p_dstaddr, TMO tmout);

(6) Creating and Deleting UDP Communication End Points

As described in section 3.2, Creating and Deleting UDP Communication End Points, the
UDP_CRE_REP static API for creating a UDP communication end point has a general
name, but it includes an address specification for IPv4 in the same way as
TCP_CRE_REP does for creating a TCP reception point.

[Static API]
 UDP_CRE_CEP(ID cepid, { ATR cepatr, { UP myipaddr, UH myportno },
 FP callback });

To adapt it to IPv6, the following API is defined.
 UDP_CRE_CEP_IPV6(ID cepid, { ATR cepatr, { T_IN6_ADDR myipaddr,
 UH myportno },
 FP callback });

(7) Transmitting and Receiving Data

As described in section 3.3, Transmitting and Receiving Data, the UDP_SND_DAT API
for transmitting a packet and the UDP_RCV_DAT API for receiving a packet have
general names, but they include address specifications for IPv4 in the same way as
TCP_ACP_CEP does for waiting for connection requests.

[C Language API]
 ER ercd = udp_snd_dat(ID cepid, T_IPV4EP *p_dstaddr, VP data,
 INT len, TMO tmout);
 ER ercd = udp_rcv_dat(ID cepid, T_IPV4EP *p_dstaddr, VP data,
 INT len, TMO tmout);

To adapt them to IPv6, the following APIs are defined.
 ER ercd = udp_snd_dat_ipv6(ID cepid, T_IPV6EP *p_dstaddr, VP data,
 INT len, TMO tmout);
 ER ercd = udp_rcv_dat_ipv6(ID cepid, T_IPV6EP *p_dstaddr, VP data,
 INT len, TMO tmout);

46

ITRON TCP/IP API Specification Ver. 2.00.00

Chapter 5

5.1

5.2

Conditions for Using the
Specification

Open Specification, No Warranty, Copyright

The ITRON TCP/IP API Specification is an open specification handled according to the
basic policy of the TRON Project. Anyone is free to implement, use, and sell, without
paying a license fee, the TCP/IP protocol stack conforming to the API defined in this
specification.

As an incorporated body, TRON Association makes no guarantees whatsoever with
regard to this specification, including its correctness and validity. TRON Association is
not liable for any direct or indirect loss or damage caused by using this specification.

The copyright for this specification document belongs to TRON Association. TRON
Association grants permission to copy all or part of this specification document and to
redistribute it intact without charge or at cost. However, modification of this
specification document without prior written permission from TRON Association is
strictly prohibited. TRON Association permits the members of TRON Association to
modify this specification document to create and distribute product manuals after first
having applied to and received permission from the ITRON Specification Study Group.

Contact Information

The ITRON specifications are developed and maintained by the ITRON Specification
Study Group of TRON Association. Any questions regarding the specifications should
be directed to the following.

 ITRON Specification Study Group, TRON Association
 Katsuta Building 5F
 3-39, Mita 1-chome, Minato-ku,
 Tokyo 108-0073, JAPAN
 TEL: +81-3-3454-3191
 FAX: +81-3-3454-3224
 E-mail: info@assoc.tron.org
 Website: http://www.assoc.tron.org

47

ITRON TCP/IP API Specification Ver. 2.00.00

Appendix A Version History
 May 14, 1998 Ver. 1.00.00 First edition published

 May 19, 1998 Ver. 1.00.01 Minor errors corrected (such as
typographical errors)

 April 1, 2006 Ver. 2.00.00 Specification adapted to the current TRON
specification and new specification for IPv6
added

Editorial Committee Members for the English Edition of the ITRON TCP/IP API
Specification Ver. 2.00.00:

 Leader: Noriaki Takakura (NEC Electronics Corporation)
Tomonori Kaneko (eSOL Co., Ltd.)
Tadashi Sakamoto (Renesas Solutions Corp.)
Hiroshi Ii (TRON Association)
Shimpei Matsumura (TRON Association)

49

ITRON TCP/IP API Specification Ver. 2.00.00

Appendix B Relations with the Socket Interface

B.1 Major Differences from the Socket Interface

The API of this specification has the following major differences from the socket
interface.

The socket interface specifies APIs independently of the protocols but this
specification specifies separate APIs for each protocol; specifically, separate APIs
for TCP and UDP. In addition, the address specification structure defined in this
specification is specific to TCP and UDP on IPv4. This specification does not
support other protocols.

•

•

•

•

•

•

•

•

This specification uses communication end points as the abstraction equivalent to
sockets. A separate type of communication end point is defined for each protocol
and type. Specifically, this specification distinguishes communication end points
for TCP from those for UDP, and further distinguishes the communication end
points for TCP between TCP reception points and TCP communication end points.
This specification provides a dedicated API for creating and deleting each type of
communication end point.

This specification does not provide the abstraction equivalent to file descriptors in
the socket interface, but allows direct manipulation of communication end points
through APIs (refer to section 1.4.3). This specification does not support a feature
equivalent to the select function in the socket interface; a similar feature can be
implemented through a callback.

This specification provides a timeout feature and a non-blocking call feature for
each API that may enter the waiting state. The socket interface also provides a
non-blocking feature, but it differs from this specification in that the non-blocking
feature should be specified for each socket instead of each API.

This specification provides features for canceling the pending processing
(tcp_can_cep and udp_can_cep).

The listen function in the socket interface is included in the API for creating a TCP
reception point (tcp_cre_rep), which should be used as the equivalent to listen. Note
that tcp_cre_rep does not have a feature for specifying the maximum number of
connection requests to be queued, which is supported by the listen function in the
socket interface.

The bind function in the socket interface is included in each of the APIs
(tcp_cre_rep, tcp_con_cep, and udp_cre_cep); there is no dedicated API equivalent
to bind.

The accept function in the socket interface internally creates a socket dynamically
when receiving a connection request. The tcp_acp_cep API in this specification
passes the TCP communication end point to be used for connection through a
parameter when receiving a connection request.

50

ITRON TCP/IP API Specification Ver. 2.00.00

This specification provides copy-saving APIs for TCP. •

•

•

•

•

This specification does not provide an API for terminating only reception through
TCP connection. In the socket interface, whether to terminate transmission or
reception can be specified as a parameter of the shutdown function, but tcp_sht_cep
of this specification does not have an equivalent parameter.

The APIs for transmitting and receiving TCP urgent data are separate from those for
regular data transmission and reception in this specification. The received urgent
data is discarded if it is not read within the callback routine; it is not queued in the
protocol stack.

This specification provides a callback routine to be called when a UDP packet is
received. The received data is discarded if it is not read within the callback routine;
it is not queued in the protocol stack.

This specification does not support a feature equivalent to the connected UDP
socket.

51

ITRON TCP/IP API Specification Ver. 2.00.00

Appendix C Sample Programs
C.1 Sample Implementation of read and write by TCP Copy-Saving

APIs

ER read(ID cepid, VP buf, INT len, TMO tmout)
{
 VP rbuf;
 INT rlen;
 INT tlen = 0; /* Total length of received data */

 if ((rlen = tcp_rcv_buf(cepid, &rbuf, tmout)) <= 0) {
 return(rlen);
 }
 while (len > 0 && rlen > 0) {
 if (rlen > len) {
 rlen = len;
 }
 bcopy(rbuf, buf, rlen);
 buf += rlen;
 len -= rlen;
 tlen += rlen;
 if (tcp_rel_buf(cepid, rlen) < 0) {
 /* Returns the length of data received until an error occurs */
 return(tlen);
 }
 if ((rlen = tcp_rcv_buf(cepid, &rbuf, TMO_POL)) < 0) {
 /* Returns the length of data received until an error occurs */
 return(tlen);
 }
 }
 return(tlen);
}

ER write(ID cepid, VP buf, INT len, TMO tmout)
{
 VP sbuf;
 INT slen;
 INT tlen = 0; /* Total length of transmitted data */

 if ((slen = tcp_get_buf(cepid, &sbuf, tmout)) <= 0) {
 return(slen);
 }
 while (len > 0 && slen > 0) {
 if (slen > len) {
 slen = len;
 }
 bcopy(buf, sbuf, slen);
 buf += slen;
 len -= slen;

52

ITRON TCP/IP API Specification Ver. 2.00.00

 tlen += slen;
 if (tcp_snd_buf(cepid, slen) < 0) {
 /* Returns the length of data transmitted until an error occurs */
 return(tlen);
 }
 if ((slen = tcp_get_buf(cepid, &sbuf, TMO_POL)) < 0) {
 /* Returns the length of data transmitted until an error occurs */
 return(tlen);
 }
 }
 return(tlen);
}

C.2 Sample Implementation of getc and putc by TCP Copy-Saving
APIs

The target of transmission and reception is fixed at a single TCP communication
end point.

•

• The processing of the errors returned by the APIs is omitted.

extern ID cepid;

static unsigned char *rcvbuf;
static INT rcvbuflen = 0;
static INT rcvdatlen = 0;

int getc()
{
 if (rcvbuflen == 0) {
 if (rcvdatlen > 0) {
 tcp_rel_buf(cepid, rcvdatlen);
 rcvdatlen = 0;
 }
 rcvbuflen = tcp_rcv_buf(cepid, &rcvbuf, TMO_FEVR);
 if (rcvbuflen == 0) {
 /* End of data (EOF) */
 return(-1);
 }
 }
 rcvbuflen -= 1;
 rcvdatlen += 1;
 return(*rcvbuf++);
}

static unsigned char *sndbuf;
static INT sndbuflen = 0;
static INT snddatlen = 0;

void putc(char c)

53

ITRON TCP/IP API Specification Ver. 2.00.00

{
 if (sndbuflen == 0) {
 if (snddatlen > 0) {
 tcp_snd_buf(cepid, snddatlen);
 snddatlen = 0;
 }
 sndbuflen = tcp_get_buf(cepid, &sndbuf, TMO_FEVR);
 }
 sndbuflen -= 1;
 snddatlen += 1;
 *sndbuf++ = c;
}

void flush()
{
 if (snddatlen > 0) {
 tcp_snd_buf(cepid, snddatlen);
 snddatlen = 0;
 sndbuflen = 0;
 }
 if (rcvdatlen > 0) {
 tcp_rel_buf(cepid, rcvdatlen);
 rcvdatlen = 0;
 rcvbuflen = 0;
 }
}

C.3 Example of UDP Callback Routine

#define MY_IPADDR (0xc0a80001) /* 192.168.0.1 */
#define MY_PORTNO htons(65500)
#define BUF_CNT (8)
#define search_empty_buffer(index) search_buffer(1, (index))
#define search_received_buffer(index) search_buffer(0, (index))
typedef struct buffer {

 volatile INT datsiz; /* Data size in buffer */
 T_IPV4EP dstaddr; /* Destination address received from or sent to */
 char buf[256];
} buffer_t;
static buffer_t _bufs[BUF_CNT];
int get_next_index(int current)
{
 return (current + 1 < BUF_CNT) ? current + 1 : 0;
}
int search_buffer(int empty, int current)
{
 int tmpidx;

 tmpidx = current;
 while (empty ? (0 != _bufs[tmpidx].datsiz) : (0 == _bufs[tmpidx].datsiz)) {

54

ITRON TCP/IP API Specification Ver. 2.00.00

 tmpidx = get_next_index(tmpidx);
 if (tmpidx == current) {
 /* Not found */
 tmpidx = -1;
 break;
 }
 }
 return tmpidx;
}
ER udp_callback(ID cepid, FN fncd, VP p_parblk)
{
 static int cbidx = 0;
 int tmpidx;
 int rcvsiz;
 buffer_t *p_buf;

 if (TEV_UDP_RCV_DAT == fncd) {
 tmpidx = search_empty_buffer(cbidx);
 if (tmpidx >= 0) {
 cbidx = tmpidx;
 p_buf = &_bufs[cbidx];
 rcvsiz = *((INT *)p_parblk);
 udp_rcv_dat(cepid, &p_buf->dstaddr, p_buf->buf, rcvsiz,
 TMO_POL);
 p_buf->datsiz = rcvsiz;
 cbidx = get_next_index(cbidx);
 }
 }
 return 0;
}
void test_main()
{
 ER ercd;
 ID cepid;
 T_UDP_CCEP ccep;
 buffer_t *p_buf;
 int sndidx;
 int tmpidx;

 memset(&_bufs, 0, sizeof(_bufs));
 sndidx = 0;
 memset(&ccep, 0, sizeof(ccep));
 ccep.myaddr.ipaddr = MY_IPADDR;
 ccep.myaddr.portno = MY_PORTNO;
 ccep.callback = udp_callback;
 cepid = 1;
 ercd = udp_cre_cep(cepid, &ccep);
 while (ercd >= 0) {
 /* Loop back received data */
 tmpidx = search_received_buffer(sndidx);

55

ITRON TCP/IP API Specification Ver. 2.00.00

 if (tmpidx >= 0) {
 sndidx = tmpidx;
 p_buf = &_bufs[sndidx];
 ercd = udp_snd_dat(cepid, &p_buf->dstaddr, p_buf->buf,
 p_buf->datsiz, TMO_FEVR);
 if (ercd < 0) {
 /* Exit from loop because an error occurred */
 break;
 ｝
 p_buf->datsiz = 0;
 sndidx = get_next_index(sndidx);
 }
 }
 udp_del_cep(cepid);
}

56

ITRON TCP/IP API Specification Ver. 2.00.00

Appendix D Type Definition Macros

D.1 Differences in Type Definition Macros

The type definition macros differ as follows according to the target OS.

Table 1.

Type
definition Function µITRON V3 µITRON V4 T-Kernel V1.00

INT Signed integer for
the processor

Implementation-
dependent

Implementation-
dependent

typedef int INT

UH Unsigned 16-bit
integer

typedef
unsigned short
UH

Implementation-
dependent

typedef
unsigned short UH

UW Unsigned 32-bit
integer

typedef
unsigned long
UW

Implementation-
dependent

typedef unsigned
int UW

VP Pointer to an
unknown data type

typedef void *VP Implementation-
dependent

typedef void

*VP

FP Processing unit
start address
(pointer to a
function)

typedef void
(*FP)()

Implementation-
dependent

typedef void

(*FP)()

ID Object ID number Implementation-
dependent signed
integer

Implementation-
dependent16-bit or
longer signed
integer

typedef INT ID

ER Error code Signed integer Implementation-
dependent 8-bit or
longer signed
integer

typedef INT ER

ATR Object attribute Unsigned integer Unsigned integer typedef UINT ATR

NADR Invalid address (-1) Not defined NULL should be
used instead

SIZE Memory area size Not defined Unsigned integer Not defined

TMO Timeout Same as INT Implementation-
dependent 16-bit or
longer signed
integer

typedef INT TMO

FN Function code Signed integer of a
maximum of two
bytes

Signed integer typedef INT FN

57

ITRON TCP/IP API Specification Ver. 2.00.00

Appendix E Differences in Constants
According to Target OS

E.1 Differences in Error Codes

The error codes differ as follows according to the target OS.

Table 2.

Main error code µITRON V3 µITRON V4 T-Kernel V1.00

E_OK 0 0 0

E_SYS (-5) -5 ERCD(-5,0)

E_NOSPT (-17) -9 ERCD(-33,0)

E_RSATR (-24) -11 ERCD(-11,0)

E_PAR (-33) -17 ERCD(-17,0)

E_ID (-35) -18 ERCD(-18,0)

E_MACV (-65) -26 ERCD(-26,0)

E_NOMEM (-10) -33 ERCD(-33,0)

E_OBJ (-63) -41 ERCD(-41,0)

E_NOEXS (-52) -42 ERCD(-42,0)

E_QOVR (-73) -43 ERCD(-43,0)

E_RLWAI (-86) -49 ERCD(-49,0)

E_TMOUT (-85) -50 ERCD(-50,0)

E_DLT (-81) -51 ERCD(-51,0)

E_WBLK (-83)*1 -57 ERCD(-57,0)*1

E_CLS (-87)*1 -52 ERCD(-52,0)*1

E_BOVR (-89)*1 -58 ERCD(-58,0)*1

*1) These codes are not defined in the kernel specifications, but are defined in the ITRON
TCP/IP API specification. Refer to section 1.5.3.

•

E.2 Differences in Timeout Specifications

The timeout specifications differ as follows according to the target OS.

Table 3.

Timeout specification µITRON V3 µITRON V4 T-Kernel V1.00

TMO_POL 0 0 0

TMO_FEVR -1 -1 -1

TMO_NBLK -2*1 -2 -2*1

*1) These values are not defined in the kernel specifications, but are defined in the ITRON
TCP/IP API specification. Refer to section 1.5.3.

•

58

ITRON TCP/IP API Specification Ver. 2.00.00

Appendix F Notes on Implementation

F.1 Implementation of ER Type

The ER type to be used for the return value from the API of this specification should be
data of the same size as the INT type. Although there have been some implementations
of the ER type in eight bits, the same size as the INT type (16 bits or 32 bits) is
recommended.

F.2 NADR Value

Note the NADR value because it differs according to the target OS. The following
shows the NADR value for each OS. Although the NADR value is not defined in the
kernel specifications other than µITRON V3, it is defined in the ITRON TCP/IP API
specification.

µITRON V3: NADR = -1 •

•

•

µITRON V4: NADR = NULL (= 0)

T-Kernel V1.00: NADR = NULL (= 0)

59

ITRON TCP/IP API Specification Ver. 2.00.00

Appendix G Differences between
Specifications for IPv4 and IPv6

G.1 Differences in Specifications

The following table is a summary of the differences between the specifications for IPv4
and IPv6.

Table 4.

Meaning of structure definitions
and functions Specification for IPV4 Specification for IPV6

Name of the data structure containing
an IP address and a port number

T_IPV4EP T_IPV6EP

Name of the data structure for object
creation

T_TCP_CREP T_TCP_CREP_IPV6

Name of the data structure for object
creation

T_UDP_CCEP T_UDP_CCEP_IPV6

IPV6_ADDRANY Definition of the value used when the
IP specification is omitted

IPV4_ADDRANY

CONST_IPV6_ADDRANY

TCP_CRE_REP TCP_CRE_REP_IPV6 API for creating a TCP reception
point tcp_cre_rep tcp_cre_rep_ipv6

API for waiting for a connection
request (passive open)

tcp_acp_cep tcp_acp_cep_ipv6

API for requesting a connection
(active open)

tcp_con_cep tcp_con_cep_ipv6

UDP_CRE_CEP UDP_CRE_CEP_IPV6 API for creating a UDP
communication end point udp_cre_cep udp_cre_cep_ipv6

API for transmitting a packet udp_snd_dat udp_snd_dat_ipv6

API for receiving a packet udp_rcv_dat udp_rcv_dat_ipv6

60

ITRON TCP/IP API Specification Version 2.00.00

July 24, 2007 Version 2.00.00 (English) First edition

Supervised by: Ken Sakamura

Edited and published by: TRON Association

 Katsuta Building 5F

 3-39, Mita 1-chome, Minato-ku, Tokyo 108-0073, JAPAN

 TEL: +81-3-3454-3191

Printed by: Hokuetsu Printing CO., LTD.

Copyright 2007 by TRON ASSOCIATION

	Edited and Published by
	Introduction
	Background and Scope of Standardization
	Requirements for Embedded Systems
	API Design Policies
	General Concepts
	API Levels and Static APIs
	API Return Values and Error Codes
	Communication End Point
	Timeout and Non-Blocking Calls
	Callbacks
	Relationships between APIs and Tasks

	General Definitions
	Data Structures and Data Types
	Data Structure for Containing an IP Address and a Port Number
	Data Structures for Creating Objects

	Utility Functions and Macros
	Byte Order Converting Functions and Macros
	Error Code Retrieving Functions and Macros

	Constants
	General Constant
	API Function Codes and Event Codes
	Main Error Codes (see Appendix for details)
	Timeout Specification (see Appendix for details)
	Special IP Address and Port Numbers

	APIs for TCP
	Overview
	Creating and Deleting TCP Reception Points
	Creating and Deleting TCP Communication End Points
	Connecting and Disconnecting
	Transmitting and Receiving Data (Standard APIs)
	Transmitting and Receiving Data (Copy-Saving APIs)
	Transmitting and Receiving Urgent Data
	Other APIs
	Callbacks

	APIs for UDP
	Overview
	Creating and Deleting UDP Communication End Points
	Transmitting and Receiving Data
	Other APIs
	Callbacks

	APIs for TCP/IPv6
	Overview
	General Definitions
	Data Structures and Data Types
	Data Structures for Containing an IP Address and a Port Number
	Data Structure for Creating Objects
	Special IP Address and Port Numbers
	Creating Reception Points
	Connecting and Disconnecting
	Creating and Deleting UDP Communication End Points
	Transmitting and Receiving Data

	Conditions for Using the Specification
	Open Specification, No Warranty, Copyright
	Contact Information
	
	
	Version History
	Relations with the Socket Interface
	Major Differences from the Socket Interface

	Sample Programs
	Sample Implementation of read and write by TCP Copy-Saving APIs
	Sample Implementation of getc and putc by TCP Copy-Saving APIs
	Example of UDP Callback Routine

	Type Definition Macros
	Differences in Type Definition Macros

	Differences in Constants According to Target OS
	Differences in Error Codes
	Differences in Timeout Specifications

	Notes on Implementation
	Implementation of ER Type
	NADR Value

	Differences between Specifications for IPv4 and IPv6
	Differences in Specifications

