
T-Engine Forum
Specification

TEF040-S103-1.01.01/en
2006-06-06

T-Format (3): Global Symbol Naming

Rule in C Language

Number: TEF040-S103-1.01.01/en

Title: T-Format (3): Global Symbol Naming Rule in C Language

Status: [] Working Draft, [] Final Draft for Voting, [X] Standard

Date: 2003/02/28 First Edited

2003/08/01 Updated to 1.01.00

2003/10/27 Updated to 1.01.01

2006/06/06 Updated to 1.01.02

Copyright c© 2002-2006 by T-Engine Forum. All Rights Reserved.

T-Engine Forum Specification TEF040-S103-1.01.01/en

Table of Contents

Foreword 1

Scope 2

Normative References 2

Terms and Definitions 2

1. T-Engine Middleware Models 4
1.1 Classification by the Way It Act . 4
1.2 Classification by the Service It Provides 4

2. Global Symbol 6
2.1 T-Engine Vendor Code . 6
2.2 File Name of Middleware . 6
2.3 Name of Global Variables to Export . 7
2.4 Name of Data Type Used for Functions and Global Variables 8
2.5 Name of Constant Macros Included in Header Files 8
2.6 Recommendation for Use of Alias . 8

3. Middleware Package Name 10

4. Version Representation 11

i

T-Engine Forum Specification TEF040-S103-1.01.01/en

Foreword

The T-Engine Project has been established to offer an open, real-time standardized
development environment with the aim of achieving a ubiquitous computing environment
where everything has a computer incorporated in it and is connected to a network. T-
Engine is trying to offer an efficient development environment for the development of
portable information devices, home electronic appliances and other network devices in
a short period of time.

T-Engine employs network security architecture called eTRON whose architecture
is intended to prevent tapping, falsification, and disguise of malicious users so that
electronic information can be safely delivered to the other party through insecure network
channels.

To support efficient development, T-Engine standardizes hardware (T-Engine board)
and real-time kernel (T-Kernel), and especially encourages distribution of middleware.
T-Engine is also aimed at smoothing cooperation among semiconductor makers, hard-
ware makers, software makers and system manufacturers, encouraging mutual business
dealings, reducing development time and cost, thus enabling high value added product
offerings in a short period of time. The combination of advanced semiconductors, im-
plementation and software technologies in T-Engine makes it suitable and unrivaled for
the development of advanced application products.

1

T-Engine Forum Specification TEF040-S103-1.01.01/en

Scope

T-Format specifies the code format of middleware and application software that run
on T-Engine/T-Kernel. T-Format includes the following three specifications:

1. Source-code style guideline
Source-code style format for middleware and application that run on T-Engine/T-
Kernel. By using the format, source codes written by various vendors can be
combined and compiled/linked as one program.

2. Standard binary format
Standard executable format for distributing, in binary code, middleware and ap-
plication software that run on T-Engine/T-Kernel. Executable code format and
debugger symbol format are defined.

3. Standard documentation format
Type and format of documentation that is attached to distributed middleware and
application software.

This document defines the format and rules for assignment of software vendor codes,
which are part of the naming rules of T-Format.

Normative References

[1] T-Engine Forum. ”T-Format (2) : T-Engine Vendor Code System”, TEF-040-S102,
2002.

Terms and Definitions

Middleware Middleware means application software that runs on T-Engine/T-Kernel,
or software that provides some kind of service(s) to other middleware.

2

T-Engine Forum Specification TEF040-S103-1.01.01/en

Note: The term “middleware” is used in the T-Kernel specification as the software
module(s) that acts as a “subsystem” (“middleware in a narrow sense”). The term
is used in this document in a sense broader than that and includes any software that
provides services to application software (“middleware in a broad sense”).

3

T-Engine Forum Specification TEF040-S103-1.01.01/en

1. T-Engine Middleware Models

The following is middleware architecture models on the T-Engine architecture and
middleware classification as breakdown of each model:

1.1 Classification by the Way It Act

Middleware is broken down into the following three types:

(1) Subsystem-Type Middleware
The middleware which acts as a subsystem on T-Kernel. Services are provided to
user applications in two ways: (1) the applications call them through the extended
SVC provided by the subsystem; (2) the subsystem modules are called when each
event happens.

(2) Device Driver-Type Middleware
The middleware that uses device management functionality that T-Kernel pro-
vides. You can use this kind of middleware through the general-purpose device
driver interface that T-Kernel provides.

(3) Library-Type Middleware
The middleware that acts as a user library. User applications need to be linked
with the necessary library in code creation. The applications receive services by
calling a function that the library provides or by accessing a global variable that
the library provides.

(4) User Task-Type Middleware
The middleware that acts as a user-task server. We call such a server a “‘manager
server task.” User applications receive services from the server task, using the inter-
task communications or synchronization functionality that T-Kernel provides.

1.2 Classification by the Service It Provides

Middleware can also be classified by the service it provides. This classification is for
convenience, and a service may be able to be classified as more than one type.

(1) Device Driver-Type Middleware
The middleware that provides an API (application programming interface) in a
certain level of abstraction concerning with each device on T-Engine or each device
connected to T-Engine.

4

T-Engine Forum Specification TEF040-S103-1.01.01/en

Example: RS232C driver, PCMCIA driver, Ethernet driver, USB driver, Graphic
Card driver

Communication devices such as RS232C, LAN NIC, USB, ISO14443, and PCMCIA
further connect another device with them. To achieve portability of the device
driver which controls a connected device, the API of the lower-level communication
devices will be standardized (see “chapter 5: Standard Middleware Specification”).

Because processing of devices such as LAN NIC, storage media, and printer is
complex, they also tend to equip another interface of high abstraction level on
them (and the complexity is further compounded by the fact that there are many
types of interface available). In this case, too, the high-level API of the device
drivers needs to be standardized. As for devices to provide general functionality,
the API will be standardized as necessary.

(2) Abstract Device-Type Middleware
The middleware that provides software interface of high abstraction level to single
or plural devices on or connected with T-Engine.

Example: TCP/IP, Printing I/F, FAT file system, GUI package (window system)

Abstract device-type middleware is basically built on device driver-type middle-
ware or another piece of abstract device-type middleware. Therefore the assumed
low-level API needs to be in line with the standardized high-level API of the de-
vice driver-type middleware or the high-level API of the other piece of abstract
device-type middleware. The high-level API that abstract device-type middleware
provides will be standardized if the API has generality or it is possible for the API
to be called from other middleware.

(3) Extended Kernel-Type Middleware
The middleware that provides services of higher abstraction level through T-Kernel
or the middleware functions to the hardware and software resources that T-Kernel
manages.

Example: Process management function, virtual memory function, loader function,
CLI (Command Line Interpreter) function.

(4) Middleware to Provide General Functions
The middleware that provides general calculation functions, especially the ones
that have tenuous relations with the resources provided by the kernel or external
devices.

Example: Sort function, search function, random number generation function, en-
cryption/authentication function

5

T-Engine Forum Specification TEF040-S103-1.01.01/en

2. Global Symbol

To guarantee that pieces of middleware in T-Format can be combined for use, this
section sets out the “global symbol rules.” The major part of the rules is aimed at
avoiding malfunctions in compiling/linking a middleware program, which consists of
programs that two or more vendors wrote, in C language, combined into one. The rules
define, in particular, the way to use the globally available name space that library-type
middleware provides.

2.1 T-Engine Vendor Code

The middleware vendors that provide middleware compliant with T-Format will re-
ceive their own T-Engine Vendor Code[1]. Their TVC will be included in a global symbol
to avoid the same symbol being used by two or more vendors.
Example

Vendor name: YRP Ubiquitous Networking Laboratory
Domain name: unl

2.2 File Name of Middleware

The following rules will be applied to the name of the files constituting a piece of
middleware (the binary file and header file of a library, etc.) complied with T-Format
in order to guarantee uniqueness within the T-Engine Forum. (See also 2.6)

<Library file name> ::= ”lib”<Middleware name> ”.” <Extension>

<Other file name> ::= <Middleware name> ”.” <Extension>

<Middleware name> ::= <Software vendor name> “ ” <Functionality name> [“ ”
<Detail name>]

Functionality Name

A functionality name shall express the functionality that the file of the middleware
provides. Each functionality name must be unique and not be used by two or more
vendors.

A functionality name shall be an alphanumeric character (“a”-“z” and “0”-“9”) string
of two to eight characters.
Example

6

T-Engine Forum Specification TEF040-S103-1.01.01/en

Functionality: MPEG2 CODEC
Functionality name: mpeg2

Detail Name

Detail name is used to discern each binary file/header file if a piece of middleware is
made of more than one binary file/header file. A detail name, like a functionality name,
shall be an alphanumeric character string of two to eight characters (out of “a”-“z” and
“0”-“9”).
Example of a middleware file name
File name of library-type middleware for MPEG2 CODEC developed by the vendor
whose vender code is “unl”:

libunl mpeg2.a

unl mpeg2 basic.h

Name of Functions to Export

The rule for naming a function that is included in a library file of a piece of middleware
and exported to application is as follows:

<Functionality name> ::= <Middleware name> “ ” <Functionality identifier>

The <Functionality identifier> is a alphanumeric character string of two to eight
characters (out of “a”-“z” and “0”-“9”) and indicates the name of functionality of the
function.
Example

mpeg2 encoding function: void unl mpeg2 encode(...);

mpeg2 decoding function: void unl mpeg2 decode(...);

2.3 Name of Global Variables to Export

The rule for naming a global variable that is included in a library file of a piece of
middleware and exported to an application is as follows:

<Variable name> ::= <Middleware name> “ ” <Variable identifier>

The <Variable identifier> is an alphanumeric character string of two to eight charac-
ters (out of “a”-“z” and “0”-“9”) and indicates the name of functionality of the variable.
Example
The variable, etronid, used in the mpeg2 library is expressed as follows:

char unl mpeg2 etronid[16];

7

T-Engine Forum Specification TEF040-S103-1.01.01/en

2.4 Name of Data Type Used for Functions and Global Variables

The rule for naming data structures used for arguments or return values of functions,
or for global variables, both of which are to be exported, is as follows:

<Data structure name> ::= <Middleware name> “ ” <Data structure identifier>

The <Data structure identifier> is an alphanumerical character string of two to eight
characters (out of “a”-“z” and “0”-“9”) and indicates the functionality name of the
variable.
Example

struct point {
int x;

int y;

};
typedef struct point unl mpeg2 point;

2.5 Name of Constant Macros Included in Header Files

The rule for naming constant macros to define special values assigned to arguments
or return values of functions to export, or special values set up for global variables to
export is as follows:

<Macro name> ::= <Middleware name(capital letters)> “ ” <Macro identifier>

Example
#define UNL MPEG2 MAXID 225

#define UNL MPEG2 MINID 5

2.6 Recommendation for Use of Alias

The above naming rules are for avoiding malfunctions in code generation where you
use more than one piece of middleware together, which are developed by two or more
vendors independently. The rules, however, contain the following difficulty applying:

1. The name would be long.

2. The name would be different from the one generally known.

As we just explained, the naming rules are for avoiding malfunctions in combining
one vendor’s middleware with another vendor’s, and you do not need to apply them
when you use a piece of middleware alone. To, then, eliminate the above difficulties, we
recommend you to use an alias for a macro, etc. that is shorter and easier to understand.

For example, if you applied the naming rules to socket-interface middleware of TCP/IP,
the function name would be:

8

T-Engine Forum Specification TEF040-S103-1.01.01/en

unl tcpip socket();

We recommend you to develop a macro set with a following alias:
#define socket unl tcpip socket

The following rules will be applied to the name of the header files for alias definition.

<header file name for alias definition> ::= <Middleware name> ” common.”
<Extension>

Example
unl mpeg common.h

#include "unl mpeg.h"

#define DREQ UNL MPEG DREQ

#define decode(x) unl mpeg decode(x)

unl mpeg.h

typedef struct {
. . .

} UNL MPEG DREQ;

extern int unl mpeg decode (unl mpeg dfmt *);

9

T-Engine Forum Specification TEF040-S103-1.01.01/en

3. Middleware Package Name

You can give a package name to your T-Engine middleware. A middleware package
name indicates a characteristic or a feature of the middleware, and a package name is
assumed to be used for package search, etc. in a software development environment that
handles middleware. The rule for naming middleware packages is as follows:

<Package name> ::= <Middleware name> ”.” <Extension>

<Middleware name> ::= <Software vendor name> “ ” <Functionality name> [“ ”
<Detail name>] “ ” <Version representation>

The <Functionality name> and <Detail name> shall be the same as the ones used
for the middleware file name. The <Version representation> will be defined in the next
section.
Example: An example of middleware package naming:
The package name of the library-type middleware for MPEG2 CODEC provided by UNL
is as follows:

unl mpeg2 codec 010311

10

T-Engine Forum Specification TEF040-S103-1.01.01/en

4. Version Representation

The version of a piece of middleware shall be alphanumerical characters of five digits
as below:

xyyzz

The xx, yy, and zz represent the following:

x: 0-9: major version number

The number will increment when a version change comes with removal of backward
compatibility of the middleware. Therefore change in the major version number of
a middleware means the software using the middleware might require its source code
changed.

yy: a0-z0, 00-99: minor version number

Where the API of a piece of middleware changes but its backward compatibility re-
mains, the major version number of the middleware will be the same, while the minor
version number will increment.

Change in the minor version number of a piece of middleware means the software
using the middleware will work after re-linking. a0-z0 will be used for pre-releasing, and
00-99 will be used for official releases. For example, the alpha release number for major
version 1 will be:
1.a0.zz
The beta release number for major version 3 will be:
3.b0.zz

zz: 00-99: minor release number

Version change for a piece of middleware, while keeping both its API and compatibility
in logical operations seen from outside, shall be made by incrementing the minor release
number with no change made to the major version number and minor version number.
This applies to bug fixing or implementation of a more efficient algorithm, etc. Change
in the minor version number of a piece of middleware means the software using the
middleware will work after re-linking. In principle, the version number of middleware
released for the 1st time will be 1.00.00. However, if a piece of middleware released for
the 1st time is ported one for T-Engine from existing software, the version number of
the middleware does not have to be 1.00.00.

11

	Foreword
	Scope
	Normative References
	Terms and Definitions
	1. T-Engine Middleware Models
	1.1 Classification by the Way It Act
	1.2 Classification by the Service It Provides

	2. Global Symbol
	2.1 T-Engine Vendor Code
	2.2 File Name of Middleware
	2.3 Name of Global Variables to Export
	2.4 Name of Data Type Used for Functions and Global Variables
	2.5 Name of Constant Macros Included in Header Files
	2.6 Recommendation for Use of Alias

	3. Middleware Package Name
	4. Version Representation

