
 1

 TEF040-S213-01.00.00/en

T-Engine Forum
Specification

TEF040-S213-01.00.00/en
September 29, 2003

 Standard Audio Device Driver Specification

T-Engine Forum Specification TEF040-S213-01.00.00/en

 2

Number:TEF040-S213-01.00.00/en

Title: Standard Audio Device Driver Specification

Status: [] Working Draft, [] Final Draft for Voting, [*] Standard

Date: July 22, 2003 First Edited (Takeshi Aida, Faith, Inc.)

 August 5, 2003 Updated to 00.00.02 (revised Section 2.7 and the figures)

 September 29, 2003 Voted

Copyright (C) 2003-2005 T-Engine Forum. All Rights Reserved.

T-Engine Forum Specification TEF040-S213-01.00.00/en

 3

Contents
1 Introduction..4

2 Driver...5

2.1 Implementation Requirements ...5
2.2 ID tk_opn_dev(UB *devnm, UINT omode) ...7
2.3 ER tk_cls_dev(ID dd, UINT option) ..7
2.4 ID tk_wai_dev(ID dd, ID reqid, INT *asize, ER *ioer, TMO tmout)....................................7
2.5 ID tk_wri_dev(ID dd, INT start, VP buf, INT size, TMO tmout)

ER tk_swri_dev(ID dd, INT start, VP buf, INT size, INT *asize)..8

2.5.1 Audio playback..8
2.5.2 Driver message buffer registration ..8
2.5.3 Driver message buffer release ..9
2.5.4 Internal driver status setting ..10
2.5.5 Output data format designation ...10
2.5.6 Input data format designation..11
2.5.7 Output drive control (optional) ...11
2.5.8 Input drive control (optional)..12
2.5.9 Mixer functions (optional) ..12

2.5.9.1 Set output volume ..13
2.5.9.2 Set input volume ..14
2.5.9.3 Mute line ..14
2.5.9.4 Select recording source ...15

2.6 ID tk_rea_dev(ID dd, INT start, VP buf, INT size, TMO tmout)
ER tk_srea_dev(ID dd, INT start, VP buf, INT size, INT *asize) ..16

2.6.1 Audio recording...16
2.6.2 Get the supported data format..16
2.6.3 Get the internal driver status...16
2.6.4 Get the current write address ...17
2.6.5 Get the current read address..17
2.6.6 Mixer functions (optional)..18

2.6.6.1 Enumerate lines ...18

2.7 Mixer hardware example (optional) ...19

2.8 Device control code example (concept)...20

2.8.1 Without request queuing...20
2.8.2 With request queuing..20

T-Engine Forum Specification TEF040-S213-01.00.00/en

 4

1 Introduction

This specification defines the standard API for a device driver that enables audio IO with
T-Engine.

The driver provides audio codec control. In a minimal configuration, the driver is designed to
support hardware equipped with one audio input or output system or both. It was also designed
considering expandability for hardware with a digital IO interface and analog volume control.

Two methods of supporting hardware expansion are assumed: an expanded audio codec can be
supported with more driver units, and multiple implementations of DAC and ADC can be
supported with more driver subunits.

Figure 1. Schematic diagram

Application

Driver

DAC, AMPADC, AMP

Data stream
Control / Status

Audio stream

Control / Status

Control / Status

T-Engine Forum Specification TEF040-S213-01.00.00/en

 5

2 Driver

2.1 Implementation Requirements

• The block size of audio device-specific data is defined in AUDIO_DEVBLKSIZE [byte].

• The subunit ID is assigned by the DAC or ADC implementation. The subunit number starts with

0.

• The driver must support the asynchronous read/write mechanisms tk_wri_dev(), k_rea_dev(),
and tk_wai_dev() for device-specific data.

• Queuing is enabled up to AUDIO_MAXREQQ times for read and write in asynchronous access

requests to device-specific data. In other words, if AUDIO_MAXREQQ=2, even when the
queue becomes full of write requests as depicted in Figure 2, if read requests are issued the
driver must receive them without any wait. This is not required, however, if the hardware does
not support full-duplex operation.

Figure 2. Asynchronous access requests and queuing

• All access requests for attribute data must be immediately executed. In addition, access to

attribute data is provided regardless of the queuing status of access requests for
device-specific data. In other words, if AUDIO_MAXREQQ=2, even when the queue becomes
full of write requests for device-specific data as depicted in Figure 3, if write requests for
attribute data DN_AUDIO_MIXERSETOUTPUTVOL are issued, the driver must receive them
without any wait for the write to DN_AUDIO_MIXERSETOUTPUTVOL.

 ・
 ・
 ・
id0 = tk_wri_dev(dd, 0, Buf0, length, TMO_FEVR);
id1 = tk_wri_dev(dd, 0, Buf1, length, TMO_FEVR);
id2 = tk_rea_dev(dd, 0, BufR, lengthR, TMO_FEVR);
 ・
 ・
 ・

1. Playback starts immediately

2. Queued
(This fills up the write queue.)

3. Recording starts immediately

Time

Buf0 playback Buf1 playback

BufR Recording

length length

Timing for executing

lengthR

T-Engine Forum Specification TEF040-S213-01.00.00/en

 6

Figure 3. Asynchronous access requests and access to attribute data

• DMA transfer is assumed for this explanation. For platforms not supporting DMA transfer, the
 implementation is platform-dependent.

• Items herein that are not described in detail should conform to provisions of T-Engine

standards.

 ・
 ・
 ・
id0 = tk_wri_dev(dd, 0, Buf0, length, TMO_FEVR);
id1 = tk_wri_dev(dd, 0, Buf1, length, TMO_FEVR);
er = tk_swri_dev(dd, DN_AUDIO_MIXERSETOUTPUTVOL,

 &MixerVol, sizeof(MixerVol), &asize);
 ・
 ・
 ・

1. Playback starts immediately

2. Queued
(This fills up the write queue.)

3. The volume is changed immediately

Time

Buf0 playback starts Buf1 playback starts

Volume changed

length length

Timing for executing

T-Engine Forum Specification TEF040-S213-01.00.00/en

 7

2.2 ID tk_opn_dev(UB *devnm, UINT omode)

Reserves the device and establishes standby.

Argument
 devnm

 Pointer to the device name string
The device name comprises "audio" to distinguish the type, followed by the
unit, represented by a letter from a to z, and the subunit, represented by a
number. The first unit is designated by the device name "audioa0" if the
subunit is 0.

 omode
 Designates options.
 TD_WRITE Enables processing for audio playback
 TD_READ Enables processing for audio recording
 TD_NOLOCK No locking of the specific data buffer by the
 driver

Whether or not simultaneous setting of TD_WRITE and TD_READ
(full-duplex operation) is available is hardware-dependent. However, read
and write of attribute data (start < 0) is supported regardless of the omode
designation.
With tk_wri_dev() and tk_rea_dev(), the driver locks and unlocks the
relevant buffer (making them resident or non-resident) for specific data
before and after access. If TD_NOLOCK is designated here, this is not
performed.

2.3 ER tk_cls_dev(ID dd, UINT option)

Stops the device and releases it.
Interrupts active read or write operations and cancels all queued requests.
If the driver message buffer (see Section 2.5.2) is registered by DN_AUDIO_REGISTERMSGBUF, this
releases it.

2.4 ID tk_wai_dev(ID dd, ID reqid, INT *asize, ER *ioer, TMO tmout)

Waits for read and write requests indicated by reqid to be completed.
If it ends in error, *asize is undefined.

T-Engine Forum Specification TEF040-S213-01.00.00/en

 8

2.5 ID tk_wri_dev(ID dd, INT start, VP buf, INT size, TMO tmout)
ER tk_swri_dev(ID dd, INT start, VP buf, INT size, INT *asize)

2.5.1 Audio playback

Designates the start address and number of blocks of the data for playback and starts playback.
If requests are queued through asynchronous processing, the driver must enter processing for
the next request continuously after the current request is complete without pause.
A buffer must not be released once it has issued a write request until that request is complete.
If the driver message buffer (see Section 2.5.2) is registered by
DN_AUDIO_REGISTERMSGBUF, the driver issues a notification message immediately before
and after buffer playback.

Data number (start)
 DN_AUDIO_PLAYAUDIO (=0)

Argument
 buf

 The start address of the buffer where playback data is stored.
 Depending on the hardware platform, the following limitations may occur.
 (Examples of limitations)
 Alignment required for each memory page
 Must not be in task-specific space

 size
 The number of buffer blocks

2.5.2 Driver message buffer registration

Registers the driver-specific message buffer.
If the message buffer is already registered, the registered message buffer ID is returned without
registration.
It may be difficult for the invoker to know the actual timing for processing read and write requests
that are issued asynchronously. But through the message buffer registered here, notification of
the start and end of the read or write can be received from the driver.
It is advisable that the timing when messages are issued coincide with the moment of playback
and recording.
This message buffer is not registered by default.
The message from the driver is sent in the AudioMsgPacket structure.

typedef struct {

 ID id;

 VP buf;

 SYSTIM otm;

} AudioMsgPacket;

#define AUDIO_MSGPKTID_WRITESTART 0x0000

#define AUDIO_MSGPKTID_WRITECOMPLETE 0x0001

T-Engine Forum Specification TEF040-S213-01.00.00/en

 9

#define AUDIO_MSGPKTID_READSTART 0x0002

#define AUDIO_MSGPKTID_READCOMPLETE 0x0003

The message type is indicated in id. This corresponds to one of the following four types.

 • AUDIO_MSGPKTID_WRITESTART The message is a notification of the start of playback
 • AUDIO_MSGPKTID_WRITECOMPLETE The message is a notification of the end of playback
 • AUDIO_MSGPKTID_READSTART The message is a notification of the start of recording
 • AUDIO_MSGPKTID_READCOMPLETE The message is a notification of the end of recording

buf indicates the buffer start address (buf of tk_wri_dev(), tk_rea_dev()) of the read or write
requests of the message source.
otm indicates the system up time when the message was issued (in the same way it can be
retrieved with tk_get_otm()).

The driver has an internal status for notification if the message buffer is flooded.
Read and write for this internal status is done by setting the internal driver status
(DN_AUDIO_SETSTATUS) or referring the internal driver status (DN_AUDIO_GETSTATUS).
No message is issued if the message buffer becomes full. A bit is set in AUDIO_STATUS_MBFFLOW
in the internal status.

Data number (start)
 DN_AUDIO_REGISTERMSGBUF

Argument
 buf

Pointer to the ID type that stored the created message buffer to be
registered

 size

 Must be sizeof(ID).
Return Code

 The ID of the registered driver message buffer

2.5.3 Driver message buffer release

Releases the driver-specific message buffer.
If the message buffer is not registered, E_OBJ is returned.
buf and size are ignored.

Data number (start)
 DN_AUDIO_UNREGISTERMSGBUF

Return Code
 The ID of the released driver message buffer

T-Engine Forum Specification TEF040-S213-01.00.00/en

 10

2.5.4 Internal driver status setting

Sets the driver-specific internal status.
Details of the UW-type variable indicated by buf are copied to the internal driver status.

#define AUDIO_STATUS_MBFFLOW 0x0001 // driver message buffer is flooded

Data number (start)
DN_AUDIO_SETSTATUS

Argument
 buf

Pointer to the UW-type variable where the new internal driver status is
stored

 size
 Must be sizeof(UW).

2.5.5 Output data format designation

Designates the data format for blocks to be written.
(Note: The supported format is dependent on the hardware to be implemented.)

Data number (start)
 DN_AUDIO_SETOUTPUTFMT

Argument
 buf

Pointer to the following AudioDriverDataFormat structure
 struct {

 W nSize;

 W nFormatTag;

 W nFS;

 W nChannels;

 W nInterleaveSample;

 } AudioDriverDataFormat;

 nSize
 Structure size of AudioDriverDataFormat [byte]

 nFormatTag
Designates the sample format type (if rawPCM, the number of bits, the
byte order, and whether it is signed or unsigned).

 Designates specific values for each of the various combinations.
 Examples:

FMT_PCM_S16_LE rawPCM signed 16bit LittleEndian
FMT_PCM_U8 rawPCM unsigned 8bit (offset binary)

T-Engine Forum Specification TEF040-S213-01.00.00/en

 11

 nFS
 Designates the sampling rate [Hz].

 nChannels
 Designates the number of channels (>=1) in the data stream.

 nInterleaveSample
If nChannels >1 for the data stream, designates after how many samples
the channels are changed.

 Examples:
 When nChannels = 2
 Time-------------------->

 nInterleaveSample=1 L R L R L R L R L R…

 nInterleaveSample=4 L L L L R R R R L L…

 size

 Must be sizeof(AudioDriverDataFormat).

2.5.6 Input data format designation

Designates the data format for blocks to be read.
Designated the same way as for the output data format.
(Note: The supported format is dependent on the hardware to be implemented.)

Data number (start)
DN_AUDIO_SETINPUTFMT

Argument
 buf

 Pointer to the AudioDriverDataFormat structure
For a description, see the section on output data format.

 size

 Must be sizeof(AudioDriverDataFormat).

2.5.7 Output drive control (optional)

Controls the operating status of audio output hardware (including DAC hardware).
The default operating status is always run.
The function is intended for situations in which the timing of initial data writing and the moment
sound is heard must be separately controlled. This is the case for hardware with a significant
delay (latency) in the period after specific data is written using DN_AUDIO_PLAYAUDIO until the
time audio starts to be heard.

Data number (start)
DN_AUDIO_SETOUTPUTSTATE

Argument
 buf

T-Engine Forum Specification TEF040-S213-01.00.00/en

 12

 Pointer to the UW-type
The UW-type indicated by buf prescribes the following operating
parameters.

 bit 31 0 = stop 1 = run
 bit 30 to 16 reserved (must be 0)
 bit 15 to 0 implementation-dependent
 size
 Must be sizeof(UW).

2.5.8 Input drive control (optional)

Controls the operating status of audio input hardware (including ADC hardware).
The default operating status is always run.
The function is intended for situations in which the timing of indication of initial data reading and
recording must be separately controlled. This is the case for hardware with a significant delay
(latency) in the period after specific data is read using DN_AUDIO_RECAUDIO until the time
audio starts to be recorded.

Data number (start)
DN_AUDIO_SETINPUTSTATE

Argument
 buf
 Pointer to the UW-type

The UW-type indicated by buf prescribes the following operating
parameters.

 bit 31 0 = stop 1 = run
 bit 30 to 16 reserved (must be 0)
 bit 15 to 0 implementation-dependent
 size

 Must be sizeof(UW).

2.5.9 Mixer functions (optional)

This section defines mixer functions for write operations.
• In this specification, "mixer" refers to volume adjustment functions and analog mixing functions.

(See Section 2.7.)
• Mixer functions can only be controlled with subunit 0. Attempting to use them with subunit 1 or

later returns an error (E_OBJ).
• Although software-based volume control can be implemented for platforms that do not support

analog mixing hardware, latency may affect the audio output.
• All mixer states immediately after open are undefined.

T-Engine Forum Specification TEF040-S213-01.00.00/en

 13

2.5.9.1 Set output volume

Controls the output volume of the designated line.

Data number (start)
DN_AUDIO_MIXERSETOUTPUTVOL

Argument
 buf
 Pointer to the following MixerLineVolume structure
 struct {
 UB lineId;// line ID
 UB time; // the time spent changing the volume [msec]
 H vol[0];// the volume value
 } MixerLineVolume;

 The following kinds of ID are designated for the line.
 MIXER_LINEID_MASTEROUT The output master volume
 MIXER_LINEID_PCMOUT PCM volume
 MIXER_LINEID_MICIN Microphone volume

 Each channel's volume is designated after vol[0].
 Examples:
 For a monaural line

 vol[0] = volume
 For a two-channel stereo line

 vol[0] = L channel volume
 vol[1] = R channel volume

The volume value is designated as a logarithm in increments of 1/256 dB.
The volume value for the nth channel is

 (vol[n]÷256) dB.
 The volume value is clipped to be in the effective range for that line.

In time, the time spent until the designated volume value is reached is
designated. To reach the designated volume value immediately, 0 is
designated for time.
When time>0, the driver gradually changes the volume from the current
volume, taking time [msec] to reach the volume value designated after
vol[0]. This function is intended to suppress quick noise, and
implementation is optional. If quick noise suppression functions are
implemented in the hardware, time is ignored.

 size
 The effective byte size from buf

T-Engine Forum Specification TEF040-S213-01.00.00/en

 14

2.5.9.2 Set input volume

Controls the input volume (recording level) of the designated line.

Data number (start)
DN_AUDIO_MIXERSETINPUTVOL

Argument
 buf
 Pointer to the MixerLineVolume structure

For a description, see the section, “set output volume.”

 size
 The effective byte size from buf.

2.5.9.3 Mute line

Mutes or unmutes the output of the designated line.
The volume value is retained even if muted. Volume adjustment is possible, but there is no sound
for this line until unmute is used.

Data number (start)
DN_AUDIO_MIXERMUTELINE

Argument
 buf

 Pointer to the UW-type
The UW-type indicated by buf prescribes the following operating
parameters.

 bit 31 0 = unmute 1 = mute
 bit 30 to 16 reserved (must be 0)
 bit 15 to 8 time spent for mute [msec]
 bit 7 to 0 line ID

For bit 15 to 8, the time spent until muting [msec] is designated as an
unsigned 8-bit integer. For instantaneous mute, designate 0.
When (bit 15 to 8)>0, the driver gradually lowers the volume from the
current level until it is silent. This function is intended to suppress quick
noise, and implementation is optional. If quick noise suppression functions
are implemented in the hardware, bit 15 to 18 is ignored.

 size

 Must be sizeof(UW).

T-Engine Forum Specification TEF040-S213-01.00.00/en

 15

2.5.9.4 Select recording source

Sets a recording source for the designated line.

Data number (start)
DN_AUDIO_MIXERSELECTRECSRC

Argument
 buf
 Pointer to the following MixerLineRecSrc structure

 struct {

 W nLines;

 UB lineId[0];

 } MixerLineRecSrc;

 nLines
 Number of lines designated for the recording source

 lineId[0] to [nLines-1]
 Line ID for the lines to be used with the recording source

 size

 The effective byte size from buf

T-Engine Forum Specification TEF040-S213-01.00.00/en

 16

2.6 ID tk_rea_dev(ID dd, INT start, VP buf, INT size, TMO tmout)
 ER tk_srea_dev(ID dd, INT start, VP buf, INT size, INT *asize)

2.6.1 Audio recording

Designates the start address of the buffer and number of buffer blocks for recording.
If requests are queued through asynchronous processing, the driver must enter processing for
the next request continuously after the current request is complete without pause.
A buffer must not be released once it has issued a read request until that request is complete.
If the driver message buffer (see Section 2.5.2) is registered by
DN_AUDIO_REGISTERMSGBUF, the driver issues a notification message immediately before
and after recording to the buffer.

Data number (start)
DN_AUDIO_RECAUDIO (=0)

Argument
 buf

 The start address of the buffer where recording data is stored.
 Depending on the hardware platform, the following limitations may occur.
 (Examples of limitations)
 Alignment required for each memory page
 Must not be in task-specific space

 size
 The number of buffer blocks.

2.6.2 Get the supported data format

Lists the data formats supported by the device unit.
Descriptions of data formats are defined separately.
If the available array is not large enough, E_PAR is returned.

Data number (start)
DN_AUDIO_GETAVAILABLEFMTS

Argument
 buf

 Pointer to the B-type array
The data format description is stored in the array indicated here as a
half-width alphanumeric (ASCII) string.

 size

 The size of the array indicated by buf [bytes]

2.6.3 Get the internal driver status

Gets the driver-specific internal status.

T-Engine Forum Specification TEF040-S213-01.00.00/en

 17

The internal driver status is copied to the UW-type variable indicated by buf.
Each bit of the internal driver status is significant. For telling what the status is, check each bit like
as (status & AUDIO_STATUS_MBFFLOW).

#define AUDIO_STATUS_MBFFLOW 0x0001 // driver message buffer is flooded

Data number (start)
DN_AUDIO_GETSTATUS

Argument
 buf

 Pointer to the UW-type variable
 size
 Must be sizeof(UW).

2.6.4 Get the current write address

Gets the current write address of the buffer during recording.
If recording is not in progress, E_OBJ is returned.

Data number (start)
DN_AUDIO_GETRECORDINGPOS

Argument
 buf

 Pointer to the VP-type variable
The current write address of the buffer is stored in the variable indicated
here.

 size
 Must be sizeof(VP).

2.6.5 Get the current read address

Gets the current read address of the buffer during playback.
If playback is not in progress, E_OBJ is returned.

Data number (start)
DN_AUDIO_GETPLAYINGPOS

Argument
 buf

 Pointer to the VP-type variable
 The current read address of the buffer is stored in the
 variable indicated here.

 size
 Must be sizeof(VP).

T-Engine Forum Specification TEF040-S213-01.00.00/en

 18

2.6.6 Mixer functions (optional)

This section defines analog mixer functions for read operations.
• In this specification, "mixer" refers to volume adjustment functions and analog mixing functions.

(See Section 2.7.)
• Mixer functions can only be controlled with subunit 0. Attempting to use them with subunit 1 or

later returns an error (E_OBJ).

2.6.6.1 Enumerate lines

Lists mixer elements (supported line numbers, minimum and maximum volume, and name) as
well as the number of channels supported by each line.
The descriptors of each line are lineDesc[0] to [nLines-1].

Data number (start)
DN_AUDIO_MIXERENUMLINES

Argument
 buf
 Pointer to the following MixerAllLinesDesc structure
 struct {

 UB lineId; // line ID
 UB nChannels; // number of channels
 H volMax; // maximum effective volume [1/256 dB]
 H volMin; // minimum effective volume [1/256 dB]
 B LineName[32];// line name (half-width alphanumeric characters)
 } MixerLineDesc;

 struct {
 W nLines; // number of lines assigned to the mixer
 struct MixerLineDesc LineDesc[0];

 } MixerAllLinesDesc;

T-Engine Forum Specification TEF040-S213-01.00.00/en

 19

2.7 Mixer hardware example (optional)

A codec is assumed for this specification that supports multiple analog input mixing functions.
Figure 4 shows an example of this. The mixer is depicted by the area bounded by dotted lines in
the figure.
As a specific example, Figure 5 shows the portion representing a mixer in a configuration
supporting one stereo output system and one monaural input system.
These are merely provided as examples of mixers supported by a driver of this specification.
They are not intended to limit the hardware corresponding to the driver.

Figure 4. Example of a codec assumed for this specification

Figure 5. Example of a mixer with one stereo output system and one monaural input system

Speaker output

gain/attenuation, mute

master volume

Σ

ADC

PCM playback

Microphone input

Analog input

PCM recording

L,R,…
DAC

PCMOUT[0]

PCMOUT[1]

MASTEROUT[0]

MASTEROUT[1]

MIC IN[0]

RECGAIN[0]

RECGAIN[1]

R

L

Stereo output

○○

○○

Monaural input

L

L

R

R

Set in DN_AUDIO_MIXERSETINPUTVOL
Set in DN_AUDIO_MIXERSELECTRECSRC

Mixer

from DAC

to ADC

Set in DN_AUDIO_MIXERSETOUTPUTVOL
and DN_AUDIO_MIXERMUTELINE

T-Engine Forum Specification TEF040-S213-01.00.00/en

 20

2.8 Device control code example (concept)

2.8.1 Without request queuing
 •
 •
 •

// opens the device in write mode

dd = tk_opn_dev("audioa0", TD_WRITE);

// designates PCM format

tk_swri_dev(dd, DN_AUDIO_SETOUTPUTFMT, &pcmfmt, sizeof(pcmfmt), &asize);

// initializes the mixer volume

// master volume

tk_swri_dev(dd, DN_AUDIO_MIXERSETOUTPUTVOL, &mastv, sizeof(mastv), &asize);

tk_swri_dev(dd, DN_AUDIO_MIXERMUTELINE, &mastmon, sizeof(mastmon), &asize);

// pcmout volume

tk_swri_dev(dd, DN_AUDIO_MIXERSETOUTPUTVOL, &pcmv, sizeof(pcmv), &asize);

tk_swri_dev(dd, DN_AUDIO_MIXERMUTELINE, &pcmmon, sizeof(pcmmon), &asize);

// audio playback

// playback from buf of length [block]

tk_swri_dev(dd, 0, buf, length, &asize);

// mutes the master volume (stopping noise)

tk_swri_dev(dd, DN_AUDIO_MIXERMUTELINE, &mastmoff, sizeof(mastmoff), &asize);

// closes the device

tk_cls_dev(dd, 0);
 •
 •
 •

2.8.2 With request queuing

(Up to this point, same as without queuing)

// audio playback

nBuf = 0;

id[nBuf] = tk_wri_dev(dd, 0, buf_A, length, TMO_FEVR); // id is the ID type,

an array 2 long

// repeats until there is a termination request

while (!bEnd){

 // handles the sound buffer

 audioproc(nBuf?buf_A:buf_B);

 // issues the next request (with queuing)

 id[nBuf^1] = tk_wri_dev(dd, 0, nBuf?buf_A:buf_B, length, TMO_FEVR);

 // waits for termination of current request

 tk_wai_dev(dd, id[nBuf], &asize, &er, TMO_FEVR);

 // switches the buffer

 nBuf ^= 1;

}

tk_wai_dev(dd, id[nBuf], &asize, &er, TMO_FEVR);
 •
 •

