
TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
i

e2TP Messaging API Specification

TEF950-S002-01.00.00/en

2005/03

T-Engine Forum

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
1

e2TP Messaging API Specification

Scope

This manual defines the e2TP Messaging API, which is the JAVA API specification for sending and receiving
e2TP (extended eTRON Transfer Protocol) messages in the TENeT standard from Java programs

Normative references

e2TP Messaging API:
 e2TP Message Specifications, T-Engine Forum, 2005.

Gosling, J., Joy, B, Steele, G., and Bracha, G.: The Java Language Specification, Sun Microsystems,
2000

VTS API:
 e2TP Message Specifications, T-Engine Forum, 2005.

Gosling, J., Joy, B, Steele, G., and Bracha, G.: The Java Language Specification, Sun Microsystems,
2000

Introduction

e2TP Messaging API provides interfaces to send and receive e2TP messages, the communication messages used
by TENeT among smartcards and application programs (AP).

This API makes it possible to send and receive e2TP messages either synchronously (awaits blocks of the
answerback messages following the sending of the message) or asynchronously (continues the process without
waiting for the answerback message after sending a message) (see DispatchAgent#syncSend()/send()). When
a message is sent asynchronously, the answerback message to the sent messages are to be acquired through
listeners registered in advance (MessageListener#received())

Any AP, IC card or server with an eTRON ID in the TENeT name space can be specified as the destination of
the e2TP message sent by this API. When the destination is remote, the messages are routed automatically
and are sent through an appropriate route in a network. The AP does not need to be aware of whether the
destination is local or remote. For security reasons, however, some messages are prohibited to be sent
remotely. Refer to the TENeT message specification for the types of messages that are prohibited to be sent
remotely.

In this API, the eTRON ID of an AP is generated and acquired automatically by a smartcard using the eTRON
ID of the card (see SystemManager#getAgent()). The aquired ID is stored in the DispatchAgent object and
automatically used as the source ID of a message sent by the AP. As a result, each AP don’t have to be aware
of specific assignment of its eTRON ID.

Usage samples of this API are indicated here following.

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
2

//1. Acquisition of an eTRON ID (acquisition of entry point for delivering and receiving messages)

String domain =
(String) SystemManager.getInstance().getDomainMap().get(IccRwName);
// Domain acquisition. The IccRwName is the name for identifying the IC cards within the environment, such as
R/W names in the PC/ SC.

DispatchAgent agent =
 SystemManager.getInstance().getAgent(domain);
// Entry point acquisition for message sending and receiving. Here the eTRON ID is automatically issued for the
AP. Thereafter, when a message is sent, the ID issued here is automatically used as the source ID of messages
sent by the AP (The AP cannot misrepresent the source ID).

//2. Message sending and receiving

ETronID dst = new ETronID (domain, 0);
// The eTRON ID of the IC card is port 0.

Int createFile = 0x0040;
// CreateFile message (see TENeT message specification)

Message msg = new Message (dst, createFile, fileData);
// Creation of the message to be sent. The fileData is the data for the authorization value to be created.

Message reply = agent.syncSend(msg);
// Synchronous message sending and receiving. It sends a message, and then waits until a message with the same
Thread ID is sent to the AP address itself. The return value is the message received.

ThreadID tid = agent.send(msg);
// Asynchronous message sending and receiving. After it sends a msg, it immediately returns the associated
Thread ID, and then returns the processing.

agent.setListener(listener);

// Register a listener for asynchronous message receiving. When a message whose destination is this AP is
received, listener.received() is invoked with the received message as the argument (the listener should be the
instance of the class that implements the MessageListener interface).

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
3

org.t_engine.tenet.core

Class CoreErrorMessageException
java.lang.Object
 |
 +-java.lang.Throwable
 |
 +-java.lang.Exception
 |
 +-org.t_engine.tenet.core.CoreException
 |
 +-org.t_engine.tenet.core.CoreErrorMessageException

public class CoreErrorMessageException
extends CoreException

 It is thrown when unexpected messages arrive

CoreErrorMessageException
public CoreErrorMessageException(java.lang.String string)

 Structures a CoreErrorMessageException that has a detailed message string.

Parameters:
 String - Detailed message

Constructors

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
4

org.t_engine.tenet.core

Class CoreException
java.lang.Object
|
+-java.lang.Throwable

|
+-java.lang.Exception

|
+-org.t_engine.tenet.core.CoreException

Direct Known Subclasses:
CoreErrorMessageException, CoreInternalException,

CoreParameterException, CoreSmartcardException

public class CoreException
extends java.lang.Exception

 This is an underlying class of exceptions that are thrown when an exception has occurred in the core.

CoreException
public CoreException(java.lang.String string)

It structures a core exception that has a detailed message string.

Parameters:
string – Detailed message

Constructors

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
5

org.t_engine.tenet.core

Class CoreInternalException
java.lang.Object
 |
 +-java.lang.Throwable
 |
 +-java.lang.Exception
 |
 +-org.t_engine.tenet.core.CoreException
 |
 +-org.t_engine.tenet.core.CoreInternalException

public class CoreInternalException
extends CoreException

 It is thrown, when an internal error has been generated in the core.
 For example, it is thrown when there is a failure in an internal resource file access, an illegally set file, or a
failure has been occurred in an internal class generation.

CoreInternalException
public CoreInternalException(java.lang.String string)

 It structures a CoreInternalException that has a detailed message string.

Parameters:
 string - detailed message

Constructors

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
6

org.t_engine.tenet.core

Class CoreParameterException
java.lang.Object
|

 +-java.lang.Throwable
|
+-java.lang.Exception

 |
 +-org.t_engine.tenet.core.CoreException

|
+-org.t_engine.tenet.core.CoreParameterException

public class CoreParameterException
extends CoreException

 It is thrown, when the message argument is illegal.
 For example, it is thrown when null has been specified for a parameter, for which null is not permitted.

CoreParameterException
public CoreParameterException(java.lang.String string)

 It structures a CoreParameterException that has a detailed message string.

Parameters:
string – Detailed message

Constructors

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
7

org.t_engine.tenet.core

Class CoreSmartcardException
java.lang.Object
|
+-java.lang.Throwable

 |
 +-java.lang.Exception

|
+-org.t_engine.tenet.core.CoreException

|
+-org.t_engine.tenet.core.CoreSmartcardException

public class CoreSmartcardException
extends CoreException

 It is thrown, when there is no IC card for the domain domain that the application accesses.

CoreSmartcardException
public CoreSmartcardException(java.lang.String string)

 It structures a CoreSCardException that has a detailed message string.

Parameters:
string – Detailed message

CoreSmartcardException
public CoreSmartcardException(int errcode)

It structures a CoreSmartcardException that has a detailed message string generated from the error code
errcode

 Parameters:
 string – Error code

Constructors

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
8

org.t_engine.tenet.core

Class DispatchAgent
java.lang.Object
|
+-org.t_engine.tenet.core.DispatchAgent

public class DispatchAgent
extends java.lang.Object

It provides the means for sending and receiving messages for application programs.
The instance of this class can be obtained by the SystemManager#getAgent() method. Each instance of the

DispatchAgent class has a dynamically allocated, global unique eTRONID as the identifier. This identifier is
used as the source ID and destination ID for message transmission. The allocated identifier value can be
confirmed by the getIdentifier() method.
 The application can send and receive e2TP messages by using the acquired instance of this class. Two types
of sending and receiving methods is provided for sending and receiving messages: synchronous message
transmission (it awaits receipt of the answer message for the sent message; see syncSend()) and asynchronous
message transmission (it returns immediately after a message transmission, without waiting for the receiving
message; see send()).

To send a message, an AP invokes the send() or syncSend() method with a Message object as the argument.
However, the eTRONID allocated when the instance is acquired is always used as the transmission source ID
(srcID) of the message to be sent; even if a source ID is set in the argument object, it is always disregarded.
When the thread ID of the argument object is undefined (null), the thread ID is allocated automatically (when it
is not undefined, the thread ID set for the argument object is used as is). To assures global uniqueness of the
thread ID, the allocated thread ID includes the sender’s eTRONID (see “e2TP message specifications” section
2.1.3)

In order to receive messages asynchronously, the application program must register a listener object for
notifying the message receipt in advance, by the setListener() method. The listener object to be registered
must implement the MessageListener interface. The message receipt is notified as an invocation of the
MessageListener#received() method of the listener object. When no listener object has been registered, the
received message is simply destroyed.

See Also:
 Message, MessageListener, SystemManager

getIdentifier
public ETronID getIdentifier()

It returns the eTRONID assigned to the DisptachAgent. This eTRONID is automatically used as the
transmission ID, when sending messages.

 Returns:
 eTRONID assigned to the DispatchAgent.

Methods

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
9

setListener
public void setListener(MessageListener listener)

 It records [t1]the listener ‘listener’ as the listener for receiving asynchronous messages. When a
listener has previously been recorded, the specified listner overwrites it. When null is specified for
‘listener’, the previously registered listener is cleared.

Parameters:
listener – the Listener object to notify receipt of messages

getListener
public MessageListener getListener()

 It acquires the listener recorded by the setListener() method. When nothing is recorded, it returns
null.

Returns:

 The listener recorded by the setListener() method

send
public ThreadID send(Message msg)

 throws CoreParameterException

It sends the message asynchronously to the address specified in the message ‘msg’. When the sending of
the message is complete, it immediately returns the control to the caller. It uses (overwriting) the
eTRONID returned by the getIdentifier() method for the transmission source ID of the message msg to
be sent, and if the thread ID of the message ‘msg’ to be sent is undefined (null), it sends the message
using the newly generated thread ID. It returns the thread ID of the sent message.

Parameters:
msg – The message to be sent

Returns:

The thread ID of the message that was sent

Exceptions:
CoreParameterException – The message ‘msg’ to be sent is null

syncSend
public Message syncSend(Message msg)

 throws CoreParameterException

It sends the message synchronously to the destination specified in the message ‘msg’. This method
does not return control until whether it receives the answer message corresponding to the sent message,
i.e., the message which has the same thread ID as the sent message, or it becomes timeout. It returns
the received message when the answer message is successfully received, or returns null if timeout. The
length of the timeout period is specified by the SystemManager#getDefaultTimeout() method. Similar
to the sync() method, the source ID in ‘msg’ is disregarded and the thread ID is allocated automatically
if the thread ID of the ‘msg’ is undefined (null),

Parameters:

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
10

 msg – The message to be sent

Returns:
The answer message to the sent message ‘msg’, or null if the reception of the answer message has
timed out

Exceptions:
CoreParameterException – The message msg to be sent is null

syncSend
public Message syncSend(Message msg,

 int timeout)

 throws CoreParameterException

It synchronously sends the message to the destination specified by the message ‘msg’ , with explicit
specification of the timeout period. This method is the same as the syncSend(msg) method, except the
length of the timeout period is assigned by the argument.

Parameters:
msg – The message to be sent
timeout – The message receiving timeout (positive integer in milliseconds)

Returns:

 When the answer message corresponding to the message to be sent has timed out, it is [t2]null

Exceptions:
CoreParameterException – The message ‘msg’ to be sent is null, or the message receiving
timeout timeout is a negative number

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
11

org.t_engine.tenet.core

Class ETronID
java.lang.Object
|
+-org.t_engine.tenet.core.ETronID

public class ETronID
extends java.lang.Object

 This class represents the eTRONID used as the identifier for indicating the message transmission source and
destination for the e2TP.

The eTRONID is composed of a domain and a port. This class provides, among others, the method for
acquiring the eTRONID domain and port.

ETronID
public ETronID(java.lang.String domain,

 int port)

Structures the ETronID that expresses the eTRONID composed of the domain character string
expression (24 byte hex character string) domain and port.

Parameters:
domain - Domain character string expression (24 byte hex character string)
port - Port

Exceptions:
CoreParameterException – domain character string expression (24 byte hex character string)
domain is null, or is not 24 bytes, or is not a hex character string.

ETronID
public ETronID(byte[] domain,

 int port)

Strcutures the ETronID object that expresses the eTRONID composed of the domain byte array
expression domain and port.

Parameters:
domain – Domain byte array expression
port – Port

Exceptions:
CoreParameterException - Character string expression domain of the domain is null or other
than 12 bytes

Constructors

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
12

ETronID
public ETronID(java.lang.String eTRONID)

Structures the eTronID object that expesses the eTRONID, which is indicated by the eTRONID
character string expression (32 byte hex character string) eTRONID

Parameters:
eTRONID - eTRONID character string expression (32 byte hex character string)

Exceptions:
CoreParameterException - eTRONID character string expression (32 byte hex character
string) is null, or is other than 32 bytes, or is not a hex character string.

ETronID
public ETronID(byte[] eTRONID)

Structures the eTronID object that expresses the eTRONID indicated in the eTRONID byte array
expression eTRONID.

Parameters:
eTRONID – eTRONID byte array expression

Exceptions:
CoreParameterException – The eTRONID byte array expression eTRONID is null or not 16
bytes

equals
public boolean equals(java.lang.Object obj)

Decides the eTRONID equivalency. When the eTRONID shown by the relative object obj is
equivalent to the eTRONID of this object, true is returned. When eTRONID is different, or when the
relative object ‘obj is not an instance of the ETronID class false is returned.

Parameters:
obj – Relative object

Returns:

When the eTRONID shown by the relative object ‘obj’ is equivalent to the eTRONID of this object, it
is true, otherwise it is false

toString
public java.lang.String toString()

 It returns this eTRONID character string expression (32 byte hex character string).

Returns:
 eTRONID character string expression (32 byte array hex character string

Methods

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
13

toBytes
public byte[] toBytes()

 It returns this eTRONID byte array.

Returns:
 eTRONID byte array expression

getDomain
public java.lang.String getDomain()

 It returns this eTRONID domain character string expression (24 byte character string).

Returns:
 Domain character string expression (24 byte character string).

getPort
public int getPort()

 It returns this eTRONID port.

Returns:
 Port

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
14

org.t_engine.tenet.core

Class Message
java.lang.Object
|
+-org.t_engine.tenet.core.Message

public class Message
extends java.lang.Object

This class is to represent the e2TP message.
An instance of this class represents a message that includes the source ID (src), the destination ID (dest), the

message type code (mtype), the thread ID (threadID), and the parameters (param).
 The source ID cannot be specified as the argument of the constructors of this class; the source ID of the
Message object generated by the constructor is always undefined. Similarly, the thread ID of the object
generated by the constructor whose arguments are dest, mtype and param is undefined. This class provides the
method for acquiring the source ID, the destination ID, the message type code, the thread ID and the parameters,
and the method that returns the byte array expression of the message.

Message
public Message(ETronID dest,

 int mtype,

 byte[] param)
It structures the message object that expresses the message structured from the destination ID dest, the
message type code mtype and the parameter param. The thread ID is undefined for the message object
generated by this constructor. When there is no parameter for the message to be constructed, null is to
be specified as ‘param’.

Parameters:
 dest – Destination ID
 mtype – Message type code
 param – Parameter

Exceptions:
 CoreParameterException – The destination ID dest is null.

Message
public Message(ETronID dest,

 int mtype,

 ThreadID threadID,

 byte[] param)

It structures the message object that expresses the message structured from the destination ID dest, the
message type code mtype, the thread ID ‘thread ID’ and the parameter param. When there is no
parameter for the message to be constructed, null is to be specified as ‘param’.

Constructors

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
15

Parameters:
dest – Destination ID
mtype – Message type code
threadID – Thread ID
param – Parameter

Exceptions:
CoreParameterException – The destination ID dest is null.

toBytes
public byte[] toBytes()

 Returns the byte array expression of this message.

Returns:
 Byte array expression of the message

getSrc
public ETronID getSrc()

 Returns the transmission ID of this message. Returns null, when this transmission ID is undefined.

Returns:
Transmission ID

getDest
public ETronID getDest()

 Returns the destination ID of this message.

Returns:
 Destination ID

getMtype
public int getMtype()

 Returns the message type code of this message.

Returns:
 Message type code

getThread ID
public ThreadID getThreadID()

 Returns the thread ID of this message. Returns null, when the thread ID is undefined.

Returns:

Methods

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
16

 Thread ID

getParam
public byte[] getParam()

 Returns the parameter of this message. Returns the 0 byte array, when the parameter is undefined.

Returns:
 Parameter

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
17

org.t_engine.tenet.core

Interface MessageListener

public interface MessageListener

This interface is a interface for listeners which receives the answer message for the asynchronous message
transmission

Registering the listeners implement this interface by the DispatchAgent#setListener() method enables APs to
be notified of received messages.

See Also:
 DispatchAgent

received
public Message received(Message msg)

It is invoked when the DispatchAgent object has received a message. The argument msg is the
message that was received. When the return value of this method is a Message object, the returned
object is automatically sent as the message. In this case, the eTRONID of the DispatchAgent object
associated with this object is used as the source ID of the message to be sent, and the same thread ID as
the receiving message is also used automatically when the thread ID is undefined (null). When the return
value is null or an object other than the message class, no message is sent automatically. When
automatic sending of a message is not required, we recommend to return null as the return value.

Parameters:
msg – Received message

Returns:

A message to be sent, or null if no message need be sent in response

Methods

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
18

org.t_engine.tenet.core

Class SystemManager
java.lang.Object
|
+-org.t_engine.tenet.core.SystemManager

public class SystemManager
extends java.lang.Object

This class is a singleton class that initializes and sets the default values of the system.
It provides the method that inspects the name of the connected IC card reader-writers (IC card R/W), the

domain map of the IC cards inserted in the IC card R/Ws and the default timeout for sending and receiving
synchronous messages, and the method to qcquire the DispatchAgent objects providing the functions that send
and receive messages for the application.

See Also:
 DispatchAgent

getInstance
public static SystemManager getInstance()

 throws CoreInternalException

It initializes the environment required for sending and receiving e2TP messages using this API and
returns a unique instance (singleton) of this class.

Parameters:
The singleton instance of this class

Exceptions:
CoreInternalException – Failed accessing of resource (IC card R/W driver)

getDomainMap
public org.t_engine.tenet.util.Map getDomainMap()

It returns a Map object of the name of the smartcard R/Ws and the character string expression (24 byte
hex character string) of the domain of the smartcards inserted into the R/Ws. The keys of the map are the
names of the R/W. When there is no usable IC card inserted into the IC card R/W, it returns an empty
map.

Returns:

Map of the domain string expression (24 byte hex character string) of the IC card inserted into the IC
card R/W keyed on the IC card R/W name

Methods

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
19

getDefaultTimeout
public int getDefaultTimeout()

Returns the default timeout for synchronous message transmission. The initial default timeout value
depends on the environment

Returns:
 The default timeout (positive integer in milliseconds)

setDefaultTimeout
public void setDefaultTimeout(int timeout)

 throws CoreParameterException
 Sets the default timeout for synchronous message sending and receiving.

Parameters:
timeout - The default timeout (positive integer in milliseconds)

Exceptions:
CoreParameterException - The default timeout timeout is a 1 negative number

getAgent
public DispatchAgent getAgent(java.lang.String domain)

 throws CoreParameterException,

 CoreErrorMessageException,

 CoreSmartcardException

 Instantiates and returns a DispatchAgent object whose eTRONID belongs to the ‘domain’.

Parameters:
domain – The Domain that the instantiated DispatchAgent object belongs

Returns:

Instantiated DispatchAgent object

Exceptions:
CoreParameterException – The specified domain is not the correct domain character string
expression (see eTronID)
CoreErrorMessageException – The IC card has failed to generate the port for the
DispatchAgent object to be generated (The domain domain cannot generate any more new ports.)
CoreSmartcardException – The IC card corresponding to the specified domain does not exist
in the environment.

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
20

org.t_engine.tenet.core

Class ThreadID
java.lang.Object
|
+-org.t_engine.tenet.core.ThreadID

public class ThreadID
extends java.lang.Object

 The class represents the thread ID contained in the message.
 This class provides the method that returns character string expression (40 byte hex character string) or byte
array expression of the thread ID.

ThreadID
public ThreadID(byte[] threadID)

 It structures the thread ID object that shows the thread ID indicated by the byte string expression
thread ID of the thread ID.

Parameters:
thread ID – Thread ID byte string expression

Exceptions:
CoreParameterException – Thread ID is null or not 20 bytes

toString
public java.lang.String toString()

 It returns this thread ID character string expression (40 byte hex character string)

Returns:
Character string expression (40 byte hex character string) of the thread ID

toBytes
public byte[] toBytes()

 Returns the ID byte array expression of this thread ID.

Returns:
Byte array expression of the thread ID.

Methods

Constructors

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
21

Index
C
CoreErrorMessageException 3

CoreException 4

CoreInternalException 5

CoreParameterException 6

CoreSmartcardException 7

E
equals 12

ETronID 11, 12

G
getAgent 18

getDefaultTimeout 17

getDest 15

getDomain 12

getDomainMap 17

getIdentifier 8

getInstance 17

getListener 8

getMtype 15

getParam 15

getPort 12

getSrc 15

getThreadID 15

M
Message 14

R
received 16

S
send 9

setDefaultTimeout 17

setListener 8

syncSend 9

T
ThreadID 19

toBytes 12, 15, 19

toString 12, 19

TEF950-S002-01.00.00/en

Copyright © 2005 by T-Engine Forum. All rights reserved.
22

Appendix org.t_engine.util*

The authority value transaction API and e2TP messaging API use 3 types of interfaces, org.t_engine.util.Set,
org.t_engine.util.Map, org.t_engine.Iterator as the interfaces for handling the interface and iterator for handling
both aggregate and associative arrays..

These interfaces respectively provide an interface of the same name present in the java.util package
(java.util.Set, java.util.Map and java.util.Iterator) and the same interfaces except that the methods use
org.t_engine.util.Collection instead of java.util.Collection as the argument or the return value; the
org.t_engine.util.Collection interface provides the same interface as the java.util.Collection interface.

In other words, org.t_engine.util.* provides a subset of the JCF (Java Collections Framework), which is not
provided in the J2ME CLDC environment.

