
µITRON4.0 Specification
Ver. 4.03.00

Supervised by Ken Sakamura
Edited and Published by

TRON ASSOCIATION

µITRON4.0 Specification (Ver. 4.03.00)

The copyright of this specification document belongs to TRON Association.
TRON Association grants the permission to copy the whole or a part of this specification
document and to redistribute it intact without charge or at cost. However, when a part of
this specification document is redistributed, it must clearly state (1) that it is a part of the
µITRON4.0 Specification document, (2) which part was taken, and (3) the method to
obtain the whole specification document. See Section 6.1 for more information on the
conditions for using this specification and this specification document.
Any questions regarding this specification and this specification document should be
directed to the following:

ITRON Specification Study Group, TRON Association
Katsuta Building 5F
3-39, Mita 1-chome, Minato-ku,
Tokyo 108-0073, JAPAN
TEL: +81-3-3454-3191
FAX: +81-3-3454-3224

§ TRON is the abbreviation of "The Real-time Operating system Nucleus."
§ ITRON is the abbreviation of "Industrial TRON."
§ µITRON is the abbreviation of "Micro Industrial TRON."
§ BTRON is the abbreviation of "Business TRON."
§ CTRON is the abbreviation of "Central and Communication TRON."
§ TRON, ITRON, µITRON, BTRON, CTRON, and T-Kernel do not refer to any specific product or

products.

Copyright(C)2007 by TRON ASSOCIATION

µITRON4.0 Specification Ver. 4.03.00

A Word from the Project Leader
Twenty-two years have passed since the ITRON Sub-Project was established as a part of
the TRON Project: a real-time operating system specification for embedded systems. In
this period, since the T-Engine Project commenced in 2001, activities for the
standardization of a leading-edge real-time OS within the TRON Project have moved on
to the T-Kernel Series as the next-generation ITRON Specification. However, that the
conventional µITRON-specification OS remains the most used OS for embedded systems
in Japan is an undeniable fact.
This is because the technological advantages of the ITRON Specifications such as real-
time response, compactness to maximize the efficiency of system resources, flexible
adaptability in specification, and open architecture policy are strongly supported. While
this is very pleasing to ITRON's exponents, migration to the T-Kernel is believed to be
crucial for supporting the increasingly advanced and complex functions of large-scale
embedded systems.
From here, we will seek to expand the "TRON Community" formed by the developers and
users of both ITRON and the T-Kernel while promoting migration to the T-Kernel.
The revisions leading to this version, 4.03, were carried out for this purpose. One
objective was to make ease the comprehensibility of parts that were difficult to understand
without making large changes to the specification itself. Another objective was to create a
mechanism that facilitates migration from µTRON to the T-Kernel. Activities towards the
former objective included accommodating users by listing the descriptions on
implementation-defined items scattered throughout the specification. A Basic Profile has
been introduced specifically for the latter objective.
The Basic Profile specifies the service calls that have the same functionality in
µITRON3.0, µITRON4.0, and the T-Kernel. Middleware or applications that operate
within this profile can be easier to port from µTRON to the T-Kernel.
In these ways, the µITRON4.0 Specification Ver. 4.03 is expected to achieve the
apparently contradictory goals of further improving the services for current users of
µITRON while at the same time providing a good bridge to the T-Kernel.

December, 2006

Ken Sakamura

Project Leader, TRON Project

i

µITRON4.0 Specification Ver. 4.03.00

Organization of the Specification Document
This document is the specification of the µITRON4.0 (or the µITRON4.0 Real-Time
Kernel) C-Language API Specification. The version number of specification is printed on
the cover and the top-right of each page.
The organization of this document is as follows.
In Chapter 1, a summary of the TRON Project and the ITRON Sub-Project and design
policies of the ITRON Specifications are introduced. The position of the µITRON4.0
Specification is also described. This chapter describes the background information of the
µITRON4.0 Specification and is not the main body of the µITRON4.0 Specification.
In Chapter 2, the common rule of the µITRON4.0 Specification and the software
components that are standardized to be consistent with the µITRON4.0 Specification is
described. In Chapter 3, the various concepts and the common definitions for various
features of the µITRON4.0 Specification are shown. In Chapter 4, each feature of the
µITRON4.0 Specification is described. In Chapter 5, the additional specifications are
described.
In Chapter 6, the reference information, such as the maintenance of specification and
reference documents, is described. In Chapter 7, the lists and other information that may
be helpful in reading this specification is shown. These lists are the contents of Chapter 2
to Chapter 5, as seen from a different point of view. Chapter 6 and Chapter 7 are not the
main body of the µITRON4.0 Specification.

ii

µITRON4.0 Specification Ver. 4.03.00

Description Format of the Specification Document
The following description format is used in this specification document.

[Standard Profile]

The specifications of the Standard Profile of the µITRON4.0 Specification are described
here. The scope of functionalities that the Standard Profile requires to support, the rule
that is not applied to the Standard Profile but is included in the functional descriptions of
the services calls and static APIs which the Standard Profile requires to support, and the
rule that is not described in the µITRON4.0 Specification but applied to the Standard
Profile are described here.

[Supplemental Information]

Supplemental explanations of items difficult to understand are described here to avoid
misunderstanding. This is not the main body of the µITRON4.0 Specification.

[Differences from the µITRON3.0 Specification]

The differences of the µITRON4.0 Specification from the µITRON3.0 Specification and
their reasons are described here. The major differences and modifications from the
µITRON3.0 Specification are mainly described, but not the additions or clarification made
in the µITRON4.0 Specification. This is not the main body of the µITRON4.0
Specification.

[Rationale]

The reasons for the specification decision are described here, when further explanations
are necessary. This is not the main body of the µITRON4.0 Specification.
The functional descriptions of service calls and static APIs in Chapter 4 use the format
described below.
The functional description of each service call or static API is started with the following
header.

API Name API Description Profile

"API Name" is a service call or a static API name. "API description" is a simple statement
about the functionality of this service call or static API. If [S] is placed at the "Profile"
field, the Standard Profile requires support for the service call or static API. [B] stands for
the Basic Profile.

iii

µITRON4.0 Specification Ver. 4.03.00

[Static API]

This shows the description format of a static API in the system configuration file.

[C Language API]

This shows the invocation format of a service call in the C Language.

[Parameter]

This lists all of the parameters for this service call or static API. It also includes a simple
description, the data type, and the name of each parameter.

[Return Parameter]

This lists all of the return parameters for this service call. It also includes a simple
description, the data type, and the name of each return parameter.

[Error Code]

This lists all of the main error codes that this service call returns. It also includes a simple
description of the cause of each error code. However, the main error codes that many
service calls may return due to the same cause are not described for each service call (see
Section 2.1.6).

[Functional Description]

This describes the functionality of this service call or static API.
Italic characters within the names of service calls and constants represent other characters.
For example, cre_yyy (yyy are italic characters) can be cre_tsk, cre_sem, cre_flg, and so on.
For some parameters, such as object attributes or service call operational modes where
specific values are chosen, the following format is used:

[x] x may or may not be specified
x | y Bitwise OR expression
x || y Logical OR expression

For example, ((TA_HLNG || TA_ASM) | [TA_ACT]) can take one of the following four
values.

TA_HLNG
TA_ASM
(TA_HLNG | TA_ACT)
(TA_ASM | TA_ACT)

iv

µITRON4.0 Specification Ver. 4.03.00

Table of Contents
A Word from the Project Leader... i
Organization of the Specification Document ... ii
Description Format of the Specification Document.. iii
Table of Contents ... v
Service Call Index... ix
Static API Index .. xiv

Chapter 1 Background of the µITRON4.0 Specification1
1.1 TRON Project .. 1

1.1.1 What is the TRON Project?.. 1
1.1.2 Basic TRON Project Concepts... 1
1.1.3 Results To Date .. 2
1.1.4 The Future of TRON.. 2

1.2 History and Current Status of the ITRON Specifications 3
1.2.1 Current State and Features of Embedded System .. 3
1.2.2 Requirements for RTOS on Embedded System... 4
1.2.3 Current Status of the ITRON Specifications.. 6

1.3 ITRON Specification Design Policy.. 8
1.4 Position of the µITRON4.0 Specification.. 10

1.4.1 Second Phase Standardization Activities of the ITRON Sub-Project 10
1.4.2 Necessity of the µITRON4.0 Specification ... 11
1.4.3 Introduction of the Standard Profile... 12
1.4.4 Realization of a Wider Scalability ... 14
1.4.5 New Functions in the µITRON4.0 Specification 15
1.4.6 Standardization Activities after Publication of the µITRON4.0
Specification ... 18

Chapter 2 ITRON General Concepts, Rules, and
Guidelines...21

2.1 ITRON General Concepts .. 21
2.1.1 Terminologies .. 21
2.1.2 Elements of an API .. 22
2.1.3 Object ID Numbers and Object Numbers .. 25
2.1.4 Priorities ... 25
2.1.5 Function Codes .. 26
2.1.6 Return Values of Service Calls and Error Codes 26
2.1.7 Object Attributes and Extended Information ... 28
2.1.8 Timeout and Non-Blocking.. 29
2.1.9 Relative Time and System Time .. 30
2.1.10 System Configuration File ... 30
2.1.11 Syntax and Parameters of Static APIs.. 34

2.2 API Naming Convention.. 37

v

µITRON4.0 Specification Ver. 4.03.00

2.2.1 Software Component Identifiers .. 37
2.2.2 Service Calls... 37
2.2.3 Callbacks .. 38
2.2.4 Static APIs.. 38
2.2.5 Parameter and Return Parameter.. 40
2.2.6 Data Types ... 40
2.2.7 Constants .. 41
2.2.8 Macros.. 42
2.2.9 Header Files ... 42
2.2.10 Kernel and Software Component Internal Identifiers 42

2.3 ITRON General Definitions ... 42
2.3.1 ITRON General Data Types... 42
2.3.2 ITRON General Constants ... 45
2.3.3 ITRON General Macros ... 49
2.3.4 ITRON General Static APIs... 49

Chapter 3 Concepts and Common Definitions in
µITRON4.0 ... 51

3.1 Glossary of Basic Terms .. 51
3.2 Task States and Scheduling Rule ... 52

3.2.1 Task States ... 52
3.2.2 Task Scheduling Rules ... 55

3.3 Interrupt Handling Model... 57
3.3.1 Interrupt Handlers and Interrupt Service Routines..................................... 57
3.3.2 Ways to Designate an Interrupt and Start an Interrupt Service Routine 60

3.4 Exception Handling Model .. 60
3.4.1 Exception Handling Framework .. 60
3.4.2 Operations within a CPU Exception Handler... 61

3.5 Context and System State... 62
3.5.1 Processing Units and Their Contexts ... 62
3.5.2 Task Contexts and Non-Task Contexts .. 63
3.5.3 Execution Precedence and Service Call Atomicity 64
3.5.4 CPU Locked State .. 65
3.5.5 Dispatching Disabled State .. 67
3.5.6 Task State during Dispatch Pending State ... 68

3.6 Service Call Invocation from Non-Task Contexts ... 69
3.6.1 Service Calls that can be Invoked from Non-Task Contexts 69
3.6.2 Delayed Execution of Service Calls ... 71
3.6.3 Adding Service Calls that can be Invoked from Non-Task Contexts 72

3.7 System Initialization Procedure ... 73
3.8 Object Registration and Release .. 75
3.9 Description Format for Processing Unit... 76
3.10 Kernel Configuration Constants and Macros ... 77

vi

µITRON4.0 Specification Ver. 4.03.00

3.11 Kernel Common Definitions .. 77
3.11.1 Kernel Common Constants .. 77
3.11.2 Kernel Common Configuration Constants... 79

Chapter 4 µITRON4.0 Functions ...81
4.1 Task Management Functions ... 81
4.2 Task Dependent Synchronization Functions.. 103
4.3 Task Exception Handling Functions .. 116
4.4 Synchronization and Communication Functions ... 129

4.4.1 Semaphores .. 129
4.4.2 Eventflags... 138
4.4.3 Data Queues ... 150
4.4.4 Mailboxes... 162

4.5 Extended Synchronization and Communication Functions 173
4.5.1 Mutexes.. 173
4.5.2 Message Buffers... 184
4.5.3 Rendezvous .. 196

4.6 Memory Pool Management Functions ... 217
4.6.1 Fixed-Sized Memory Pools.. 217
4.6.2 Variable-Sized Memory Pools ... 227

4.7 Time Management Functions... 238
4.7.1 System Time Management... 238
4.7.2 Cyclic Handlers.. 243
4.7.3 Alarm Handlers .. 254
4.7.4 Overrun Handler .. 262

4.8 System State Management Functions .. 269
4.9 Interrupt Management Functions ... 282
4.10 Service Call Management Functions ... 295
4.11 System Configuration Management Functions .. 300

Chapter 5 Additional Specifications309
5.1 The Specification Requirements for the µITRON4.0 Specification 309

5.1.1 Basic Concept .. 309
5.1.2 Minimum Required Functionalities for Conformance to the µITRON4.0
Specification ... 310
5.1.3 Extension of the µITRON4.0 Specification ... 311

5.2 Basic Profile ... 312
5.3 Automotive Control Profile.. 313

5.3.1 Restricted Tasks ... 314
5.3.2 Functionalities Included in the Automotive Control Profile 314

5.4 Version Number of the Specifications ... 317
5.5 Maker Codes .. 317

Chapter 6 Appendix ...321
6.1 Conditions for Using the Specification and the Specification Document........ 321

vii

µITRON4.0 Specification Ver. 4.03.00

6.2 Maintenance of the Specification and Related Information 322
6.3 Version History of the Specification .. 322

Chapter 7 References ... 325
7.1 Service Call List ... 325
7.2 Static API List .. 330
7.3 Static APIs and Service Calls in the Standard Profile...................................... 332
7.4 Data Types ... 334
7.5 Packet Formats ... 337
7.6 Constants and Macros .. 346
7.7 Kernel Configuration Constants and Macros ... 348
7.8 Error Code List... 350
7.9 Function Code List ... 351
7.10 List of Items Required to be Specified for Each Implementation
(Implementation-Defined Items).. 352
Index... 362

viii

µITRON4.0 Specification Ver. 4.03.00

Service Call Index
This is an index of the service calls defined in the µITRON4.0 Specification.

acp_por Accept Rendezvous ..206

acre_alm Create Alarm Handler (Automatic ID Assignment).......................................256

acre_cyc Create Cyclic Handler (Automatic ID Assignment).......................................247

acre_dtq Create Data Queue (Automatic ID Assignment)...153

acre_flg Create Eventflag (Automatic ID Assignment) ..140

acre_isr Create Interrupt Service Routine (Automatic ID Assignment)......................287

acre_mbf Create Message Buffer (Automatic ID Assignment)......................................187

acre_mbx Create Mailbox (Automatic ID Assignment) ..165

acre_mpf Create Fixed-Sized Memory Pool (Automatic ID Assignment)219

acre_mpl Create Variable-Sized Memory Pool (Automatic ID Assignment)229

acre_mtx Create Mutex (Automatic ID Assignment)..177

acre_por Create Rendezvous Port (Automatic ID Assignment)....................................200

acre_sem Create Semaphore (Automatic ID Assignment)..131

acre_tsk Create Task (Automatic ID Assignment)...85

act_tsk Activate Task...89

cal_por Call Rendezvous ...203

cal_svc Invoke Service Call...299

can_act Cancel Task Activation Requests..90

can_wup Cancel Task Wakeup Requests...107

chg_ixx Change Interrupt Mask...293

chg_pri Change Task Priority..96

clr_flg Clear Eventflag..145

cre_alm Create Alarm Handler...256

cre_cyc Create Cyclic Handler ..247

cre_dtq Create Data Queue..153

cre_flg Create Eventflag..140

cre_isr Create Interrupt Service Routine ...287

cre_mbf Create Message Buffer...187

cre_mbx Create Mailbox..165

cre_mpf Create Fixed-Sized Memory Pool...219

ix

µITRON4.0 Specification Ver. 4.03.00

cre_mpl Create Variable-Sized Memory Pool ... 229

cre_mtx Create Mutex... 177

cre_por Create Rendezvous Port... 200

cre_sem Create Semaphore... 131

cre_tsk Create Task...85

def_exc Define CPU Exception Handler.. 302

def_inh Define Interrupt Handler.. 285

def_ovr Define Overrun Handler .. 264

def_svc Define Extended Service Call ... 297

def_tex Define Task Exception Handling Routine... 121

del_alm Delete Alarm Handler .. 258

del_cyc Delete Cyclic Handler.. 250

del_dtq Delete Data Queue.. 155

del_flg Delete Eventflag.. 142

del_isr Delete Interrupt Service Routine... 289

del_mbf Delete Message Buffer... 189

del_mbx Delete Mailbox.. 168

del_mpf Delete Fixed-Sized Memory Pool .. 221

del_mpl Delete Variable-Sized Memory Pool ... 231

del_mtx Delete Mutex... 179

del_por Delete Rendezvous Port... 202

del_sem Delete Semaphore... 133

del_tsk Delete Task...88

dis_dsp Disable Dispatching.. 275

dis_int Disable Interrupt ... 291

dis_tex Disable Task Exceptions.. 125

dly_tsk Delay Task... 114

ena_dsp Enable Dispatching... 276

ena_int Enable Interrupt... 292

ena_tex Enable Task Exceptions... 126

exd_tsk Terminate and Delete Invoking Task..93

ext_tsk Terminate Invoking Task..92

frsm_tsk Forcibly Resume Suspended Task.. 112

fsnd_dtq Forced Send to Data Queue... 158

x

µITRON4.0 Specification Ver. 4.03.00

fwd_por Forward Rendezvous..209

get_ixx Reference Interrupt Mask...294

get_mpf Acquire Fixed-Sized Memory Block..222

get_mpl Acquire Variable-Sized Memory Block...232

get_pri Reference Task Priority..98

get_tid Reference Task ID in the RUNNING State...272

get_tim Reference System Time ...241

isig_tim Supply Time Tick ...242

loc_cpu Lock the CPU..273

loc_mtx Lock Mutex ...180

pacp_por Accept Rendezvous (Polling)..206

pget_mpf Acquire Fixed-Sized Memory Block (Polling) ...222

pget_mpl Acquire Variable-Sized Memory Block (Polling) ..232

ploc_mtx Lock Mutex (Polling) ...180

pol_flg Wait for Eventflag (Polling)...146

pol_sem Acquire Semaphore Resource (Polling)...135

prcv_dtq Receive from Data Queue (Polling)..159

prcv_mbf Receive from Message Buffer (Polling)...192

prcv_mbx Receive from Mailbox (Polling)..170

psnd_dtq Send to Data Queue (Polling)..156

psnd_mbf Send to Message buffer (Polling)..190

ras_tex Raise Task Exception Handling..123

rcv_dtq Receive from Data Queue..159

rcv_mbf Receive from Message Buffer...192

rcv_mbx Receive from Mailbox..170

ref_alm Reference Alarm Handler State...261

ref_cfg Reference Configuration Information...304

ref_cyc Reference Cyclic Handler State...253

ref_dtq Reference Data Queue State ..161

ref_flg Reference Eventflag Status ..149

ref_isr Reference Interrupt Service Routine State ...290

ref_mbf Reference Message Buffer State ...194

ref_mbx Reference Mailbox State..172

ref_mpf Reference Fixed-Sized Memory Pool State...225

xi

µITRON4.0 Specification Ver. 4.03.00

ref_mpl Reference Variable-Sized Memory Pool State.. 236

ref_mtx Reference Mutex State... 183

ref_ovr Reference Overrun Handler State... 268

ref_por Reference Rendezvous Port State... 215

ref_rdv Reference Rendezvous State ... 216

ref_sem Reference Semaphore State... 137

ref_sys Reference System State.. 281

ref_tex Reference Task Exception Handling State .. 128

ref_tsk Reference Task State...99

ref_tst Reference Task State (Simplified Version) ... 102

ref_ver Reference Version Information... 305

rel_mpf Release Fixed-Sized Memory Block.. 224

rel_mpl Release Variable-Sized Memory Block... 234

rel_wai Release Task from Waiting ... 108

rot_rdq Rotate Task Precedence... 270

rpl_rdv Terminate Rendezvous .. 213

rsm_tsk Resume Suspended Task... 112

set_flg Set Eventflag ... 143

set_tim Set System Time... 240

sig_sem Release Semaphore Resource ... 134

slp_tsk Put Task to Sleep .. 105

snd_dtq Send to Data Queue.. 156

snd_mbf Send to Message buffer.. 190

snd_mbx Send to Mailbox.. 169

sns_ctx Reference Contexts... 277

sns_dpn Reference Dispatch Pending State.. 280

sns_dsp Reference Dispatching Disabled State ... 279

sns_loc Reference CPU State.. 278

sns_tex Reference Task Exception Disabled State ... 127

sta_alm Start Alarm Handler Operation... 259

sta_cyc Start Cyclic Handler Operation... 251

sta_ovr Start Overrun Handler Operation.. 266

sta_tsk Activate Task (with a Start Code)..91

stp_alm Stop Alarm Handler Operation... 260

xii

µITRON4.0 Specification Ver. 4.03.00

stp_cyc Stop Cyclic Handler Operation..252

stp_ovr Stop Overrun Handler Operation ..267

sus_tsk Suspend Task...110

tacp_por Accept Rendezvous (with Timeout)...206

tcal_por Call Rendezvous (with Timeout) ..203

ter_tsk Terminate Task..94

tget_mpf Acquire Fixed-Sized Memory Block (with Timeout)222

tget_mpl Acquire Variable-Sized Memory Block (with Timeout)232

tloc_mtx Lock Mutex (with Timeout) ..180

trcv_dtq Receive from Data Queue (with Timeout)...159

trcv_mbf Receive from Message Buffer (with Timeout)..192

trcv_mbx Receive from Mailbox (with Timeout)...170

tslp_tsk Put Task to Sleep (with Timeout)..105

tsnd_dtq Send to Data Queue (with Timeout)...156

tsnd_mbf Send to Message buffer (with Timeout)...190

twai_flg Wait for Eventflag (with Timeout)..146

twai_sem Acquire Semaphore Resource (with Timeout)..135

unl_cpu Unlock the CPU..274

unl_mtx Unlock Mutex..182

wai_flg Wait for Eventflag...146

wai_sem Acquire Semaphore Resource...135

wup_tsk Wakeup Task...106

xiii

µITRON4.0 Specification Ver. 4.03.00

Static API Index
This is an index of the static APIs defined in the µITRON4.0 Specification.

ATT_INI Attach Initialization Routine.. 307

ATT_ISR Attach Interrupt Service Routine .. 287

CRE_ALM Create Alarm Handler.. 256

CRE_CYC Create Cyclic Handler.. 247

CRE_DTQ Create Data Queue ... 153

CRE_FLG Create Eventflag ... 140

CRE_MBF Create Message Buffer... 187

CRE_MBX Create Mailbox ... 165

CRE_MPF Create Fixed-Sized Memory Pool.. 219

CRE_MPL Create Variable-Sized Memory Pool ... 229

CRE_MTX Create Mutex... 177

CRE_POR Create Rendezvous Port... 200

CRE_SEM Create Semaphore .. 131

CRE_TSK Create Task...85

DEF_EXC Define CPU Exception Handler ... 302

DEF_INH Define Interrupt Handler.. 285

DEF_OVR Define Overrun Handler.. 264

DEF_SVC Define Extended Service Call ... 297

DEF_TEX Define Task Exception Handling Routine... 121

xiv

µITRON4.0 Specification Ver. 4.03.00

Chapter 1 Background of the µITRON4.0
Specification

1.1 TRON Project

1.1.1 What is the TRON Project?

TRON was conceived in 1984 by Dr. Ken Sakamura of the University of Tokyo. He
proposed a new computer operating system architecture, deriving the name "TRON" from
"The Real-time Operating system Nucleus." Dr. Sakamura called on the technical industry
and academia to collaborate on the development of the TRON concept, as well as the
introduction of the new computer operating system architecture. The TRON Project is
aiming to fulfill the ultimate vision of a "computing everywhere, ubiquitous network
society."

1.1.2 Basic TRON Project Concepts

Computing Everywhere

From its start, the goal of the TRON Project has been to establish a "computing
everywhere, ubiquitous network society," in which common, everyday objects are
embedded with computer intelligence. Moreover, these "intelligent" objects are able to
communicate with each other, thus increasing the collaboration of electronic appliances in
our environment.
For the operating system to be useful for a wide range of systems, including cell phones
and other mobile appliances, it needs to be compact in size. Additionally, real-time
performance is a must for use in these electronic appliances that are used in daily life.
In a "computing everywhere" world, computer-embedded appliances are the interface
between human beings and their environment, making the digital divide, that is, the gap
between those with information and those without, a crucial problem to overcome. It is
essential for these computerized systems to be usable by everyone. Because of the
importance of the human interface issues, the "Enableware" concept, which extends
computer accessibility to all, including those with disabilities, has been part of the TRON
Project from its conception.
A "computing everywhere" environment needs to be kept safe from unauthorized network
access, invasions of privacy, or remote tampering with systems. This requires security
guarantees in each of the computers making up the environment. A new initiative to create
a standard security platform, called eTRON, is being designed to address the security
concerns.

1

µITRON4.0 Specification Ver. 4.03.00

Open Architecture

The results of the TRON Project are made available as open specifications. Anyone is free
to use these specifications, develop products based on them, and offer those products on
the market.

1.1.3 Results To Date

The following specifications have been developed by the TRON Project and offered to the
public.

ITRON

Real-time OS specifications for embedded systems (ITRON, ITRON2, µITRON2,
µITRON3.0, and µITRON4.0)

JTRON

Hybrid OS specifications combining the advantages of Java and ITRON (JTRON1.0,
JTRON2.0, and JTRON2.1)

BTRON

GUI (Graphical User Interface) and related OS specifications (BTRON/286, BTRON1,
BTRON2, and BTRON3)

CTRON

OS interface specifications for use in communication control and information processing
systems

TRON Human Interface

Standard guidelines for design of human interfaces in electronic appliances of all kinds

1.1.4 The Future of TRON

Promotion of the T-Engine Project

The TRON Project will take the initiative in the embedded systems field to establish the
T-Engine platform for the next generation of real-time systems. Although a policy of
"loose standardization" (prescription of the interfaces rather than the internal OS
implementation) was adopted for the ITRON Specifications, with the aim of its broad
diffusion throughout the world, this produced a problem in that software portability was
not always good. The T-Engine project that started after reflection on this point supports
"stronger standardization," in which the hardware, kernel, and object format are all
prescribed.

2

µITRON4.0 Specification Ver. 4.03.00

TRON Advanced Technology Research

Research and development efforts will be aimed at realization of the secure architecture
platform (eTRON), the next-generation ubiquitous computing environment (HFDS =
Highly Functionally Distributed System), original Japanese IT technologies, and
infrastructure-building projects. Surveying trends related to these technological fields will
also proceed.

ITRON Specification Update

In close coordination with the T-Engine Forum, the ITRON Specifications will be
considered with the aim of smoothing migration to the T-Kernel. The specification
documents will also be examined for easier comprehensibility.

Multi-Character OS Application

The BTRON-specification OS, with its advanced capabilities for handling rich character
sets, will be promoted for use in electronic government and other regional-area
information systems, as well as in e-book systems.

Education and Promotion

Training in the technologies of embedded real-time systems will be provided to engineers
and technicians, and activities for encouraging wide use of the ITRON-Specification OS
and T-Kernel will be performed.

Marketing

Marketing and promotion of the TRON Project results will be carried out on many fronts.

1.2 History and Current Status of the ITRON
Specifications

1.2.1 Current State and Features of Embedded System

With the progress in microprocessor technology, the range of applications in which
embedded systems are practically used has significantly increased. During the early days,
embedded systems were mainly limited to industrial applications such as production line
control. Now, embedded systems are rapidly spreading to office electronic appliances,
communication products, and most recently, to consumer products like automobiles,
audio/video systems, televisions, cellular phones, electronic musical instruments, games,
laundry machines, air conditioners, and lighting systems. The term embedded system now
applies to most of the electronic products we encounter in our daily lives.
With the increased range of applications for embedded systems, the functions that these
systems must perform become more complex. In addition, the recent trend towards

3

µITRON4.0 Specification Ver. 4.03.00

digitalization and the increase in number of software-implemented process on highly
functional microprocessors makes embedded systems more significant.
In general, small-scale embedded systems, usually consumer products, are produced in
large quantities compared to large-scale embedded systems typically found in industrial
products, making the cost per product comparatively cheaper. While decreasing the
development costs for large-scale embedded systems is given importance, decreasing the
manufacturing costs of small-scale embedded systems is significant. In particular, because
of the tight competition on product development, attempts are made to shorten the
development time of consumer products. In addition, sold softwares are rarely redesigned,
which results in a very short life cycle for system development.
In most small-scale embedded systems, the core processor, ROM and RAM, general I/O
devices, and some other devices are all in a chip called MCU (Micro Controller Unit,
sometime called "single-chip microcomputer.") Since the development cost of the final
product is to be kept as low as possible, hardware resources on a MCU, especially the
memory, are very limited. This limitation becomes a problem when developing softwares
on a MCU. The highly efficient MCU has various kinds of processors optimized and
designed for applications.
In small-scale embedded systems, improving software productivity is important in
handling largely scaled and highly complex softwares. It is also significant in reducing the
software development time. It is often to use a high-level language like C, and an RTOS,
like a µITRON-specification RTOS.

1.2.2 Requirements for RTOS on Embedded System

To keep up with the progress of high-performance microprocessors technology, it is very
important for embedded systems to be cost-effective, especially since they are now widely
applied to consumer products. Also the number of software engineers working on RTOS
is also increasing as embedded systems are being applied to more and more areas, making
their education a lot more significant.
In a survey conducted by TRON Association every year from 1996, the survey shows the
greatest problem encountered by most engineers using an RTOS in an embedded system is
regarding education and standardization. The survey shows that there are very few
engineers who can handle RTOS and that the differences in the specifications between
different operating systems are so large that switching to another OS would take a lot of
work. The survey also shows that the OS size and resources are too large, and most of its
features and functions do not meet actual requirements, leading to problems in matching
an OS with an application.
The ITRON Sub-Project, giving importance to education from the aspect of
standardization of concept and technical-term, has decided to provide a standardized
RTOS specification that can easily be applied in many embedded systems.

4

µITRON4.0 Specification Ver. 4.03.00

The most difficult problem encountered in providing a standardized RTOS specification
for embedded systems is finding the balance between providing the highest performance
that the hardware allows and upgrading software development productivity. On MCU
based systems with tight limitations on hardware resources, reaching the maximum
hardware performance will only be achieved by carefully selecting the appropriate RTOS.
On the other hand, improving software development productivity involves increasing the
abstraction of OS services and guaranteeing software portability regardless of the
hardware in use would increase the gap between OS services and the hardware
architecture. This gap would cause significant overhead and getting a high performance
from hardware would be a lot more difficult.
The compromise between these two goals highly depends on the performance of
embedded systems. Particularly, it is meaningless to lower the runtime performance of
small-scale systems just to keep the final product's cost low and improve its portability.
On the contrary, since large-scale systems are often recycled, portability is a very
important issue. The optimal solution to this problem is not well defined and the optimal
balance point changes with the progress of microprocessors.
Small-scale and large-scale embedded systems often require different RTOS features.
Small-scale embedded systems would often suffer decreased performance and increased
program size from using an RTOS with many high-level features that are really
unnecessary. On the other hand, an OS with many high-level features is useful for large-
scale embedded systems, as it helps improve software development productivity.
As seen from above, the requirements for an RTOS differ depending on the scale and the
necessary features of each embedded system. It would be possible to define an RTOS
specification for each system scale or required feature sets. However, in considering the
education of software engineers, the software circulation, and the support for development
tools, defining a scalable RTOS specification that can adapt to the needs of a variety of
embedded systems, would be very useful.
The following is a summary of the requirements for the specification of an RTOS on
embedded systems:

• To be able to get the maximum performance from the hardware.

• To be useful in increasing productivity for software.

• To be able to adapt to any system scale (scalability).

In addition to the above technical requirements, it is also important that the specification
be open. Because embedded systems are involved in all the electronic appliances that we
encounter daily, it is necessary not only to make the specification available to every one,
but also to make it royalty free so that anyone can implement and sell products based on
the specification.

5

µITRON4.0 Specification Ver. 4.03.00

1.2.3 Current Status of the ITRON Specifications

The ITRON Sub-Project started in 1984, and it has developed and released a series of
ITRON Real-Time Kernel Specifications. The project gave utmost importance to the
standardization of kernel specifications because small-scale embedded systems often only
use just the kernel functions.
The first ITRON specification was developed in 1987 as the ITRON1 Specification. Many
real-time kernels were developed based on the ITRON1 Specification, and they served to
be useful in verifying the specification's usability. Later, in 1989, the ITRON Sub-Project
released two specifications: the µITRON Specification (Ver. 2.0) and the ITRON2
Specification. The µITRON Specification is for small systems with 8- or 16-bit MCUs.
One of its characteristics is the limited kernel functionality. The ITRON2 Specification,
on the other hand, is designed for larger systems with 32-bit MCUs. The µITRON
Specifications have been implemented on many different MCUs with limited memory and
limited computational resources. It is also used on a wide variety of embedded systems
and it provides practical functionality without large memory requirements. In fact,
µITRON-specification kernels have been developed on most major MCUs used in
embedded systems.
In order to apply the µITRON Specifications to a wide range of fields, functionality and
performance are necessary. Even though the µITRON Specifications were not designed
for 32-bit processors, the µITRON-specification kernel is now being implemented on 32-
bit MCUs since the kernel does not consume significant memory. Because of this, the
specification was revised to make it scalable on MCUs ranging from 8 bits to 32 bits. The
revised edition was the µITRON3.0 Specification, released in 1993. The µITRON3.0
Specification includes connection functions that allow a single embedded system to be
implemented over a network. IEEE CS Press published the English version of the
µITRON3.0 Specification under the title "µITRON3.0: An Open and Portable Real-Time
Operating System for Embedded Systems."
At present, there are approximately 36 ITRON real-time kernel products for 60 processors
registered to TRON Association. There is also a software vendor in the United States that
has developed a µITRON-specification kernel. Since the µITRON-specification kernel is
small and is easy to implement, many users have developed their own versions for in-
house use. There are also several implementations besides products, and some versions of
the µITRON-specification kernel are distributed as free software.
The reason that ITRON-specification kernels are used in so many instances is because
they support a wide range of applications. Table 1-1 shows examples of some appliances
that use ITRON-specification kernels. From the survey mentioned in the previous section,
the ITRON Specifications are used often in consumer products and they have become the
standard among industrial companies. Many companies develop their own ITRON-

6

µITRON4.0 Specification Ver. 4.03.00

specification kernel, which indicates that the ITRON Specifications are truly open
standards.

Table 1-1. Major Fields where ITRON-Specification Kernels are Applied

Audio/Visual Equipment, Home Appliance

TVs, VCRs, DVD recorders, digital cameras, STBs, audio
components, microwave ovens, rice cookers, air-conditioners,
washing machines

Personal Information Appliance, Entertainment/Education
Equipment

PDAs (Personal Digital Assistants), personal organizers, car
navigation systems, game gear, electronic musical instruments

PC Peripheral, Office Equipment

printers, scanners, disk drives, DVD drives, copiers, fax
machines, word processors

Communication Equipment

answer phones, ISDN telephones, cellular phones, PCS
terminals, ATM switches, broadcasting equipment, wireless
systems, satellites

Transportation, Industrial Control, and Other Equipment

automobiles, plant control, industrial robots, elevators, vending
machines, medical equipment, data terminals

In addition to the real-time kernel specifications, the ITRON Sub-Project also provides the
ITRON/FILE Specification that provides file management features compatible with the
BTRON-specification file system.
Many widely used products use processors with the ITRON Real-Time Kernel
Specification. The µITRON-specification kernel has been especially useful on MCUs,
which were not previously used on RTOS due to memory and speed restrictions. The
µITRON Specification brings us closer to achieving the standard real-time kernel
specification possible.
The ITRON Sub-Project's object of standardization is now widened to include, not just the
kernel, but also software components, development tools, and related specifications. Also,
research and standardization on each application field is in progress (see Section 1.4.1).
The research and studies conducted by the TRON Project are all directed to realizing its
ultimate goal: the HFDS.

7

µITRON4.0 Specification Ver. 4.03.00

1.3 ITRON Specification Design Policy

The following policies are adapted in designing the ITRON Specifications. These policies
satisfy the requirements for an RTOS given in Section 1.2.2.

• Excessive hardware virtualization should be avoided in order to increase adaptability
to the hardware.

In order to maximize the performance of the hardware and thus, acquire high real-
time efficiency, excessive hardware virtualization should be avoided. The phrase
"adaptability to hardware" refers to improving the performance of the whole system
by modifying the RTOS specifications and/or RTOS internal implementation
according to the hardware's performance and characteristics.
More specifically in the ITRON Specifications, items that should be standardized
regardless of the hardware structure are clearly divided from the items that can be
optimized according to the hardware's performance and characteristics. Standardized
items include task-scheduling rules, system call names, system call functionalities,
names, order, and meanings of system call parameters, and names and meanings of
error codes. On the other hand, items that would cause a decline in performance are
not forcibly standardized, instead, standardization and virtualization are purposely
avoided. For instance, the number of bits of parameters and the methods for
invoking interrupt handlers are decided on each implementation.

• Adaptability to applications should be considered.

The phrase "adaptability to application" refers to the approach to improve the overall
system performance by modifying the kernel specifications and internal
implementation methods in response to the kernel functionalities and performance
required by applications. Since the object code for the OS is created for each
application, the "adaptability to applications" approach works well in embedded
systems.
The specification is designed in such a way that each kernel function is kept as
independent of each other as possible so that only the required functions for each
application are actually used. Providing a single functionality to each system call
makes incorporating of only the required functions easier. Most µITRON-
specification kernels are provided as libraries and only the required modules are
extracted and linked with application programs.

• Education of software engineers should be given importance.

Compatibility and portability are not of a great concern to softwares developed for
small-scale embedded systems because the software is not likely to be reused.
Standardizing the kernel specification is more important because it helps to educate

8

µITRON4.0 Specification Ver. 4.03.00

software engineers. It also makes communication between software engineers easier
because of unified technical terms and concepts.
In the ITRON Specifications, the education of software engineers is given
importance. Through standardization, an engineer can widely apply what he learns
once. The usage of terms and naming of system calls, for example, are made as
consistent as possible. Educational text books for engineers are also in progress.

• A series of specifications should be developed and support levels should be defined
in a specification.

In order for applications to adapt to various hardwares, a series of specifications that
allow different scalable levels of support are created. The series of real-time kernel
specifications made up to this date includes µITRON Specification (Ver. 2.0) for 8-
to 16-bit MCUs and ITRON2 Specification for 32-bit processors. With these
specifications, the user can scale each functionality as needed and include only those
functionalities when implementing the kernel. The µITRON3.0 Specification
separates the systems calls into different levels of support to cover both small-scale
and big-scale processors within one specification.
Specifications for distributed systems over a network, and multi-processor systems
are also being considered for standardization under the ITRON Specification series.

• Various functionalities should be provided.

The ITRON Specifications provide a large set of primitives with different properties
to cover a wide range of functionality instead of limiting the number of primitives.
Using the primitives according to the natures and characteristics of the application
and hardwares, improves performance during execution and makes program coding
easier.

The common concept among the above design policies is "loose standardization." Loose
standardization means that some parts of the specification that would reduce the hardware
performance are not forcibly standardized and are left to the developer to implement on
hardware and/or application. With loose standardization, maximum performance for
various hardware platforms is achieved as shown in Figure 1-1.

9

µITRON4.0 Specification Ver. 4.03.00

Functions defined in the µITRON Specification

µITRON-Specification kernel adapted to Processor X

task

management
semaphore

event-

flag
mailbox

data

queue

task

management
semaphore

implementation-

specific

others

task

mgmt.
semaphore

impl.-

specific

others

µITRON-Specification kernel adapted to Application A

Adaptation to the application requirements

Adaptation to the processor architecture

Adaptation to application domains

mailbox
data

queue

data

queue

Figure 1-1. Adaptation of the µITRON Specifications

1.4 Position of the µITRON4.0 Specification

1.4.1 Second Phase Standardization Activities of the ITRON
Sub-Project

As mentioned previously, the ITRON Sub-Project has been focusing on standardization of
real-time kernel specifications. As the embedded systems become larger and more
complex, the need for standardization on the surrounding environments of the real-time
kernel is increasing. In 1996, the ITRON Sub-Project started its second phase: expanding
standardization from the kernel specification to the kernel's related specifications,
especially on software components for embedded systems.
In standardizing software components, not only the conditions for advancing the
development and distribution of software components but also the interfaces for different
fields are being considered.
The following two issues are being discussed to prepare the conditions for advancing the
development and distribution of the software components. The first problem is regarding
the distribution of software components. The difference in implementation among
µITRON-specification kernels makes it difficult to ensure the distribution of software
components. To solve this problem, it is necessary to raise the level of kernel
standardization while keeping the advantages of loose standardization. The second
problem is regarding the support for software components with real-time capability. Many
software components are required to have real-time capabilities and a framework is
needed to allow the coexistence of software components and application while satisfying
software components' real-time restrictions. The framework also allows multiple software
components to be used together.

10

µITRON4.0 Specification Ver. 4.03.00

The discussion results regarding these two problems are reflected in the µITRON4.0
Specification. A standard method for designing embedded systems with a real-time kernel
is also proposed. A guideline for designing applications supporting software components
with hard real-time capability is also being created.
Standardization of software component interface in every field currently in progress
includes API (Application Program Interface) for TCP/IP protocol stacks and standard
interface for Java execution environments.
The TCP/IP protocol stack has taken an increasing significance in the field of embedded
systems. Though the socket interface is in wide use today as a TCP/IP API, it is not
appropriate for embedded systems (particularly small-scale ones) because of such
problems as its large overhead and the necessity of dynamic memory management within
the protocol stack. The ITRON TCP/IP API Specification, which is a standard TCP/IP
API for embedded systems, has been designed to solve these problems of the socket
interface and to enable a compact and efficient implementation of the TCP/IP protocol
stack. The ITRON TCP/IP API Specification Ver. 1.00 has been published in May, 1998.
The ITRON TCP/IP API Specification Ver. 2.00 adapting to the µITRON4.0
Specification, T-Kernel, and IPv6 has been published in July, 2006.
A practical approach for applying Java technology to embedded real-time systems is to
implement the Java runtime environment on an ITRON-specification kernel. Then, build
an application system whereby the parts for which Java is best suited are implemented as
Java programs, and the parts taking advantage of the ITRON-specification kernel
strengths are implemented as ITRON tasks. A key issue here is the standardization of the
communication interface between Java programs and ITRON tasks. The JTRON2.0
Specification has been designed to define this standard interface and has been published in
October, 1998.
Besides software component support, defining the requirements for ITRON kernels
designed for automotive control and gathering proposals for the standard specification
were also conducted as research and standardization activities for a specific application
field. The results are included in the µITRON4.0 Specification.
For standardization related to the debugging tools, the ITRON Debugging Interface
Specification Ver. 1.00.00 that specifies the interfaces enabling debugging tools to support
ITRON-specification kernels was published in May, 2001.
In addition to the above, works on making guidelines for designing device drivers are
currently in progress.

1.4.2 Necessity of the µITRON4.0 Specification

The need for reconsidering the real-time kernel specification arose during the ITRON
Sub-Project's second phase mentioned in the last section and as a result, the µITRON4.0
Specification was created. This specification is considered as the fourth generation of

11

µITRON4.0 Specification Ver. 4.03.00

ITRON Specifications. The four main reasons why it was necessary to design the
µITRON4.0 Specification are outlined below.

(a) To improve software portability

Embedded software continues to grow in complexity and size. The need for
applications to easily switch to different kernels is increasing. Portability of
softwares developed on an ITRON-specification kernel is also an important issue in
the distribution of software components.

(b) To add functionality for supporting software components

The original µITRON Specifications left out some functionality to create software
components that are intended for the market. For example, the functionality to find
the context where a service routine of a software component is called was only
available on the extension level.

(c) To include new requirements and results of studies

In the ITRON Sub-Project, from November 1996 to March 1998, a research group
on hard real-time support studied functionalities needed by a real-time kernel to
make it easier to build a hard real-time system. The RTOS automotive application
technique committee, from June 1997 to March 1998, sorted out the requirements
for real-time kernels on automotive control applications. The results of these new
requirements and studies must be included in the real-time kernel specification.

(d) To include enhancements allowed by improved semi-conductor technology

Around thirteen years after the release of the µITRON3.0 Specification, the semi-
conductor technology has dramatically progressed and so is the performance of
processors in embedded systems. The available memory size on processors has also
drastically increased. Some useful kernel functions that were left pending on the
release of the µITRON3.0 Specification due to their overhead, can now be
implemented with the current technology.

1.4.3 Introduction of the Standard Profile

In order to improve software portability, the set of functions required for implementation
and the functional specification of each service call should be strictly regulated. In other
words, the grade of specification standardization must be made stronger.
The standardization of µITRON Specifications has been done along the "loose
standardization" policy which gives more importance to adaptability on hardwares and
processors rather than software portability by reducing overheads and memory size during
execution time. The "loose standardization" policy has made µITRON Specifications
scalable and acceptable across a wide range of processors ranging from 8 bits to 64 bits.
This is one of the important reasons why the µITRON Specifications are widely accepted.
However, improving software portability and realizing scalability have many

12

µITRON4.0 Specification Ver. 4.03.00

contradicting aspects. It is difficult to realize both requirements at the same time within
one specification.
To address the issue of portability while maintaining the "loose standardization" policy,
the µITRON4.0 Specification strictly defines the set of standard functions and their
specifications. This set of standard functions is called the "Standard Profile." A large-scale
system was assumed as the application field when defining the Standard Profile for the
µITRON4.0-specification kernel. This is because larger systems require a more portable
software.
Defining the Standard Profile leads to encouraging the building of softwares using only
functions provided by the Standard Profile, in cases where the portability of software
components is significant. It also leads to encouraging the implementation of kernels,
where the portability of software components is important, based on the Standard Profile.
Within the Standard Profile, the specification is made to maximize software portability
while maintaining scalability. As an example, a mechanism for improving the portability
of interrupt handlers while keeping overheads small, has been introduced. Previous
µITRON Specifications did not provide a way to maintain portability in prohibiting the
nesting of higher priority interrupts from within an interrupt handler. However, the
µITRON4.0 Specification does.
In realizing scalability, service calls are made as independent of each other as possible,
and many sets of functions are made available, but only the necessary functions are
actually linked using the library link mechanism. This method is the same as that of
previous µITRON Specifications. When it is difficult to link only the necessary functions
using the library link mechanism, then the kernel is supposed to provide, only the
necessary primitives required to support more complex functions. This enables the support
of complex functions without modifying the kernel, while minimizing the overhead in an
application requiring no complex functions.
The Standard Profile assumes the following system image.

• High-end 16- or 32-bit processor is used.

• The kernel code size is about 10 to 20 KB when all functions are included.

• The whole system is linked into one module.

• The kernel object is statically generated.

Since the whole system is linked into a single module, service calls are invoked using
subroutine calls. The system does not have any particular protection mechanism.
The functions to be supported in the Standard Profile include all the level S functions
(with modifications and expansions in some functions) and a part of level E functions
(such as service calls with timeout, fixed-sized memory pools, cyclic handlers with
specification sorted out) of the µITRON3.0 Specification, and newly introduced functions

13

µITRON4.0 Specification Ver. 4.03.00

(task exception handling, data queues, system state reference function, and so on). The
static API used to state object creation information (to be described later) is also supported.

1.4.4 Realization of a Wider Scalability

As described in the previous sections, the µITRON4.0 Specification maintains a policy of
"loose standardization" and at the same time aims to provide a wider scalability than the
previous ones.
It defines a minimum function set that can be made more compact than the previous
µITRON Specifications and more adaptable to small-scale systems. Specifically the
waiting state that was mandatory in the previous µITRON Specifications is no longer
required. It is, however, replaced by the dormant state, which is mandatory. A kernel
without the waiting state allows tasks to operate within the same stack area. This reduces
the required memory area and overhead on context switches.
In order to support the requirements over the Standard Profile, the full set of the
µITRON4.0 Specification provides more functions than the full set of the previous
µITRON Specifications. Specifically it includes almost all the functions of the
µITRON3.0 Specification excluding the connection functions. Newly introduced
functions in the µITRON4.0 Specification include: the new functions in the Standard
Profile (task exception handling, data queues, system state reference function), object
creation functions for automatic ID assignment, interrupt service routine functions
enabling interrupt handling written while keeping portability, mutexes to support priority
inheritance/ceiling protocols, overrun handler to detect the time left assigned to a task.
The full set of the µITRON4.0 Specification is no less than the full set of the ITRON2
Specification in terms of functionality.
In addition to the Standard Profile, an "Automotive Control Profile" is also defined. The
Automotive Control Profile targets automotive control applications. It is also considered
as a function set that increases the software portability for systems smaller than those
targeted by the Standard Profile. Specifically, Standard Profile functionalities, such as
functions with timeouts, suspended states, task exception handling, mailboxes, and fixed-
sized memory pools are unnecessary and therefore were omitted. On the other hand, a task
called a restricted task, is uniquely defined in the Automotive Control Profile. Restricted
tasks do not enter the waiting state so restricted tasks with equal priority can share the
same stack area, reducing memory use. Unless there is no dependency on errors occurring
from invoking a service call that enters the waiting state, restricted tasks can be replaced
by normal tasks, and the resulting behavior does not change. The Automotive Control
Profile, in that sense, is backward compatible with the Standard Profile, even with the
specific functionality of restricted tasks.
Figure 1-2 illustrates the µITRON4.0 supported function levels relative to the µITRON3.0
Specification. Compared to previous µITRON Specifications, the µITRON4.0
Specification is more applicable to both smaller and larger systems.

14

µITRON4.0 Specification Ver. 4.03.00

Full set

Standard

Profile

Automotive

Control Profile

Minimum set

Level E

Level S

Level R

µITRON3.0 Spec.

µITRON4.0 Spec.

Basic

Profile

Figure 1-2. Function Levels of µITRON4.0 Compared to µITRON3.0

The Basic Profile is newly defined in Ver. 4.03. This profile specifies the service calls that
have the same functionality in µITRON3.0, µITRON4.0, and T-Kernel, with the purpose
of facilitating porting of applications between multiple kernels described above.

1.4.5 New Functions in the µITRON4.0 Specification

New functions that were added to the µITRON4.0 Specification are described below.

Exception Handling Functions

The µITRON4.0 Specification defines the framework for exception handling, which was
left as implementation-dependent under the previous µITRON Specifications.
When the processor detects an exception condition, the processor starts a CPU exception
handler. CPU exception handlers can be defined for each type of exception in the
application. Since a CPU exception handler is global in the overall system, it is possible to
check the context or the situation where an exception occurs, from within the CPU
exception handler, and have the task in which the exception occurred handle the exception.
Task exception handling functions are introduced for enabling the task to handle
processing.
The task exception handling function is like a simplified version of a UNIX signal
function and is similar to the ITRON2 compulsion exception. The following is a list of
typical applications using task exception handling functions:

• Signal a CPU exception, such as division by zero error, to a task.

• Send a task termination request to another task.

• Notify a task that the deadline has been reached.

Functionalities defined by the µITRON4.0 Specification for exception handling are
designed so that they can be used as primitives in implementing more complicated
exception handlers.

15

µITRON4.0 Specification Ver. 4.03.00

Data Queues

A data queue is a mechanism to communicate with a single word data message. The
µITRON3.0 Specification permitted use of either a linked list or a ring buffer to
implement a mailbox. However, in the µITRON4.0 Specification, the implementation of a
mailbox is limited to a linked list in order to improve the software portability. In addition,
a data queue, which is equivalent to a mailbox implemented with a ring buffer, is
introduced as a separate object.
The data queue feature was strongly required by the Automotive Control Profile and was
at first, introduced as a unique feature of the Automotive Control Profile. However, since
data queues are useful to other application areas and programs not requiring data queues
can be implemented without linking them to data queues, the data queue feature was
included in the Standard Profile.

System State Reference Functions

When creating software components assuming they are called by applications developed
elsewhere, each service routine in each software component should work regardless of the
context where it is called. However, in the µITRON3.0 Specification, only the level E
system call, ref_sys, was able to look at the current system state. Many implementations
do not support ref_sys, and even in cases where ref_sys is supported, the large overhead
caused by reference to unnecessary information was a problem.
In response to this problem, five new service calls in the form sns_yyy have been
introduced in the µITRON4.0 Specification. These service calls can refer to the current
state of the system with small overheads. They can be invoked from any context and will
return a boolean value (they will never return an error). As an example, it is possible to
check, without worrying about overheads, whether a service call that enters waiting state
can be invoked or not.
Also, to handle processing that requires mutual exclusion, these service calls facilitate
locking the CPU (or disabling dispatch) temporarily, and then restoring the system back to
the original state after the processing is finished. The µITRON3.0 Specification has no
feature to restore the system to its original state once loc_cpu was invoked during the
dispatching disabled state. In the µITRON4.0 Specification, on the other hand, the
dispatching disabled state and CPU locked state are independent from each other so no
problems arise in locking the CPU.

Object Creation Functions for Automatic ID Assignment

In the µITRON3.0 Specification, the application had to specify the ID number when
creating an object dynamically. In large-scale systems, managing unused ID numbers is
tedious. In the µITRON4.0 Specification, service calls are introduced to create an object
using the ID number assigned by the kernel instead of the ID number being specified by
the application. The service calls return the assigned ID number to the application.

16

µITRON4.0 Specification Ver. 4.03.00

Interrupt Service Routines

The interrupt handling architecture depends on processors and systems, and is a difficult
part to standardize. The previous µITRON Specifications did not standardize the coding of
interrupt handlers, and it was determined and optimized for each processor and system.
However in order to improve the portability of device drivers, a method to write portable
interrupt handling is required.
The µITRON4.0 Specification introduced an interrupt service routine function to write
interrupt handling while preserving the portability as well as the interrupt handler
functions in the previous specifications. The specification of interrupt service routines is
being designed with the goal of writing interrupt service routines that depend only on
interrupt generating devices.

Mutexes

Priority inheritance protocols and priority ceiling protocols are necessary to prevent
priority inversions in a system with severe real-time constraints. Mutex is a mutual
exclusion mechanism that supports priority inheritance protocols and priority ceiling
protocols. It is a new feature of the µITRON4.0 Specification. The mutex feature in the
real-time extension of POSIX was referred to when designing the mutex for the
µITRON4.0 Specification.

Overrun Handler

Overrun handler is another feature required in building a system with severe real-time
constraints. In the µITRON4.0 Specification, the overrun handler function detects whether
the amount of processing time assigned to a task has been used up.
The simplest method to detect that a timing constraint has not been met in a system is by
checking if the processing does not finish by the designated deadline. This can be done
using an alarm handler. However, this method does not prevent higher priority tasks from
continuing to run until its deadline, and as a chain reaction result, lower priority tasks may
not meet their deadlines. To solve this problem, a mechanism to detect when a task has
used up its given amount of time is required.

Standard Configuration Method

The Standard Profile assumes that the kernel objects, such as tasks and semaphores, are
created statically. In order to port the application software written on a kernel conforming
to the Standard Profile to another conforming kernel, in addition to the application
program itself, the object creation information must also be ported to the new kernel.
Previous µITRON Specifications did not standardize descriptions for the creation of
information in the kernel causing incompatibility in between kernels. For example, one
product may write the object creation information using C data structures, while another
product may write the object creation information statically through a GUI configuration

17

µITRON4.0 Specification Ver. 4.03.00

utility. When porting a large scaled application to another kernel under such conditions,
the amount of work on the porting of creation information can no longer be ignored.
Although the actual work of rewriting itself is not big, attention should be paid to the fact
that the amount of time required to learn the different ways of writing for each product
must be included in the total amount of work.
The µITRON4.0 Specification standardizes the coding of object creation information and
the way to configure the kernel or software components based on that information. The
method of writing the object creation information in the system configuration file is called
static API. The names of static APIs are the same as the names of the service calls with
the corresponding function, but they are written in upper case letter. Static APIs and
service calls share the same parameters except that each element of a packet is written
within "{" and "}" instead of passing a pointer to the packet. Because of this, learning
either the static API or the service call means learning the other. This is intended for
educational purposes.
The configurator which processes static APIs must have a function to automatically assign
an ID number to the object with no ID number given. This allows omission of handling of
automatic ID assignment, even when building an application with separately developed
modules, and is very useful for large-scale application development.
Static APIs for software components as well as static APIs for the kernel can be described
in one system configuration file. This is another feature of the configuration method of the
µITRON4.0 Specification. By having the system configuration file processed by the
software component configurator first, and then by the kernel configurator, complicated
situations, such as the case where software components require different kernel objects in
their configuration, can be handled.
In addition to the new features introduced above, the µITRON4.0 Specification also
reduces implementation-dependency by defining those items that were left ambiguous or
implementation-dependent in each service call function under the µITRON3.0
Specification in order to improve the software portability. Also many improvements have
been made over the µITRON3.0 Specification, such as sorting out terms and concepts,
sorting out data types of parameters, sorting out error codes, reassigning function codes to
service calls, standardizing constants and macros to retrieve kernel configuration, and
standardizing the system initialization process.

1.4.6 Standardization Activities after Publication of the
µITRON4.0 Specification

ITRON Debugging Interface Specification

The ITRON Debugging Interface Specification Ver. 1.00.00 that specifies the interfaces
enabling debugging tools to support µITRON4.0-specification kernels was published in
May, 2001.

18

µITRON4.0 Specification Ver. 4.03.00

Protection Extension of µITRON4.0 Specification (µITRON4.0/PX
Specification)

Studies for introducing protection functions to the µITRON4.0 Specification were
conducted, and the Protection Extension of µITRON4.0 Specification (µITRON4.0/PX
Specification) Ver. 1.00.00 was published in July, 2002.

ITRON TCP/IP API Specification Ver. 2.00

The means for adapting the ITRON TCP/IP API Specification to the µITRON4.0
Specification, T-Kernel, and IPv6 was investigated, and the ITRON TCP/IP API
Specification Ver. 2.00 was published in July, 2006.

19

µITRON4.0 Specification Ver. 4.03.00

20

µITRON4.0 Specification Ver. 4.03.00

Chapter 2 ITRON General Concepts, Rules, and
Guidelines
The ITRON general concepts, rules, and guidelines stated in this chapter are common to
the µITRON4.0 Specification and the software component specifications standardized to
be consistent with µITRON4.0. These specifications are referred to as the ITRON
Specifications. In the ITRON general concepts, rules, and guidelines, "kernel
specification" refers to the µITRON4.0 Specification, and "Standard Profile" refers to the
Standard Profile of the µITRON4.0 Specification.

[Supplemental Information]

As mentioned above, the general concepts, rules, and guidelines in this chapter are
applicable to software component specifications as well. However, to make the
µITRON4.0 Specification more understandable, we will refer to certain areas specific to
the µITRON4.0 Specification and its Standard Profile when necessary.

2.1 ITRON General Concepts

2.1.1 Terminologies

Terminologies used in the ITRON Specifications are defined below.

• Implementation-Defined: Items that are covered in the functional description of the
ITRON Specifications but are not standardized by the ITRON Specifications. All
implementation-defined items should be defined and described by the
implementation's documentation, such as the product manuals. The portability of
any part of an application program that depends on implementation-defined items is
not guaranteed.

• Implementation-Dependent: Items covered in the functional description of the
ITRON Specifications, but whose behavior varies depending on the implementation
and on the system operating conditions. The ITRON Specifications do not guarantee
the behavior of an application program that relies on implementation-dependent
items.

• Undefined: Situations with no guaranteed behavior. That is, a system failure might
occur in any undefined situation. Items not mentioned in the specifications are
generally undefined. There is no guarantee in the ITRON Specifications for the
behavior of an application program that generates an undefined situation.

• Implementation-Specific: Functionalities, which are beyond the scope of the ITRON
Specifications and are defined by the implementation.

21

µITRON4.0 Specification Ver. 4.03.00

[Supplemental Information]

Features defined by the implementation do not need to be internally consistent within the
implementation and may vary according to the kernel or software component
configurations. In the case where variations in feature definitions exist due to the kernel or
software system configuration, implementation documents such as product manuals,
should describe the feature definitions for each configuration, as well the steps in
configuring the kernel or the software component.

2.1.2 Elements of an API

An API (Application Program Interface) is a method used by an application program to
interface to the kernel or a software component. An API consists of the following
elements:

(A) Service Calls
The interface used by an application program to call a kernel or a software component is
referred to as a service call. The ITRON Specifications standardize the names and
functions of service calls, as well as the types, orders, names, and data types of their
parameters and return parameters.
In a C language API, a service call is defined as a function call. However, it may be
implemented in other forms such as a preprocessor macro as long as it has the same
functionality.

[Differences from the µITRON3.0 Specification]

In the µITRON3.0 Specification, the service call concept was referred to as a system call.
The concept name has changed to service call in order to include software components as
well as kernel functionalities. The term system call may still be used to refer to a kernel
service call.

(B) Callbacks
The interface used by a software component to call a routine registered by an application
program is referred to as a callback. The registered routine is called a callback routine.
The ITRON Specifications standardize the names and functionality of callback routines,
as well as the types, order, names, and data types of their parameters and return
parameters.
The context in which a callback routine is executed is defined in each software component
specification.

[Supplemental Information]

Callbacks are not used in the kernel specification.

22

µITRON4.0 Specification Ver. 4.03.00

(C) Static APIs
Static API refers to the interface used in both determining the kernel or software
component configuration and defining the initial states of objects within a system
configuration file. The ITRON Specifications standardize the names and functionalities of
static APIs as well as the types, order, names, and data types of their parameters.
Service calls, such as those used to register objects, may have a corresponding static API.
The functionality of a static API is equivalent to executing the corresponding service calls
during system initialization, in the order listed in the system configuration file. Some
static APIs, like the ITRON general static APIs commonly used by the kernel and
software components, do not correspond to any service call at all.

(D) Parameters and Return Parameters
Parameters are data passed to service calls, callback routines, and static APIs. Return
parameters, on the other hand, are data returned by service calls or callback routines. The
ITRON Specifications standardize the names and data types of parameters and return
parameters.
In a C language API, the return parameters, except for the return value of a function, are
returned either through a pointer passed as an argument to a C language function, or as a
data structure containing multiple parameters or return parameters. This type of structure
is called a packet. The pointer that points to the area holding the return parameters is not
listed as a parameter. In the case where a pointer is pointing to a single return parameter,
that pointer is not listed as a parameter, while a pointer to a packet, on the other hand, is
listed as a parameter.
In a C language API, an argument pointing to an area holding a certain return parameter is
named by prefixing the return parameter's name with "p_." If the return parameter's name
starts with "pk_," the pointer to the return parameter starts with "ppk_." When parameters
are too large to pass as an argument, a pointer to the data area holding the parameter may
be passed instead.
As a general rule, if pointers to the data areas used to hold parameters or return parameters,
or pointers to packets are passed to a service call, those areas can be reused by the
application once the service call returns. Also, if pointers to the data areas used to hold
parameters or return parameters, or pointers to packets are passed to a callback routine for
a software component, those areas can be reused by the software component once the
callback routine returns. Exceptions to these rules are explicitly mentioned in the
functional descriptions of service calls and callbacks.

[Rationale]

Standardizing the argument and return value names of functions is actually not necessary
since they do not affect any kernel or software component API functionality.

23

µITRON4.0 Specification Ver. 4.03.00

However, the names of C language function arguments and function return values are
standardized in the ITRON Specifications because they are used frequently throughout the
specification documents and product manuals.

(E) Data Types
The ITRON Specifications standardize the names and meanings of parameter and return
parameter data types. Some data type definitions are standardized in the ITRON
Specifications.
For a data type whose number of bits is not specified in the ITRON Specifications, a
number of effective bits less than the number of bits for the C language type or an
effective range smaller than the range that can be expressed by the data type is
implementation-defined.

(F) Constants
The ITRON Specifications standardize the names, meanings, and values of the constants
used as parameters, return parameters, and function codes for service calls. In a C
language API, constants are defined using preprocessor macros.

(G) Macros
A macro is an interface to convert values which are not bound to the system state without
calling the kernel or software components. The ITRON Specifications standardize the
names and meanings of macros. In a C language API, macros are defined as preprocessor
macros.

(H) Header Files
There is one or more header files for each kernel and each software component containing
declarations of service calls and definitions of data types, constants, and macros.
The ITRON Specifications standardize the names of these header files. If there are more
than one header file, the standardization also covers which header files contain which
declarations and definitions.
A header file containing the definitions of data types, constants, and macros specified in
the ITRON General Definitions should be included in header files prepared for each
kernel and software component.
The configurator automatically assigning object ID numbers generates an automatic ID
assignment header file to contain the generated IDs. The ITRON Specifications
standardize the names of these header files.
The header files standardized in the ITRON Specifications can be divided into more than
one file depending on the implementation. Care should be taken so that no error arises
even when the same header file is included for a multiple of times.

24

µITRON4.0 Specification Ver. 4.03.00

[Supplemental Information]

To prevent errors due to multiple inclusion of the same header file, define a specific
header identifier, for instance "KERNEL_H_," as a preprocessor macro
("#define_KERNEL_H_") at the top of the header file, and then enclose the whole header
file with "#ifndef _KERNEL_H_" and "#endif."

2.1.3 Object ID Numbers and Object Numbers

The resources on which a kernel or a software component operates are generally referred
to as objects. Objects of each type are uniquely identified by numbers. In the case where
only a kernel or a software component API uses the object identifier and the application is
allowed to freely assign numbers, the identifier numbers are called ID numbers. On the
other hand, identifier numbers are called object numbers if they are assigned according to
an internal or external condition of the kernel or a software component.
Objects identified by ID numbers are registered to the kernel or a software component
when the application creates them. Objects identified with object numbers, however,
cannot be created since their characteristics are determined by the internal and external
condition of the kernel or a software component. Registering these objects to the kernel or
a software component is referred to as defining objects.
In general, positive serial numbers starting from 1 are used as object IDs. When the
objects are classified for protection function reasons into user objects and system objects,
increasing positive serial numbers starting from 1 are used for user object ID numbers,
and decreasing negative serial numbers starting from (–5) are used for system object ID
numbers. In this case, only user objects are subject to automatic ID assignment. ID
numbers from (–4) to 0 are reserved for special purposes.

[Standard Profile]

The Standard Profile does not require object classification nor does it require support for
negative ID numbers. At the very least, positive ID numbers from 1 to 255 must be
supported.

[Supplemental Information]

Interrupt handlers and rendezvous are examples of objects identified by object numbers.
Object numbers are assigned to interrupt handlers according to hardware requirements
while for rendezvous, object numbers are assigned based on the kernel's internal
requirements. For these two types of objects, the application cannot freely assign numbers.

2.1.4 Priorities

Priorities are parameters determined by applications to control the processing order of
tasks, messages, and so on. Positive serial numbers starting from 1 are used to represent
priorities, where a smaller number indicates a higher precedence.

25

µITRON4.0 Specification Ver. 4.03.00

[Standard Profile]

In the Standard Profile, the kernel must support at least 16 different levels of task priority
(from 1 through 16). The number of message priority levels must be equal to or greater
than the number of task priority levels.

[Differences from the µITRON3.0 Specification]

The µITRON3.0 Specification allowed negative numbers to be used for system priorities;
however, since negative values were seldom used, system priorities are limited to positive
numbers in the µITRON4.0 Specification. Negative priorities are allowed but they are
implementation-specific. The µITRON3.0 Specification requires at least 8 priority levels
(1-8). While the µITRON4.0 Specification does not specify the minimum number of
priority levels, the Standard Profile requires it to support at least 16 priority levels (1-16).

2.1.5 Function Codes

Function codes are numbers assigned to identify service calls. Invoking a service call from
a software interrupt, for instance, makes use of a function code. However function codes
are not necessary in invoking a service call from a subroutine.
In the ITRON Specifications, each service call of a kernel or a software component is
assigned a unique negative number as a function code. However, (–4) to 0 are reserved for
special purposes. Positive function codes represent extended service calls.

2.1.6 Return Values of Service Calls and Error Codes

In principle, the return value of a service call is a signed integer. If an error occurs during
the execution of a service call, an error code with a negative value is returned. A service
call returns E_OK (= 0) or a positive integer if it completes its execution normally. Each
service call specifies the meaning of its return value during normal completion. However
service calls returning boolean values (BOOL type) and service calls that never return are
exceptions. A service call that never returns should be declared as a function without a
return value (i.e. a void type function) in a C language API.
An error code is divided into two parts, the main error code represented by the lower 8 bits,
and the sub-error code represented by the remaining bits. Both the main error code and the
sub-error code are negative, where the value of the sub-error code is the result of
arithmetically shifting the error code to the right by 8 bits by means of sign extension. The
resulting combined error code is also negative. The names, meanings, and values of the
main error codes, defined under the ITRON General Definitions section, are common
among the kernel and software components. Main error codes are classified into error
classes, according to the situations in which they occur and also according to the need for
error detection.

26

µITRON4.0 Specification Ver. 4.03.00

In the functional descriptions of service calls in the ITRON Specifications, only the main
error codes returned by service calls are described, while sub-error codes are
implementation-defined. Sub-error codes are also specified in some software component
specifications. Descriptions, such as "an E_XXXXX error is returned" or "an E_XXXXX
error occurs," included within the functional descriptions of service calls indicate that the
service call returns an error code with a main error code of E_XXXXX.
In principle, unless the main error code is classified as a warning class error, side effects
due to a service call that returns an error code do not arise. In other words, the invocation
of a service call does not change the system state. However, service calls with unavoidable
side effects are exceptions to the above principle. Side effects due to a service call must be
explicitly specified in the service call's functional description.
The ITRON Specifications allow an implementation to omit detection of some errors in
order to reduce kernel overhead. In principle, the main error code's class determines if the
error detection can be omitted. Each error class explicitly mentions if the detection of its
errors can be omitted. Exceptions to this principle are explicitly described in the service
call's functional description. In the case where an error that should have been detected but
was not because the error detection was omitted, the resulting system behavior is
undefined.
The following main error codes occur in many, or almost all, of the service calls, thus they
are not described in every service call.

E_SYS System error
E_NOSPT Unsupported function
E_RSFN Reserved function code
E_CTX Context error
E_MACV Memory access violation
E_OACV Object access violation
E_NOMEM Insufficient memory

However, if these errors occur as a result unique to a service call, they are listed in the
service call's description.
The error code returned by a service call that detects multiple errors is implementation-
dependent.

[Supplemental Information]

The return value of E_OK (= 0) represents normal completion and is not an error code.
However, for convince reasons, there are cases where it is described as an error code
returned from a service call.
It is insufficient to simply examine the lower 8 bits of a return value for a negative number
to determine whether the service call returned an error or not. This is because the lower 8
bits can be negative even when the service call completes normally and returns a positive
value.

27

µITRON4.0 Specification Ver. 4.03.00

[Differences from the µITRON3.0 Specification]

In the µITRON4.0 Specification, an error code now consists of two parts, the main error
code and the sub-error code. Main error codes are shared between the kernel and software
components. Sub-error codes are intended to report the detailed cause of errors. For
example, when the main error code is E_PAR (parameter error), the sub-error code can be
used to indicate which parameter has an incorrect value. E_OK is not regarded as an error
code.
Omitting error detection is explicitly permitted depending on the error class. Error codes
which are not listed in each service call have been revised.
The µITRON3.0 Specification assumed the case where the return value of a service call is
positive even though there were no service calls with a positive returned value. In the
µITRON4.0 Specification, however, kernel service calls with positive return values exist.
Also service calls that return boolean values have been introduced.

2.1.7 Object Attributes and Extended Information

Objects identified with ID numbers have object attributes while objects identified with
object numbers, on the other hand, may or may not have object attributes. Object
attributes that determine the operational mode and initial state of an object are defined
when an object is registered. An object with an attribute value TA_XXXXX is called "an
object with the TA_XXXXX attribute." There is no interface available to read the object
attributes after the object is registered.
The values and meanings of available object attributes are defined in the functional
descriptions of the service calls or static APIs that register the objects. TA_NULL (= 0) is
used when there is no need to specify the object attribute.
A processing unit object may have extended information. The extended information is
specified at registration and is passed as a parameter when the object starts to execute.
Extended information does not have any effects on the operation of the kernel or a
software component. There is no interface available to read the extended information from
a specific object.

[Supplemental Information]

Examples of processing unit objects with extended information are tasks, interrupt service
routines, and time event handlers such as cyclic handlers.

[Differences from the µITRON3.0 Specification]

In the µITRON3.0 Specification, objects identified with ID numbers must have extended
information, whereas in the µITRON4.0 Specification extended information is only
provided when necessary. Extended information is now passed as a parameter when the
object starts to execute and it cannot be read by object state reference service calls.

28

µITRON4.0 Specification Ver. 4.03.00

2.1.8 Timeout and Non-Blocking

Timeout or non-blocking features, when necessary, can be made available to service calls
that might enter the WAITING state.
When a service call's process is not completed within a specified time, the timeout feature
cancels any further processing and returns from the service call immediately. In this case,
the service call returns an E_TMOUT error. Since there are no side effects due to service
calls returning an error, the system state, upon returning from the timed-out service call
remains unchanged. However, some service calls due to their natures might prevent the
system from proper restoration after the timeout cancellation.
These exceptional cases should be explicitly specified in the service call's functional
description.
When the timeout duration of a service call is set to 0, the service call does not enter the
WAITING state even though it should. Setting the timeout duration of a service call to 0 is
called polling. Service calls that execute polling never enter the WAITING state. The
polling feature differs from the non-blocking feature described below in that polling
cancels processing of the service call while non-blocking continues processing the service
call.
In the non-blocking feature, a service call that enters the WAITING state returns
immediately with an E_WBLK error but the processing still continues. The application
program is notified by some means when the process completes or when it is canceled.
Since the service call continues operating even after returning from its call, packets and
data areas used for parameters and return parameters should not be used for other purposes
until the process completes.
Processing of a service call is referred to as "pending" when it is in the WAITING state
within the service call or when it continues operation due to a non-blocking service call.
The functional descriptions of the service calls in the ITRON Specifications describe the
behavior when the service calls have no timeout, that is the behavior when the service
calls wait forever. The description "entering the WAITING state" or "moved to the
WAITING state" in the functional descriptions of the service calls do not imply any
specific waiting duration. When a service call is invoked with a timeout duration, the
service call returns with E_TMOUT as the main error code when the duration expires.
In the case of polling, the service call does not enter the WAITING state and returns
immediately with E_TMOUT as the main error code. With the non-blocking feature, the
service call does not enter the WAITING state and returns E_WBLK as the main error
code.
When specifying the timeout duration, TMO type, a positive value specifies the length of
the timeout duration, TMO_POL (= 0) specifies polling, and TMO_FEVR (= –1) specifies
the timeout duration should be forever. TMO_NBLK (= –2) can also be specified to
indicate the non-blocking feature, depending on the service call. When the timeout

29

µITRON4.0 Specification Ver. 4.03.00

duration is specified, it must be guaranteed that the timeout action occurs after at least the
timeout duration has elapsed from the time the service call is invoked.

[Supplemental Information]

Kernel service calls do not have the non-blocking feature. Since a service call that
executes polling never enters the WAITING state, the precedence of the invoking task
remains unchanged.
In typical implementations, if the timeout duration is set to 1, the timeout action will occur
at the second time tick after the service call is invoked. Since the timeout duration cannot
be set to 0 (because 0 is assigned to TMO_POL), the system never times out on the first
time tick after the service call is invoked.

2.1.9 Relative Time and System Time

Relative time of RELTIM type is used when specifying the time for an event to occur with
respect to a certain time such as the time when a service call is invoked. When relative
time is used, it must be guaranteed that the event occurs after at least the specified
duration time elapsed.
Relative time can also be used to specify time-related actions other than event times, such
as time intervals between events, where the meaning of the specified relative time is
define for each case.
System time of SYSTIM type is used when specifying absolute time. A function to set the
current system time is available in the kernel specification. Changing the system time
using this kernel function will not change the time in the real world (called real time)
when an event specified using relative time is to occur. However, the system time when an
event specified using relative time occurs will change.

[Supplemental Information]

In typical implementations, if the relative time is set to 1, the event will take place on the
second time tick after the service call is invoked. If the relative time is set to 0, the event
will take place on the first time tick after the service call is invoked.

2.1.10 System Configuration File

A system configuration file defines the configuration of the kernel and software
components as well as the initial state of objects. It can contain static APIs for the kernel
and software components, ITRON general static APIs (called general static APIs
hereafter) and also C language preprocessor directives. A tool that interprets static APIs in
a system configuration file and configures the kernel or a software component is called a
configurator.
The steps in processing a system configuration file is as follows (see Figure 2-1). The
system configuration file is first passed to the C language preprocessor. Then, it is passed

30

µITRON4.0 Specification Ver. 4.03.00

on to each of the software component configurators and then, finally to the kernel
configurator.
The software component configurator interprets the static APIs pertaining to itself and
other general static APIs included in the file passed from the C preprocessor or from other
previous configurators. The configurator then generates a source file, written in the C
language, that is necessary for configuring and initializing the software component itself,
and also generates a header file, written in the C language, that contains the automatic ID
assignment result. The software component configurator then adds static APIs for the next
configurators when needed and removes the static APIs pertaining to itself to and from the
passed files, before passing it on to the next configurator.

system.cfg

System configuration file

C language preprocessor

Software component

configurator

Kernel configurator

kernel_cfg.c

kernel_id.h

www_id.h

www_cfg.c

Automatic ID assignment

header file

File for configuration and

initialization of the kernel

Automatic assignment

header file

File for configuration and

initialization of the software

component

* The file names in the figure are examples.

Figure 2-1. Processing Procedure for a System Configuration File

The kernel configurator interprets all static APIs included in the passed file and then
generates a C language source file required for configuring and initializing the kernel, and
also generates a header file, written in the C language, that contains the automatic ID
assignment result.
If it detects statements that cannot be interpreted either as a static API for the kernel or a
general static API, the kernel configurator reports an error.

31

µITRON4.0 Specification Ver. 4.03.00

Kernel and software component configurators ignore any lines starting with a "#" sign.
Software component configurators pass any lines starting with a "#" unchanged on to the
next configurator.

[Supplemental Information]

Static APIs added by a software component configurator for the next configurators should
not use preprocessor macros that are defined in the system configuration file and other
files included through the preprocessor directive "#include." The reason is that these
preprocessor macros are already expanded after going through the C language
preprocessor.
The steps in processing a system configuration file is described using the example in
Figure 2-2. Automatic ID assignment is explained in Section 2.1.11. ITRON general static
APIs are explained in Section 2.3.4.

32

µITRON4.0 Specification Ver. 4.03.00

system.cfg

rep_id.h

tcpip_cfg.c

C language preprocessor

TCP/IP protocol stack

configurator

Kernel configurator

kernel_cfg.c

#include "rep_id.h"

INCLUDE("<itron.h>");

TCP_CRE_REP(REP_HTTP, {

CRE_TSK(TSK_A, { TA_HLNG, ..

CRE_SEM(SEM_A, { TA_TPRI, ..

INCLUDE("<itron.h>");

TCP_CRE_REP(1, {

CRE_TSK(TSK_A, { TA_HLNG, ..

CRE_SEM(SEM_A, { TA_TPRI, ..

INCLUDE("<itron.h>");

CRE_TSK(TSK_TCPIP, {

CRE_MBX(MBX_REP_HTTP,

CRE_TSK(TSK_A, { TA_HLNG, ..

CRE_SEM(SEM_A, { TA_TPRI, ..

#define REP_HTTP 1

#include <itron.h>

Initialization information on

TCP reception point

#include <itron.h>

Initialization information on

tasks, semaphores, and

mailboxes

kernel_id.h

#define TSK_TCPIP 1

#define MBX_REP_HTTP 1

#define TSK_A 2

#define SEM_A 1

Figure 2-2. Processing Example for a System Configuration File

The system configuration file is first passed to the C language preprocessor, files are
included through the preprocessor directive "#include," and preprocessor macros, for
instance REP_HTTP, are expanded.
Next, the configurator for the TCP/IP protocol stack that is a software component
interprets the static APIs pertaining to itself, for instance TCP_CRE_REP, and other
general static APIs (INCLUDE) included in the passed file. The TCP/IP protocol stack
configurator then generates a file named "tcpip_cfg.c" that is necessary for configuring
and initializing the TCP/IP protocol stack. #include in tcpip_cfg.c here is created from the
general static API (INCLUDE). The automatic ID assignment file is not generated in this
example because the interpreted static APIs contain no identifiers that should be subjected

33

µITRON4.0 Specification Ver. 4.03.00

to automatic ID assignment. In this case, it is possible to generate an empty automatic ID
assignment file. The TCP/IP protocol stack configurator then adds the kernel's static APIs
necessary for configuring itself, for instance CRE_TSK for TSK_TCPIP and CRE_MBX
for MBX_REP_HTTP, and passes the file on to the kernel configurator.
The kernel configurator finally interprets all static APIs included in the passed file and
then generates a file named "kernel_cfg.c" that is required for configuring and initializing
the kernel. #include in kernel_cfg.c here is created from the general static API
(INCLUDE). The kernel configurator assigns integers to the identifiers that are contained
in the static APIs and are subject to automatic ID assignment, for instance TSK_TCPIP,
MBX_REP_HTTP, TSK_A, and SEM_A, and saves the result by generating an automatic
ID assignment file named "kernel_id.h."

[Rationale]

The steps in processing a system configuration file is standardized to effectively deal with
cases where the kernel and software components are developed independently.
Passing the system configuration file first to the C language preprocessor makes the
following things possible.

• It allows a system configuration file to be divided into multiple files through the use
of the "#include" directive. For example, when embedding a software component
into a system, the necessary static APIs can be written in independent files. Those
files can then be included in the system configuration file.

• It allows macros to be used instead of raw integers to define object ID numbers and
object numbers.

• It allows conditional inclusion of configuration statements through the use of
directives such as "#ifdef." In turn, it makes the changing of kernel and software
component configurations and the initial states of objects possible.

Configurators ignore lines starting with "#" because these lines usually pertain to
information generated by the preprocessor regarding the source file. However,
configurators can still use these lines for informational purposes, such as generating error
messages.

2.1.11 Syntax and Parameters of Static APIs

The syntax of the static APIs is based on the syntax of the C language function call.
The parameters of a static API is based on the parameters of the corresponding service call
in the C language API. However, if a parameter is a pointer to a packet, the elements of
the packet should be separated with a comma "," and enclosed with braces "{" and "}."
The static API parameters are classified into the following four classes, according to
available expressions:

34

µITRON4.0 Specification Ver. 4.03.00

(a) Integer Parameters with Automatic ID Assignment
A parameter of this class can be an integer (including a negative integer), an
identifier, or a preprocessor macro (other than the restrictions mentioned below)
which expands to either an integer or an identifier. Example parameters of this class
are object ID numbers that are automatically assigned.
When a parameter of this class takes on the form of an identifier, the configurator
responsible for processing the static API containing that identifier assigns an integer
to that identifier. This assignment is called automatic ID assignment by a
configurator. The configurator generates a header file containing the macro
definitions assigning integers to each identifier. Once the configurator assigns an
integer to an identifier, the identifier can be used in the same manner as a
preprocessor macro which expands to the assigned integer within static APIs that are
processed by the configurator itself and by the following configurators.

(b) Integer Parameters without Automatic ID Assignment
A parameter of this class can only be an integer (including a negative integer) or a
preprocessor macro (other than the restrictions mentioned below) which expands to
an integer. Example parameters of this class are object ID numbers that cannot be
automatically assigned and object numbers.

(c) Preprocessor Constant Expression Parameters
A parameter of this class is a constant expression that can be interpreted by a
preprocessor. Only constants, macros, and operators that can be interpreted by a
preprocessor can be used. Example parameters of this class are object attributes.

(d) General Constant Expression Parameters
A parameter of this class is any constant expression allowable in the C language.
Most parameters belong to this class.

Each static API defines the class of its parameters. Integer parameters with or without
automatic ID assignment and preprocessor constant expression parameters should be
explicitly mentioned in the functional descriptions of static APIs. Other parameters not
mentioned are assumed to be general constant expression parameters.
An ITRON general static API exists to include a file. Thus, there are two methods of
including a file in a system configuration file: using the preprocessor directive "#include"
or using the general static API. The differences between these two methods are described
below:

35

µITRON4.0 Specification Ver. 4.03.00

• If preprocessor macros are used to define integer parameters with or without
automatic ID assignment (hereafter, simply called integer parameters), only
preprocessor macros defined in the system configuration file or other files included
through a preprocessor directive can be used.

• Files included using preprocessor directives can contain only static APIs and
preprocessor directives. In contrast, files included using general static APIs can only
contain preprocessor directives and declarations and definitions in the C language.

NULL, which is often used to indicate that the kernel must allocate a memory area, is
recognized as a symbol for static API parameters. A constant expression with a value 0 is
not always interpreted as NULL. The behavior of such constant expression is
implementation-dependent. Therefore, a NULL must not be macro-expanded by a
preprocessor before a configurator processes it. In other words, NULL should not be
defined as a preprocessor macro in a system configuration file or other files included
through preprocessor directives.
The configurator reports errors when it detects syntax errors or incorrect number of
parameters in static APIs. The configurator can report errors even in the case where the ID
numbers of the objects created by static APIs are not serial. The errors that should be
detected during the processing of static APIs and the method of handling those errors are
implementation-defined.

[Standard Profile]

In most static APIs, implementation-specific parameters can be added. In order for such
implementations to conform to the Standard Profile, the configurator must correctly
process the static APIs even when no implementation-specific parameters appear in the
system configuration file. One of the methods to realize this is by supplying default values
for implementation-specific parameters.

[Supplemental Information]

Static APIs can be written in free format inside a system configuration file. There may be
white spaces, new lines and comments between words. The semicolon ";" is required at
the end of each static API statement.
Since C language enumerated constants and "sizeof" cannot be interpreted by a
preprocessor, they cannot be used in preprocessor constant expression parameters.
Removing a NULL preprocessor macro definition from a file that is included into the
system configuration file through a preprocessor directive is sometimes difficult because
of the file's structure. This problem can be solved in the following way.
Define a specific identifier (for example, "CONFIGURATOR") as a preprocessor macro
("#define CONFIGURATOR") at the top of the system configuration file.
Then, enclose the NULL preprocessor macro definition within "#ifndef CONFIGU-
RATOR" and "#endif" directives.

36

µITRON4.0 Specification Ver. 4.03.00

[Rationale]

In order to simplify configurator implementations, static API parameters are classified into
four classes. A configurator must be able to determine object ID numbers and object
numbers properly so, excluding those that can be automatically assigned, object ID
numbers and object numbers are limited to those expanded to integers after preprocessing
(integer value parameter). Some parameters, such as object attributes, may have an effect
on a registered object's structure depending on its value. To be able to use conditional
directives based on these parameters in a C-language source file generated by a
configurator, only expressions whose values can be determined by the preprocessor are
allowed (preprocessor constant expression parameters). For other parameters, any constant
expression in the C language is allowed (general constant expression parameters).
If a configurator is implemented in this manner, it would not be able to determine all
parameter values. Thus, its error checking capability is limited. Determining all the
parameter values are possible by calling a compiler from the configurator and converting
the constant expressions to values. However, since this approach requires modifying the
configurator for each compiler, it has not been adopted as the standard method.

2.2 API Naming Convention

2.2.1 Software Component Identifiers
Software component identifiers are used to distinguish one set of standardized software
component APIs from another. The software component identifier is made up of two to
four characters. If a software component contains more than one functional unit, each
individual unit may have a software component identifier. Software component identifiers
are defined in the software component specification.
Software components that define their own APIs are not subject to this convention.
However, to avoid naming conflicts with standardized software components, making the
software component identifiers 5 or more characters long, or prefixing the identifier with
"v" is recommended.
Hereafter, software component identifiers in lowercase are described as www, and those in
uppercase as WWW.

2.2.2 Service Calls
The standard form of a kernel service call name takes the form of xxx_yyy, where xxx
represents an operational procedure and yyy represents the target object of the operation. A
service call derived from an xxx_yyy service call should be prefixed with the letter z
resulting in a name of zxxx_yyy. If a service call is derived from a previously derived
service call zxxx_yyy, the name becomes zzxxx_yyy.
Names of service calls for software components take the form of www_xxx_yyy or
www_zxxx_yyy.
For naming implementation-specific service calls, the convention is to prefix "v" before
xxx or zxxx. This creates standard names of the form vxxx_yyy, vzxxx_yyy, www_vxxx_yyy,

37

µITRON4.0 Specification Ver. 4.03.00

or www_vzxxx_yyy. However, in the kernel specification, when a service call begins with
an "i", which indicates that the service call can be invoked from non-task contexts, the
service call's name takes the form ivxxx_yyy instead of vixxx_yyy.

[Supplemental Information]

Table 2-1 shows the abbreviations of the form xxx, yyy, and z used in the µITRON4.0
Specification and their English origins.

2.2.3 Callbacks
Since callback names are used as parameters, the naming convention for callbacks is the
same as that of parameters.

2.2.4 Static APIs
Generally, static APIs are named by capitalizing all the letters of the corresponding
service call names. The names of static APIs that have no corresponding service call
follow the naming convention of service calls, with the names still capitalized.
The names and meanings of ITRON general static APIs that are used both by the kernel
and software components are specified in the ITRON General Definitions section.

38

µITRON4.0 Specification Ver. 4.03.00

Table 2-1. Abbreviations Used in the µITRON4.0 Specification and English
Origins

xxx English origin yyy English origin
acp accept alm alarm handler
act* activate cfg configuration
att attach cpu CPU
cal call ctx context
can cancel cyc cyclic handler
chg change dpn dispatch pending
clr clear dsp dispatch
cre create dtq data queue
def define exc exception
del delete flg eventflag
dis disable inh interrupt handler
dly delay ini initialization
ena enable int interrupt
exd exit and delete isr interrupt service routine
ext exit mbf message buffer
fwd forward mbx mailbox
get get mpf fixed-sized memory pool
loc* lock mpl memory pool
pol poll mtx mutex
ras raise ovr overrun handler
rcv receive por port
ref reference pri priority
rel release rdq ready queue
rot rotate rdv rendezvous
rpl reply sem semaphore
rsm resume sys system
set set svc service call
sig signal tex task exception
slp sleep tid task ID
snd send tim time
sns sense tsk task
sta start tst task status
stp stop ver version
sus suspend
ter terminate z English origin
unl unlock a automatic ID assignment
wai* wait f force
wup* wake up i interrupt

 p poll
 t timeout

* Abbreviations with asterisks (*) are also used as a yyy abbreviation.

39

µITRON4.0 Specification Ver. 4.03.00

2.2.5 Parameter and Return Parameter

The names of parameters and return parameters are all lowercase and are four to seven
characters in length. The following conventions apply to parameter and return parameter
names:

–id – ID (object ID number, ID type)
–no – number (object number)
–atr – attribute (object attribute, ATR type)
–stat – state (object state, STAT type)
–mode – mode (service call operational mode, MODE type)
–pri – priority (priority, PRI type)
–sz – size (in bytes, SIZE type or UINT type)
–cnt – count (in units, UINT type)
–ptn – pattern
–tim – time
–cd – code
i– initial value of –
max– maximum –
min– minimum –
left– quantity left of –
p_– pointer to the memory area of a return parameter (or a parameter)
pk_– pointer to a packet

pk_cyyy pointer to a packet passed to cre_yyy
pk_dyyy pointer to a packet passed to def_yyy
pk_ryyy pointer to a packet passed to ref_yyy
pk_www_cyyy pointer to a packet passed to www_cre_yyy
pk_www_dyyy pointer to a packet passed to www_def_yyy
pk_www_ryyy pointer to a packet passed to www_ref_yyy

ppk_– pointer to the memory area of a pointer to a packet

If the names of the parameters and return parameters are identical, they are generally the
same data type.

2.2.6 Data Types

The names of data types are all uppercase and are two to ten characters in length. The
following conventions apply to data type names:

–P Pointer data type
T_– Packet (data structure) type

T_CYYY Packet type passed to cre_yyy
T_RYYY Packet type passed to ref_yyy

T_WWW_– Data structure used by software components

40

µITRON4.0 Specification Ver. 4.03.00

T_WWW_CYYY Packet type passed to www_cre_yyy
T_WWW_RYYY Packet type passed to www_ref_yyy

The names and meanings of ITRON general data types that are used by both the kernel
and software components are specified in the ITRON General Definitions section.

2.2.7 Constants

The names of constants are all uppercase and follow the convention described below.

(A) ITRON General Constants

The names of ITRON general constants that are used both by the kernel and software
components have no particular naming convention. The names and their respective
meanings and values are specified in the ITRON General Definitions section.

(B) Error Codes

Main error codes defined in the ITRON Specifications take the form E_XXXXX, where
XXXXX is approximately two to five characters in length. The form EV_XXXXX is used
for implementation-specific main error codes.
Sub-error codes have no particular naming convention.
Error classes take the form EC_XXXXX, where XXXXX is approximately two to five
characters.

(C) Other Constants

Other constants take the form TUU_XXXXX or TUU_WWW_XXXXX, where UU is
approximately one to three characters in length, and XXXXX is approximately two to seven
characters in length. Constants used for the same type of parameters or return parameters
should have the same identifier UU. TUU can be omitted for software component
constants that are frequently used in many service calls and callbacks. In this case, such
constants take the form WWW_XXXXX.
In addition to the above conventions, the following conventions apply to other constant
names:

TA_– Object attribute
TFN_– Service call function code

TFN_XXX_YYY Function code of xxx_yyy
TFN_WWW_XXX_YYY Function code of www_xxx_yyy

TSZ_– size of –
TBIT_– bit size of –
TMAX_– maximum –
TMIN_– minimum –

41

µITRON4.0 Specification Ver. 4.03.00

2.2.8 Macros

The names of macros are all uppercase and conform to the naming convention for
constants. The names and meanings of ITRON general macros that are used by both the
kernel and software components are specified in the ITRON General Definitions section.

2.2.9 Header Files

The header file containing the definitions of data types, constants and macros, and other
definitions specified in ITRON General Definitions section is named "itron.h." The header
file containing the service call declarations, data types, constants, and macro definitions
specified in the kernel specification is named "kernel.h." The automatic ID assignment
header file generated by the kernel configurator is named "kernel_id.h."
Header files containing service call declarations and other definitions specified in a
software component specification are generally named beginning with the software
component identifier. The automatic ID assignment header file generated by the software
component configurator is named in a similar manner. The names of these header files are
specified in the software component specification.

2.2.10 Kernel and Software Component Internal Identifiers

Internal identifiers are symbols registered to an object file's symbol table for external
access. They are used within the kernel or a software component usually to refer to
routines and memory areas. Kernel and software component internal identifiers should
adhere to the naming convention defined below to avoid conflicts with other identifiers of
an application program.
The names of kernel internal identifiers should begin with _kernel_ or _KERNEL_ at the
C language level. The names of software component internal identifiers should begin with
www or _WWW_ at the C language level.

2.3 ITRON General Definitions

2.3.1 ITRON General Data Types

The header file itron.h must include the definitions of the following ITRON general data
types, except for the 64-bit integer data types (D, UD, and VD).

B Signed 8-bit integer
H Signed 16-bit integer
W Signed 32-bit integer
D Signed 64-bit integer
UB Unsigned 8-bit integer
UH Unsigned 16-bit integer

42

µITRON4.0 Specification Ver. 4.03.00

UW Unsigned 32-bit integer
UD Unsigned 64-bit integer

VB 8-bit value with unknown data type
VH 16-bit value with unknown data type
VW 32-bit value with unknown data type
VD 64-bit value with unknown data type
VP Pointer to an unknown data type
FP Processing unit start address (pointer to a function)

INT Signed integer for the processor
UINT Unsigned integer for the processor

BOOL Boolean value (TRUE or FALSE)

FN Function code (signed integer)
ER Error code (signed integer)
ID Object ID number (signed integer)
ATR Object attribute (unsigned integer)
STAT Object state (unsigned integer)
MODE Service call operational mode (unsigned integer)
PRI Priority (signed integer)
SIZE Memory area size (unsigned integer)

TMO Timeout (signed integer, unit of time is implementation-

defined)
RELTIM Relative time (unsigned integer, unit of time is

implementation-defined)
SYSTIM System time (unsigned integer, unit of time is

implementation-defined)
VP_INT Pointer to an unknown data type, or a signed integer for the

processor

ER_BOOL Error code or a boolean value (signed integer)
ER_ID Error code or an object ID number (signed integers and

negative ID numbers cannot be represented)
ER_UINT Error code or an unsigned integer (the number of effective

bits for an unsigned integer is one bit shorter than UINT)

VB, VH, VW, VD, and VP_INT types are implementation-defined. Explicit type cast is
necessary during access or assignment of values to variables of these data types.
In the case where the number of bits needed to represent the system time exceeds the
number of bits of an integer, SYSTIM can be defined as a data structure where the
structure's contents are implementation-defined.

43

µITRON4.0 Specification Ver. 4.03.00

[Standard Profile]

In the Standard Profile, the number of effective bits and the unit of time of the ITRON
general data types are defined as follows:

INT 16 or more bits
UINT 16 or more bits
FN 16 or more bits
ER 8 or more bits
ID 16 or more bits
ATR 8 or more bits
STAT 16 or more bits
MODE 8 or more bits
PRI 16 or more bits
SIZE equal to the number of bits in a pointer
TMO 16 or more bits, unit of time is 1 ms
RELTIM 16 or more bits, unit of time is 1 ms
SYSTIM 16 or more bits, unit of time is 1 ms

[Supplemental Information]

SIZE is used to refer to the size of a large memory area, such as the stack size of a task or
an entire variable memory pool size. UINT is used to refer to the size of a smaller memory
area like a message length.
When SYSTIM is defined as a structure, values of SYSTIM type cannot be manipulated
by operators such as "+" and "–." In order to maintain the portability of an application
program even in this case, operations on SYSTIM values should be done using C
language function calls and an operation module compatible with the definition of
SYSTIM should be made available for each implementation.
Data type ER_BOOL stands for a negative error code or a boolean value (TRUE or
FALSE), data type ER_ID stands for a negative error code or a positive ID number, and
data type ER_UINT stands for a negative error code or a non-negative integer (the number
of effective bits is one bit shorter than UINT). Each of these data types must be defined
with signed integers.

[Differences from the µITRON3.0 Specification]

CYCTIME, ALMTIME, and DLYTIME are replaced by RELTIM. SYSTIME has been
renamed to SYSTIM. STAT, MODE, and SIZE have been added. Complex data types
VP_INT, ER_BOOL, ER_ID, and ER_UINT have been added while BOOL_ID has been
removed. The size of a memory area is now handled using unsigned integers.

44

µITRON4.0 Specification Ver. 4.03.00

2.3.2 ITRON General Constants

The header file itron.h must include the definitions of all of the following ITRON general
constants.

(1) General Constants

The ITRON general constants are as follows:
NULL 0 Invalid pointer

TRUE 1 True

FALSE 0 False

E_OK 0 Normal completion

[Differences from the µITRON3.0 Specification]

The invalid pointer has been changed from NADR (= –1) to NULL (= 0) for compatibility
with the C language.

(2) Main Error Codes

There are ten classes of main error codes as defined below:

(A) Internal Error Class (EC_SYS, from –5 to –8)
This class represents internal errors occurring inside the kernel or a software component.
Omission of error detection of this class is implementation-dependent.

E_SYS –5 System error

This error code indicates an internal error of unknown cause occurred inside the
kernel or a software component.

(B) Unsupported Error Class (EC_NOSPT, from –9 to –16)
This class represents errors due to functions that are either not specified in the ITRON
Specifications or are not supported by the implementation. Omission of error detection of
this class is implementation-defined.

E_NOSPT –9 Unsupported function

This error code indicates that the function is specified in the ITRON Specifications
but is not supported by the implementation. This error is returned if a part of or all
of the service call functionality is not supported. Errors falling under E_RSFN and
E_RSATR are not covered by this error code.

E_RSFN –10 Reserved function code

45

µITRON4.0 Specification Ver. 4.03.00

This error code indicates that a specified function code is not supported either in
the ITRON Specifications or by the implementation. This error occurs when a
service call is invoked from a software interrupt.

E_RSATR –11 Reserved attribute

This error code indicates that an attribute value is not supported either in the
ITRON Specifications or by the implementation.

(C) Parameter Error Class (EC_PAR, from –17 to –24)

This class represents errors due to parameters assigned with incorrect values. These errors
can usually be detected statically. Omission of error detection of this class is
implementation-defined.

E_PAR –17 Parameter error

This error code indicates that a parameter has an incorrect value that is usually
statically detected. Errors falling under E_ID are not covered by this error code.

E_ID –18 Invalid ID number

This error code indicates that an object ID number is invalid. This error only
occurs for objects identified by an ID numbers.

(D) Invoking Context Error Class (EC_CTX, from –25 to –32)

This class represents errors due to invocation of service calls from incorrect contexts.
Omission of error detection of this class is implementation-defined.

E_CTX –25 Context error

This error code indicates that the context in which the service call is invoked is
incorrect. Errors falling under E_MACV, E_OACV or E_ILUSE are not covered
by this error code.

E_MACV –26 Memory access violation

This error code indicates that the specified memory area cannot be accessed from
the context where the service call is invoked. This error is also returned if the
specified memory area does not exist.

E_OACV –27 Object access violation

This error code indicates that the specified object cannot be accessed from the
context where the service call is invoked. When the objects are classified into user
objects and system objects, this error is returned if a system object is accessed
from a context where access to system objects is prohibited.

E_ILUSE –28 Illegal service call use

46

µITRON4.0 Specification Ver. 4.03.00

This error code indicates that the use of the service call is incorrect. Occurrence of
this error depends on the context from which the service call is invoked or on the
state of the target object.

(E) Insufficient Resource Error Class (EC_NOMEM, from –33 to –40)

This class represents errors due to insufficient resources needed to execute the service call.
Detection of errors of this class cannot be omitted.

E_NOMEM –33 Insufficient memory

This error code indicates that the service call failed to dynamically allocate enough
memory for a memory area.

E_NOID –34 No ID number available

This error code indicates that there is no ID number available for the target object.
This error is returned by the service call creating an object with an automatically
assigned ID number.

(F) Object State Error Class (EC_OBJ, from –41 to –48)

This class represents errors due to the service call failing to execute because of the state of
the target object. Since the occurrence of these errors depends on the state of the target
object, they do not necessarily occur every time the same service call is invoked.
Thus, dynamically checking for these errors is necessary. Error detection of this class
cannot be omitted.

E_OBJ –41 Object state error

This error code indicates that the service call cannot be executed due to the state of
the target object. Errors falling under E_NOEXS and E_QOVR are not covered by
this error code.

E_NOEXS –42 Non-existent object

This error code indicates that the service call is not able to access the target object
because the object does not exist. Since this error is returned only when the
specified object ID number is within a valid range, the object can be created by
specifying the same ID number that caused the error.

E_QOVR –43 Queuing overflow

This error code indicates that the maximum queue limit or nesting level has been
exceeded.

(G) Waiting Released Error Class (EC_RLWAI, from –49 to –56)

This class represents errors due to a waiting task being released from the WAITING state
before its release condition is met. Detection of errors of this class cannot be omitted.

E_RLWAI –49 Forced release from waiting

47

µITRON4.0 Specification Ver. 4.03.00

This error code indicates that the waiting task is forcibly released from waiting or
that the waiting process is cancelled.

E_TMOUT –50 Polling failure or timeout

This error code indicates that the polling service call has failed or that the service
call made with a timeout has expired.

E_DLT –51 Waiting object deleted

This error code indicates that the object the task is waiting for has been deleted.

E_CLS –52 Waiting object state changed

This error code indicates that the service call cannot be executed due to a change
in the state of the object the service call is waiting for. When the state change
happened before the service call is invoked, the invoking task immediately returns
with this error without moving into the WAITING state.

[Supplemental Information]

An example of the E_CLS error usage is in a service call that receives data through a
communication line. E_CLS can be used to indicate that the connection is abnormally
disconnected while the service call is waiting to receive data. The same error code can
also be used even when the abnormal disconnection occurred before the service call was
invoked.

(H) Warning Class (EC_WARN, from –57 to –64)

This class represents errors indicating that there are warnings associated with the service
call's execution. Errors in this class are exceptions to the general rule stating that there are
no side effects on the system state when a service call returns an error. That is, execution
of service calls returning errors of this class can cause side effects on the system state.
Detection of errors of this class cannot be omitted.

E_WBLK –57 Non-blocking call accepted
This error code indicates that the non-blocking service call is currently being
executed.

E_BOVR –58 Buffer overflow
This error code indicates that a part of the received data was discarded due to
buffer overflow.

(I) Reserved Error Codes (from –5 to –96 except those defined above)

These main error codes are reserved for future versions of the ITRON Specifications.

(J) Implementation-Specific Error Codes (from –97 to –128)

These main error codes are used for implementation-specific errors. The names of these
main error codes must be of the form EV_XXXXX.

48

µITRON4.0 Specification Ver. 4.03.00

[Differences from the µITRON3.0 Specification]

Main error codes E_ILUSE and E_NOID have been added for new functionalities of the
kernel specification, and E_CLS, E_WBLK, and E_BOVR have been added for software
component specifications. Connection function errors of the form EN_XXXXX, and
E_INOSPT, which were exclusive to ITRON/FILE Specification, have been removed.
Some of the main error codes were reclassified and their values reassigned. Because the
main error code is in the lower 8-bits of the error code, the assigned value is designed so
that its value as an 8-bit signed integer remains negative.
The error number (errno) has been removed.

(3) Object Attribute

The ITRON general object attribute is:
TA_NULL 0 Object attribute unspecified

(4) Timeout Specification

The ITRON timeout specifications are as follows:

TMO_POL 0 Polling

TMO_FEVR –1 Waiting forever

TMO_NBLK –2 Non-blocking

2.3.3 ITRON General Macros

The header file itron.h must include the definitions of all of the following ITRON general
macros.

(1) Error Code Generating and Retrieving Macros

ER ercd = ERCD (ER mercd, ER sercd)

This macro generates an error code from the main error code and sub-error
code.

ER mercd = MERCD (ER ercd)

This macro retrieves the main error code from an error code.

ER sercd = SERCD (ER ercd)

This macro retrieves the sub-error code from an error code.

2.3.4 ITRON General Static APIs

(1) File Inclusion

49

µITRON4.0 Specification Ver. 4.03.00

 INCLUDE (string) ;
This static API includes the file containing preprocessor macro definitions, the C language
declarations, and the definitions necessary to interpret preprocessor constant expressions
and general constant expression parameters. The INCLUDE static API must be specified
in a system configuration file. The character string of a parameter must be in a form that
can be placed after the preprocessor directive "#include" once the INCLUDE static API is
processed.

[Supplemental Information]

Examples of file inclusion using the static API are as follows:
 INCLUDE ("<itron.h>") ;
 INCLUDE ("\"memory.h\"") ;

[Rationale]

The reason string parameters are used is to prevent the file name from being expanded by
the preprocessor before the system configuration file is passed to the configurator.

50

µITRON4.0 Specification Ver. 4.03.00

Chapter 3 Concepts and Common Definitions in
µITRON4.0

3.1 Glossary of Basic Terms

(1) Task and Invoking Task

The term "task" refers to a unit of concurrent processing. While program statements inside
a single task are executed sequentially, statements of different tasks are executed
concurrently. Multiple tasks are executed concurrently when seen from an application's
point of view. However, the tasks do not actually run in parallel but rather, they are
executed one by one under the control of the kernel, using time-sharing techniques.
The task that invokes a service call is called the "invoking task."

(2) Dispatching and Dispatcher

The act of switching the currently executing task on a processor with another, non-
executing task is called "dispatching" (or "task dispatching"). The mechanism in the
kernel that performs dispatching is called the "dispatcher" (or the "task dispatcher").

(3) Scheduling and Scheduler

The process that determines which task is to be executed next is called "scheduling" (or
"task scheduling"). The mechanism in the kernel that executes scheduling is called the
"scheduler" (or the "task scheduler"). In typical implementations, the scheduler is included
in service call routines and/or in the dispatcher.

(4) Context

The environment in which a program executes is generally called the program's "context."
When two programs have the same context, then at least the processor mode and stack
area should be the same. The term context, however, is from an application's point of view
and there can be tasks which execute in independent contexts but actually run in the same
processor mode and the same stack area.

(5) Precedence

The criterion used to determine the order of program execution is called "precedence." In
principle, when a higher precedence program becomes executable, it will begin executing
in place of the currently executing lower precedence program.

[Supplemental Information]

A "priority" is a parameter given by an application to control the order of task execution
and the order of message delivery, while precedence is used to clarify the order of

51

µITRON4.0 Specification Ver. 4.03.00

program execution in this specification. The precedence between tasks is determined by
the task priorities.

(6) Disabling Interrupts

The act of pending the corresponding process (activating the interrupt handler, etc.) for an
interrupt request that had occurred is called "disabling an interrupt." If the interrupt
request is still held when that interrupt is enabled next, the corresponding process for that
interrupt request will be started.

3.2 Task States and Scheduling Rule

3.2.1 Task States

Task states are classified into five broad categories. The blocked state category can be
further broken down into three sub-states. The RUNNING state and the READY state are
both generically referred to as the runnable state.

(a) RUNNING state

When a task is in the RUNNING state, the task is currently executing. When non-
task contexts take over execution, the task that was executing remains in the
RUNNING state.

(b) READY state

When a task is in the READY state, the task is ready to execute but it cannot,
because a task with higher precedence is already executing. In other words, the task
can execute at any time once its precedence becomes the highest among the tasks in
the runnable state.

(c) Blocked state

When a task is in the blocked state, the task cannot execute because the conditions
necessary for its execution have not yet been met. The task is waiting for specific
conditions to be met before it can continue execution. When a task enters the
blocked state, the task's execution environment including the program counter and
registers are saved. When the task resumes executing from the blocked state, the
program counter and registers are restored to their previous values. The blocked
state can be further classified into three sub-states:

(c.1) WAITING state

When a task is in the WAITING state, the execution is blocked due to the invocation
of a service call. The service call specifies the conditions that must be met before the
task continues execution.

52

µITRON4.0 Specification Ver. 4.03.00

(c.2) SUSPENDED state

When a task is in the SUSPENDED state, the task has been forcibly made to halt
execution by another task. However, the invoking task can also suspend itself in the
µITRON4.0 Specification.

(c.3) WAITING-SUSPENDED state

When a task is in the WAITING-SUSPENDED state, the task is both waiting for a
condition to be met and suspended. A task in the WAITING state will be moved to
the WAITING-SUSPENDED state if there is a request to move it to the
SUSPENDED state.

(d) DORMANT state

When a task is in the DORMANT state, the task is either not yet executing or has
already finished. The context information of a task will not be saved while the task
is in the DORMANT state. When a task is activated from the DORMANT state, it
will begin executing from the task's start address. The contents of the registers when
the task begins executing are not guaranteed.

(e) NON-EXISTENT state

This indicates a virtual state where the task in question does not exist in the system,
either because it has not yet been created or because it has already been deleted.

There may be other transitional states, depending on the implementation, that cannot be
classified into any states listed above (see Section 3.5.6).
If a task which has been moved to the READY state has higher precedence than the task
in the RUNNING state, the lower precedence task will be moved to the READY state and
the higher precedence task will be dispatched and moved to the RUNNING state. In this
case, we say that the task that was in the RUNNING state has been preempted by the task
that was moved to the RUNNING state. Even if the functional description of a service call
mentions that "a task is moved to the READY state," it may be moved directly to the
RUNNING state depending on the task precedence.
Task activation means that a task in the DORMANT state is moved to the READY state.
All states other than the DORMANT state and the NON-EXISTENT state are generically
referred to as active states. Task termination means that a task in the active state is moved
to the DORMANT state.
Releasing a task from waiting means that if the task is in the WAITING state, it will be
moved to the READY state, and if the task is in the WAITING-SUSPENDED state, the
task will be moved to the SUSPENDED state. Resuming a suspended task means that if
the task is in the SUSPENDED state, it will be moved to the READY state, and if the task
is in the WAITING-SUSPENDED state, it will be moved to the WAITING state.
Figure 3-1 shows the task state transitions for typical implementations. There may be
other state transitions, depending on the implementation, that are not shown in this figure.

53

µITRON4.0 Specification Ver. 4.03.00

NON-EXISTENT

SUSPENDED

DORMANT

WAITING-

SUSPENDED

WAITING

READY RUNNING

release from

waiting

preempted

dispatch

suspend

release from

waiting

wait

create delete

exit and delete

exit

forcibly

terminate

forcibly terminate

activate

resume

suspend suspend

resume

Figure 3-1. Task State Transitions

[Supplemental Information]

The WAITING state and the SUSPENDED state are independent of each other. Therefore
a request to move a task to the SUSPENDED state does not affect the release condition of
the task. In other words, a waiting task's release condition does not change whether or not
the task is in the WAITING state or in the WAITING-SUSPENDED state. Therefore, if a
task that is waiting for a resource (such as a semaphore resource or a memory block) is
suspended and moved to the WAITING-SUSPENDED state, the task will still acquire the
resource (such as a semaphore resource or a memory block) under the same conditions as
it would in the WAITING state.

54

µITRON4.0 Specification Ver. 4.03.00

[Differences from the µITRON3.0 Specification]

The task state names are now in the adjective form. They have been renamed from RUN
to RUNNING, from WAIT to WAITING, from SUSPEND to SUSPENDED, and from
WAIT-SUSPEND to WAITING-SUSPENDED.
An invoking task can now move itself to the SUSPENDED state. This feature facilitates
implementing APIs that do not distinguish self-suspension from suspension by other tasks
(such as those for POSIX and Java threads) on µITRON4.0-specification kernels.

[Rationale]

The ITRON Specifications distinguish the WAITING state (self-suspension) from the
SUSPENDED state (suspension by other tasks) because a task can exist in both states at
the same time. Defining the overlapped state as the WAITING-SUSPENDED state makes
the task state transition clearer and makes the understanding of service calls easier.
Because tasks in the WAITING state cannot invoke service calls, they will never be in
more than one kind of WAITING state, e.g. sleeping while waiting for a semaphore
resource. In the ITRON Specifications, the SUSPENDED state is the only blocked state
that can be caused by other tasks. Tasks may be suspended multiple times by other tasks.
This is handled through nesting of the suspend requests to clarify the task state transition.

3.2.2 Task Scheduling Rules

In the ITRON Specifications, the preemptive, priority-based task scheduling is conducted
based on the priorities assigned to tasks. If there are a number of tasks with the same
priority, scheduling is conducted on a "first come, first served" (FCFS) basis.
This task scheduling rule is defined using the precedence between tasks based on task
priorities as described below.
If more than one runnable task exists, the highest precedence task will be in the RUN-
NING state, and the rest in the READY state. Among the tasks with different priorities,
the task with the higher priority has higher precedence. Among tasks of the same priority,
the task that entered the runnable (RUNNING or READY) state earlier has higher
precedence. However, the precedence between tasks of the same priority may change due
to the invocation of some service calls.
When the task with the highest precedence changes, a dispatch will occur immediately,
and the task in the RUNNING state will be switched with the new task. However, when
the system is in a state where dispatching does not occur, the switch of the task in the
RUNNING state will wait until dispatching is allowed.

[Supplemental Information]

In the ITRON Specifications, as long as the highest precedence task is in the runnable
state, no lower precedence tasks are allowed to execute. No other tasks will execute unless
the highest precedence task cannot be executed for some reason, such as being placed in

55

µITRON4.0 Specification Ver. 4.03.00

the WAITING state. In this respect, the scheduling rule of the ITRON Specifications
differs entirely from TSS (Time-Sharing Systems), which attempts to execute multiple
tasks as equally as possible. However, the precedence between tasks of the same priority
may be modified through service calls. Applications can execute in a round-robin fashion,
a common scheduling system for TSS, by using those service calls.

(a) Precedence in the first state

priority 1

priority 2

priority 3

Task A

Task B

Task E

Task C

precedence

Task D

(b) Precedence after Task B becomes the RUNNING state

priority 2

priority 3

Task B

Task E

Task C Task D

precedence

priority 2

priority 3

Task C

Task E

Task D

precedence

(c) Precedence after Task B becomes the WAITING state

priority 2

priority 3

Task C

Task E

Task D Task B

precedence

(d) Precedence after Task B is released from waiting

Figure 3-2. Precedence between Tasks

56

µITRON4.0 Specification Ver. 4.03.00

Figure 3-2 shows that among tasks of the same priority, the task that becomes runnable
(RUNNING or READY state) first has the highest precedence. Figure 3-2 (a) shows the
precedence between tasks after Task A (priority 1), Task E (priority 3), and Task B, C and
D (priority 2), have been activated in this order. Task A, with the highest precedence, is in
the RUNNING state.
When Task A terminates, Task B, the task with the second highest precedence, moves to
the RUNNING state (Figure 3-2 (b)). If Task A is reactivated, Task B will be pre-empted
and return to the READY state. However, since Task B will be in the runnable state before
Task C and Task D, it will have the highest precedence among the tasks with the same
priority. This means that the precedence between tasks will go back to the state shown in
Figure 3-2 (a).
When Task B changes from the runnable state to the WAITING state, the precedence
between tasks will change from Figure 3-2 (b) to Figure 3-2 (c) because the precedence
between tasks is determined based on the tasks in the runnable state. If Task B is released
from waiting, the precedence of Task B will be the lowest among tasks of the same
priority because Task B becomes runnable after Task C and Task D. This state is
illustrated in Figure 3-2 (d).
To summarize, if a task in the READY state moves to the RUNNING state and then goes
back to the READY state, it will have the highest precedence among tasks of the same
priority. On the other hand, when a task in the RUNNING state moves to the WAITING
state, and then back to the READY state, the task will have the lowest precedence among
the tasks of the same priority.

[Differences from the µITRON3.0 Specification]

The ready queue is a concept related to the implementation, so in the specification
"precedence" is used instead of "ready queue" to describe the scheduling rule.
To reduce implementation dependencies, a task that is moved from the SUSPENDED
state to the READY state, will have the lowest precedence among the tasks of the same
priority.

3.3 Interrupt Handling Model

3.3.1 Interrupt Handlers and Interrupt Service Routines

In the µITRON4.0 Specification, interrupt handlers and interrupt service routines are
processing units started by external interrupts (simply called as interrupts below).
Basically, execution of an interrupt handler depends on the processor architecture.
Therefore, the interrupt handler, not the kernel, should be the one to control the Interrupt
Request Controller (IRC). The implementation of an interrupt handler is implementation-
defined because it generally depends on the processor interrupt architecture and the IRC.
An interrupt handler cannot be ported as is to a different system.

57

µITRON4.0 Specification Ver. 4.03.00

An interrupt service routine is a routine started by an interrupt handler. It can be
implemented independently from the processor architecture and the IRC used. This means
that there is no need for the interrupt service routine to control the IRC since the interrupt
handler starting the interrupt service routine already controls the IRC.
The µITRON4.0 Specification defines the APIs to register an interrupt handler prepared
by the application, such as DEF_INH, and the APIs to register an interrupt service routine,
such as ATT_ISR. An implementation should provide either one set of APIs or both sets.
If the APIs for registering an interrupt handler are provided, the kernel can provide a glue
routine for the interrupt handler that includes processes to be done before and after the
interrupt handler executes. Depending on the interrupt handler attribute, the interrupt
handler can be started through the provided glue routine. If only the APIs for registering
an interrupt service routine are provided, the kernel must provide the interrupt handler that
starts the interrupt service routine. Although both APIs are allowed at the same time, the
behavior when both APIs are used is implementation-defined.
Depending on the implementation, the kernel does not control interrupts with higher
priorities than a threshold priority level, including non-maskable interrupts. These kinds of
interrupts are called non-kernel interrupts. The method for defining the threshold priority
level is implementation-defined. No kernel service calls can be invoked from interrupt
handlers started by non-kernel interrupts. In this specification document, the term
"interrupt" and "interrupt handler" do not include non-kernel interrupts and interrupt
handlers started by non-kernel interrupts, respectively.
Figure 3-3 shows the interrupt handling model in the µITRON4.0 Specification. This
figure only outlines a conceptual model. The actual method used to realize interrupt
handling depends on the application and implementation.

58

µITRON4.0 Specification Ver. 4.03.00

Interrupt

handler

Interrupt handler

glue routine

Interrupt service

routine

A

External

interrupt

Control of IRC

return

task dispatch

B

Figure 3-3. Interrupt Handling Model

[Supplemental Information]

The responsibilities of the interrupt handler glue routine include saving and restoring
registers used within the interrupt handler, switching stack areas, task dispatching, and
returning from the interrupt handler. The operations actually required by the glue routine
depend on the implementation. The operations that are included in the glue routine
prepared by the kernel and those that are included in the interrupt handler registered by the
application are implementation-defined and determined by the interrupt handler attributes.
The responsibilities of the interrupt handler that starts interrupt service routines include
reading the cause of the interrupt from the IRC, branching based on the read interrupt
cause, clearing the IRC edge trigger, and clearing the in-service flag of the IRC. In
addition, the CPU must be unlocked before starting an interrupt service routine.
In order to reduce the overhead associated with an interrupt service routine, the interrupt
handler glue routine and the interrupt handler can be merged. Interrupt service routines
can be directly embedded in-line within the interrupt handler.

[Standard Profile]

The Standard Profile requires support for either the APIs to register an interrupt handler or
the APIs to register an interrupt service routine.

[Rationale]

Interrupt service routines are introduced to improve the portability of an application's
interrupt handling. Interrupt handlers, which are less portable, remain so that a kernel that
is independent of an IRC can be provided.

59

µITRON4.0 Specification Ver. 4.03.00

3.3.2 Ways to Designate an Interrupt and Start an Interrupt
Service Routine

In the µITRON4.0 Specification, there are two ways to designate an interrupt: by using an
interrupt number and by using an interrupt handler number. In addition, an interrupt
service routine is identified by an ID number.
The interrupt handler number, INHNO type, is used to designate the interrupt that is
handled by an interrupt handler registered with the kernel. The designated interrupt should
be able to be determined without referencing the IRC. The interrupt handler number
corresponds to the interrupt vector number of the processor in typical implementations.
When the processor does not have interrupt vectors, there may be only one available
interrupt handler number.
The interrupt number, INTNO type, is used to designate the interrupt that is handled by an
interrupt service routine registered with the kernel. The interrupt number is also used as a
parameter to some service calls, such as dis_int and ena_int, to disable and enable each
interrupt individually. Because starting an interrupt service routine and individually
disabling/enabling interrupts are executed by controlling the IRC, the interrupt number
corresponds to the interrupt request input line of the IRC in typical implementations.
An interrupt service routine is bound to a specific interrupt request input line from a
device. Since the interrupt request input line to the IRC can be connected to more than one
device, more than one interrupt service routine can be registered to a single interrupt
number. If the interrupt designated by the interrupt number occurs, all interrupt service
routines bound to the interrupt number will be called one by one. The order in which the
interrupt service routines are called is implementation-dependent. Multiple interrupt
service routines bound to a single interrupt number are distinguished by ID numbers.

[Supplemental Information]

For the case when multiple devices are connected to a single interrupt request input line to
the IRC, the devices may supply an interrupt vector number used by the processor to
determine the actual source of the interrupt. In this case, interrupt sources supplying
different vector numbers can have different interrupt numbers.

3.4 Exception Handling Model

3.4.1 Exception Handling Framework

The µITRON4.0 Specification defines the CPU exception handlers and the task exception
handling functions as exception handling functions.
A CPU exception handler is started when the processor detects a CPU exception. A CPU
exception handler can be registered by the application for each kind of CPU exception.
The kernel can provide a glue routine for the CPU exception handler that includes
processes to be done before and after the CPU exception handler executes. Depending on

60

µITRON4.0 Specification Ver. 4.03.00

the CPU exception handler attribute, the CPU exception handler can be started through the
provided glue routine.
Because the CPU exception handlers are common throughout the whole system, the
context and the state when the CPU exception occurred can be probed by the CPU
exception handler. When a CPU exception occurs within a task, the CPU exception
handler can let the task exception handling routine handle the exception if desired.
The task exception handling functions are used to stop the normal execution of the
specified task and to start the task exception handling routine by invoking a service call in
which a task can be specified to request its exception handling. The task exception
handling routine is executed within the same context as the task. When returning from the
task exception handling routine, the execution of the interrupted process will continue.
The application can register one task exception handling routine for each task. The task
exception handling functions will be explained in Section 4.3.

[Standard Profile]

The CPU exception handlers and the task exception handling routines must be supported
in the Standard Profile.

3.4.2 Operations within a CPU Exception Handler

The implementation method of a CPU exception handler is implementation-defined,
because it generally depends on CPU exception handling architecture of the processor and
the kernel implementation. A CPU exception handler cannot be ported to a different
system without changes.
The service calls that can be invoked in a CPU exception handler are implementation-
defined. However, a CPU exception handler must be able to perform the operations
described below. The method to perform these operations is also implementation-defined.
A CPU exception handler must be able to:

(a) Read the context and system state when the CPU exception occurred. The kernel
must provide a method so that the CPU exception handler can reference the system
state information that would normally be obtained through sns_yyy service calls
invoked just prior to the CPU exception.

(b) Read the task ID of the task in which the CPU exception occurred, if the exception
occurred while a task was executing.

(c) Request task exception handling. This operation is equivalent to invoking ras_tex
within the CPU exception handler.

If the CPU exception occurs while the CPU is locked, it is not necessary to support (b) and
(c).

61

µITRON4.0 Specification Ver. 4.03.00

3.5 Context and System State

3.5.1 Processing Units and Their Contexts

In the µITRON4.0 Specification, the kernel controls the execution of the following
processing units:

(a) Interrupt handlers
(a.1) Interrupt service routines

(b) Time event handlers
(c) CPU exception handlers
(d) Extended service call routines
(e) Tasks

(e.1) Task exception handling routines
Interrupt handlers and interrupt service routines execute in their own independent contexts.
For the remainder of this section, the descriptions about interrupt handlers apply to
interrupt service routines as well, unless a specific description about interrupt service
routines is provided.
Time event handlers are started by a time trigger. There are three kinds of time event
handlers: cyclic handlers, alarm handlers, and overrun handler. Time event handlers
execute in their own independent contexts. Cyclic handlers are explained in Section 4.7.2,
alarm handlers are explained in Section 4.7.3, and overrun handler is explained in Section
4.7.4.
A CPU exception handler executes in an independent context determined by the CPU
exception and by the context in which the CPU exception occurred.
Extended service call routines are registered by the application and are started by invoking
extended service calls. An extended service call routine executes in an independent
context determined by the extended service call and by the context from which the
extended service call is invoked. Extended service call routines are explained in Section
4.10.
Tasks execute in their own independent contexts. A task exception handling routine
executes in the associated task's context. In the remainder of this section, the descriptions
about tasks apply to task exception handling routines as well, unless a specific description
about task exception handling routines is provided.
Kernel processes are not classified into the processing units mentioned above. The kernel
processes include service call processes, the dispatcher, glue routines for interrupt
handlers (or interrupt service routines), and glue routines for CPU exception handlers. The
context in which the kernel executes is not specified because it does not affect the
behavior of the application.

62

µITRON4.0 Specification Ver. 4.03.00

[Differences from the µITRON3.0 Specification]

The term "time event handler" is now used instead of "timer handler." The term "extended
service call routine" is now used instead of "extended SVC handler."

3.5.2 Task Contexts and Non-Task Contexts

Contexts that can be regarded as a part of a task are generically called task contexts, while
other contexts are generically called non-task contexts.
Contexts in which tasks execute are classified as task contexts. Contexts in which interrupt
handlers and time event handlers execute are classified as non-task contexts. Contexts for
CPU exception handlers and extended service call routines depend on the contexts where
they occur or where they are invoked. These contexts are defined below.
When CPU exceptions occur in task contexts, the CPU exception handlers can execute
either in task contexts or in non-task contexts. In this case, the context in which a CPU
exception handler executes is implementation-defined. When CPU exceptions occur in
non-task contexts, the CPU exception handlers execute in non-task contexts.
When extended service calls are invoked from task contexts, the extended service call
routines execute in task contexts. When extended service calls are invoked from non-task
contexts, the extended service call routines execute in non-task contexts.
In the µITRON4.0 Specification, service calls that can be invoked in task contexts and
service calls that can be invoked in non-task contexts are distinguished from each other.
The invocation of service calls in non-task contexts is described in Section 3.6.
If service calls that can move the invoking task to the blocked state and service calls
where the invoking task is implicitly specified are invoked from non-task contexts, an
E_CTX error is returned. Using the parameter TSK_SELF (= 0), which designates the
invoking task as a parameter of the service call, is also prohibited from non-task contexts.
If TSK_SELF is used from non-task contexts, an E_ID error is returned.

[Supplemental Information]

As mentioned in Section 3.5.3, dispatching does not occur during execution of a CPU
exception handler, because the precedence of the CPU exception handler is higher than the
precedence of the dispatcher. Therefore, in implementations where the CPU exception
handler executes within task contexts, the behavior at invocation of service calls that may
move the task to the blocked state is undefined. However, if an error should be reported
under these conditions, an E_CTX error is returned.

[Differences from the µITRON3.0 Specification]

The terms "task contexts" and "non-task contexts" are now used instead of "task portions"
and "task-independent portions." The term "transitional state" has been removed because
the context in which the kernel is executed is not specified. In the µITRON4.0

63

µITRON4.0 Specification Ver. 4.03.00

Specification, the concept of quasi-task portions is undefined and included in task contexts,
because the processor mode is not specified.

3.5.3 Execution Precedence and Service Call Atomicity

In the µITRON4.0 Specification, the precedence for executing each processing unit and
the dispatcher is specified as follows.
The precedence for each processing unit and the dispatcher is listed from the higher
precedence.

(1) Interrupt handlers, time event handlers, and CPU exception handlers
(2) Dispatcher (one of the kernel processes)
(3) Tasks

The precedence of interrupt handlers is higher than the precedence of the dispatcher. The
relative precedence of interrupt handlers and interrupt service routines is implementation-
defined, depending on the priorities of external interrupts that invoke them.
The precedence of time event handlers (except for overrun handler) is implementation-
defined. However, the precedence of time event handlers must not be higher than the
precedence of interrupt handlers invoking isig_tim, and must also be higher than the
precedence of the dispatcher. The precedence of overrun handler is implementation-
defined to be higher than the precedence of the dispatcher.
The precedence of CPU exception handlers is higher than the precedence of the
processing unit where the CPU exception occurs and higher than the precedence of the
dispatcher. The precedence of CPU exception handlers relative to the precedence of
interrupt handlers and time event handlers is implementation-defined.
The precedence of extended service call routines is higher than the precedence of the
processing unit that invokes the extended service calls and is lower than the precedence of
any processing unit that has a higher precedence than the invoking processing unit.
The precedence of tasks is lower than the precedence of the dispatcher. The relative
precedence of tasks is defined by the task scheduling rule.
Basically, kernel service calls are executed atomically and the state of ongoing service call
processes is invisible from the application. However, the implementation may choose to
modify this behavior by permitting application programs to be executed in the middle of
processing service calls to improve system response. In this case, service call operation
must still appear to be executed atomically as far as the application can observe using
service calls. This behavior is called the service call atomicity guarantee. Service call
atomicity may be difficult to guarantee while maintaining a high level of response with
implementation-specific functions not covered in this specification. If this is so, then
loosening the principle of service call atomicity is permitted.
When kernel service calls are executed atomically, their precedence is highest. However,
when the atomicity is loosened as described above, the precedence of service call

64

µITRON4.0 Specification Ver. 4.03.00

processes is implementation-dependent as long as their precedence is higher than the
processing unit invoking the service calls.
Kernel processes other than service call processes such as the dispatcher and glue routines
for interrupts and exception handlers are treated similarly to service calls.

[Standard Profile]

The Standard Profile requires that service calls that are part of the Standard Profile must
be guaranteed to operate atomically.

[Supplemental Information]

Since the precedence of the dispatcher is lower than the precedence of interrupt handlers,
dispatching does not occur until all activated interrupt handlers are processed. This was
called the "delayed dispatching" rule. The same applies to time event handlers and CPU
exception handlers.

3.5.4 CPU Locked State

The CPU state of the system is in either the locked or unlocked state. In the CPU locked
state, since interrupts, except for non-kernel interrupts, are disabled, dispatching does not
occur and the activation of time event handlers is pended. The CPU locked state can be
considered as the state in which the precedence of the executing processing unit is the
highest. There might be a transitional state that is neither the CPU locked state nor the
CPU unlocked state, depending on the implementation.
The transition to the CPU locked state is called "locking the CPU," while the transition to
the CPU unlocked state is called "unlocking the CPU."
In the CPU locked state, the following service calls can be invoked:

loc_cpu/iloc_cpu lock the CPU

unl_cpu/iunl_cpu unlock the CPU

sns_ctx reference contexts

sns_loc reference CPU state

sns_dsp reference dispatching state

sns_dpn reference dispatch pending state

sns_tex reference task exception handling state

Where loc_cpu/iloc_cpu means that loc_cpu may be invoked from task contexts and
iloc_cpu from non-task contexts (the same rule applies to unl_cpu/iunl_cpu). If other
service calls are invoked from the CPU locked state, an E_CTX error will be returned.
The CPU state is implementation-dependent after an interrupt handler starts (either in the
CPU locked state, in the CPU unlocked state, or in a transitional state). However, if an
interrupt handler is started in the CPU locked state or a transitional state, it is
implementation-defined how to enter the CPU unlocked state in the interrupt handler. It is

65

µITRON4.0 Specification Ver. 4.03.00

also implementation-defined how to return correctly from interrupt handlers after the
system has entered the CPU unlocked state. The behavior is undefined when interrupt
handlers do not return according to the method specified by the implementation. The
system is in the CPU unlocked state after returning from interrupt handlers.
The system is in the CPU unlocked state after interrupt service routines and time event
handlers start. The application must return the system to the CPU unlocked state before
returning from these routines/handlers. The behavior is undefined when returning from
these routines/handlers in the CPU locked state. The system is in the CPU unlocked state
after returning from these routines/handlers.
The start of and the return from CPU exception handlers do not change the CPU state.
When the CPU state is changed in CPU exception handlers, the application should return
the CPU state to the previous state before returning from the CPU exception handlers. The
behavior is undefined when returning from CPU exception handlers without returning the
CPU state to the previous state.
The start of and the return from extended service call routines do not change the CPU state.
After tasks start, the system is in the CPU unlocked state. The application must return the
system to the CPU unlocked state before the invoking task exits. The behavior is
undefined when the invoking task exits while the system is in the CPU locked state.
The start of and the return from task exception handling routines do not change the CPU
state. However, it is not specified in this specification whether task exception handling
routines are started in the CPU locked state. When the CPU state is changed in task
exception handling routines, the application should return the CPU state to the previous
state before returning from the task exception handling routines. The behavior is
undefined when returning from task exception handling routines without returning the
CPU state to the previous state.

[Supplemental Information]

Interrupts are usually, but not always, enabled in the CPU unlocked state.
The sentence "The start of and the return from CPU exception handlers do not change the
CPU state." has the following meaning. In other words, after a CPU exception handler
starts, the system is in the CPU locked (unlocked) state when the CPU exception had
occurred in the CPU locked (unlocked) state. After returning from a CPU exception
handler, the system is in the CPU locked (unlocked) state when the return from the CPU
exception handler had taken place in the CPU locked (unlocked) state. The same applies
to the extended service call routines and task exception handling routines.

[Differences from the µITRON3.0 Specification]

The meanings of the CPU locked/unlocked state have been changed. In the µITRON3.0
Specification, the CPU locked state was considered the state where interrupts and task
dispatching were disabled. However, in the µITRON4.0 Specification, the CPU locked

66

µITRON4.0 Specification Ver. 4.03.00

state is treated conceptually as a state independent of interrupts and task dispatching. In
the CPU locked state only a few service calls can be invoked.

3.5.5 Dispatching Disabled State

The dispatching state of the system is either disabled or enabled. Dispatching does not
occur in the dispatching disabled state. The dispatching disabled state can be considered as
the state in which the precedence of the executing processing unit is higher than that of the
dispatcher. There might be a transitional state that is neither the dispatching disabled state
nor the dispatching enabled state, depending on the implementation.
The transition to the dispatching disabled state is called "disabling dispatching," while the
transition to dispatching enabled state is called "enabling dispatching."
In the dispatching disabled state, service calls that can be invoked from task contexts have
the following restrictions. While in the dispatching disabled state, if service calls that can
move the invoking task to the blocked state are invoked, an E_CTX error will be returned.
On the other hand, service calls that can be invoked from non-task contexts do not have
restrictions even in the dispatching disabled state.
The start of and the return from interrupt handlers, interrupt service routines, time event
handlers, and CPU exception handlers do not change the dispatching state. When the
dispatching state is changed in these handlers/routines, the application should return the
dispatching state to the previous state before returning from these handlers/routines. The
behavior is undefined when returning from these handlers/routines without returning the
dispatching state to the previous state.
The start of and the return from the extended service call routines do not change the
dispatching state.
After tasks start, the system is in the dispatching enabled state. The application must
return the system to the dispatching enabled state before the invoking task exits. The
behavior is undefined when the invoking task exits in the dispatching disabled state.
The start of and the return from the task exception handling routines do not change the
dispatching state.
The dispatching state is treated independent of the CPU state.

[Supplemental Information]

The specification of returning an E_CTX error is implementation-defined when service
calls that can move the invoking task to the blocked state are invoked while in the
dispatching disabled state applies to a service call as a whole.
For example, if service calls with timeout, e.g. twai_sem, are invoked with TMO_POL
(polling) in the timeout parameter, the behavior is implementation-defined to be returning
an E_CTX error or performing the same operation as service calls for polling, e.g.
pol_sem.

67

µITRON4.0 Specification Ver. 4.03.00

The sentence "The start of and the return from interrupt handlers do not change the
dispatching state." has the following meaning. In other words, after an interrupt handler
starts, the system is in the dispatching disabled (enabled) state when the interrupt had
occurred in the dispatching disabled (enabled) state. After returning from an interrupt
handler, the system is in the dispatching disabled (enabled) state when the return from the
interrupt handler had taken place in the dispatching disabled (enabled) state. The same
applies to the interrupt service routines, time event handlers, CPU exception handlers,
extended service call routines, and task exception handling routines.
There are no service calls that change the dispatching state in non-task contexts in the
µITRON4.0 Specification. Therefore, it is impossible to change the dispatching state
within interrupt handlers and time event handlers unless an implementation-specific
extension is provided. The same rule applies to CPU exception handlers when they are
executed in non-task contexts.
The dispatching state is treated independently from the CPU state. Therefore, for example,
if the system is in the dispatching disabled state and the CPU state changes from the
locked state to the unlocked state, the system remains in the dispatching disabled state.
The dispatching state can still be sensed while the system is in the CPU locked state.

[Differences from the µITRON3.0 Specification]

The meaning of the dispatching disabled state has been changed. The dispatching state is
defined as a state treated independently of the CPU state.

3.5.6 Task State during Dispatch Pending State

Dispatching does not occur during execution of processing units with higher precedence
than that of the dispatcher, and while in the CPU locked state or in the dispatching
disabled state. These three conditions are collectively called the dispatch pending state.
The task states in the dispatch pending state are defined below.
In the dispatch pending state, even in the situation where the task in the RUNNING state
should be preempted, the task that should run will not be dispatched. The dispatch for the
task that should run will be pending until the system is in a state where dispatching can
occur. While dispatching is pending, the task that has been running remains in the
RUNNING state, while the task waiting for dispatching remains in the READY state.
Task states during the dispatch pending state can be affected by implementation-specific
extensions. More precisely, extensions may allow non-task contexts to invoke service
calls that move the task in the RUNNING state to the SUSPENDED state or the
DORMANT state. In addition, extensions may allow the service calls to move the
invoking task to the SUSPENDED state while in the dispatching disabled state. Task
states for these cases are described below.
When the task in the RUNNING state is to be moved to the SUSPENDED state or the
DORMANT state in the dispatch pending state, the transition is pending until the system

68

µITRON4.0 Specification Ver. 4.03.00

state allows dispatching to occur. While the state transition is pending, the task that has
been in the RUNNING state is considered to be in a transitional state. The treatment of a
task in this transitional state is implementation-dependent. The task that should be in the
RUNNING state remains in the READY state until the dispatch occurs.

[Supplemental Information]

Figure 3-4 explains the task state during the dispatch pending state. Suppose that Task B is
activated from the interrupt handler that was invoked by the interrupt that occurred during
execution of Task A and the priority of Task B is higher than the priority of Task A. Since
the precedence of the interrupt handler is higher than that of the dispatcher, the system is
in the dispatch pending state while the interrupt handler is executing. Therefore
dispatching does not occur. When the interrupt handler execution terminates, the
dispatcher is executed and the task that should run switches from Task A to Task B.

DispatcherTask A

(low priority)

Task B

(high priority)

Interrupt

handler

R
U

N
N

IN
G

R
E

A
D

Y

R
E

A
D

Y
R

U
N

N
IN

G

iact_tsk (Task B)

Figure 3-4. Dispatch Pending State and Task States

Even after Task B is activated in the interrupt handler, Task A is in the RUNNING state
and Task B is in the READY state until the dispatcher is started. After the dispatcher
executes, Task B is in the RUNNING state, and Task A is in the READY state. Because
the dispatcher should be executed atomically, task states during the dispatcher execution
are not specified in this specification.

3.6 Service Call Invocation from Non-Task Contexts

3.6.1 Service Calls that can be Invoked from Non-Task Contexts

Service calls that can be invoked from non-task contexts have the letter "i" added to the
beginning of their names so they can be distinguished from service calls that can be

69

µITRON4.0 Specification Ver. 4.03.00

invoked from task contexts. Service calls that can be invoked from both non-task contexts
and task contexts have a different naming convention as described below. In other words,
the service calls are classified into the following three categories:

(a) Service calls for non-task contexts

Service calls whose names begin with "i" are called service calls for non-task contexts.
They may be invoked from non-task contexts.
When service calls for non-task contexts are invoked from task contexts, an E_CTX error
is returned.

[Supplemental Information]

The following service calls belong to this category:

iact_tsk activate task

iwup_tsk wakeup task

irel_wai release task from waiting

iras_tex raise task exception handling

isig_sem release semaphore resource

iset_flg set eventflag

ipsnd_dtq send to data queue (polling)

ifsnd_dtq forced send to data queue

isig_tim supply time tick

irot_rdq rotate task precedence

iget_tid reference task ID in the RUNNING state

iloc_cpu lock the CPU

iunl_cpu unlock the CPU

(b) Service calls that can be invoked from any contexts

Service calls whose names are in the form sns_yyy can be invoked from any contexts.
They may be invoked from both task contexts and non-task contexts.

[Supplemental Information]

The following service calls belong to this category:

sns_ctx reference contexts

sns_loc reference CPU state

sns_dsp reference dispatching state

sns_dpn reference dispatch pending state

sns_tex reference task exception handling state

70

µITRON4.0 Specification Ver. 4.03.00

(c) Service calls for task contexts

The remaining service calls are called service calls for task contexts. They may be
invoked from task contexts.
When service calls for task contexts are invoked from non-task contexts, an E_CTX error
is returned.

[Supplemental Information]

The following are permitted as implementation-specific extensions: preparing service calls
for non-task contexts (targeting the service calls which do not have service calls for non-
task contexts with the same functionality), enabling service calls for non-task contexts to
be invoked from task contexts, and enabling service calls for task contexts to be invoked
from non-task contexts. See Section 3.6.3 for more details.

[Differences from the µITRON3.0 Specification]

Service calls for non-task contexts are specified to have names that begin with "i." In
addition, the service calls for which service calls for non-task contexts with the same
functionality were prepared has been clarified, and the function codes were assigned to
only the specified service calls. Therefore, function codes are not assigned to some service
calls for non-task contexts in the µITRON4.0 Specification, though they were assigned
with function codes in the µITRON3.0 Specification.

3.6.2 Delayed Execution of Service Calls

The execution of service calls invoked from non-task contexts may be delayed at most
until the processing units that have higher precedence than the dispatcher have terminated.
This makes it possible to guarantee the atomicity of service calls without disabling
interrupts for too long. This is called delayed execution of service calls.
However, the following service calls are not allowed to have their execution delayed:

iget_tid reference task ID in the RUNNING state

iloc_cpu lock the CPU

iunl_cpu unlock the CPU

sns_ctx reference contexts

sns_loc reference CPU state

sns_dsp reference dispatching state

sns_dpn reference dispatch pending state

sns_tex reference task exception handling state

When the service calls have their execution delayed, the processing order of the service
calls must correspond to the order in which the service calls were invoked, excluding
those service calls that are not allowed to have their execution delayed.

71

µITRON4.0 Specification Ver. 4.03.00

There are situations in which the service calls that are invoked from non-task contexts and
that have their execution delayed cannot return some error codes. This is because the
detection of some errors depends on the target object's state and the object's state cannot
be referenced when the service call's execution is delayed. In these situations, E_OK can
be returned instead of the error code that would be returned for non-delayed execution.
The error codes that may not be returned when execution is delayed are defined for each
service call.
The kernel must store service calls that have their execution delayed. If there is
insufficient memory to store a service call for delayed execution, the service call must
return an E_NOMEM error.

[Supplemental Information]

The point at which the service call executes after having its execution delayed is up to the
implementation as long as the behavior of the delayed execution is the same as described
by the specification. A specific case is where service calls invoked during the dispatch
pending state may be delayed until the system enters a state where dispatching can occur.
Note that there are situations in which iras_tex must be executed even in the dispatching
disabled state. See the supplemental information of iras_tex for more details.
When service calls that have their execution delayed return E_OK, it must be guaranteed
that those service calls will be executed later.

[Differences from the µITRON3.0 Specification]

The specification regarding delayed execution of service calls has been clarified.

3.6.3 Adding Service Calls that can be Invoked from Non-Task
Contexts

When a service call for task contexts with the name xxx_yyy (or zxxx_yyy) is defined in the
µITRON4.0 Specification, an implementation may add a service call for non-task contexts
which has the same functionality. In this case the name of the new service call should be
ixxx_yyy (or izxxx_yyy) regardless of the rule that the names of implementation-specific
service calls should begin with the letter "v." The new service call is still considered to
have the same functionality even when some error codes are not returned due to delayed
execution of the service call invoked from non-task contexts.
When a service call for task contexts is made invokable from non-task contexts using its
original name as an implementation-specific extension, the implementation must also
provide a service call where the letter "i" is added at the beginning of its name that is
invokable from non-task contexts. On the other hand, when a service call for non-task
contexts is made invokable from task contexts using its original name as an
implementation-specific extension, the implementation must also provide a service call

72

µITRON4.0 Specification Ver. 4.03.00

where the letter "i" is removed from the beginning of its name that is invokable from task
contexts.
These rules apply to implementation-specific service calls as well. When there is an
implementation-specific service call with the name vxxx_yyy and a service call with the
same functionality can be invoked from non-task contexts, it must be invokable with the
name ivxxx_yyy.

[Supplemental Information]

This specification defines in Section 3.6.1 that an E_CTX error is returned when a service
call for task contexts is invoked from non-task contexts. Despite this, a service call for
task contexts is made invokable from non-task contexts as an implementation-specific
extension due to the following reason.
Omission of the E_CTX error detection is implementation-defined (see Section 2.3.2). On
the other hand, in the case where an error that should have been detected was not because
the error detection was omitted, the resulting system behavior is undefined in this
specification (see Section 2.1.6). The behavior when a service call for task contexts is
invoked from non-task contexts can be implementation-specific because specifying
undefined items as implementation-specific extensions is permitted in this specification.
Therefore, allowing a service call for task contexts to be invoked from non-task contexts
is permitted as an implementation-specific extension.
A service call for non-task contexts is permitted to be invoked from task contexts for the
same reason.

3.7 System Initialization Procedure

The system initialization procedure is modeled as shown below (Figure 3-5). Only a
conceptual model is provided here. The real system initialization procedure may be
optimized in an implementation-dependent manner as long as the behavior conforms to
this conceptual model.

73

µITRON4.0 Specification Ver. 4.03.00

Hardware-dependent

initialization process

Kernel initialization

process

Static API process

 - Object registrations

 - Execution of initialization

 routines

Start of kernel operation

 - System time initialization

 - Enabling interrupts

 - Beginning execution of tasks

Reset

Figure 3-5. System Initialization Procedure

The hardware-dependent initialization process is executed first thing after the system is
reset. The application prepares the hardware-dependent initialization process, which is
outside of the kernel's control. The kernel initialization process is called at the end of the
hardware-dependent initialization process. The method used to call the kernel
initialization process is implementation-defined.
Once the kernel initialization process is called, the kernel itself, such as the kernel's
internal data structures, is initialized. Then, the static APIs, such as object registrations,
are processed. The static APIs, except for ATT_INI, are processed in the order described
in the system configuration file. The method used to handle errors detected during the
static API processes is implementation-defined.
The processing of the static APIs includes the execution of initialization routines. The
initialization routines are prepared by the application and registered with the kernel by
using ATT_INI. The initialization routines are executed with all interrupts disabled except
for non-kernel interrupts. Disabling non-kernel interrupts is implementation-defined.
Allowing initialization routines to invoke service calls and which service calls are
invokable are implementation-defined. The initialization routines are executed in the order
described with ATT_INI in the system configuration file. The relative order between the
execution of initialization routines and the processing of other static APIs is
implementation-defined.

74

µITRON4.0 Specification Ver. 4.03.00

After the processing of the static APIs, the kernel operation is started. Specifically, tasks
begin execution. At this point interrupts are enabled for the first time and the system time
is initialized to 0.

3.8 Object Registration and Release

An object identified by an ID number is registered to the kernel by a static API
(CRE_YYY) or by a service call (cre_yyy) that creates the object. An object is released
from the kernel by a service call (del_yyy) that deletes the object. After an object is
deleted, a new object can be created with the same ID number. When an object is created,
the ID number and the necessary information for creating the object are specified. When
an object is deleted, the ID number for the object is specified.
The maximum number of objects and the range of the ID numbers that can be registered
are implementation-defined. The maximum number of objects that can be created by using
service calls and the procedure to designate the range of ID numbers are also
implementation-defined.
When a static API (ATT_YYY) attaches an object to the kernel, it creates and registers the
object without specifying an ID number. Objects registered in this way cannot be referred
to and operated by ID numbers because the created objects do not have ID numbers,
which means that objects created in this way cannot be deleted.
The service call that creates an object and assigns an ID number automatically (acre_yyy)
assigns the object ID number by selecting an ID number that is not already associated with
an object. The ID number assigned to the created object is returned to the application as
the return value of a service call. The ID number assigned in this way is limited to a
positive number because a negative return value from a service call indicates an error
occurred. If there is no ID number that can be assigned, the service call returns an
E_NOID error.
The method an implementation employs to designate the range of ID numbers available
for automatic assignment is implementation-defined. The method used to automatically
assign available ID numbers to objects is implementation-dependent.
A synchronization and communication object can be deleted even if there is a task waiting
for a condition to be met associated with the object. In this case, the task that is waiting for
the condition associated with the deleted object is released from waiting. The service call
that placed the task in the WAITING state returns an E_DLT error to the released task. If
more than one task is waiting, the tasks are released from waiting in the order in which
they reside in the wait queue for the synchronization and communication object. Therefore,
among tasks with the same priority that are moved into the READY state, tasks closer to
the head of the wait queue have higher precedence. In case the synchronization and
communication object has multiple wait queues, the order that tasks are released from
different wait queues is implementation-dependent.

75

µITRON4.0 Specification Ver. 4.03.00

[Standard Profile]

The Standard Profile requires an implementation to support at least ID numbers from 1 to
255. Also, the Standard Profile requires that at least 255 objects can be registered for
objects that are referenced by ID numbers and are part of the Standard Profile.

3.9 Description Format for Processing Unit

The µITRON4.0 Specification specifies the format for writing each of the following
processing units in the C language: interrupt service routines, time event handlers (cyclic
handlers, alarm handlers, overrun handler), extended service call routines, tasks, and task
exception handling routines. If TA_HLNG (processing unit started through a high-level
language interface) is specified as the object attribute when the processing unit is
registered with the kernel, the processing unit is started assuming it is written in the
specified format.
On the other hand, the µITRON4.0 Specification does not specify the format for writing
processing units in assembly language. If TA_ASM (processing unit started through an
assembly language interface) is specified as the object attribute when the processing unit
is registered with the kernel, the processing unit is started assuming it is written in the
format specified by the implementation.
The format for writing interrupt handlers and CPU exception handlers and the object
attributes used to register them with the kernel are implementation-defined and are not
specified in the µITRON4.0 Specification.

[Supplemental Information]

The µITRON4.0 Specification does not specify the service call that returns from interrupt
handlers (ret_int in the previous specifications). This is not because the process executed
by ret_int in the previous specifications is no longer needed, but rather because how to
write interrupt handlers is now implementation-defined. There may be a case where a
service call corresponding to ret_int may be provided by an implementation in order to
return from interrupt handlers. This also applies to returning from CPU exception handlers.
The µITRON4.0 Specification does not specify the service call that returns from time
event handlers (ret_tmr in the previous specifications). This is not because the process
executed by ret_tmr in the previous specifications is no longer needed, but rather because
it is now possible to return simply from time event handlers written in the C language.
There may be a case where a service call corresponding to ret_tmr is provided by an
implementation in order to return from time event handlers written in assembly language.
This also applies to returning from interrupt service routines, extended service call
routines, and task exception handling routines.

76

µITRON4.0 Specification Ver. 4.03.00

[Differences from the µITRON3.0 Specification]

The µITRON4.0 Specification specifies the format for writing each processing unit in the
C language, but does not specify service calls (ret_yyy) for returning from processing units,
because they are only needed when the processing units are written in assembly language.

3.10 Kernel Configuration Constants and Macros

Applications use kernel configuration constants and macros to reference the kernel
configuration in order to improve application program portability. The method used to
define kernel configuration constants and macros is implementation-dependent as long as
they can be referenced from an application program.
Kernel configuration constants and macros are not defined when functions related to them
are not supported.

[Supplemental Information]

Kernel configuration constants and macros may be defined as fixed values in kernel
header files or may be generated by a configurator. Alternatively they may be defined in
header files prepared by the application and then used to configure the kernel.

[Differences from the µITRON3.0 Specification]

The µITRON4.0 Specification newly introduces kernel configuration constants and
macros.

3.11 Kernel Common Definitions

3.11.1 Kernel Common Constants

(1) Object Attributes

TA_HLNG 0x00 Start a processing unit through a high-level language
interface

TA_ASM 0x01 Start a processing unit through an assembly language
interface

TA_TFIFO 0x00 Task wait queue is in FIFO order

TA_TPRI 0x01 Task wait queue is in task priority order

TA_MFIFO 0x00 Message queue is in FIFO order

TA_MPRI 0x02 Message queue is in message priority order

[Differences from the µITRON3.0 Specification]

The values of TA_HLNG and TA_ASM have been exchanged.

(2) Main Error Codes Used in Kernel

77

µITRON4.0 Specification Ver. 4.03.00

The kernel uses the main error codes specified in Section 2.3.2, except for the three codes,
E_CLS, E_WBLK, and E_BOVR.

[Standard Profile]

In the Standard Profile, the following main error codes are generated and must be
detected:

E_OBJ Object state error

E_QOVR Queuing overflow

E_RLWAI Forced release from waiting

E_TMOUT Polling failure or timeout

Applications that need to be portable across kernels adhering to the Standard Profile must
not depend on detecting errors beyond those listed above.

[Supplemental Information]

In the Standard Profile, the following main error codes are not generated or need not be
detected:

(a) Error codes not used by the kernel

E_CLS, E_WBLK, E_BOVR
(b) Error codes not generated by Standard Profile functions

E_OACV, E_NOID, E_NOEXS, E_DLT
(c) Error codes that are implementation-dependent

E_SYS, E_RSFN, E_NOMEM
(d) Error codes whose detection can be omitted

E_NOSPT, E_RSATR, E_PAR, E_ID, E_CTX, E_MACV, E_ILUSE

(3) Service Call Function Codes

Function codes ranging from (–0xe0) to (–0x05) are assigned to kernel service calls.
However, a function code is not assigned to cal_svc. The assignment of function codes is
specified in each function in Chapter 4.
Function codes within the range from (–0xe0) to (–0x05) that are not assigned in this
specification are reserved for the kernel function extensions in the future. Function codes
ranging from (–0x100) to (–0xe1) can be used for implementation-specific service calls.
Function codes ranging from (–0x200) to (–0x101) are reserved for kernel function
extensions in the future. However, they can be used for implementation-specific service
calls if needed.

[Differences from the µITRON3.0 Specification]

The values of function codes have been reassigned.

78

µITRON4.0 Specification Ver. 4.03.00

[Rationale]

Function codes of service calls included in the Standard Profile range from (–0x80) to (–
0x05) in order to fit within 8 bits.

(4) Other Kernel Common Constants

TSK_SELF 0 Specifying invoking task

TSK_NONE 0 No applicable task

[Differences from the µITRON3.0 Specification]

TSK_NONE has been added. In the µITRON3.0 Specification, FALSE (= 0) was used
when there was no applicable task available.

3.11.2 Kernel Common Configuration Constants

(1) Priority Range

TMIN_TPRI Minimum task priority (= 1)

TMAX_TPRI Maximum task priority

TMIN_MPRI Minimum message priority (= 1)

TMAX_MPRI Maximum message priority

[Standard Profile]

These kernel configuration constants must be defined in the Standard Profile.
TMAX_TPRI must not be less than 16 and TMAX_MPRI must not be less than
TMAX_TPRI.

[Supplemental Information]

Although TMIN_TPRI and TMIN_MPRI are fixed as 1 in this specification,
implementation-specific extensions may configure the kernel to use a value other than 1.

(2) Version Information

TKERNEL_MAKER Kernel maker code

TKERNEL_PRID Identification number of the kernel

TKERNEL_SPVER Version number of the ITRON Specifications

TKERNEL_PRVER Version number of the kernel

[Standard Profile]

These kernel configuration constants must be defined in the Standard Profile.

79

µITRON4.0 Specification Ver. 4.03.00

[Supplemental Information]

See the functional description of ref_ver for the constant values that represent version
information.

80

µITRON4.0 Specification Ver. 4.03.00

Chapter 4 µITRON4.0 Functions

4.1 Task Management Functions

Task management functions provide direct control of task states and reference to the task
states. Task management functions include the ability to create and delete a task, to
activate and terminate a task, to cancel activation requests, and to reference the state of a
task. A task is an object identified by an ID number. The ID number of a task is called the
task ID. See Section 3.2 for rules governing task scheduling and state transitions.
A task has a base priority and a current priority for controlling the order of task execution.
In this specification, the word "task priority" refers to the task's current priority. When the
task is activated, the base priority is set to the task's initial priority as defined when the
task is created. If mutexes are not used, the current priority and the base priority are
always equal. Therefore, the current priority of a task is set to its initial priority when the
task is activated. For more information about how mutexes change the current priority, see
Section 4.5.1.
Activation requests for a task are queued. In other words, if a task has already been
activated and an activation request is made for the task, the new request is recorded. When
the task terminates under this situation, the task will be automatically activated again.
However, activation requests will not be queued when the service call that activates a task
with the specified start code (sta_tsk) is used. A task includes an activation request count
to realize the activation request queuing. This activation request count is cleared to 0 when
the task is created.
When a task is activated, its extended information (exinf) is passed as a parameter.
However, when a task is activated by the service call with a start code (sta_tsk), the
specified start code is passed through the parameter instead of the extended information.
When a task terminates, the kernel does not release resources that the task acquired such
as semaphore resources and memory blocks. However, the kernel unlocks mutexes
acquired by the task. The application is responsible for releasing resources acquired by the
task when the task terminates.
The following actions must be taken when creating, activating, terminating, and deleting a
task. When a task is created, the activation request count is cleared, the task exception
handling routine is set to undefined (see Section 4.3), and the task's processing time limit
is set to undefined (see Section 4.7.4). When a task is activated, the task's base priority and
current priority are initialized, the task's wakeup request count is cleared (see Section 4.2),
the task's suspension count is cleared (see Section 4.2), the task's pending exception code
is cleared (see Section 4.3), and the task exception handling is disabled (see Section 4.3).
When a task is terminated, all mutexes locked by the task are unlocked (see Section 4.5.1)
and the processing time limit is set to undefined (see Section 4.7.4). When a task is

81

µITRON4.0 Specification Ver. 4.03.00

deleted, the task's stack area is released if the stack area was allocated by the kernel when
the task was created.
The format to write a task in the C language is shown below:

 void task (VP_INT exinf)
 {
 /* Body of the task */
 ext_tsk () ;
 }

The behavior of a task returning from its main routine is identical to invoking ext_tsk, i.e.
the task terminates. exd_tsk deletes the invoking task in addition to terminating the task.
The following kernel configuration constant is defined for use with task management
functions:

TMAX_ACTCNT Maximum activation request count
The following data type packets are defined for creating and referencing tasks:

 typedef struct t_ctsk {
 ATR tskatr ; /* Task attribute */
 VP_INT exinf ; /* Task extended information */
 FP task ; /* Task start address */
 PRI itskpri ; /* Task initial priority */
 SIZE stksz ; /* Task stack size (in bytes) */
 VP stk ; /* Base address of task stack area */
 /* Other implementation-specific fields may be added. */
 } T_CTSK ;
 typedef struct t_rtsk {
 STAT tskstat ; /* Task state */
 PRI tskpri ; /* Task current priority */
 PRI tskbpri ; /* Task base priority */
 STAT tskwait ; /* Reason for waiting */
 ID wobjid ; /* Object ID number for which the task is waiting */
 TMO lefttmo ; /* Remaining time until timeout */
 UINT actcnt ; /* Activation request count */
 UINT wupcnt ; /* Wakeup request count */
 UINT suscnt ; /* Suspension count */
 /* Other implementation-specific fields may be added. */
 } T_RTSK ;
 typedef struct t_rtst {
 STAT tskstat ; /* Task state */
 STAT tskwait ; /* Reason for waiting */
 /* Other implementation-specific fields may be added. */
 } T_RTST ;

82

µITRON4.0 Specification Ver. 4.03.00

The following represents the function codes for the task management service calls:
TFN_CRE_TSK –0x05 Function code of cre_tsk
TFN_ACRE_TSK –0xc1 Function code of acre_tsk
TFN_DEL_TSK –0x06 Function code of del_tsk
TFN_ACT_TSK –0x07 Function code of act_tsk
TFN_IACT_TSK –0x71 Function code of iact_tsk
TFN_CAN_ACT –0x08 Function code of can_act
TFN_STA_TSK –0x09 Function code of sta_tsk
TFN_EXT_TSK –0x0a Function code of ext_tsk
TFN_EXD_TSK –0x0b Function code of exd_tsk
TFN_TER_TSK –0x0c Function code of ter_tsk
TFN_CHG_PRI –0x0d Function code of chg_pri
TFN_GET_PRI –0x0e Function code of get_pri
TFN_REF_TSK –0x0f Function code of ref_tsk
TFN_REF_TST –0x10 Function code of ref_tst

[Standard Profile]

The Standard Profile requires support for task management functions except for dynamic
creation and deletion of a task (cre_tsk, acre_tsk, del_tsk), activation of a task with the
specified start code (sta_tsk), termination and deletion of a task (exd_tsk), and reference
of a task state (ref_tsk, ref_tst).
The Standard Profile requires support for an activation request count of one or more.
Therefore, TMAX_ACTCNT must be at least 1.

[Supplemental Information]

The contexts and states under which tasks execute are summarized as follows:

• Tasks execute in their own independent contexts (see Section 3.5.1). The contexts in
which tasks execute are classified as task contexts (see Section 3.5.2).

• Tasks execute at a lower precedence than the dispatcher (see Section 3.5.3).

• After tasks start, the system is in both the CPU unlocked state and the dispatching
enabled state. When the invoking task exits, the system must be in both the CPU
unlocked state and the dispatching enabled state (see Sections 3.5.4 and 3.5.5).

TMAX_ACTCNT must be 0 if the activation request queuing of a task is not supported.

[Differences from the µITRON3.0 Specification]

Functions that directly operate on tasks and that have no relation with the blocked state are
classified as task management functions. Functions that rotate task precedence (rot_rdq),
reference the ID of the task in the RUNNING state (get_tid), and enable or disable task
dispatching (ena_dsp, dis_dsp) are now classified as system state management functions.

83

µITRON4.0 Specification Ver. 4.03.00

The function releasing a task from a waiting state (rel_wai) is now classified as a task
dependent synchronization function.
Service calls for requesting task activation and cancelling the activation requests have
been added (act_tsk, can_act). The service call for starting a task with the specified start
code (sta_tsk) has not been removed to maintain backward compatibility with
µITRON3.0; however, this service call is not required in the Standard Profile.
The concept of task base priorities is introduced due to the addition of mutexes. If mutexes
are not used, the behavior is the same as in µITRON3.0 because the base priority is
always equal to the current priority.
Returning from a task's main routine now terminates the task.

84

µITRON4.0 Specification Ver. 4.03.00

CRE_TSK Create Task (Static API) [S]
cre_tsk Create Task

acre_tsk Create Task (Automatic ID Assignment)

[Static API]

 CRE_TSK (ID tskid, { ATR tskatr, VP_INT exinf, FP task,
 PRI itskpri, SIZE stksz, VP stk }) ;

[C Language API]

 ER ercd = cre_tsk (ID tskid, T_CTSK *pk_ctsk) ;
 ER_ID tskid = acre_tsk (T_CTSK *pk_ctsk) ;

[Parameter]

ID tskid ID number of the task to be created (except acre_tsk)
T_CTSK * pk_ctsk Pointer to the packet containing the task creation

information (In CRE_TSK, the contents must be
directly specified.)

pk_ctsk includes (T_CTSK type)
ATR tskatr Task attribute
VP_INT exinf Task extended information
FP task Task start address
PRI itskpri Task initial priority
SIZE stksz Task stack size (in bytes)
VP stk Base address of task stack area
(Other implementation-specific information may be added.)

[Return Parameter]

cre_tsk:
ER ercd E_OK for normal completion or error code

acre_tsk:
ER_ID tskid ID number (positive value) of the created task or

error code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable; only cre_tsk)
E_NOID No ID number available (there is no task ID assignable; only

acre_tsk)
E_NOMEM Insufficient memory (stack area or other memory cannot be

allocated)
E_RSATR Reserved attribute (tskatr is invalid or unusable)
E_PAR Parameter error (pk_ctsk, task, itskpri, stksz, or stk is invalid)

85

µITRON4.0 Specification Ver. 4.03.00

E_OBJ Object state error (task is already registered; only cre_tsk)

[Functional Description]

These service calls create a task with an ID number specified by tskid based on the task
creation information contained in the packet pointed to by pk_ctsk. The task is moved
from the NON-EXISTENT state to either the DORMANT state or the READY state. In
addition, the actions that must be taken are performed. tskatr is the attribute of the task.
exinf is the extended information passed as a parameter to the task when the task is started.
task is the start address of the task. itskpri is the initial value of the task's base priority
when the task is activated. stksz is the size of the task stack area in bytes. stk is the base
address of the task's stack area.
In CRE_TSK, tskid is an integer parameter with automatic ID assignment. tskatr is a
preprocessor constant expression.
acre_tsk assigns a task ID from the pool of unassigned task IDs and returns the assigned
task ID.
tskatr can be specified as ((TA_HLNG || TA_ASM) | [TA_ACT]). If TA_HLNG (= 0x00)
is specified, the task is started through a high-level language interface. If TA_ASM (=
0x01) is specified, the task is started through the assembly language interface. If TA_ACT
(= 0x02) is not specified, the task is moved to the DORMANT state and the actions that
must be taken at task creation time are performed. If TA_ACT is specified, the task is
moved to the READY state and the actions that must be taken at task activation time are
performed as well as the actions that must be taken at task creation time. The task's
extended information is passed as a parameter to the task when the task is started.
The memory area defined by the base address stk and the size stksz is used by the task for
its stack area during execution. If stk is specified as NULL (= 0), the kernel allocates a
memory area with size stksz for use as the task's stack area.
When a value greater than the maximum implementation-defined value is specified in
stksz, an E_PAR error is returned.

[Standard Profile]

The Standard Profile does not require support for these functions when TA_ASM is
specified in tskatr. It also does not require support for these functions when a value other
than NULL is specified in stk.

[Supplemental Information]

Several processing units besides the task, such as service calls invoked by the task and
interrupt handlers started during the task's execution (including their glue routines), may
use the task's stack area depending on the implementation. The implementation's
documentation, such as the product manuals, should describe how to calculate the
necessary stack size.

86

µITRON4.0 Specification Ver. 4.03.00

The base address of the task's stack area indicates the lowest address of the memory area
used as the task stack area. Therefore, in general, the initial value of the task's stack
pointer does not correspond to the base address of the task's stack area.
In cre_tsk, a task cannot specify its own task ID in tskid. If a task does specify its own
task ID, cre_tsk returns an E_OBJ error because the task is already registered.
If NULL is specified in stk, the size of the task's stack area that will be allocated by the
kernel should be at least equal to the size specified by stksz.

[Differences from the µITRON3.0 Specification]

The base address of the task's stack area, stk, has been added to the task creation
information. stk should be set to NULL if compatibility is required with µITRON3.0.
The order of tskatr and exinf in the task's creation information packet has been exchanged.
The data type of exinf has been changed from VP to VP_INT. The data type of stksz has
been changed from INT to SIZE.
The ability to move a task directly to the READY state has been added through the use of
the added task attribute TA_ACT. This is useful for the case when a task is statically
created. The task attributes indicating the task uses co-processors have been removed.
When necessary, such attributes can be added as implementation-specific.
acre_tsk has been newly added.

87

µITRON4.0 Specification Ver. 4.03.00

del_tsk Delete Task

[C Language API]

 ER ercd = del_tsk (ID tskid) ;

[Parameter]

ID tskid ID number of the task to be deleted

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_OBJ Object state error (specified task is not in the DORMANT state)

[Functional Description]

This service call deletes the task specified by tskid. The deleted task is moved from the
DORMANT state to the NON-EXISTENT state and the actions that must be taken at task
deletion time are performed.
If the task is not in the DORMANT state, an E_OBJ error is returned. However, if the task
is not registered, an E_NOEXS error is returned.

[Supplemental Information]

A task cannot specify its own task ID in tskid. If a task does specify its own task ID,
del_tsk returns an E_OBJ error because the task is not in the DORMANT state. exd_tsk
can be used by a task to terminate and delete itself.

88

µITRON4.0 Specification Ver. 4.03.00

act_tsk Activate Task [S]
iact_tsk [S]

[C Language API]

 ER ercd = act_tsk (ID tskid) ;
 ER ercd = iact_tsk (ID tskid) ;

[Parameter]

ID tskid ID number of the task to be activated

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_QOVR Queuing overflow (overflow of activation request count)

[Functional Description]

These service calls activate the task specified by tskid. The task is moved from the
DORMANT state to the READY state and the actions that must be taken at task activation
time are performed. The extended information of the task is passed to the task as a
parameter.
If the task is not in the DORMANT state, the activation request for the task is queued.
(However, if the task is in the NON-EXISTENT state, an E_NOEXS error is returned.)
Specifically, the activation request count is incremented by 1. If the count then exceeds
the maximum possible count, an E_QOVR error is returned.
If the service call is invoked from non-task contexts and has its execution delayed,
omission of returning an E_QOVR error is implementation-defined.
If tskid is TSK_SELF (= 0), the invoking task is specified. If TSK_SELF is specified
when this service call is invoked from non-task contexts, an E_ID error is returned.

[Supplemental Information]

The Standard Profile requires the maximum activation request count to be at least 1. This
implies that a kernel compatible with the Standard Profile may not always return an
E_QOVR error even if these service calls are invoked on a task with queued activation
requests.

[Differences from the µITRON3.0 Specification]

These service calls have been newly added.

89

µITRON4.0 Specification Ver. 4.03.00

can_act Cancel Task Activation Requests [S]

[C Language API]

 ER_UINT actcnt = can_act (ID tskid) ;

[Parameter]

ID tskid ID number of the task for cancelling activation
requests

[Return Parameter]

ER_UINT actcnt Activation request count (positive value or 0) or error
code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)

[Functional Description]

This service call cancels all queued activation requests for the task specified by tskid and
returns the cancelled activation request count for the task. Specifically, the activation
request count for the task is cleared to 0. The value returned is the count before it was
cleared.
If tskid is TSK_SELF (= 0), the invoking task is specified.

[Supplemental Information]

This service call may specify a task in the DORMANT state. In this case, the service call
returns a count of 0 because activation requests are not queued for the task.
This service call can be used to check if a task completes a process within a cycle
correctly when the task is activated cyclically. Specifically, can_act should be invoked
when the process for the previous activation request completes. A return value of 1 or
more from can_act indicates that the next activation is requested before the task completes
the process in the previous cycle. The task can therefore take measures for delay in the
process.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.

90

µITRON4.0 Specification Ver. 4.03.00

sta_tsk Activate Task (with a Start Code) [B]

[C Language API]

 ER ercd = sta_tsk (ID tskid, VP_INT stacd) ;

[Parameter]

ID tskid ID number of the task to be activated
VP_INT stacd Start code of the task

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_OBJ Object state error (specified task is not in the DORMANT state)

[Functional Description]

This service call activates the task specified by tskid. The task is moved from the
DORMANT state to the READY state and the actions that must be taken at task activation
time are performed. The start code, stacd, is passed to the task as a parameter.
If the task is not in the DORMANT state, the service call does not queue a request for
activation and returns an E_OBJ error. (However, if the task is in the NON-EXISTENT
state, an E_NOEXS error is returned.)

[Supplemental Information]

A task cannot specify its own task ID in tskid. If a task does specify its own task ID,
sta_tsk returns an E_OBJ error because the task is not in the DORMANT state.

[Differences from the µITRON3.0 Specification]

The data type for stacd has been changed from INT to VP_INT.

91

µITRON4.0 Specification Ver. 4.03.00

ext_tsk Terminate Invoking Task [S] [B]

[C Language API]

 void ext_tsk () ;

[Parameter]

None

[Return Parameter]

This service call does not return.

[Functional Description]

This service call terminates the invoking task. The invoking task is moved from the
RUNNING state to the DORMANT state and the actions that must be taken at task
termination time are performed.
If activation requests are queued, that is, if the activation request count for the invoking
task is 1 or more, the count is decremented by 1 and the task is moved to the READY state.
In this case, the actions that must be taken at task activation time are performed. The
extended information of the task is passed to the task as a parameter.
This service call never returns; therefore, no error code is returned even if an error is
encountered in the service call. Allowing errors to be detected in service calls and the
behavior of the service call when an error is detected are implementation-defined.

[Supplemental Information]

When activation requests are queued for the invoking task, this service call will reactivate
the task after it has been terminated. This implies that all mutexes locked by the invoking
task are unlocked and the processing time limit is set to undefined. In addition to the task's
base priority (current priority), the wakeup request count, the suspension count, the
pending exception cause, and the task exception handling state are all initialized, that is,
they return to the states they were in just after the task was activated. The reactivated task
has the lowest precedence among all tasks with the same priority.
When an error is detected in the service call, the information regarding the error can be
logged.
The behavior of a task returning from its main routine is identical to invoking ext_tsk.

[Differences from the µITRON3.0 Specification]

This service call may reactivate the invoking task after it has been terminated due to the
addition of the activation request count.

92

µITRON4.0 Specification Ver. 4.03.00

exd_tsk Terminate and Delete Invoking Task

[C Language API]

 void exd_tsk () ;

[Parameter]

None

[Return Parameter]

This service call does not return.

[Functional Description]

This service call terminates and deletes the invoking task. The task is moved from the
RUNNING state to the NON-EXISTENT state and the actions that must be taken at task
termination and task deletion time are performed.
This service call never returns; therefore, no error code is returned even if an error is
encountered in the service call. Allowing errors to be detected in service calls and the
behavior of the service call when an error is detected are implementation-defined.

[Supplemental Information]

This service call terminates and deletes the invoking task even if activation requests are
queued for the invoking task. The activation request count has no meaning when the task
is in the NON-EXISTENT state.
When an error is detected in the service call, the information regarding the error can be
logged.

93

µITRON4.0 Specification Ver. 4.03.00

ter_tsk Terminate Task [S] [B]

[C Language API]

 ER ercd = ter_tsk (ID tskid) ;

[Parameter]

ID tskid ID number of the task to be terminated

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_ILUSE Illegal service call use (specified task is an invoking task)
E_OBJ Object state error (specified task is in the DORMANT state)

[Functional Description]

This service call forces the task specified by tskid to terminate. The task is moved to the
DORMANT state and the actions that must be taken at task termination time are
performed.
If activation requests are queued, that is, if the activation request count for the specified
task is 1 or more, the count is decremented by 1 and the task is moved to the READY state.
In this case, the actions that must be taken at task activation time are performed. The
extended information of the task is passed to the task as a parameter.
If the task is in the DORMANT state, an E_OBJ error is returned. A task cannot terminate
itself with this service call. If a task specifies its own task ID in tskid, an E_ILUSE error is
returned.

[Supplemental Information]

This service call forces the specified task to terminate even if the task is in the blocked
state. When the task is waiting in a wait queue, the task is removed from the wait queue.
In this case, some other tasks that are in the wait queue may need to be released from
waiting. See the functional descriptions of snd_mbf and get_mpl.
When activation requests are queued for the specified task, this service call will reactivate
the task after it has been terminated. This implies that all mutexes locked by the task are
unlocked and the processing time limit is set to undefined. In addition to the task's base
priority (current priority), the wakeup request count, the suspension count, the pending
exception cause, and the task exception handling state are all initialized, that is, they

94

µITRON4.0 Specification Ver. 4.03.00

return to the states they were in just after the task was activated. The reactivated task has
the lowest precedence among all tasks with the same priority.

[Differences from the µITRON3.0 Specification]

The main error code when the invoking task is specified has been changed from E_OBJ to
E_ILUSE.
This service call may reactivate the specified task due to the addition of the activation
request count.

95

µITRON4.0 Specification Ver. 4.03.00

chg_pri Change Task Priority [S] [B]

[C Language API]

 ER ercd = chg_pri (ID tskid, PRI tskpri) ;

[Parameter]

ID tskid ID number of the task whose priority is to be changed
PRI tskpri New base priority of the task

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_PAR Parameter error (tskpri is invalid)
E_ILUSE Illegal service call use (priority ceiling violation)
E_OBJ Object state error (specified task is in the DORMANT state)

[Functional Description]

This service call changes the base priority of the task specified by tskid to the priority
value specified by tskpri. The current priority can also be changed.
If tskid is TSK_SELF (= 0), the priority of the invoking task is changed. If tskpri is
TPRI_INI (= 0), the base priority is changed to the task's initial priority.
If the invocation of this service call changes the task's current priority or results in equal
base and current priorities, which is always the case if mutexes are not used, the following
actions are performed. If the task is runnable, the task's precedence is changed to reflect
the new priority. The task will have the lowest precedence among tasks with the same
priority. If the task is waiting in a wait queue, the task's position in the wait queue is
changed to reflect the new priority. The task will be placed last among tasks with the same
priority.
If the task locked or is waiting to lock mutexes with the TA_CEILING attribute and the
new base priority specified by tskpri is higher than one of the priority ceilings of the
mutexes, an E_ILUSE error is returned.

[Supplemental Information]

When the task is waiting in a wait queue, invoking this service call may change the task's
order in the wait queue. In this case, some other tasks that are in the wait queue may need
to be released from waiting. See the functional descriptions of snd_mbf and get_mpl.

96

µITRON4.0 Specification Ver. 4.03.00

If the specified task is waiting to lock a mutex with the TA_INHERIT attribute, transitive
priority inheritance needs to be applied as the result of changing the task's base priority
using this service call.
If mutexes are not used, when this service call is invoked with the invoking task in tskid
and its base priority in tskpri, the task will have the lowest precedence among all tasks
with the same priority. Therefore, this service call can be used to yield the execution
privilege to another task.

[Differences from the µITRON3.0 Specification]

chg_pri now changes the base priority of a task due to the addition of mutexes. Allowing
TPRI_INI to be specified in tskpri is now a standard function.

97

µITRON4.0 Specification Ver. 4.03.00

get_pri Reference Task Priority [S]

[C Language API]

 ER ercd = get_pri (ID tskid, PRI *p_tskpri) ;

[Parameter]

ID tskid ID number of the task to reference

[Return Parameter]

ER ercd E_OK for normal completion or error code
PRI tskpri Current priority of specified task

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_PAR Parameter error (p_tskpri is invalid)
E_OBJ Object state error (specified task is in the DORMANT state)

[Functional Description]

This service call returns the current priority of the task specified by tskid through tskpri.
If tskid is TSK_SELF (= 0), the current priority of the invoking task is returned.

[Supplemental Information]

get_pri refers to the task's current priority while chg_pri changes the task's base priority.

[Differences from the µITRON3.0 Specification]

This service call has been newly added, because a method is required to obtain the
invoking task's priority with minimal overhead when the priority of a message to be sent
should be set to the invoking task's priority.

[Rationale]

The priority is returned through tskpri as opposed to a return value in order for the service
call to be consistent with other similar service calls (get_yyy) and in order to allow an
implementation-specific extension to use negative values for priorities.

98

µITRON4.0 Specification Ver. 4.03.00

ref_tsk Reference Task State

[C Language API]

 ER ercd = ref_tsk (ID tskid, T_RTSK *pk_rtsk) ;

[Parameter]

ID tskid ID number of the task to be referenced
T_RTSK * pk_rtsk Pointer to the packet returning the task state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rtsk includes (T_RTSK type)

STAT tskstat Task state
PRI tskpri Task current priority
PRI tskbpri Task base priority
STAT tskwait Reason for waiting
ID wobjid Object ID number for which the task is waiting
TMO lefttmo Remaining time until timeout
UINT actcnt Activation request count
UINT wupcnt Wakeup request count
UINT suscnt Suspension count
(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_PAR Parameter error (pk_rtsk is invalid)

[Functional Description]

This service call references the state of the task specified by tskid. The state of the task is
returned through the packet pointed to by pk_rtsk. If the specified task is in the NON-
EXISTENT state, an E_NOEXS error is returned.
One of the following codes is returned through tskstat to indicate the state of the task:

TTS_RUN 0x01 RUNNING state
TTS_RDY 0x02 READY state
TTS_WAI 0x04 WAITING state
TTS_SUS 0x08 SUSPENDED state
TTS_WAS 0x0c WAITING-SUSPENDED state
TTS_DMT 0x10 DORMANT state

99

µITRON4.0 Specification Ver. 4.03.00

If the task is not in the DORMANT state, the current priority is returned through tskpri
and the base priority is returned through tskbpri. If the task is in the DORMANT state, the
values returned through tskpri and tskbpri are implementation-dependent.
If the task is in the WAITING state, including the WAITING-SUSPENDED state, one of
the following codes is returned through tskwait to indicate the reason of the task's waiting.
If the task is not in the WAITING state, the value returned through tskwait is
implementation-dependent.

TTW_SLP 0x0001 Sleeping state
TTW_DLY 0x0002 Delayed state
TTW_SEM 0x0004 Waiting state for acquiring a semaphore resource
TTW_FLG 0x0008 Waiting state for setting an eventflag
TTW_SDTQ 0x0010 Waiting state for sending data to a data queue
TTW_RDTQ 0x0020 Waiting state for receiving data from a data queue
TTW_MBX 0x0040 Waiting state for receiving a message from a mailbox
TTW_MTX 0x0080 Waiting state for locking a mutex
TTW_SMBF 0x0100 Waiting state for sending a message to a message

buffer
TTW_RMBF 0x0200 Waiting state for receiving a message from a message

buffer
TTW_CAL 0x0400 Waiting state for calling a rendezvous
TTW_ACP 0x0800 Waiting state for accepting a rendezvous
TTW_RDV 0x1000 Waiting state for terminating a rendezvous
TTW_MPF 0x2000 Waiting state for acquiring a fixed-sized memory

block
TTW_MPL 0x4000 Waiting state for acquiring a variable-sized memory

block

If the task is in the WAITING state, including the WAITING-SUSPENDED state, the ID
number of the object the task is waiting for is returned through wobjid. This does not
apply when the task is in the sleeping state, the delayed state, or the termination waiting
state for a rendezvous. In these states, the value returned through wobjid is
implementation-dependent. If the task is not in the WAITING state, the value returned
through wobjid is also implementation-dependent.
When the task is in the WAITING state, including the WAITING-SUSPENDED state, but
not in the delayed state, the amount of time remaining for the task to timeout is returned
through the parameter lefttmo. The value of lefttmo is calculated by subtracting the
current time from the time at which the task will timeout. The value returned through
lefttmo, however, must be less than or equal to the actual amount of time until timeout.
This means that if the timeout happens at the next time tick, 0 is returned through lefttmo.
If the task is in the WAITING state forever (that is, waiting without a timeout),
TMO_FEVR is returned through lefttmo. If the task is not in the WAITING state,
including the WAITING-SUSPENDED state, or is in the delayed state, the value returned
through lefttmo is implementation-dependent.

100

µITRON4.0 Specification Ver. 4.03.00

The service call returns the task's activation request count through actcnt.
If the task is not in the DORMANT state, the wakeup request count and suspension count
are returned through wupcnt and suscnt, respectively. If the task is in the DORMANT
state, the values returned through wupcnt and suscnt are implementation-dependent.
If tskid is TSK_SELF (= 0), the state of the invoking task is referenced.

[Differences from the µITRON3.0 Specification]

Referencing many pieces of information in the µITRON3.0 Specification was
implementation-dependent, but is now considered standard. The return parameter wid has
been changed to wobjid. In addition, the following items have been added: task base
priority (tskbpri), remaining time until timeout (lefttmo), and activation request count
(actcnt). The extended information has been removed from the list.
The order of tskstat and tskpri in the packet returning the task state (pk_rtsk) has been
exchanged. The data type for tskstat has been changed from UINT to STAT. The order of
parameters and return parameters has also been changed.
The return values are now implementation-dependent under cases where parameters have
no meaning for specific tasks states. For example, if the task is in the DORMANT state,
the value returned through tskpri is implementation-dependent.
The values returned through tskwait have been reassigned.

[Rationale]

If the task is in the delayed state, the value returned through lefttmo is implementation-
dependent because the delayed time data type used by dly_tsk is RELTIM (unsigned
integer) and it cannot be always returned through lefttmo whose data type is TMO (signed
integer).

101

µITRON4.0 Specification Ver. 4.03.00

ref_tst Reference Task State (Simplified Version)

[C Language API]

 ER ercd = ref_tst (ID tskid, T_RTST *pk_rtst) ;

[Parameter]

ID tskid ID number of the task to be referenced
T_RTST * pk_rtst Pointer to the packet returning the task state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rtst includes (T_RTST type)

STAT tskstat Task state
STAT tskwait Reason for waiting
(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_PAR Parameter error (pk_rtst is invalid)

[Functional Description]

This service call references the minimum task state information for the task specified by
tskid. The state of the task is returned through the packet pointed to by pk_rtst.
This service call is a simplified version of ref_tsk. The same values returned by ref_tsk
through tskstat and tskwait apply to ref_tst as well.
If tskid is TSK_SELF (= 0), the state of the invoking task is referenced.

[Rationale]

Various states of the task can be referenced with ref_tsk. However, if only minimum task
information is required, an overhead is incurred for the rest of the possible information. A
new service call, ref_tst, has been added in order to extract just the minimum task
information with small overheads.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.

102

µITRON4.0 Specification Ver. 4.03.00

4.2 Task Dependent Synchronization Functions

Task dependent synchronization functions provide direct control of task states to
synchronize tasks. Task dependent synchronization functions include the ability to put a
task to the sleeping state, to wake up a task from the sleeping state, to cancel wakeup
requests, to forcibly release a task from waiting, to suspend a task, to resume a task from
the SUSPENDED state, and to delay the execution of the invoking task.
Wakeup requests for a task are queued. In other words, if a task is not in the sleeping state
and a wakeup request is made for the task, the new request is recorded. When the task
enters the sleeping state under this situation, the task will not be put in the sleeping state.
A task includes a wakeup request count to realize the wakeup request queuing. This
wakeup request count is cleared to 0 when the task is activated.
Suspension requests for a task are nested. In other words, if a task has already been in the
SUSPENDED state, including WAITING-SUSPENDED state, and an attempt is made to
put the task in the SUSPENDED state again, the new request is recorded. When an
attempt is made to resume the task from SUSPENDED state under this situation, the task
will not be resumed. A task includes a suspension count to realize the suspension request
nesting. This suspension count is cleared to 0 when the task is activated.
The following kernel configuration constants are defined for use with task dependent
synchronization functions:

TMAX_WUPCNT Maximum wakeup request count
TMAX_SUSCNT Maximum suspension count

The following represents the function codes for the task dependent synchronization
service calls:

TFN_SLP_TSK –0x11 Function code of slp_tsk
TFN_TSLP_TSK –0x12 Function code of tslp_tsk
TFN_WUP_TSK –0x13 Function code of wup_tsk
TFN_IWUP_TSK –0x72 Function code of iwup_tsk
TFN_CAN_WUP –0x14 Function code of can_wup
TFN_REL_WAI –0x15 Function code of rel_wai
TFN_IREL_WAI –0x73 Function code of irel_wai
TFN_SUS_TSK –0x16 Function code of sus_tsk
TFN_RSM_TSK –0x17 Function code of rsm_tsk
TFN_FRSM_TSK –0x18 Function code of frsm_tsk
TFN_DLY_TSK –0x19 Function code of dly_tsk

[Standard Profile]

The Standard Profile requires support for task dependent synchronization functions.
The Standard Profile requires support for a wakeup request count of one or more. It also
requires support for the SUSPENDED state for a task. Therefore, both TMAX_WUPCNT
and TMAX_SUSCNT must be at least 1.

103

µITRON4.0 Specification Ver. 4.03.00

[Supplemental Information]

TMAX_WUPCNT is not defined if the sleeping state for a task is not supported, and is 0
if the wakeup request queuing is not supported. TMAX_SUSCNT is not defined if the
SUSPENDED state for a task is not supported, thus, TMAX_SUSCNT is never 0.

[Differences from the µITRON3.0 Specification]

The functions for releasing a task from waiting, rel_wai, and for delaying the invoking
task's execution, dly_tsk, are now classified as task dependent synchronization functions.

104

µITRON4.0 Specification Ver. 4.03.00

slp_tsk Put Task to Sleep [S] [B]
tslp_tsk Put Task to Sleep (with Timeout) [S]

[C Language API]

 ER ercd = slp_tsk () ;
 ER ercd = tslp_tsk (TMO tmout) ;

[Parameter]

TMO tmout Specified timeout (only for tslp_tsk)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_PAR Parameter error (tmout is invalid; only for tslp_tsk)
E_RLWAI Forced release from waiting (rel_wai is accepted while waiting)
E_TMOUT Polling failure or timeout (only for tslp_tsk)

[Functional Description]

These service calls move the invoking task to the sleeping state. However, if wakeup
requests are queued, that is, if the wakeup request count for the invoking task is 1 or more,
the count is decremented by 1 and the invoking task continues execution without entering
the sleeping state.
tslp_tsk has the same functionality as slp_tsk with an additional timeout feature.
tmout can be set to a positive number indicating a timeout duration or it can be set to
TMO_POL (= 0) or TMO_FEVR (= –1).

[Supplemental Information]

These service calls do not move the invoking task to the WAITING state if wakeup
requests for the invoking task are queued. Thus, the precedence of the invoking task is not
changed.
No polling service call is provided for slp_tsk. If a similar feature is necessary, it can be
implemented using can_wup.

105

µITRON4.0 Specification Ver. 4.03.00

wup_tsk Wake up Task [S] [B]
iwup_tsk [S] [B]

[C Language API]

 ER ercd = wup_tsk (ID tskid) ;
 ER ercd = iwup_tsk (ID tskid) ;

[Parameter]

ID tskid ID number of the task to be woken up

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_OBJ Object state error (specified task is in the DORMANT state)
E_QOVR Queuing overflow (overflow of wakeup request count)

[Functional Description]

These service calls wake up the task specified by tskid from sleeping. The service call that
placed the task in the WAITING state will return E_OK to the task.
If the task is not in the sleeping state, the wakeup request for the task is queued. (However,
if the task is in the NON-EXISTENT state, an E_NOEXS error is returned, and if the task
is in the DORMANT state, an E_OBJ error is returned.) Specifically, the wakeup request
count is incremented by 1. If the count then exceeds the maximum possible count, an
E_QOVR error is returned.
If this service call is invoked from non-task contexts and has its execution delayed,
omission of returning an E_OBJ error and an E_QOVR error is implementation-defined.
If tskid is TSK_SELF (= 0), the invoking task is specified. If TSK_SELF is specified
when this service call is invoked from non-task contexts, an E_ID error is returned.

[Supplemental Information]

The Standard Profile requires the maximum wakeup request count to be at least 1. This
implies that a kernel compatible with the Standard Profile may not always return an
E_QOVR error even if these service calls are invoked on a task with queued wakeup
requests.

[Differences from the µITRON3.0 Specification]

The invoking task can now be specified in this service call for the consistency with act_tsk.

106

µITRON4.0 Specification Ver. 4.03.00

can_wup Cancel Task Wakeup Requests [S] [B]

[C Language API]

 ER_UINT wupcnt = can_wup (ID tskid) ;

[Parameter]

ID tskid ID number of the task for cancelling wakeup requests

[Return Parameter]

ER_UINT wupcnt Wakeup request count (positive value or 0) or error
code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_OBJ Object state error (specified task is in the DORMANT state)

[Functional Description]

This service call cancels all queued wakeup requests for the task specified by tskid and
returns the cancelled wakeup request count for the task. Specifically, the wakeup request
count for the task is cleared to 0. The value returned is the count before it was cleared.
If tskid is TSK_SELF (= 0), the invoking task is specified.

[Supplemental Information]

This service call can be used to check if a task completes a process within a cycle
correctly when the task is woken up cyclically. Specifically, can_wup should be invoked
when the process for the previous wakeup request completes. A return value of 1 or more
from can_wup indicates that the next wakeup is requested before the task completes the
process in the previous cycle. The task can therefore take measures for delay in the
process.

[Differences from the µITRON3.0 Specification]

The wakeup request count (wupcnt) is now the return value of this service call.

107

µITRON4.0 Specification Ver. 4.03.00

rel_wai Release Task from Waiting [S] [B]
irel_wai [S] [B]

[C Language API]

 ER ercd = rel_wai (ID tskid) ;
 ER ercd = irel_wai (ID tskid) ;

[Parameter]

ID tskid ID number of the task to be released from waiting

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_OBJ Object state error (specified task is not in the WAITING state)

[Functional Description]

These service calls forcibly release the task specified by tskid from waiting. Specifically,
if the task is in the WAITING state, it is moved to the READY state. If the task is in the
WAITNG-SUSPENDED state, it is moved to the SUSPENDED state. When the task is
released from waiting by these service calls, the service call that placed the task in the
WAITING state will return an E_RLWAI error to the task.
If the task is not in the WAITING state, including the WAITING-SUSPENDED state, an
E_OBJ error is returned. (However, if the task is in the NON-EXISTENT state, an
E_NOEXS error is returned.) If this service call is invoked from non-task contexts and has
its execution delayed, omission of returning an E_OBJ error is implementation-defined.

[Supplemental Information]

A task cannot specify its own task ID in tskid. If a task does specify its own task ID, these
service calls return an E_OBJ error because the task is not in the WAITING state.
These service calls do not cause a task in the SUSPENDED state to resume. frsm_tsk (or
rsm_tsk) should be used to forcibly resume a suspended task.
If the task is waiting in a wait queue, the task is removed from the queue. In this case,
some other tasks that are in the wait queue may need to be released from waiting. See the
functional descriptions of snd_mbf and get_mpl.
The following describes the differences between rel_wai and wup_tsk:

108

µITRON4.0 Specification Ver. 4.03.00

• rel_wai releases a task from any waiting state, while wup_tsk only releases a task
from the sleeping state.

• To the task in the sleeping state, normal completion (E_OK) is returned when the
task is released from waiting with wup_tsk, while an error (E_RLWAI) is returned
when the task is forcibly released from waiting with rel_wai.

• wup_tsk will increment the wakeup request count if the task is not in the sleeping
state. On the other hand, rel_wai will return an E_OBJ error if the task is not waiting.

109

µITRON4.0 Specification Ver. 4.03.00

sus_tsk Suspend Task [S] [B]

[C Language API]

 ER ercd = sus_tsk (ID tskid) ;

[Parameter]

ID tskid ID number of the task to be suspended

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_CTX Context error (the invoking task is specified while in the

dispatching disabled state; any other context error)
E_NOEXS Non-existent object (specified task is not registered)
E_OBJ Object state error (specified task is in the DORMANT state)
E_QOVR Queuing overflow (overflow of suspension count)

[Functional Description]

This service call suspends the task specified by tskid. Specifically, if the task is runnable,
it is moved to the SUSPENDED state. If the task is in the WAITING state, it is moved to
the WAITING-SUSPENDED state. In addition, the suspension count is incremented by 1.
If the count then exceeds the maximum possible count, an E_QOVR error is returned.
This service call can be invoked in the dispatching disabled state. However, in the
dispatching disabled state, if this service call is invoked specifying the invoking task, an
E_CTX error is returned.
If tskid is TSK_SELF (= 0), the invoking task is specified.

[Supplemental Information]

This service call may be invoked in the dispatching disabled state even though the
invoking task may be moved to the SUSPENDED state as specified in the parameter.
Therefore this is an exception to the principle stating that "The specification of returning
an E_CTX error is implementation-defined when service calls that can move the invoking
task to the blocked state are invoked while in the dispatching disabled state applies to a
service call as a whole."
The Standard Profile requires the maximum suspension count to be at least 1. This implies
that a kernel that is compatible with the Standard Profile may not always return an
E_QOVR error even if this service call is invoked on a task in the SUSPENDED state.

110

µITRON4.0 Specification Ver. 4.03.00

[Differences from the µITRON3.0 Specification]

The invoking task can now be specified in tskid.

111

µITRON4.0 Specification Ver. 4.03.00

rsm_tsk Resume Suspended Task [S] [B]
frsm_tsk Forcibly Resume Suspended Task [S]

[C Language API]

 ER ercd = rsm_tsk (ID tskid) ;
 ER ercd = frsm_tsk (ID tskid) ;

[Parameter]

ID tskid ID number of the task to be resumed

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_OBJ Object state error (specified task is neither in the SUSPENDED

state nor the WAITING-SUSPENDED state)

[Functional Description]

These service calls release the task specified by tskid from the SUSPENDED state and
allows the task to continue its normal processing. Specifically, the following actions are
performed.
rsm_tsk decrements the suspension count of the task by 1. If the count after
decrementation becomes 0, the task is moved according to the following: if the task is in
the SUSPENDED state, it is moved to the READY state; if the task is in the WAITING-
SUSPENDED state, it is moved to the WAITING state. If the count after decrementation
remains to be 1 or more, the state of the task is not changed.
frsm_tsk clears the suspension count to 0 and forcibly moves the task according to the
following: if the task is in the SUSPENDED state, it is moved to the READY state; if the
task is in the WAITING-SUSPENDED state, it is moved to the WAITING state.
If the specified task is neither in the SUSPENDED state nor the WAITING-SUSPENDED
state, an E_OBJ error is returned. However, if the task is in the NON-EXISTENT state, an
E_NOEXS error is returned.

[Supplemental Information]

A task cannot specify its own task ID in tskid.

112

µITRON4.0 Specification Ver. 4.03.00

[Differences from the µITRON3.0 Specification]

After a task is moved from the SUSPENDED state to the READY state, the task has the
lowest precedence among all tasks with the same priority in the READY state. See
Section 3.2.1 for more details.

113

µITRON4.0 Specification Ver. 4.03.00

dly_tsk Delay Task [S] [B]

[C Language API]

 ER ercd = dly_tsk (RELTIM dlytim) ;

[Parameter]

RELTIM dlytim Amount of time to delay the invoking task (relative
time)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_PAR Parameter error (dlytim is invalid)
E_RLWAI Forced release from waiting (rel_wai is accepted while waiting)

[Functional Description]

This service call delays the execution of the invoking task for the amount of time specified
in dlytim. Specifically, the invoking task is set to be released from waiting when the
specified relative time has passed since the invocation of this service call, and then it is
moved to the delayed state. When the task is released from waiting after the relative time
expires, the service call completes and returns E_OK.
dlytim is the relative time when the task is released from the delayed state with respect to
the time when the service call is invoked.

[Supplemental Information]

The release of a task from the delayed state depends on the system time. Therefore, the
task is released at the first time tick after the specified time has passed. The system must
guarantee that the release of the task occurs after an elapsed time equal to or greater than
the specified time (see Section 2.1.9). This service call moves the invoking task to the
WAITING state even if dlytim is 0.
The delayed state is a kind of the WAITING state and can be forcibly released with
rel_wai. The delayed time includes the time a task spends in the WAITING-SUSPENDED
state.
This service call is different from tslp_tsk in that it returns E_OK when the time specified
by dlytim expires. Also, an invocation of wup_tsk for the task will not release the task
from the delayed state. Only ter_tsk and rel_wai can release the task from the delayed
state before the time expires.

114

µITRON4.0 Specification Ver. 4.03.00

[Differences from the µITRON3.0 Specification]

The data type of dlytim has been changed from DLYTIME to RELTIM.

115

µITRON4.0 Specification Ver. 4.03.00

4.3 Task Exception Handling Functions

Task exception handling functions provide handling task exceptions within the task's
context. Task exception handling functions include the ability to define a task exception
handling routine, to request a task exception handling, to enable and disable task
exception handling, and to reference the state of a task exception handling.
When a service call requesting a task exception handling is invoked and a task exception
handling is requested, the task suspends processing and the task exception handling
routine is started. The task exception handling routine runs within the same context as the
task itself. Once the task exception handling routine returns, the task resumes processing.
An application can register a task exception handling routine for each task. A task
exception handling routine is not registered when the task is created.
When a task exception handling is requested, the task exception code representing the type
of exception is specified. For each task, the kernel manages the task exception code
representing the task exceptions that have been requested but have not been processed yet.
This code is referred to as the pending exception code. The pending exception code is 0 if
no unprocessed exception request exists. When a task exception handling is requested for
a task that has unprocessed exception requests, the task's pending exception code is bit-
wise ORed with the newly requested exception code. The pending exception code is
cleared to 0 when the task is activated.
A task can be in either the task exception disabled state or the task exception enabled state.
Moving a task to the task exception disabled state is called "disabling task exceptions."
Moving a task to the exception enabled state is called "enabling task exceptions." Just
after a task starts, it is in the task exception disabled state.
The following behavior is implementation-defined. The kernel disables task exceptions
when an extended service call routine is started and restores the original state when the
extended service call routine returns. In addition, if ena_tex is invoked from an extended
service call routine, an E_CTX error is returned because task exceptions should be kept
disabled during the execution of the extended service call routine. A task exception
handling routine is started when the following four conditions are met: task exceptions are
enabled for the task, the task's pending exception code is not 0, the task is in the
RUNNING state, and non-task contexts or CPU exception handlers are not being executed.
The pending exception code (texptn) and the task's extended information (exinf) are
passed to the task exception handling routine as parameters. At this point, task exceptions
are disabled and the pending exception code is cleared to 0.
When the task exception handling routine returns, the task resumes executing the process
that was executing before the task exception handling routine was started. At this point,
the task exceptions are enabled. If the pending exception code is not 0, the task exception
handling routine is restarted.
The following data type is used for task exception handling functions:

116

µITRON4.0 Specification Ver. 4.03.00

TEXPTN Bit pattern for the task exception code (unsigned integer)
The format to write a task exception handling routine in the C language is shown below:

 void texrtn (TEXPTN texptn, VP_INT exinf)
 {
 /* Body of the task exception handling routine */
 }

The following kernel configuration constant is defined for use with task exception
handling functions:

TBIT_TEXPTN The number of bits in the task exception code (the
number of effective bits for TEXPTN)

The following data type packets are defined for defining and referencing task exception
handling routines:

 typedef struct t_dtex {
 ATR texatr ; /* Task exception handling routine attribute */
 FP texrtn ; /* Task exception handling routine start address */
 /* Other implementation-specific fields may be added. */
 } T_DTEX ;
 typedef struct t_rtex {
 STAT texstat ; /* Task exception handling state */
 TEXPTN pndptn ; /* Pending exception code */
 /* Other implementation-specific fields may be added. */
 } T_RTEX ;

The following represents the function codes for the task exception handling service calls:

TFN_DEF_TEX –0x1b Function code of def_tex
TFN_RAS_TEX –0x1c Function code of ras_tex
TFN_IRAS_TEX –0x74 Function code of iras_tex
TFN_DIS_TEX –0x1d Function code of dis_tex
TFN_ENA_TEX –0x1e Function code of ena_tex
TFN_SNS_TEX –0x1f Function code of sns_tex
TFN_REF_TEX –0x20 Function code of ref_tex

[Standard Profile]

The Standard Profile requires support for task exception handling functions except for
dynamic definition of a task exception handling routine (def_tex) and reference of a task
exception handling routine state (ref_tex).
The Standard Profile also requires the number of effective bits for the data type to be used
in the task exception handling functions to be at least 16 bits:

TEXPTN 16 bits or more
Therefore, TBIT_TEXPTN must be 16 or more.

117

µITRON4.0 Specification Ver. 4.03.00

[Supplemental Information]

In this specification, the conditions for starting a task exception handling routine will
never be met in the CPU locked state. On the other hand, the conditions for starting a task
exception handling routine may be met in the dispatching disabled state, and the task
exception handling routine must be started in such a case.
The context and states under which task exception handling routines execute are
summarized below:

• Task exception handling routines execute in the same context as the tasks (see
Section 3.5.1). The contexts in which the task exception handling routines execute
are classified as task contexts.

• The start of and the return from the task exception handling routines do not change
the CPU state or the dispatching state (see Sections 3.5.4 and 3.5.5). However, the
specification does not specify whether a task exception handling routine is started in
the CPU locked state.

The circumstances regarding enabling and disabling task exceptions are summarized
below:

• When a task is activated, task exceptions for the task are disabled.

• When a task exception handling routine is started, task exceptions are disabled. Task
exceptions are enabled upon the return from the task exception handling routine.

• Invoking dis_tex disables task exceptions and invoking ena_tex enables task
exceptions.

• When the definition of a task exception handling routine is released with def_tex,
task exceptions are disabled.

Task exception handling routines may execute a non-local jump by invoking longjmp
from the standard C library. This is allowed because the exception handling routine
executes within the context of the task. When a non-local jump is used to terminate a task
exception handling routine, the kernel does not enable task exceptions because the kernel
cannot detect whether the task exception handling routine terminates. The application may
enable the task exceptions by invoking ena_tex. In addition, if an application executes a
non-local jump from the task exception handling routine, the application must disable task
exceptions in order to maintain integrity of global data structures (see Rationale below).
A task exception handling routine may be restarted just after it returns. In this case, the
stack pointer must be the same as the stack pointer when the task exception handling
routine was started previously. This implies there is no wasted stack area when the task
exception handling routine is restarted after its completion. If this were not the case, it
would be impossible to bound the size of the stack area used by a succession of task
exception handling routines.

118

µITRON4.0 Specification Ver. 4.03.00

The µITRON4.0 Specification does not provide the functionality to mask a task exception
code bit by bit. However, an application could still realize this functionality through the
specified task exception handling functions as described below. An application manages
the task exception handling mask for each task. At the beginning of the task exception
handling routine, the application checks if the passed task exception code is masked or not.
If the code is masked, the routine must record that the routine was started with the
exception code and return immediately. To be accurate, the routine must handle the case
where some part of the code is masked and some part of the code is not masked. Later,
when the application cancels the task exception handling mask, the application must check
if the task exception handling routine was started with a previously masked exception
code. If there is a record of a masked exception, the task exception handling routine is
started by the application to handle the exception.
Task exception handling routines are not nested because task exceptions are disabled at
the start of the task exception handling routine. If task exception handling routines are
complex, especially when the task can enter the WAITING state, there are cases when the
task exception handling routine may need to be nested because an exception could occur
while the task exception handling routine is executing. In cases like this, the task
exception handling routine can be nested by invoking ena_tex within the task exception
handling routine. However, some measures must be taken to avoid starting an unlimited
number of nested task exception handling routines. An exemplary measure is to mask the
currently processing exceptions with the task exception handling mask described above.
If a CPU exception occurs while a task exception handling routine is executing, the CPU
exception handler begins executing. Once the CPU exception handler returns, the task
exception handling routine resumes even if the CPU exception handler requests task
exception handling. This is because the task exceptions were disabled when the task
exception handling routine started. If the cause of the CPU exception is not removed
within the CPU exception handler, the CPU exception is raised again just after the CPU
exception handler returns. As a result, the CPU exception will continue forever. This also
applies to any CPU exceptions that occurred while in the task exception disabled state.
In principle, the application must avoid cases where a CPU exception occurs while in the
task exception disabled state, when the CPU exception handler requests task exception
handling. However, CPU exceptions may not be avoidable due to software and/or
hardware malfunctions. In order to avoid continuous CPU exceptions where CPU
exceptions are unavoidable, the CPU exception handler must reference the task exception
handling state and perform special processes when task exceptions are disabled.
Nesting the execution of task exception handling routines using the previously described
method, may also be necessary to shorten the duration in which task exceptions are
disabled.
In an implementation where different stack areas are used for the application and the
kernel, information stored in the kernel stack area or in the task control block (TCB) must
often be moved to the application stack area in order to support the nesting of task

119

µITRON4.0 Specification Ver. 4.03.00

exception handling routines. For instance, if a task exception handling request occurs
while a task is being preempted, the task exception handling routine will start the next
time when the task enters the READY state. In this case, the task's states before the
preemption, which is stored in the kernel stack area or in the TCB, must be moved to the
application's stack area. When the task exception handling routine returns, the task states
must be restored based on the information stored in the application's stack area.

[Differences from the µITRON3.0 Specification]

Task exception handling functions have been newly added.

[Rationale]

The µITRON4.0 Specification only includes basic task exception handling functions.
An application can realize more complex exception handling based on the provided
functions when necessary. This allows the application to gain more powerful support
while keeping the kernel compact.
The specification only states that task exception handling routines execute in the same
context as the task. The description regarding non-local jumps via longjmp is included in
the supplemental information because easy use of longjmp from the task exception
handling routine is dangerous for the reason described in the next paragraph. A task
exception handling routine can safely be terminated forcibly through ext_tsk. This method
is considered to be sufficient for the scope of the Standard Profile.
An easy use of longjmp from the task exception handling routine can result to the
following. If a task exception handling routine is started while a global data structure is
being operated on and if the task exits the task exception handling routine with longjmp,
there is a possibility that the integrity of the global data structure being operated on will
not be maintained. In such cases, users should be very careful when using longjmp to exit
the task exception handling routine. Specifically, task exceptions must be disabled while a
global data structure is inconsistent.

120

µITRON4.0 Specification Ver. 4.03.00

DEF_TEX Define Task Exception Handling Routine (Static API) [S]
def_tex Define Task Exception Handling Routine

[Static API]

 DEF_TEX (ID tskid, { ATR texatr, FP texrtn }) ;

[C Language API]

 ER ercd = def_tex (ID tskid, T_DTEX *pk_dtex) ;

[Parameter]

ID tskid ID number of the task to be defined
T_DTEX * pk_dtex Pointer to the packet containing the task exception

handling routine definition information (In
DEF_TEX, the contents must be directly specified.)

pk_dtex includes (T_DTEX type)
ATR texatr Task exception handling routine attribute
FP texrtn Task exception handling routine start address
(Other implementation-specific information may be added.)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_RSATR Reserved attribute (texatr is invalid or unusable)
E_PAR Parameter error (pk_dtex or texrtn is invalid)

[Functional Description]

This service call defines the task exception handling routine for the task specified by tskid
based on the task exception handling routine definition information contained in the
packet pointed to by pk_dtex. texatr is the attribute of the task exception handling routine.
texrtn is the start address of the task exception handling routine.
In DEF_TEX, tskid is an integer parameter without automatic ID assignment. texatr is a
preprocessor constant expression parameter.
If pk_dtex is specified as NULL (= 0), the task exception handling routine currently
defined is released and the task exception handling routine becomes undefined. At this
time, the pending exception code is cleared to 0 and task exceptions are disabled. When a
new task exception handling routine is defined over top of an old one, the old one is
released and the new one takes its place. Under this condition, the pending exception code
is not cleared and task exceptions are not disabled.

121

µITRON4.0 Specification Ver. 4.03.00

When tskid is TSK_SELF (= 0) in def_tex, the task exception handling routine is defined
for the invoking task.
texatr can be specified as (TA_HLNG || TA_ASM). If TA_HLNG (= 0x00) is specified,
the task exception handling routine is started through a high-level language interface. If
TA_ASM (= 0x01) is specified, the task exception handling routine is started through an
assembly language interface.

[Standard Profile]

The Standard Profile does not require support for these functions when TA_ASM is
specified in texatr.

[Supplemental Information]

The task exception handling routine remains effective until def_tex is invoked with
pk_dtex set to NULL or until the task is deleted.
When DEF_TEX is used to define a task exception handling routine for a task, the task
must be created with CRE_TSK appearing before DEF_TEX in the system configuration
file.

[Rationale]

When the definition of the task exception handling routine is cancelled, the pending
exception code is cleared and task exceptions are disabled. This is done to keep the
pending exception code as 0 and task exceptions disabled, when the task exception
handling routine is not defined. Once a task exception handling routine becomes
undefined, these conditions are kept because the pending exception code cannot be set and
task exceptions cannot be enabled.

122

µITRON4.0 Specification Ver. 4.03.00

ras_tex Raise Task Exception Handling [S]
iras_tex [S]

[C Language API]

 ER ercd = ras_tex (ID tskid, TEXPTN rasptn) ;
 ER ercd = iras_tex (ID tskid, TEXPTN rasptn) ;

[Parameter]

ID tskid ID number of the task requested
TEXPTN rasptn Task exception code to be requested

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_PAR Parameter error (rasptn is invalid)
E_OBJ Object state error (specified task is in the DORMANT state, or

task exception handling routine is not defined)

[Functional Description]

These service calls request task exception handling for the task specified by tskid.
The task exception code is specified by the bit pattern in rasptn. Specifically, the task's
pending exception code is updated to the bit-wise OR of its pending exception code before
the invocation of the service call with the value specified in rasptn.
If tskid is TSK_SELF (= 0), the invoking task is specified. If TSK_SELF is specified
when this service call is invoked from non-task contexts, an E_ID error is returned.
If the task is in the DORMANT state or if the task exception handling routine for the task
is not defined, an E_OBJ error is returned. If the service call is invoked from non-task
contexts and has its execution delayed, omission of returning an E_OBJ error is
implementation-defined.
If rasptn is specified as 0, an E_PAR error is returned.

[Supplemental Information]

These service calls start the task exception handling routine if all the conditions for
starting the task exception handling routine are met.
If the task is in the blocked state, these service calls only update the pending exception
code, and do not release the task from waiting nor from the SUSPENDED state. If the task

123

µITRON4.0 Specification Ver. 4.03.00

must be released from waiting or from the SUSPENDED state, the application can use
rel_wai or frsm_tsk (or rsm_tsk) to do so.
There are many service calls that when invoked from non-task contexts can have their
execution delayed until the system is in a state where dispatching can occur. However, this
service call must be executed even if the system is in the dispatching disabled state.
For example, if an interrupt handler requests a task exception handling for the task in the
RUNNING state while in the dispatching disabled state, the task exception handling
routine must be started just after the return from the interrupt handler. This is useful for
stopping a malfunctioning task running with dispatching disabled by requesting a task
exception handling from an interrupt handler. However, this is not useful for stopping a
task running with the CPU locked or a task running with task exceptions and dispatching
disabled.

124

µITRON4.0 Specification Ver. 4.03.00

dis_tex Disable Task Exceptions [S]

[C Language API]

 ER ercd = dis_tex () ;

[Parameter]

None

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_OBJ Object state error (task exception handling routine is not
defined)

[Functional Description]

This service call moves the invoking task to the task exception disabled state. If the task
exception handling routine is not defined for the invoking task, an E_OBJ error is returned.

125

µITRON4.0 Specification Ver. 4.03.00

ena_tex Enable Task Exceptions [S]

[C Language API]

 ER ercd = ena_tex () ;

[Parameter]

None

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_OBJ Object state error (the task exception handling routine is not
defined)

E_CTX Context error (invoked from a context not capable of enabling
task exceptions, or any other context errors)

[Functional Description]

This service call moves the invoking task to the task exception enabled state. If the task
exception handling routine is not defined for the invoking task, an E_OBJ error is returned.
For an implementation that does not allow task exceptions enabled within an extended
service call routine, an E_CTX error is returned if this service call is invoked from an
extended service call routine.

[Supplemental Information]

This service call starts the task exception handling routine if all the conditions for starting
the task exception handling routine are met.

126

µITRON4.0 Specification Ver. 4.03.00

sns_tex Reference Task Exception Disabled State [S]

[C Language API]

 BOOL state = sns_tex () ;

[Parameter]

None

[Return Parameter]

BOOL state Task exception disabled state

[Functional Description]

This service call returns TRUE if task exceptions are disabled for the task in the
RUNNING state (which corresponds to the invoking task when this service call is invoked
from task contexts) and returns FALSE if task exceptions are enabled. If this service call
is invoked from non-task contexts and there is no task in the RUNNING state, TRUE is
returned.

[Supplemental Information]

Tasks that have no defined task exception handling routine always have task exceptions
disabled. Therefore, when the invoking task has no defined task exception handling
routine, this service call returns TRUE.

127

µITRON4.0 Specification Ver. 4.03.00

ref_tex Reference Task Exception Handling State

[C Language API]

 ER ercd = ref_tex (ID tskid, T_RTEX *pk_rtex) ;

[Parameter]

ID tskid ID number of the task to be referenced
T_RTEX * pk_rtex Pointer to the packet returning the task exception

handling state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rtex includes (T_RTEX type)

STAT texstat Task exception handling state
TEXPTN pndptn Pending exception code
(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_PAR Parameter error (pk_rtex is invalid)
E_OBJ Object state error (specified task is in the DORMANT state, or

the task exception handling routine is not defined)

[Functional Description]

This service call references the state of the task exception handling for the task specified
by tskid. The state of the task exception handling is returned through the packet pointed to
by pk_rtex.
texstat can take on any of the following values, depending on whether task exceptions are
enabled or disabled for the task.

TTEX_ENA 0x00 Task exception enabled state
TTEX_DIS 0x01 Task exception disabled state

The pending exception code is returned through pndptn. If no unprocessed exception
request exists, pndptn is 0.
If tskid is TSK_SELF (= 0), the state of the invoking task is referenced.
If the task is in the DORMANT state or if the task exception handling routine is not
defined for the task, an E_OBJ error is returned.

128

µITRON4.0 Specification Ver. 4.03.00

4.4 Synchronization and Communication Functions

Synchronization and communication functions provide synchronization and
communication between tasks through objects that are independent of the tasks. The
objects are semaphores, eventflags, data queues, and mailboxes.

[Differences from the µITRON3.0 Specification]

Implementation of mailboxes is now limited to linked lists. Data queues have been newly
introduced and they provide the same functionality as mailboxes but are implemented with
ring buffers.

4.4.1 Semaphores

A semaphore is an object used for mutual exclusion and synchronization. A semaphore
indicates the availability and number of unused resources by a resource count. Semaphore
functions include the ability to create and delete a semaphore, to acquire and release
resources, and to reference the state of a semaphore. A semaphore is an object identified
by an ID number. The ID number of a semaphore is called the semaphore ID.
A semaphore has an associated resource count and a wait queue. The resource count
indicates the resource availability or the number of unused resources. The wait queue
manages the tasks waiting for resources from the semaphore. When a task releases a
semaphore resource, the resource count is incremented by 1. When a task acquires a
semaphore resource, the resource count is decremented by 1. If a semaphore has no
resources available, or more precisely, the resource count is 0, a task attempting to acquire
a resource will wait in the wait queue until a resource is returned to the semaphore.
In order to avoid the case where too many resources are returned to a semaphore, each
semaphore has a maximum resource count indicating the maximum number of unused
resources available to the semaphore. If more resources are returned to the semaphore than
its maximum resource count, an error will be returned.
The following kernel configuration constant is defined for use with semaphore functions:

TMAX_MAXSEM Maximum value of the maximum definable
semaphore resource count

The following data type packets are defined for creating and referencing semaphores:

 typedef struct t_csem {

 ATR sematr ; /* Semaphore attribute */

 UINT isemcnt ; /* Initial semaphore resource count */

 UINT maxsem ; /* Maximum semaphore resource count */

 /* Other implementation-specific fields may be added. */

 } T_CSEM ;

 typedef struct t_rsem {

129

µITRON4.0 Specification Ver. 4.03.00

 ID wtskid ; /* ID number of the task at the head of the

 semaphore's wait queue */

 UINT semcnt ; /* Current semaphore resource count */

 /* Other implementation-specific fields may be added. */

 } T_RSEM ;

The following represents the function codes for the semaphore service calls:
TFN_CRE_SEM –0x21 Function code of cre_sem
TFN_ACRE_SEM –0xc2 Function code of acre_sem
TFN_DEL_SEM –0x22 Function code of del_sem
TFN_SIG_SEM –0x23 Function code of sig_sem
TFN_ISIG_SEM –0x75 Function code of isig_sem
TFN_WAI_SEM –0x25 Function code of wai_sem
TFN_POL_SEM –0x26 Function code of pol_sem
TFN_TWAI_SEM –0x27 Function code of twai_sem
TFN_REF_SEM –0x28 Function code of ref_sem

[Standard Profile]

The Standard Profile requires support for semaphore functions except for dynamic
creation and deletion of a semaphore (cre_sem, acre_sem, del_sem) and reference of a
semaphore state (ref_sem).
The Standard Profile requires that the maximum resource count can be set to at least
65535. Although TMAX_MAXSEM does not have to be defined in the Standard Profile,
if it is defined, it must be equal to or greater than 65535.

[Rationale]

TMAX_MAXSEM is only used when semaphores are dynamically created. Since
dynamic semaphore creation does not have to be supported in the Standard Profile,
TMAX_MAXSEM does not have to be defined in this case.

130

µITRON4.0 Specification Ver. 4.03.00

CRE_SEM Create Semaphore (Static API) [S]
cre_sem Create Semaphore

acre_sem Create Semaphore (Automatic ID Assignment)

[Static API]

 CRE_SEM (ID semid, {ATR sematr, UINT isemcnt,
 UINT maxsem }) ;

[C Language API]

 ER ercd = cre_sem (ID semid, T_CSEM *pk_csem) ;
 ER_ID semid = acre_sem (T_CSEM *pk_csem) ;

[Parameter]

ID semid ID number of the semaphore to be created (except
acre_sem)

T_CSEM * pk_csem Pointer to the packet containing the semaphore
creation information (In CRE_SEM, packet contents
must be directly specified.)

pk_csem includes (T_CSEM type)
ATR sematr Semaphore attribute
UINT isemcnt Initial semaphore resource count
UINT maxsem Maximum semaphore resource count
(Other implementation-specific information may be added.)

[Return Parameter]

cre_sem:
ER ercd E_OK for normal completion or error code

acre_sem:
ER_ID semid ID number (positive value) of the created semaphore

or error code

[Error Code]

E_ID Invalid ID number (semid is invalid or unusable; only cre_sem)
E_NOID No ID number available (there is no semaphore ID assignable;

only acre_sem)
E_RSATR Reserved attribute (sematr is invalid or unusable)
E_PAR Parameter error (pk_csem, isemcnt, or maxsem is invalid)
E_OBJ Object state error (specified semaphore is already registered;

only cre_sem)

131

µITRON4.0 Specification Ver. 4.03.00

[Functional Description]

These service calls create a semaphore with an ID number specified by semid based on the
information contained in the packet pointed to by pk_csem. sematr is the attribute of the
semaphore. isemcnt is the initial value of the resource count after creation of the
semaphore. maxsem is the maximum resource count of the semaphore.
In CRE_SEM, semid is an integer parameter with automatic ID assignment. sematr is a
preprocessor constant expression parameter.
acre_sem assigns a semaphore ID from the pool of unassigned semaphore IDs and returns
the assigned semaphore ID.
sematr can be specified as (TA_FIFO || TA_TPRI). If TA_FIFO (= 0x00) is specified, the
semaphore's wait queue will be in FIFO order. If TA_TPRI (= 0x01) is specified, the
semaphore's wait queue will be in task priority order.
When a value greater than maxsem is specified in isemcnt, an E_PAR error is returned.
An E_PAR error is also returned when maxsem is specified as 0 or a value greater than
the maximum value for the maximum semaphore resource count (TMAX_MAXSEM).

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the semaphore creation information.
The data type of isemcnt and maxsem has been changed from INT to UINT.
acre_sem has been newly added.

132

µITRON4.0 Specification Ver. 4.03.00

del_sem Delete Semaphore

[C Language API]

 ER ercd = del_sem (ID semid) ;

[Parameter]

ID semid ID number of the semaphore to be deleted

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (semid is invalid or unusable)
E_NOEXS Non-existent object (specified semaphore is not registered)

[Functional Description]

This service call deletes the semaphore specified by semid.

[Supplemental Information]

See Section 3.8 for information regarding handling tasks that are waiting for a resource in
a semaphore's wait queue when the semaphore is deleted.

133

µITRON4.0 Specification Ver. 4.03.00

sig_sem Release Semaphore Resource [S] [B]
isig_sem [S] [B]

[C Language API]

 ER ercd = sig_sem (ID semid) ;
 ER ercd = isig_sem (ID semid) ;

[Parameter]

ID semid ID number of the semaphore to which resource is
released

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (semid is invalid or unusable)
E_NOEXS Non-existent object (specified semaphore is not registered)
E_QOVR Queuing overflow (release will exceed maximum resource

count)

[Functional Description]

These service calls release one resource to the semaphore specified by semid. If any tasks
are waiting for the specified semaphore, the task at the head of the semaphore's wait queue
is released from waiting. When this happens, the associated semaphore resource count is
not changed. The released task receives E_OK from the service call that caused it to wait
in the semaphore's wait queue. If no tasks are waiting for the specified semaphore, the
semaphore resource count is incremented by 1.
These service calls return an E_QOVR error if incrementing the resource count by 1 will
cause the count to exceed the maximum semaphore resource count. If this service call is
invoked from non-task contexts and has its execution delayed, omission of returning an
E_QOVR error is implementation-defined.

134

µITRON4.0 Specification Ver. 4.03.00

wai_sem Acquire Semaphore Resource [S] [B]
pol_sem Acquire Semaphore Resource (Polling) [S] [B]
twai_sem Acquire Semaphore Resource (with Timeout) [S]

[C Language API]

 ER ercd = wai_sem (ID semid) ;
 ER ercd = pol_sem (ID semid) ;
 ER ercd = twai_sem (ID semid, TMO tmout) ;

[Parameter]

ID semid ID number of the semaphore from which resource is
acquired

TMO tmout Specified timeout (only twai_sem)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (semid is invalid or unusable)
E_NOEXS Non-existent object (specified semaphore is not registered)
E_PAR Parameter error (tmout is invalid; only twai_sem)
E_RLWAI Forced release from waiting (rel_wai is accepted while waiting;

except pol_sem)
E_TMOUT Polling failure or timeout (except wai_sem)
E_DLT Waiting object deleted (semaphore is deleted while waiting;

except pol_sem)

[Functional Description]

These service calls acquire one resource from the semaphore specified by semid. If the
resource count of the specified semaphore is 1 or more, the associated semaphore resource
count is decremented by 1. In this case, the invoking task is not moved to the WAITING
state, but rather receives a normal return from the service call. If, on the other hand, the
resource count of the specified semaphore is 0, the invoking task is placed in the
semaphore's wait queue and is moved to the waiting state for the semaphore. In this case,
the associated semaphore resource count remains unchanged at 0.
If there are already tasks in the wait queue, the invoking task is placed in the wait queue as
described below. When the semaphore's attribute has TA_TFIFO (= 0x00) set, the
invoking task is placed at the tail of the wait queue. When the attribute has TA_TPRI (=
0x01) set, the invoking task is placed in the wait queue in the order of the task's priority. If

135

µITRON4.0 Specification Ver. 4.03.00

the wait queue contains tasks with the same priority as the invoking task, the invoking task
is placed after those tasks.
pol_sem is a polling service call with the same functionality as wai_sem.
twai_sem has the same functionality as wai_sem with an additional timeout feature. tmout
can be set to a positive number indicating a timeout duration or it can be set to TMO_POL
(= 0) or TMO_FEVR (= –1).

[Supplemental Information]

twai_sem acts the same as pol_sem if TMO_POL is specified in tmout, and as long as no
E_CTX error occurs. Also, twai_sem acts the same as wai_sem if TMO_FEVR is
specified in tmout.

[Differences from the µITRON3.0 Specification]

The name of the polling service call has been changed from preq_sem to pol_sem.

136

µITRON4.0 Specification Ver. 4.03.00

ref_sem Reference Semaphore State

[C Language API]

 ER ercd = ref_sem (ID semid, T_RSEM *pk_rsem) ;

[Parameter]

ID semid ID number of the semaphore to be referenced
T_RSEM * pk_rsem Pointer to the packet returning the semaphore state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rsem includes (T_RSEM type)

ID wtskid ID number of the task at the head of the semaphore's
wait queue

UINT semcnt Current semaphore resource count
(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (semid is invalid or unusable)
E_NOEXS Non-existent object (specified semaphore is not registered)
E_PAR Parameter error (pk_rsem is invalid)

[Functional Description]

This service call references the state of the semaphore specified by semid. The state of the
semaphore is returned through the packet pointed to by pk_rsem.
The ID number of the task at the head of the semaphore's wait queue is returned through
wtskid. If no tasks are waiting for the semaphore's resource, TSK_NONE (= 0) is returned
instead.
The semaphore's current resource count is returned through semcnt.

[Supplemental Information]

A semaphore cannot have wtskid ≠ TSK_NONE and semcnt ≠ 0 at the same time.

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The ID
number of the task at the head of the wait queue is now returned instead of a boolean
value indicating whether a task is waiting or not. Based on this replacement, the names
and data types of the return parameters have been changed.
The data type of semcnt has been changed from INT to UINT. The order of parameters
and return parameters has been changed.

137

µITRON4.0 Specification Ver. 4.03.00

4.4.2 Eventflags

An eventflag is a synchronization object that consists of multiple bits in a bit pattern
where each bit represents an event. Eventflag functions include the ability to create and
delete an eventflag, to set and clear an eventflag, to wait for an eventflag, and to reference
the state of an eventflag. An eventflag is an object identified by an ID number. The ID
number of an eventflag is called the eventflag ID.
An eventflag has an associated bit pattern expressing the state of its events, and a wait
queue for tasks waiting on these events. Sometimes the bit pattern of an eventflag is
simply called an eventflag. A task is able to set specified bits when an event occurs and is
able to clear specified bits when necessary. Tasks waiting for events to occur will wait
until at least one bit or every bit in the eventflag bit pattern is set. Tasks waiting for an
eventflag are placed in the eventflag's wait queue.
The following data type is used for eventflag functions:

FLGPTN Bit pattern of the eventflag (unsigned integer)
The following kernel configuration constant is defined for use with eventflag functions:

TBIT_FLGPTN The number of bits in an eventflag (the number of
effective bits for FLGPTN)

The following data type packets are defined for creating and referencing eventflags:
 typedef struct t_cflg {
 ATR flgatr ; /* Eventflag attribute */
 FLGPTN iflgptn ; /* Initial value of the eventflag bit
 pattern */
 /* Other implementation-specific fields may be added. */
 } T_CFLG ;
 typedef struct t_rflg {
 ID wtskid ; /* ID number of the task at the head of the
 eventflag's wait queue */
 FLGPTN flgptn ; /* Current eventflag bit pattern */
 /* Other implementation-specific fields may be added. */
 } T_RFLG ;

The following represents the function codes for the eventflag service calls:
TFN_CRE_FLG –0x29 Function code of cre_flg
TFN_ACRE_FLG –0xc3 Function code of acre_flg
TFN_DEL_FLG –0x2a Function code of del_flg
TFN_SET_FLG –0x2b Function code of set_flg
TFN_ISET_FLG –0x76 Function code of iset_flg
TFN_CLR_FLG –0x2c Function code of clr_flg
TFN_WAI_FLG –0x2d Function code of wai_flg
TFN_POL_FLG –0x2e Function code of pol_flg
TFN_TWAI_FLG –0x2f Function code of twai_flg
TFN_REF_FLG –0x30 Function code of ref_flg

138

µITRON4.0 Specification Ver. 4.03.00

[Standard Profile]

The Standard Profile requires support for eventflag functions except for dynamic creation
and deletion of an eventflag (cre_flg, acre_flg, del_flg) and reference of an eventflag state
(ref_flg).
The Standard Profile does not require support for multiple tasks waiting for an eventflag,
i.e. eventflags with the TA_WMUL attribute.
The Standard Profile requires support for an eventflag's bit pattern of at least 16 bits.
Therefore, TBIT_FLGPTN must be defined to be at least 16. The number of effective bits
of the data type for eventflag functions is as follows:

FLGPTN 16 bits or more

[Supplemental Information]

There is no limitation to the number of bits supported by an eventflag except when
implementing the Standard Profile. Therefore it is possible to supply an eventflag that
supports only 1 bit. Since the C language does not support a data type with an arbitrary
number of bits, the number of effective bits in an FLGPTN variable (= TBIT_FLGPTN)
do not match the number of bits in a variable whose data type is implementation-defined.

[Differences from the µITRON3.0 Specification]

The data type of the parameter or return parameter holding an eventflag bit pattern has
been changed from UINT to the new data type FLGPTN.

139

µITRON4.0 Specification Ver. 4.03.00

CRE_FLG Create Eventflag (Static API) [S]
cre_flg Create Eventflag

acre_flg Create Eventflag (Automatic ID Assignment)

[Static API]

 CRE_FLG (ID flgid, { ATR flgatr, FLGPTN iflgptn }) ;

[C Language API]

 ER ercd = cre_flg (ID flgid, T_CFLG *pk_cflg) ;
 ER_ID flgid = acre_flg (T_CFLG *pk_cflg) ;

[Parameter]

ID flgid ID number of the eventflag to be created (except
acre_flg)

T_CFLG * pk_cflg Pointer to the packet containing the eventflag creation
information (In CRE_FLG, packet contents must be
directly specified.)

pk_cflg includes (T_CFLG type)
ATR flgatr Eventflag attribute
FLGPTN iflgptn Initial value of eventflag bit pattern
(Other implementation-specific information may be added.)

[Return Parameter]

cre_flg:
ER ercd E_OK for normal completion or error code

acre_flg:
ER_ID flgid ID number (positive value) of the created eventflag or

error code

[Error Code]

E_ID Invalid ID number (flgid is invalid or unusable; only cre_flg)
E_NOID No ID number available (there is no eventflag ID assignable;

only acre_flg)
E_RSATR Reserved attribute (flgatr is invalid or unusable)
E_PAR Parameter error (pk_cflg or iflgptn is invalid)
E_OBJ Object state error (specified eventflag is already registered; only

cre_flg)

140

µITRON4.0 Specification Ver. 4.03.00

[Functional Description]

These service calls create an eventflag with an ID number specified by flgid based on the
information contained in the packet pointed to by pk_cflg. flgatr is the attribute of the
eventflag. iflgptn is the initial value of the bit pattern after creation of the eventflag.
In CRE_FLG, flgid is an integer parameter with automatic ID assignment. flgatr is a
preprocessor constant expression parameter.
acre_flg assigns an eventflag ID from the pool of unassigned eventflag IDs and returns the
assigned eventflag ID.
flgatr can be specified as ((TA_TFIFO || TA_TPRI) | (TA_WSGL || TA_WMUL) |
[TA_CLR]). If TA_TFIFO (= 0x00) is specified, the eventflag's wait queue will be in
FIFO order. If TA_TPRI (= 0x01) is specified, the eventflag's wait queue will be in task
priority order. If TA_WSGL (= 0x00) is specified, only a single task is allowed to be in
the waiting state for the eventflag. If TA_WMUL (= 0x02) is specified, multiple tasks are
allowed to be in the waiting state for the eventflag. If TA_CLR (= 0x04) is specified, the
eventflag's entire bit pattern will be cleared when a task is released from the waiting state
for the eventflag.

[Standard Profile]

The Standard Profile does not require support for these functions when TA_WMUL is
specified in flgatr.

[Supplemental Information]

A task in the waiting state for an eventflag is not always released from waiting according
to its order in the wait queue. This is because when the task satisfies the release condition,
it is released from waiting even if it is not at the head of the wait queue. For example,
even if an eventflag's attribute has TA_TFIFO set, tasks are not always released from the
wait queue in FIFO order.
If TA_WSGL is specified in flgatr, the eventflag with the TA_TFIFO attribute behaves
the same as the eventflag with the TA_TPRI attribute.
Multiple tasks cannot be released from the waiting state for an eventflag with the
TA_CLR attribute. This is because when a task is released from waiting, all the bits in the
eventflag's bit pattern are cleared.

[Differences from the µITRON3.0 Specification]

The specification of clearing an eventflag has been changed from the wait mode parameter
in wai_flg to the eventflag attribute. This change has been made because there is almost
never a case where some waiting tasks will require the bit pattern to be cleared and some
tasks will require the bit pattern to remain intact.
The functionality allowing the eventflag's wait queue to be ordered by task priority with
the TA_TPRI attribute has been added.
The extended information has been removed from the eventflag creation information.
The data type of iflgptn has been changed from UINT to FLGPTN. The value of
TA_WMUL has been changed.

141

µITRON4.0 Specification Ver. 4.03.00

acre_flg has been newly added.

del_flg Delete Eventflag

[C Language API]

 ER ercd = del_flg (ID flgid) ;

[Parameter]

ID flgid ID number of the eventflag to be deleted

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (flgid is invalid or unusable)
E_NOEXS Non-existent object (specified eventflag is not registered)

[Functional Description]

This service call deletes the eventflag specified by flgid.

[Supplemental Information]

See Section 3.8 for information regarding handling tasks that are waiting in an eventflag's
wait queue when the eventflag is deleted.

142

µITRON4.0 Specification Ver. 4.03.00

set_flg Set Eventflag [S] [B]
iset_flg [S] [B]

[C Language API]

 ER ercd = set_flg (ID flgid, FLGPTN setptn) ;
 ER ercd = iset_flg (ID flgid, FLGPTN setptn) ;

[Parameter]

ID flgid ID number of the eventflag to be set
FLGPTN setptn Bit pattern to set

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (flgid is invalid or unusable)
E_NOEXS Non-existent object (specified eventflag is not registered)
E_PAR Parameter error (setptn is invalid)

[Functional Description]

These service calls set the bits specified by setptn in the eventflag specified by flgid.
Specifically, the bit pattern of the specified eventflag is updated to the bit-wise OR of its
bit pattern before the invocation of the service call with the value specified in setptn.
After the eventflag's bit pattern is updated, any tasks that satisfy their release conditions
are released from waiting. Specifically, each task in the eventflag's wait queue is checked
starting from the head and is released from waiting if its release condition is satisfied.
Each of the released tasks receives E_OK from the service call that caused it to wait in the
eventflag's wait queue. It also receives the bit pattern of the eventflag satisfying the task's
release condition. If the eventflag's attribute has TA_CLR (= 0x04) set, the service calls
complete after clearing the entire bit pattern of the eventflag. If TA_CLR is not specified,
the remaining tasks in the wait queue are checked to see if they satisfy their release
conditions. The service calls terminate after all tasks have been checked. See the
functional description of wai_flg for information about tasks' release conditions.
Multiple tasks can be released by a single invocation of set_flg if the eventflag's attribute
has the TA_WMUL (= 0x02) attribute but not the TA_CLR attribute set. When multiple
tasks are released, they are released in the same order as in the eventflag's wait queue.
Therefore, among the same priority tasks that are moved to the READY state, a task
closer to the head of the wait queue will have higher precedence.

143

µITRON4.0 Specification Ver. 4.03.00

[Supplemental Information]

No action is required when all of the bits of setptn are 0.

[Differences from the µITRON3.0 Specification]

The data type of setptn has been changed from UINT to FLGPTN.

144

µITRON4.0 Specification Ver. 4.03.00

clr_flg Clear Eventflag [S] [B]

[C Language API]

 ER ercd = clr_flg (ID flgid, FLGPTN clrptn) ;

[Parameter]

ID flgid ID number of the eventflag to be cleared
FLGPTN clrptn Bit pattern to be cleared (bit-wise negated)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (flgid is invalid or unusable)
E_NOEXS Non-existent object (specified eventflag is not registered)
E_PAR Parameter error (clrptn is invalid)

[Functional Description]

This service call clears the bits in the eventflag specified by flgid that correspond to the
bits in clrptn which are 0. Specifically, the bit pattern of the specified eventflag is updated
to the bit-wise AND of its bit pattern before the invocation of the service call with the
value specified in clrptn.

[Supplemental Information]

No action is required when all of the bits of clrptn are 1.

[Differences from the µITRON3.0 Specification]

The data type of clrptn has been changed from UINT to FLGPTN.

145

µITRON4.0 Specification Ver. 4.03.00

wai_flg Wait for Eventflag [S] [B]
pol_flg Wait for Eventflag (Polling) [S] [B]
twai_flg Wait for Eventflag (with Timeout) [S]

[C Language API]

 ER ercd = wai_flg (ID flgid, FLGPTN waiptn, MODE wfmode,
 FLGPTN *p_flgptn) ;
 ER ercd = pol_flg (ID flgid, FLGPTN waiptn, MODE wfmode,
 FLGPTN *p_flgptn) ;
 ER ercd = twai_flg (ID flgid, FLGPTN waiptn, MODE wfmode,
 FLGPTN *p_flgptn, TMO tmout) ;

[Parameter]

ID flgid ID number of the eventflag to wait for
FLGPTN waiptn Wait bit pattern
MODE wfmode Wait mode
TMO tmout Specified timeout (only twai_flg)

[Return Parameter]

ER ercd E_OK for normal completion or error code
FLGPTN flgptn Bit pattern causing a task to be released from waiting

[Error Code]

E_ID Invalid ID number (flgid is invalid or unusable)
E_NOEXS Non-existent object (specified eventflag is not registered)
E_PAR Parameter error (waiptn, wfmode, p_flgptn, or tmout is invalid)
E_ILUSE Illegal service call use (there is already a task waiting for an

eventflag with the TA_WSGL attribute)
E_RLWAI Forced release from waiting (rel_wai is accepted while waiting;

except pol_flg)
E_TMOUT Polling failure or timeout (except wai_flg)
E_DLT Waiting object deleted (eventflag is deleted while waiting;

except pol_flg)

[Functional Description]

These service calls cause the invoking task to wait until the eventflag specified by flgid
satisfies the release condition. The release condition is determined by the bit pattern
specified by waiptn and the wait mode specified by wfmode. Once the release condition is
satisfied, the bit pattern causing the release is returned through flgptn. Specifically, the
following actions are performed.

146

µITRON4.0 Specification Ver. 4.03.00

If the release condition specified by waiptn and wfmode is already satisfied by the
specified eventflag's bit pattern when the service calls are invoked, the service calls
complete without causing the invoking task to wait. The eventflag bit pattern which
satisfied the release condition is still returned to the invoking task through flgptn. In
addition, when the eventflag's attribute has TA_CLR set, all the bits in the eventflag's bit
pattern are cleared.
If the release condition specified by waiptn and wfmode is not satisfied, the invoking task
is placed in the eventflag's wait queue and is moved to the waiting state for the eventflag.
When the eventflag's attribute has TA_WSGL (= 0x00) set and another task is already
waiting in the eventflag's wait queue, an E_ILUSE error is returned. This applies even if
the release condition is already satisfied.
wfmode can be specified as (TWF_ANDW || TWF_ORW). When wfmode has
TWF_ANDW (= 0x00) set, the release condition specified by waiptn and wfmode
requires all the bits in waiptn to be set. Conversely, when wfmode has TWF_ORW (=
0x01) set, the release condition only requires at least one bit in waiptn to be set.
If there are already tasks in the wait queue, the invoking task is placed in the wait queue as
described below. When the eventflag's attribute has TA_TFIFO (= 0x00) set, the invoking
task is placed at the tail of the wait queue. When the attribute has TA_TPRI (= 0x01) set,
the invoking task is placed in the wait queue in the order of the task's priority. If the wait
queue contains tasks with the same priority as the invoking task, the invoking task is
placed after those tasks.
pol_flg is a polling service call with the same functionality as wai_flg. twai_flg has the
same functionality as wai_sem with an additional timeout feature. tmout can be set to a
positive number indicating a timeout duration or it can be set to TMO_POL (= 0) or
TMO_FEVR (= –1).
If waiptn is specified as 0, an E_PAR error is returned.

[Supplemental Information]

twai_flg acts the same as pol_flg if TMO_POL is specified in tmout, and as long as no
E_CTX error occurs. Also, twai_flg acts the same as wai_flg if TMO_FEVR is specified
in tmout.

[Differences from the µITRON3.0 Specification]

The order of parameters and return parameters has been changed. The data type of waiptn
and flgptn has been changed from UINT to FLGPTN, and the data type of wfmode
has been changed from UINT to MODE.
The clearing specification in the wait mode (TWF_CLR) has been removed. Instead, an
eventflag attribute TA_CLR has been added. The value of TWF_ORW has been changed.

147

µITRON4.0 Specification Ver. 4.03.00

[Rationale]

The reason that an E_PAR error is returned when waiptn is specified as 0 is because the
release condition will never be satisfied. This is because the release condition could never
be satisfied, regardless of the eventflag's bit pattern.

148

µITRON4.0 Specification Ver. 4.03.00

ref_flg Reference Eventflag Status

[C Language API]

 ER ercd = ref_flg (ID flgid, T_RFLG *pk_rflg) ;

[Parameter]

ID flgid ID number of the eventflag to be referenced
T_RFLG * pk_rflg Pointer to the packet returning the eventflag state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rflg includes (T_RFLG type)

ID wtskid ID number of the task at the head of the eventflag's
wait queue

FLGPTN flgptn Eventflag's current bit pattern
(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (flgid is invalid or unusable)
E_NOEXS Non-existent object (specified eventflag is not registered)
E_PAR Parameter error (pk_rflg is invalid)

[Functional Description]

This service call references the state of the eventflag specified by parameter flgid. The
state of the eventflag is returned through the packet pointed to by pk_rflg.
The ID number of the task at the head of the eventflag's wait queue is returned through
wtskid.
If no tasks are waiting for the eventflag, TSK_NONE (= 0) is returned instead.
The eventflag's current bit pattern is returned through flgptn.

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The ID
number of the task at the head of the wait queue is now returned instead of a boolean
value indicating whether a task is waiting or not. Based on this replacement, the names
and data types of the return parameters have been changed.
The data type of flgptn has been changed from UINT to FLGPTN. The order of
parameters and return parameters has been changed.

149

µITRON4.0 Specification Ver. 4.03.00

4.4.3 Data Queues

A data queue is an object used for synchronization and communication by sending or
receiving a one word message, called a data element. Data queue functions include the
ability to create and delete a data queue, to send, force-send, and receive a data element
to/from a data queue, and to reference the state of a data queue. A data queue is an object
identified by an ID number. The ID number of a data queue is called the data queue ID.
A data queue has an associated wait queue for sending a data element (send-wait queue)
and an associated wait queue for receiving a data element (receive-wait queue).
Also, a data queue has an associated data queue area used to store sent data elements.
A task sending a data element (notifying the occurrence of an event) places the data
element in the data queue. If there is no room in the data queue area, the task will be in the
sending waiting state for a data queue until there is room for the data element in the data
queue area. The task waiting to send the data element is placed in the data queue's send-
wait queue. A task receiving a data element (waiting for an occurrence of an event)
removes a data element from the data queue. If there is no data in the data queue, the task
will be in the receiving waiting state until a data element is sent to the data queue. The
task waiting to receive a data element from the data queue is placed in the data queue's
receive-wait queue.
Synchronous message passing can be performed by setting the number of data elements
that can be stored in the data queue area to 0. The sending task and the receiving task wait
until the other calls the complimentary service call, at which time the data element is
transferred.
The one word data element to be sent and received can be an integer or the address of a
message located in a memory area shared by the sender and the receiver. A data element
that is sent and received is copied from the sender to the receiver.
The following kernel configuration macro is defined for use with the data queue functions:

 SIZE dtqsz = TSZ_DTQ (UINT dtqcnt)
 This macro returns the total required size of the data queue area in bytes necessary

to store dtqcnt data elements.

The following data type packets are defined for creating and referencing data queues:

 typedef struct t_cdtq {
 ATR dtqatr ; /* Data queue attribute */
 UINT dtqcnt ; /* Capacity of the data queue area (the
 number of data elements) */
 VP dtq ; /* Start address of the data queue area */
 /* Other implementation-specific fields may be added. */
 } T_CDTQ ;
 typedef struct t_rdtq {
 ID stskid ; /* ID number of the task at the head of the

150

µITRON4.0 Specification Ver. 4.03.00

 data queue's send-wait queue */
 ID rtskid ; /* ID number of the task at the head of the
 data queue's receive-wait queue */
 UINT sdtqcnt ; /* The number of data elements in the data
 queue */
 /* Other implementation-specific fields may be added. */
 } T_RDTQ ;

The following represents the function codes for the data queue service calls:
TFN_CRE_DTQ –0x31 Function code of cre_dtq
TFN_ACRE_DTQ –0xc4 Function code of acre_dtq
TFN_DEL_DTQ –0x32 Function code of del_dtq
TFN_SND_DTQ –0x35 Function code of snd_dtq
TFN_PSND_DTQ –0x36 Function code of psnd_dtq
TFN_IPSND_DTQ –0x77 Function code of ipsnd_dtq
TFN_TSND_DTQ –0x37 Function code of tsnd_dtq
TFN_FSND_DTQ –0x38 Function code of fsnd_dtq
TFN_IFSND_DTQ –0x78 Function code of ifsnd_dtq
TFN_RCV_DTQ –0x39 Function code of rcv_dtq
TFN_PRCV_DTQ –0x3a Function code of prcv_dtq
TFN_TRCV_DTQ –0x3b Function code of trcv_dtq
TFN_REF_DTQ –0x3c Function code of ref_dtq

[Standard Profile]

The Standard Profile requires support for data queue functions except for dynamic
creation and deletion of a data queue (cre_dtq, acre_dtq, del_dtq) and reference of a data
queue state (ref_dtq).
The Standard Profile requires a value of at least 255 to be specified as the capacity of the
data queue area (the number of data elements that can be stored).
The Standard Profile does not require TSZ_DTQ to be defined.

[Supplemental Information]

Figure 4-1 shows the behavior of a data queue when the number of data elements that can
be stored in the data queue is set to 0. In this figure, task A and task B are assumed to be
running asynchronously.

• If task A invokes snd_dtq first, task A is moved to the WAITING state until task B
invokes rcv_dtq. During this time, task A is in the sending waiting state for a data
queue (Figure 4-1 (a)).

• If, on the other hand, task B invokes rcv_dtq first, task B is moved to the WAITING
state until task A invokes snd_dtq. During this time, task B is in the receiving
waiting state for a data queue (Figure 4-1 (b)).

151

µITRON4.0 Specification Ver. 4.03.00

• When task A invokes snd_dtq and task B invokes rcv_dtq, the data transfer from
task A to task B takes place. After this, both tasks are moved to the runnable state.

A data queue is assumed to be implemented as a ring buffer.

Task A Task B

snd_dtq (dtqid)

rcv_dtq (dtqid)

Task A

Sending

waiting

state

(a) snd_dtq is invoked first (b) rcv_dtq is invoked first

Receiving

waiting

state

snd_dtq (dtqid)

Task B

rcv_dtq (dtqid)

Figure 4-1. Synchronous Communication through a Data Queue

[Differences from the µITRON3.0 Specification]

This functionality has been newly added and has the same functionality as the mailbox of
the µITRON3.0 Specification implemented with a ring buffer.

152

µITRON4.0 Specification Ver. 4.03.00

CRE_DTQ Create Data Queue (Static API) [S]
cre_dtq Create Data Queue

acre_dtq Create Data Queue (Automatic ID Assignment)

[Static API]

 CRE_DTQ (ID dtqid, { ATR dtqatr, UINT dtqcnt, VP dtq }) ;

[C Language API]

 ER ercd = cre_dtq (ID dtqid, T_CDTQ *pk_cdtq) ;
 ER_ID dtqid = acre_dtq (T_CDTQ *pk_cdtq) ;

[Parameter]

ID dtqid ID number of the data queue to be created (except
acre_dtq)

T_CDTQ * pk_cdtq Pointer to the packet containing the data queue
creation information (In CRE_DTQ, packet contents
must be directly specified.)

pk_cdtq includes (T_CDTQ type)
ATR dtqatr Data queue attribute
UINT dtqcnt Capacity of the data queue area (the number of data

elements)
VP dtq Start address of the data queue area
(Other implementation-specific information may be added.)

[Return Parameter]

cre_dtq:
ER ercd E_OK for normal completion or error code

acre_dtq:
ER_ID dtqid ID number (positive value) of the created data queue

or error code

[Error Code]

E_ID Invalid ID number (dtqid is invalid or unusable; only cre_dtq)
E_NOID No ID number available (there is no data queue ID assignable;

only acre_dtq)
E_NOMEM Insufficient memory (data queue area cannot be allocated)
E_RSATR Reserved attribute (dtqatr is invalid or unusable)
E_PAR Parameter error (pk_cdtq, dtqcnt, or dtq is invalid)
E_OBJ Object state error (specified data queue is already registered;

only cre_dtq)

153

µITRON4.0 Specification Ver. 4.03.00

[Functional Description]

These service calls create a data queue with an ID number specified by dtqid based on the
information contained in the packet pointed to by pk_cdtq. dtqatr is the attribute of the
data queue. dtqcnt is the capacity of the data queue area: the maximum number of data
elements that may be stored in the data queue area. dtq is the start address of the data
queue area.
In CRE_DTQ, dtqid is an integer parameter with automatic ID assignment. dtqatr and
dtqcnt are preprocessor constant expression parameters.
acre_dtq assigns a data queue ID from the pool of unassigned data queue IDs and returns
the assigned data queue ID.
dtqatr can be specified as (TA_TFIFO || TA_TPRI). If TA_TFIFO (= 0x00) is specified,
the data queue's send-wait queue will be in FIFO order. If TA_TPRI (= 0x01) is specified,
the data queue's send-wait queue will be in task priority order.
The necessary area to hold up to dtqcnt data elements starts from dtq and is used as the
data queue area. An application program can calculate the size of the data queue area
necessary to hold dtqcnt number of data elements by using the TSZ_DTQ macro. If dtq is
specified as NULL (= 0), the kernel allocates the necessary memory area.
When a value greater than the maximum implementation-defined value is specified in
dtqcnt, an E_PAR error is returned. dtqcnt may be specified as 0.

[Standard Profile]

The Standard Profile does not require support for these functions when a value other than
NULL is specified in dtq.

[Supplemental Information]

The data queue's receive-wait queue always utilizes FIFO ordering. Also, a data element
sent to a data queue does not have priority. The data elements in a data queue are always
in FIFO order. In other words, data elements are basically received in the order they are
sent to a data queue. However, when snd_dtq and fsnd_dtq are used at the same time,
there are cases where the data element sent by fsnd_dtq would be ahead of the data
element earlier sent by snd_dtq because fsnd_dtq can be used to send a data element even
though there is a task waiting for snd_dtq to send a data element.

154

µITRON4.0 Specification Ver. 4.03.00

del_dtq Delete Data Queue

[C Language API]

 ER ercd = del_dtq (ID dtqid) ;

[Parameter]

ID dtqid ID number of the data queue to be deleted

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (dtqid is invalid or unusable)
E_NOEXS Non-existent object (specified data queue is not registered)

[Functional Description]

This service call deletes the data queue specified by dtqid. If the data queue area was
allocated by the kernel, the area is released.

[Supplemental Information]

The data elements in the data queue will be discarded. See Section 3.8 for information
regarding handling tasks that are waiting in the data queue's send-wait queue or receive-
wait queue when the data queue is deleted.

155

µITRON4.0 Specification Ver. 4.03.00

snd_dtq Send to Data Queue [S]
psnd_dtq Send to Data Queue (Polling) [S]
ipsnd_dtq [S]
tsnd_dtq Send to Data Queue (with Timeout) [S]

[C Language API]

 ER ercd = snd_dtq (ID dtqid, VP_INT data) ;
 ER ercd = psnd_dtq (ID dtqid, VP_INT data) ;
 ER ercd = ipsnd_dtq (ID dtqid, VP_INT data) ;
 ER ercd = tsnd_dtq (ID dtqid, VP_INT data, TMO tmout) ;

[Parameter]

ID dtqid ID number of the data queue to which the data
element is sent

VP_INT data Data element to be sent
TMO tmout Specified timeout (only tsnd_dtq)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (dtqid is invalid or unusable)
E_NOEXS Non-existent object (specified data queue is not registered)
E_PAR Parameter error (tmout is invalid; only tsnd_dtq)
E_RLWAI Forced release from waiting (rel_wai is accepted while waiting;

only snd_dtq and tsnd_dtq)
E_TMOUT Polling failure or timeout (except snd_dtq)
E_DLT Waiting object deleted (data queue is deleted while waiting;

only snd_dtq and tsnd_dtq)

[Functional Description]

These service calls send the data element specified by data to the data queue specified by
dtqid. Specifically, the following actions are performed.
If there are already tasks in the data queue's receive-wait queue, these service calls send
the data element to the task at the head of the receive-wait queue and release the task from
waiting. The released task receives E_OK from the service call that caused it to wait in the
receive-wait queue. It also receives the data element from the data queue through data.
If no tasks are waiting in the data queue's receive-wait queue, these service calls place the
data element to be sent at the tail of the data queue. If there is no room in the data queue

156

µITRON4.0 Specification Ver. 4.03.00

area, the invoking task is placed in the send-wait queue and is moved to the sending
waiting state for the data queue.
If there are already tasks in the send-wait queue, the invoking task is placed in the send-
wait queue as described below. When the data queue's attribute has TA_FIFO (= 0x00) set,
the invoking task is placed at the tail of the send-wait queue. When the data queue's
attribute has TA_TPRI (= 0x01) set, the invoking task is placed in the send-wait queue in
the order of the task's priority. If the send-wait queue contains tasks with the same priority
as the invoking task, the invoking task is placed after those tasks.
psnd_dtq and ipsnd_dtq are polling service calls with the same functionality as snd_dtq.
tsnd_dtq has the same functionality as snd_dtq with an additional timeout feature. tmout
can be set to a positive number indicating a timeout duration or it can be set to TMO_POL
(= 0) or TMO_FEVR (= –1).
psnd_dtq and ipsnd_dtq return an E_TMOUT error if no tasks are waiting in the receive-
wait queue and if there is no room for the data element in the data queue area. If the
service call is invoked from non-task contexts and has its execution delayed, omission of
returning an E_TMOUT error is implementation-defined.

[Supplemental Information]

tsnd_dtq acts the same as psnd_dtq if TMO_POL is specified in tmout, and as long as no
E_CTX error occurs. Also, tsnd_dtq acts the same as snd_dtq if TMO_FEVR is specified
in tmout.

157

µITRON4.0 Specification Ver. 4.03.00

fsnd_dtq Forced Send to Data Queue [S]
ifsnd_dtq [S]

[C Language API]

 ER ercd = fsnd_dtq (ID dtqid, VP_INT data) ;
 ER ercd = ifsnd_dtq (ID dtqid, VP_INT data) ;

[Parameter]

ID dtqid ID number of the data queue to which the data
element is sent

VP_INT data Data element to be sent to the data queue

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (dtqid is invalid or unusable)
E_NOEXS Non-existent object (specified data queue is not registered)
E_ILUSE Illegal service call use (the capacity of the data queue area is 0)

[Functional Description]

These service calls forcibly send the data element specified by data to the data queue
specified by dtqid. Specifically, the following actions are performed.
If there are already tasks in the data queue's receive-wait queue, these service calls send
the data element to the task at the head of the receive-wait queue and release the task from
waiting. The released task receives E_OK from the service call that caused it to wait in the
receive-wait queue. It also receives the data element from the data queue through data.
If no tasks are waiting in the data queue's receive-wait queue, these service calls place the
data element to be sent at the tail of the data queue. If there is no room in the data queue
area, these service calls reserve a space for the new data element by deleting the first data
element in the data queue. The new data element is placed at the tail of the data queue
even in this case.
These service calls cannot forcibly send a data element when the capacity of the data
queue area is 0. If the capacity of the data queue area is 0, an E_ILUSE error is returned.

[Supplemental Information]

These service calls force the data to be sent even if there are already tasks waiting to send
data in the send-wait queue.
If the capacity of the data queue area is 0, an E_ILUSE error is returned even if there is a
task waiting in the receive-wait queue.

158

µITRON4.0 Specification Ver. 4.03.00

rcv_dtq Receive from Data Queue [S]
prcv_dtq Receive from Data Queue (Polling) [S]
trcv_dtq Receive from Data Queue (with Timeout) [S]

[C Language API]

 ER ercd = rcv_dtq (ID dtqid, VP_INT *p_data) ;
 ER ercd = prcv_dtq (ID dtqid, VP_INT *p_data) ;
 ER ercd = trcv_dtq (ID dtqid, VP_INT *p_data, TMO tmout) ;

[Parameter]

ID dtqid ID number of the data queue from which a data
element is received

TMO tmout Specified timeout (only trcv_dtq)

[Return Parameter]

ER ercd E_OK for normal completion or error code
VP_INT data Data element received from the data queue

[Error Code]

E_ID Invalid ID number (dtqid is invalid or unusable)
E_NOEXS Non-existent object (specified data queue is not registered)
E_PAR Parameter error (p_data or tmout is invalid)
E_RLWAI Forced release from waiting (rel_wai is accepted while waiting;

except prcv_dtq)
E_TMOUT Polling failure or timeout (except rcv_dtq)
E_DLT Waiting object deleted (data queue is deleted while waiting;

except prcv_dtq)

[Functional Description]

These service calls receive a data element from the data queue specified by dtqid and
returns the data element through data. Specifically, the following actions are performed.
If the data queue already has data elements, these service calls remove the first data
element from the data queue and return it through data. If there is a task in the data queue's
send-wait queue, these service calls place the data element from the first task in the send-
wait queue at the tail of the data queue and release the task from waiting. The released
task receives E_OK from the service call that caused it to wait in the send-wait queue.
If there are no data elements in the data queue and if there are tasks in the data queue's
send-wait queue (this occurs only when the capacity of the data queue area is 0), the data
element from the task at the head of the send-wait queue is returned through data, and the
task is released from waiting. The released task receives E_OK from the service call that

159

µITRON4.0 Specification Ver. 4.03.00

caused it to wait in the send-wait queue. The received data element is returned through
data.
If there are no data elements in the data queue and if there are no tasks in the send-wait
queue, the invoking task is placed in the receive-wait queue and moved to the receiving
waiting state for the data queue. If there are already tasks in the receive-wait queue, the
invoking task is placed at the tail of the receive-wait queue.
prcv_dtq is a polling service call with the same functionality as rcv_dtq. trcv_dtq has the
same functionality as rcv_dtq with an additional timeout feature. tmout can be set to a
positive number indicating a timeout duration or it can be set to TMO_POL (= 0) or
TMO_FEVR (= –1).

[Supplemental Information]

trcv_dtq acts the same as prcv_dtq if TMO_POL is specified in tmout, and as long as no
E_CTX error occurs. Also, trcv_dtq acts the same as rcv_dtq if TMO_FEVR is specified
in tmout.

160

µITRON4.0 Specification Ver. 4.03.00

ref_dtq Reference Data Queue State

[C Language API]

 ER ercd = ref_dtq (ID dtqid, T_RDTQ *pk_rdtq) ;

[Parameter]

ID dtqid ID number of the data queue to be referenced
T_RDTQ * pk_rdtq Pointer to the packet returning the data queue state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rdtq includes (T_RDTQ type)

ID stskid ID number of the task at the head of the send-wait
queue

ID rtskid ID number of the task at the head of the receive-wait
queue

UINT sdtqcnt The number of data elements in the data queue
(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (dtqid is invalid or unusable)
E_NOEXS Non-existent object (specified data queue is not registered)
E_PAR Parameter error (pk_rdtq is invalid)

[Functional Description]

This service call references the state of the data queue specified by dtqid. The state of
the data queue is returned through the packet pointed to by pk_rdtq.
The ID number of the task at the head of the data queue's send-wait queue is returned
through stskid. If no tasks are waiting to send a data element, TSK_NONE (= 0) is
returned instead.
The ID number of the task at the head of the data queue's receive-wait queue is returned
through rtskid. If no tasks are waiting to receive a data element, TSK_NONE (= 0) is
returned instead.
The number of data elements currently in the data queue is returned through sdtqcnt.

[Supplemental Information]

A data queue cannot have rtskid ≠ TSK_NONE and sdtqcnt ≠ 0 at the same time.
When stskid ≠ TSK_NONE, sdtqcnt is equal to the capacity of the data queue area.

161

µITRON4.0 Specification Ver. 4.03.00

4.4.4 Mailboxes

A mailbox is an object used for synchronization and communication by sending or
receiving a message placed in a shared memory. Mailbox functions include the ability to
create and delete a mailbox, to send and receive a message to/from a mailbox, and to
reference the state of a mailbox. A mailbox is an object identified by an ID number. The
ID number of a mailbox is called the mailbox ID.
A mailbox has an associated message queue used to store sent messages and an associated
wait queue for receiving messages. A task sending a message (notifying the occurrence of
an event) places the message to be sent in the message queue. A task receiving a message
from the mailbox (waiting for an occurrence of an event) removes the first message from
the message queue. If there is no message in the message queue, the task will be in the
receiving waiting state until a message is sent to the mailbox. The task waiting to receive a
message from the mailbox is placed in the mailbox's wait queue.
With mailbox functions, only the start address of the message placed in a shared memory
is actually passed between tasks. The message itself is not copied.
The kernel maintains the messages in the message queue using a linked list. The
application program must reserve an area to be used by the kernel for the linked list at the
head of each sent message. This reserved area is called the message header. A message
packet is the area consisting of a message header followed by an area that is used by the
application to store a message body. The start address of the message packet is passed as a
parameter to the service calls that send a message, and it is returned as a return parameter
from the service calls that receive a message. An area for the message priority is included
in the message header when the message queue is ordered by message priorities.
The kernel modifies the contents of a message header, except the area for the message
priority, while the message is in a message queue (or when the message is to be placed in
a message queue). On the other hand, the application program must not modify the
contents of a message header, including the message priority, while the message is in a
message queue. If the application program modifies the contents of a message header, the
resulting behavior is undefined. In addition to the case where the application program
directly modifies the contents of a message header, this rule also applies to the case where
the application program passes the address of the message header to the kernel and makes
the kernel modify its contents. Therefore, the behavior when a message already in a
message queue is resent to a mailbox is undefined.
The following data types are used for message headers:

T_MSG Message header for a mailbox
T_MSG_PRI Message header with a message priority for a mailbox

The definition and size of the T_MSG type are implementation-defined. The T_MSG_PRI
type is defined using the T_MSG type as follows:

162

µITRON4.0 Specification Ver. 4.03.00

 typedef struct t_msg_pri {
 T_MSG msgque ; /* Message header */
 PRI msgpri ; /* Message priority */
 } T_MSG_PRI ;

The following kernel configuration macro is defined for use with mailbox functions:

 SIZE mprihdsz = TSZ_MPRIHD (PRI maxmpri)
 This macro returns the total required size in bytes of the area for message queue

headers for each message priority, when the maximum message priority of the
messages to be sent is maxmpri.

The following data type packets are defined for creating and referencing mailboxes:

 typedef struct t_cmbx {
 ATR mbxatr ; /* Mailbox attribute */
 PRI maxmpri ; /* Maximum message priority of the
 messages to be sent */
 VP mprihd ; /* Start address of the area for message
 queue headers for each message priority */
 /* Other implementation-specific fields may be added. */
 } T_CMBX ;
 typedef struct t_rmbx {
 ID wtskid ; /* ID number of the task at the head of the
 mailbox's wait queue */
 T_MSG * pk_msg ; /* Start address of the message packet at
 the head of the message queue */
 /* Other implementation-specific fields may be added. */
 } T_RMBX ;

The following represents the function codes for the mailbox service calls:

TFN_CRE_MBX –0x3d Function code of cre_mbx
TFN_ACRE_MBX –0xc5 Function code of acre_mbx
TFN_DEL_MBX –0x3e Function code of del_mbx
TFN_SND_MBX –0x3f Function code of snd_mbx
TFN_RCV_MBX –0x41 Function code of rcv_mbx
TFN_PRCV_MBX –0x42 Function code of prcv_mbx
TFN_TRCV_MBX –0x43 Function code of trcv_mbx
TFN_REF_MBX –0x44 Function code of ref_mbx

[Standard Profile]

The Standard Profile requires support for mailbox functions except for dynamic creation
and deletion of a mailbox (cre_mbx, acre_mbx, del_mbx) and reference of a mailbox state
(ref_mbx).
The Standard Profile does not require TSZ_MPRIHD to be defined.

163

µITRON4.0 Specification Ver. 4.03.00

[Supplemental Information]

In the mailbox functions, the number of messages that can be stored in a message queue
has no upper limit because the application program has the responsibility to reserve the
area for message headers. Service calls for sending a message will not move the invoking
task to the WAITING state.
To make an application program portable to different kernels with different definitions
and sizes for message headers, the message packet should be defined as a C language
structure, and a field of the T_MSG type or T_MSG_PRI type should be allocated at the
top of the message packet. In addition, the message priority should be assigned to the
msgpri field in the T_MSG_PRI type. sizeof (T_MSG) or sizeof (T_MSG_PRI) can be
used to determine the size of the message header.
The area for a message packet may be a memory block dynamically allocated from a
fixed-sized or variable-sized memory pool. It is also possible to allocate the area statically.
A common practice is that the sending task allocates a memory block from a memory pool
and sends the block as a message packet to a mailbox, while the receiving task releases the
memory block which is received as a message packet from the mailbox to the memory
pool.

[Differences from the µITRON3.0 Specification]

Implementations of mailboxes are now limited to linked lists.

164

µITRON4.0 Specification Ver. 4.03.00

CRE_MBX Create Mailbox (Static API) [S]
cre_mbx Create Mailbox

acre_mbx Create Mailbox (Automatic ID Assignment)

[Static API]

 CRE_MBX (ID mbxid, { ATR mbxatr, PRI maxmpri,
 VP mprihd }) ;

[C Language API]

 ER ercd = cre_mbx (ID mbxid, T_CMBX *pk_cmbx) ;
 ER_ID mbxid = acre_mbx (T_CMBX *pk_cmbx) ;

[Parameter]

ID mbxid ID number of the mailbox to be created (except:
acre_mbx)

T_CMBX * pk_cmbx Pointer to the packet containing the mailbox creation
information (In CRE_MBX, packet contents must be
directly specified.)

pk_cmbx includes (T_CMBX type)
ATR mbxatr Mailbox attribute
PRI maxmpri Maximum message priority of the messages to be

sent
VP mprihd Start address of the area for message queue headers

for each message priority
(Other implementation-specific information may be added.)

[Return Parameter]

cre_mbx:
ER ercd E_OK for normal completion or error code

acre_mbx:
ER_ID mbxid ID number (positive value) of created mailbox or

error code

[Error Code]

E_ID Invalid ID number (mbxid is invalid or unusable; only
cre_mbx)

E_NOID No ID number available (there is no mailbox ID assignable;
only acre_mbx)

E_NOMEM Insufficient memory (message queue header area cannot be
allocated)

E_RSATR Reserved attribute (mbxatr is invalid or unusable)
E_PAR Parameter error (pk_cmbx, maxmpri, or mprihd is invalid)

165

µITRON4.0 Specification Ver. 4.03.00

E_OBJ Object state error (specified mailbox is already registered; only
cre_mbx)

[Functional Description]

These service calls create a mailbox with an ID number specified by mbxid based on the
information contained in the packet pointed to by pk_cmbx. mbxatr is the attribute of the
mailbox. maxmpri is the maximum message priority of messages sent to the mailbox.
mprihd is the start address of the area for message queue headers for each message
priority. maxmpri and mprihd are valid only when TA_MPRI (= 0x02) is specified in
mbxatr.
In CRE_MBX, mbxid is an integer parameter with automatic ID assignment. mbxatr and
maxmpri are preprocessor constant expression parameters.
acre_mbx assigns a mailbox ID from the pool of unassigned mailbox IDs and returns the
assigned mailbox ID.
mbxatr can be specified as ((TA_TFIFO || TA_TPRI) | (TA_MFIFO || TA_MPRI)).
If TA_TFIFO (= 0x00) is specified, the mailbox's wait queue will be in FIFO order. If
TA_TPRI (= 0x01) is specified, the mailbox's wait queue will be in task priority order.
Similarly, if TA_MFIFO (= 0x00) is specified, the mailbox's message queue will be in
FIFO order, and if TA_MPRI (= 0x02) is specified, the message queue will be in message
priority order.
If TA_MPRI is specified in mbxatr, the necessary memory area to hold the message queue
header when the maximum message priority of the messages to be sent is maxmpri starts
from mprihd. An application program can calculate the size of the necessary message
queue header area when the maximum message priority of the messages to be sent is
maxmpri by using the TSZ_MPRIHD macro. If mprihd is specified as NULL (= 0), the
kernel allocates the necessary memory area.
When maxmpri is specified as 0 or a value greater than the maximum message priority
(TMAX_MPRI), an E_PAR error is returned.

[Standard Profile]

The Standard Profile does not require support for these functions when a value other than
NULL is specified in mprihd.

[Supplemental Information]

The following must be considered when a message queue is prepared for each message
priority level using the message queue header area.
Preparing a message queue for each message priority level is effective when the number
of the message priority levels is small. When the number of allowed message priority
levels is large, this method requires a large memory area and thus is not practical.
Therefore, in order to handle the case where the number of the message priority levels is
large, the structure of the message queue should be varied depending on the number of

166

µITRON4.0 Specification Ver. 4.03.00

message priority levels. For example, when the maximum message priority of the
messages to be sent is equal to or below a certain threshold value, a message queue is
prepared for each message priority level. When the maximum message priority level
exceeds this threshold, all messages are managed in a single queue. In this case,
TSZ_MPRIHD will return the same value for all values of maxmpri that are above the
threshold value. maxmpri in CRE_MBX is defined to be a preprocessor constant
expression parameter in order for the kernel configurator to create conditional directives
involving maxmpri in the C language source code and to modify the data structure in the
kernel when maxmpri is above the threshold value.
It is also possible to manage all messages in a single queue without using separate
message queues for each message priority. In this kind of implementations,
TSZ_MPRIHD should be defined so that it returns a constant value, regardless of
maxmpri.

[Differences from the µITRON3.0 Specification]

The maximum message priority of the messages to be sent (maxmpri) and the start address
of the area for message queue headers for each message priority (mprihd) have been added
to the mailbox creation information. The extended information and the ring buffer size
(implementation-dependent information) have been removed.
acre_mbx has been newly added.

167

µITRON4.0 Specification Ver. 4.03.00

del_mbx Delete Mailbox

[C Language API]

 ER ercd = del_mbx (ID mbxid) ;

[Parameter]

ID mbxid ID number of the mailbox to be deleted

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (mbxid is invalid or unusable)
E_NOEXS Non-existent object (specified mailbox is not registered)

[Functional Description]

This service call deletes the mailbox specified by mbxid. If the area for message queue
headers for each message priority was allocated by the kernel, it is released.

[Supplemental Information]

The messages in the message queue for the specified mailbox will be discarded. See
Section 3.8 for information regarding handling tasks that are waiting to receive a message
in a mailbox's wait queue when the mailbox is deleted.

168

µITRON4.0 Specification Ver. 4.03.00

snd_mbx Send to Mailbox [S] [B]

[C Language API]

 ER ercd = snd_mbx (ID mbxid, T_MSG *pk_msg) ;

[Parameter]

ID mbxid ID number of the mailbox to which the message is
sent

T_MSG * pk_msg Start address of the message packet to be sent to the
mailbox

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (mbxid is invalid or unusable)
E_NOEXS Non-existent object (specified mailbox is not registered)
E_PAR Parameter error (pk_msg is invalid, or the message priority in

the message packet (msgpri) is invalid)

[Functional Description]

This service call sends the message whose start address is specified by pk_msg to the
mailbox specified by mbxid. Specifically, the following actions are performed.
If there are already tasks in the mailbox's wait queue, this service call sends the start
address of the message packet to the task at the head of the wait queue and releases the
task from waiting. The released task receives E_OK from the service call that caused it to
wait in the wait queue. It also receives the start address of the message packet from the
mailbox through pk_msg.
If no tasks are waiting in the mailbox's wait queue, this service call places the message
packet whose start address is specified by pk_msg in the message queue. When the
mailbox's attribute has TA_MFIFIO (= 0x00) set, the message packet is placed at the tail
of the message queue. When the mailbox's attribute has TA_MPRI (= 0x02) set, the
message packet is placed in the message queue in the order of its message priority. If the
message queue contains messages with the same priority as the newly sent message, the
message is placed after those messages.
When the mailbox's attribute has TA_MPRI (= 0x02) set, the message header of the
T_MSG_PRI type is assumed to be at the head of the message packet pointed to by
pk_msg. The message's priority is obtained from the msgpri field in the message header.

[Differences from the µITRON3.0 Specification]

The name of the service call has been changed from snd_msg to snd_mbx.

169

µITRON4.0 Specification Ver. 4.03.00

rcv_mbx Receive from Mailbox [S] [B]
prcv_mbx Receive from Mailbox (Polling) [S] [B]
trcv_mbx Receive from Mailbox (with Timeout) [S]

[C Language API]

 ER ercd = rcv_mbx (ID mbxid, T_MSG **ppk_msg) ;
 ER ercd = prcv_mbx (ID mbxid, T_MSG **ppk_msg) ;
 ER ercd = trcv_mbx (ID mbxid, T_MSG **ppk_msg, TMO tmout) ;

[Parameter]

ID mbxid ID number of the mailbox from which a message is
received

TMO tmout Specified timeout (only trcv_mbx)

[Return Parameter]

ER ercd E_OK for normal completion or error code
T_MSG * pk_msg Start address of the message packet received from the

mailbox

[Error Code]

E_ID Invalid ID number (mbxid is invalid or unusable)
E_NOEXS Non-existent object (specified mailbox is not registered)
E_PAR Parameter error (ppk_msg or tmout is invalid)
E_RLWAI Forced release from waiting (rel_wai is accepted while waiting;

except prcv_mbx)
E_TMOUT Polling failure or timeout (except rcv_mbx)
E_DLT Waiting object deleted (mailbox is deleted while waiting;

except prcv_mbx)

[Functional Description]

These service calls receive a message from the mailbox specified by mbxid and return its
start address through pk_msg. Specifically, the following actions are performed.
If the mailbox's message queue already has messages, these service calls remove the first
message packet from the message queue and return its start address through pk_msg.
If there are no messages in the message queue, the invoking task is placed in the wait
queue and moved to the receiving waiting state for the mailbox.
If there are already tasks in the wait queue, the invoking task is placed in the wait queue as
described below. When the mailbox's attribute has TA_TFIFO (= 0x00) set, the invoking
task is placed at the tail of the wait queue. When the mailbox's attribute has TA_TPRI (=
0x01) set, the invoking task is placed in the wait queue in the order of the task's priority. If

170

µITRON4.0 Specification Ver. 4.03.00

the wait queue contains tasks with the same priority as the invoking task, the invoking task
is placed after those tasks.
prcv_mbx is a polling service call with the same functionality as rcv_mbx. trcv_mbx has
the same functionality as rcv_mbx with an additional timeout feature. tmout can be set to a
positive number indicating a timeout duration or it can be set to TMO_POL (= 0) or
TMO_FEVR (= –1).

[Supplemental Information]

trcv_mbx acts the same as prcv_mbx if TMO_POL is specified in tmout, and as long as no
E_CTX error occurs. Also, trcv_mbx acts the same as rcv_mbx if TMO_FEVR is
specified in tmout.

[Differences from the µITRON3.0 Specification]

The names of the service calls have been changed from rcv_msg, prcv_msg, and trcv_msg
to rcv_mbx, prcv_mbx, and trcv_mbx, respectively. The order of parameters and return
parameters has been changed.

171

µITRON4.0 Specification Ver. 4.03.00

ref_mbx Reference Mailbox State

[C Language API]

 ER ercd = ref_mbx (ID mbxid, T_RMBX *pk_rmbx) ;

[Parameter]

ID mbxid ID number of the mailbox to be referenced
T_RMBX * pk_rmbx Pointer to the packet returning the mailbox state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rmbx includes (T_RMBX type)

ID wtskid ID number of the task at the head of the mailbox's
wait queue

T_MSG * pk_msg Start address of the message packet at the head of
message queue

(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (mbxid is invalid or unusable)
E_NOEXS Non-existent object (specified mailbox is not registered)
E_PAR Parameter error (pk_rmbx is invalid)

[Functional Description]

This service call references the state of the mailbox specified by mbxid. The state of the
mailbox is returned through the packet pointed to by pk_rmbx.
The ID number of the task at the head of the mailbox's wait queue is returned through
wtskid. If no tasks are waiting to receive a message, TSK_NONE (= 0) is returned instead.
The start address of the message packet at the head of the mailbox's message queue is
returned through pk_msg. If there is no message in the message queue, NULL (= 0) is
returned instead.

[Supplemental Information]

A mailbox cannot have wtskid ≠ TSK_NONE and pk_msg ≠ NULL at the same time.

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The ID
number of the task at the head of the wait queue is now returned instead of a boolean
value indicating whether a task is waiting or not. Based on this replacement, the names
and data types of the return parameters have been changed.
The order of parameters and return parameters has been changed.

172

µITRON4.0 Specification Ver. 4.03.00

4.5 Extended Synchronization and Communication
Functions

Extended synchronization and communication functions provide advanced
synchronization and communication between tasks through objects that are independent of
the tasks. The objects are mutexes, message buffers, and rendezvous ports.

[Standard Profile]

The Standard Profile does not require support for extended synchronization and
communication functions.

[Differences from the µITRON3.0 Specification]

Mutex is a newly added feature.

4.5.1 Mutexes

A mutex is an object used for mutual exclusion of a shared resource among tasks. A
mutex supports the priority inheritance protocol and the priority ceiling protocol to avoid
unbounded priority inversions among tasks competing for a shared resource. Mutex
functions include the ability to create and delete a mutex, to lock and unlock a mutex, and
to reference the state of a mutex. A mutex is an object identified by an ID number. The ID
number of a mutex is called the mutex ID.
A mutex has the locked and unlocked states. It also has a wait queue for tasks waiting to
lock the mutex. The kernel manages the task that locks each mutex and also the set of
mutexes a task locks. A task will try to lock a mutex before using a shared resource. In
case a mutex is already locked by another task, the task will be moved to the waiting state
for the mutex until the mutex is released. The task waiting to lock the mutex is placed in
the mutex's wait queue. A task unlocks the mutex after using the shared resource.
A mutex uses the priority inheritance protocol when its attribute has TA_INHERIT (=
0x02) set, and it uses the priority ceiling protocol when its attribute has TA_CEILING (=
0x03) set. During mutex creation, if the TA_CEILING attribute is specified, the ceiling
priority parameter should be set to the maximum priority of the tasks that may lock the
mutex. When a task tries to lock a mutex with the TA_CEILING attribute and it has a
higher base priority than the ceiling priority of the mutex, an E_ILUSE error is returned. If
chg_pri is invoked to set the base priority of a task that has locked a mutex or is waiting to
lock a mutex with the TA_CEILING attribute to a higher value than the mutex's ceiling
priority, chg_pri will return an E_ILUSE error.
When using these protocols, mutex operations change the current priority of tasks in order
to prevent unbounded priority inversion. The priority inheritance protocol and the priority
ceiling protocol require that the current priority of a task should always be equal to the
highest of the three priorities below:

173

µITRON4.0 Specification Ver. 4.03.00

• The base priority of the task

• The highest current priority among tasks waiting to lock one of the mutexes with the
TA_INHERIT attribute that are locked by the task

• The highest ceiling priority among mutexes with the TA_CEILING attribute that are
locked by the task

This rule is called the strict priority control rule.
If the current priority of a task waiting for a mutex with the TA_INHERIT attribute is
changed by mutex operations or is changed by having its base priority changed by chg_pri,
the task that has the mutex locked may have to have its current priority changed. Such a
change of priority is called transitive priority inheritance. Moreover, if the latter task is
waiting for a second mutex with the TA_INHERIT attribute, transitive priority inheritance
needs to be applied to the task that has the second mutex locked.
In addition to the strict priority control rule, the µITRON4.0 Specification defines another
priority control rule, called the simplified priority control rule, which limits the conditions
under which the current priority is changed. The priority control rule used is
implementation-defined. Under the simplified priority control rule, when the current
priority of a task should be raised, it must be raised. However, when the current priority of
a task should be lowered, it must be lowered only when the task does not lock (no longer
locks) any mutexes. In the case where the current priority of the task is lowered, it is
changed to match its base priority. More specifically, the current priority of a task is
changed only under the following conditions:

• When a task with a higher current priority begins to wait for a mutex with the
TA_INHERIT attribute that is locked by the task.

• When the current priority of a task waiting for a mutex with the TA_INHERIT
attribute that is locked by the task is changed to a higher priority than the task.

• When the task locks a mutex with the TA_CEILING attribute and with a higher
ceiling priority than the task's current priority.

• When the task releases the last mutex that it locked.

• In the case where the base priority of a task is changed by chg_pri, when there are
no mutexes locked by the task or when the new base priority is higher than the
current priority.

The following actions are taken when the current priority of a task has been changed by
mutex operations. When a task whose priority has been changed is in the runnable state,
the precedence of the task is changed according to its new priority. The resulting
precedence of the task among the tasks with the same priority is implementation-
dependent. When a task whose priority has been changed is in a priority-ordered wait
queue, the task's position in the wait queue is changed according to the new priority. The
resulting position of the task among the tasks of the same priority is implementation-
dependent.

174

µITRON4.0 Specification Ver. 4.03.00

If a task terminates while it still has mutexes locked, the kernel unlocks all the mutexes
locked by the task. The order of unlocking the mutexes is implementation-dependent. For
more details about unlocking a mutex, see the functional description of unl_mtx.
The following data type packets are defined for creating and referencing mutexes:

 typedef struct t_cmtx {
 ATR mtxatr ; /* Mutex attribute */
 PRI ceilpri ; /* Mutex ceiling priority */
 /* Other implementation-specific fields may be added. */
 } T_CMTX ;
 typedef struct t_rmtx {
 ID htskid ; /* ID number of the task that locks the
 mutex */
 ID wtskid ; /* ID number of the task at the head of the
 mutex's wait queue */
 /* Other implementation-specific fields may be added. */
 } T_RMTX ;

The following represents the function codes for the mutex service calls:

TFN_CRE_MTX –0x81 Function code of cre_mtx
TFN_ACRE_MTX –0xc6 Function code of acre_mtx
TFN_DEL_MTX –0x82 Function code of del_mtx
TFN_LOC_MTX –0x85 Function code of loc_mtx
TFN_PLOC_MTX –0x86 Function code of ploc_mtx
TFN_TLOC_MTX –0x87 Function code of tloc_mtx
TFN_UNL_MTX –0x83 Function code of unl_mtx
TFN_REF_MTX –0x88 Function code of ref_mtx

[Supplemental Information]

A mutex with the attribute TA_TFIFO or TA_TPRI has a similar functionality as a
semaphore whose maximum count is 1: a binary semaphore. The differences are that a
mutex can only be unlocked by the task that locked it and that a mutex is automatically
unlocked by the kernel when the locking task terminates.
The definition of the priority ceiling protocol described here is different from the priority
ceiling protocol proposed in literature. More strictly, this protocol is sometimes referred to
as the highest locker protocol.
When mutex operations change the current priority of a task and thus causes the order of
the task within a wait queue to be changed, the kernel may need to release the task or
other tasks in the wait queue from waiting. See the functional descriptions of snd_mbf and
get_mpl for details.

175

µITRON4.0 Specification Ver. 4.03.00

[Differences from the µITRON3.0 Specification]

The mutex is a newly added feature. Mutexes are introduced as objects independent from
semaphores because supporting the priority inheritance protocol for counting semaphores
is difficult.

[Rationale]

When mutex operations change the current priority of a task, the precedence among the
tasks with the same priority are made implementation-dependent for the following reasons.
Some applications might require frequent changes of the current priority through the use
of mutexes, resulting in frequent task switches, which in turn is not desirable.
If the precedence of the task among tasks of the same priority is determined to be the
lowest, unnecessary task switches may occur. Ideally, the precedence (and not priority)
should be inherited. However, such a specification would require a large overhead. For
this reason, the precedence among tasks is left up to the implementation.

176

µITRON4.0 Specification Ver. 4.03.00

CRE_MTX Create Mutex (Static API)

cre_mtx Create Mutex

acre_mtx Create Mutex (Automatic ID Assignment)

[Static API]

 CRE_MTX (ID mtxid, { ATR mtxatr, PRI ceilpri }) ;

[C Language API]

 ER ercd = cre_mtx (ID mtxid, T_CMTX *pk_cmtx) ;
 ER_ID mtxid = acre_mtx (T_CMTX *pk_cmtx) ;

[Parameter]

ID mtxid ID number of the mutex to be created (except
acre_mtx)

T_CMTX * pk_cmtx Pointer to the packet containing the mutex creation
information (In CRE_MTX, the packet contents must
be directly specified.)

pk_cmtx includes (T_CMTX type)
ATR mtxatr Mutex attribute
PRI ceilpri Mutex ceiling priority
(Other implementation-specific information may be added.)

[Return Parameter]

cre_mtx:
ER ercd E_OK for normal completion or error code

acre_mtx:
ER_ID mtxid ID number (positive value) of the created mutex or

error code

[Error Code]

E_ID Invalid ID number (mtxid is invalid or unusable; only cre_mtx)
E_NOID No ID number available (there is no mutex ID assignable; only

acre_mtx)
E_RSATR Reserved attribute (mtxatr is invalid or unusable)
E_PAR Parameter error (pk_cmtx or ceilpri is invalid)
E_OBJ Object state error (mutex is already registered; only cre_mtx)

[Functional Description]

These service calls create a mutex with an ID number specified by mtxid based on the
information contained in the packet pointed to by pk_cmtx. mtxatr is the attribute of the

177

µITRON4.0 Specification Ver. 4.03.00

mutex. ceilpri is the mutex ceiling priority. ceilpri is only valid when mtxatr has
TA_CEILING (= 0x03) set.
In CRE_MTX, mtxid is an integer parameter with automatic ID assignment. mtxatr is a
preprocessor constant expression parameter.
acre_mtx assigns a mutex ID from the pool of unassigned mutex IDs and returns the
assigned mutex ID.
mtxatr can be specified as (TA_TFIFO || TA_TPRI || TA_INHERIT || TA_CEILING). If
TA_FIFO (= 0x00) is specified, the mutex's wait queue will be in FIFO order. Otherwise,
the mutex's wait queue will be in task priority order. If TA_INHERIT (= 0x02) is set, the
current priority of a task is changed according to the priority inheritance protocol. If
TA_CEILING (= 0x03) is set, the current priority of a task is changed according to the
priority ceiling protocol.

178

µITRON4.0 Specification Ver. 4.03.00

del_mtx Delete Mutex

[C Language API]

 ER ercd = del_mtx (ID mtxid) ;

[Parameter]

ID mtxid ID number of the mutex to be deleted

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (mtxid is invalid or unusable)
E_NOEXS Non-existent object (specified mutex is not registered)

[Functional Description]

This service call deletes the mutex specified by mtxid.

[Supplemental Information]

If the specified mutex has been locked by a task, del_mtx forces the task to unlock the
mutex it has locked. Therefore, if the mutex has either the TA_INHERIT or
TA_CEILING attribute, the current priority of the task that has locked the mutex may
need to be changed. When the simplified priority control rule is applied, the current
priority of the locking task is changed only if after the deletion, no mutex remains locked
by the task.
The task that locked the deleted mutex is not notified about the deletion of the mutex.
Rather, it will receive an error when it tries to unlock the mutex. If deleting a mutex will
cause an undesirable result for the task that is locking the mutex, a task that tries to delete
the mutex should first lock the mutex itself and then delete it.
See Section 3.8 for information regarding handling tasks that are waiting to lock a mutex
when the mutex is deleted.

179

µITRON4.0 Specification Ver. 4.03.00

loc_mtx Lock Mutex

ploc_mtx Lock Mutex (Polling)

tloc_mtx Lock Mutex (with Timeout)

[C Language API]

 ER ercd = loc_mtx (ID mtxid) ;
 ER ercd = ploc_mtx (ID mtxid) ;
 ER ercd = tloc_mtx (ID mtxid, TMO tmout) ;

[Parameter]

ID mtxid ID number of the mutex to be locked
TMO tmout Specified timeout (only tloc_mtx)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (mtxid is invalid or unusable)
E_NOEXS Non-existent object (specified mutex is not registered)
E_PAR Parameter error (tmout is invalid; only tloc_mtx)
E_ILUSE Illegal service call use (multiple locking of a mutex, or ceiling

priority violation)
E_RLWAI Forced release from waiting (rel_wai is accepted while waiting;

except ploc_mtx)
E_TMOUT Polling failure or timeout (except loc_mtx)
E_DLT Waiting object deleted (mutex is deleted while waiting; except

ploc_mtx)

[Functional Description]

These service calls lock the mutex specified by mtxid. Specifically, if the mutex is not
locked, the service calls let the invoking task lock the mutex and return without moving
the invoking task to the WAITING state. If the mutex is locked, the invoking task is
placed in the mutex's wait queue and is moved to the waiting state for the mutex.
If there are already tasks in the wait queue, the invoking task is placed in the wait queue as
described below. When the mutex's attribute has TA_TFIFO (= 0x00) set, the invoking
task is placed at the tail of the wait queue. Otherwise, the invoking task is placed in the
wait queue in the order of the task's priority. If the wait queue contains tasks with the same
priority as the invoking task, the invoking task is placed after those tasks.
If the invoking task has already locked the mutex, these service calls return an E_ILUSE
error. An E_ILUSE error will also be returned if the mutex has the TA_CEILING attribute
set and the invoking task has a base priority higher than the ceiling priority of the mutex.

180

µITRON4.0 Specification Ver. 4.03.00

ploc_mtx is a polling service call with the same functionality as loc_mtx. tloc_mtx has the
same functionality as loc_mtx with an additional timeout feature. tmout can be set to a
positive number indicating a timeout duration or it can be set to TMO_POL (= 0) or
TMO_FEVR (= –1).

[Supplemental Information]

When a task invokes these service calls on the mutex with the TA_INHERIT attribute that
is locked and is moved to the waiting state for the mutex, the current priority of the task
that locks a mutex is changed to the current priority of the invoking task if the latter's
current priority is lower than the current priority of the invoking task.
The current priority of a task that locks a mutex with the TA_INHERIT attribute may
need to be changed when a task that is waiting for the mutex is released from waiting due
to a timeout or with rel_wai. The simplified priority control rule does not perform such a
change.
When a task invokes these service calls on the mutex with the TA_CEILING attribute and
locks it successfully, the current priority of the task is changed to the ceiling priority of the
mutex if the mutex's ceiling priority is higher than the task's current priority.
tloc_mtx acts the same as ploc_mtx if TMO_POL is specified in tmout, and as long as no
E_CTX error occurs. Also, tloc_mtx acts the same as loc_mtx if TMO_FEVR is specified
in tmout.

181

µITRON4.0 Specification Ver. 4.03.00

unl_mtx Unlock Mutex

[C Language API]

 ER ercd = unl_mtx (ID mtxid) ;

[Parameter]

ID mtxid ID number of the mutex to be unlocked

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (mtxid is invalid or unusable)
E_NOEXS Non-existent object (specified mutex is not registered)
E_ILUSE Illegal service call use (the invoking task does not have the

specified mutex locked)

[Functional Description]

This service call unlocks the mutex specified by mtxid. Specifically, if there are tasks
waiting to lock the mutex, this service call releases the task at the head of the mutex's wait
queue from waiting and lets the released task lock the mutex. The task receives E_OK
from the service call that caused it to wait in the mutex's wait queue. If no task is waiting
to lock the mutex, the service call moves the mutex to the unlocked state.
When the invoking task does not have the mutex locked, this service call returns an
E_ILUSE error.

[Supplemental Information]

The current priority of the task invoking this service call may need to be changed when
the specified mutex has the TA_INHERIT or TA_CEILING attribute set. If the simplified
priority control rule is applied, the service call changes the current priority of the invoking
task only when no mutex remains locked by the task.

182

µITRON4.0 Specification Ver. 4.03.00

ref_mtx Reference Mutex State

[C Language API]

 ER ercd = ref_mtx (ID mtxid, T_RMTX *pk_rmtx) ;

[Parameter]

ID mtxid ID number of the mutex to be referenced
T_RMTX * pk_rmtx Pointer to the packet returning the mutex state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rmtx includes (T_RMTX type)

ID htskid ID number of the task locking the mutex
ID wtskid ID number of the task at the head of the mutex's wait

queue
(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (mtxid is invalid or unusable)
E_NOEXS Non-existent object (specified mutex is not registered)
E_PAR Parameter error (pk_rmtx is invalid)

[Functional Description]

This service call references the state of the mutex specified by mtxid. The state of the
mutex is returned through the packet pointed to by pk_rmtx.
The ID number of the task that has the mutex locked is returned through htskid. If no task
has the mutex locked, TSK_NONE (= 0) is returned instead.
The ID number of the task at the head of the mutex's wait queue is returned through
wtskid. If no tasks are waiting to lock the mutex TSK_NONE (= 0) is returned instead.

[Supplemental Information]

A mutex cannot have htskid = TSK_NONE and wtskid ≠ TSK_NONE at the same time.

183

µITRON4.0 Specification Ver. 4.03.00

4.5.2 Message Buffers

A message buffer is an object used for synchronization and communication by sending
and receiving a variable-sized message. Message buffer functions include the ability to
create and delete a message buffer, to send and receive a message to/from a message
buffer, and to reference the state of a message buffer. A message buffer is an object
identified by an ID number. The ID number of a message buffer is called the message
buffer ID.
A message buffer has an associated wait queue for sending a message (send-wait queue)
and an associated wait queue for receiving a message (receive-wait queue). Also, a
message buffer has an associated message buffer area to store the sent messages. A task
sending a message (notifying the occurrence of an event) copies the message into the
message buffer. If there is no room in the message buffer area, the task will be in the
sending waiting state for a message buffer until there is room for the message in the
message buffer area. The task waiting to send the message is placed in the message
buffer's send-wait queue. A task receiving a message (waiting for an occurrence of an
event) removes a message from the message buffer. If there is no message in the message
buffer, the task will be in the receiving waiting state until a message is sent to the message
buffer. The task waiting to receive a message from the message buffer is placed in the
message buffer's receive-wait queue.
Synchronous message passing can be performed by setting the size of the message buffer
area to 0. The sending task and the receiving task wait until the other calls the
complimentary service call, at which time the message is transferred.
The following kernel configuration macro is defined for use with message buffer
functions:

 SIZE mbfsz = TSZ_MBF (UINT msgcnt, UINT msgsz)
 This macro returns the approximate required size of the message buffer area in bytes

necessary to store msgcnt messages each consisting of msgsz bytes.

This macro is only an estimation for determining the size of a message buffer area. It
cannot be used to determine the total required size of a message buffer area to store
messages with different sizes.
The following data type packets are defined for creating and referencing message buffers:

 typedef struct t_cmbf {
 ATR mbfatr ; /* Message buffer attribute */
 UINT maxmsz ; /* Maximum message size (in bytes) */
 SIZE mbfsz ; /* Size of message buffer area (in bytes) */
 VP mbf ; /* Start address of message buffer area */
 /* Other implementation-specific fields may be added. */
 } T_CMBF ;
 typedef struct t_rmbf {

184

µITRON4.0 Specification Ver. 4.03.00

 ID stskid ; /* ID number of the task at the head of the
 message buffer's send-wait queue */
 ID rtskid ; /* ID number of the task at the head of the
 message buffer's receive-wait queue */
 UINT smsgcnt ; /* The number of messages in the message
 buffer */
 SIZE fmbfsz ; /* Size of free message buffer area in bytes,
 without the minimum control areas */
 /* Other implementation-specific fields may be added. */
 } T_RMBF ;

The following represents the function codes for the message buffer service calls:

TFN_CRE_MBF –0x89 Function code of cre_mbf
TFN_ACRE_MBF –0xc7 Function code of acre_mbf
TFN_DEL_MBF –0x8a Function code of del_mbf
TFN_SND_MBF –0x8d Function code of snd_mbf
TFN_PSND_MBF –0x8e Function code of psnd_mbf
TFN_TSND_MBF –0x8f Function code of tsnd_mbf
TFN_RCV_MBF –0x91 Function code of rcv_mbf
TFN_PRCV_MBF –0x92 Function code of prcv_mbf
TFN_TRCV_MBF –0x93 Function code of trcv_mbf
TFN_REF_MBF –0x94 Function code of ref_mbf

[Supplemental Information]

Figure 4-2 shows the behavior of a message buffer when the size of the message buffer
area is 0. In this figure, task A and task B are assumed to be running asynchronously.

Task A Task B

snd_mbf (mbfid)

rcv_mbf (mbfid)

Task A

Sending

waiting

state

(a) snd_mbf is invoked first (b) rcv_mbf is invoked first

Receiving

waiting

state

snd_mbf (mbfid)

Task B

rcv_mbf (mbfid)

Figure 4-2. Synchronous Communication through a Message Buffer

• If task A invokes snd_mbf first, task A is moved to the WAITING state until task B
invokes rcv_mbf. During this time, task A is in the sending waiting state for a
message buffer (Figure 4-2 (a)).

185

µITRON4.0 Specification Ver. 4.03.00

• If, on the other hand, task B invokes rcv_mbf first, task B is moved to the
WAITING state until task A invokes snd_mbf. During this time, task B is in the
receiving waiting state for a message buffer (Figure 4-2 (b)).

• When task A invokes snd_mbf and task B invokes rcv_mbf, the message transfer
from task A and task B takes place. After this, both tasks are moved to the runnable
state.

Tasks that are waiting to send a message to a message buffer will send their messages in
the order that the tasks are placed in the wait queue. An example is when task A tries to
send a 40-byte message to a message buffer, and task B tries to send a 10-byte message to
the same message buffer. Assume that these tasks are placed in the wait queue so that task
A is ahead of task B. A third task then receives a message 20 bytes long, resulting in 20
bytes of available area in the message buffer. Even though task B needs only 10 bytes to
send its message, it cannot do so until task A has sent its message.
However, an implementation-specific extension can add an attribute to the message buffer
that will allow task B to send its message before task A in this example.
A message buffer transfers a variable-sized message through copying. It is different from
a data queue in that it transfers variable-sized messages. It is different from a mailbox in
that it copies the messages.
A message buffer is assumed to be implemented as a ring buffer.
If a message buffer is used for the kernel's error log (for recording errors that cannot be
reported to the processing unit that invoked a service call), a message buffer with an ID
number of (–4) can be used. Furthermore, message buffers with ID numbers (–3) and (–2)
can be used when message buffers are used inside the kernel to communicate with debug
support functions. Limiting the access to these message buffers from application programs
is also allowed.

[Differences from the µITRON3.0 Specification]

Whether tasks should send messages according to their order in the wait queue or
according to which task can send a message first was implementation-dependent in the
µITRON3.0 Specification. The µITRON4.0 Specifications has determined the former
order to be standard.

186

µITRON4.0 Specification Ver. 4.03.00

CRE_MBF Create Message Buffer (Static API)

cre_mbf Create Message Buffer

acre_mbf Create Message Buffer (Automatic ID Assignment)

[Static API]

 CRE_MBF (ID mbfid, { ATR mbfatr, UINT maxmsz, SIZE mbfsz,
 VP mbf }) ;

[C Language API]

 ER ercd = cre_mbf (ID mbfid, T_CMBF *pk_cmbf) ;
 ER_ID mbfid = acre_mbf (T_CMBF *pk_cmbf) ;

[Parameter]

ID mbfid ID number of the message buffer to be created
(except acre_mbf)

T_CMBF * pk_cmbf Pointer to the packet containing the message buffer
creation information (In CRE_MBF, packet contents
must be directly specified.)

pk_cmbf includes (T_CMBF type)
ATR mbfatr Message buffer attribute
UINT maxmsz Maximum message size (in bytes)
SIZE mbfsz Size of message buffer area (in bytes)
VP mbf Start address of message buffer area
(Other implementation-specific information may be added.)

[Return Parameter]

cre_mbf:
ER ercd E_OK for normal completion or error code

acre_mbf:
ER_ID mbfid ID number (positive value) of the created message

buffer or error code

[Error Code]

E_ID Invalid ID number (mbfid is invalid or unusable; only cre_mbf)
E_NOID No ID number available (there is no message buffer ID

assignable; only acre_mbf)
E_NOMEM Insufficient memory (message buffer area cannot be allocated)
E_RSATR Reserved attribute (mbfatr is invalid or unusable)
E_PAR Parameter error (pk_cmbf, maxmsz, mbfsz, or mbf is invalid)
E_OBJ Object state error (message buffer is already registered; only

cre_mbf)

187

µITRON4.0 Specification Ver. 4.03.00

[Functional Description]

These service calls create a message buffer with an ID number specified by mbfid based
on the information contained in the packet pointed to by pk_cmbf. mbfatr is the attribute
of the message buffer. maxmsz is the maximum size in bytes of the message that can be
sent to the message buffer. mbfsz is the size of the message buffer area in bytes. mbf is the
start address of the message buffer area.
In CRE_MBF, mbfid is an integer parameter with automatic ID assignment. mbfatr and
mbfsz are preprocessor constant expression parameters.
acre_mbf assigns a message buffer ID from the pool of unassigned message buffer IDs
and returns the assigned message buffer ID.
mbfatr can be specified as (TA_TFIFO || TA_TPRI). If TA_TFIFO (= 0x00) is specified,
the message buffer's send-wait queue will be in FIFO order. If TA_TPRI (= 0x01) is
specified, the message buffer's send-wait queue will be in task priority order.
The memory area starting from mbf and with a size of mbfsz bytes is used as the message
buffer area. Because the information for message management is also placed in the
message buffer area, the whole message buffer area cannot be used to store messages. An
application program can estimate the size to be specified in mbfsz by using the TSZ_MBF
macro. If mbf is specified as NULL (= 0), the kernel allocates the necessary memory area
in bytes specified by mbfsz. mbfsz may be specified as 0.
When maxmsz is specified as 0 or a value greater than the maximum implementation-
defined value, an E_PAR error is returned. An E_PAR error is also returned when mbfsz
is specified as a value greater than the maximum implementation-defined value.

[Supplemental Information]

The message buffer's receive-wait queue always utilizes the FIFO ordering. Also, the
messages in a message buffer are always in FIFO order.
If mbf is specified as NULL, the size of the message buffer area that will be allocated by
the kernel should be at least equal to the size specified by mbfsz.

[Differences from the µITRON3.0 Specification]

In µITRON3.0, the TA_TPRI attribute of a message buffer indicated that the receive-wait
queue is priority-ordered. In µITRON4.0, it has changed to indicate that the send-wait
queue is priority-ordered. This is because the priority-ordered send-wait queue is more
effective than priority-ordered receive-wait queue.
The start address of the message buffer area (mbf) has been added to the message buffer
creation information. The extended information has been removed. The parameter name
has been changed from bufsz to mbfsz, and the order of maxmsz and mbfsz in the
message buffer creation information packet has been exchanged. The data type of maxmsz
has been changed from INT to UINT and that of mbfsz has been changed from INT to
SIZE.
acre_mbf has been newly added.

188

µITRON4.0 Specification Ver. 4.03.00

del_mbf Delete Message Buffer

[C Language API]

 ER ercd = del_mbf (ID mbfid) ;

[Parameter]

ID mbfid ID number of the message buffer to be deleted

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (mbfid is invalid or unusable)
E_NOEXS Non-existent object (specified message buffer is not registered)

[Functional Description]

This service call deletes the message buffer specified by mbfid. If the message buffer area
was allocated by the kernel, the area is released.

[Supplemental Information]

The messages in the message buffer will be discarded. See Section 3.8 for information
regarding handling tasks that are waiting in the message buffer's send-wait queue and
receive-wait queue when the message buffer is deleted.

189

µITRON4.0 Specification Ver. 4.03.00

snd_mbf Send to Message buffer

psnd_mbf Send to Message buffer (Polling)

tsnd_mbf Send to Message buffer (with Timeout)

[C Language API]

 ER ercd = snd_mbf (ID mbfid, VP msg, UINT msgsz) ;
 ER ercd = psnd_mbf (ID mbfid, VP msg, UINT msgsz) ;
 ER ercd = tsnd_mbf (ID mbfid, VP msg, UINT msgsz,
 TMO tmout) ;

[Parameter]

ID mbfid ID number of the message buffer to which the
message is sent

VP msg Start address of the message to be sent
UINT msgsz Size of the message to be sent (in bytes)
TMO tmout Specified timeout (only tsnd_mbf)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (mbfid is invalid or unusable)
E_NOEXS Non-existent object (specified message buffer is not registered)
E_PAR Parameter error (msg, msgsz, or tmout is invalid)
E_RLWAI Forced release from waiting (rel_wai is accepted while waiting;

except psnd_mbf)
E_TMOUT Polling failure or timeout (except snd_mbf)
E_DLT Waiting object deleted (message buffer is deleted while waiting;

except psnd_mbf)

[Functional Description]

These service calls send a message to the message buffer specified by mbfid. The message
to be sent is placed in the memory area starting from the address specified by msg and
whose size in bytes is specified by msgsz. Specifically, the following actions are
performed.
If there are already tasks in the message buffer's receive-wait queue, the task at the head of
the receive-wait queue is selected to receive the message. These service calls copy the sent
message to the memory area specified by the task for receiving a message and release the
task from waiting. The released task receives the size of the sent message (msgsz) as the
return value of the service call that caused it to wait in the receive-wait queue.

190

µITRON4.0 Specification Ver. 4.03.00

If no tasks are waiting in the message buffer's receive-wait queue, the behavior of these
service calls depends on whether there is a task already waiting to send its message before
the invoking task. These service calls will copy the sent message to the tail of the message
buffer if either: 1) no task is waiting to send a message to the specified message buffer, or
2) the message buffer has the TA_TPRI (= 0x01) attribute set and the priorities of the
other tasks that are waiting to send messages are lower than the invoking task. If neither of
these conditions is satisfied, or if there is no room in the message buffer area to store the
sent message, the invoking task is placed in the send-wait queue and is moved to the
sending waiting state for the message buffer.
If there are already tasks in the message buffer's send-wait queue, the invoking task is
placed in the send-wait queue as described below. When the message buffer's attribute has
TA_TFIFO (= 0x00) set, the invoking task is placed at the tail of the send-wait queue.
When the message buffer's attribute has TA_TPRI (= 0x01) set, the invoking task is
placed in the send-wait queue in the order of the task's priority. If the send-wait queue
contains tasks with the same priority as the invoking task, the invoking task is placed after
those tasks.
When the first task in the send-wait queue has changed as the result of releasing a task in
the send-wait queue from waiting with rel_wai, ter_tsk, or a timeout, the actions, when
possible, to make the tasks send messages starting from the new first task in the wait
queue are necessary. Since the specific actions are similar to the actions to be taken after
rcv_mbf has removed a message from the message buffer, see the functional description
of rcv_mbf for more details. The same actions are also necessary when the first task in the
send-wait queue has changed as the result of changing the priority of a task in the wait
queue by chg_pri or mutex operations.
psnd_mbf is a polling service call with the same functionality as snd_mbf. tsnd_mbf has
the same functionality as snd_mbf with an additional timeout feature. tmout can be set to a
positive number indicating a timeout duration or it can be set to TMO_POL (= 0) or
TMO_FEVR (= –1).
When msgsz is larger than the maximum message size of the message buffer, an E_PAR
error is returned. An E_PAR error is also returned when msgsz is specified as 0.

[Supplemental Information]

tsnd_mbf acts the same as psnd_mbf if TMO_POL is specified in tmout, and as long as no
E_CTX error occurs. Also, tsnd_mbf acts the same as snd_mbf if TMO_FEVR is
specified in tmout.

[Differences from the µITRON3.0 Specification]

The data type of msgsz has been changed from INT to UINT.

191

µITRON4.0 Specification Ver. 4.03.00

rcv_mbf Receive from Message Buffer

prcv_mbf Receive from Message Buffer (Polling)

trcv_mbf Receive from Message Buffer (with Timeout)

[C Language API]

 ER_UINT msgsz = rcv_mbf (ID mbfid, VP msg) ;
 ER_UINT msgsz = prcv_mbf (ID mbfid, VP msg) ;
 ER_UINT msgsz = trcv_mbf (ID mbfid, VP msg, TMO tmout) ;

[Parameter]

ID mbfid ID number of the message buffer from which a
message is received

VP msg Start address of the memory area to store the received
message

TMO tmout Specified timeout (only trcv_mbf)

[Return Parameter]

ER_UINT msgsz Size of the received message (in bytes, positive
value) or error code

[Error Code]

E_ID Invalid ID number (mbfid is invalid or unusable)
E_NOEXS Non-existent object (specified message buffer is not registered)
E_PAR Parameter error (msg or tmout is invalid)
E_RLWAI Forced release from waiting (rel_wai is accepted while waiting;

except prcv_mbf)
E_TMOUT Polling failure or timeout (except rcv_mbf)
E_DLT Waiting object deleted (message buffer is deleted while waiting;

except prcv_mbf)

[Functional Description]

These service calls receive a message from the message buffer specified by mbfid and
stores it in the memory area starting from the address specified by msg. The size of the
received message in bytes is returned through msgsz. Specifically, the following actions
are performed.
If the message buffer already has messages, these service calls copy the first message to
the memory area starting from the address specified by msg and return the message size
through msgsz. The copied message is deleted from the message buffer area. If there are
tasks in the message buffer's send-wait queue, the service calls check if there is enough
room for the message of the task at the head of the wait queue after deleting the received
message. If there is enough room, the message of the task at the head of the wait queue is

192

µITRON4.0 Specification Ver. 4.03.00

copied to the tail of the message buffer and the task is released from waiting. The released
task receives E_OK from the service call that caused it to wait in the wait queue. When
some tasks still remain in the send-wait queue after the release of the task, the same
actions must be repeated on the new task at the head of the wait queue.
If there are no messages in the message buffer and if there are tasks in the message
buffer's send-wait queue (this occurs when the size of the message buffer area is too small
for the message of the task at the head of the wait queue), the message from the task at the
head of the send-wait queue is copied to the memory area starting from the address
specified by msg. The size of the copied message is returned through msgsz. The task is
released from waiting and receives E_OK from the service call that caused it to wait in the
send-wait queue.
If there are no messages in the message buffer and if there are no tasks in the send-wait
queue, the invoking task is placed in the receive-wait queue and moved to the receiving
waiting state for the message buffer. If there are already tasks in the receive-wait queue,
the invoking task is placed at the tail of the receive-wait queue.
prcv_mbf is a polling service call with the same functionality as rcv_mbf. trcv_mbf has
the same functionality as rcv_mbf with an additional timeout feature. tmout can be set to a
positive number indicating a timeout duration or it can be set to TMO_POL (0) or
TMO_FEVR (–1).

[Supplemental Information]

If these service calls release more than one task from waiting, the order of release
corresponds with the order in which the tasks are placed in the wait queue. Therefore,
among the same priority tasks moved to the runnable state, the task closer to the head of
the wait queue has higher precedence.
trcv_mbf acts the same as prcv_mbf if TMO_POL is specified in tmout, and as long as no
E_CTX error occurs. Also, trcv_mbf acts the same as rcv_mbf if TMO_FEVR is specified
in tmout.

[Differences from the µITRON3.0 Specification]

The size of the received message (msgsz) is now returned as the return value of the service
calls. The order of parameters has been changed. The data type of msgsz has been
changed from INT to UINT (the actual type though is ER_UINT).

193

µITRON4.0 Specification Ver. 4.03.00

ref_mbf Reference Message Buffer State

[C Language API]

 ER ercd = ref_mbf (ID mbfid, T_RMBF *pk_rmbf) ;

[Parameter]

ID mbfid ID number of the message buffer to be referenced
T_RMBF * pk_rmbf Pointer to the packet returning the message buffer

state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rmbf includes (T_RMBF type)

ID stskid ID number of the task at the head of the send-wait
queue

ID rtskid ID number of the task at the head of the receive-wait
queue

UINT smsgcnt The number of messages in the message buffer
SIZE fmbfsz Size of free message buffer area in bytes, without the

minimum control areas
(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (mbfid is invalid or unusable)
E_NOEXS Non-existent object (specified message buffer is not registered)
E_PAR Parameter error (pk_rmbf is invalid)

[Functional Description]

This service call references the state of the message buffer specified by mbfid. The state of
the message buffer is returned through the packet pointed to by pk_rmbf.
The ID number of the task at the head of the message buffer's send-wait queue is returned
through stskid. If no tasks are waiting to send a message, TSK_NONE (= 0) is returned
instead.
The ID number of the task at the head of the message buffer's receive-wait queue is
returned through rtskid. If no tasks are waiting to receive a message, TSK_NONE (= 0) is
returned instead.
The number of messages currently in the message buffer is returned through smsgcnt.
The size of the minimum control area subtracted from the size of the free message buffer
area in bytes is returned through fmbfsz. Specifically, fmbfsz is the maximum message
size that can be stored in the free message buffer area when there is not enough room for a
message with the maximum message size. If the message buffer has enough room to store

194

µITRON4.0 Specification Ver. 4.03.00

a message with the maximum message size, fmbfsz is the approximate total size of
messages that can be stored in the free message buffer area.

[Supplemental Information]

A message with a smaller size than fmbfsz may not always be sent at once without
entering the WAITING state. This happens if there are tasks already waiting to send a
message to the message buffer (when stskid ≠ TSK_NONE).
A message buffer cannot have tskid ≠ TSK_NONE and smsgcnt ≠ 0 at the same time.
When stskid ≠ TSK_NONE, fmbfsz is smaller than the maximum message size.

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The ID
number of the task at the head of each wait queue is now returned instead of a boolean
value indicating whether a task is waiting or not. The number of messages in the message
buffer is now returned instead of the size of the message to be received next. Based on
these replacements, the names and data types of the return parameters have been changed.
The size of the minimum control area is excluded from the size returned through fmbfsz in
order to make the returned value strictly standardized to the message size when the free
message buffer area is too small.
The name of the return parameter frbufsz has been changed to fmbfsz and its data type has
been changed from INT to SIZE. The order of parameters and return parameters has been
changed.

195

µITRON4.0 Specification Ver. 4.03.00

4.5.3 Rendezvous

The rendezvous feature is used for synchronization and communication between tasks.
It supports a procedure to handle a processing request from one task to another task and
the return of the result to the requesting task. The object used to coordinate this task
interaction is called a rendezvous port. The rendezvous feature is typically used to realize
a client/server model communication, but it also provides a more flexible synchronous
communication model.
Rendezvous functions include the ability to create and delete a rendezvous port, to request
a processing at a rendezvous port (calling rendezvous), to accept a processing request at a
rendezvous port (accepting rendezvous), to return a processed result (terminating
rendezvous), to forward a processing request to another rendezvous port (forwarding
rendezvous), and to reference the state of a rendezvous port and a rendezvous. A
rendezvous port is an object identified with an ID number. The ID number of a
rendezvous port is called the rendezvous port ID.
A task which requests a processing at a rendezvous port (the client task) calls for a
rendezvous by specifying a rendezvous port, a rendezvous condition, and a message that
contains information about the requested processing. The message is referred to as the
calling message. A task that receives a processing request (the server task) accepts the
rendezvous by specifying the rendezvous port and the rendezvous condition.
A rendezvous condition is specified by a bit pattern. A rendezvous is established only
when the bit patterns of the rendezvous conditions of both the calling task and the
accepting task match. The match is performed by taking the logical AND of the
corresponding bits. If the result is not 0, the rendezvous is established. The calling task
will be in the calling waiting state for the rendezvous until the rendezvous is established.
On the other hand, the accepting task will be in the accepting waiting state for the
rendezvous until the rendezvous is established.
When a rendezvous is established, the calling message is transferred from the calling task
to the accepting task. The calling task is moved to the termination waiting state for the
rendezvous and waits for the processing to be completed. The accepting task is released
from the accepting waiting state for the rendezvous and executes the requested processing.
Once the accepting task completes its processing, it returns the result to the calling task as
a return message, and the rendezvous is terminated. At this time, the calling task is
released from the termination waiting state for the rendezvous.
A rendezvous port has an associated call-wait queue to hold the tasks in the calling
waiting state for a rendezvous and an accept-wait queue to hold the tasks in the accepting
waiting state for a rendezvous. Once a rendezvous is established, the two tasks are
detached from the rendezvous port. A rendezvous port does not have a wait queue to hold
the tasks that are in the termination waiting state for a rendezvous. Also, it does not have

196

µITRON4.0 Specification Ver. 4.03.00

information about a task that has accepted a rendezvous and is already executing the
requested processing.
The kernel assigns an object number to a rendezvous in order to distinguish multiple
rendezvous. The object number of a rendezvous is called the rendezvous number. The
process for assigning rendezvous numbers is implementation-dependent. However, the
rendezvous number should at least include information regarding the task that called the
rendezvous. Each rendezvous should have a unique rendezvous number if possible.
For example, if the same task calls a rendezvous port twice, the first and second
rendezvous should have different rendezvous numbers.
The following data types are used for rendezvous functions:

RDVPTN Bit pattern of the rendezvous condition (unsigned integer)
RDVNO Rendezvous number

The following kernel configuration constant is defined for use with rendezvous functions:
TBIT_RDVPTN The number of bits in a rendezvous condition (the

number of effective bits for RDVPTN)
The following data type packets are defined for creating and referencing rendezvous ports
and rendezvous:

 typedef struct t_cpor {
 ATR poratr ; /* Rendezvous port attribute */
 UINT maxcmsz ; /* Maximum calling message size (in bytes) */
 UINT maxrmsz ; /* Maximum return message size (in bytes) */
 /* Other implementation-specific fields may be added. */
 } T_CPOR ;
 typedef struct t_rpor {
 ID ctskid ; /* ID number of the task at the head of the
 rendezvous port's call-wait queue */
 ID atskid ; /* ID number of the task at the head of the
 rendezvous port's accept-wait queue */
 /* Other implementation-specific fields may be added. */
 } T_RPOR ;
 typedef struct t_rrdv {
 ID wtskid ; /* ID number of the task in the termination
 waiting state for the rendezvous */
 /* Other implementation-specific fields may be added. */
 } T_RRDV ;

The following represents the function codes for rendezvous service calls:

TFN_CRE_POR –0x95 Function code of cre_por

TFN_ACRE_POR –0xc8 Function code of acre_por

TFN_DEL_POR –0x96 Function code of del_por

TFN_CAL_POR –0x97 Function code of cal_por

197

µITRON4.0 Specification Ver. 4.03.00

TFN_TCAL_POR –0x98 Function code of tcal_por

TFN_ACP_POR –0x99 Function code of acp_por

TFN_PACP_POR –0x9a Function code of pacp_por

TFN_TACP_POR –0x9b Function code of tacp_por

TFN_FWD_POR –0x9c Function code of fwd_por

TFN_RPL_RDV –0x9d Function code of rpl_rdv

TFN_REF_POR –0x9e Function code of ref_por

TFN_REF_RDV –0x9f Function code of ref_rdv

[Supplemental Information]

A rendezvous is a synchronization and communication function which was introduced by
the ADA language specification and is based on CSP (Communicating Sequential
Processes). However, the ADA rendezvous is a part of the language specification and its
premise is different from the µITRON4.0 Specification rendezvous. In particular, the
rendezvous offered by a real-time kernel is intended to be a primitive for realizing the
language rendezvous. There are several differences between the ADA rendezvous and the
µITRON4.0-specification rendezvous. Because of this, the rendezvous port of the
µITRON4.0 Specification cannot always be used in realizing the ADA rendezvous.
Figure 4-3 shows the behavior of a rendezvous. In this figure, task A and task B are
assumed to be running asynchronously.

Task A Task B

acp_por (porid)

Task A

Calling

waiting state

Termination

waiting state

Termination

waiting state

(a) cal_por is invoked first (b) acp_por is invoked first

Accepting

waiting state

cal_por (porid)

Task B

acp_por (porid)

rpl_rdv (rdvno)

cal_por (porid)

rpl_rdv (rdvno)

Figure 4-3. Rendezvous Operation

• If task A invokes cal_por first, task A is moved to the WAITING state until task B
invokes acp_por. During this time, task A is in the calling waiting state for the
rendezvous (Figure 4-3 (a)).

• If, on the other hand, task B invokes acp_por first, task B is moved to the WAITING
state until task A invokes cal_por. During this time, task B is in the accepting
waiting state for the rendezvous (Figure 4-3 (b)).

198

µITRON4.0 Specification Ver. 4.03.00

• When task A invokes cal_por and task B invokes acp_por, the rendezvous is
established. When this happens, task B is released from waiting while task A
remains in the WAITING state. Task A, at this time, is in the termination waiting
state for the rendezvous.

• Once task B invokes rpl_rdv, task A is released from waiting. Both tasks are moved
to the runnable state.

One example of assigning a rendezvous number is to use the ID number of the task that
called the rendezvous as the lower bits, and then assign a serial number to the remaining
upper bits. So if the task ID is a 16-bit value, the rendezvous number should be made to be
32 bits by adding a 16-bit serial value.

[Differences from the µITRON3.0 Specification]

The term rendezvous port is now used instead of port.
The data type of the parameter that contains the rendezvous condition bit pattern has been
changed from UINT to the new data type RDVPTN. The data type for a rendezvous
number has been changed from RNO to RDVNO.

[Rationale]

Although a rendezvous feature can be realized by combining other synchronization and
communication features, writing application programs involving return messages with
rendezvous functions is much easier and more efficient. For example, a rendezvous does
not need an area to store messages because the two tasks wait until the message transfer is
completed.
When a task calls a rendezvous port multiple times, each rendezvous number must be
unique if possible for the following reason. Assume that a task is in the termination
waiting state for a rendezvous and that the task is released from waiting due to a timeout
or a forced release. After being released, if it calls a rendezvous port again that is
successfully established, the rendezvous numbers of the previous and the current
rendezvous would be the same. When another task tries to terminate the previous
rendezvous, the current one would be terminated by mistake if they have the same number.
By assigning two different numbers to two different rendezvous and by recording the
rendezvous number with the waiting task, an error can be detected when the first
rendezvous is terminated.

199

µITRON4.0 Specification Ver. 4.03.00

CRE_POR Create Rendezvous Port (Static API)

cre_por Create Rendezvous Port

acre_por Create Rendezvous Port (Automatic ID Assignment)

[Static API]

 CRE_POR (ID porid, { ATR poratr, UINT maxcmsz,
 UINT maxrmsz }) ;

[C Language API]

 ER ercd = cre_por (ID porid, T_CPOR *pk_cpor) ;
 ER_ID porid = acre_por (T_CPOR *pk_cpor) ;

[Parameter]

ID porid ID number of the rendezvous port to be created
(except acre_por)

T_CPOR * pk_cpor Pointer to the packet containing the rendezvous port
creation information (In CRE_POR, packet contents
must be directly specified.)

pk_cpor includes (T_CPOR type)
ATR poratr Rendezvous port attribute
UINT maxcmsz Maximum calling message size (in bytes)
UINT maxrmsz Maximum return message size (in bytes)
(Other implementation-specific information may be added.)

[Return Parameter]

cre_por:
ER ercd E_OK for normal completion or error code

acre_por:
ER_ID porid ID number (positive value) of the created rendezvous

port or error code

[Error Code]

E_ID Invalid ID number (porid is invalid or unusable; only cre_por)
E_NOID No ID number available (there is no rendezvous port ID

assignable; only acre_por)
E_RSATR Reserved attribute (poratr is invalid or unusable)
E_PAR Parameter error (pk_cpor, maxcmsz, or maxrmsz is invalid)
E_OBJ Object state error (specified rendezvous port is already

registered; only cre_por)

200

µITRON4.0 Specification Ver. 4.03.00

[Functional Description]

These service calls create a rendezvous port with an ID number specified by porid based
on the information contained in the packet pointed to by pk_cpor. poratr is the attribute of
the rendezvous port. maxcmsz is the maximum size in bytes of a calling message.
maxrmsz is the maximum size in bytes of a return message.
In CRE_POR, porid is an integer parameter with automatic ID assignment. poratr is a
preprocessor constant expression parameter.
acre_por assigns a rendezvous port ID from the pool of unassigned rendezvous port IDs
and returns the assigned rendezvous port ID.
poratr can be specified as (TA_TFIFO || TA_TPRI). If TA_TFIFO (= 0x00) is specified,
the rendezvous port's call-wait queue will be in FIFO order. If TA_TPRI (= 0x01) is
specified, the rendezvous port's call-wait queue will be in task priority order.
When a value greater than the maximum implementation-defined value is specified in
maxcmsz or maxrmsz, an E_PAR error is returned. maxcmsz and maxrmsz may be
specified as 0.

[Supplemental Information]

The rendezvous port's accept-wait queue always utilizes FIFO ordering.

[Differences from the µITRON3.0 Specification]

By specifying the TA_TRPI attribute, a rendezvous port's call-wait queue will now be in
task priority order.
The extended information has been removed from the rendezvous port creation
information. The data type of maxcmsz and maxrmsz has been changed from INT to
UINT.
acre_por has been newly added.

201

µITRON4.0 Specification Ver. 4.03.00

del_por Delete Rendezvous Port

[C Language API]

 ER ercd = del_por (ID porid) ;

[Parameter]

ID porid ID number of the rendezvous port to be deleted

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (porid is invalid or unusable)
E_NOEXS Non-existent object (specified rendezvous port is not registered)

[Functional Description]

This service call deletes the rendezvous port specified by porid.

[Supplemental Information]

Deleting a rendezvous port does not affect an already established rendezvous. The
deletion is not reported to a task that has accepted a rendezvous and is already executing
the requested processing. The task that called the rendezvous and is in the termination
waiting state for the rendezvous will still continue waiting. Moreover, a termination of the
rendezvous is executed normally even if the rendezvous port is already deleted.
See Section 3.8 for information regarding handling tasks that are waiting to call or accept
a rendezvous at the rendezvous port when the rendezvous port is deleted.

202

µITRON4.0 Specification Ver. 4.03.00

cal_por Call Rendezvous

tcal_por Call Rendezvous (with Timeout)

[C Language API]

 ER_UINT rmsgsz = cal_por (ID porid, RDVPTN calptn, VP msg,
 UINT cmsgsz) ;
 ER_UINT rmsgsz = tcal_por (ID porid, RDVPTN calptn, VP msg,
 UINT cmsgsz, TMO tmout) ;

[Parameter]

ID porid ID number of the rendezvous port to be called
RDVPTN calptn Bit pattern of the rendezvous condition on the calling

side
VP msg Start address of the calling message and start address

of the memory area to store the return message
UINT cmsgsz Calling message size (in bytes)
TMO tmout Specified timeout (only tcal_por)

[Return Parameter]

ER_UINT rmsgsz Return message size (in bytes, positive value or 0) or
error code

[Error Code]

E_ID Invalid ID number (porid is invalid or unusable)
E_NOEXS Non-existent object (specified rendezvous port is not registered)
E_PAR Parameter error (calptn, msg, cmsgsz, or tmout is invalid)
E_RLWAI Forced release from waiting (rel_wai is accepted while waiting)
E_TMOUT Polling failure or timeout (only tcal_por)
E_DLT Waiting object deleted (rendezvous port is deleted while

waiting)

[Functional Description]

These service calls call for a rendezvous at the rendezvous port specified by porid with the
rendezvous condition specified by calptn. The start address of the calling message is
specified by msg and its size in bytes is specified by cmsgsz. The service calls store the
return message in the memory area starting from msg and return its size in bytes through
rmsgsz. Specifically, the following actions are performed.
If there is a task in the accepting waiting state for the rendezvous at the rendezvous port,
these service calls establish a rendezvous if the rendezvous condition of the waiting task
matches the rendezvous condition specified by calptn. If there are more than one task in
the accepting waiting state for the rendezvous, these service calls check their rendezvous

203

µITRON4.0 Specification Ver. 4.03.00

conditions one by one starting from the task at the head of the accept-wait queue. The
service calls establish a rendezvous with the first task that matches the rendezvous
condition.
When a rendezvous is established, these service calls assign a rendezvous number to the
established rendezvous and move the invoking task to the termination waiting state for the
rendezvous. The service calls also copy the calling message specified by msg and cmsgsz
into the memory area specified by the accepting task, which was in the accepting waiting
state for the rendezvous. The service calls then release the task from waiting. The released
task receives the calling message size (cmsgsz) as the return value of the service call that
caused it to wait in the accept-wait queue and the assigned rendezvous number as the
rendezvous number of the established rendezvous.
If no tasks are waiting to accept a rendezvous at the specified rendezvous port, or if none
of the waiting tasks has a matching rendezvous condition, the invoking task is placed in
the call-wait queue and is moved to the calling waiting state for the rendezvous.
If there are already tasks in the rendezvous port's call-wait queue, the invoking task is
placed in the call-wait queue as described below. When the rendezvous port's attribute has
TA_TFIFO (= 0x00) set, the invoking task is placed at the tail of the call-wait queue.
When rendezvous port's attribute has TA_TPRI (= 0x01) set, the invoking task is placed in
the call-wait queue in the order of the task's priority. If the call-wait queue contains tasks
with the same priority as the invoking task, the invoking task is placed after those tasks.
tcal_por has the same functionality as cal_por with an additional timeout feature. If the
rendezvous does not terminate after a period specified by tmout starting from when
tcal_por is called, tcal_por cancels the process and returns an E_TMOUT error. tmout can
be set to a positive number indicating a timeout duration or it can be set to TMO_FEVR
(= –1). When TMO_POL (= 0) is specified, an E_PAR error is returned.
If tcal_por is invoked and results in a timeout after it establishes a rendezvous, the status
of the rendezvous cannot be recovered to its former state before it was established. This is
an exception to the rule stating that "side effects due to a service call that returns an error
code do not arise." In this case, an error is reported to the accepting task when the task
tries to terminate the rendezvous. This also applies to the case where a task is forcibly
released from the termination waiting state for the rendezvous with rel_wai after a
rendezvous had been established with cal_por or tcal_por. In this case, the service call
returns an E_RLWAI error. On the contrary, since deleting a rendezvous port does not
affect an already established rendezvous, the service call never returns an E_DLT error
once the rendezvous is established.
When calptn is specified as 0, an E_PAR error is returned. An E_PAR error is also
returned when cmsgsz is greater than the maximum calling message size. cmsgsz may be
specified as 0.

204

µITRON4.0 Specification Ver. 4.03.00

[Supplemental Information]

When there is a possibility that a rendezvous might be forwarded, the application should
allocate enough memory area, starting from the address specified by msg, to store a return
message with the maximum size regardless of the expected return message size. The
application should also assume that the contents of the allocated memory area will be
destroyed. This is because when the rendezvous is forwarded, the calling message may be
copied to the memory area starting from the address specified by msg after the rendezvous
was forwarded.
tcal_por acts the same as cal_por if TMO_FEVR is specified in tmout.

[Differences from the µITRON3.0 Specification]

The interpretation of timeout in tcal_por has been changed. As a result, pcal_por became
unnecessary and is removed from the µITRON4.0 Specification. tcal_por returns an
E_PAR error if TMO_POL is specified in tmout.
A calling message with a size of 0 is now allowed.
The return message size (rmsgsz) is now returned as the return value of the service calls.
The data type of calptn has been changed from UINT to RDVPTN. The data type of
cmsgsz and rmsgsz has been changed from INT to UINT (the actual type though is
ER_UINT for rmsgsz). The order of parameters and return parameters has been changed.

[Rationale]

The reason an E_PAR error is returned when 0 is specified for calptn is that a rendezvous
is never established in this case, which in turn would never release the invoking task from
the calling waiting state for the rendezvous.

205

µITRON4.0 Specification Ver. 4.03.00

acp_por Accept Rendezvous

pacp_por Accept Rendezvous (Polling)

tacp_por Accept Rendezvous (with Timeout)

[C Language API]

 ER_UINT cmsgsz = acp_por (ID porid, RDVPTN acpptn,
 RDVNO *p_rdvno, VP msg) ;
 ER_UINT cmsgsz = pacp_por (ID porid, RDVPTN acpptn,
 RDVNO *p_rdvno, VP msg) ;
 ER_UINT cmsgsz = tacp_por (ID porid, RDVPTN acpptn,
 RDVNO *p_rdvno, VP msg, TMO tmout) ;

[Parameter]

ID porid ID number of the rendezvous port where a
rendezvous is accepted

RDVPTN acpptn Bit pattern of the rendezvous condition on the
accepting side

VP msg Start address of the memory area to store the calling
message

TMO tmout Specified timeout (only tacp_por)

[Return Parameter]

ER_UINT cmsgsz Calling message size (in bytes, positive value or 0) or
error code

RDVNO rdvno Rendezvous number of the established rendezvous

[Error Code]

E_ID Invalid ID number (porid is invalid or unusable)
E_NOEXS Non-existent object (specified rendezvous port is not registered)
E_PAR Parameter error (acpptn, msg, or tmout is invalid)
E_RLWAI Forced release from waiting (rel_wai is accepted while waiting;

except pacp_por)
E_TMOUT Polling failure or timeout (except acp_por)
E_DLT Waiting object deleted (rendezvous port is deleted while

waiting; except pacp_por)

[Functional Description]

These service calls accept a rendezvous at the rendezvous port specified by porid with the
rendezvous condition specified by acpptn. The calling message is stored in the memory
area starting from the address specified by msg and its size in bytes is returned through

206

µITRON4.0 Specification Ver. 4.03.00

cmsgsz. The rendezvous number of the established rendezvous is returned through rdvno.
Specifically, the following actions are performed.
If there is a task in the calling waiting state for the rendezvous at the rendezvous port,
these service calls establish a rendezvous if the rendezvous condition specified by acpptn
matches the rendezvous condition of the waiting task. If there are more than one task in
the calling waiting state for the rendezvous, these service calls check their rendezvous
conditions one by one starting from the task at the head of the call-wait queue. The service
calls establish a rendezvous with the first task that matches the rendezvous condition.
When a rendezvous is established, these service calls assign a rendezvous number to the
established rendezvous and return the rendezvous number through rdvno. The service calls
also copy the calling message of the calling task, which was in the calling waiting state for
the rendezvous, to the memory area starting from the address specified by msg and return
the calling message size through cmsgsz. The task is then removed from the rendezvous
port's call-wait queue and is moved to the termination waiting state for the rendezvous.
If no tasks are waiting to call a rendezvous at the specified rendezvous port, or if none of
the waiting tasks has a matching rendezvous condition, the invoking task is placed in the
accept-wait queue and is moved to the accepting waiting state for the rendezvous. If there
are already tasks in the accept-wait queue, the invoking task is placed at the tail of the
accept-wait queue.
pacp_por is a polling service call with the same functionality as acp_por. tacp_por has the
same functionality as acp_por with an additional timeout feature. tmout can be set to a
positive number indicating a timeout duration or it can be set to TMO_POL (= 0) or
TMO_FEVR (= –1).
An E_PAR error is returned when acpptn is specified as 0.

[Supplemental Information]

A task that has established a rendezvous with another task with acp_por may accept a
rendezvous again with acp_por before the previous rendezvous has been terminated. The
new rendezvous can be accepted at either the same rendezvous port as the previously
established one or at another rendezvous port. If the same rendezvous port is used, the task
can have multiple established rendezvous at the same rendezvous port. Furthermore, the
calling task of the previously established rendezvous can be released from waiting either
by timeout or forced release. When the task calls the rendezvous again, the task can have
multiple rendezvous with the same task at the same rendezvous port.
tacp_por acts the same as pacp_por if TMO_POL is specified in tmout, and as long as no
E_CTX error occurs. Also, tacp_por acts the same as acp_por if TMO_FEVR is specified
in tmout.

[Differences from the µITRON3.0 Specification]

The calling message size (cmsgsz) is now returned as the return value of the service calls.
The data type of acpptn has been changed from UINT to RDVPTN. The data type of

207

µITRON4.0 Specification Ver. 4.03.00

rdvno has been changed from RNO to RDVNO. The data type of cmsgsz has been
changed from INT to UINT (the actual type though is ER_UINT). The order of
parameters and return parameters has been changed.

[Rationale]

The reason an E_PAR error is returned when 0 is specified for acpptn is that a rendezvous
is never established in this case, which in turn would never release the invoking task from
the accepting waiting state for the rendezvous.

208

µITRON4.0 Specification Ver. 4.03.00

fwd_por Forward Rendezvous

[C Language API]

 ER ercd = fwd_por (ID porid, RDVPTN calptn, RDVNO rdvno,
 VP msg, UINT cmsgsz) ;

[Parameter]

ID porid ID number of the rendezvous port to which the
rendezvous is forwarded

RDVPTN calptn Bit pattern of the rendezvous condition on the calling
side

RDVNO rdvno Rendezvous number to be forwarded
VP msg Start address of the calling message
UINT cmsgsz Calling message size (in bytes)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (porid is invalid or unusable)
E_NOEXS Non-existent object (specified rendezvous port is not registered)
E_PAR Parameter error (calptn, msg, or cmsgsz is invalid)
E_ILUSE Illegal service call use (maximum return message size of the

 rendezvous port to which the rendezvous is forwarded is too
large)

E_OBJ Object state error (rdvno is invalid)

[Functional Description]

This service call forwards the rendezvous specified by rdvno with the rendezvous
condition specified by calptn to the rendezvous port specified by porid. The start address
of the calling message after forwarding is specified by msg and its size in bytes is
specified by cmsgsz.
When fwd_por is invoked, the result is the same as if the task that called the rendezvous
specified by rdvno (called task A below) has called the rendezvous port specified by
portid with the rendezvous condition calptn and the calling message msg.
The operations of fwd_por is described in detail as follows.
If a task is waiting to accept a rendezvous at the rendezvous port to which the rendezvous
is forwarded, and if the rendezvous condition of the waiting task and that specified by
calptn match, this service call establishes a rendezvous between the task and task A. If
there are more than one task waiting to accept a rendezvous, this service call checks their
rendezvous conditions one by one starting from the task at the head of the accept-wait

209

µITRON4.0 Specification Ver. 4.03.00

queue. The service call establishes a rendezvous with the first task that matches the
rendezvous condition.
When a rendezvous is established, this service call assigns a rendezvous number to the
established rendezvous and moves task A to the termination waiting state for the
rendezvous. The service call also copies the calling message specified by msg and cmsgsz
into the memory area specified by the accepting task, which was in the accepting waiting
state for the rendezvous. The service call then releases the task from waiting. The released
task receives the calling message size (cmsgsz) as the return value of the service call that
caused it to wait in the accept-wait queue and the assigned rendezvous number as the
rendezvous number of the established rendezvous.
If no tasks are waiting to accept a rendezvous at the rendezvous port to which the
rendezvous is forwarded, or if none of the waiting tasks has a matching rendezvous
condition, task A is placed in the call-wait queue of the rendezvous port to which the
rendezvous is forwarded, and is moved to the calling waiting state for the rendezvous. The
calling message specified by msg and cmsgsz is copied to the memory area specified by
task A to store the return message.
If there are already tasks in the rendezvous port's call-wait queue, task A is placed in the
call-wait queue as described below. If the rendezvous port's attribute has TA_TFIFO (=
0x00) set, task A is placed at the tail of the call-wait queue. If the rendezvous port's
attribute has TA_TPRI (= 0x01) set, task A is placed in the call-wait queue in the order of
the task's priority. If the call-wait queue contains tasks with the same priority as task A,
task A is placed after those tasks.
The maximum return message size of the rendezvous port to which the rendezvous is
forwarded must be smaller than or equal to that of the rendezvous port at which the
forwarded rendezvous was established. Otherwise an E_ILUSE error is returned.
When cmsgsz is larger than the maximum calling message size of the rendezvous port to
which the rendezvous is forwarded, or when cmsgsz is larger than the return message size
of the rendezvous port at which the forwarded rendezvous was established, an E_PAR
error is returned. cmsgsz may be specified as 0.
A rendezvous number accepted by another task may also be specified in rdvno. In other
words, the task that invokes fwd_por and forwards the rendezvous does not necessarily
correspond to the task that has accepted the rendezvous.
If the task that has called the rendezvous specified by rdvno is not in the termination
waiting state for the same rendezvous, an E_OBJ error is returned. An E_OBJ error is also
returned when the value specified by rdvno cannot be interpreted as a rendezvous number.
An E_PAR error is returned when calptn is specified as 0.

[Supplemental Information]

Since the result of invoking fwd_por is the same as if task A has called the rendezvous
port, the record of forwarding a rendezvous is not necessary. For this reason, a forwarded
rendezvous can be forwarded again.

210

µITRON4.0 Specification Ver. 4.03.00

Since the execution of fwd_por ends immediately, the task that invokes fwd_por never
enters the WAITING state. The application can reuse the area in which the calling
message was stored for other purposes after fwd_por returns because the calling message
specified by msg and cmsgsz is copied to another area during the execution of fwd_por.
After fwd_por returns, the task that invoked fwd_por is detached from the following: the
rendezvous port at which the rendezvous was established, the rendezvous port to which
the rendezvous is forwarded, the forwarded rendezvous, and the newly established
rendezvous if any.
A timeout specified for tcal_por applies to the interval from the invocation of tcal_por to
the termination of the rendezvous. Therefore, if task A called a rendezvous by tcal_por,
the specified timeout continues to be valid after the rendezvous is forwarded.
The rendezvous port to which the rendezvous is forwarded may be the same rendezvous
port at which the rendezvous was originally established. In this case, the accepted
rendezvous is returned to the original state before it was established. However, the
rendezvous pattern and the calling message are changed to those specified for fwd_por.
Even if the task that has called the rendezvous is released from the termination waiting
state for the rendezvous due to a timeout or a forced release after the rendezvous is
established, its release would not be notified to the task that has accepted the rendezvous.
In this case, an E_OBJ error is returned if the task that accepted the rendezvous invokes
fwd_por and tries to forward the rendezvous. The task can determine whether the calling
task for the rendezvous is still in the termination waiting state for the specified rendezvous
by invoking ref_rdv.
Figure 4-4 illustrates a server distribution task using fwd_por.

[Differences from the µITRON3.0 Specification]

When task A is moved to the calling waiting state for a rendezvous, the calling message
specified by msg and cmsgsz is now defined to be stored in the area in which task A stores
the return message.
The handling of timeout in fwd_por has been changed according to the changed
interpretation of timeout for tcal_por.
The fact that a task other than the task that has accepted the rendezvous can forward the
rendezvous is now clarified.
The calling message size can now be specified as 0.
The data types of calptn, rdvno, and cmsgsz have been changed from UINT to RDVPTN,
from RNO to RDVNO, and from INT to UINT, respectively.

211

µITRON4.0 Specification Ver. 4.03.00

Client task

cal_por acp_por

rpl_rdv

fwd_por fwd_por fwd_por

Server distribution task

Server

task for

Service A

acp_por

rpl_rdv

Server

task for

Service B

acp_por

rpl_rdv

Server

task for

Service C

acp_por

port

port port port

Figure 4-4. Server Distribution Task Using fwd_por

[Rationale]

In order to reduce the number of states the system should handle, the specification does
not require the record of forwarding a rendezvous. In cases where the record is necessary,
the rendezvous may be called, instead of forwarded by fwd_por, using a nested cal_por.
The following states the reason why an error is returned when the maximum return
message size of the rendezvous port to which the rendezvous is forwarded is larger than
that of the rendezvous port at which the rendezvous was established. Task A must allocate
a memory area that can hold a return message of the maximum allowed size from the
rendezvous port that task A first called. If the maximum return message size of the
rendezvous port to which the rendezvous is forwarded is larger, the return message may
not fit in the area allocated by task A.
An error is returned if cmsgsz is larger than the maximum return message size of the
rendezvous port at which the rendezvous was established. This is because when task A is
moved to the calling waiting state for a rendezvous, task A copies the calling message
specified by msg and cmsgsz to the area it allocated for storing the return message.

212

µITRON4.0 Specification Ver. 4.03.00

rpl_rdv Terminate Rendezvous

[C Language API]

 ER ercd = rpl_rdv (RDVNO rdvno, VP msg, UINT rmsgsz) ;

[Parameter]

RDVNO rdvno Rendezvous number to be terminated
VP msg Start address of the return message
UINT rmsgsz Return message size (in bytes)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_PAR Parameter error (msg or rmsgsz is invalid)
E_OBJ Object state error (rdvno is invalid)

[Functional Description]

This service call terminates the rendezvous to which the rendezvous number specified by
rdvno is assigned. The start address of the return message is specified by msg and its size
in bytes is specified by rmsgsz.
Specifically, if the task which has called the rendezvous specified by rdvno is in the
termination waiting state for the rendezvous, this service call copies the return message
specified by msg and rmsgsz to the area allocated by the calling task to store the return
message. The service call then releases the task from waiting. The released task receives
the return message size (rmsgsz) as the return value of the service call that caused it to
wait.
If the task that has called the rendezvous specified by rdvno is not in the termination
waiting state for the same rendezvous, an E_OBJ error is returned. An E_OBJ error is also
returned when the value specified by rdvno cannot be interpreted as a rendezvous number.
A rendezvous number accepted by another task may also be specified in rdvno. In other
words, the task that invokes rpl_rdv and terminates the rendezvous does not necessarily
correspond to the task that has accepted the rendezvous.
When rmsgsz is larger than the maximum return message size of the rendezvous port to
which the rendezvous was established, an E_PAR error is returned. rmsgsz may be
specified as 0.

[Supplemental Information]

Even if the task that has called the rendezvous is released from the termination waiting
state for the rendezvous due to a timeout or a forced release after the rendezvous is

213

µITRON4.0 Specification Ver. 4.03.00

established, its release would not be notified to the task that has accepted the rendezvous.
In this case, an E_OBJ error is returned if the task that accepted the rendezvous invokes
rpl_rdv and tries to terminate the rendezvous. The task can determine whether the calling
task for the rendezvous is still in the termination waiting state by invoking ref_rdv.
After the rendezvous is established, both the calling and accepting tasks are detached from
the rendezvous port. However, the maximum return message size for the rendezvous port
is necessary for checking if the return message size (rmsgsz) is smaller than or equal to the
maximum size. For this reason, the maximum return message size must be saved in
conjunction with the rendezvous. The maximum size, for example, can be stored in the
TCB of the task in the calling waiting state or in an area (such as the stack area) that can
be referenced from the TCB.

[Differences from the µITRON3.0 Specification]

The fact that a task other than the task that has accepted the rendezvous can terminate the
rendezvous is now clarified.
The return message size can now be specified as 0.
The data types of rdvno and rmsgsz have been changed from RNO to RDVNO and from
INT to UINT, respectively.

[Rationale]

A rendezvous port ID is not passed as a parameter to rpl_rdv because the task that has
called the rendezvous is detached from the rendezvous port once the rendezvous is
established.
When rdvno is invalid, an E_OBJ error is returned instead of an E_PAR error. This is
because an invalid value of rdvno cannot be detected statically.

214

µITRON4.0 Specification Ver. 4.03.00

ref_por Reference Rendezvous Port State

[C Language API]

 ER ercd = ref_por (ID porid, T_RPOR *pk_rpor) ;

[Parameter]

ID porid ID number of the rendezvous port to be referenced
T_RPOR * pk_rpor Pointer to the packet returning the rendezvous port

state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rpor includes (T_RPOR type)

ID ctskid ID number of the task at the head of the call-wait
queue

ID atskid ID number of the task at the head of the accept-wait
queue

(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (porid is invalid or unusable)
E_NOEXS Non-existent object (specified rendezvous port is not registered)
E_PAR Parameter error (pk_rpor is invalid)

[Functional Description]

This service call references the state of the rendezvous port specified by porid. The state
of the rendezvous port is returned through the packet pointed to by pk_rpor.
The ID number of the task at the head of the rendezvous port's call-wait queue is returned
through ctskid. If no tasks are waiting to call a rendezvous at the rendezvous port,
TSK_NONE (= 0) is returned instead.
The ID number of the task at the head of the rendezvous port's accept-wait queue is
returned through atskid. If no tasks are waiting to accept a rendezvous at the rendezvous
port, TSK_NONE (= 0) is returned instead.

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The ID
number of the task at the head of each wait queue is now returned instead of a boolean
value indicating whether a task is waiting or not. Based on this replacement, the names
and data types of the return parameters have been changed. The order of parameters and
return parameters has been changed.

215

µITRON4.0 Specification Ver. 4.03.00

ref_rdv Reference Rendezvous State

[C Language API]

 ER ercd = ref_rdv (RDVNO rdvno, T_RRDV *pk_rrdv) ;

[Parameter]

RDVNO rdvno Rendezvous number of the rendezvous to be
referenced

T_RRDV * pk_rrdv Pointer to the packet returning the rendezvous state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rrdv includes (T_RRDV type)

ID wtskid ID number of the task in the termination waiting state
for the rendezvous

(Other implementation-specific information may be added.)

[Error Code]

E_PAR Parameter error (pk_rrdv is invalid)

[Functional Description]

This service call references the state of the rendezvous to which the rendezvous number
specified by rdvno is assigned. The state of the rendezvous is returned through the packet
pointed to by pk_rrdv.
When the task that has called the rendezvous specified by rdvno is in the termination
waiting state for the same rendezvous, the ID number of the task is returned through
wtskid. If the task is not in the termination waiting state for the same rendezvous, or if the
rdvno cannot be interpreted as a rendezvous number, TSK_NONE (= 0) is returned
instead.

[Supplemental Information]

When this service call invoked with a rendezvous number returns a task ID through wtskid,
rpl_rdv or fwd_por invoked with the same rendezvous number never returns an E_OBJ
error.

[Differences from the µITRON3.0 Specification]

ref_rdv has been newly added. The ITRON2 Specification had a corresponding service
call, rdv_sts.

216

µITRON4.0 Specification Ver. 4.03.00

4.6 Memory Pool Management Functions

Memory pool management functions provide dynamic memory management by software.
Memory pool management functions include fixed-sized memory pools and variable-sized
memory pools.

[Supplemental Information]

The µITRON4.0 Specification does not specify functions for multiple logical memory
spaces or a hardware memory management unit (MMU).

4.6.1 Fixed-Sized Memory Pools

A fixed-sized memory pool is an object for dynamically managing fixed-sized memory
blocks. The fixed-sized memory pool functions include the ability to create and delete a
fixed-sized memory pool, to acquire and release a memory block to/from a fixed-sized
memory pool, and to reference the state of a fixed-sized memory pool. A fixed-sized
memory pool is an object identified by an ID number. The ID number of a fixed-sized
memory pool is called the fixed-sized memory pool ID.
A fixed-sized memory pool has an associated memory area where fixed-sized memory
blocks are allocated (this is called fixed-sized memory pool area or simply memory pool
area) and an associated wait queue for acquiring a memory block. If there are no memory
blocks available, a task trying to acquire a memory block from the fixed-sized memory
pool will be in the waiting state for a fixed-sized memory block until a memory block is
released. The task waiting to acquire a fixed-sized memory block is placed in the fixed-
sized memory pool's wait queue.
The following kernel configuration macro is defined for use with the fixed-sized memory
pool functions:

 SIZE mpfsz = TSZ_MPF (UINT blkcnt, UINT blksz)
 This macro returns the total required size of the fixed-size memory pool area in

bytes necessary to allocate blkcnt memory blocks each of size blksz bytes.
The following data type packets are defined for creating and referencing fixed-sized
memory pools:

 typedef struct t_cmpf {
 ATR mpfatr ; /* Fixed-sized memory pool attribute */
 UINT blkcnt ; /* Total number of memory blocks */
 UINT blksz ; /* Memory block size (in bytes) */
 VP mpf ; /* Start address of the fixed-sized memory
 pool area */
 /* Other implementation-specific fields may be added. */
 } T_CMPF ;
 typedef struct t_rmpf {

217

µITRON4.0 Specification Ver. 4.03.00

 ID wtskid ; /* ID number of the task at the head of the
 fixed-sized memory pool's wait queue */
 UINT fblkcnt ; /* Number of free memory blocks in the
 fixed-sized memory pool */
 /* Other implementation-specific fields may be added. */
 } T_RMPF ;

The following represents the functions codes for the fixed-sized memory pool service
calls:

TFN_CRE_MPF –0x45 Function code of cre_mpf
TFN_ACRE_MPF –0xc9 Function code of acre_mpf
TFN_DEL_MPF –0x46 Function code of del_mpf
TFN_GET_MPF –0x49 Function code of get_mpf
TFN_PGET_MPF –0x4a Function code of pget_mpf
TFN_TGET_MPF –0x4b Function code of tget_mpf
TFN_REL_MPF –0x47 Function code of rel_mpf
TFN_REF_MPF –0x4c Function code of ref_mpf

[Standard Profile]

The Standard Profile requires support for fixed-sized memory pool functions except for
dynamic creation and deletion of a fixed-sized memory pool (cre_mpf, acre_mpf,
del_mpf) and reference of a fixed-sized memory pool state (ref_mpf).
The Standard Profile does not require TSZ_MPF to be defined.

[Supplemental Information]

When using fixed-sized memory pool functions for memory blocks of different sizes, a
fixed-sized memory pool should be created for each size.

218

µITRON4.0 Specification Ver. 4.03.00

CRE_MPF Create Fixed-Sized Memory Pool (Static API) [S]
cre_mpf Create Fixed-Sized Memory Pool

acre_mpf Create Fixed-Sized Memory Pool (Automatic ID Assignment)

[Static API]

 CRE_MPF (ID mpfid, { ATR mpfatr, UINT blkcnt, UINT blksz,
 VP mpf }) ;

[C Language API]

 ER ercd = cre_mpf (ID mpfid, T_CMPF *pk_cmpf) ;
 ER_ID mpfid = acre_mpf (T_CMPF *pk_cmpf) ;

[Parameter]

ID mpfid ID number of the fixed-sized memory pool to be
created (except acre_mpf)

T_CMPF * pk_cmpf Pointer to the packet containing the fixed-sized
memory pool creation information (In CRE_MPF,
packet contents must be directly specified.)

pk_cmpf includes (T_CMPF type)
ATR mpfatr Fixed-sized memory pool attribute
UINT blkcnt Total number of memory blocks
UINT blksz Memory block size (in bytes)
VP mpf Start address of the fixed-sized memory pool area
(Other implementation-specific information may be added.)

[Return Parameter]

cre_mpf:
ER ercd E_OK for normal completion or error code

acre_mpf:
ER_ID mpfid ID number (positive value) of the created fixed-sized

memory pool or error code

[Error Code]

E_ID Invalid ID number (mpfid is invalid or unusable; only cre_mpf)
E_NOID No ID number available (there is no fixed-sized memory pool

ID assignable; only acre_mpf)
E_NOMEM Insufficient memory (memory pool area cannot be allocated)
E_RSATR Reserved attribute (mpfatr is invalid or unusable)
E_PAR Parameter error (pk_cmpf, blkcnt, blksz, or mpf is invalid)
E_OBJ Object state error (specified fixed-sized memory pool is already

registered; only cre_mpf)

219

µITRON4.0 Specification Ver. 4.03.00

[Functional Description]

These service calls create a fixed-sized memory pool with an ID number specified by
mpfid based on the information contained in the packet pointed to by pk_cmpf. mpfatr is
the attribute of the fixed-sized memory pool. blkcnt is the total number of memory blocks.
blksz is the size in bytes of each memory block. mpf is the start address of the fixed-sized
memory pool area.
In CRE_MPF, mpfid is an integer parameter with automatic ID assignment. mpfatr is a
preprocessor constant expression parameter.
acre_mpf assigns a fixed-sized memory pool ID from the pool of unassigned fixed-sized
memory pool IDs and returns the assigned fixed-sized memory pool ID.
mpfatr can be specified as (TA_TFIFO || TA_TPRI). If TA_TFIFO (= 0x00) is specified,
the fixed-sized memory pool's wait queue will be in FIFO order. If TA_TPRI (= 0x01) is
specified, the fixed-sized memory pool's wait queue will be in task priority order.
The necessary area to hold blkcnt number of memory blocks, each of size blksz bytes,
starts from mpf and is used as the fixed-size memory pool area. An application program
can calculate the size of the memory pool area necessary to hold blkcnt number of
memory blocks, each of size blksz bytes, by using the TSZ_MPF macro. If mpf is
specified as NULL (= 0), the kernel allocates the necessary memory area.
When blkcnt or blksz is specified as 0 or a value greater than the maximum
implementation-defined value, an E_PAR error is returned.

[Standard Profile]

The Standard Profile does not require support for these functions when a value other than
NULL is specified in mpf.

[Differences from the µITRON3.0 Specification]

The start address of the memory pool area (mpf) has been added to the fixed-sized
memory pool creation information. The extended information has been removed. The
names of the parameters have been changed from mpfcnt to blkcnt and from blfsz to blksz,
respectively. In addition, their data types have been changed from INT to UINT.
acre_mpf has been newly added.

220

µITRON4.0 Specification Ver. 4.03.00

del_mpf Delete Fixed-Sized Memory Pool

[C Language API]

 ER ercd = del_mpf (ID mpfid) ;

[Parameter]

ID mpfid ID number of the fixed-sized memory pool to be
deleted

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (mpfid is invalid or unusable)
E_NOEXS Non-existent object (specified fixed-sized memory pool is not

registered)

[Functional Description]

This service call deletes the fixed-sized memory pool specified by mpfid. If the memory
pool area was allocated by the kernel, the area is released.

[Supplemental Information]

See Section 3.8 for information regarding handling tasks that are waiting for a memory
block from the fixed-sized memory pool when the fixed-sized memory pool is deleted.

221

µITRON4.0 Specification Ver. 4.03.00

get_mpf Acquire Fixed-Sized Memory Block [S] [B]
pget_mpf Acquire Fixed-Sized Memory Block (Polling) [S] [B]
tget_mpf Acquire Fixed-Sized Memory Block (with Timeout) [S]

[C Language API]

 ER ercd = get_mpf (ID mpfid, VP *p_blk) ;
 ER ercd = pget_mpf (ID mpfid, VP *p_blk) ;
 ER ercd = tget_mpf (ID mpfid, VP *p_blk, TMO tmout) ;

[Parameter]

ID mpfid ID number of the fixed-sized memory pool from
which a memory block is acquired

TMO tmout Specified timeout (only tget_mpf)

[Return Parameter]

ER ercd E_OK for normal completion or error code
VP blk Start address of the acquired memory block

[Error Code]

E_ID Invalid ID number (mpfid is invalid or unusable)
E_NOEXS Non-existent object (specified fixed-sized memory pool is not

registered)
E_PAR Parameter error (p_blk or tmout is invalid)
E_RLWAI Forced release from waiting (rel_wai is accepted while waiting;

except pget_mpf)
E_TMOUT Polling failure or timeout (except get_mpf)
E_DLT Waiting object deleted (fixed-sized memory pool is deleted

while waiting; except pget_mpf)

[Functional Description]

These service calls acquire a memory block from the fixed-sized memory pool specified
by mpfid. The size of the memory block is specified during the creation of the fixed-sized
memory pool. The start address of the memory block is returned through blk. Specifically,
when free memory blocks are available in the specified fixed-sized memory pool area, one
of the memory blocks is selected and takes on an acquired status, and the start address of
the memory block is returned through blk. If there are no memory blocks available, the
invoking task is placed in the fixed-sized memory pool's wait queue and is moved to the
waiting state for a fixed-sized memory block.
If there are already tasks in the fixed-sized memory pool's wait queue, the invoking task is
placed in the wait queue as described below. When the fixed-sized memory pool's
attribute has TA_TFIFO (= 0x00) set, the invoking task is placed at the tail of the wait

222

µITRON4.0 Specification Ver. 4.03.00

queue. When the fixed-sized memory pool's attribute has TA_TPRI (= 0x01) set, the
invoking task is placed in the wait queue in the order of the task's priority. If the wait
queue contains tasks with the same priority as the invoking task, the invoking task is
placed after those tasks.
pget_mpf is a polling service call with the same functionality as get_mpf. tget_mpf has the
same functionality as get_mpf with an additional timeout feature. tmout can be set to a
positive number indicating a timeout duration or it can be set to TMO_POL (= 0) or
TMO_FEVR (= –1).

[Supplemental Information]

The size of the acquired memory block should be at least larger than the memory block
size that was specified during the creation of the fixed-sized memory pool. Since these
service calls do not clear the memory block, its contents are undefined.
tget_mpf acts the same as pget_mpf if TMO_POL is specified in tmout, and as long as no
E_CTX error occurs. Also, tget_mpf acts the same as get_mpf if TMO_FEVR is specified
in tmout.

[Differences from the µITRON3.0 Specification]

The names of the service calls have been changed from get_blf, pget_blf, and tget_blf to
get_mpf, pget_mpf, and tget_mpf, respectively. The order of parameters and return
parameters has been changed.

223

µITRON4.0 Specification Ver. 4.03.00

rel_mpf Release Fixed-Sized Memory Block [S] [B]

[C Language API]

 ER ercd = rel_mpf (ID mpfid, VP blk) ;

[Parameter]

ID mpfid ID number of the fixed-sized memory pool to which
the memory block is released

VP blk Start address of the memory block to be released

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (mpfid is invalid or unusable)
E_NOEXS Non-existent object (specified fixed-sized memory pool is not

registered)
E_PAR Parameter error (blk is invalid, release to a different memory

pool, or specified address is not the start address of an acquired
memory block)

[Functional Description]

This service call releases the memory block starting from the address specified by blk to
the fixed-sized memory pool specified by mpfid.
If there are already tasks in the fixed-sized memory pool's wait queue, this service call lets
the task at the head of the wait queue acquire the released memory block and releases the
task from waiting. The released task receives E_OK from the service call that caused it to
wait in the fixed-sized memory pool's wait queue. It also receives the value specified by
blk as the start address of the acquired memory block.
The fixed-sized memory pool to which the memory block is released must be the same
fixed-sized memory pool from which the memory block was acquired. Otherwise, an
E_PAR error is returned.
The start address of the memory block to be released must be the start address of a
memory block acquired by get_mpf, pget_mpf, or tget_mpf. In addition, the memory
block must not be a released memory block. The behavior is undefined when other
addresses are specified in blk. When an error should be reported, an E_PAR error is
returned.

[Differences from the µITRON3.0 Specification]

The name of the service call has been changed from rel_blf to rel_mpf. The name of the
parameter has been changed from blf to blk.

224

µITRON4.0 Specification Ver. 4.03.00

ref_mpf Reference Fixed-Sized Memory Pool State

[C Language API]

 ER ercd = ref_mpf (ID mpfid, T_RMPF *pk_rmpf) ;

[Parameter]

ID mpfid ID number of the fixed-sized memory pool to be
referenced

T_RMPF * pk_rmpf Pointer to the packet returning the fixed-sized
memory pool state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rmpf includes (T_RMPF type)

ID wtskid ID number of the task at the head of the wait queue
UINT fblkcnt Number of free memory blocks
(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (mpfid is invalid or unusable)
E_NOEXS Non-existent object (specified fixed-sized memory pool is not

registered)
E_PAR Parameter error (pk_rmpf is invalid)

[Functional Description]

This service call references the state of the fixed-sized memory pool specified by mpfid.
The state of the fixed-sized memory pool is returned through the packet pointed to by
pk_rmpf.
The ID number of the task at the head of the fixed-sized memory pool's wait queue is
returned through wtskid. If no tasks are waiting to acquire a memory block, TSK_NONE
(= 0) is returned instead.
The number of free memory blocks in the fixed-sized memory pool area is returned
through fblkcnt.

[Supplemental Information]

A fixed-sized memory pool cannot have wtskid ≠ TSK_NONE and fblkcnt ≠ 0 at the same
time.

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The ID
number of the task at the head of the wait queue is now returned instead of a boolean

225

µITRON4.0 Specification Ver. 4.03.00

value indicating whether a task is waiting or not. Based on this replacement, the names
and data types of the return parameters have been changed.
The name of the return parameter has been changed from frbcnt to fblkcnt, and its data
type has been changed from INT to UNIT. The order of parameters and return parameters
has been changed.

226

µITRON4.0 Specification Ver. 4.03.00

4.6.2 Variable-Sized Memory Pools

A variable-sized memory pool is an object for dynamically managing variable-sized
memory blocks. The variable-sized memory pool functions include the ability to create
and delete a variable-sized memory pool, to acquire and release a memory block to/from a
variable-sized memory pool, and to reference the state of a variable-sized memory pool. A
variable-sized memory pool is an object identified by an ID number. The ID number of a
variable-sized memory pool is called the variable-sized memory pool ID.
A variable-sized memory pool has an associated memory area where variable-sized
memory blocks are allocated (this is called variable-sized memory pool area or simply
memory pool area) and an associated wait queue for acquiring a memory block. If there
are no memory blocks available, a task trying to acquire a memory block from the
variable-sized memory pool will be in the waiting state for a variable-sized memory block
until enough memory blocks are released. The task waiting to acquire a variable-sized
memory block is placed in the variable-sized memory pool's wait queue.
The following kernel configuration macro is defined for use with variable-sized memory
pool functions:

 SIZE mplsz = TSZ_MPL (UINT blkcnt, UINT blksz)
 This macro returns an approximate size in bytes necessary to allocate blkcnt

memory blocks each of size blksz bytes.

This macro is only an estimation for determining the size of the memory pool area. It
cannot be used to determine the total required size of a memory pool area to allocate
memory blocks with different sizes. In addition, when the memory pool area becomes
fragmented, the specified number of memory blocks cannot be allocated.
The following data type packets are defined for creating and referencing variable-sized
memory pools:

 typedef struct t_cmpl {
 ATR mplatr ; /* Variable-sized memory pool attribute */
 SIZE mplsz ; /* Size of the variable-sized memory pool
 area (in bytes) */
 VP mpl ; /* Start address of the variable-sized
 memory pool area */
 /* Other implementation-specific fields may be added. */
 } T_CMPL ;
 typedef struct t_rmpl {
 ID wtskid ; /* ID number of the task at the head of the
 variable-sized memory pool's wait queue */
 SIZE fmplsz ; /* Total size of free memory blocks in the
 variable-sized memory pool (in bytes) */
 UINT fblksz ; /* Maximum memory block size available

227

µITRON4.0 Specification Ver. 4.03.00

 (in bytes) */
 /* Other implementation-specific fields may be added. */
 } T_RMPL ;

The following represents the functions codes for the variable-sized memory pool service
calls:

TFN_CRE_MPL –0xa1 Function code of cre_mpl
TFN_ACRE_MPL –0xca Function code of acre_mpl
TFN_DEL_MPL –0xa2 Function code of del_mpl
TFN_GET_MPL –0xa5 Function code of get_mpl
TFN_PGET_MPL –0xa6 Function code of pget_mpl
TFN_TGET_MPL –0xa7 Function code of tget_mpl
TFN_REL_MPL –0xa3 Function code of rel_mpl
TFN_REF_MPL –0xa8 Function code of ref_mpl

[Standard Profile]

The Standard Profile does not require support for variable-sized memory pool functions.

[Supplemental Information]

Tasks that are waiting for a memory block from a variable-sized memory pool will acquire
a memory block in the order that the tasks are placed in the wait queue. An example is
when task A tries to acquire a 400-byte memory block from a variable-sized memory pool
and task B tries to acquire a 100-byte memory block from the same variable-sized
memory pool. Assume that these tasks are placed in the wait queue so that task A is ahead
of task B. A third task then releases a 200-byte memory block to the variable-sized
memory pool, resulting in 200 bytes of available area in the variable-sized memory pool.
Even though task B needs only 100 bytes to acquire a memory block, it cannot do so until
task A has acquired a memory block. However, an implementation-specific extension can
add an attribute to the variable-sized memory pool that will allow task B to acquire a
memory block before task A in this example.

[Differences from the µITRON3.0 Specification]

Whether tasks should acquire memory blocks according to their order in the wait queue or
according to which task can acquire a memory block first was implementation-dependent
in the µITRON3.0 Specification. The µITRON4.0 Specifications has determined the
former order to be standard.

228

µITRON4.0 Specification Ver. 4.03.00

CRE_MPL Create Variable-Sized Memory Pool (Static API)

cre_mpl Create Variable-Sized Memory Pool

acre_mpl Create Variable-Sized Memory Pool (Automatic ID Assignment)

[Static API]

 CRE_MPL (ID mplid, { ATR mplatr, SIZE mplsz, VP mpl }) ;

[C Language API]

 ER ercd = cre_mpl (ID mplid, T_CMPL *pk_cmpl) ;
 ER_ID mplid = acre_mpl (T_CMPL *pk_cmpl) ;

[Parameter]

ID mplid ID number of the variable-sized memory pool to be
created (except acre_mpl)

T_CMPL * pk_cmpl Pointer to the packet containing the variable-sized
memory pool creation information (In CRE_MPL,
packet contents must be directly specified.)

pk_cmpl includes (T_CMPL type)
ATR mplatr Variable-sized memory pool attribute
SIZE mplsz Size of the variable-sized memory pool area (in

bytes)
VP mpl Start address of the variable-sized memory pool area
(Other implementation-specific information may be added.)

[Return Parameter]

cre_mpl:
ER ercd E_OK for normal completion or error code

acre_mpl:
ER_ID mplid ID number (positive value) of the created variable-

sized memory pool or error code

[Error Code]

E_ID Invalid ID number (mplid is invalid or unusable; only cre_mpl)
E_NOID No ID number available (there is no variable-sized memory

pool ID assignable; only acre_mpl)
E_NOMEM Insufficient memory (memory pool area cannot be allocated)
E_RSATR Reserved attribute (mplatr is invalid or unusable)
E_PAR Parameter error (pk_cmpl, mplsz, or mpl is invalid)
E_OBJ Object state error (specified variable-sized memory pool is

already registered; only cre_mpl)

229

µITRON4.0 Specification Ver. 4.03.00

[Functional Description]

These service calls create a variable-sized memory pool with an ID number specified by
mplid based on the information contained in the packet pointed to by pk_cmpl. mplatr is
the attribute of the variable-sized memory pool. mplsz is the size of the variable-sized
memory pool area in bytes. mpl is the start address of the variable-sized memory pool area.
In CRE_MPL, mplid is an integer parameter with automatic ID assignment. mplatr is a
preprocessor constant expression parameter.
acre_mpl assigns a variable-sized memory pool ID from the pool of unassigned variable-
sized memory pool IDs and returns the assigned variable-sized memory pool ID.
mplatr can be specified as (TA_TFIFO || TA_TPRI). If TA_TFIFO (= 0x00) is specified,
the variable-sized memory pool's wait queue will be in FIFO order. If TA_TPRI (= 0x01)
is specified, the variable-sized memory pool's wait queue will be in task priority order.
The memory area starting from the address specified by mpl and whose size is mplsz
bytes is used as the memory pool area. Because the information for memory block
management is also placed in the memory pool area, the whole memory pool area cannot
be used to allocate memory blocks. An application program can estimate the size to be
specified in mplsz by using the TSZ_MPL macro. If mpl is specified as NULL (= 0), the
kernel allocates the necessary memory area in bytes specified by mplsz.
When mplsz is specified as 0 or a value greater than the maximum implementation-
defined value, an E_PAR error is returned.

[Supplemental Information]

If mpl is specified as NULL, the size of the memory pool area that will be allocated by the
kernel should be at least equal to the size specified by mplsz.

[Differences from the µITRON3.0 Specification]

The start address of the memory pool area (mpl) has been added to the variable-sized
memory pool creation information. The extended information has been removed. The data
type of mplsz has been changed from INT to SIZE.
acre_mpl has been newly added.

230

µITRON4.0 Specification Ver. 4.03.00

del_mpl Delete Variable-Sized Memory Pool

[C Language API]

 ER ercd = del_mpl (ID mplid) ;

[Parameter]

ID mplid ID number of the variable-sized memory pool to be
deleted

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (mplid is invalid or unusable)
E_NOEXS Non-existent object (specified variable-sized memory pool is

not registered)

[Functional Description]

This service call deletes the variable-sized memory pool specified by mplid. If the
memory pool area was allocated by the kernel, the area is released.

[Supplemental Information]

See Section 3.8 for information regarding handling tasks that are waiting for a memory
block from the variable-sized memory pool when the variable-sized memory pool is
deleted.

231

µITRON4.0 Specification Ver. 4.03.00

get_mpl Acquire Variable-Sized Memory Block

pget_mpl Acquire Variable-Sized Memory Block (Polling)

tget_mpl Acquire Variable-Sized Memory Block (with Timeout)

[C Language API]

 ER ercd = get_mpl (ID mplid, UINT blksz, VP *p_blk) ;
 ER ercd = pget_mpl (ID mplid, UINT blksz, VP *p_blk) ;
 ER ercd = tget_mpl (ID mplid, UINT blksz, VP *p_blk,
 TMO tmout) ;

[Parameter]

ID mplid ID number of the variable-sized memory pool from
which a memory block is acquired

UINT blksz Memory block size to be acquired (in bytes)
TMO tmout Specified timeout (only tget_mpl)

[Return Parameter]

ER ercd E_OK for normal completion or error code
VP blk Start address of the acquired memory block

[Error Code]

E_ID Invalid ID number (mplid is invalid or unusable)
E_NOEXS Non-existent object (specified variable-sized memory pool is

not registered)
E_PAR Parameter error (blksz, p_blk, or tmout is invalid)
E_RLWAI Forced release from waiting (rel_wai is accepted while waiting;

except pget_mpl)
E_TMOUT Polling failure or timeout (except get_mpl)
E_DLT Waiting object deleted (variable-sized memory pool is deleted

while waiting; except pget_mpl)

[Functional Description]

Specific actions to be performed depend on whether there is a task waiting to acquire a
memory block with precedence over the invoking task. If no tasks are waiting to acquire a
memory block from the variable-sized memory block, or if the variable-sized memory
pool's attribute has TA_TPRI (= 0x01) set and the invoking task has higher priority than
all of the waiting tasks, a memory block of size blksz bytes is acquired from the memory
pool area. If the conditions are not satisfied or if the free memory area is insufficient for

These service calls acquire a memory block whose size is specified by blksz from the
variable-sized memory pool specified by mplid. The start address of the memory block is
returned through blk.

232

µITRON4.0 Specification Ver. 4.03.00

acquiring a memory block, the invoking task is placed in the variable-sized memory pool's
wait queue and is moved to the waiting state for a variable-sized memory block.
If there are already tasks in the variable-sized memory pool's wait queue, the invoking
task is placed in the wait queue as described below. When the variable-sized memory
pool's attribute has TA_TFIFO (= 0x00) set, the invoking task is placed at the tail of the
wait queue. When the variable-sized memory pool's attribute has TA_TPRI (= 0x01) set,
the invoking task is placed in the wait queue in the order of the task's priority. If the wait
queue contains tasks with the same priority as the invoking task, the invoking task is
placed after those tasks.
When the first task in the wait queue has changed as the result of releasing a task in the
wait queue from waiting with rel_wai, ter_tsk, or a timeout, the actions, when possible, to
make the tasks acquire memory blocks starting from the new first task in the wait queue
are necessary. Since the specific actions are similar to the actions to be taken after rel_mpl
has released a memory block to the variable-sized memory pool, see the functional
description of rel_mpl for more details. The same actions are also necessary when the first
task in the wait queue has changed as the result of changing the priority of a task in the
wait queue by chg_pri or mutex operations.
pget_mpl is a polling service call with the same functionality as get_mpl. tget_mpl has the
same functionality as get_mpl with an additional timeout feature. tmout can be set to a
positive number indicating a timeout duration or it can be set to TMO_POL (= 0) or
TMO_FEVR (= –1).
When blksz is specified as 0, an E_PAR error is returned. When a value greater than the
memory area size for the variable-sized memory pool, which is specified at variable-sized
memory pool creation, is specified in blksz, returning of an E_PAR error is
implementation-dependent.

The size of the acquired memory block should be at least larger than the size specified by
blksz.
Since these service calls do not clear the memory block, its contents are undefined.
tget_mpl acts the same as pget_mpl if TMO_POL is specified in tmout, and as long as no
E_CTX error occurs. Also, tget_mpl acts the same as get_mpl if TMO_FEVR is specified
in tmout.

[Differences from the µITRON3.0 Specification]

The names of the service calls have been changed from get_blk, pget_blk, and tget_blk to
get_mpl, pget_mpl, and tget_mpl, respectively. The data type of blksz has been changed
from INT to UINT. The order of parameters and return parameters has been changed.

[Supplemental Information]

233

µITRON4.0 Specification Ver. 4.03.00

rel_mpl Release Variable-Sized Memory Block

[C Language API]

 ER ercd = rel_mpl (ID mplid, VP blk) ;

[Parameter]

VP blk Start address of memory block to be released

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (mplid is invalid or unusable)

E_PAR Parameter error (blk is invalid, release to a different memory
pool, or specified address is not the start address of an acquired
memory block)

[Functional Description]

This service call releases the memory block starting from the address specified by blk to
the variable-sized memory pool specified by mplid.
If there are already tasks in the variable-sized memory pool's wait queue, this service call
checks if, as a result of releasing the memory block, the task at the head of the wait queue
can acquire a memory block of the requested size. If the requested size is met, the service
call lets the task acquire the memory block and releases the task from waiting. The
released task receives E_OK from the service call that caused it to wait in the variable-
sized memory pool's wait queue. It also receives the start address of the acquired memory
block. When some tasks still remain in the wait queue after the release of the task, the
same actions must be repeated on the new task at the head of the wait queue.
The variable-sized memory pool to which the memory block is released must be the same
variable-sized memory pool from which the memory block was acquired. Otherwise, an
E_PAR error is returned.

ID mplid ID number of the variable-sized memory pool to
which the memory block is released

E_NOEXS Non-existent object (specified variable-sized memory pool is
not registered)

The start address of the memory block to be released must be the start address of a
memory block acquired by get_mpl, pget_mpl, or tget_mpl. In addition, the memory block
must not be a released memory block. The behavior is undefined when other addresses are
specified in blk. When an error should be reported, an E_PAR error is returned.

234

µITRON4.0 Specification Ver. 4.03.00

[Supplemental Information]

If this service call releases more than one task from waiting, the order of release
corresponds with the order in which the tasks are placed in the wait queue. Therefore,
among the same priority tasks moved to the runnable state, the task closer to the head of
the wait queue has higher precedence.

[Differences from the µITRON3.0 Specification]

The name of the service call has been changed from rel_blk to rel_mpl.

235

µITRON4.0 Specification Ver. 4.03.00

[C Language API]

 ER ercd = ref_mpl (ID mplid, T_RMPL *pk_rmpl) ;

[Parameter]

ID mplid ID number of the variable-sized memory pool to be
referenced

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rmpl includes (T_RMPL type)

ID wtskid ID number of the task at the head of the wait queue
SIZE fmplsz Total size of free memory blocks (in bytes)

(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (mplid is invalid or unusable)
E_NOEXS Non-existent object (specified variable-sized memory pool is

not registered)
E_PAR Parameter error (pk_rmpl is invalid)

This service call references the state of the variable-sized memory pool specified by mplid.
The state of the variable-sized memory pool is returned through the packet pointed to by
pk_rmpl.
The ID number of the task at the head of the variable-sized memory pool's wait queue is
returned through wtskid. If no tasks are waiting to acquire a memory block, TSK_NONE
(= 0) is returned instead.
The current total size of free memory blocks in the variable-sized memory pool in bytes is
returned through fmplsz.
The size of the largest free memory block in bytes that can be acquired immediately from
the variable-sized memory pool is returned through fblksz. When the size of the memory
block is too large to represent with the UINT type, the maximum value that can fit in the
UINT type is returned through fblksz.

ref_mpl Reference Variable-Sized Memory Pool State

T_RMPL * pk_rmpl Pointer to the packet returning the variable-sized
memory pool state

UINT fblksz Maximum memory block size available (in bytes)

[Functional Description]

236

µITRON4.0 Specification Ver. 4.03.00

[Supplemental Information]

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The ID
number of the task at the head of the wait queue is now returned instead of a boolean
value indicating whether a task is waiting or not. Based on this replacement, the names
and data types of the return parameters have been changed.
The names of the return parameters have been changed from frsz to fmplsz and from
maxsz to fblksz. The data types of fmplsz and fblksz have been changed from INT to
SIZE and from INT to UINT, respectively. The order of parameters and return parameters
has been changed.

If the kernel uses dynamic memory management internally, this service call can be used as
an API to reference the kernel's dynamic memory area. Specifically, this service call
returns the information on the kernel's dynamic memory area when invoked with an ID
number of (–4). However, wtskid does not have a meaning in this case. In addition, if the
kernel manages more than one dynamic memory area, these can be referenced through ID
numbers (–3) and (–2).

237

µITRON4.0 Specification Ver. 4.03.00

4.7 Time Management Functions

Time management functions provide time-dependent processing. The time management
functions include system time management, cyclic handlers, alarm handlers, and overrun
handler. Cyclic handlers, alarm handlers, and overrun handler are generically called time
event handlers.

The contexts and states under which time event handlers execute are summarized as
follows:

• Time event handlers execute in their own independent contexts (see Section 3.5.1).
The contexts in which time event handlers execute are classified as non-task
contexts (see Section 3.5.2).

• Time event handlers (except for overrun handler) execute at lower precedence than
the interrupt handler that invoked isig_tim, but at higher precedence than the
dispatcher. Overrun handler executes at higher precedence than the dispatcher (see
Section 3.5.3).

• After time event handlers start, the system is in the CPU unlocked state. When
returning from time event handlers, the system must be in the CPU unlocked state
(see Section 3.5.4).

• The start of and the return from time handlers do not change the dispatching state.
When the dispatching state is changed within time event handlers, the original state
must be restored before returning (see Section 3.5.5).

The name cyclic handler has been changed from cyclic activation handler. Overrun
handler is a newly added feature. The delay task function (dly_tsk) has been moved from
time management functions to task dependent synchronization functions. ret_tmr has been
removed (see Section 3.9).

4.7.1 System Time Management

System time management functions provide control over system time. System time
management functions include the ability to set and get the system time and to supply a
time tick for updating the system time.
The system time is initialized to 0 when the system is started (see Section 3.7) and will be
updated every time isig_tim is invoked by the application. The amount of time added to
the system time when isig_tim is invoked is implementation-defined. The interval of
invoking isig_tim from the application must be correlated with the amount of time added

[Supplemental Information]

[Differences from the µITRON3.0 Specification]

238

µITRON4.0 Specification Ver. 4.03.00

to the system time. However, if the kernel has a mechanism of updating the system time,
isig_tim need not be supported.
The following features depend on the system time: processing of timeouts, releasing tasks
from waiting after a call to dly_tsk, and activation of cyclic handlers and alarm handlers.
The execution order of multiple processes that start at the same system time tick is
implementation-dependent.

TIC_NUME Time tick period numerator
TIC_DENO Time tick period denominator

These constants allow the application to reference the approximate time precision of the
system time. TIC_NUME/TIC_DENO is the time tick period measured in the same units
as the system time. If the system time is not updated periodically, the constants should still
be defined so that they reflect the characteristic of the system time precision.
The following represents the function codes for the system time management service calls:

TFN_SET_TIM –0x4d Function code of set_tim

TFN_ISIG_TIM –0x7d Function code of isig_tim

[Standard Profile]

The Standard Profile requires support for the system time management functions.
However, if the kernel has a mechanism of updating the system time, isig_tim, which
supplies a time tick, need not be supported.

[Supplemental Information]

[Differences from the µITRON3.0 Specification]

The name system time has been changed from system clock. The service call to supply a
time tick (isig_tim) has been newly added. This allows the kernel to be independent of
timer hardware.
The recommended number of bits used to represent the value of the system time is not
specified. In the µITRON3.0 Specification, it was 48 bits. Now the system time is set to 0
upon system initialization. In the µITRON3.0 Specification, the recommended start date
for the absolute time was January 1st, 1985, 0:00 am GMT.

The following kernel configuration constants are defined for use with system time
management functions:

TFN_GET_TIM –0x4e Function code of get_tim

Another method to define TIC_NUME and TIC_DENO is to allow the application to
define them in the system configuration file or in header files prepared by the application.
The kernel determines the period that isig_tim is invoked by the application from these
constants.

239

µITRON4.0 Specification Ver. 4.03.00

set_tim Set System Time [S]

[C Language API]

 ER ercd = set_tim (SYSTIM *p_systim) ;

[Parameter]

SYSTIM systim Time to set as system time

[Return Parameter]

[Error Code]

E_PAR Parameter error (p_system or systim is invalid)

[Functional Description]

This service call sets the system time to the value specified by systim.

[Supplemental Information]

[Differences from the µITRON3.0 Specification]

The data type of systim has been changed from SYSTIME to SYSTIM. The packet for
storing systim is removed, and the parameter name in the C language API has been
changed from pk_tim to p_systim.

[Rationale]

systim is passed through a pointer because passing the parameter value may reduce system
efficiency when SYSTIM is defined as a data structure.

ER ercd E_OK for normal completion or error code

Changing the system time using this service call will not change the time in the real world
when an event specified using relative time is to occur. However, the system time when
that event specified using relative time occurs will change (see Section 2.1.9).

240

µITRON4.0 Specification Ver. 4.03.00

[C Language API]

 ER ercd = get_tim (SYSTIM *p_systim) ;

[Parameter]

None

ER ercd E_OK for normal completion or error code
SYSTIM systim Current system time

[Error Code]

E_PAR Parameter error (p_systim is invalid)

[Functional Description]

[Differences from the µITRON3.0 Specification]

The data type of systim has been changed from SYSTIME to SYSTIM. The packet for
storing systim is removed, and the parameter name in the C language API has changed
from pk_tim to p_systim.

get_tim Reference System Time [S]

[Return Parameter]

This service call returns the current system time through systim.

241

µITRON4.0 Specification Ver. 4.03.00

isig_tim Supply Time Tick [S]

 ER ercd = isig_tim () ;

[Parameter]

None

[Return Parameter]

ER ercd E_OK for normal completion or error code

No errors specific to this service call

[Functional Description]

This service call updates the system time.

[Standard Profile]

The Standard Profile does not require support for this service call if the kernel has a
mechanism of updating the system time.

This service call may start processes that depend on the system time. This does not mean
that these processes must be executed within this service call. This implies that these
processes do not necessarily complete before the service call returns.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.

[C Language API]

[Error Code]

[Supplemental Information]

242

µITRON4.0 Specification Ver. 4.03.00

4.7.2 Cyclic Handlers

A cyclic handler is a time event handler activated periodically. Cyclic handler functions
include the ability to create and delete a cyclic handler, to start and stop a cyclic handler's
operation, and to reference the state of a cyclic handler. A cyclic handler is an object
identified by an ID number. The ID number of a cyclic handler is called the cyclic handler
ID.

Generally, a cyclic handler's activation phase is less than its activation cycle. The behavior
is implementation-dependent when the activation phase is longer than the activation cycle.
A cyclic handler is either in an operational state or a non-operational state. When a cyclic
handler is in a non-operational state, the cyclic handler is not activated at its activation
time. Instead, only its next activation time is determined. When the service call that starts
the operation of a cyclic handler (sta_cyc) is invoked, the cyclic handler is moved to an
operational state and its next activation time is recalculated if necessary.
When the service call that stops the operation of a cyclic handler (stp_cyc) is invoked, the
cyclic handler is moved to a non-operational state. After the creation of a cyclic handler,
the cyclic handler's attribute determines the operational state of the cyclic handler.
The activation phase is the relative time from the time when the service call to create the
cyclic handler was invoked to the first activation time. If the cyclic handler is created
through a static API, the creation time is considered to be the system initialization time.
The activation cycle is the relative time from the last activation time to the next activation
time. The last activation time may not have been the actual time of activation, but rather
the last expected activation time. The actual interval between actual activations can
possibly be shorter than the activation cycle. However, in the long term, the average actual
activation interval will correspond with the activation cycle.
The format to write a cyclic handler in the C language is shown below:

 {
 /* Body of the cyclic handler */
 }

The activation cycle and activation phase are set at the creation of the cyclic handler. The
kernel determines the next time the cyclic handler will be activated based on the activation
cycle and the activation phase. When the cyclic handler is created, the first activation time
is calculated by adding the activation phase to the time at which the cyclic handler was
created. At the cyclic handler's activation time, the cyclic handler is called with its
extended information (exinf) passed as a parameter. At this time the next activation time is
calculated by adding the activation cycle to the current activation time. In addition, the
next activation time may be recalculated when the cyclic handler's operation is started.

 void cychdr (VP_INT exinf)

243

µITRON4.0 Specification Ver. 4.03.00

The following data type packets are defined for creating and referencing cyclic handlers:

 ATR cycatr ; /* Cyclic handler attribute */
 VP_INT exinf ; /* Cyclic handler extended information */
 FP cychdr ; /* Cyclic handler start address */
 RELTIM cyctim ; /* Cyclic handler activation cycle */
 RELTIM cycphs ; /* Cyclic handler activation phase */

 } T_CCYC ;
 typedef struct t_rcyc {
 STAT cycstat ; /* Cyclic handler operational state */
 RELTIM lefttim ; /* Time left before the next activation */
 /* Other implementation-specific fields may be added. */

The following represents the function codes for the cyclic handler service calls:

TFN_CRE_CYC –0x4f Function code of cre_cyc
TFN_ACRE_CYC –0xcb Function code of acre_cyc
TFN_DEL_CYC –0x50 Function code of del_cyc

TFN_STP_CYC –0x52 Function code of stp_cyc
TFN_REF_CYC –0x53 Function code of ref_cyc

[Standard Profile]

The Standard Profile requires support for cyclic handler functions except for dynamic
creation and deletion of a cyclic handler (cre_cyc, acre_cyc, del_cyc) and reference of a
cyclic handler state (ref_cyc).
The Standard Profile does not require support for preserving the activation phase, which is
specified by TA_PHS in the cyclic handler's attribute.

When the activation phase is preserved, the activation time is determined so that the
quantity (((activation time) – (creation time)) / (activation cycle)) is constant. Figure 4-5
shows how the cyclic handler is activated after it is created without TA_STA being
specified in its attribute and then moved to an operational state with sta_cyc. When the
activation phase is preserved, the next activation time is always determined based on the
creation time (Figure 4-5 (a)). When the activation phase is not preserved, the activation
time is determined based on the time when sta_cyc is invoked (Figure 4-5 (b)).

 typedef struct t_ccyc {

 /* Other implementation-specific fields may be added. */

 } T_RCYC ;

TFN_STA_CYC –0x51 Function code of sta_cyc

[Supplemental Information]

244

µITRON4.0 Specification Ver. 4.03.00

activation phase activation cycle activation cycle

activation cycleactivation cycleactivation phase

(a) When the activation phase is preserved (TA_PHS specified)

(b) When the activation phase is not preserved (TA_PHS not specified)

Cyclic handler is activated

Cyclic handler is activated

sta_cyccre_cyc (TA_STA not specified)

sta_cyccre_cyc (TA_STA not specified)

Figure 4-5. Preserving Activation Phase

The activation of cyclic handlers depends on the system time. Therefore, the cyclic
handlers are activated at the first time tick after the activation time has passed. The
activation phase is the relative time from when the cyclic handler was created. This means
that the first activation of the cyclic handler must occur after an elapsed time equal to or
greater than the activation phase (as long as the cyclic handler is in an operational state).
The activation cycle is the relative time from the last activation time. This means that the
n-th activation of the cyclic handler must occur after an elapsed time equal to or greater
than ((activation phase) + (activation cycle) * (n – 1)) from the time when the service call
to create the cyclic handler was invoked. For example, for a system with a 10-ms time tick
where a cyclic handler is created through the static API with the activation phase set to 15
ms and the activation cycle set to 25 ms, then the activation times will be at 20, 40, 70, 90,
and 120 ms and so on. See Section 2.1.9 for how to handle events specified with relative
times.
This specification describes the calculation of the next activation time even when a cyclic
handler is in a non-operational state. This calculation can be omitted in an implementation
as long as the behavior of cyclic handlers do not change.

The name cyclic handler has been changed from cyclic activation handler. Cyclic handlers
are now objects identified by ID numbers. Cyclic handlers are now created by cre_cyc
rather than defined by def_cyc. The name cyclic handler ID has been changed from cyclic
handler number. The service call to delete a cyclic handler (del_cyc) has been newly
added.

[Differences from the µITRON3.0 Specification]

245

µITRON4.0 Specification Ver. 4.03.00

The service call to control the operational state of a cyclic handler (act_cyc) has been
divided into a service call that starts the operation of a handler (sta_cyc) and one that stops
the operation of a handler (stp_cyc).

246

µITRON4.0 Specification Ver. 4.03.00

CRE_CYC Create Cyclic Handler (Static API) [S]
cre_cyc Create Cyclic Handler

[Static API]

 CRE_CYC (ID cycid, { ATR cycatr, VP_INT exinf, FP cychdr,
 RELTIM cyctim, RELTIM cycphs }) ;

[C Language API]

 ER_ID cycid = acre_cyc (T_CCYC *pk_ccyc) ;

[Parameter]

ID cycid ID number of the cyclic handler to be created (except
acre_cyc)

T_CCYC * pk_ccyc Pointer to the packet containing the cyclic handler
creation information (In CRE_CYC, the contents
must be directly specified.)

pk_ccyc includes (T_CCYC type)

VP_INT exinf Cyclic handler extended information
FP cychdr Cyclic handler start address
RELTIM cyctim Cyclic handler activation cycle
RELTIM cycphs Cyclic handler activation phase
(Other implementation-specific information may be added.)

cre_cyc:
ER ercd E_OK for normal completion or error code

acre_cyc:
ER_ID cycid ID number (positive value) of the created cyclic

handler or error code

[Error Code]

E_NOID No ID number available (there is no cyclic handler ID
assignable; only acre_cyc)

E_RSATR Reserved attribute (cycatr is invalid or unusable)
E_PAR Parameter error (pk_ccyc, cychdr, cyctim, or cycphs is invalid)
E_OBJ Object state error (cyclic handler is already registered; only

cre_cyc)

acre_cyc Create Cyclic Handler (Automatic ID Assignment)

 ER ercd = cre_cyc (ID cycid, T_CCYC *pk_ccyc) ;

ATR cycatr Cyclic handler attribute

[Return Parameter]

E_ID Invalid ID number (cycid is invalid or unusable; only cre_cyc)

247

µITRON4.0 Specification Ver. 4.03.00

[Functional Description]

In CRE_CYC, cycid is an integer parameter with automatic ID assignment. cycatr is a
preprocessor constant expression parameter.
acre_cyc assigns a cyclic handler ID from the pool of unassigned cyclic handler IDs and
returns the assigned cyclic handler ID.
cycatr can be specified as ((TA_HLNG || TA_ASM) | [TA_STA] | [TA_PHS]). If
TA_HLNG (= 0x00) is specified, the cyclic handler is called through a high-level
language interface. If TA_ASM (= 0x01) is specified, the cyclic handler is called through
an assembly language interface. If TA_STA (= 0x02) is specified, the cyclic handler is in
an operational state when it is created, otherwise it is in a non-operational state. If
TA_PHS (= 0x04) is specified, the next activation time is determined preserving the
activation phase when the cyclic handler is moved to an operational state. See the
functional description of sta_cyc for the actions to be taken when a cyclic handler is
moved to an operational state.
The first activation time of the cyclic handler is the time when the service call is invoked
plus the activation phase. For the static API, the system initialization time is used as the
activation time.
When cyctim is specified as 0, an E_PAR error is returned. The behavior of the system
when the value of cycphs is greater than cyctim is implementation-dependent. When an
error should be reported, an E_PAR error is returned.

The Standard Profile does not require support for these functions when T_PHS or
TA_ASM is specified in cycatr.

[Supplemental Information]

The cyclic handler activation phase (cycphs) does not have any meaning when neither
TA_STA nor TA_PHS is specified in cycatr.

[Differences from the µITRON3.0 Specification]

Cyclic handlers are now objects created by cre_cyc rather than defined by def_cyc.

These service calls create a cyclic handler with an ID number specified by cycid based on
the information contained in the packet pointed to by pk_ccyc. cycatr is the attribute of the
cyclic handler. exinf is the extended information passed as a parameter to the cyclic
handler when it is called. cychdr is the start address of the cyclic handler. cyctim is the
activation cycle. cycphs is the activation phase.

[Standard Profile]

The functionality for specifying the activation phase has been newly added. The activation
phase (cycphs) has been added to the cyclic handler creation information. The method for
specifying the cyclic handler's operational state after creation has been changed.

248

µITRON4.0 Specification Ver. 4.03.00

The order of cycatr and exinf in the creation information packet has been exchanged. The
data type of exinf has been changed from VP to VP_INT and the data type of cyctim has
been changed from CYCTIME to RELTIM.
acre_cyc has been newly added.

249

µITRON4.0 Specification Ver. 4.03.00

del_cyc Delete Cyclic Handler

 ER ercd = del_cyc (ID cycid) ;

[Parameter]

ID cycid ID number of the cyclic handler to be deleted

[Return Parameter]

ER ercd E_OK for normal completion or error code

E_ID Invalid ID number (cycid is invalid or unusable)
E_NOEXS Non-existent object (specified cyclic handler is not registered)

[Functional Description]

This service call deletes the cyclic handler specified by cycid.

[Supplemental Information]

[Differences from the µITRON3.0 Specification]

This service call has been newly added. In the µITRON3.0 Specification, the def_cyc
service call can be used for releasing a handler as well as defining a handler.

[C Language API]

[Error Code]

When the specified cyclic handler is operating, the cyclic handler is first moved to a non-
operational state.

250

µITRON4.0 Specification Ver. 4.03.00

sta_cyc Start Cyclic Handler Operation [S] [B]

 ER ercd = sta_cyc (ID cycid) ;

[Parameter]

ID cycid ID number of the cyclic handler whose operation is to
be started

[Return Parameter]

ER ercd E_OK for normal completion or error code

E_ID Invalid ID number (cycid is invalid or unusable)
E_NOEXS Non-existent object (specified cyclic handler is not registered)

[Functional Description]

This service call moves the cyclic handler specified by cycid to an operational state.
If the handler's attribute does not have TA_PHS (= 0x04) specified, the next activation
time is the time when sta_cyc is invoked plus the activation cycle.

[Differences from the µITRON3.0 Specification]

The service call to control the operational state of a cyclic handler (act_cyc) has been
divided into a service call that starts the operation of a cyclic handler (sta_cyc) and one
that stops the operation of a cyclic handler (stp_cyc). In the µITRON3.0 Specification,
when the act_cyc service call is invoked with TCY_INI which initializes the count
specified, the activation time is recalculated. A similar functionality is achieved through
the use of TA_PHS.

[C Language API]

[Error Code]

If the cyclic handler is already in an operational state and TA_PHS is not specified in the
attribute, only the activation time is recalculated. If the cyclic handler is already in an
operational state and TA_PHS is specified in the attribute, no action is required.

251

µITRON4.0 Specification Ver. 4.03.00

stp_cyc Stop Cyclic Handler Operation [S] [B]

 ER ercd = stp_cyc (ID cycid) ;

[Parameter]

ID cycid ID number of the cyclic handler whose operation is to
be stopped

[Return Parameter]

ER ercd E_OK for normal completion or error code

E_ID Invalid ID number (cycid is invalid or unusable)
E_NOEXS Non-existent object (specified cyclic handler is not registered)

[Functional Description]

This service call moves the cyclic handler specified by cycid to a non-operational state.
No action is required when the specified cyclic handler is already in a non-operational
state.

[Differences from the µITRON3.0 Specification]

[C Language API]

[Error Code]

The service call to control the operational state of a cyclic handler (act_cyc) has been
divided into a service call that starts the operation of a cyclic handler (sta_cyc) and one
that stops the operation of a cyclic handler (stp_cyc).

252

µITRON4.0 Specification Ver. 4.03.00

ref_cyc Reference Cyclic Handler State

[C Language API]

 ER ercd = ref_cyc (ID cycid, T_RCYC *pk_rcyc) ;

ID cycid ID number of the cyclic handler to be referenced
T_RCYC * pk_rcyc Pointer to the packet returning the cyclic handler state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rcyc includes (T_RCYC type)

RELTIM lefttim Time left before the next activation
(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (cycid is invalid or unusable)
E_NOEXS Non-existent object (specified cyclic handler is not registered)

[Functional Description]

This service call references the state of the cyclic handler specified by cycid. The state of
the cyclic handler is returned through the packet pointed to by pk_rcyc.
One of the following values is returned through cycstat depending on the operational state
of the cyclic handler:

TCYC_STP 0x00 Cyclic handler is in a non-operational state
TCYC_STA 0x01 Cyclic handler is in an operational state

[Differences from the µITRON3.0 Specification]

The extended information has been removed from the reference information. The method
to reference the operational state of the cyclic handler has been changed. The data type of

[Parameter]

STAT cycstat Cyclic handler operational state

E_PAR Parameter error (pk_rcyc is invalid)

The amount of relative time remaining before the cyclic handler's next activation time is
returned through lefttim if the cyclic handler is in an operational state. This means the
time returned is the next activation time minus the current time. The value returned must
be less than the time it will take to activate the cyclic handler. Therefore, if 0 is returned
through lefttim, the cyclic handler will be activated on the next time tick. The value
returned through leftim when the cyclic handler is in a non-operational state is
implementation-dependent.

253

µITRON4.0 Specification Ver. 4.03.00

lefttim has been changed from CYCTIME to RELTIM. The order of parameters and
return parameters has been changed.

4.7.3 Alarm Handlers

An alarm handler is a time event handler activated at a specified time. Alarm handler
functions include the ability to create and delete an alarm handler, to start and stop an
alarm handler's operation, and to reference the state of an alarm handler. An alarm handler
is an object identified by an ID number. The ID number of an alarm handler is called the
alarm handler ID.
The time at which the alarm handler is activated, called the activation time of the alarm
handler, can be set for each alarm handler. At the alarm handler's activation time, the
alarm handler is called with its extended information (exinf) passed as a parameter.

The format to write an alarm handler in the C language is shown below:
 void almhdr (VP_INT exinf)
 {
 /* Body of the alarm handler */
 }

The following data type packets are defined for creating and referencing alarm handlers:
 typedef struct t_calm {
 ATR almatr ; /* Alarm handler attribute */
 VP_INT exinf ; /* Alarm handler extended information */
 FP almhdr ; /* Alarm handler start address */

 } T_CALM ;
 typedef struct t_ralm {

 RELTIM lefttim ; /* Time left before the activation */
 /* Other implementation-specific fields may be added. */

The following represents the function codes for the alarm handler service calls:

TFN_ACRE_ALM –0xcc Function code of acre_alm

The activation time of the alarm handler is not set when the alarm handler is created.
Therefore, the operation of the alarm handler is stopped. The service call that starts the
operation of an alarm handler (sta_alm) sets the activation time relative to the time when
the service call is invoked. In addition, the alarm handler is moved to an operational state.
When the service call that stops the operation of an alarm handler (stp_alm) is invoked,
the activation time is released and the alarm handler is moved to a non-operational state.
When an alarm handler is called, the activation time is released and the alarm handler is
moved to a non-operational state.

 /* Other implementation-specific fields may be added. */

 STAT almstat ; /* Alarm handler operational state */

 } T_RALM ;

TFN_CRE_ALM –0xa9 Function code of cre_alm

254

µITRON4.0 Specification Ver. 4.03.00

TFN_DEL_ALM –0xaa Function code of del_alm

TFN_STP_ALM –0xac Function code of stp_alm
TFN_REF_ALM –0xad Function code of ref_alm

The Standard Profile does not require support for alarm handlers.

[Supplemental Information]

The activation time is released when the alarm handler is called but before the alarm
handler is executed. If an implementation allows non-task contexts to invoke the service
call to start the alarm handler operation, the alarm handler can reset the activation time
and move itself to an operational state.

[Differences from the µITRON3.0 Specification]

For the case when an alarm handler is created statically, the activation time of the alarm
handler is now specified with the newly added service call (sta_alm), which starts the
alarm handler operation, instead of being specified when the alarm handler is created. The
service call to stop the operation of an alarm handler (stp_alm) has been newly added.
The ability to set the activation time of an alarm handler to an absolute time has been
removed.

TFN_STA_ALM –0xab Function code of sta_alm

[Standard Profile]

The activation of alarm handlers depends on the system time. Therefore, the alarm
handlers are activated at the first time tick after the activation time has passed. The system
must guarantee that the activation of the alarm handler occurs after an elapsed time equal
to or greater than the specified time (see Section 2.1.9).

Alarm handlers are now objects identified by ID numbers. Alarm handlers are now created
by cre_alm rather than defined by def_alm. The name alarm handler ID has been changed
from alarm handler number. The service call to delete an alarm handler (del_alm) has
been newly added.

255

µITRON4.0 Specification Ver. 4.03.00

CRE_ALM Create Alarm Handler (Static API)

cre_alm Create Alarm Handler

acre_alm Create Alarm Handler (Automatic ID Assignment)

[Static API]

 CRE_ALM (ID almid, { ATR almatr, VP_INT exinf, FP almhdr }) ;

 ER ercd = cre_alm (ID almid, T_CALM *pk_calm) ;
 ER_ID almid = acre_alm (T_CALM *pk_calm) ;

[Parameter]

ID almid ID number of the alarm handler to be created (except
acre_alm)

pk_calm includes (T_CALM type)
ATR almatr Alarm handler attribute
VP_INT exinf Alarm handler extended information

(Other implementation-specific information may be added.)

[Return Parameter]

cre_alm:

acre_alm:

[C Language API]

T_CALM * pk_calm Pointer to the packet containing the alarm handler
creation information (In CRE_ALM, the contents
must be directly specified.)

FP almhdr Alarm handler start address

ER ercd E_OK for normal completion or error code

ER_ID almid ID number (positive value) of the created alarm
handler or error code

[Error Code]

E_ID Invalid ID number (almid is invalid or unusable; only cre_alm)
E_NOID No ID number available (there is no alarm handler ID

assignable; only acre_alm)
E_RSATR Reserved attribute (almatr is invalid or unusable)
E_PAR Parameter error (pk_calm or almhdr is invalid)
E_OBJ Object state error (alarm handler is already registered; only

cre_alm)

256

µITRON4.0 Specification Ver. 4.03.00

[Functional Description]

These service calls create an alarm handler with an ID number specified by almid based
on the information contained in the packet pointed to by pk_calm. almatr is the attribute of
the alarm handler. exinf is the extended information passed as a parameter to the alarm
handler when it is called. almhdr is the start address of the alarm handler.
In CRE_ALM, almid is an integer parameter with automatic ID assignment. almatr is a
preprocessor constant expression parameter.
acre_alm assigns an alarm handler ID from the pool of unassigned alarm handler IDs and
returns the assigned alarm handler ID.
After the alarm handler is created, the activation time is not set and the alarm handler is in
a non-operational state.
almatr can be specified as (TA_HLNG || TA_ASM). If TA_HLNG (= 0x00) is specified,
the alarm handler is called through a high-level language interface. If TA_ASM (= 0x01)
is specified, the alarm handler is called through an assembly language interface.

[Differences from the µITRON3.0 Specification]

Alarm handlers are now objects created by cre_alm rather than defined by def_alm.
For the case when an alarm handler is created statically, the activation time of the alarm
handler is not specified when the alarm handler is created.
The order of almatr and exinf in the creation information packet has been exchanged. The
data type of exinf has been changed from VP to VP_INT.
acre_alm has been newly added.

257

µITRON4.0 Specification Ver. 4.03.00

del_alm Delete Alarm Handler

[C Language API]

 ER ercd = del_alm (ID almid) ;

[Parameter]

ID almid ID number of the alarm handler to be deleted

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (almid is invalid or unusable)
E_NOEXS Non-existent object (specified alarm handler is not registered)

[Functional Description]

This service call deletes the alarm handler specified by almid.

[Supplemental Information]

If the alarm handler is in an operational state, the activation time is released and the alarm
handler is moved to a non-operational state.

[Differences from the µITRON3.0 Specification]

This service call has been newly added. In the µITRON3.0 Specification, the def_alm
service call can be used for releasing a handler as well as defining an alarm handler.

258

µITRON4.0 Specification Ver. 4.03.00

sta_alm Start Alarm Handler Operation

[C Language API]

 ER ercd = sta_alm (ID almid, RELTIM almtim) ;

[Parameter]

ID almid ID number of the alarm handler whose operation is to
be started

RELTIM almtim Activation time of the alarm handler (relative time)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (almid is invalid or unusable)
E_NOEXS Non-existent object (specified alarm handler is not registered)
E_PAR Parameter error (almtim is invalid)

[Functional Description]

This service call sets the activation time of the alarm handler specified by almid. The
activation time is set to the time when the service call is invoked plus the relative time
specified by almtim. The alarm handler is also moved to an operational state.
If the alarm handler is already in an operational state, the previous activation time is
released and a new activation time is set.
almtim is the relative time from when this service call is invoked to the activation time of
the alarm handler.

[Differences from the µITRON3.0 Specification]

This service call has been newly added. In the µITRON3.0 Specification, the def_alm
service call can be used for setting the activation time of an alarm handler as well as
defining an alarm handler.

259

µITRON4.0 Specification Ver. 4.03.00

stp_alm Stop Alarm Handler Operation

[C Language API]

 ER ercd = stp_alm (ID almid) ;

[Parameter]

ID almid ID number of the alarm handler whose operation is to
be stopped

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (almid is invalid or unusable)
E_NOEXS Non-existent object (specified alarm handler is not registered)

[Functional Description]

This service call releases the activation time of the alarm handler specified by almid and
moves the alarm handler to a non-operational state. If the alarm handler is already in a
non-operational state, no action is required.

[Differences from the µITRON3.0 Specification]

This service call has been newly added. The µITRON3.0 specification did not allow an
alarm handler to be stopped by any other means than releasing the registration of the
alarm handler.

260

µITRON4.0 Specification Ver. 4.03.00

ref_alm Reference Alarm Handler State

[C Language API]

 ER ercd = ref_alm (ID almid, T_RALM *pk_ralm) ;

[Parameter]

ID almid ID number of the alarm handler to be referenced
T_RALM * pk_ralm Pointer to the packet returning the alarm handler state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_ralm includes (T_RALM type)

STAT almstat Alarm handler operational state
RELTIM lefttim Time left before the activation
(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (almid is invalid or unusable)
E_NOEXS Non-existent object (specified alarm handler is not registered)
E_PAR Parameter error (pk_ralm is invalid)

[Functional Description]

This service call references the state of the alarm handler specified by almid. The state of
the alarm handler is returned through the packet pointed to by pk_ralm.
One of the following values will be returned through almstat depending on the operational
state of the alarm handler:

TALM_STP 0x00 Alarm handler is in a non-operational state
TALM_STA 0x01 Alarm handler is in an operational state

The amount of time remaining before the alarm handler's activation time is returned
through lefttim if the alarm handler is in an operational state. This means the time returned
is the activation time minus the current time. However, the value returned must be equal
to or less than the time it will take to activate the alarm handler. Therefore, if 0 is returned
through lefttim, the alarm handler will be activated on the next time tick. The value
returned through lefttim when the alarm handler is in a non-operational state is
implementation-dependent.

[Differences from the µITRON3.0 Specification]

The alarm handler operational state (almstat) has been added to the reference information.
The extended information has been removed from the reference information.

261

µITRON4.0 Specification Ver. 4.03.00

The data type of lefttim has been changed from ALMTIME to RELTIM. The order of the
parameters and return parameters has been changed.

4.7.4 Overrun Handler

The overrun handler is a time event handler activated when a task has been executed by
the processor longer than a specified amount of time. Overrun handler functions include
the ability to define the overrun handler, to start and stop the overrun handler's operation,
and to reference the state of the overrun handler.
The amount of time used to determine the activation condition, called the processing time
limit, can be specified for each task. Once a task has a processing time limit set, the kernel
keeps track of the accumulated processing time consumed by the task, called the
processing time used, until the consumed time exceeds the processing time limit. When
this occurs, the overrun handler is called. Because only one overrun handler can be
defined for the whole system, the task ID number (tskid) and the task's extended
information (exinf) are passed as parameters to the overrun handler.
The task's processing time limit is not set when the task is created. When the service call
to start the overrun handler operation (sta_ovr) is invoked for a specified task, the
processing time limit is set for the task. In addition, the processing time used by the task is
cleared to 0. Once the service call to stop the overrun handler operation (stp_ovr) is
invoked for a specified task, the processing time limit for the task is released. The
processing time limit for a task is also released when the overrun handler is called for the
task or when the task is terminated.
The processing time used by a task includes the time consumed by the task, by the task
exception handling routine, and by all service calls invoked by the task. On the other hand,
the time consumed by the other tasks, by their exception handling routines, and by all the
service calls they invoke is not included in the processing time used by the task. The
decision to include the time for task dispatching and for interrupt handling is
implementation-dependent. In addition, the accuracy of the measured processing time
used is implementation-dependent. Nevertheless, the overrun handler is activated only
when the processing time used by the task exceeds the specified processing time limit.
The following data type is used within the overrun handler functions:

OVRTIM Processing time (unsigned integer, unit of time is implementation-
defined)

The format to write an overrun handler in the C language is shown below:
 void ovrhdr (ID tskid, VP_INT exinf)
 {
 /* Body of the overrun handler */
 }

The following data type packets are defined for defining and referencing the overrun
handler:

262

µITRON4.0 Specification Ver. 4.03.00

 typedef struct t_dovr {
 ATR ovratr ; /* Overrun handler attribute */
 FP ovrhdr ; /* Overrun handler start address */
 /* Other implementation-specific fields may be added. */
 } T_DOVR ;
 typedef struct t_rovr {
 STAT ovrstat ; /* Overrun handler operational state */
 OVRTIM leftotm ; /* Remaining processing time */
 /* Other implementation-specific fields may be added. */
 } T_ROVR ;

The following represents the function codes for the overrun handler service calls:

TFN_DEF_OVR –0xb1 Function code of def_ovr
TFN_STA_OVR –0xb2 Function code of sta_ovr
TFN_STP_OVR –0xb3 Function code of stp_ovr
TFN_REF_OVR –0xb4 Function code of ref_ovr

[Standard Profile]

The Standard Profile does not require support for the overrun handler.

[Supplemental Information]

The activation of the overrun handler does not depend on the system time. This implies
the overrun handler is not necessarily called synchronously with the time tick.
Implementations may call the overrun handler synchronously with the time tick.
A task's processing time limit is released when the overrun handler is called but before the
overrun handler is executed. If an implementation allows non-task contexts to invoke the
service call to start the overrun handler operation, the overrun handler can reset the
processing time limit for the task that causes the overrun handler's activation.
The overrun handler can raise a task exception handling. Then, the task exception
handling routine is started by the kernel within the task's context to handle the overrun
situation.

[Differences from the µITRON3.0 Specification]

The overrun handler is a newly added feature.

263

µITRON4.0 Specification Ver. 4.03.00

DEF_OVR Define Overrun Handler (Static API)

def_ovr Define Overrun Handler

[Static API]

 DEF_OVR ({ ATR ovratr, FP ovrhdr }) ;

[C Language API]

 ER ercd = def_ovr (T_DOVR *pk_dovr) ;

[Parameter]

T_DOVR * pk_dovr Pointer to the packet containing the overrun handler
definition information (In DEF_OVR, the contents
must be directly specified.)

pk_dovr includes (T_DOVR type)
ATR ovratr Overrun handler attribute
FP ovrhdr Overrun handler start address
(Other implementation-specific information may be added.)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_RSATR Reserved attribute (ovratr is invalid or unusable)
E_PAR Parameter error (pk_dovr or ovrhdr is invalid)

[Functional Description]

This service call defines the overrun handler based on the overrun handler definition
information contained in the packet pointed to by pk_dovr. ovratr is the attribute of the
overrun handler. ovrhdr is the start address of the overrun handler.
In DEF_OVR, ovratr is a preprocessor constant expression parameter.
If pk_dovr is specified as NULL (= 0), the overrun handler currently defined is released
and the overrun handler becomes undefined. At this time, the processing time limits for all
tasks are also released. When a new overrun handler is defined over top of an old one, the
old one is released and the new one takes its place. Under this condition, the processing
time limits for the tasks are not released.
ovratr can be specified as (TA_HLNG || TA_ASM). If TA_HLNG (= 0x00) is specified,
the overrun handler is called through a high-level language interface. If TA_ASM (=
0x01) is specified, the overrun handler is called through an assembly language interface.

264

µITRON4.0 Specification Ver. 4.03.00

[Rationale]

The reason why the processing time limit is released for tasks when the definition of the
overrun handler is released is to ensure that there is no processing time limit set while the
overrun handler is undefined. If the overrun handler is undefined, this state is held because
the processing time limit cannot be set for tasks.

265

µITRON4.0 Specification Ver. 4.03.00

sta_ovr Start Overrun Handler Operation

[C Language API]

 ER ercd = sta_ovr (ID tskid, OVRTIM ovrtim) ;

[Parameter]

ID tskid ID number of the task where the overrun handler
should start operation

OVRTIM ovrtim Processing time limit for the task to be set

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_PAR Parameter error (ovrtim is invalid)
E_OBJ Object state error (overrun handler is not defined)

[Functional Description]

This service call starts the operation of the overrun handler for the task specified by tskid.
Specifically, it sets the processing time limit for the task as the time specified by ovrtim.
In addition, the processing time used by the task is cleared to 0.
Even if the task already has a processing time limit set, the old processing time limit will
be released and the new processing time limit will be set. The processing time used will be
cleared to 0 at this time.
If tskid is TSK_SELF (= 0), the task that invoked the service call will be the specified task.

266

µITRON4.0 Specification Ver. 4.03.00

stp_ovr Stop Overrun Handler Operation

[C Language API]

 ER ercd = stp_ovr (ID tskid) ;

[Parameter]

ID tskid ID number of the task on which the overrun handler
should stop operation

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_OBJ Object state error (overrun handler is not defined)

[Functional Description]

This service call stops the operation of the overrun handler for the task specified by tskid
by releasing the processing time limit for the task. If the specified task does not have a
processing time limit set, no action is required.
If tskid is TSK_SELF (= 0), the task that invoked the service call will be the specified task.

267

µITRON4.0 Specification Ver. 4.03.00

ref_ovr Reference Overrun Handler State

[C Language API]

 ER ercd = ref_ovr (ID tskid, T_ROVR *pk_rovr) ;

[Parameter]

ID tskid ID number of the task for which the overrun handler's
state should be referenced

T_ROVR * pk_rovr Pointer to the packet returning the overrun handler
state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rovr includes (T_ROVR type)

STAT ovrstat Overrun handler operational state
OVRTIM leftotm Remaining processing time
(Other implementation-specific information may be added.)

[Error Code]

E_ID Invalid ID number (tskid is invalid or unusable)
E_NOEXS Non-existent object (specified task is not registered)
E_PAR Parameter error (pk_rovr is invalid)
E_OBJ Object state error (overrun handler is not defined)

[Functional Description]

This service call references the state of the overrun handler for the task specified by tskid.
The state of the overrun handler is returned through the packet pointed to by pk_rovr.
The operational state of the overrun handler is returned through ovrstat. One of the
following values is returned depending on whether the processing time limit has been set
for the task:

TOVR_STP 0x00 Processing time limit is not set
TOVR_STA 0x01 Processing time limit is set

The processing time remaining until the overrun handler is called for the specified task is
returned through leftotm if the processing time limit is set for the specified task. This
means the value returned is the processing time limit minus the processing time used. The
value returned must be equal to or less than the actual remaining processing time which
can be consumed by the task until the overrun handler is called. Therefore, 0 can be
returned through leftotm if this service call is invoked just before the overrun handler is
called. The value returned through leftotm when the processing time limit is not set for the
specified task is implementation-dependent.
If tskid is TSK_SELF (= 0), the task that invoked the service call will be the specified task.

268

µITRON4.0 Specification Ver. 4.03.00

4.8 System State Management Functions

System state management functions provide control of and reference to the various system
states. System state management functions include the ability to rotate task precedence, to
reference the ID of the task in the RUNNING state, to lock and unlock the CPU, to enable
and disable dispatching, and to reference the context and the system state.
The following data type packet is defined for referencing system state:

 typedef struct t_rsys {
 /* Implementation-specific fields */
 } T_RSYS ;

The following represents the function codes for the system state management service
calls:

TFN_ROT_RDQ –0x55 Function code of rot_rdq
TFN_IROT_RDQ –0x79 Function code of irot_rdq
TFN_GET_TID –0x56 Function code of get_tid
TFN_IGET_TID –0x7a Function code of iget_tid
TFN_LOC_CPU –0x59 Function code of loc_cpu
TFN_ILOC_CPU –0x7b Function code of iloc_cpu
TFN_UNL_CPU –0x5a Function code of unl_cpu
TFN_IUNL_CPU –0x7c Function code of iunl_cpu
TFN_DIS_DSP –0x5b Function code of dis_dsp
TFN_ENA_DSP –0x5c Function code of ena_dsp
TFN_SNS_CTX –0x5d Function code of sns_ctx
TFN_SNS_LOC –0x5e Function code of sns_loc
TFN_SNS_DSP –0x5f Function code of sns_dsp
TFN_SNS_DPN –0x60 Function code of sns_dpn
TFN_REF_SYS –0x61 Function code of ref_sys

[Standard Profile]

The Standard Profile requires support for system state management functions except for
the function to reference the system state (ref_sys).

[Differences from the µITRON3.0 Specification]

The category of system state management functions has been newly added.

269

µITRON4.0 Specification Ver. 4.03.00

rot_rdq Rotate Task Precedence [S] [B]
irot_rdq [S] [B]

[C Language API]

 ER ercd = rot_rdq (PRI tskpri) ;
 ER ercd = irot_rdq (PRI tskpri) ;

[Parameter]

PRI tskpri Priority of the tasks whose precedence is rotated

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_PAR Parameter error (tskpri is invalid)

[Functional Description]

These service calls rotate the precedence of the tasks with the priority specified by tskpri.
In other words, the task with the highest precedence of all the runnable tasks with the
specified priority will have the lowest precedence among the tasks with the same priority
after the precedence rotation.
If tskpri is TPRI_SELF (= 0), the base priority of the invoking task becomes the target
priority. An E_PAR error is returned if TPRI_SELF is specified when the service call is
invoked from non-task contexts.

[Supplemental Information]

Round-robin scheduling can be achieved by invoking these service calls periodically. No
action is required if there is a single runnable task with the specified priority or no
runnable tasks with the specified priority (no error is reported).
When the service call is invoked with the current priority of the invoking task as the target
priority while in the dispatching enabled state, the invoking task's precedence becomes the
lowest among the tasks with the same priority. This means the invoking task may yield the
execution privilege to another task. While in the dispatching disabled state, the task with
the highest precedence among the tasks with the same priority may not necessarily be the
running task. Therefore, the invoking task's precedence may not become the lowest among
the tasks with the same priority using this yield method. The yield method can also be
realized by invoking the service call with TPRI_SELF specified for tskpri when the
current priority of the invoking task equals its base priority, as is always the case when
mutex functions are not used.

270

µITRON4.0 Specification Ver. 4.03.00

[Differences from the µITRON3.0 Specification]

The ability to rotate the task's precedence with the priority of the task in the RUNNING
state when these service calls are invoked from non-task contexts has been removed.
Therefore, TPRI_RUN has been changed to TPRI_SELF. TPRI_SELF now specifies the
base priority of the invoking task due to the introduction of mutex functions.

271

µITRON4.0 Specification Ver. 4.03.00

get_tid Reference Task ID in the RUNNING State [S] [B]
iget_tid [S]

[C Language API]

 ER ercd = get_tid (ID *p_tskid) ;
 ER ercd = iget_tid (ID *p_tskid) ;

[Parameter]

None

[Return Parameter]

ER ercd E_OK for normal completion or error code
ID tskid ID number of the task in the RUNNING state

[Error Code]

E_PAR Parameter error (p_tskid is invalid)

[Functional Description]

These service calls reference the ID number of the task in the RUNNING state (this
corresponds to the invoking task when the service call is invoked from task contexts) and
return the task ID through tskid. If no task is in the RUNNING state when the service call
is invoked from non-task contexts, TSK_NONE (= 0) is returned instead.

[Supplemental Information]

Some kernel implementations employ an idle task that runs when no application tasks are
runnable. When the service call is invoked for such a kernel implementation while an idle
task is in the RUNNING state, TSK_NONE is returned instead of the ID number of the
idle task.

[Differences from the µITRON3.0 Specification]

These service calls have been changed from returning the invoking task ID to returning
the task ID of the task in the RUNNING state. As a result, the behavior upon invoking
these service calls from non-task contexts has been changed.

[Rationale]

The reason why tskid is not returned through the return value of the service call is because
negative task ID numbers can be supported.

272

µITRON4.0 Specification Ver. 4.03.00

loc_cpu Lock the CPU [S] [B]
iloc_cpu [S]

[C Language API]

 ER ercd = loc_cpu () ;
 ER ercd = iloc_cpu () ;

[Parameter]

None

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

No errors specific to this service call

[Functional Description]

These service calls transit the system to the CPU locked state. If the system is in the CPU
locked state, no action is required.

[Supplemental Information]

The system is released from the CPU locked state when unl_cpu or iunl_cpu is invoked
once, even if multiple calls of loc_cpu or iloc_cpu have been made. Therefore, if a pair of
loc_cpu or iloc_cpu and unl_cpu or iunl_cpu needs to be nested, the following method is
required:

 {
 BOOL cpu_locked = sns_loc () ;

 if (!cpu_locked)
 loc_cpu () ;
 /* work to do in the CPU locked state */
 if (!cpu_locked)
 unl_cpu () ;
 }

[Differences from the µITRON3.0 Specification]

The meanings of the CPU locked/unlocked state have been changed (see Section 3.5.4). In
addition, the service calls may now be invoked from non-task contexts.

273

µITRON4.0 Specification Ver. 4.03.00

unl_cpu Unlock the CPU [S] [B]
iunl_cpu [S]

[C Language API]

 ER ercd = unl_cpu () ;
 ER ercd = iunl_cpu () ;

[Parameter]

None

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

No errors specific to this service call

[Functional Description]

These service calls transit the system to the CPU unlocked state. If the system is in the
CPU unlocked state, no action is required.

[Differences from the µITRON3.0 Specification]

The meanings of the CPU locked/unlocked state have been changed (see Section 3.5.4).
Now, invoking these service calls does not necessarily transit the system to the
dispatching enabled state. In addition, the service calls may now be invoked from non-task
contexts.

274

µITRON4.0 Specification Ver. 4.03.00

dis_dsp Disable Dispatching [S] [B]

[C Language API]

 ER ercd = dis_dsp () ;

[Parameter]

None

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

No errors specific to this service call

[Functional Description]

This service call transits the system to the dispatching disabled state. If the system is in the
dispatching disabled state, no action is required.

[Supplemental Information]

The system is released from the dispatching disabled state when ena_dsp is invoked once,
even if multiple calls of dis_dsp have been made. Therefore, if a pair of dis_dsp and
ena_dsp needs to be nested, the following method is required:

 {
 BOOL dispatch_disabled = sns_dsp () ;

 if (!dispatch_disabled)
 dis_dsp () ;
 /* work to do in the dispatching disabled state */
 if (!dispatch_disabled)
 ena_dsp () ;
 }

[Differences from the µITRON3.0 Specification]

The meaning of the dispatching disabled state has been changed (see Section 3.5.5).

275

µITRON4.0 Specification Ver. 4.03.00

ena_dsp Enable Dispatching [S] [B]

[C Language API]

 ER ercd = ena_dsp () ;

[Parameter]

None

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

No errors specific to this service call

[Functional Description]

This service call transits the system to the dispatching enabled state. If the system is in the
dispatching enabled state, no action is required.

[Differences from the µITRON3.0 Specification]

The meaning of the dispatching disabled state has been changed (see Section 3.5.5).

276

µITRON4.0 Specification Ver. 4.03.00

sns_ctx Reference Contexts [S]

[C Language API]

 BOOL state = sns_ctx () ;

[Parameter]

None

[Return Parameter]

BOOL state Context

[Functional Description]

This service call returns TRUE if invoked from non-task contexts and returns FALSE if
invoked from task contexts.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.

277

µITRON4.0 Specification Ver. 4.03.00

sns_loc Reference CPU State [S]

[C Language API]

 BOOL state = sns_loc () ;

[Parameter]

None

[Return Parameter]

BOOL state CPU state

[Functional Description]

This service call returns TRUE if the system is in the CPU locked state and returns
FALSE if the system is in the CPU unlocked state.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.

278

µITRON4.0 Specification Ver. 4.03.00

sns_dsp Reference Dispatching Disabled State [S]

[C Language API]

 BOOL state = sns_dsp () ;

[Parameter]

None

[Return Parameter]

BOOL state Dispatching disabled state

[Functional Description]

This service call returns TRUE if the system is in the dispatching disabled state and
returns FALSE if the system is in the dispatching enabled state.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.

279

µITRON4.0 Specification Ver. 4.03.00

sns_dpn Reference Dispatch Pending State [S]

[C Language API]

 BOOL state = sns_dpn () ;

[Parameter]

None

[Return Parameter]

BOOL state Dispatch pending state

[Functional Description]

This service call returns TRUE if the system is in the dispatch pending state and returns
FALSE if the system is in any other state. In other words, it returns TRUE, while a
processing unit with higher precedence than the dispatcher is executing, while in the CPU
locked state, or while in the dispatching disabled state.

[Supplemental Information]

If the system is in the state where this service call returns FALSE, those service calls
which possibly put the invoking task into the blocked state may be invoked.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.

280

µITRON4.0 Specification Ver. 4.03.00

ref_sys Reference System State

[C Language API]

 ER ercd = ref_sys (T_RSYS *pk_rsys) ;

[Parameter]

T_RSYS * pk_rsys Pointer to the packet returning the system state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rsys includes (T_RSYS type)

(Implementation-specific information)

[Error Code]

E_PAR Parameter error (pk_rsys is invalid)

[Functional Description]

This service call references the system state and returns it through the packet pointed to by
pk_rsys. The specific information referenced is implementation-defined.

[Supplemental Information]

Possible information that may be referenced by this service call includes: information
which can be referenced by other reference service calls (get_tid, sns_ctx, sns_loc,
sns_dsp, and sns_dpn), priority of the task in the RUNNING state, interrupt enabled or
disabled state, interrupt mask, processor execution mode, and other information depending
on the target processor's architecture.

[Differences from the µITRON3.0 Specification]

In the µITRON4.0 Specification, the information returned by other reference service calls
(sns_ctx, sns_loc, and sns_dsp) replace the information returned by ref_sys (sysstat) in the
µITRON3.0 Specification.

281

µITRON4.0 Specification Ver. 4.03.00

4.9 Interrupt Management Functions

Interrupt management functions provide management for interrupt handlers and interrupt
service routines started by external interrupts. The interrupt management functions include
the ability to define an interrupt handler, to create and delete an interrupt service routine,
to reference the state of an interrupt service routine, to disable and enable an interrupt, and
to change and reference the interrupt mask. An interrupt service routine is an object
identified by an ID number. The ID number of an interrupt service routine is called the
interrupt service routine ID.
The following data types are used for interrupt management functions:

INHNO Interrupt handler number
INTNO Interrupt number
IXXXX Interrupt mask

The XXXX portion of the interrupt mask data type is implementation-defined and should
be an appropriate character string for the target processor's architecture.
The format to write an interrupt handler is implementation-defined.
When calling an interrupt service routine, the extended information (exinf) of the interrupt
service routine is passed as a parameter. The format to write an interrupt service routine in
the C language is shown below:

 void isr (VP_INT exinf)
 {
 /* Body of the interrupt service routine */
 }

The following data type packets are defined for defining interrupt handlers and for
creating and referencing interrupt service routines:

 typedef struct t_dinh {
 ATR inhatr ; /* Interrupt handler attribute */
 FP inthdr ; /* Interrupt handler start address */
 /* Other implementation-specific fields may be added. */
 } T_DINH ;
 typedef struct t_cisr {
 ATR isratr ; /* Interrupt service routine attribute */
 VP_INT exinf ; /* Interrupt service routine extended
 information */
 INTNO intno ; /* Interrupt number to which the interrupt
 service routine is to be attached */
 FP isr ; /* Interrupt service routine start address */
 /* Other implementation-specific fields may be added. */
 } T_CISR ;
 typedef struct t_risr {

282

µITRON4.0 Specification Ver. 4.03.00

 /* Implementation-specific fields */
 } T_RISR ;

The following represents the function codes for the interrupt management service calls:

TFN_DEF_INH –0x65 Function code of def_inh
TFN_CRE_ISR –0x66 Function code of cre_isr
TFN_ACRE_ISR –0xcd Function code of acre_isr
TFN_DEL_ISR –0x67 Function code of del_isr
TFN_REF_ISR –0x68 Function code of ref_isr
TFN_DIS_INT –0x69 Function code of dis_int
TFN_ENA_INT –0x6a Function code of ena_int
TFN_CHG_IXX –0x6b Function code of chg_ixx
TFN_GET_IXX –0x6c Function code of get_ixx

[Standard Profile]

The Standard Profile requires support for the static API to define an interrupt handler
(DEF_INH). If the implementation supports the static API that attaches an interrupt
service routine to the kernel (ATT_ISR), the implementation does not have to support
DEF_INH.

[Supplemental Information]

The contexts and states under which interrupt handlers execute are summarized as
follows:

• Interrupt handlers execute in their own independent contexts (see Section 3.5.1). The
contexts in which interrupt handlers execute are classified as non-task contexts (see
Section 3.5.2).

• Interrupt handlers execute at higher precedence than the dispatcher (see Section
3.5.3).

• After interrupt handlers start, whether the system is in the CPU locked state or in the
CPU unlocked state is implementation-dependent. However, the implementation
must provide a means to unlock the CPU in an interrupt handler as well as a means
to correctly return from the interrupt handler after unlocking the CPU (see Section
3.5.4).

• The start of and the return from interrupt handlers do not change the dispatching
state. When the dispatching state is changed within interrupt handlers, the original
state must be restored before returning from interrupt handlers (see Section 3.5.5).

The contexts and states under which interrupt service routines execute are summarized as
follows:

283

µITRON4.0 Specification Ver. 4.03.00

• Interrupt service routines execute in their own independent contexts (see Section
3.5.1). The contexts in which interrupt service routines execute are classified as non-
task contexts (see Section 3.5.2).

• Interrupt service routines execute at higher precedence than the dispatcher (see
Section 3.5.3).

• After interrupt service routines start, the system is in the CPU unlocked state. When
returning from interrupt service routines, the system must be in the CPU unlocked
state (see Section 3.5.4).

• The start of and the return from interrupt service routines do not change the
dispatching state. When the dispatching state is changed within interrupt service
routines, the original state must be restored before returning from interrupt service
routines (see Section 3.5.5).

[Differences from the µITRON3.0 Specification]

loc_cpu, which puts the system in the CPU locked state, and unl_cpu, which puts the
system in the CPU unlocked state, are now classified as system state management
functions. ret_int and ret_wup have been removed (see Section 3.9).
The data type of the parameter and return parameter for an interrupt mask has been
changed from UINT to a newly added data type IXXXX.

284

µITRON4.0 Specification Ver. 4.03.00

DEF_INH Define Interrupt Handler (Static API) [S]
def_inh Define Interrupt Handler

[Static API]

 DEF_INH (INHNO inhno, { ATR inhatr, FP inthdr }) ;

[C Language API]

 ER ercd = def_inh (INHNO inhno, T_DINH *pk_dinh) ;

[Parameter]

INHNO inhno Interrupt handler number to be defined
T_DINH * pk_dinh Pointer to the packet containing the interrupt handler

definition information (In DEF_INH, packet contents
must be directly specified.)

pk_dinh includes (T_DINH type)
ATR inhatr Interrupt handler attribute
FP inthdr Interrupt handler start address
(Other implementation-specific information may be added.)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_RSATR Reserved attribute (inhatr is invalid or unusable)
E_PAR Parameter error (inhno, pk_dinh, or inthdr is invalid)

[Functional Description]

This service call assigns an interrupt handler to the interrupt handler number specified by
inhno based on the information contained in the packet pointed to by pk_dinh. inhatr is the
interrupt handler attribute. inthdr is the start address of the interrupt handler.
In DEF_INH, inhno is an integer parameter without automatic ID assignment. inhatr is a
preprocessor constant expression parameter.
The specific meaning of inhno is implementation-defined, but it corresponds to the
processor's interrupt vector number in typical implementations. If a processor does not
have interrupt vectors, only one interrupt handler number may be available.
If pk_dinh is specified as NULL (= 0), the interrupt handler currently defined is released.
When a new interrupt handler is defined over top of an old one, the old one is released and
the new one takes its place.
The possible values and meanings of inhatr are implementation-defined.

285

µITRON4.0 Specification Ver. 4.03.00

[Standard Profile]

The Standard Profile does not require support for DEF_INH if the implementation
supports ATT_ISR.

[Differences from the µITRON3.0 Specification]

The abbreviation of an interrupt handler has been changed from int to inh. Therefore, the
name of this service call has been changed from def_int to def_inh. The possible values
and meanings of inhatr are now left to the implementation.

286

µITRON4.0 Specification Ver. 4.03.00

ATT_ISR Attach Interrupt Service Routine (Static API)

cre_isr Create Interrupt Service Routine

acre_isr Create Interrupt Service Routine (Automatic ID Assignment)

[Static API]

 ATT_ISR ({ ATR isratr, VP_INT exinf, INTNO intno, FP isr }) ;

[C Language API]

 ER ercd = cre_isr (ID isrid, T_CISR *pk_cisr) ;
 ER_ID isrid = acre_isr (T_CISR *pk_cisr) ;

[Parameter]

ID isrid ID number of the interrupt service routine to be
created (only cre_isr)

T_CISR * pk_cisr Pointer to the packet containing the interrupt service
routine creation information (In ATT_ISR, packet
contents must be directly specified.)

pk_cisr includes (T_CISR type)
ATR isratr Interrupt service routine attribute
VP_INT exinf Interrupt service routine extended information
INTNO intno Interrupt number to which the interrupt service

routine is to be attached
FP isr Interrupt service routine start address
(Other implementation-specific information may be added.)

[Return Parameter]

cre_isr:
ER ercd E_OK for normal completion or error code

acre_isr:
ER_ID isrid ID number (positive value) of the created interrupt

service routine or error code

[Error Code]

E_ID Invalid ID number (isrid is invalid or unusable; only cre_isr)
E_NOID No ID number available (there is no interrupt service routine ID

assignable; only acre_isr)
E_RSATR Reserved attribute (isratr is invalid or unusable)
E_PAR Parameter error (pk_cisr, intno, or isr is invalid)
E_OBJ Object state error (interrupt service routine is already registered;

only cre_isr)

287

µITRON4.0 Specification Ver. 4.03.00

[Functional Description]

These service calls create an interrupt service routine with an ID number specified by isrid
based on the information contained in the packet pointed to by pk_cisr. isratr is the
attribute of the interrupt service routine. exinf is the extended information passed as a
parameter to the interrupt service routine when it is called. intno is the number of the
interrupt associated with the interrupt service routine. isr is the start address of the
interrupt service routine.
ATT_ISR is used to attach an interrupt service routine without assigning isrid. The
interrupt service routines specified in this way have no ID numbers. In ATT_ISR, isratr is
a preprocessor constant expression parameter. intno is an integer parameter without
automatic ID assignment.
acre_isr assigns an interrupt service routine ID from the pool of unassigned interrupt
service routine IDs and returns the assigned interrupt service routine ID.
isratr can be specified as (TA_HLNG || TA_ASM). If TA_HLNG (= 0x00) is specified,
the interrupt service routine is called through a high-level language interface. If TA_ASM
(= 0x01) is specified, the interrupt service routine is called through an assembly language
interface.

[Standard Profile]

The Standard Profile does not require support for DEF_INH if the implementation
supports ATT_ISR. In this case, the Standard Profile does not require support for these
functions when TA_ASM is specified in isratr.

[Supplemental Information]

Multiple interrupt service routines may be attached to the same interrupt number. See
Section 3.3.2 for information on how to handle multiple interrupt service routines attached
to the same interrupt number.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.

288

µITRON4.0 Specification Ver. 4.03.00

del_isr Delete Interrupt Service Routine

[C Language API]

 ER ercd = del_isr (ID isrid) ;

[Parameter]

ID isrid ID number of the interrupt service routine to be
deleted

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_ID Invalid ID number (isrid is invalid or unusable)
E_NOEXS Non-existent object (specified interrupt service routine is not

registered)

[Functional Description]

This service call deletes the interrupt service routine specified by isrid.

[Supplemental Information]

Interrupt service routines attached through ATT_ISR cannot be deleted with this service
call because they do not have ID numbers.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.

289

µITRON4.0 Specification Ver. 4.03.00

ref_isr Reference Interrupt Service Routine State

[C Language API]

 ER ercd = ref_isr (ID isrid, T_RISR *pk_risr) ;

[Parameter]

ID isrid ID number of the interrupt service routine to be
referenced

T_RISR * pk_risr Pointer to the packet returning the interrupt service
routine state

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_risr includes (T_RISR type)

(Implementation-specific information)

[Error Code]

E_ID Invalid ID number (isrid is invalid or unusable)
E_NOEXS Non-existent object (specified interrupt service routine is not

registered)
E_PAR Parameter error (pk_risr is invalid)

[Functional Description]

This service call references the state of the interrupt service routine specified by isrid. The
state of the interrupt service routine is returned through the packet pointed to by pk_risr.
The specific information returned is implementation-defined.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.

290

µITRON4.0 Specification Ver. 4.03.00

dis_int Disable Interrupt

[C Language API]

 ER ercd = dis_int (INTNO intno) ;

[Parameter]

INTNO intno Interrupt number to be disabled

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_PAR Parameter error (intno is invalid)

[Functional Description]

This service call disables the interrupt specified by intno. The specific meaning of intno is
implementation-defined. In typical implementations, intno corresponds to the interrupt
request line to the IRC.

[Supplemental Information]

This service call is intended to control the IRC. Invoking this service call does not transit
the system to the CPU locked state or the dispatching disabled state. Therefore,
dispatching still occurs even if all interrupts are disabled due to this service call. In
addition, if interrupts are disabled, they remain disabled after task dispatching.

[Differences from the µITRON3.0 Specification]

Because this service call is intended to control the IRC, the meaning of intno is defined
more strictly than in the µITRON3.0 Specification. The data type of intno has been
changed from UINT to INTNO.

291

µITRON4.0 Specification Ver. 4.03.00

ena_int Enable Interrupt

[C Language API]

 ER ercd = ena_int (INTNO intno) ;

[Parameter]

INTNO intno Interrupt number to be enabled

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_PAR Parameter error (intno is invalid)

[Functional Description]

This service call enables the interrupt specified by intno. The specific meaning of intno is
implementation-defined. In typical implementations, intno corresponds to the interrupt
request line to the IRC.

[Supplemental Information]

This service call is intended to control the IRC. Invoking this service call does not transit
the system to the CPU unlocked state or the dispatching enabled state. Therefore, this
service call does not necessarily result in a state where interrupts will be accepted by the
processor.

[Differences from the µITRON3.0 Specification]

Because this service call is intended to control the IRC, the meaning of intno is defined
more strictly than in the µITRON3.0 Specification. The data type of intno has been
changed from UINT to INTNO.

292

µITRON4.0 Specification Ver. 4.03.00

chg_ixx Change Interrupt Mask

[C Language API]

 ER ercd = chg_ixx (IXXXX ixxxx) ;

[Parameter]

IXXXX ixxxx Interrupt mask desired

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_PAR Parameter error (ixxxx is invalid)

[Functional Description]

This service call changes the processor's interrupt mask (also referred to as interrupt level
or interrupt priority) to the value specified by ixxxx.
The xx portion of the service call name and the xxxx portion of the parameter name are
implementation-defined and should be appropriate character strings for the target
processor's architecture.
Depending on the value specified by ixxxx, this service call may cause a transition
between the CPU locked state and the CPU unlocked state and/or a transition between the
dispatching disabled state and the dispatching enabled state. The value causing these
transitions and the transition caused by this service call are implementation-defined.

[Supplemental Information]

In implementations where the CPU state is managed with the processor's interrupt mask,
changing the processor's interrupt mask may cause a transition between the CPU states or
a transition between the dispatching states. In implementations where these states are
managed by a combination of the processor's interrupt mask and a variable, the variable's
value must be updated to reflect the change in the processor's interrupt mask caused by
this service call.

[Differences from the µITRON3.0 Specification]

The data type for ixxxx has been changed from UINT to IXXXX.

293

µITRON4.0 Specification Ver. 4.03.00

get_ixx Reference Interrupt Mask

[C Language API]

 ER ercd = get_ixx (IXXXX *p_ixxxx) ;

[Parameter]

None

[Return Parameter]

ER ercd E_OK for normal completion or error code
IXXXX ixxxx Current interrupt mask

[Error Code]

E_PAR Parameter error (p_ixxxx is invalid)

[Functional Description]

This service call references the processor's interrupt mask (also referred to as interrupt
level or interrupt priority) and returns it through ixxxx.
The xx portion of the service call name and the xxxx portion of the parameter name are
implementation-defined and should be appropriate character strings for the target
processor's architecture.

[Differences from the µITRON3.0 Specification]

The name of this service call has been changed from ref_ixx to get_ixx. The data type for
ixxxx has been changed from UINT to IXXXX.

294

µITRON4.0 Specification Ver. 4.03.00

4.10 Service Call Management Functions

Service call management functions provide definition and invocation of extended service
calls.
An extended service call is a function that allows the calling of another module when the
entire system is not linked to a single module. When an extended service call is invoked,
the extended service call routine defined by the application is called.
The format to write an extended service call routine in the C language is shown below:

 ER_UINT svcrtn (VP_INT par1, VP_INT par2, ...)
 {
 /* Body of the extended service call routine */
 }

Only the necessary parameters for the extended service call routine (par1, par2, and so on)
have to be specified. There may be an implementation-defined limit on the number of
parameters for extended service calls. However, at least one parameter must be supported.
The following data type packets are used for defining extended service calls:

 typedef struct t_dsvc {
 ATR svcatr ; /* Extended service call attribute */
 FP svcrtn ; /* Extended service call routine start address */
 /* Other implementation-specific fields may be added. */
 } T_DSVC ;

The following represents the function codes for service call management service calls.
cal_svc has no function code.

TFN_DEF_SVC –0x6d Function code of def_svc

[Standard Profile]

The Standard Profile does not require support for service call management functions.

[Supplemental Information]

The contexts and states under which extended service call routines execute are
summarized as follows:

• An extended service call routine executes in its own independent context determined
by the extended service call and by the context from which the extended service call
is invoked (see Section 3.5.1). The context in which an extended service call routine
executes is classified as task contexts when the invoking context is classified as task
contexts. It is classified as non-task contexts when the invoking context is classified
as non-task contexts (See Section 3.5.2).

• The precedence of extended service call routines is higher than the precedence of the
processing unit that invokes the extended service calls and is lower than the

295

µITRON4.0 Specification Ver. 4.03.00

precedence of any processing unit that has a higher precedence than the invoking
processing unit (see Section 3.5.3).

• The start of and the return from extended service call routines do not change the
CPU state and the dispatching state (See Sections 3.5.4 and 3.5.5).

• Executing extended service call routines with task exceptions disabled is
implementation-defined (see Section 4.3).

[Differences from the µITRON3.0 Specification]

The category of service call management functions has been newly added.
The terms extended SVC and extended SVC handler have been changed to extended
service call and extended service call routine, respectively. The contexts and states under
which extended service call routines execute is more strictly defined compared to the
µITRON3.0 Specification.

296

µITRON4.0 Specification Ver. 4.03.00

DEF_SVC Define Extended Service Call (Static API)

def_svc Define Extended Service Call

[Static API]

 DEF_SVC (FN fncd, { ATR svcatr, FP svcrtn }) ;

[C Language API]

 ER ercd = def_svc (FN fncd, T_DSVC *pk_dsvc) ;

[Parameter]

FN fncd Function code of the extended service call to be
defined

T_DSVC * pk_dsvc Pointer to the packet containing the extended service
call definition information (In DEF_SVC, packet
contents must be directly specified.)

pk_dsvc includes (T_DSVC type)
ATR svcatr Extended service call attribute
FP svcrtn Extended service call routine start address
(Other implementation-specific information may be added.)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_RSATR Reserved attribute (svcatr is invalid or unusable)
E_PAR Parameter error (fncd, pk_dsvc, or svcatr is invalid)

[Functional Description]

This service call defines an extended service call for the function code specified by fncd
based on the information contained in the packet pointed to by pk_dsvc. svcatr is the
attribute of the extended service call. svcrtn is the start address of the extended service call
routine.
In DEF_SVC, fncd is an integer parameter without automatic ID assignment. svcatr is a
preprocessor constant expression parameter.
This service call and this static API can define an extended service call with a positive
value of fncd. If a negative value is specified in fncd, an E_PAR error is returned.
If pk_dsvc is specified as NULL (= 0), the extended service call currently defined is
released and the extended service call becomes undefined. When a new extended service
call is defined over top of an old one, the old one is released and the new one takes its
place.

297

µITRON4.0 Specification Ver. 4.03.00

svcatr can be specified as (TA_HLNG || TA_ASM). If TA_HLNG (= 0x00) is specified,
the extended service call routine is called through a high-level language interface. If
TA_ASM (= 0x01) is specified, the extended service call routine is called through an
assembly language interface.

[Differences from the µITRON3.0 Specification]

The name of the parameter has been changed from svchdr to svcrtn.

298

µITRON4.0 Specification Ver. 4.03.00

cal_svc Invoke Service Call

[C Language API]

 ER_UINT ercd = cal_svc (FN fncd, VP_INT par1, VP_INT par2, ...) ;

[Parameter]

FN fncd Function code of the service call to be invoked
VP_INT par1 The first parameter of the service call
VP_INT par2 The second parameter of the service call
... ... (up to the necessary number of parameters)

[Return Parameter]

ER_UINT ercd The service call's return value

[Error Code]

E_RSFN Reserved function code (fncd is invalid or unusable)

[Functional Description]

This service call invokes the service call whose function code is specified by fncd with the
parameters par1, par2, and so on, and returns the return value of the invoked service call.
There may be an implementation-defined limit greater than or equal to 1 on the number of
parameters that can be passed to the service call. If the service call's parameters are not of
the VP_INT type, unless defined otherwise in the implementation, this service call
converts the parameters to the appropriate data types while preserving their values. If the
service call's return value is of the ER, BOOL, ER_BOOL, or ER_ID type, this service
call converts the return value to the ER_UINT type while preserving its value.
In addition to an extended service call, allowing this service call to invoke a standard
service call is implementation-defined. If this service call cannot invoke a standard service
call, it returns an E_RSFN error.

[Supplemental Information]

Standard service calls are distinguished from extended service calls because the former
have negative function codes. Since cal_svc does not have a function code, cal_svc cannot
be used to invoke itself.

[Differences from the µITRON3.0 Specification]

This service call has been newly added.

299

µITRON4.0 Specification Ver. 4.03.00

4.11 System Configuration Management Functions

System configuration management functions include the ability to define a CPU exception
handler, to reference the system configuration and version information, and to define an
initialization routine. The initialization routine executes during system initialization. See
Section 3.7 for the timing and contexts of initialization routine execution.
The following data types are used for system configuration management functions:

EXCNO CPU exception handler number
The format to write a CPU exception handler is implementation-defined.
When calling an initialization routine, the extended information (exinf) of the initialization
routine is passed as a parameter. The format to write an initialization routine in the C
language is shown below:

 void inirtn (VP_INT exinf)
 {
 /* Body of the initialization routine */
 }

The following data type packets are defined for defining CPU exception handlers and for
referencing the configuration and version information.

 typedef struct t_dexc {
 ATR excatr ; /* CPU exception handler attribute */
 FP exchdr ; /* CPU exception handler start address */
 /* Other implementation-specific fields may be added. */
 } T_DEXC ;
 typedef struct t_rcfg {
 /* Implementation-specific fields */
 } T_RCFG ;
 typedef struct t_rver {
 UH maker ; /* Kernel maker's code */
 UH prid ; /* Identification number of the kernel */
 UH spver ; /* Version number of the ITRON
 Specification */
 UH prver ; /* Version number of the kernel */
 UH prno[4] ; /* Management information of the kernel
 product */
 } T_RVER ;

The following represents the function codes for the system configuration management
service calls:

TFN_DEF_EXC –0x6e Function code of def_exc
TFN_REF_CFG –0x6f Function code of ref_cfg
TFN_REF_VER –0x70 Function code of ref_ver

300

µITRON4.0 Specification Ver. 4.03.00

[Standard Profile]

The Standard Profile requires support for the static API defining a CPU exception handler
(DEF_EXC) and the static API defining an initialization routine (ATT_INI).

[Supplemental Information]

The contexts and states under which CPU exception handlers execute are summarized as
follows:

• The service calls that can be invoked from within CPU exception handlers are
implementation-defined (see Section 3.4.2).

• A CPU exception handler executes in its own independent context determined by the
CPU exception and by the context in which the CPU exception occurred (see
Section 3.5.1). When a CPU exception occurs in task contexts, whether the CPU
exception handler executes in task contexts or in non-task contexts is
implementation-defined. When a CPU exception occurs in non-task contexts, the
CPU exception handler executes in non-task contexts (see Section 3.5.2).

• The precedence of CPU exception handlers is higher than the precedence of the
processing unit where the CPU exception occurs and higher than the precedence of
the dispatcher (see Section 3.5.3).

• The start of and the return from CPU exception handlers do not change the CPU
state and the dispatching state. When the CPU state or the dispatching state is
changed in CPU exception handlers, they should be returned to their previous states
before returning from the CPU exception handlers (see Sections 3.5.4 and 3.5.5).

301

µITRON4.0 Specification Ver. 4.03.00

DEF_EXC Define CPU Exception Handler (Static API) [S]
def_exc Define CPU Exception Handler

[Static API]

 DEF_EXC (EXCNO excno, { ATR excatr, FP exchdr }) ;

[C Language API]

 ER ercd = def_exc (EXCNO excno, T_DEXC *pk_dexc) ;

[Parameter]

EXCNO excno CPU exception handler number to be defined
T_DEXC * pk_dexc Pointer to the packet containing the CPU exception

handler definition information (In DEF_EXC, packet
contents must be directly specified.)

pk_dexc includes (T_DEXC type)
ATR excatr CPU exception handler attribute
FP exchdr CPU exception handler start address
(Other implementation-specific information may be added.)

[Return Parameter]

ER ercd E_OK for normal completion or error code

[Error Code]

E_RSATR Reserved attribute (excatr is invalid or unusable)
E_PAR Parameter error (excno, pk_dexc, or exchdr is invalid)

[Functional Description]

This service call assigns a CPU exception handler to the CPU exception handler number
specified by excno based on the information contained in the packet pointed to by
pk_dexc. excatr is the attribute of the CPU exception handler. exchdr is the start address
of the CPU exception handler.
In DEF_EXC, excno is an integer parameter without automatic ID assignment. excatr is a
preprocessor constant expression parameter.
The specific meaning of excno is implementation-defined, but it corresponds to the
processor's exception in typical implementations.
If pk_dexc is specified as NULL (= 0), the CPU exception handler currently defined is
released. When a new CPU exception handler is defined over top of an old one, the old
one is released and the new one takes its place.
The possible values and meanings of excatr are implementation-defined.

302

µITRON4.0 Specification Ver. 4.03.00

[Differences from the µITRON3.0 Specification]

This service call is now specified for defining a CPU exception handler. The object
number for identifying a CPU exception handler is now the CPU exception handler
number (excno) of the EXCNO type. The possible values and meanings of excatr are now
left to the implementation.

303

µITRON4.0 Specification Ver. 4.03.00

ref_cfg Reference Configuration Information

[C Language API]

 ER ercd = ref_cfg (T_RCFG *pk_rcfg) ;

[Parameter]

T_RCFG * pk_rcfg Pointer to the packet returning the configuration
information

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rcfg includes (T_RCFG type)

(Implementation-specific information)

[Error Code]

E_PAR Parameter error (pk_rcfg is invalid)

[Functional Description]

This service call references the static information and configuration information of the
system. The information is returned through the packet pointed to by pk_rcfg. The specific
information referenced is implementation-defined.

[Supplemental Information]

Possible information that may be referenced by this service call includes: the kernel
configuration constants, the range of ID numbers for each object, overview of the memory
map, available memory size, information on peripheral chips and I/O devices, and the time
unit and precision of the data types to specify the time.

304

µITRON4.0 Specification Ver. 4.03.00

ref_ver Reference Version Information

[C Language API]

 ER ercd = ref_ver (T_RVER *pk_rver) ;

[Parameter]

T_RVER * pk_rver Pointer to the packet returning the version
information

[Return Parameter]

ER ercd E_OK for normal completion or error code
pk_rver includes (T_RVER type)

UH maker Kernel maker's code
UH prid Identification number of the kernel
UH spver Version number of the ITRON Specification
UH prver Version number of the kernel
UH prno[4] Management information of the kernel product

[Error Code]

E_PAR Parameter error (pk_rver is invalid)

[Functional Description]

This service call references the version information of the kernel used. The information is
returned through the packet pointed to by pk_rver. Specifically, the following information
can be referenced.
maker is the code that represents the kernel maker. See Section 5.5 for assignments of
maker codes.
prid is the number for identifying the kernel. The kernel maker can assign values to prid.
A particular kernel implementation should be uniquely identified by the combination of
maker and prid codes.
The upper four bits of spver identify the type of the TRON Specification, and the lower 12
bits indicate the version number of the specification. The upper four bits of spver are
assigned as follows:

0x0 Common specification for TRON (such as TAD)
0x1 ITRON Specifications (ITRON1, ITRON2)
0x2 BTRON Specifications
0x3 CTRON Specifications
0x5 µITRON Specifications (µITRON2.0, µITRON3.0, µITRON4.0)
0x6 µBTRON Specifications

305

µITRON4.0 Specification Ver. 4.03.00

The lower 12 bits of spver represent the upper 3 digits of the specification version number.
The upper 3 digits of the specification version number are represented in the binary coded
decimal (BCD) format and each digit is 4 bits long. Version numbers for draft
specifications or specifications under discussion can include an alphabet letter. In this case,
the letter is interpreted as a hexadecimal number. See Section 5.3 for further description
on version numbers of the ITRON Specifications.
prver is the version number of the particular kernel implementation. The kernel maker can
assign values to prver.
prno is a return parameter that may contain the kernel product's management information,
product number, and others. The kernel maker determines its definition.

[Supplemental Information]

As an example, the value of spver for a kernel conformant to the µITRON4.0
Specification Ver.4.02.10 is 0x5402, and its value for a kernel conformant to Ver. 4.A1.01
is 0x54A1. This example shows that a newer version of the specification does not always
have a larger value of spver when a draft specification is involved.
The returned information except prno can be referenced with the kernel configuration
macros: TKERNEL_MAKER, TKERNEL_PRID, TKERNEL_SPVER, and
TKERNEL_PRVER.

[Differences from the µITRON3.0 Specification]

The name of the service call has been changed from get_ver to ref_ver. Referencing the
CPU information and the variation descriptor has been removed. The specification of the
prver format has been removed. The name of the return parameter has been changed from
id to prid.

[Rationale]

The values stored in spver include only the upper 3 digits of the specification version
number and do not include the remaining digits. This is because the remaining digits only
refer to the notation of the specification version and not the contents.

306

µITRON4.0 Specification Ver. 4.03.00

ATT_INI Attach Initialization Routine (Static API) [S]

[Static API]

 ATT_INI ({ ATR iniatr, VP_INT exinf, FP inirtn }) ;

[Parameter]

ATR iniatr Initialization routine attribute
VP_INT exinf Initialization routine extended information
FP inirtn Initialization routine start address
(Other implementation-specific information may be added.)

[Functional Description]

This static API registers an initialization routine based on the specified parameters. iniatr
is the attribute of the initialization routine. exinf is the extended information passed as a
parameter to the initialization routine. inirtn is the start address of the initialization routine.
In ATT_INI, iniatr is a preprocessor constant expression parameter.
The registered initialization routine is executed as a part of the processing of the static
APIs during system initialization. See Section 3.7 for a detailed description of this process.
iniatr can be specified as (TA_HLNG || TA_ASM). If TA_HLNG (= 0x00) is specified,
the initialization routine is called through a high-level language interface. If TA_ASM (=
0x01) is specified, the initialization routine is called through an assembly language
interface.

[Standard Profile]

The Standard Profile does not require support for this function when TA_ASM is
specified in iniatr.

[Supplemental Information]

The system configuration file can include more than one ATT_INI. See Section 3.7 for the
execution order of the initialization routines when more than one ATT_INI are described.

[Differences from the µITRON3.0 Specification]

This static API has been newly added.

307

µITRON4.0 Specification Ver. 4.03.00

308

µITRON4.0 Specification Ver. 4.03.00

Chapter 5 Additional Specifications

5.1 The Specification Requirements for the µITRON4.0
Specification

5.1.1 Basic Concept

The µITRON Specifications are specifications which are based on a loose standardization
concept. It emphasizes applicability to a wide range of hardwares and applications rather
than portability of application programs, and aims at standardization for the education of
software engineers. Therefore, as long as the OS specification meets the minimum
requirements of a real-time kernel, the realization of the functionality defined in this
specification and the addition of extended functionalities are left to the implementation.
Specifically, the following conditions must be satisfied for the implementation of the
µITRON4.0 Specification.

(a) It must have the minimum functionalities that are required to satisfy the µITRON4.0
Specification (see Section 5.1.2).

(b) If it contains functionalities similar to those described in the µITRON4.0
Specification, the functionality specifications must match the µITRON4.0
Specification. However, if the implementation does not provide a configurator,
conforming to the static API specification of the µITRON4.0 Specification is not
necessary.

(c) If it contains functionalities not specified by the µITRON4.0 Specification, the
functionality specifications must satisfy the conditions for implementation-
dependent extensions specified by the µITRON4.0 Specification. However, if the
implementation supports several sets of APIs, this condition is not applied to sets of
APIs other than the µITRON4.0-specification APIs.

If the implementation provides subsetting of service call functionalities or functionality
restrictions, or if it has special implementation functions that are not specified by the
µITRON4.0 Specification, the product manual must contain the description of the
implementation for clarification.
The profile rule defines the minimum function requirements that must be satisfied by the
kernel for the portability of application programs that are written in a high-level language.
In order for an implementation based on the µITRON4.0 Specification to conform to a
certain profile rule, it must have all the functionalities specified by the profile, and it must
agree with all the rules related to the profile. It can contain functionalities that are not
included by the profile and implementation-specific extensions. However, application
programs that are written to operate using only the functionalities included in the profile
must operate without modification.

309

µITRON4.0 Specification Ver. 4.03.00

Moreover, when embedding the implemented kernel to an application, embedding only
the functions needed by the application is possible.

[Standard Profile]

The Standard Profile is one of the profile specifications of the µITRON4.0 Specification.

[Supplemental Information]

The conditions under which an implementation satisfies the µITRON4.0 Specification is
illustrated by the following example. If the implementation has semaphore functions, the
names and functionalities of the service calls; the types, orders, and names of the
parameters and return parameters; and the types and names of main error codes must all
agree with the semaphore functions that are specified by the µITRON4.0 Specification. In
this case, subsetting of service call functions is permitted at the cost of portability of
application programs (this is for showing that the implementation does not have the same
functionalities as those defined in the µITRON4.0 Specification). If the implementation
adds a functionality that is not specified by the µITRON4.0 Specification (like counting
semaphores with priority inheritance), the functionality definition is freely decided by the
implementation. Moreover, in situations where subsets or implementation-specific
extensions are made, adding and/or deleting parameters and return parameters is permitted.
The conditions of this section do not specify a kernel configured for a particular
application. When a kernel conforming to the Standard Profile is embedded to an
application, the kernel functionalities may be limited to those functions needed by the
application and the range of ID numbers and priorities may be limited.

5.1.2 Minimum Required Functionalities for Conformance to the
µITRON4.0 Specification

The minimum functionalities that are required to satisfy the µITRON4.0 Specification are
as follows:

(a) Creation of tasks. The task must at least be able to be in the RUNNING state, the
READY state, and the DORMANT state.

(b) Task scheduling conforming to the µITRON4.0 Specification scheduling rule.
However, restricting the number of tasks to one for each priority level or restricting
the priority level to only one is allowed.

(c) Registration of interrupt handlers (or interrupt service routines).

(d) A method to activate tasks (changing the state from the DORMANT state to the
READY state) from tasks and interrupt handlers (or interrupt service routines).

(e) A method for a task to terminate itself (changing the state from the READY state to
the DORMANT state).

310

µITRON4.0 Specification Ver. 4.03.00

[Supplemental Information]

As an example, the minimum functionalities above can be satisfied if the implementation
provides the service calls and static APIs below, and if its task scheduling rule follows the
specification.

CRE_TSK create task (static API)
act_tsk / iact_tsk activate task
ext_tsk terminate invoking task
DEF_INH define interrupt handler (static API)

In this case, defining an interrupt handler (DEF_INH) can be replaced by attaching an
interrupt service routine (ATT_ISR). If a configurator is not provided, providing
equivalent methods with the static APIs instead of the static APIs conforming to the
specification is sufficient. Also act_tsk and iact_tsk do not have to support queuing of
activation requests. ext_tsk can be replaced by a return from the main routine.

[Differences from the µITRON3.0 Specification]

The minimum set of states for a task is changed from the RUNNING state, the READY
state, and the WAITING state to the RUNNING state, the READY state, and the
DORMANT state. The service calls required to be supported (level R) are not defined.

5.1.3 Extension of the µITRON4.0 Specification

When adding implementation-specific service calls to realize a new functionality which is
not specified by the µITRON4.0 Specification, a "v" must be added in front of the name of
the new service call. The names of the static API for implementation-specific functions
are also based on this rule. However, the names for implementation-specific service calls
that can be called from non-task contexts are exceptions to this rule (see Section 3.6.3).
The value of the function code for any implementation-specific service call must be within
the range provided.
When adding implementation-specific main error codes, the form of the name must be
EV_XXXXX and the value of the main error code must be defined within the range
provided. Also if there are implementation-specific data types, constants (except for error
codes), and/or macros defined, identifying those that are not defined by the µITRON4.0
Specification by inserting a "V" into the name is recommended.
In the µITRON4.0 Specification, the constants that specify the object attributes and
service call operational modes are assigned values that can be expressed in 8 bits. Also the
constants that express the object states are assigned with 8-bit values, with a few
exceptions. The lower 8-bit values of the parameters or return parameters are reserved for
future extensions of the ITRON Specifications. When assigning bit values to the
implementation-specific constants for those parameters and return parameters, the bit
values that cannot be used are the bits which are used by the constants defined by this

311

µITRON4.0 Specification Ver. 4.03.00

specification and the reserved lowest 8 bits. The remaining values in the upper 8 bits
should be used.
Also if there are rules that specify methods for implementation-specific extensions, such
as the packet for object registration information and object reference information, these
rules must be followed.

5.2 Basic Profile

The Basic Profile specifies the service calls that have the same functionality in
µITRON3.0, µITRON4.0, and T-Kernel, with the purpose of facilitating porting of
applications.
The general rules for defining the Basic Profile functions are as follows:

• Functions defined in the µITRON4.0-specification Standard Profile are supported.
• Functions included in neither the µITRON3.0 nor T-Kernel Specification are not

supported.
• Service calls with corresponding functions in the µITRON3.0, µITRON4.0, and T-

Kernel Specifications are supported. (Note that the names and specification details
of the service calls may differ, e.g. xxx_msg/xxx_mbx, wai_flg)

• Service calls classified into the [R] or [S] level in the µITRON3.0 Specification are
supported. However, the fixed-sized memory pools and cyclic handlers (shown
below) which are classified into the [E] level will be supported because they serve as
basic functions in the µITRON4.0 Specification.

• sta_tsk is supported as a general service call for activating the task.

(1) Task management functions

sta_tsk activate task (with a start code)
ext_tsk terminate invoking task
ter_tsk terminate task
chg_pri change task priority

(2) Task dependent synchronization functions

slp_tsk put task to sleep
wup_tsk / iwup_tsk wakeup task
can_wup cancel task wakeup requests
rel_wai / irel_wai release task from waiting
sus_tsk suspend task
rsm_tsk resume suspended task
dly_tsk delay task

(3) Synchronization and communication functions

Semaphores
sig_sem / isig_sem release semaphore resource
wai_sem acquire semaphore resource

312

µITRON4.0 Specification Ver. 4.03.00

pol_sem acquire semaphore resource (polling)

Eventflags
set_flg / iset_flg set eventflag
clr_flg clear eventflag
wai_flg wait for eventflag
pol_flg wait for eventflag (polling)

Mailboxes

snd_mbx send to mailbox
rcv_mbx receive from mailbox
prcv_mbx receive from mailbox (polling)

(4) Memory pool management functions

Fixed-sized memory pools
get_mpf acquire fixed-sized memory block
pget_mpf acquire fixed-sized memory block (polling)
rel_mpf release fixed-sized memory block

(5) Time management functions

Cyclic handlers
sta_cyc start cyclic handler operation
stp_cyc stop cyclic handler operation

(6) System state management functions

rot_rdq / irot_rdq rotate task precedence
get_tid reference task ID in the RUNNING state
loc_cpu lock the CPU
unl_cpu unlock the CPU
dis_dsp disable dispatching
ena_dsp enable dispatching

5.3 Automotive Control Profile

The Automotive Control Profile of the µITRON4.0 Specification is one of the
µITRON4.0 Specification profile rules and is mainly targeted at automotive control
applications. In order to realize the goal of reducing kernel overhead and memory usage, a
subsetting of the specification functions and additional functions for reducing memory
consumption are provided.
Compared to the Standard Profile, the Automotive Control Profile does not need to
support the following functionalities:

313

µITRON4.0 Specification Ver. 4.03.00

• Service calls with timeouts
• Wait queues in task priority order
• The SUSPENDED state
• Task exception handling functions
• Mailboxes
• Fixed-sized memory pools
• Some other service calls

In order to reduce the memory usage, restricted task functions are added. Restricted tasks
are tasks whose functionalities are restricted compared to conventional tasks. As long as
the application does not depend on an E_NOSPT error being returned when restricted
functions are used, the application should behave the same way if the restricted tasks are
replaced with conventional tasks. In this sense, the Automotive Control Profile has a
lower compatibility to the Standard Profile even if restricted task functions are added.

5.3.1 Restricted Tasks

By restricting some functionalities of tasks, a restricted task can share the same stack area
with other restricted tasks. This reduces the memory area required for the task's stack.
A restricted task differs from a conventional task as follows:

• A restricted task cannot enter the WAITING state.

• The priority of a restricted task cannot be changed. An expression cannot be used to
specify the initial priority during task creation.

• A restricted task cannot be terminated by a means other than returning from the
task's main routine.

Whether the task is restricted or not is determined by the task attribute specified during
task creation.

[Supplemental Information]

Specifying the task stack size, which is included in the task creation information, is also
valid for a restricted task. For example, if the same stack area is shared by several
restricted tasks of the same priority, setting the maximum value of each task's stack size to
the size of the stack area allocated by the kernel is necessary. Like the Standard Profile,
the Automotive Control Profile does not require support for the functions when a value
other than NULL is specified as the start address of a task's stack area.

5.3.2 Functionalities Included in the Automotive Control Profile

All the functionalities of the Automotive Control Profile except for the restricted task
functions are included in the Standard Profile. The Automotive Control Profile must
support the following static APIs and service calls.

314

µITRON4.0 Specification Ver. 4.03.00

(1) Task management functions

CRE_TSK create task (static API)
act_tsk / iact_tsk activate task
can_act cancel task activation requests
ext_tsk terminate invoking task
ter_tsk terminate task
chg_pri change task priority
get_pri reference task priority

(2) Task dependent synchronization functions

slp_tsk put task to sleep
wup_tsk / iwup_tsk wakeup task
can_wup cancel task wakeup requests
rel_wai / irel_wai release task from waiting

(3) Synchronization and communication functions

Semaphores
CRE_SEM create semaphore (static API)
sig_sem / isig_sem release semaphore resource
wai_sem acquire semaphore resource
pol_sem acquire semaphore resource (polling)

Eventflags

CRE_FLG create eventflag (static API)
set_flg / iset_flg set eventflag
clr_flg clear eventflag
wai_flg wait for eventflag
pol_flg wait for eventflag (polling)

Data queues

CRE_DTQ create data queue (static API)
psnd_dtq / ipsnd_dtq send to data queue (polling)
fsnd_dtq / ifsnd_dtq forced send to data queue
rcv_dtq receive from data queue
prcv_dtq receive from data queue (polling)

(4) Time management functions

System time management
isig_tim supply time tick
* If the kernel has a mechanism of updating the system time, isig_tim need not be

supported.
Cyclic handlers

CRE_CYC create cyclic handler (static API)
sta_cyc start cyclic handler operation
stp_cyc stop cyclic handler operation

315

µITRON4.0 Specification Ver. 4.03.00

(5) System state management functions

get_tid / iget_tid reference task ID in the RUNNING state
loc_cpu / iloc_cpu lock the CPU
unl_cpu / iunl_cpu unlock the CPU
dis_dsp disable dispatching
ena_dsp enable dispatching
sns_ctx reference contexts
sns_loc reference CPU state
sns_dsp reference dispatching state
sns_dpn reference dispatch pending state

(6) Interrupt management functions

DEF_INH define interrupt handler (static API)
* If ATT_ISR is supported, DEF_INH need not be supported.

(7) System configuration management functions

DEF_EXC define CPU exception handler (static API)
ATT_INI attach initialization routine (static API)

Among these static APIs or service calls, the functions that should be supported by the
Automotive Control Profile but are restricted or extended compared to the Standard
Profile are as follows.

• CRE_TSK

TA_RSTR (= 0x04) can be specified in the task attribute. When TA_RSTR is
specified, a restricted task is created. In the case where TA_RSTR is specified,
itskpri becomes an integer parameter without automatic ID assignment.

• CRE_SEM, CRE_FLG, CRE_DTQ

The Automotive Control Profile does not require support for the functions when
TA_TPRI is specified in each object attribute.

• ext_tsk

The behavior when invoked from a restricted task is implementation-defined.

• ter_tsk, chg_pri

When the specified task is a restricted task, an E_NOSPT error is returned.

• slp_tsk, wai_sem, wai_flg, rcv_dtq

When invoked from a restricted task, an E_NOSPT error is returned.

[Supplemental Information]

Within the Automotive Control Profile, the behavior when TA_TFIFO is specified as the
eventflag attribute is the same as when TA_TPRI is specified. In addition, since the task

316

µITRON4.0 Specification Ver. 4.03.00

cannot enter the sending waiting state for a data queue, specifying TA_TFIFO or
TA_TPRI for the data queue attribute is meaningless. Therefore, the restriction that
TA_TPRI cannot be specified for the eventflag attribute and the data queue attribute
practically means that when TA_TPRI is specified, an error should be returned.

5.4 Version Number of the Specifications

The version number of the ITRON Specifications is in the following form:
Ver. X.YY.ZZ [.WW]

X represents the major version number of the ITRON Specifications. The numbers
below are assigned to the kernel specifications:

1 ITRON1
2 ITRON2 or µITRON (Ver. 2.0)
3 µITRON3.0
4 µITRON4.0

YY indicates the version number of the updated specification when modifications or
additions are made to its contents. Once the specification is published, YY is updated to YY
= 00, 01, 02, and so on for each version of the specification. In the case where a major
upgrade significant enough to change the specification name was made, YY may be
updated in a non-serial manner. For draft specifications or specifications under discussion,
on the other hand, one of the letters in YY should be 'A', 'B', or 'C'.
The X.YY portion in the version number can be referenced through the kernel
configuration macro TKERNEL_SPVER and through the return parameter spver of the
ref_ver service call. If YY contains 'A', 'B', or 'C', the hexadecimal representation of 'A', 'B',
or 'C' is used, respectively.
ZZ is a number identifying the version relating to the specification notation. When
structural changes are made to the specification document or chapters, or when
typographical errors are corrected, ZZ is updated to ZZ = 00, 01, 02, and so on.
WW may be used for minor classifications on notations in the specification document. If
WW is omitted, WW is regarded as 00.

5.5 Maker Codes

TRON Association assigns the maker codes referenced through the kernel configuration
macro TKERNEL_MAKER and through the return parameter maker of the ref_ver
service call.
At the time of the publication of this specification document, the following maker codes
are assigned:

0x0000 No maker code (such as experimental systems)
0x0001 Sakamura Laboratory, University of Tokyo
0x0002 Universities and research institutes
0x0008 Individuals (or personal businesses)

317

µITRON4.0 Specification Ver. 4.03.00

0x0009 FUJITSU LIMITED
0x000a Hitachi, Ltd.
0x000b Matsushita Electric Industrial Co., Ltd.
0x000c Mitsubishi Electric Corporation
0x000d NEC Corporation
0x000e Oki Electric Industry Co., Ltd.
0x000f TOSHIBA CORPORATION
0x0010 ALPS ELECTRIC CO., LTD.
0x0011 Wacom Co., Ltd.
0x0012 Personal Media Corporation
0x0013 Sony Corporation
0x0014 Motorola, Inc.
0x0015 National Semiconductor Corporation
0x0101 OMRON Corporation
0x0102 SEIKO Precision Inc.
0x0103 System Algo Co., Ltd.
0x0104 TOKYO COMPUTER SERVICE CO., LTD.
0x0105 Yamaha Corporation
0x0106 MORSON JAPAN CO., LTD.
0x0107 TOSHIBA INFORMATION SYSTEMS (JAPAN)

CORPORATION
0x0108 MiSPO Co., Ltd.
0x0109 Three Ace Computer Corporation
0x010a Firmware Systems, Inc.
0x010b eSOL Co., Ltd.
0x010c U S Software Corporation
0x010d ACCESS Co., Ltd.
0x010e FUJITSU DEVICES INC.
0x010f Mentor Graphics Corp.
0x0110 Elmic Wescom, Inc.
0x0111 Web Technology Ltd.
0x0112 A. I. Corporation
0x0113 Grape Systems Inc.
0x0114 Hitachi Information & Control Solutions, Ltd.
0x0115 Renesas Technology Corp.
0x0116 Ibaraki Hitachi Information Service Co., Ltd.
0x0117 NEC Electronics Corporation
0x0118 TOPPERS Project, Inc. (Non Profit Organization)
0x0119 NISSIN SYSTEMS Co., Ltd.

For the kernels implemented by universities and research institutes, 0x0002 is used as the
maker code. For the kernels implemented by individuals (or personal businesses), 0x0008
is used as the maker code. For further identification of the kernel implementor, unique

318

µITRON4.0 Specification Ver. 4.03.00

values are assigned to each laboratory of universities and research institutes and each
individual (or personal business) in the upper 8 bits of the identification number of the
kernel, which can be referenced through the kernel configuration macro TKERNEL_PRID
and through the return parameter prid of the ref_ver service call.

319

µITRON4.0 Specification Ver. 4.03.00

320

µITRON4.0 Specification Ver. 4.03.00

Chapter 6 Appendix

6.1 Conditions for Using the Specification and the
Specification Document

The conditions for using the µITRON4.0 Specification and its specification document are
as follows:

Conditions for Using the Specification

The µITRON4.0 Specification is an open specification. Anyone may freely develop, use,
distribute, and sell software that conforms to the µITRON4.0 Specification.
However, TRON Association strongly recommends that the following statements (or
statements with the same meaning) be included in the documentation of the software, such
as the product manuals, conforming to the µITRON4.0 Specification:

• TRON is the abbreviation of "The Real-time Operating system Nucleus."

• ITRON is the abbreviation of "Industrial TRON."

• µITRON is the abbreviation of "Micro Industrial TRON."

• TRON, ITRON, and µITRON do not refer to any specific product or products.

TRON Association also recommends that the following statements (or statements with the
same meaning) be included in the documentation of the software, such as the product
manuals, conforming to the µITRON4.0 Specification:

The µITRON4.0 Specification is an open real-time kernel specification
developed by TRON Association. The µITRON4.0 Specification document
can be obtained from the TRON Association web site
(http://www.assoc.tron.org/).

If you receive permission to modify the specification document to create product manuals
(described later), you are obliged to include the statements described above.

Conditions for Using the Specification Document

The copyright of the µITRON4.0 Specification document belongs to TRON Association.
TRON Association grants the permission to copy the whole or a part of the µITRON4.0
Specification document and to redistribute it intact without charge or at cost. However,
when a part of the µITRON4.0 Specification document is redistributed, it must clearly
state (1) that it is a part of the µITRON4.0 Specification document, (2) which part was
taken, and (3) the method to obtain the whole µITRON4.0 Specification document.
Modification of the µITRON4.0 Specification document without prior written permission
from TRON Association is strongly prohibited.

321

µITRON4.0 Specification Ver. 4.03.00

TRON Association permits only the members of TRON Association to modify the
µITRON4.0 Specification document to create, distribute, and sell product manuals.
Contact TRON Association for the conditions and the procedure to get the permission.

Disclaimer

TRON Association disclaims all warranties with regard to the µITRON4.0 Specification
and its document including all implied warranties. TRON Association is not liable for any
direct or indirect damages caused by using the µITRON4.0 Specification or its document.
TRON Association may revise the µITRON4.0 Specification document without notice.

6.2 Maintenance of the Specification and Related
Information

Maintenance of the ITRON Specifications and Contact Information

The ITRON Specifications and their documents are developed and maintained by the
ITRON Specification Study Group of TRON Association. Any questions regarding the
specifications and their documents should be directed to the following:

ITRON Specification Study Group, TRON Association

Katsuta Building 5F

3-39, Mita 1-chome, Minato-ku,

Tokyo 108-0073, JAPAN

TEL: +81-3-3454-3191

FAX: +81-3-3454-3224

E-mail: info@assoc.tron.org

Website: http://www.assoc.tron.org

6.3 Version History of the Specification

Version History

June 30, 1999 Ver. 4.00.00 Japanese edition

May 31, 2001 Ver. 4.01.00 Japanese edition

March 29, 2002 Ver. 4.00.00 English edition

March 30, 2004 Ver. 4.02.00 Japanese edition

December 5, 2006 Ver. 4.03.00 Japanese edition

 The Basic Profile has been newly added.

July 24, 2007 Ver. 4.03.00 English edition

322

µITRON4.0 Specification Ver. 4.03.00

Editorial Committee Members for the English Edition of the µITRON 4.0 Specification
Ver. 4.03.00:

Leader: Shinjiro Yamada (Renesas Solutions Corp.)

Yasuhiro Kobayashi (FUJITSU LIMITED)
Tohru Takeuchi (FUJITSU LIMITED)
Hironobu Miyamoto (TOSHIBA CORPORATION)
Hiroshi Ii (TRON Association)
Shimpei Matsumura (TRON Association)

323

µITRON4.0 Specification Ver. 4.03.00

Chapter 7 References

7.1 Service Call List

(1) Task management functions

 ER ercd = cre_tsk (ID tskid, T_CTSK *pk_ctsk) ;
 ER_ID tskid = acre_tsk (T_CTSK *pk_ctsk) ;
 ER ercd = del_tsk (ID tskid) ;
 ER ercd = act_tsk (ID tskid) ;
 ER ercd = iact_tsk (ID tskid) ;
 ER_UINT actcnt = can_act (ID tskid) ;
 ER ercd = sta_tsk (ID tskid, VP_INT stacd) ;
 void ext_tsk () ;
 void exd_tsk () ;
 ER ercd = ter_tsk (ID tskid) ;
 ER ercd = chg_pri (ID tskid, PRI tskpri) ;
 ER ercd = get_pri (ID tskid, PRI *p_tskpri) ;
 ER ercd = ref_tsk (ID tskid, T_RTSK *pk_rtsk) ;
 ER ercd = ref_tst (ID tskid, T_RTST *pk_rtst) ;

(2) Task dependent synchronization functions

 ER ercd = slp_tsk () ;
 ER ercd = tslp_tsk (TMO tmout) ;
 ER ercd = wup_tsk (ID tskid) ;
 ER ercd = iwup_tsk (ID tskid) ;
 ER_UINT wupcnt = can_wup (ID tskid) ;
 ER ercd = rel_wai (ID tskid) ;
 ER ercd = irel_wai (ID tskid) ;
 ER ercd = sus_tsk (ID tskid) ;
 ER ercd = rsm_tsk (ID tskid) ;
 ER ercd = frsm_tsk (ID tskid) ;
 ER ercd = dly_tsk (RELTIM dlytim) ;

(3) Task exception handling functions

 ER ercd = def_tex (ID tskid, T_DTEX *pk_dtex) ;
 ER ercd = ras_tex (ID tskid, TEXPTN rasptn) ;
 ER ercd = iras_tex (ID tskid, TEXPTN rasptn) ;
 ER ercd = dis_tex () ;
 ER ercd = ena_tex () ;

325

µITRON4.0 Specification Ver. 4.03.00

 BOOL state = sns_tex () ;
 ER ercd = ref_tex (ID tskid, T_RTEX *pk_rtex) ;

(4) Synchronization and communication functions

Semaphores
 ER ercd = cre_sem (ID semid, T_CSEM *pk_csem) ;
 ER_ID semid = acre_sem (T_CSEM *pk_csem) ;
 ER ercd = del_sem (ID semid) ;
 ER ercd = sig_sem (ID semid) ;
 ER ercd = isig_sem (ID semid) ;
 ER ercd = wai_sem (ID semid) ;
 ER ercd = pol_sem (ID semid) ;
 ER ercd = twai_sem (ID semid, TMO tmout) ;
 ER ercd = ref_sem (ID semid, T_RSEM *pk_rsem) ;

Eventflags
 ER ercd = cre_flg (ID flgid, T_CFLG *pk_cflg) ;
 ER_ID flgid = acre_flg (T_CFLG *pk_cflg) ;
 ER ercd = del_flg (ID flgid) ;
 ER ercd = set_flg (ID flgid, FLGPTN setptn) ;
 ER ercd = iset_flg (ID flgid, FLGPTN setptn) ;
 ER ercd = clr_flg (ID flgid, FLGPTN clrptn) ;
 ER ercd = wai_flg (ID flgid, FLGPTN waiptn, MODE wfmode,
 FLGPTN *p_flgptn) ;
 ER ercd = pol_flg (ID flgid, FLGPTN waiptn, MODE wfmode,
 FLGPTN *p_flgptn) ;
 ER ercd = twai_flg (ID flgid, FLGPTN waiptn, MODE wfmode,
 FLGPTN *p_flgptn, TMO tmout) ;
 ER ercd = ref_flg (ID flgid, T_RFLG *pk_rflg) ;

Data queues

326

µITRON4.0 Specification Ver. 4.03.00

 ER ercd = cre_dtq (ID dtqid, T_CDTQ *pk_cdtq) ;
 ER_ID dtqid = acre_dtq (T_CDTQ *pk_cdtq) ;
 ER ercd = del_dtq (ID dtqid) ;
 ER ercd = snd_dtq (ID dtqid, VP_INT data) ;
 ER ercd = psnd_dtq (ID dtqid, VP_INT data) ;
 ER ercd = ipsnd_dtq (ID dtqid, VP_INT data) ;
 ER ercd = tsnd_dtq (ID dtqid, VP_INT data, TMO tmout) ;
 ER ercd = fsnd_dtq (ID dtqid, VP_INT data) ;
 ER ercd = ifsnd_dtq (ID dtqid, VP_INT data) ;
 ER ercd = rcv_dtq (ID dtqid, VP_INT *p_data) ;
 ER ercd = prcv_dtq (ID dtqid, VP_INT *p_data) ;
 ER ercd = trcv_dtq (ID dtqid, VP_INT *p_data, TMO tmout) ;
 ER ercd = ref_dtq (ID dtqid, T_RDTQ *pk_rdtq) ;

Mailboxes
 ER ercd = cre_mbx (ID mbxid, T_CMBX *pk_cmbx) ;
 ER_ID mbxid = acre_mbx (T_CMBX *pk_cmbx) ;
 ER ercd = del_mbx (ID mbxid) ;
 ER ercd = snd_mbx (ID mbxid, T_MSG *pk_msg) ;
 ER ercd = rcv_mbx (ID mbxid, T_MSG **ppk_msg) ;
 ER ercd = prcv_mbx (ID mbxid, T_MSG **ppk_msg) ;
 ER ercd = trcv_mbx (ID mbxid, T_MSG **ppk_msg, TMO tmout) ;
 ER ercd = ref_mbx (ID mbxid, T_RMBX *pk_rmbx) ;

(5) Extended synchronization and communication functions

Mutexes
 ER ercd = cre_mtx (ID mtxid, T_CMTX *pk_cmtx) ;
 ER_ID mtxid = acre_mtx (T_CMTX *pk_cmtx) ;
 ER ercd = del_mtx (ID mtxid) ;
 ER ercd = loc_mtx (ID mtxid) ;
 ER ercd = ploc_mtx (ID mtxid) ;
 ER ercd = tloc_mtx (ID mtxid, TMO tmout) ;
 ER ercd = unl_mtx (ID mtxid) ;
 ER ercd = ref_mtx (ID mtxid, T_RMTX *pk_rmtx) ;

Message buffers

327

µITRON4.0 Specification Ver. 4.03.00

 ER ercd = cre_mbf (ID mbfid, T_CMBF *pk_cmbf) ;
 ER_ID mbfid = acre_mbf (T_CMBF *pk_cmbf) ;
 ER ercd = del_mbf (ID mbfid) ;
 ER ercd = snd_mbf (ID mbfid, VP msg, UINT msgsz) ;
 ER ercd = psnd_mbf (ID mbfid, VP msg, UINT msgsz) ;
 ER ercd = tsnd_mbf (ID mbfid, VP msg, UINT msgsz, TMO tmout) ;
 ER_UINT msgsz = rcv_mbf (ID mbfid, VP msg) ;
 ER_UINT msgsz = prcv_mbf (ID mbfid, VP msg) ;
 ER_UINT msgsz = trcv_mbf (ID mbfid, VP msg, TMO tmout) ;
 ER ercd = ref_mbf (ID mbfid, T_RMBF *pk_rmbf) ;

Rendezvous
 ER ercd = cre_por (ID porid, T_CPOR *pk_cpor) ;
 ER_ID porid = acre_por (T_CPOR *pk_cpor) ;
 ER ercd = del_por (ID porid) ;
 ER_UINT rmsgsz = cal_por (ID porid, RDVPTN calptn, VP msg, UINT cmsgsz) ;
 ER_UINT rmsgsz = tcal_por (ID porid, RDVPTN calptn, VP msg, UINT cmsgsz,
 TMO tmout) ;
 ER_UINT cmsgsz = acp_por (ID porid, RDVPTN acpptn, RDVNO *p_rdvno,
 VP msg) ;
 ER_UINT cmsgsz = pacp_por (ID porid, RDVPTN acpptn, RDVNO *p_rdvno,
 VP msg) ;
 ER_UINT cmsgsz = tacp_por (ID porid, RDVPTN acpptn, RDVNO *p_rdvno,
 VP msg, TMO tmout) ;
 ER ercd = fwd_por (ID porid, RDVPTN calptn, RDVNO rdvno, VP msg, UINT
 cmsgsz) ;
 ER ercd = rpl_rdv (RDVNO rdvno, VP msg, UINT rmsgsz) ;
 ER ercd = ref_por (ID porid, T_RPOR *pk_rpor) ;
 ER ercd = ref_rdv (RDVNO rdvno, T_RRDV *pk_rrdv) ;

(6) Memory pool management functions

Fixed-sized memory pools
 ER ercd = cre_mpf (ID mpfid, T_CMPF *pk_cmpf) ;
 ER_ID mpfid = acre_mpf (T_CMPF *pk_cmpf) ;
 ER ercd = del_mpf (ID mpfid) ;
 ER ercd = get_mpf (ID mpfid, VP *p_blk) ;
 ER ercd = pget_mpf (ID mpfid, VP *p_blk) ;
 ER ercd = tget_mpf (ID mpfid, VP *p_blk, TMO tmout) ;
 ER ercd = rel_mpf (ID mpfid, VP blk) ;
 ER ercd = ref_mpf (ID mpfid, T_RMPF *pk_rmpf) ;

Variable-sized memory pools

328

µITRON4.0 Specification Ver. 4.03.00

 ER ercd = cre_mpl (ID mplid, T_CMPL *pk_cmpl) ;
 ER_ID mplid = acre_mpl (T_CMPL *pk_cmpl) ;
 ER ercd = del_mpl (ID mplid) ;
 ER ercd = get_mpl (ID mplid, UINT blksz, VP *p_blk) ;
 ER ercd = pget_mpl (ID mplid, UINT blksz, VP *p_blk) ;
 ER ercd = tget_mpl (ID mplid, UINT blksz, VP *p_blk, TMO tmout) ;
 ER ercd = rel_mpl (ID mplid, VP blk) ;
 ER ercd = ref_mpl (ID mplid, T_RMPL *pk_rmpl) ;

(7) Time management functions

System time management
 ER ercd = set_tim (SYSTIM *p_systim) ;
 ER ercd = get_tim (SYSTIM *p_systim) ;
 ER ercd = isig_tim () ;

Cyclic handlers
 ER ercd = cre_cyc (ID cycid, T_CCYC *pk_ccyc) ;
 ER_ID cycid = acre_cyc (T_CCYC *pk_ccyc) ;
 ER ercd = del_cyc (ID cycid) ;
 ER ercd = sta_cyc (ID cycid) ;
 ER ercd = stp_cyc (ID cycid) ;
 ER ercd = ref_cyc (ID cycid, T_RCYC *pk_rcyc) ;

Alarm handlers
 ER ercd = cre_alm (ID almid, T_CALM *pk_calm) ;
 ER_ID almid = acre_alm (T_CALM *pk_calm) ;
 ER ercd = del_alm (ID almid) ;
 ER ercd = sta_alm (ID almid, RELTIM almtim) ;
 ER ercd = stp_alm (ID almid) ;
 ER ercd = ref_alm (ID almid, T_RALM *pk_ralm) ;

Overrun handler
 ER ercd = def_ovr (T_DOVR *pk_dovr) ;
 ER ercd = sta_ovr (ID tskid, OVRTIM ovrtim) ;
 ER ercd = stp_ovr (ID tskid) ;
 ER ercd = ref_ovr (ID tskid, T_ROVR *pk_rovr) ;

(8) System state management functions

329

µITRON4.0 Specification Ver. 4.03.00

 ER ercd = rot_rdq (PRI tskpri) ;
 ER ercd = irot_rdq (PRI tskpri) ;
 ER ercd = get_tid (ID *p_tskid) ;
 ER ercd = iget_tid (ID *p_tskid) ;
 ER ercd = loc_cpu () ;
 ER ercd = iloc_cpu () ;
 ER ercd = unl_cpu () ;
 ER ercd = iunl_cpu () ;
 ER ercd = dis_dsp () ;
 ER ercd = ena_dsp () ;
 BOOL state = sns_ctx () ;
 BOOL state = sns_loc () ;
 BOOL state = sns_dsp () ;
 BOOL state = sns_dpn () ;
 ER ercd = ref_sys (T_RSYS *pk_rsys) ;

(9) Interrupt management functions

 ER ercd = def_inh (INHNO inhno, T_DINH *pk_dinh) ;
 ER ercd = cre_isr (ID isrid, T_CISR *pk_cisr) ;
 ER_ID isrid = acre_isr (T_CISR *pk_cisr) ;
 ER ercd = del_isr (ID isrid) ;
 ER ercd = ref_isr (ID isrid, T_RISR *pk_risr) ;
 ER ercd = dis_int (INTNO intno) ;
 ER ercd = ena_int (INTNO intno) ;
 ER ercd = chg_ixx (IXXXX ixxxx) ;
 ER ercd = get_ixx (IXXXX *p_ixxxx) ;

(10) Service call management functions

 ER ercd = def_svc (FN fncd, T_DSVC *pk_dsvc) ;
 ER_UINT ercd = cal_svc (FN fncd, VP_INT par1, VP_INT par2, ...) ;

(11) System configuration management functions

 ER ercd = def_exc (EXCNO excno, T_DEXC *pk_dexc) ;
 ER ercd = ref_cfg (T_RCFG *pk_rcfg) ;
 ER ercd = ref_ver (T_RVER *pk_rver) ;

7.2 Static API List

(1) Task management functions

 CRE_TSK (ID tskid, { ATR tskatr, VP_INT exinf, FP task,
 PRI itskpri, SIZE stksz, VP stk }) ;

(2) Task exception handling functions

330

µITRON4.0 Specification Ver. 4.03.00

 DEF_TEX (ID tskid, { ATR texatr, FP texrtn }) ;

(3) Synchronization and communication functions

 CRE_SEM (ID semid, { ATR sematr, UINT isemcnt,
 UINT maxsem }) ;
 CRE_FLG (ID flgid, { ATR flgatr, FLGPTN iflgptn }) ;
 CRE_DTQ (ID dtqid, { ATR dtqatr, UINT dtqcnt, VP dtq }) ;
 CRE_MBX (ID mbxid, { ATR mbxatr, PRI maxmpri,
 VP mprihd }) ;

(4) Extended synchronization and communication functions

 CRE_MTX (ID mtxid, { ATR mtxatr, PRI ceilpri }) ;
 CRE_MBF (ID mbfid, { ATR mbfatr, UINT maxmsz, SIZE mbfsz,
 VP mbf }) ;
 CRE_POR (ID porid, { ATR poratr, UINT maxcmsz,
 UINT maxrmsz }) ;

(5) Memory pool management functions

 CRE_MPF (ID mpfid, { ATR mpfatr, UINT blkcnt, UINT blksz,
 VP mpf }) ;
 CRE_MPL (ID mplid, { ATR mplatr, SIZE mplsz, VP mpl }) ;

(6) Time management functions

 CRE_CYC (ID cycid, { ATR cycatr, VP_INT exinf, FP cychdr,
 RELTIM cyctim, RELTIM cycphs }) ;
 CRE_ALM (ID almid, { ATR almatr, VP_INT exinf, FP almhdr }) ;
 DEF_OVR ({ ATR ovratr, FP ovrhdr }) ;

331

µITRON4.0 Specification Ver. 4.03.00

(7) Interrupt management functions

 DEF_INH (INHNO inhno, { ATR inhatr, FP inthdr }) ;
 ATT_ISR ({ ATR isratr, VP_INT exinf, INTNO intno, FP isr }) ;

(8) Service call management functions

 DEF_SVC (FN fncd, { ATR svcatr, FP svcrtn }) ;

(9) System configuration management functions

 DEF_EXC (EXCNO excno, { ATR excatr, FP exchdr }) ;
 ATT_INI ({ ATR iniatr, VP_INT exinf, FP inirtn }) ;

(10) ITRON general static API

 INCLUDE (string) ;

7.3 Static APIs and Service Calls in the Standard Profile

(1) Task management functions

CRE_TSK Create Task (Static API)
act_tsk / iact_tsk Activate Task
can_act Cancel Task Activation Requests
ext_tsk Terminate Invoking Task
ter_tsk Terminate Task
chg_pri Change Task Priority
get_pri Reference Task Priority

(2) Task dependent synchronization functions

slp_tsk Put Task to Sleep
tslp_tsk Put Task to Sleep (with Timeout)
wup_tsk / iwup_tsk Wakeup Task
can_wup Cancel Task Wakeup Requests
rel_wai / irel_wai Release Task from Waiting
sus_tsk Suspend Task
rsm_tsk Resume Suspended Task
frsm_tsk Forcibly Resume Suspended Task
dly_tsk Delay Task

(3) Task exception handling functions

DEF_TEX Define Task Exception Handling Routine (Static
API)

ras_tex / iras_tex Raise Task Exception Handling
dis_tex Disable Task Exceptions
ena_tex Enable Task Exceptions
sns_tex Reference Task Exception Handling State

332

µITRON4.0 Specification Ver. 4.03.00

(4) Synchronization and communication functions

Semaphores
CRE_SEM Create Semaphore (Static API)
sig_sem / isig_sem Release Semaphore Resource
wai_sem Acquire Semaphore Resource
pol_sem Acquire Semaphore Resource (Polling)
twai_sem Acquire Semaphore Resource (with Timeout)

Eventflags

CRE_FLG Create Eventflag (Static API)

set_flg / iset_flg Set Eventflag

clr_flg Clear Eventflag

wai_flg Wait for Eventflag

pol_flg Wait for Eventflag (Polling)

twai_flg Wait for Eventflag (with Timeout)

Data queues
CRE_DTQ Create Data Queue (Static API)

snd_dtq Send to Data Queue

psnd_dtq / ipsnd_dtq Send to Data Queue (Polling)

tsnd_dtq Send to Data Queue (with Timeout)

fsnd_dtq / ifsnd_dtq Forced Send to Data Queue

rcv_dtq Receive from Data Queue

prcv_dtq Receive from Data Queue (Polling)

trcv_dtq Receive from Data Queue (with Timeout)

Mailboxes
CRE_MBX Create Mailbox (Static API)

snd_mbx Send to Mailbox

rcv_mbx Receive from Mailbox

prcv_mbx Receive from Mailbox (Polling)

trcv_mbx Receive from Mailbox (with Timeout)

(5) Memory pool management functions

Fixed-sized memory pools
CRE_MPF Create Fixed-Sized Memory Pool (Static API)

get_mpf Acquire Fixed-Sized Memory Block

pget_mpf Acquire Fixed-Sized Memory Block (Polling)

tget_mpf Acquire Fixed-Sized Memory Block (with Timeout)

333

µITRON4.0 Specification Ver. 4.03.00

rel_mpf Release Fixed-Sized Memory Block

(6) Time management functions

System time management
set_tim Set System Time
get_tim Reference System Time
isig_tim Supply Time Tick
* If the kernel has a mechanism of updating the system time, isig_tim need not be

supported.

Cyclic handlers
CRE_CYC Create Cyclic Handler (Static API)
sta_cyc Start Cyclic Handler Operation
stp_cyc Stop Cyclic Handler Operation

(7) System state management functions

rot_rdq / irot_rdq Rotate Task Precedence

get_tid / iget_tid Reference Task ID in the RUNNING State

loc_cpu / iloc_cpu Lock the CPU

unl_cpu / iunl_cpu Unlock the CPU

dis_dsp Disable Dispatching

ena_dsp Enable Dispatching

sns_ctx Reference Contexts

sns_loc Reference CPU State

sns_dsp Reference Dispatching State

sns_dpn Reference Dispatch Pending State

(8) Interrupt management functions

DEF_INH Define Interrupt Handler (Static API)
* If ATT_ISR is supported, DEF_INH need not be supported.

(9) System configuration management functions

DEF_EXC Define CPU Exception Handler (Static API)
ATT_INI Attach Initialization Routine (Static API)

7.4 Data Types

The data types, except those for packets, defined in the µITRON4.0 Specification are as
follows:

B Signed 8-bit integer

H Signed 16-bit integer

W Signed 32-bit integer

D Signed 64-bit integer

334

µITRON4.0 Specification Ver. 4.03.00

UB Unsigned 8-bit integer

UH Unsigned 16-bit integer

UW Unsigned 32-bit integer

UD Unsigned 64-bit integer

VB 8-bit value with unknown data type

VH 16-bit value with unknown data type

VW 32-bit value with unknown data type

VD 64-bit value with unknown data type

VP Pointer to an unknown data type

FP Program start address (pointer)

INT Signed integer whose size is suitable for the processor

UINT Unsigned integer whose size is suitable for the processor

BOOL Boolean value (TRUE or FALSE)

FN Function code (signed integer)

ER Error code (signed integer)

ID Object ID number (signed integer)

ATR Object attribute (unsigned integer)

STAT Object state (unsigned integer)

MODE Service call operational mode (unsigned integer)

PRI Priority (signed integer)

SIZE Memory area size (unsigned integer)

TMO Timeout (signed integer, unit of time is implementation-defined)

RELTIM Relative time (unsigned integer, unit of time is implementation-
defined)

SYSTIM System time (unsigned integer, unit of time is implementation-
defined)

VP_INT Pointer to an unknown data type, or a signed integer whose size is
suitable for the processor

ER_BOOL Error code or a boolean value (signed integer)

ER_ID Error code or an object ID number (negative ID numbers are not
supported)

ER_UINT Error code or an unsigned integer (the number of effective bits for
an unsigned integer is one bit shorter than UINT)

TEXPTN Bit pattern of the task exception code (unsigned integer)

FLGPTN Bit pattern of the eventflag (unsigned integer)

335

µITRON4.0 Specification Ver. 4.03.00

T_MSG Message header for a mailbox

T_MSG_PRI Message header with a message priority for a mailbox

RDVPTN Bit pattern of the rendezvous condition (unsigned integer)

RDVNO Rendezvous number

OVRTIM Processing time (unsigned integer, unit of time is implementation-
defined)

INHNO Interrupt handler number

INTNO Interrupt number

IXXXX Interrupt mask

EXCNO CPU exception handler number

Among the above data types, the definition of the following data type is standardized:
 typedef struct t_msg_pri {
 T_MSG msgque ; /* Message header */
 PRI msgpri ; /* Message priority */
 } T_MSG_PRI ;

[Standard Profile]

The data types, except those for packets, that must be defined in the Standard Profile, their
number of effective bits, and their unit of time are as follows:

B Signed 8-bit integer
H Signed 16-bit integer
W Signed 32-bit integer
UB Unsigned 8-bit integer
UH Unsigned 16-bit integer
UW Unsigned 32-bit integer
VB 8-bit value with unknown data type
VH 16-bit value with unknown data type
VW 32-bit value with unknown data type
VP Pointer to an unknown data type
FP Program start address (pointer)
INT Signed integer whose size is suitable for the processor (16 or more

bits)
UINT Unsigned integer whose size is suitable for the processor (16 or

more bits)
BOOL Boolean value (TRUE or FALSE)
FN Function code (signed integer, 16 or more bits)
ER Error code (signed integer, 8 or more bits)
ID Object ID number (signed integer, 16 or more bits)

336

µITRON4.0 Specification Ver. 4.03.00

ATR Object attribute (unsigned integer, 8 or more bits)
STAT Object state (unsigned integer, 16 or more bits)
MODE Service call operational mode (unsigned integer, 8 or more bits)
PRI Priority (signed integer, 16 or more bits)
SIZE Memory area size (unsigned integer, same number of bits as the

pointer)
TMO Timeout (signed integer, 16 or more bits, unit of time is 1 ms)
RELTIM Relative time (unsigned integer, 16 or more bits, unit of time is 1

ms)
SYSTIM System time (unsigned integer, 16 or more bits, unit of time is 1

ms)
VP_INT Pointer to an unknown data type, or a signed integer whose size is

suitable for the processor (same number of bits as the larger one
among VP and INT)

ER_BOOL Error code or boolean value (signed integer, same number of bits
as the larger one among ER and BOOL)

ER_ID Error code or ID number (signed integer, same number of bits as
the larger one among ER and ID, negative ID numbers are not
supported)

ER_UINT Error code or an unsigned integer (signed integer, same number of
bits as the larger one among ER and UINT, the number of
effective bits for an unsigned integer is one bit shorter than UINT)

TEXPTN Bit pattern of the task exception code (unsigned integer, 16 or
more bits)

FLGPTN Bit pattern of the eventflag (unsigned integer, 16 or more bits)
T_MSG Message header for a mailbox
T_MSG_PRI Message header with a message priority for a mailbox
INHNO Interrupt handler number (when DEF_INH is supported)
INTNO Interrupt number (when ATT_ISR is supported)
EXCNO CPU exception handler number

7.5 Packet Formats

(1) Task management functions

Task creation information packet:
 typedef struct t_ctsk {
 ATR tskatr ; /* Task attribute */
 VP_INT exinf ; /* Task extended information */
 FP task ; /* Task start address */
 PRI itskpri ; /* Task initial priority */
 SIZE stksz ; /* Task stack size (in bytes) */
 VP stk ; /* Base address of task stack area */
 /* Other implementation-specific fields may be added. */

337

µITRON4.0 Specification Ver. 4.03.00

 } T_CTSK ;

Task state packet:
 typedef struct t_rtsk {
 STAT tskstat ; /* Task state */
 PRI tskpri ; /* Task current priority */
 PRI tskbpri ; /* Task base priority */
 STAT tskwait ; /* Reason for waiting */
 ID wobjid ; /* Object ID number for which the task is
 waiting */
 TMO lefttmo ; /* Remaining time until timeout */
 UINT actcnt ; /* Activation request count */
 UINT wupcnt ; /* Wakeup request count */
 UINT suscnt ; /* Suspension count */
 /* Other implementation-specific fields may be added. */
 } T_RTSK ;

Task state packet (simplified version):

 typedef struct t_rtst {
 STAT tskstat ; /* Task state */
 STAT tskwait ; /* Reason for waiting */
 /* Other implementation-specific fields may be added. */
 } T_RTST ;

(2) Task exception handling functions

Task exception handling routine definition information packet:
 typedef struct t_dtex {
 ATR texatr ; /* Task exception handling routine
 attribute */
 FP texrtn ; /* Task exception handling routine start
 address */
 /* Other implementation-specific fields may be added. */
 } T_DTEX ;

338

µITRON4.0 Specification Ver. 4.03.00

Task exception handling state packet:
 typedef struct t_rtex {
 STAT texstat ; /* Task exception handling state */
 TEXPTN pndptn ; /* Pending exception code */
 /* Other implementation-specific fields may be added. */
 } T_RTEX ;

(3) Synchronization and communication functions

Semaphore creation information packet:
 typedef struct t_csem {
 ATR sematr ; /* Semaphore attribute */
 UINT isemcnt ; /* Initial semaphore resource count */
 UINT maxsem ; /* Maximum semaphore resource count */
 /* Other implementation-specific fields may be added. */
 } T_CSEM ;

Semaphore state packet:

 typedef struct t_rsem {
 ID wtskid ; /* ID number of the task at the head of the
 semaphore's wait queue */
 UINT semcnt ; /* Current semaphore resource count */
 /* Other implementation-specific fields may be added. */
 } T_RSEM ;

Eventflag creation information packet:

 typedef struct t_cflg {
 ATR flgatr ; /* Eventflag attribute */
 FLGPTN iflgptn ; /* Initial value of the eventflag bit
 pattern */
 /* Other implementation-specific fields may be added. */
 } T_CFLG ;

Eventflag state packet:

 typedef struct t_rflg {
 ID wtskid ; /* ID number of the task at the head of the
 eventflag's wait queue */
 FLGPTN flgptn ; /* Current eventflag bit pattern */
 /* Other implementation-specific fields may be added. */
 } T_RFLG ;

339

µITRON4.0 Specification Ver. 4.03.00

Data queue creation information packet:
 typedef struct t_cdtq {
 ATR dtqatr ; /* Data queue attribute */
 UINT dtqcnt ; /* Capacity of the data queue area (the
 number of data elements) */
 VP dtq ; /* Start address of the data queue area */
 /* Other implementation-specific fields may be added. */
 } T_CDTQ ;

Data queue state packet:

 typedef struct t_rdtq {
 ID stskid ; /* ID number of the task at the head of the
 data queue's send-wait queue */
 ID rtskid ; /* ID number of the task at the head of the
 data queue's receive-wait queue */
 UINT sdtqcnt ; /* The number of data elements in the data
 queue */
 /* Other implementation-specific fields may be added. */
 } T_RDTQ ;

Mailbox creation information packet:

 typedef struct t_cmbx {
 ATR mbxatr ; /* Mailbox attribute */
 PRI maxmpri ; /* Maximum message priority of the messages
 to be sent */
 VP mprihd ; /* Start address of the area for message
 queue headers for each message priority */
 /* Other implementation-specific fields may be added. */
 } T_CMBX ;

Mailbox state packet:

 typedef struct t_rmbx {
 ID wtskid ; /* ID number of the task at the head of
 mailbox's wait queue */
 T_MSG * pk_msg ; /* Start address of the message packet at
 the head of the message queue */
 /* Other implementation-specific fields may be added. */
 } T_RMBX ;

340

µITRON4.0 Specification Ver. 4.03.00

(4) Extended synchronization and communication functions

Mutex creation information packet:
 typedef struct t_cmtx {
 ATR mtxatr ; /* Mutex attribute */
 PRI ceilpri ; /* Mutex ceiling priority */
 /* Other implementation-specific fields may be added. */
 } T_CMTX ;

Mutex state packet:

 typedef struct t_rmtx {
 ID htskid ; /* ID number of the task that locks the
 mutex */
 ID wtskid ; /* ID number of the task at the head of the
 mutex's wait queue */
 /* Other implementation-specific fields may be added. */
 } T_RMTX ;

Message buffer creation information packet:

 typedef struct t_cmbf {
 ATR mbfatr ; /* Message buffer attribute */
 UINT maxmsz ; /* Maximum message size (in bytes) */
 SIZE mbfsz ; /* Size of message buffer area (in bytes) */
 VP mbf ; /* Start address of message buffer area */
 /* Other implementation-specific fields may be added. */
 } T_CMBF ;

Message buffer state packet:

 typedef struct t_rmbf {
 ID stskid ; /* ID number of the task at the head of the
 message buffer's send-wait queue */
 ID rtskid ; /* ID number of the task at the head of the
 message buffer's receive-wait queue */
 UINT smsgcnt ; /* The number of messages in the message
 buffer */
 SIZE fmbfsz ; /* Size of free message buffer area (in
 bytes, without the minimum control areas) */
 /* Other implementation-specific fields may be added. */
 } T_RMBF ;

341

µITRON4.0 Specification Ver. 4.03.00

Rendezvous port creation information packet:
 typedef struct t_cpor {
 ATR poratr ; /* Rendezvous port attribute */
 UINT maxcmsz ; /* Maximum calling message size (in
 bytes) */
 UINT maxrmsz ; /* Maximum return message size (in
 bytes) */
 /* Other implementation-specific fields may be added. */
 } T_CPOR ;

Rendezvous port state packet:

 typedef struct t_rpor {
 ID ctskid ; /* ID number of the task at the head of the
 rendezvous port's call-wait queue */
 ID atskid ; /* ID number of the task at the head of the
 rendezvous port's accept-wait queue */
 /* Other implementation-specific fields may be added. */
 } T_RPOR ;

Rendezvous state packet:

 typedef struct t_rrdv {
 ID wtskid ; /* ID number of the task in the termination
 waiting state for the rendezvous */
 /* Other implementation-specific fields may be added. */
 } T_RRDV ;

(5) Memory pool management functions

Fixed-sized memory pool creation information packet:
 typedef struct t_cmpf {
 ATR mpfatr ; /* Fixed-sized memory pool attribute */
 UINT blkcnt ; /* Total number of available memory blocks */
 UINT blksz ; /* Memory block size (in bytes) */
 VP mpf ; /* Start address of the fixed-sized memory
 pool area */
 /* Other implementation-specific fields may be added. */
 } T_CMPF ;

342

µITRON4.0 Specification Ver. 4.03.00

Fixed-sized memory pool state packet:
 typedef struct t_rmpf {
 ID wtskid ; /* ID number of the task at the head of the
 fixed-sized memory pool's wait queue */
 UINT fblkcnt ; /* Number of free memory blocks in the
 fixed-sized memory pool */
 /* Other implementation-specific fields may be added. */
 } T_RMPF ;

Variable-sized memory pool creation information packet:

 typedef struct t_cmpl {
 ATR mplatr ; /* Variable-sized memory pool attribute */
 SIZE mplsz ; /* Size of the variable-sized memory pool
 area (in bytes) */
 VP mpl ; /* Start address of the variable-sized
 memory pool area */
 /* Other implementation-specific fields may be added. */
 } T_CMPL ;

Variable-sized memory pool state packet:

 typedef struct t_rmpl {
 ID wtskid ; /* ID number of the task at the head of the
 variable-sized memory pool's wait
 queue */
 SIZE fmplsz ; /* Total size of free memory blocks in the
 variable-sized memory pool (in bytes) */
 UINT fblksz ; /* Maximum memory block size available
 (in bytes) */
 /* Other implementation-specific fields may be added. */
 } T_RMPL ;

(6) Time management functions

Cyclic handler creation information packet:
 typedef struct t_ccyc {
 ATR cycatr ; /* Cyclic handler attribute */
 VP_INT exinf ; /* Cyclic handler extended information */
 FP cychdr ; /* Cyclic handler start address */
 RELTIM cyctim ; /* Cyclic handler activation cycle */
 RELTIM cycphs ; /* Cyclic handler activation phase */
 /* Other implementation-specific fields may be added. */
 } T_CCYC ;

Cyclic handler state packet:

343

µITRON4.0 Specification Ver. 4.03.00

 typedef struct t_rcyc {
 STAT cycstat ; /* Cyclic handler operational state */
 RELTIM lefttim ; /* Time left before the next activation */
 /* Other implementation-specific fields may be added. */
 } T_RCYC ;

Alarm handler creation information packet:

 typedef struct t_calm {
 ATR almatr ; /* Alarm handler attribute */
 VP_INT exinf ; /* Alarm handler extended information */
 FP almhdr ; /* Alarm handler start address */
 /* Other implementation-specific fields may be added. */
 } T_CALM ;

Alarm handler state packet:

 typedef struct t_ralm {
 STAT almstat ; /* Alarm handler operational state */
 RELTIM lefttim ; /* Time left before the activation */
 /* Other implementation-specific fields may be added. */
 } T_RALM ;

Overrun handler definition information packet:

 typedef struct t_dovr {
 ATR ovratr ; /* Overrun handler attribute */
 FP ovrhdr ; /* Overrun handler start address */
 /* Other implementation-specific fields may be added. */
 } T_DOVR ;

Overrun handler state packet:

 typedef struct t_rovr {
 STAT ovrstat ; /* Overrun handler operational state */
 OVRTIM leftotm ; /* Remaining processing time */
 /* Other implementation-specific fields may be added. */
 } T_ROVR ;

344

µITRON4.0 Specification Ver. 4.03.00

(7) System state management functions

System state packet:
 typedef struct t_rsys {
 /* Implementation-specific fields */
 } T_RSYS ;

(8) Interrupt management functions

Interrupt handler definition information packet:
 typedef struct t_dinh {
 ATR inhatr ; /* Interrupt handler attribute */
 FP inthdr ; /* Interrupt handler start address */
 /* Other implementation-specific fields may be added. */
 } T_DINH ;

Interrupt service routine creation information packet:

 typedef struct t_cisr {
 ATR isratr ; /* Interrupt service routine attribute */
 VP_INT exinf ; /* Interrupt service routine extended
 information */
 INTNO intno ; /* Interrupt number to which the interrupt
 service routine is to be attached */
 FP isr ; /* Interrupt service routine start address */
 /* Other implementation-specific fields may be added. */
 } T_CISR ;

Interrupt service routine state packet:

 typedef struct t_risr {
 /* Implementation-specific fields */
 } T_RISR ;

(9) Service call management functions

Extended service call definition information packet:
 typedef struct t_dsvc {
 ATR svcatr ; /* Extended service call attribute */
 FP svcrtn ; /* Extended service call routine start
 address */
 /* Other implementation-specific fields may be added. */
 } T_DSVC ;

345

µITRON4.0 Specification Ver. 4.03.00

(10) System configuration management functions

CPU exception handler definition information packet:
 typedef struct t_dexc {
 ATR excatr ; /* CPU exception handler attribute */
 FP exchdr ; /* CPU exception handler start address */
 /* Other implementation-specific fields may be added. */
 } T_DEXC ;

Configuration information packet:

 typedef struct t_rcfg {
 /* Implementation-specific fields */
 } T_RCFG ;

Version information packet:

 typedef struct t_rver {
 UH maker ; /* Kernel makers code */
 UH prid ; /* Identification number of the kernel */
 UH spver ; /* Version number of the ITRON
 Specification */
 UH prver ; /* Version number of the kernel */
 UH prno[4] ; /* Management information of the kernel
 product */
 } T_RVER ;

7.6 Constants and Macros

(1) General

NULL 0 Invalid pointer
TRUE 1 True
FALSE 0 False
E_OK 0 Normal completion

(2) Object Attributes

TA_NULL 0 Object attribute unspecified
TA_HLNG 0x00 Start a processing unit through a high-level language

interface
TA_ASM 0x01 Start a processing unit through an assembly language

interface
TA_TFIFO 0x00 Task wait queue is in FIFO order
TA_TPRI 0x01 Task wait queue is in task priority order
TA_MFIFO 0x00 Message queue is in FIFO order
TA_MPRI 0x02 Message queue is in message priority order
TA_ACT 0x02 Task is activated after the creation
TA_RSTR 0x04 Restricted task

346

µITRON4.0 Specification Ver. 4.03.00

TA_WSGL 0x00 Only one task is allowed to be in the waiting state for
the eventflag

TA_WMUL 0x02 Multiple tasks are allowed to be in the waiting state
for the eventflag

TA_CLR 0x04 Eventflag's bit pattern is cleared when a task is
released from the waiting state for that eventflag

TA_INHERIT 0x02 Mutex uses the priority inheritance protocol
TA_CEILING 0x03 Mutex uses the priority ceiling protocol
TA_STA 0x02 Cyclic handler is in an operational state after the

creation
TA_PHS 0x04 Cyclic handler is activated preserving the activation

phase

(3) Timeout Specification

TMO_POL 0 Polling
TMO_FEVR –1 Waiting forever
TMO_NBLK –2 Non-blocking

(4) Service Call Operational Mode

TWF_ANDW 0x00 AND waiting condition for an eventflag
TWF_ORW 0x01 OR waiting condition for an eventflag

(5) Object States

TTS_RUN 0x01 RUNNING state
TTS_RDY 0x02 READY state
TTS_WAI 0x04 WAITING state
TTS_SUS 0x08 SUSPENDED state
TTS_WAS 0x0c WAITING-SUSPENDED state
TTS_DMT 0x10 DORMANT state
TTW_SLP 0x0001 Sleeping state
TTW_DLY 0x0002 Delayed state
TTW_SEM 0x0004 Waiting state for a semaphore resource
TTW_FLG 0x0008 Waiting state for an eventflag
TTW_SDTQ 0x0010 Sending waiting state for a data queue
TTW_RDTQ 0x0020 Receiving waiting state for a data queue
TTW_MBX 0x0040 Receiving waiting state for a mailbox
TTW_MTX 0x0080 Waiting state for a mutex
TTW_SMBF 0x0100 Sending waiting state for a message buffer
TTW_RMBF 0x0200 Receiving waiting state for a message buffer
TTW_CAL 0x0400 Calling waiting state for a rendezvous
TTW_ACP 0x0800 Accepting waiting state for a rendezvous
TTW_RDV 0x1000 Terminating waiting state for a rendezvous
TTW_MPF 0x2000 Waiting state for a fixed-sized memory block
TTW_MPL 0x4000 Waiting state for a variable-sized memory block
TTEX_ENA 0x00 Task exception enabled state

347

µITRON4.0 Specification Ver. 4.03.00

TTEX_DIS 0x01 Task exception disabled state
TCYC_STP 0x00 Cyclic handler is in a non-operational state
TCYC_STA 0x01 Cyclic handler is in an operational state
TALM_STP 0x00 Alarm handler is in a non-operational state
TALM_STA 0x01 Alarm handler is in an operational state
TOVR_STP 0x00 Processing time limit is not set
TOVR_STA 0x01 Processing time limit is set

(6) Other Constants

TSK_SELF 0 Specifying invoking task
TSK_NONE 0 No applicable task
TPRI_SELF 0 Specifying the base priority of the invoking task
TPRI_INI 0 Specifying the initial priority of the task

(7) Macros

 ER ercd = ERCD (ER mercd, ER sercd)
 This macro generates an error code from the main error code and sub-error code.
 ER mercd = MERCD (ER ercd)
 This macro retrieves the main error code from an error code.
 ER sercd = SERCD (ER ercd)
 This macro retrieves the sub-error code from an error code.

7.7 Kernel Configuration Constants and Macros

(1) Priority Range

TMIN_TPRI Minimum task priority (= 1)

TMAX_TPRI Maximum task priority

TMIN_MPRI Minimum message priority (= 1)

TMAX_MPRI Maximum message priority

(2) Version Information

TKERNEL_MAKER Kernel maker code

TKERNEL_PRID Identification number of the kernel

TKERNEL_SPVER Version number of the ITRON Specification

TKERNEL_PRVER Version number of the kernel

(3) Maximum Nesting/Queuing Count

TMAX_ACTCNT Maximum activation request count

TMAX_WUPCNT Maximum wakeup request count

TMAX_SUSCNT Maximum suspension count

348

µITRON4.0 Specification Ver. 4.03.00

(4) Number of Bits in Bit Patterns

TBIT_TEXPTN Number of bits in the task exception code

TBIT_FLGPTN Number of bits in an eventflag

TBIT_RDVPTN Number of bits in a rendezvous condition

(5) Time Tick Period

TIC_NUME Time tick period numerator

TIC_DENO Time tick period denominator

(6) Required Memory Size

 SIZE dtqsz = TSZ_DTQ (UINT dtqcnt)
Total required size of the data queue area in bytes necessary to store dtqcnt data
elements

 SIZE mprihdsz = TSZ_MPRIHD (PRI maxmpri)
Total required size in bytes of the area for message queue headers for each message
priority, when the maximum message priority of the messages to be sent is maxmpri

 SIZE mbfsz = TSZ_MBF (UINT msgcnt, UINT msgsz)
Approximate required size of the message buffer area in bytes necessary to store
msgcnt messages each consisting of msgsz bytes

 SIZE mpfsz = TSZ_MPF (UINT blkcnt, UINT blksz)
Total required size of the fixed-sized memory pool area in bytes necessary to
allocate blkcnt memory blocks each of blksz bytes

 SIZE mplsz = TSZ_MPL (UINT blkcnt, UINT blksz)
Approximate size of the variable-sized memory pool area in bytes necessary to
allocate blkcnt memory blocks each of blksz bytes

(7) Others

TMAX_MAXSEM Maximum value of the maximum semaphore
resource count

349

µITRON4.0 Specification Ver. 4.03.00

7.8 Error Code List

E_SYS –5 System error
E_NOSPT –9 Unsupported function
E_RSFN –10 Reserved function code
E_RSATR –11 Reserved attribute
E_PAR –17 Parameter error
E_ID –18 Invalid ID number
E_CTX –25 Context error
E_MACV –26 Memory access violation
E_OACV –27 Object access violation
E_ILUSE –28 Illegal service call use
E_NOMEM –33 Insufficient memory
E_NOID –34 No ID number available
E_OBJ –41 Object state error
E_NOEXS –42 Non-existent object
E_QOVR –43 Queuing overflow
E_RLWAI –49 Forced release from waiting
E_TMOUT –50 Polling failure or timeout
E_DLT –51 Waiting object deleted
E_CLS –52 Waiting object state changed
E_WBLK –57 Non-blocking call accepted
E_BOVR –58 Buffer overflow

350

µITRON4.0 Specification Ver. 4.03.00

7.9 Function Code List

 –0 –1 –2 –3
–0x01 reserved reserved reserved reserved
–0x05 cre_tsk del_tsk act_tsk can_act
–0x09 sta_tsk ext_tsk exd_tsk ter_tsk
–0x0d chg_pri get_pri ref_tsk ref_tst
–0x11 slp_tsk tslp_tsk wup_tsk can_wup
–0x15 rel_wai sus_tsk rsm_tsk frsm_tsk
–0x19 dly_tsk reserved def_tex ras_tex
–0x1d dis_tex ena_tex sns_tex ref_tex
–0x21 cre_sem del_sem sig_sem reserved
–0x25 wai_sem pol_sem twai_sem ref_sem
–0x29 cre_flg del_flg set_flg clr_flg
–0x2d wai_flg pol_flg twai_flg ref_flg
–0x31 cre_dtq del_dtq reserved reserved
–0x35 snd_dtq psnd_dtq tsnd_dtq fsnd_dtq
–0x39 rcv_dtq prcv_dtq trcv_dtq ref_dtq
–0x3d cre_mbx del_mbx snd_mbx reserved
–0x41 rcv_mbx prcv_mbx trcv_mbx ref_mbx
–0x45 cre_mpf del_mpf rel_mpf reserved
–0x49 get_mpf pget_mpf tget_mpf ref_mpf
–0x4d set_tim get_tim cre_cyc del_cyc
–0x51 sta_cyc stp_cyc ref_cyc reserved
–0x55 rot_rdq get_tid reserved reserved
–0x59 loc_cpu unl_cpu dis_dsp ena_dsp
–0x5d sns_ctx sns_loc sns_dsp sns_dpn
–0x61 ref_sys reserved reserved reserved
–0x65 def_inh cre_isr del_isr ref_isr
–0x69 dis_int ena_int chg_ixx get_ixx
–0x6d def_svc def_exc ref_cfg ref_ver
–0x71 iact_tsk iwup_tsk irel_wai iras_tex
–0x75 isig_sem iset_flg ipsnd_dtq ifsnd_dtq
–0x79 irot_rdq iget_tid iloc_cpu iunl_cpu
–0x7d isig_tim reserved reserved reserved
–0x81 cre_mtx del_mtx unl_mtx reserved
–0x85 loc_mtx ploc_mtx tloc_mtx ref_mtx
–0x89 cre_mbf del_mbf reserved reserved
–0x8d snd_mbf psnd_mbf tsnd_mbf reserved
–0x91 rcv_mbf prcv_mbf trcv_mbf ref_mbf
–0x95 cre_por del_por cal_por tcal_por
–0x99 acp_por pacp_por tacp_por fwd_por
–0x9d rpl_rdv ref_por ref_rdv reserved
–0xa1 cre_mpl del_mpl rel_mpl reserved
–0xa5 get_mpl pget_mpl tget_mpl ref_mpl
–0xa9 cre_alm del_alm sta_alm stp_alm
–0xad ref_alm reserved reserved reserved
–0xb1 def_ovr sta_ovr stp_ovr ref_ovr
–0xb5 reserved reserved reserved reserved
–0xb9 reserved reserved reserved reserved

351

µITRON4.0 Specification Ver. 4.03.00

–0xbd reserved reserved reserved reserved
–0xc1 acre_tsk acre_sem acre_flg acre_dtq
–0xc5 acre_mbx acre_mtx acre_mbf acre_por
–0xc9 acre_mpf acre_mpl acre_cyc acre_alm
–0xcd acre_isr reserved reserved reserved
–0xd1 reserved reserved reserved reserved
–0xd5 reserved reserved reserved reserved
–0xd9 reserved reserved reserved reserved
–0xdd reserved reserved reserved reserved
–0xe1 implementation-specific service calls
–0xe5 implementation-specific service calls
–0xe9 implementation-specific service calls
–0xed implementation-specific service calls
–0xf1 implementation-specific service calls
–0xf5 implementation-specific service calls
–0xf9 implementation-specific service calls
–0xfd implementation-specific service calls

7.10 List of Items Required to be Specified for Each
Implementation (Implementation-Defined Items)

Table 7-1. List of Items Required to be Specified for Each Implementation
(Implementation-Defined Items)

Page number and
section number/service

call name No. Description
1 p.2 : Section 2.1.2,

Elements of an API
4 (E) Data Types

For a data type whose number of bits is not
specified in the ITRON Specifications, a
number of effective bits less than the
number of bits for the C language type or
an effective range smaller than the range
that can be expressed by the data type is
implementation-defined.

2 p.2 : Section 2.1.6,
Return Values of Service
Calls and Error Codes

7 ..., while sub-error codes are
implementation-defined.

3 p.3 : Section 2.1.11,
Syntax and Parameters of
Static APIs

6 The errors that should be detected during
the processing of static APIs and the
method of handling those errors are
implementation-defined.

4 p.4 : Section 2.3.1,
ITRON General Data
Types

3 TMO Timeout (signed integer, unit of
time is implementation-defined)

5 p.4 : Section 2.3.1,
ITRON General Data
Types

3 RELTIM Relative time (unsigned integer,
unit of time is implementation-
defined)

352

µITRON4.0 Specification Ver. 4.03.00

No.

Page number and
section number/service

call name Description
6 p.4 : Section 2.3.1,

ITRON General Data
Types

3 SYSTIM System time (unsigned integer,
unit of time is implementation-
defined)

7 p.4 : Section 2.3.1,
ITRON General Data
Types

3 In the case where the number of bits
needed to represent the system time
exceeds the number of bits of an integer,
SYSTIM can be defined as a data structure
where the structure's contents are
implementation-defined.

8 p.4 : Section 2.3.2,
ITRON General
Constants

5 (B) Unsupported Error Class
Omission of error detection of this class is
implementation-defined.

9 p.4 : Section 2.3.2,
ITRON General
Constants

6 (C) Parameter Error Class
Omission of error detection of this class is
implementation-defined.

p.4 : Section 2.3.2,
ITRON General
Constants

(D) Invoking Context Error Class
Omission of error detection of this class is
implementation-defined.

11 p.5 : Section 3.3.1,
Interrupt Handlers and
Interrupt Service Routines

7 The implementation of an interrupt handler
is implementation-defined because it
generally depends on the processor
interrupt architecture and the IRC.

12 p.5 : Section 3.3.1,
Interrupt Handlers and
Interrupt Service Routines

8 The behavior when both the APIs for
registering an interrupt handler and the
APIs for registering an interrupt service
routine are used is implementation-defined.

13 p.5 : Section 3.3.1,
Interrupt Handlers and
Interrupt Service Routines

8 Depending on the implementation, the
kernel does not control interrupts with
higher priorities than a threshold priority
level, including non-maskable interrupts. ...
The method for defining the threshold
priority level is implementation-defined.

14 p.5 : Section 3.3.1,
Interrupt Handlers and
Interrupt Service Routines

9 The responsibilities of the interrupt handler
glue routine include saving and restoring
registers used within the interrupt handler,
switching stack areas, task dispatching, and
returning from the interrupt handler. The
operations actually required by the glue
routine depend on the implementation. The
operations that are included in the glue
routine prepared by the kernel and those
that are included in the interrupt handler
registered by the application are
implementation-defined and determined by
the interrupt handler attributes.

10 6

353

µITRON4.0 Specification Ver. 4.03.00

No.

Page number and
section number/service

call name Description
15 p.6 : Section 3.4.2,

Operations within a CPU
Exception Handler

1 The implementation method of a CPU
exception handler is implementation-
defined, because it generally depends on
CPU exception handling architecture of the
processor and the kernel implementation.

16 p.6 : Section 3.4.2,
Operations within a CPU
Exception Handler

1 The service calls that can be invoked in a
CPU exception handler are
implementation-defined.

17 p.6 : Section 3.4.2,
Operations within a CPU
Exception Handler

1 ...a CPU exception handler must be able to
perform the operations described below.
The method to perform these operations is
also implementation-defined.
(a) Read the context and system state

when the CPU exception occurred. The
kernel must provide a method so that
the CPU exception handler can
reference the system state information
that would normally be obtained
through sns_yyy service calls invoked
just prior to the CPU exception.

18 p.6 : Section 3.4.2,
Operations within a CPU
Exception Handler

1 ...a CPU exception handler must be able to
perform the operations described below.
The method to perform these operations is
also implementation-defined.
(a) ...
(b) Read the task ID of the task in which

the CPU exception occurred, if the
exception occurred while a task was
executing.

19 p.6 : Section 3.4.2,
Operations within a CPU
Exception Handler

1 ...a CPU exception handler must be able to
perform the operations described below.
The method to perform these operations is
also implementation-defined.
(a) ...
(b) ...
(c) Request task exception handling. This

operation is equivalent to invoking
ras_tex within the CPU exception
handler.

20 p.63: Section 3.5.2, Task
Contexts and Non-Task
Contexts

When CPU exceptions occur in task
contexts, the CPU exception handlers can
execute either in task contexts or in non-
task contexts. In this case, the context in
which a CPU exception handler executes is
implementation-defined.

354

µITRON4.0 Specification Ver. 4.03.00

No.

Page number and
section number/service

call name Description
21 p.6 : Section 3.5.3,

Execution Precedence and
Service Call Atomicity

4 The precedence of interrupt handlers is
higher than the precedence of the
dispatcher. The relative precedence of
interrupt handlers and interrupt service
routines is implementation-defined,
depending on the priorities of external
interrupts that invoke them.

22 p.6 : Section 3.5.3,
Execution Precedence and
Service Call Atomicity

4 The precedence of time event handlers
(except for overrun handler) is
implementation-defined. However, the
precedence of time event handlers must not
be higher than the precedence of interrupt
handlers invoking isig_tim, and must also
be higher than the precedence of the
dispatcher.

23 p.6 : Section 3.5.3,
Execution Precedence and
Service Call Atomicity

4 The precedence of overrun handler is
implementation-defined to be higher than
the precedence of the dispatcher.

24 p.6 : Section 3.5.3,
Execution Precedence and
Service Call Atomicity

4 The precedence of CPU exception handlers
relative to the precedence of interrupt
handlers and time event handlers is
implementation-defined.

25 p.65: Section 3.5.4, CPU
Locked State

...if an interrupt handler is started in the
CPU locked state or a transitional state, it is
implementation-defined how to enter the
CPU unlocked state in the interrupt
handler.

26 p.6 -6 : Section 3.5.4,
CPU Locked State

5 6 It is also implementation-defined how to
return correctly from interrupt handlers
after the system has entered the CPU
unlocked state.

27 p.7 : Section 3.6.3,
Adding Service Calls that
can be Invoked from Non-
Task Contexts

3 Omission of the E_CTX error detection is
implementation-defined.

28 p.74: Section 3.7, System
Initialization Procedure

The kernel initialization process is called at
the end of the hardware-dependent
initialization process. The method used to
call the kernel initialization process is
implementation-defined.

29 p.74: Section 3.7, System
Initialization Procedure

The method used to handle errors detected
during the static API processes is
implementation-defined.

30 p.74: Section 3.7, System
Initialization Procedure

The initialization routines are executed
with all interrupts disabled except for non-
kernel interrupts. Disabling non-kernel
interrupts is implementation-defined.

355

µITRON4.0 Specification Ver. 4.03.00

No.

Page number and
section number/service

call name Description
31 p.74: Section 3.7, System

Initialization Procedure
Allowing initialization routines to invoke
service calls and which service calls are
invokable are implementation-defined.

32 p.75: Section 3.8, Object
Registration and Release

The maximum number of objects and the
range of the ID numbers that can be
registered are implementation-defined.

33 p.75: Section 3.8, Object
Registration and Release

The maximum number of objects that can
be created by using service calls and the
procedure to designate the range of ID
numbers are also implementation-defined.

34 p.75: Section 3.8, Object
Registration and Release

The method an implementation employs to
designate the range of ID numbers
available for automatic assignment is
implementation-defined.

35 p.7 : Section 3.9,
Description Format for
Processing Unit

6 When writing in assembly language, the
format is implementation-defined for the
processing units of interrupt service
routines, time event handlers (cyclic
handlers, alarm handlers, overrun handler),
extended service call routines, tasks, and
task exception handling routines.

36 p.76: Section 3.9,
Description Format for
Processing Unit

The format for writing interrupt handlers
and CPU exception handlers and the object
attributes used to register them with the
kernel are implementation-defined ...

37 p.86: CRE_TSK, cre_tsk,
acre_tsk

When a value greater than the maximum
implementation-defined value is specified
in stksz, an E_PAR error is returned.

38 p.89: act_tsk If the service call is invoked from non-task
contexts and has its execution delayed,
omission of returning an E_QOVR error is
implementation-defined.

39 p.92: ext_tsk Allowing errors to be detected in service
calls and the behavior of the service call
when an error is detected are
implementation-defined.

40 p.93: exd_tsk Allowing errors to be detected in service
calls and the behavior of the service call
when an error is detected are
implementation-defined.

41 p.1 : wup_tsk, iwup_tsk06 If this service call is invoked from non-task
contexts and has its execution delayed,
omission of returning an E_OBJ error and
an E_QOVR error is implementation-
defined.

356

µITRON4.0 Specification Ver. 4.03.00

No.

Page number and
section number/service

call name Description
42 p.1 : rel_wai, irel_wai 08 If this service call is invoked from non-task

contexts and has its execution delayed,
omission of returning an E_OBJ error is
implementation-defined.

43 p.116: Section 4.3, Task
Exception Handling
Functions

The following behavior is implementation-
defined. The kernel disables task
exceptions when an extended service call
routine is started and restores the original
state when the extended service call routine
returns.

44 p.1 : ras_tex, iras_tex 23 If the service call is invoked from non-task
contexts and has its execution delayed,
omission of returning an E_OBJ error is
implementation-defined.

45 p.1 : sig_sem, isig_sem 34 If this service call is invoked from non-task
contexts and has its execution delayed,
omission of returning an E_QOVR error is
implementation-defined.

46 p.154: CRE_DTQ,
cre_dtq, acre_dtq

When a value greater than the maximum
implementation-defined value is specified
in dtqcnt, an E_PAR error is returned.

47 p.1 : snd_dtq, psnd_dtq,
ipsnd_dtq, tsnd_dtq

57 If the service call is invoked from non-task
contexts and has its execution delayed,
omission of returning an E_TMOUT error
is implementation-defined.

48 p.1 : Section 4.4.4,
Mailboxes

62 The definition and size of the T_MSG type
(message header for a mailbox) are
implementation-defined.

49 p.174: Section 4.5.1,
Mutexes

In addition to the strict priority control rule,
the µITRON4.0 Specification defines
another priority control rule, called the
simplified priority control rule, which
limits the conditions under which the
current priority is changed. The priority
control rule used is implementation-
defined.

50 p.1 : CRE_MBF,
cre_mbf, acre_mbf

88 When maxmsz is specified as 0 or a value
greater than the maximum implementation-
defined value, an E_PAR error is returned.

51 p.1 : CRE_MBF,
cre_mbf, acre_mbf

88 An E_PAR error is also returned when
mbfsz is specified as a value greater than
the maximum implementation-defined
value.

52 p.201: CRE_POR,
cre_por, acre_por

When a value greater than the maximum
implementation-defined value is specified
in maxcmsz or maxrmsz, an E_PAR error
is returned.

357

µITRON4.0 Specification Ver. 4.03.00

No.

Page number and
section number/service

call name Description
53 p.220: CRE_MPF,

cre_mpf, acre_mpf
When blkcnt or blksz is specified as 0 or a
value greater than the maximum
implementation-defined value, an E_PAR
error is returned.

54 p.2 : CRE_MPL,
cre_mpl, acre_mpl

30 When mplsz is specified as 0 or a value
greater than the maximum implementation-
defined value, an E_PAR error is returned.

55 p.2 : Section 4.7.1,
System Time
Management

38-239 The amount of time added to the system
time when isig_tim is invoked is
implementation-defined. The interval of
invoking isig_tim from the application
must be correlated with the amount of time
added to the system time.

56 p.262: Section 4.7.4,
Overrun Handler

OVRTIM Processing time (unsigned
integer, unit of time is
implementation-defined)

57 p.281: ref_sys This service call references the system state
and returns it through the packet pointed to
by pk_rsys. The specific information
referenced is implementation-defined.

58 p.2 : Section 4.9,
Interrupt Management
Functions

82 The XXXX portion of the interrupt mask
data type is implementation-defined and
should be an appropriate character string
for the target processor's architecture.

59 p.282: Section 4.9,
Interrupt Management
Functions

The format to write an interrupt handler is
implementation-defined.

60 p.2 : DEF_INH, def_inh85 The specific meaning of inhno is
implementation-defined, but it corresponds
to the processor's interrupt vector number
in typical implementations.

61 p.2 : DEF_INH, def_inh85 The possible values and meanings of inhatr
are implementation-defined.

62 p.290: ref_isr This service call references the state of the
interrupt service routine specified by isrid.
The state of the interrupt service routine is
returned through the packet pointed to by
pk_risr. The specific information returned
is implementation-defined.

63 p.2 : dis_int 91 This service call disables the interrupt
specified by intno. The specific meaning of
intno is implementation-defined. In typical
implementations, intno corresponds to the
interrupt request line to the IRC.

358

µITRON4.0 Specification Ver. 4.03.00

No.

Page number and
section number/service

call name Description
64 p.292: ena_int This service call enables the interrupt

specified by intno. The specific meaning of
intno is implementation-defined. In typical
implementations, intno corresponds to the
interrupt request line to the IRC.

65 p.2 : chg_ixx 93 The xx portion of the service call name and
the xxxx portion of the parameter name are
implementation-defined and should be
appropriate character strings for the target
processor's architecture.

66 p.293: chg_ixx Depending on the value specified by ixxxx,
this service call may cause a transition
between the CPU locked state and the CPU
unlocked state and/or a transition between
the dispatching disabled state and the
dispatching enabled state. The value
causing these transitions and the transition
caused by this service call are
implementation-defined.

67 p.2 : get_ixx 94 The xx portion of the service call name and
the xxxx portion of the parameter name are
implementation-defined and should be
appropriate character strings for the target
processor's architecture.

68 p.2 : Section 4.10,
Service Call Management
Functions

95 Only the necessary parameters for the
extended service call routine (par1, par2,
and so on) have to be specified. There may
be an implementation-defined limit on the
number of parameters for extended service
calls.

69 p.296: Section 4.10,
Service Call Management
Functions

Executing extended service call routines
with task exceptions disabled is
implementation-defined.

70 p.2 : cal_svc 99 There may be an implementation-defined
limit greater than or equal to 1 on the
number of parameters that can be passed to
the service call.

71 p.299: cal_svc In addition to an extended service call,
allowing this service call to invoke a
standard service call is implementation-
defined.

72 p.300: Section 4.11,
System Configuration
Management Functions

The format to write a CPU exception
handler is implementation-defined.

73 p.3 : Section 4.11,
System Configuration
Management Functions

01 The service calls that can be invoked from
within CPU exception handlers are
implementation-defined.

359

µITRON4.0 Specification Ver. 4.03.00

No.

Page number and
section number/service

call name Description
74 p.3 : Section 4.11,

System Configuration
Management Functions

01 When a CPU exception occurs in task
contexts, whether the CPU exception
handler executes in task contexts or in non-
task contexts is implementation-defined.

75 p.3 : DEF_EXC,
def_exc

02 The specific meaning of excno is
implementation-defined, but it corresponds
to the processor's exception in typical
implementations.

76 p.302: DEF_EXC,
def_exc

The possible values and meanings of excatr
are implementation-defined.

77 p.3 : ref_cfg 04 This service call references the static
information and configuration information
of the system. The information is returned
through the packet pointed to by pk_rcfg.
The specific information referenced is
implementation-defined.

78 p.3 : Section 5.3.2,
Functionalities Included
in the Automotive Control
Profile

16 ext_tsk
The behavior when invoked from a
restricted task is implementation-defined.

79 p.3 : Section 7.4, Data
Types

35 TMO Timeout (signed integer, unit of
time is implementation-defined)

80 p.3 : Section 7.4, Data
Types

35 RELTIM Relative time (unsigned integer,
unit of time is implementation-
defined)

81 p.335: Section 7.4, Data
Types

SYSTIM System time (unsigned integer,
unit of time is implementation-
defined)

82 p.3 : Section 7.4, Data
Types

36 OVRTIM Processing time (unsigned
integer, unit of time is
implementation-defined)

360

µITRON4.0 Specification Ver. 4.03.00

361

µITRON4.0 Specification Ver. 4.03.00

Index
This is an index of the terms used in the main body of the µITRON4.0 Specification
(Chapter 2 to Chapter 5). The number refers to the page where the term is defined or
explained.

A
activation (of task) ...53
activation request count ...81
active states ..53
alarm handler ...254
API ...22
argument ..23
atomicity (of service call) ..64
attachment (of object) ..75
automatic ID assignment (by configurator) ...35
automatic ID assignment (by service call)...75
automatic ID assignment header file..24
Automotive Control Profile ...313

B
base priority ...81
Basic Profile...312
blocked state...52

C
callback ..22
calling message (of rendezvous)..196
configurator..30
constant ..24
context..51
CPU exception handler ..60, 300
CPU locked state..65
CPU unlocked state..65
creation (of object) ...25, 75
current priority ...81
cyclic handler ...243

D
data queue ..150
data type ...24
definition (of object) ..25

362

µITRON4.0 Specification Ver. 4.03.00

delayed execution (of service call)...71
delayed state ...114
deletion (of object) ...75
dispatch pending state ..68
dispatcher ...51
dispatching ...51
dispatching disabled state...67
dispatching enabled state..67
DORMANT state ...53

E
error class ...26
error code ...26
eventflag...138
extended information ...28
extended service call ..295
extended service call routine ..62, 295

F
FCFS ..55
fixed-sized memory pool..217
function code..26

G
general constant expression parameter...35
glue routine (for CPU exception handler) ..60
glue routine (for interrupt handler) ..58

H
header file...24

I
ID number (of objects) ...25
implementation-defined ...21
implementation-dependent ...21
implementation-specific ...21
initialization routine ...74, 300
insufficient resource error class..47
integer parameter..36
integer parameter with automatic ID assignment...35
integer parameter without automatic ID assignment..35
internal error class ..45
internal identifier ..42
interrupt ..57

363

µITRON4.0 Specification Ver. 4.03.00

interrupt handler...57, 282
interrupt handler number..60
interrupt number...60
interrupt service routine ...58, 282
invoking context error class ...46
invoking task..51
IRC...57
ITRON general concepts, rules, and guidelines...21
ITRON general constant ..45
ITRON general data type ...42
ITRON general macro..49
ITRON general static API..49

K
kernel configuration constant...77
kernel configuration macro ..77

L
loose standardization..309

M
macro..24
mailbox ..162
main error code ..26, 45
memory pool ..217
message buffer ...184
message header ..162
message packet...162
mutex..173

N
nesting (of task suspension requests) ...103
non-blocking ..29
NON-EXISTENT state ..53
non-kernel interrupt ...58
non-local jump ...118
non-task contexts ...63

O
object..25
object attribute ...28
object number...25
object state error class..47
overrun handler ..262

364

µITRON4.0 Specification Ver. 4.03.00

P
packet ...23
parameter..23
parameter error class ..46
pending exception code..116
polling ..29
precedence..51
precedence (between processing units) ..64
precedence (between tasks)..55
preempt...53
preprocessor constant expression parameter ..35
priority..25
priority (of task) ...81
priority ceiling protocol..173
priority inheritance protocol...173
priority inversions ..173
processing time limit ..262
processing time used ..262
processing unit ...62
profile rule ..309

Q
queuing (of task activation requests)..81
queuing (of task wakeup requests) ...103

R
READY state..52
real time..30
registration (of object)..25
relative time..30
release task from waiting ...53
rendezvous..196
rendezvous number ..197
rendezvous port ..196
restricted task ...314
restriction (of service call functionality) ..309
resume (of suspended task) ..53
return message (of rendezvous)..196
return parameter ...23
return value (of service call)...26
round-robin scheduling ..56, 270

365

µITRON4.0 Specification Ver. 4.03.00

runnable state ...52
RUNNING state...52

S
scheduler ..51
scheduling ..51
scheduling rule ...55
semaphore ..129
service call ...22
service calls for non-task contexts ...70
service calls for task contexts ..71
simplified priority control rule...174
sleeping state..105
software component identifier ...37
Standard Profile ...310
start code (of task)..81
state transitions (of task) ..53
static API..23
static API process...74
strict priority control rule ...174
sub error code...26
subsetting (of service call functionalities) ...309
SUSPENDED state ..53
suspension count ..103
system call..22
system configuration file..30
system object..25
system time ..30, 238

T
task ...51
task contexts...63
task control block (TCB) ...119
task dispatcher..51
task dispatching..51
task exception code ..116
task exception disabled state..116
task exception enabled state...116
task exception handling routine ...61, 116
task scheduler...51
task scheduling...51

366

µITRON4.0 Specification Ver. 4.03.00

task state ...52
termination (of task) ...53
time event handler ..62, 238
time tick..238
timeout..29
transitive priority inheritance ...174

U
undefined..21
unsupported error class ..45
user object ..25

V
variable-sized memory pool ...227

W
waiting released error class ..47
WAITING state ..52
WAITING-SUSPENDED state ...53
wakeup request count ...103
warning class ..48

367

µITRON4.0 Specification Ver. 4.03.00

July 24, 2007 Version 4.03.00 (English) First edition

Supervised by: Ken Sakamura
Edited and published by: TRON Association
 Katsuta Building 5F
 3-39, Mita 1-chome, Minato-ku, Tokyo 108-0073, JAPAN
 TEL: +81-3-3454-3191

Printed by: Hokuetsu Printing CO., LTD.

Copyright 2007 by TRON ASSOCIATION

	A Word from the Project Leader
	Organization of the Specification Document
	Description Format of the Specification Document
	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	[Rationale]
	
	
	
	
	
	Table of Contents
	Service Call Index
	Static API Index

	Background of the (ITRON4.0 Specification
	TRON Project
	
	What is the TRON Project?
	Basic TRON Project Concepts

	Computing Everywhere
	Open Architecture
	Results To Date

	ITRON
	JTRON
	BTRON
	CTRON
	TRON Human Interface
	The Future of TRON

	Promotion of the T-Engine Project
	TRON Advanced Technology Research
	ITRON Specification Update
	Multi-Character OS Application
	Education and Promotion
	Marketing

	History and Current Status of the ITRON Specifications
	
	Current State and Features of Embedded System
	Requirements for RTOS on Embedded System
	Current Status of the ITRON Specifications

	ITRON Specification Design Policy
	Position of the (ITRON4.0 Specification
	
	Second Phase Standardization Activities of the ITRON Sub-Project
	Necessity of the (ITRON4.0 Specification
	
	
	
	To improve software portability
	To add functionality for supporting software components
	To include new requirements and results of studies
	To include enhancements allowed by improved semi-conductor technology

	Introduction of the Standard Profile
	Realization of a Wider Scalability
	New Functions in the (ITRON4.0 Specification

	Exception Handling Functions
	Data Queues
	System State Reference Functions
	Object Creation Functions for Automatic ID Assignment
	Interrupt Service Routines
	Mutexes
	Overrun Handler
	Standard Configuration Method
	Standardization Activities after Publication of the (ITRON4.0 Specification

	ITRON Debugging Interface Specification
	Protection Extension of (ITRON4.0 Specification ((ITRON4.0/PX Specification)
	ITRON TCP/IP API Specification Ver. 2.00

	ITRON General Concepts, Rules, and Guidelines
	ITRON General Concepts
	
	Terminologies
	Elements of an API

	[Differences from the (ITRON3.0 Specification]
	[Supplemental Information]
	[Rationale]
	[Supplemental Information]
	Object ID Numbers and Object Numbers

	[Standard Profile]
	[Supplemental Information]
	Priorities

	[Standard Profile]
	[Differences from the (ITRON3.0 Specification]
	Function Codes
	Return Values of Service Calls and Error Codes

	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	Object Attributes and Extended Information

	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	Timeout and Non-Blocking

	[Supplemental Information]
	Relative Time and System Time

	[Supplemental Information]
	[Supplemental Information]
	[Rationale]
	
	
	
	
	Integer Parameters with Automatic ID Assignment
	Integer Parameters without Automatic ID Assignment
	Preprocessor Constant Expression Parameters
	General Constant Expression Parameters

	[Standard Profile]
	[Supplemental Information]
	[Rationale]

	API Naming Convention
	
	Software Component Identifiers
	Service Calls

	[Supplemental Information]
	Callbacks
	Static APIs
	Parameter and Return Parameter
	Data Types
	Constants
	
	ITRON General Constants
	Error Codes
	Other Constants

	Macros
	Header Files

	ITRON General Definitions
	
	ITRON General Data Types

	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	ITRON General Constants

	[Differences from the (ITRON3.0 Specification]
	
	
	Internal Error Class (EC_SYS, from ?5 to ?8)
	Unsupported Error Class (EC_NOSPT, from ?9 to ?16)
	Parameter Error Class (EC_PAR, from ?17 to ?24)
	Invoking Context Error Class (EC_CTX, from ?25 to ?32)
	Insufficient Resource Error Class (EC_NOMEM, from ?33 to ?40)
	Object State Error Class (EC_OBJ, from ?41 to ?48)
	Waiting Released Error Class (EC_RLWAI, from ?49 to ?56)

	[Supplemental Information]
	
	
	Warning Class (EC_WARN, from ?57 to ?64)
	Reserved Error Codes (from ?5 to ?96 except those defined above)
	Implementation-Specific Error Codes (from ?97 to ?128)

	[Differences from the (ITRON3.0 Specification]
	ITRON General Macros
	Error Code Generating and Retrieving Macros

	ITRON General Static APIs
	File Inclusion

	[Supplemental Information]
	[Rationale]

	Concepts and Common Definitions in (ITRON4.0
	Glossary of Basic Terms
	
	
	Task and Invoking Task
	Dispatching and Dispatcher
	Scheduling and Scheduler
	Context
	Precedence

	[Supplemental Information]
	
	Disabling Interrupts

	Task States and Scheduling Rule
	
	Task States
	
	
	
	RUNNING state
	READY state
	Blocked state
	DORMANT state
	NON-EXISTENT state

	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	[Rationale]
	Task Scheduling Rules

	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]

	Interrupt Handling Model
	
	Interrupt Handlers and Interrupt Service Routines

	[Supplemental Information]
	[Standard Profile]
	[Rationale]
	Ways to Designate an Interrupt and Start an Interrupt Service Routine

	[Supplemental Information]

	Exception Handling Model
	
	Exception Handling Framework

	[Standard Profile]
	Operations within a CPU Exception Handler
	
	
	
	Read the context and system state when the CPU exception occurred. The kernel must provide a method so that the CPU exception handler can reference the system state information that would normally be obtained through sns_yyy service calls invoked just pr
	Read the task ID of the task in which the CPU exception occurred, if the exception occurred while a task was executing.
	Request task exception handling. This operation is equivalent to invoking ras_tex within the CPU exception handler.

	Context and System State
	
	Processing Units and Their Contexts

	[Differences from the (ITRON3.0 Specification]
	Task Contexts and Non-Task Contexts

	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	Execution Precedence and Service Call Atomicity

	[Standard Profile]
	[Supplemental Information]
	CPU Locked State

	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	Dispatching Disabled State

	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	Task State during Dispatch Pending State

	[Supplemental Information]

	Service Call Invocation from Non-Task Contexts
	
	Service Calls that can be Invoked from Non-Task Contexts

	[Supplemental Information]
	[Supplemental Information]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	Delayed Execution of Service Calls

	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	Adding Service Calls that can be Invoked from Non-Task Contexts

	[Supplemental Information]

	System Initialization Procedure
	Object Registration and Release
	[Standard Profile]

	Description Format for Processing Unit
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]

	Kernel Configuration Constants and Macros
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]

	Kernel Common Definitions
	
	
	
	
	(1)Object Attributes

	[Differences from the (ITRON3.0 Specification]
	
	
	
	(2)Main Error Codes Used in Kernel

	[Standard Profile]
	[Supplemental Information]
	
	
	
	
	Error codes not used by the kernel
	Error codes not generated by Standard Profile functions
	Error codes that are implementation-dependent
	Error codes whose detection can be omitted

	(3)Service Call Function Codes

	[Differences from the (ITRON3.0 Specification]
	[Rationale]
	
	
	
	(4)Other Kernel Common Constants

	[Differences from the (ITRON3.0 Specification]
	
	
	
	(1)Priority Range

	[Standard Profile]
	[Supplemental Information]
	
	
	
	(2)Version Information

	[Standard Profile]
	[Supplemental Information]

	(ITRON4.0 Functions
	Task Management Functions
	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]

	Task Dependent Synchronization Functions
	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]

	Task Exception Handling Functions
	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	[Rationale]

	Synchronization and Communication Functions
	[Differences from the (ITRON3.0 Specification]
	Semaphores

	[Standard Profile]
	[Rationale]
	Eventflags

	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	Data Queues

	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	Mailboxes

	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]

	Extended Synchronization and Communication Functions
	[Standard Profile]
	[Differences from the (ITRON3.0 Specification]
	Mutexes

	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	[Rationale]
	Message Buffers

	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	Rendezvous

	[Rationale]

	Memory Pool Management Functions
	[Supplemental Information]
	Fixed-Sized Memory Pools

	[Standard Profile]
	[Supplemental Information]
	Variable-Sized Memory Pools

	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]

	Time Management Functions
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	System Time Management

	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	Cyclic Handlers

	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	Alarm Handlers

	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	Overrun Handler

	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]

	System State Management Functions
	[Standard Profile]
	[Differences from the (ITRON3.0 Specification]

	Interrupt Management Functions
	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]

	Service Call Management Functions
	[Standard Profile]
	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]

	System Configuration Management Functions
	[Standard Profile]
	[Supplemental Information]

	Additional Specifications
	The Specification Requirements for the (ITRON4.0 Specification
	
	Basic Concept
	
	
	
	It must have the minimum functionalities that are required to satisfy the (ITRON4.0 Specification (see Section 5.1.2).
	If it contains functionalities similar to those described in the (ITRON4.0 Specification, the functionality specifications must match the (ITRON4.0 Specification. However, if the implementation does not provide a configurator, conforming to the static
	If it contains functionalities not specified by the (ITRON4.0 Specification, the functionality specifications must satisfy the conditions for implementation-dependent extensions specified by the (ITRON4.0 Specification. However, if the implementation s

	[Standard Profile]
	[Supplemental Information]
	Minimum Required Functionalities for Conformance to the (ITRON4.0 Specification
	
	
	
	Creation of tasks. The task must at least be able to be in the RUNNING state, the READY state, and the DORMANT state.
	Task scheduling conforming to the (ITRON4.0 Specification scheduling rule. However, restricting the number of tasks to one for each priority level or restricting the priority level to only one is allowed.
	Registration of interrupt handlers (or interrupt service routines).
	A method to activate tasks (changing the state from the DORMANT state to the READY state) from tasks and interrupt handlers (or interrupt service routines).
	A method for a task to terminate itself (changing the state from the READY state to the DORMANT state).

	[Supplemental Information]
	[Differences from the (ITRON3.0 Specification]
	Extension of the (ITRON4.0 Specification

	Basic Profile
	
	
	Task management functions
	Task dependent synchronization functions
	Synchronization and communication functions
	Memory pool management functions
	Time management functions
	System state management functions

	Automotive Control Profile
	
	Restricted Tasks

	[Supplemental Information]
	Functionalities Included in the Automotive Control Profile
	Task management functions
	Task dependent synchronization functions
	Synchronization and communication functions
	Time management functions
	System state management functions
	Interrupt management functions
	System configuration management functions

	[Supplemental Information]

	Version Number of the Specifications
	Maker Codes

	Appendix
	Conditions for Using the Specification and the Specification Document
	Conditions for Using the Specification
	Conditions for Using the Specification Document
	Disclaimer

	Maintenance of the Specification and Related Information
	Maintenance of the ITRON Specifications and Contact Information

	Version History of the Specification
	Version History

	References
	Service Call List
	
	
	Task management functions
	Task dependent synchronization functions
	Task exception handling functions
	Synchronization and communication functions
	Extended synchronization and communication functions
	Memory pool management functions
	Time management functions
	System state management functions
	Interrupt management functions
	Service call management functions
	System configuration management functions

	Static API List
	
	
	Task management functions
	Task exception handling functions
	Synchronization and communication functions
	Extended synchronization and communication functions
	Memory pool management functions
	Time management functions
	Interrupt management functions
	Service call management functions
	System configuration management functions
	ITRON general static API

	Static APIs and Service Calls in the Standard Profile
	
	
	Task management functions
	Task dependent synchronization functions
	Task exception handling functions
	Synchronization and communication functions
	Memory pool management functions
	Time management functions
	System state management functions
	Interrupt management functions
	System configuration management functions

	Data Types
	[Standard Profile]

	Packet Formats
	
	
	Task management functions
	Task exception handling functions
	Synchronization and communication functions
	Extended synchronization and communication functions
	Memory pool management functions
	Time management functions
	System state management functions
	Interrupt management functions
	Service call management functions
	System configuration management functions

	Constants and Macros
	
	
	General
	Object Attributes
	Timeout Specification
	Service Call Operational Mode
	Object States
	Other Constants
	Macros

	Kernel Configuration Constants and Macros
	
	
	Priority Range
	Version Information
	Maximum Nesting/Queuing Count
	Number of Bits in Bit Patterns
	Time Tick Period
	Required Memory Size
	Others

	Error Code List
	Function Code List
	List of Items Required to be Specified for Each Implementation (Implementation-Defined Items)
	
	
	
	
	
	
	Index

