

AMP T-Kernel Standard Extension
Specification

Ver. 1.00.00
TEF021-S003-01.00.00/en

March 2009

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

2 TEF021-S003-01.00.00/en

AMP T-Kernel Standard Extension Specification (Ver.1.00.00)
TEF021-S003-01.00.00/en

T-Engine Forum owns the copyright of this specification.
Permission of T-Engine Forum is necessary for copying, republishing, posting on servers,
or redistribution to lists of the contents of this specification.
The contents written in this specification may be changed without a prior notice for
improvement or other reasons in the future.

About this specification, please refer to follows;

March 2009

Copyright © 2006-2009 T-Engine Forum. All Rights Reserved.

.

Publisher
T-Engine Forum

The 28th Kowa Building 2-20-1 Nishi-gotanda
Shinagawa-Ward Tokyo 141-0031 Japan

TEL：+81-3-5437-0572 FAX：+81-3-5437-2399

E-mail：office@t-engine.org

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

3 TEF021-S003-01.00.00/en

Contents
1. AMP T-Kernel Standard Extention Overview .. 13
1.1 Overview of AMP T-Kernel Standard Extension ... 13
1.2 Available Functions .. 14
1.3 Target Operating Environment .. 14
2. Concepts Underlying the AMP TKSE... 16
2.1 Processor and Kernel... 16

2.1.1 Processor .. 16
2.1.2 Kernel .. 16
2.1.3 Synchronization and Communication Between Kernels... 16

2.2 Process.. 16
2.2.1 Definition of Process.. 16
2.2.2 Address Space of Process... 18
2.2.3 Process State and Task State .. 19
2.2.4 Process/Task Priority and Scheduling.. 21
2.2.5 Execution Environment of Process .. 22
2.2.6 User Process and System Process... 23
2.2.7 Creating a Process ... 23
2.2.8 Combination with AMP T-Kernel Programs.. 25

2.3 Synchronization and Communication... 27
2.3.1 Interprocess Synchronization and Communication .. 27
2.3.2 Intertask Synchronization and Communication... 28
2.3.3 Intertask Synchronization and Communication Function....................................... 28

2.4 Object Management.. 29
2.4.1 Retrieving Object ID Number... 29

2.5 Standard File Management and Standard Input/Output Functions 31
2.5.1 File Management of AMP TKSE... 31
2.5.2 Standard File Management Function .. 32
2.5.3 Standard Input/Output Function.. 32
2.5.4 Shared Filesystem Management ... 32

2.6 Device Management and Event Management Functions .. 34
2.6.1 Access to T-Kernel Device and Event Notification .. 34
2.6.2 Device Management Function ... 34
2.6.3 Event Management Function... 34

3. AMP T-Kernel Standard Extension Common Specifications... 36
3.1 Data Types ... 36

3.1.1 Basic Data Types .. 36
3.1.2 Other Defined Data Types .. 37

3.2 Error Codes ... 38
3.2.1 Overview.. 38
3.2.2 List of Error Codes ... 39

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

4 TEF021-S003-01.00.00/en

4. AMP T-Kernel Standard Extension Functions .. 43
4.1 Memory Management Function ... 43

4.1.1 Overview of the Memory Management Function ... 43
4.1.2 System Calls ... 44
4.1.3 Library Calls.. 49

4.2 Process/Task Management Function .. 57
4.2.1 Process/Task Management Function Overview... 57
4.2.2 System Calls ... 58

4.3 Interprocess Message Function .. 87
4.3.1 Interprocess Message Function Overview ... 87
4.3.2 Message Type ... 88
4.3.3 Message Structure.. 90
4.3.4 System Message... 90
4.3.5 Message Handler .. 91
4.3.6 System Calls ... 94

4.4 Global Name.. 104
4.4.1 Overview of the Global Name .. 104
4.4.2 System Calls ... 105

4.5 Synchronous Intertask Communication Function ... 109
4.5.1 Synchronous Intertask Communication Function Overview 109
4.5.2 System Calls (Semaphore) ...110
4.5.3 System Calls (Mutex)...116
4.5.4 System Calls (Eventflag) .. 122
4.5.5 System Calls (Mailbox)... 130
4.5.6 System Calls (Message buffer).. 136
4.5.7 System Calls (Rendezvous Port)... 142

4.6 Object Management.. 150
4.6.1 Overview.. 150
4.6.2 System Calls ... 151

4.7 Standard Input/Output Function.. 155
4.7.1 Standard Input/Output Function Overview... 155
4.7.2 Target File System .. 156
4.7.3 File Access.. 157
4.7.4 Initial State of File Descriptor .. 157
4.7.5 Disk Cache .. 157
4.7.6 File Name... 158
4.7.7 Path Name ... 160
4.7.8 Root Directory... 160
4.7.9 Current Directory.. 161
4.7.10 This Directory "." and Parent Directory ".." .. 161
4.7.11 Error Code.. 162
4.7.12 System Calls .. 163

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

5 TEF021-S003-01.00.00/en

4.8 Standard File Management Function .. 203
4.8.1 Standard File Management Function Overview ... 203
4.8.2 File and Link.. 203
4.8.3 File System.. 205
4.8.4 Connect File System .. 205
4.8.5 File ID... 206
4.8.6 Link .. 206
4.8.7 Working File .. 207
4.8.8 Path Name ... 207
4.8.9 File Type .. 209
4.8.10 Normal File Composition .. 209
4.8.11 Record Number / Current Record .. 209
4.8.12 Link File Composition ... 210
4.8.13 File Control..211
4.8.14 Reference Count of File ...211
4.8.15 File Access... 212
4.8.16 File System Management Information ... 213
4.8.17 File Management Information... 214
4.8.18 Link Structure .. 216
4.8.19 System Calls .. 218

4.9 Filesystem Sharing Management .. 280
4.9.1 Filesystem Sharing Management Overview ... 280
4.9.2 System Call ... 281

4.10 Event Management .. 283
4.10.1 Event Management Overview... 283
4.10.2 Event Type.. 284
4.10.3 Event Creation from Device Event Notifications .. 285
4.10.4 Priority of Event Queue and Event... 287
4.10.5 Keyboard Events ... 288
4.10.6 Character Code.. 288
4.10.7 Pointing Device Event... 289
4.10.8 Designates the Operation Type of the Pointing Device...................................... 289
4.10.9 Wheel Support ... 289
4.10.10 Event Structure.. 290
4.10.11 System Calls .. 293

4.11 Device Management Function .. 308
4.11.1 Device Management Function Overview ... 308
4.11.2 Basic Concepts.. 308
4.11.3 System Calls ...311

4.12 Time Management.. 324
4.12.1 Time Management Overview .. 324
4.12.2 System Calls .. 326

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

6 TEF021-S003-01.00.00/en

4.12.3 Library Calls... 329
4.13 System Management Function ... 334

4.13.1 System Management Function Overview.. 334
4.13.2 System Calls .. 335

4.14 Shared Library Function ... 339
4.14.1 Shared Library Function Overview .. 339
4.14.2 Library Call... 340

5. Implementation Method .. 344
5.1 Overview.. 344
5.2 Memory Management and Segment Management ... 344
5.3 Process/Task Management .. 345
5.4 Interprocess Messages .. 347
5.5 Intertask Synchronization and Communication Functions... 348
5.6 Device Management Function ... 348
5.7 Time Management Function... 348
5.8 Object Management.. 348
6. Configuration... 350
6.1 System Configuration Information .. 350

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

7 TEF021-S003-01.00.00/en

List of Figures
[Figure 1] System Configuration of AMP TKSE... 13
[Figure 2] Relationship between processes and main task/subtasks .. 17
[Figure 3] Local memory space and shared memory space.. 19
[Figure 4] Task State Transitions ... 21
[Figure 5] Position of File Management .. 31
[Figure 6] Shared File Management.. 33
[Figure 7] Positions of Device Management and Event Management... 34
[Figure 8] Process state .. 66
[Figure 9] Relation of file and links .. 204
[Figure 10] Example of the order of appearance in pathname .. 207
[Figure 11] Change of the record number by record deletion .. 210
[Figure 12] Position of Event Management ... 283
[Figure 13] KeyMap structure.. 303

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

8 TEF021-S003-01.00.00/en

Index of API
calloc Allocate Nonresident Local Memory .. 50

DATEtoTIME Convert Calendar Date to total number of seconds ... 330

dladdr Retrieve Symbol Information of Shared Library .. 343

dlclose Close Shared Library ... 342

dlopen Open Shared Library.. 340

dlsym Find Symbol of Shared Library .. 341

free Free Nonresident Local Memory... 52

GMTtoLT local time compensation... 332

LTtoGMT standard time compensation .. 333

malloc Allocate Nonresident Local Memory ... 49

realloc Reallocate Nonresident Local Memory... 51

Scalloc Allocate Nonresident Common Memory .. 54

Sfree Free Nonresident Common Memory .. 56

Smalloc Allocate Nonresident Common Memory... 53

Srealloc Reallocate Nonresident Common Memory .. 55

TIMEtoDATE Convert consecutive seconds the total number of seconds to Calendar Date 331

tkse_acp_por Accept Rendezvous... 146

tkse_apd_rec Append Record.. 243

tkse_att_fls Attach File system... 265

tkse_attach Attach file system.. 151, 163

tkse_brk_msg Notify The Occurrence of Event.. 101

tkse_cal_por Call Rendezvous... 145

tkse_can_tmg Cancel Time-out Message .. 100

tkse_can_wup Cancel Task Wake-up Request .. 81

tkse_chdir Modify Current Directory... 188

tkse_chg_emk Change System Event Mask.. 298

tkse_chg_fat Change File Access Attribute.. 254

tkse_chg_fls Change File system Information ... 270

tkse_chg_fmd Change File Access Mode .. 252

tkse_chg_fnm Change File name .. 256

tkse_chg_fsm Change File system Connection Mode ... 278

tkse_chg_ftm Change File Date and Time ... 257

tkse_chg_pri Change Priority of Processes/Tasks ... 63

tkse_chg_wrk Change Working File... 220

tkse_chk_fil Check File Access Privileges ... 250

tkse_chmod Change File Mode ... 190

tkse_close Close file / directory.. 168

tkse_clr_evt Clear Event .. 295

tkse_clr_flg Clear Eventflag ... 126

tkse_clr_msg Clear Message... 98

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

9 TEF021-S003-01.00.00/en

tkse_cls_dev Close Device .. 313

tkse_cls_fil Close File .. 229

tkse_cre_fil Create File .. 221

tkse_cre_flg Create Eventflag .. 122

tkse_cre_lnk Create Link File... 223

tkse_cre_mbf Create Messagebuffer ... 136

tkse_cre_mbx Create Mailbox.. 130

tkse_cre_mtx Create Mutex ..116

tkse_cre_nam Create Global Name Data .. 105

tkse_cre_por Create Rendezvous Port .. 142

tkse_cre_prc Create/Execute Processes ... 58

tkse_cre_sem Create Semaphore ..110

tkse_cre_tsk Subtask Creation .. 74

tkse_creat Create File.. 193

tkse_crs_tsk Subtask Creation and Startup ... 76

tkse_def_msg Define Message Handler .. 102

tkse_del_fil Delete File... 230

tkse_del_flg Delete Eventflag... 124

tkse_del_mbf Delete Messagebuffer.. 138

tkse_del_mbx Remove Mailbox ... 132

tkse_del_mtx Delete Mutex...118

tkse_del_nam Remove Global Name Data.. 107

tkse_del_por Delete Rendezvous Port... 144

tkse_del_rec Delete Record... 245

tkse_del_sem Delete Semaphore ...112

tkse_det_fls Detach File system .. 267

tkse_detach Detach file system ... 152, 164

tkse_dly_tsk Delay Task... 82

tkse_dup Replicate File Descriptor .. 185

tkse_dup2 Replicate File Descriptor .. 186

tkse_ext_prc Exit Process.. 61

tkse_ext_tsk Exit invoking task .. 77

tkse_fchdir Modify Current Directory.. 189

tkse_fchmod Change File Mode .. 192

tkse_fil_sts Get file information .. 258

tkse_fls_sts Get File system Management Information.. 269

tkse_fnd_lnk Find Link Record... 235

tkse_fnd_rec Find Record.. 233

tkse_fstat Get file information... 180

tkse_fsync File's Disk Cache Content and Disk Synchronization... 187

tkse_ftruncate Set File Size to the Specified Length .. 198

tkse_fwd_por Forward Rendezvous... 147

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

10 TEF021-S003-01.00.00/en

tkse_gen_fil Generate File Directly .. 225

tkse_get_dev Retrieve Device Name... 320

tkse_get_dfm Get default access mode... 263

tkse_get_etm Get Event Timer Value... 297

tkse_get_evt Get Event.. 293

tkse_get_inf Get Statistics Information about Processes ... 67

tkse_get_krm Get Auto Repeat Target Key.. 304

tkse_get_krp Get Auto Repeat Interval .. 306

tkse_get_lnk Get Link to File.. 218

tkse_get_mbk Get Memory Block .. 44

tkse_get_nam Get Global Name Data ... 108

tkse_get_nlk Get Links Sequentially .. 272

tkse_get_otm Refer System Uptime .. 328

tkse_get_pdp Get PD Position ... 307

tkse_get_tid Get Invoking Task ID.. 83

tkse_get_tim Refer System Time ... 326

tkse_get_ver Get version ... 338

tkse_getdents Get directory entry .. 172

tkse_getfsstat Retrieve a List of File systems .. 200

tkse_getlink Retrieve a LINK to Standard File.. 202

tkse_ins_rec Insert Record .. 241

tkse_las_evt Get Elapsed Time from the Last Event Occurrence .. 301

tkse_lnk_sts Get Link File Information ... 260

tkse_loc_mtx Lock Mutex..119

tkse_loc_rec Record lock... 248

tkse_lod_mod Load Load Module .. 84

tkse_lod_spg Load System Programs ... 335

tkse_lseek Move the current position of a file/directory.. 169

tkse_lst_dev Retrieve Registered Devices... 323

tkse_lst_fls Get File system ... 273

tkse_lstat Get file information... 179

tkse_map_rec Map Record.. 275

tkse_mbk_sts Refer to Memory State .. 47

tkse_mkdir Make directory ... 183

tkse_ofl_sts Get file information ... 259

tkse_open Open File/Directory... 154, 165

tkse_opn_dev Open Device..311

tkse_opn_fil Open File ... 227

tkse_oref_dev Retrieve Device Information ... 322

tkse_prc_inf Retrieve Various Information about Processes.. 71

tkse_prc_sts Get Process State ... 65

tkse_put_evt Event Occurrence... 294

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

11 TEF021-S003-01.00.00/en

tkse_rcv_mbf Receive from Messagebuffer ... 140

tkse_rcv_mbx Receive from Mailbox ... 134

tkse_rcv_msg Receive Message ... 96

tkse_rea_dev Read Device Data (Asynchronus) ... 314

tkse_rea_rec Read Record .. 237

tkse_read Read file .. 170

tkse_ref_dev Retrieve Device Information ... 321

tkse_ref_flg Refer to Eventflag State.. 129

tkse_ref_mbf Refer to Message Buffer State ... 141

tkse_ref_mbx Refer to Mailbox State ... 135

tkse_ref_mtx Refer to Mutex State... 121

tkse_ref_por Refer to Rendezvous Port State.. 149

tkse_ref_sem Refer to Semaphore State ..115

tkse_rel_mbk Release Memory Block.. 46

tkse_removefs Removing Shared Filesystem .. 282

tkse_rename Rename file .. 181

tkse_req_emg Process Exit Message.. 69

tkse_req_evt Request Event Message .. 299

tkse_req_tmg Request Time-out Message .. 99

tkse_ret_msg Exit Message Handler ... 103

tkse_rmdir Remove directory ... 184

tkse_rpl_rdv Reply to Rendezvous .. 148

tkse_see_rec Move Current Record .. 232

tkse_set_dfm Set default access mode ... 264

tkse_set_flg Set Eventflag.. 125

tkse_set_krm Set Auto Repeat Target Key... 302

tkse_set_krp Set Auto Repeat Interval... 305

tkse_set_tim Set System Time... 327

tkse_sharefs Sharing of Filesystems.. 281

tkse_sig_sem Return Semaphore Resource ..113

tkse_slp_tsk Task Sleep... 79

tkse_snd_mbf Send to Messagebuffer... 139

tkse_snd_mbx Send to Mailbox ... 133

tkse_snd_msg Send Message... 94

tkse_srea_dev Read Device Data (Synchronus) ... 315

tkse_sta_tsk Subtask Startup... 75

tkse_stat Get file information.. 174

tkse_sus_dev Request to Suspend Device.. 319

tkse_swri_dev Write Data to Device (Synchronus) .. 317

tkse_syn_fil Synchronize on File Basis .. 279

tkse_syn_fls Synchronize File system ... 268

tkse_syn_lnk Synchronize Link File ... 261

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

12 TEF021-S003-01.00.00/en

tkse_sync Disk Cache Content and Disk Synchronization... 199

tkse_ter_prc Terminate Other Process... 62

tkse_ter_tsk Terminate Other Task... 78

tkse_trc_rec Truncate Record Size.. 246

tkse_truncate Set File Size to the Specified Length ... 197

tkse_umask Set File Creation Mask... 195

tkse_ump_rec Unmap Record ... 277

tkse_unl_mod Unload Load Module... 86

tkse_unl_mtx Unlock Mutex ... 120

tkse_unl_spg Unload System Programs .. 337

tkse_unlink Unlink directory entry .. 182

tkse_utimes Modify Access Time, Modification Time ... 194

tkse_wai_dev Wait for Request Completion for Device ... 318

tkse_wai_flg Wait Eventflag ... 127

tkse_wai_sem Get Semaphore Resource...114

tkse_wri_dev Write Data to Device (Asynchronus) .. 316

tkse_wri_rec Write Record ... 239

tkse_write Write file.. 171

tkse_wup_tsk Task Wake up.. 80

tkse_xch_fil Exchange File Content ... 247

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

13 TEF021-S003-01.00.00/en

1. AMP T-Kernel Standard Extention Overview
1.1 Overview of AMP T-Kernel Standard Extension

AMP T-Kernel Standard Extension (hereinafter called AMP TKSE) is a functional extension program for AMP

T-Kernel.

A program that extends the T-Kernel functions to realize more advanced OS functions is called T-Kernel Extension.

Standard Extension refers to standard-specification T-Kernel Extension, which adds T-Kernel to functions generally

required for large systems such as file management and process management.

AMP T-Kernel is a real-time Operating System (OS) that is an expansion of T-Kernel to support Asymmetric

Multiple Processors (AMP).

AMP TKSE is a T-Kernel Extension that is an expansion of Standard Extension to support AMP T-Kernel.

T-Kernel, Standard Extension, and AMP T-Kernel refer to the following versions in this specification.

T-Kernel version 1.00

T-Kernel AMP TKSE version 1.00

AMP T-Kernel version 1.00

A general system configuration for AMP TKSE is shown below.

 [Figure 1] System Configuration of AMP TKSE

AMP consists of multiple processors. One copy of AMP T-Kernel operates on each processor.

AMP TKSE is a T-Kernel Extension that operates on AMP T-Kernel. The main features are implemented as a

subsystem of AMP T-Kernel. The library to call extended SVC for these subsystems in C language function is

Interface libraries

TKSE libraries

AMP TKSE
(AMP T-Kernel Standard Extension)

AMP T-Kernel

Processor

1

Device drivers

Application

Subsystems

Processor

2

Processor

N

AMP T-Kernel

 AMP TKSE

(Subsystems)

Application

AMP T-Kernel

 AMP TKSE

(Subsystems)

Application

･･･

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

14 TEF021-S003-01.00.00/en

called an interface library. Part of the AMP TKSE functions is provided as TKSE libraries that directly link to

applications, not subsystems.

A user-created program that runs on AMP TKSE is called an application. An application uses various functions

using the APIs (Application Programming Interfaces) of AMP TKSE. Among the AMP TKSE APIs, functions to be

invoked using interface libraries are called system calls, and functions to be invoked using TKSE libraries are

called library function calls.

In AMP, AMP T-Kernel, AMP TKSE, and the application exist in each processor. The application can synchronize

and communicate with other applications using the functions provided by AMP TKSE.

1.2 Available Functions

AMP TKSE provides the following functions:

• Memory management

• Process/Task management

• Interprocess message

• Global name

• Intertask synchronization and communication

• Standard input/output

• Standard file management

• Shared File System Management

• Event management

• Device management

• Time management

• System management

• Shared library

The details of above functions and API specifications are explained in later chapters.

1.3 Target Operating Environment

All the functions of AMP T-Kernel need to be available in an environment in which AMP TKSE is to run. Moreover,

AMP T-Kernel alone can operate in environments where neither the MMU (Memory Management Unit) of CPU nor

shared memory between processors exists while MMU and shared memory between processors are essential for

AMP TKSE.

The operation of AMP TKSE requires the following T-Kernel device drivers that conform to the T-Engine Standard

Device Driver Specifications:

• System disk driver: Used for memory management, process/task management, and standard

 file management, etc.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

15 TEF021-S003-01.00.00/en

AMP TKSE also uses the following device drivers. However, these device drivers are not required if such

functions are not to be used.

• Clock driver: Gets and sets the RTC date/time in time management.

• KB/PD driver: Receives KB/PD events in event management.

• Console driver: Inputs/Outputs console in standard .

If any of the device drivers listed above is dependent on other drivers and/or subsystems (such as the PCMCIA

card manager), these drivers and/or subsystems are also required.

In AMP TKSE, a memory space is accessed as a logical space using MMUs. It is required, therefore, that the

device driver can normally access the buffer area of a logical space allocated by a process. The driver must be

capable of switching between task spaces, making a space resident, and converting a logical address to a physical

address.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

16 TEF021-S003-01.00.00/en

2. Concepts Underlying the AMP TKSE
2.1 Processor and Kernel

2.1.1 Processor

The hardware of AMP consists of multiple processors. A processor is identified by the processor ID number. The

processor ID number is the ID number defined by AMP T-Kernel.

One AMP T-Kernel operates on each processor, and a copy of AMP TKSE operates on each AMP T-Kernel.

Applications operate on a processor of their own. Applications do not usually get operated by specifying the

processor directly.

2.1.2 Kernel

In AMP, an AMP T-Kernel exists on each processor. In addition, it is conceivable that multiple AMP T-Kernels and

SMP T-Kernel may exist in mixed system of SMP and AMP in the future. AMP T-Kernel and SMP T-Kernel are also

simply called, “Kernel”.

One AMP TKSE exists in and supports each AMP T-Kernel one-to-one. In other words, in AMP, all processors,

AMP T-Kernels, AMP TKSEs, and applications associated with each other in one-to-one fashion. Applications

usually do not need to be aware of the processor directly, and only must be aware of levels higher than the kernel.

2.1.3 Synchronization and Communication Between Kernels

Applications in AMP TKSE can synchronize and communicate with applications of other AMP TKSEs within the

same AMP systems. This is called synchronization and communication between kernels. Synchronization and

communication between kernels are realized with various operations for other AMP TKSE programs and resources

using the following functions provided by AMP TKSE.

(1) Interprocess messages

(2) Synchronization and communication between tasks

(3) File system sharing

Details and API specifications for each function above will be described in another chapter.

2.2 Process

2.2.1 Definition of Process

A process is a unit used by AMP TKSE to manage programs. Multiple processes can simultaneously exist on a

single system. Each process has an independent local memory space and an execution environment, and runs in

parallel with other processes.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

17 TEF021-S003-01.00.00/en

A process is created when an execution program file on a file system is read using a system call for process

creation. Each process that has been created is given a unique process ID by which it is identified. A process ID is

a positive integer.

A process has one or more tasks. A task is an execution unit of a program. Tasks are scheduled for execution

according to their task priorities.

A task that goes to READY state immediately after process is created is called a main task. There can be only one

main task in each process and, when the main task exits, the entire process immediately exits. In addition to the

main task, subtasks can be created by invoking the system call for task creation. One or more subtasks can be

created in one process. Even when a subtask exits, the process does not exit. A main task and subtasks are

collectively called a task. A unique task ID is given to a task at the time of creation, and the individual task is

identified by this ID. A task ID is a positive integer.

Tasks in the same process share the local memory space.

[Figure 2] Relationship between processes and main task/subtasks

A process that has created another process is called a parent process and the created process is called a child

process. All the processes have a parent process. However, the initial process, the one created first at system

startup, does not have a parent process. The entire system, therefore, consists of processes formed in a tree

structure with the initial process defined as the root.

When Process A in a tree structure exits, the child processes of Process A get a new parent process, which is the

parent process of Process A. The general tree structure will be thus maintained. One exception is that the initial

process exits and its child processes no longer have a parent process.

Process #1

Local memory space

Main task

Process #1 Process #2 Process #3

Process #2

Local memory space

Main task

Process #3

Local memory space

Main task

Subtask

Subtask

Subtask

：

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

18 TEF021-S003-01.00.00/en

2.2.2 Address Space of Process

A space that a program can access using a specified address is called an address space. A 32-bit address space

has addresses from 0x00000000 to 0xFFFFFFFF, which can be used to access memory or I/O device mapped to

each of these addresses.

Address spaces consist of physical and logical address spaces. A physical address space is defined at the time of

system hardware design. A logical address space is virtually managed using functions such as MMUs. Processes

of AMP TKSE normally use only the logical address space.

Part of the address space mapped to memory is called a memory space. However, actual physical memory may

not be allocated to all the addresses of a memory space because virtual memory is supported by AMP TKSE.

To enable access to a memory space by allocating actual memory, the system call (tkse_get_mbk) or the library

(malloc API) of the AMP TKSE memory management functions shall be used. A block of memory with contiguous

logical addresses thus assigned is called a "memory area." Processes allocate and release the memory area as

required to enable access to memory.

AMP TKSE manages virtual memory using a page file on the file system. This enables use of a larger memory area

than the actual physical memory size. Since page-in and page-out from the memory area is automatically executed

by the memory management of AMP TKSE, an application can use the memory area without being aware of

whether the memory area exists in the physical memory or not. If realtime memory access is required, page-out of

the target area can be prohibited by specifying it (to be) memory-resident. The specified resident memory area

always exists in the physical memory.

AMP TKSE has the following four types of memory spaces:

• Local memory space

• Shared memory space

• System memory space

• Shared memory space between kernels

Local memory space refers to independent memory space for each process. The code area and data area to be

used by the process is normally placed in the local memory space.

The local memory space of one process cannot be accessed by another process. When a process tries to access

the local memory space using an address belonging to the local memory space of another process, access to its

own process area occurs if the memory area for this process is allocated at this address in its own local memory

space. A memory protection exception occurs otherwise.

Addresses of an area in the local memory space are unique to each process. Processes may allocate areas with

overlapping addresses, but they actually point to different areas. If Process A allocates an area in the local memory

space, Address X in this area cannot be used by Process B. Address X for Process A and Address X for Process B

may have the same value but actually point to different areas.

Shared memory space is accessible from any process of its own AMP TKSE. This space can be used to pass data

between processes.

Addresses of an area allocated in shared memory space are common to all the processes. If Process A allocates

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

19 TEF021-S003-01.00.00/en

an area in the shared memory space which has Address Y, Process B can read the same area by accessing

Address Y.

[Figure 3] Local memory space and shared memory space

System memory space refers to special memory space that AMP TKSE uses internally. This space, intended for

use by a system program or driver, must not be used by a general application. If a process accesses an area of the

system memory space, a memory protection exception occurs in the same way as when it accesses the local

memory of another process.

The shared memory space between kernels is accessible from any process of all AMP TKSE. This space can be

used for sending and receiving data between kernels.

The address of the area allocated in the shared memory space between kernels is common among processes. For

address Y of the space allocated by process A in the shared memory space between kernels can be accessed by

accessing address Y from process B as well.

2.2.3 Process State and Task State

A task has a task state according to its state of operation. A process state refers to the task state of the main task of

each process.

A task state is any of the following five basic states. These task states conform to the task state of AMP T-Kernel.

However, a task cannot be put in SUSPEND state. Additionally, only a subtask can be put in DORMANT state. No

main task can be put in DORMANT state. No running task can be put in DORMANT state.

(1) RUN state

This means that the task is currently being executed. At any one time, there can be one task in RUN state at

most.

Process A
Local memory

space

Shared memory
space

Logical address
space for Process A

Process B
Local memory

space

Shared memory
space

Logical address
space for Process B

Address X

Address Ｙ

The same address points to
different areas if process

differs.

The same address points to
the same area even if

process differs.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

20 TEF021-S003-01.00.00/en

(2) READY state

This means that the task, which is ready for execution, cannot be executed because another task with a higher

precedence is being executed.

When the task in RUN state goes to READY or WAIT state, a new task goes to RUN state from among the tasks

in READY state in accordance with the order of precedence.

Dispatch refers to an operation in which a CPU resource is allocated to a task in READY state and the task

goes to RUN state. Preempt refers to an operation in which a task in RUN state releases the CPU resources

and goes to READY state.

(3) WAIT state

This means that the execution of the task is temporarily suspended because a system call is invoked to

suspend the execution of the task itself.

(4) DORMANT state

This means that the task has not yet been started or has completed execution.

While a task is in DORMANT state, information regarding its execution state is not saved. When a task in

DORMANT state is started and goes to READY state, execution of the task starts from the task start address.

Only a subtask can go to DORMANT state.

(5) NON-EXISTENT state

This means that the task has not yet been created or has been deleted.

The NON-EXISTENT state is a virtual state. A task in NON-EXISTENT state is actually not registered in the

system.

The following shows the task state transition for a general implementation. Depending on the implementation, there

can be state transitions not shown in this figure or transient states that do not fall into any of the categories

provided.

When a task going to READY state has higher precedence than the currently running task, a dispatch may occur at

the same time as the task goes to READY state, and it may make an immediate transition to RUN state. In such a

case, the task that has been in RUN state up to this point is said to have been preempted by the new task going to

RUN state. Also note that, even if the explanation of a system call function describes that a task "goes to READY

state," it may immediately go to RUN state depending on the task precedence.

“Task start” refers to the transition of a task in DORMANT state into READY state. Therefore, all other states than

DORMANT and NON-EXISTENT states may be called "STARTED" state collectively. Task exit refers to the

transition of a task in STARTED state into DORMANT state.

“Task wait release” refers to the transition of a task in WAIT state into READY state. A factor that releases WAIT

state is called a task wait release factor.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

21 TEF021-S003-01.00.00/en

[Figure 4] Task State Transitions

2.2.4 Process/Task Priority and Scheduling

Each task has its own task priority. The task priority of the main task of a process is called a process priority. Each

subtask also has priority; Subtask priority can be set to a different value than process priority. Priority should be set at

the time of creating a process or subtask. Priority can be changed dynamically while a task is running.

Priority can be set to a range of values from 0 to 255 (with 0 being the highest priority). Tasks are classified into

three priority groups according to their priority values, each of which is given a different scheduling. AMP TKSE

basically offers two types of scheduling: Absolute priority scheduling and round robin scheduling.

With absolute priority scheduling, the higher the task priority is, the higher the task precedence is. Therefore, while

a task is in RUN state, another task with a lower priority than the former never goes to RUN state. This scheduling

is basically the same as the scheduling of AMP T-Kernel.

With round robin scheduling, tasks go to RUN state in turn without regard to the task priorities. A task priority is

effective in this scheduling frequency. More specifically, the higher the priority is, the more run time is allocated to a

task (time during which a task can stay in RUN state). After the allocated run time elapses, the task precedence

becomes the lowest, and another task goes to RUN state. In other words, a task with the lowest priority is executed

without fail eventually.

STARTED states

NON-EXISTENT

state

DORMANT

state

WAIT

state

READY

state

RUN

state

Dispatch

Preempt

Wait condition
Wait release

Create
(tkse_cre_tsk)

Start
(tkse_sta_tsk)

Create and start
(tkse_cre_prc,
tkse_crs_tsk)

Exit
(tkse_ext_prc,
tkse_ext_tsk)

Terminate
(tkse_ter_prc,
tkse_ter_tsk)

Terminate
(tkse_ter_prc,
tkse_ter_tsk)

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

22 TEF021-S003-01.00.00/en

Depending on the priority values, tasks are classified into the following three priority groups:

A. Absolute priority group (Priority: 0 to 127)

Tasks in this group are subject to absolute priority scheduling based on task priorities (with 0 being the highest

priority).

 The task with the highest priority goes to RUN state. Tasks with lower priority do not run.

However, for tasks with the same priority, scheduling is performed equally among tasks with the same priority at

regular intervals by the round robin method.

B. Round robin group 1 (Priority: 128 to 191)

Tasks in this group are scheduled in a round robin fashion (with 128 being the highest priority).

This group has a lower precedence than the absolute priority group. If any task in the absolute priority group is

in RUN or READY state, no task in this group is executed. If no task in the absolute priority group is in RUN or

READY state, the eventual execution of a task with a low priority in this group is generated.

C. Round robin group 2 (Priority: 192 to 255)

Tasks in this group are scheduled in a round robin fashion (with 192 being the highest priority).

This group has a lower precedence than other groups (the absolute priority group and round robin group 1). If

any task in other groups is in RUN or READY state, no task in this group is executed. If no task in other groups

is in RUN or READY state, the eventual execution of a task with a low priority in this group is ensured.

Actual scheduling is executed as follows:

1. If there are tasks in READY state in the absolute priority group, the one with the highest priority goes to RUN

state and is executed. If not, go to step 2.

 If there are multiple tasks with the highest priority, they are scheduled equally and periodically in a round robin

 fashion.

2. If there are tasks in READY state in round robin group 1, a task is selected according to the relative

precedences of the tasks, and then goes to RUN state and is executed. This task may not necessarily be the

highest priority). If not, go to step 3.

3. If there are tasks in READY state in round robin group 2, a task is selected according to the relative

precedences of the tasks, and then goes to RUN state and is executed. (This task may not necessarily be the

highest priority).

2.2.5 Execution Environment of Process

A process retains the following information as an execution environment:

• Process IDs of this process, parent process, and child process

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

23 TEF021-S003-01.00.00/en

• Process/Task priorities

• Current work files (Standard file management)

• Open files (Standard file management, standard I/O)

• Message queue (Interprocess messages)

The execution environment immediately after a process is created is set up as follows:

• Process ID of this process: ID assigned at the time of creation

• Process ID of parent process: ID of process that created this process

• Process ID of child process: None

• Process/Task priority: Priority specified at the time of creation

• Current work files: Work file of parent process at the time of creation

• Open files: None

• Message queue: Empty

Kernel objects such as semaphores can be associated with a process that created such objects by specifying an

attribute (TA_DELEXIT, TA_PLOCAL) at the time of creation. An object associated with a process is automatically

deleted when the process exits.

2.2.6 User Process and System Process

There are two types of processes: User process and system process. A process can be specified as a user or

system process by specifying an attribute when the process is created.

A user process can use all the functions of AMP TKSE. A system process can use the functions available to a user

process and directly use system calls (tk_xxx_yyy, etc.) of AMP T-Kernel.

A system process is intended for a use close to the system core, e.g., in combination with a debugger or upper

system. In principle, a general application shall be specified as a user process.

2.2.7 Creating a Process

A process can be created by invoking a system call, tkse_cre_prc, specifying an execution program file of a

process and process creation message.

A process creation message is a message passed from a parent process to its child process at process creation.

A process creation message has a message structure identical to that of an interprocess message.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

24 TEF021-S003-01.00.00/en

 typedef struct {

 W msg_type; /* Message type */

 W msg_size; /* Message size (in byes) */

 UB msg_body[n]; /* Message body (msg_size bytes) */

 } MESSAGE;

When a process has been successfully created, the main task of the process is started. At this time, the main task

function receives a process creation message as an argument.

Either of two methods of receiving a message can be selected: Receiving message data directly or receiving

individual components into which message data is split by assuming that it consists of character strings delimited

with blanks. According to the use by the user, the name definition for the main task function should be selected

from those shown in the following. However, only one of the names can be defined at the same time.

(1) Format 1

 W MAIN (MESSAGE *msg)

 /* MESSAGE *msg; Pointer to a message */

 {

 /* Program execution code */

 return exit-code;

 }

When the name of a main task function is defined as MAIN, a process creation message msg is directly received as

a function argument. At this case, there is no limit on the value of message type msg_type.

(2) Format 2

 W main (W ac, TC **argv)

 /* W ac; Number of string items */

 /* TC **argv; Pointer to array of points to string items */

 {

 /* Program execution code */

 return exit-code;

 }

When the name of a main task function is defined as main, message data msg_body of a process creation

message is regarded as one TRON character code string that is delimited with space character TK_KSP and ends

with TNULL. In this case, the number of items delimited with space characters is passed to the main task function

argument ac and pointers to strings in each item are passed to argument argv as a pointer array.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

25 TEF021-S003-01.00.00/en

If msg_body does not end with TNULL, the termination character of msg_body is replaced with TNULL before

argument analysis processing is executed. At this case, the termination character of msg_body is lost.

When Format 2 is used, message type msg_type = 0 must be specified. If msg_type ≠ 0 is specified, ac = 0

and *argv = NULL are always set regardless of the content of msg_body, and therefore no message can be

received.

The process exits when processing returns from main task function MAIN or main. This is equivalent to exiting from

a process by tkse_ext_prc.

2.2.8 Combination with AMP T-Kernel Programs

Applications that run in AMP TKSE can run in combination with AMP T-Kernel programs. Applications can access

mainly the following two types of AMP T-Kernel programs:

• Device drivers

Device drivers control various devices connected to the system.

They are accessed using the device management function of AMP TKSE.

• Subsystems

Subsystems are used by various middleware to add functions to the system.

They are accessed using extended SVC provided by subsystems.

These AMP T-Kernel programs are collectively called system programs. System programs run in the same system

memory space as AMP T-Kernel.

System programs can be placed in the system memory space by linking them directly to AMP T-Kernel. They can

also be dynamically loaded and unloaded by applications.

An application can load a system program by issuing tk_lod_spg with the system program executable file being

one of its arguments. Since the area into which it is loaded is dynamically allocated, the system program must be

created in a relocatable format. If the location address of a system program stored in an executable file is a logical

address out of the range managed by the operating system, it is loaded at a fixed address according to the location

information of the executable fie.

After the system program is loaded, execution starts with the main function written in the following pattern. Unlike

process creation, the MAIN function cannot be used.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

26 TEF021-S003-01.00.00/en

 W main (W ac, TC **argv)

 /* W ac; Number of string items */

 /* TC **argv; Pointer to pointer array of string items */

 {

 if (ac >= 0) {

 /* Program load processing */

 } else {

 /* Program unload processing */

 }

 return exit-code;

 }

Argument arg used when tkse_lod_spg loads a system program is regarded as one TRON code string

delimited with spaces and terminated with TNULL. The number of items delimited with space characters is passed

to the main function argument ac and pointers to strings in each item are passed to argument argv as a pointer

array. At the time of loading, ac >= 0 is always set.

tkse_unl_spg unloads a system program that has been loaded. In the same way as for loading, the main

function is invoked. However, ac < 0 is set at the time of unloading and therefore each of loading or unloading

processing is terminated selectably after evaluating the value of ac.

The main function is executed as the quasi-task portion of a task that invoked tkse_lod_spg. Since the main

function can use T-Kernel API, the definition or deletion of a subsystem in the case of a subsystem or the

registration or deletion of a device in the case of a device driver is performed here.

The main function must not change the status of any of its tasks such as exiting because it may affect the RUN

state of the invoking task.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

27 TEF021-S003-01.00.00/en

2.3 Synchronization and Communication

2.3.1 Interprocess Synchronization and Communication

AMP TKSE provides the following functions to execute interprocess communication:

(1) Interprocess message

The interprocess message function sends a data structure called a message from a sending process to a

receiving process to realize one-to-one interprocess communication. This function can also be used for

interprocess synchronization.

A message sent by Send Message (tkse_snd_msg) is stored in a message queue of a receiving process. A

message queue is unique to each process, and automatically created and initialized when a process is created.

The receiving process executes Receive Message (tkse_rcv_msg) to retrieve a message stored in the

message queue of this process. Asynchronous message reception can also be executed if a message handler

is defined for the receiving process. In this case, when the receiving process receives a message, the message

handler is started while interrupting the main task.

Interprocess message is used not only as a means of interprocess communication but also of delivering

information from the system to a process. For example, when a child process exits, a child process exit

message is sent from the system to its parent process. Such a message sent by the system is called a system

message.

Messages between processes can be sent to the processes of AMP TKSE on other T-Kernels.

(2) Global name

The global name function allows multiple processes to share four-byte data to which an arbitrary name called a

global name has been assigned.

Since each process has an independent local memory space, multiple processes cannot share data with each

other using, for example, global variables in a local memory space. Shared memory and message buffer can

be used to share data. To use these functions, however, it is necessary to first share the addresses of an area

of shared memory or the IDs of OS objects such as message buffer. The global name function is intended to

share such addresses and IDs.

Although the use of the global name function is intended for a sharing of addresses and IDs, any four-byte data

can be shared.

The global name can be used only on AMP TKSE of a processor.

(3) Shared memory

Interprocess communication using shared memory is a method for passing data using the shared memory

space described above.

This method is used to allow multiple processes to access large quantities of data. Instant passing of data is

possible because no data copy is executed. However, considerations must be given to the absence of access

protection and the necessity of combined use of other functions for synchronization and exclusive control.

Shared memory can be used only on AMP TKSE of a processor.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

28 TEF021-S003-01.00.00/en

Interprocess synchronization can be executed using the interprocess message function. If more detailed

synchronization at the task level is required, the intertask synchronization and communication function can be

used.

2.3.2 Intertask Synchronization and Communication

In order to conduct synchronization and communication between tasks, AMP TKSE provides a task

synchronization and communication function and a task-dependent synchronization function.

(1) Intertask synchronization and communication functions

Intertask synchronization and communication are achieved using OS objects provided for synchronization and

communication. The functions provided by these OS objects are called the intertask synchronization and

communication functions. (For more details, refer to the next section.)

The task communication function can be used for AMP TKSE objects on other T-Kernels.

(2) Task-dependent synchronization functions

Synchronization among tasks can also be achieved by directly manipulating the states of other tasks instead of

using the intertask synchronization and communication functions. The functions used to achieve

synchronization through control of the states of other tasks are called the task-dependent synchronization

functions.

The task-dependent synchronization functions available in AMP TKSE are the Wakeup task, Sleep task and

cancellation of them.

Task-dependent synchronization functions can be used only for tasks within the same process. The task state

of tasks in other processes cannot be operated.

2.3.3 Intertask Synchronization and Communication Function

The following objects can be used as task synchronization and communication functions.

・Semaphores

・Mutexes

・Event flags

・Mailboxes

・Message buffers

・Rendezvous ports

In order to use these task synchronization and communication functions, the target object of the function is first

created. A specific object ID is allocated to the created object. By specifying this object ID, synchronization and

communication between tasks are conducted. The Object ID is unique in the entire AMP system. In other words,

it does not overlap with the IDs of objects of other AMP TKSE.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

29 TEF021-S003-01.00.00/en

Each object specifies any of the following access attributes during creation.

(1) Global Attribute

Objects with the global attribute are accessible from all tasks including the tasks of other AMP TKSE.

(2) Kernel Local Attribute

Objects with the kernel local attribute can be accessed from all tasks of AMP TKSE to which the object

belongs. They cannot be accessed from tasks of other AMP TKSE.

(3) Process Local Attribute

Objects with the process local attribute can be accessed only from within the process to which the task which

created the object belongs. They cannot be accessed from tasks of other processes.

By using objects with the global attribute, synchronization and communication between tasks can be performed

between applications of AMP TKSE. In other words, synchronization and communication becomes possible

between kernels.

The mailbox cannot be used between processes, and only the process local attribute can be specified.

The specifications for the task synchronization and communication function of AMP TKSE basically conform to

the specifications for the task synchronization and communication function of AMP T-Kernel. However, since

object IDs are independently managed by AMP TKSE, the object IDs of objects created with AMP TKSE cannot

be used with AMP T-Kernel as they are. Moreover, object IDs for objects created with AMP T-Kernel cannot be

used with AMP TKSE either. In addition, there are some restrictions on the attribute specification when objects

are created (For details of the specification, refer to the explanation of each system call).

While the main task is in WAIT state because of the use of the task synchronization and communication

function, if the message handler of the process interrupts, the WAIT state of the task is released and the system

call returns error code E_DISWAI.

2.4 Object Management

2.4.1 Retrieving Object ID Number

Processes as well as synchronization and communication objects are identified by the ID number. Since an ID

number is automatically allocated when the object is created, the means to know the ID number of a target object

from the application is necessary. In AMP TKSE, the ID number can be retrieved from the name given to an

object.

Synchronization and communication objects can be given object names when they are created. The object name

must be unique for the same type of object. However, for objects with the kernel local attribute, the name must be

unique only within its own kernel. Similarly, the name of objects with the process local attribute must be unique

only within its own process.

The ID number of an object can be retrieved with the object name by the object management function. Object ID

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

30 TEF021-S003-01.00.00/en

number retrieval can be performed for objects of other AMP TKSE as well. However, only objects, which can be

accessed from the process and the task, can be retrieved. In other words, only the following objects are subject

to retrieval.

 Objects with a global attribute

 Objects with a kernel local attribute within the same kernel

 Objects with a process local attribute within the same process

The process ID number can be retrieved by the object name given during creation as in the case of the

synchronization and communication object. The process is treated as if it was given a global attribute although

the access attribute cannot be specified during creation.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

31 TEF021-S003-01.00.00/en

2.5 Standard File Management and Standard Input/Output Functions

2.5.1 File Management of AMP TKSE

AMP TKSE has the file management functions that permit the use of a disk device registered in AMP T-Kernel as

file system.

The file management functions consist of the standard file management function and the standard input/output

function: The former is used to directly manipulate the T-Kernel standard file system (hereinafter called standard

file system), and the latter is used to handle various file systems including the standard file system in a uniform

manner.

The standard input/output function can handle not only the standard file system but also file systems in other

formats. These file systems in other formats are called extended file systems. The file formats supported in the

specifications of the current version are the FAT12, FAT16, and FAT32 file systems and the CD-ROM (ISO9660

Level1) file system. A different file system can also be embedded in the standard input/output as an extended file

system.

[Figure 5] Overview of File Management

To use a disk device as a file system, it is necessary to connect the file system first. The connected file system has

a unique connection name, which is then used to manipulate files on the file system. The standard file

management and the standard input/output permit simultaneous connection of multiple different file systems. A file

system must be connected before starting a process or system program from an executable file or peforming virtual

memory management using a page file.

Extended file systems

Application

Standard file
management

Standard input/output

FAT CD-ROM

Disk
device

Disk
device

Disk
device

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

32 TEF021-S003-01.00.00/en

2.5.2 Standard File Management Function

The standard file management function handles the standard file system with a hypertext-based network structure.

The standard file management function is used for handling of real and virtual objects and file records, which is the

function of the standard file system.

2.5.3 Standard Input/Output Function

The standard input/output function realizes file access from applications using common system calls irrespective

of differences between specifications of file systems. However, restrictions on file name lengths, maximum file

sizes, and others of the original file systems also apply to the standard input/output.

2.5.4 Shared Filesystem Management

AMP TKSE has a shared filesystem management function for sharing filesystems with other AMP TKSE.

Due to this shared function, applications can use the standard input/output function without distinguishing the

filesystem of its own AMP TKSE from the file systems of other AMP TKSE. In other words, the applications can

handle the disk devices of other processors as a filesystem in the same way as the disk devices of its own

processor.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

33 TEF021-S003-01.00.00/en

[Figure 6] Shared File Management

As for sharing filesystems, since a large amount of data is received and sent between kernels, the existence of

shared memory between kernels is a prerequisite.

AMP TKSE

Standard input/output

File
system

AMP TKSE

Standard input/output

Shared File
System

Application Application

Disk

Device

File

System

Shared File
System

Management

File

System

Disk

Device

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

34 TEF021-S003-01.00.00/en

2.6 Device Management and Event Management Functions

2.6.1 Access to T-Kernel Device and Event Notification

AMP TKSE provides the device management function that permits access to devices registered in AMP T-Kernel,

and the event management function that allows applications to receive event notifications sent from devices.

[Figure 7] Overview of Device Management and Event Management

2.6.2 Device Management Function

Device management function permits access to the AMP T-Kernel device management function from AMP TKSE.

The actual manipulation and management of devices are executed by AMP T-Kernel.

Devices can be registered only from AMP T-Kernel. Devices cannot be registered or unregistered from AMP TKSE.

Device management only targets the devices registered in its own AMP T-Kernel. It cannot manipulate the devices

of other AMP T-Kernel.

2.6.3 Event Management Function

Event management function allows applications to receive event notifications generated asynchronously by

devices. Event notifications from devices are converted into a data structure called an event, and are stored

sequentially in the event queue of event management. One event queue exists for each AMP TKSE and only

events from devices registered in its own AMP T-Kernel are stored. Events from devices registered in other AMP

Event
notification

Application

AMP T-Kernel

Device Management

Device Device

Device Management Event Management

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

35 TEF021-S003-01.00.00/en

T-Kernel cannot be handled.

Since only one event queue exists per AMP TKSE, the event management function cannot be used from multiple

processes at the same time.

An application can retrieve an event stored in the event queue. It can also receive an event as a message.

The main purpose of event management is to realize interactive human interfaces. Therefore, event management

is designed on the assumption that it is used to send event notifications from devices such as keyboards, and

pointing devices to applications as events. However, device events, extended device events, application events,

and other events can also be used to send event notifications from other devices to applications.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

36 TEF021-S003-01.00.00/en

3. AMP T-Kernel Standard Extension Common Specifications
3.1 Data Types

3.1.1 Basic Data Types

typedef char B; /* Signed 8-bit integer */

typedef short H; /* Signed 16-bit integer */

typedef int W; /* Signed 32-bit integer */

typedef unsigned char UB; /* Unsigned 8-bit integer */

typedef unsigned short UH; /* Unsigned 16-bit integer */

typedef unsigned int UW; /* Unsigned 32-bit integer */

typedef char VB; /* 8-bit data without a fixed type */

typedef short VH; /* 16-bit data without a fixed type */

typedef int VW; /* 32-bit data without a fixed type */

typedef void *VP; /* pointer to data without a fixed type */

typedef volatile B _B; /* volatile declaration */

typedef volatile H _H;

typedef volatile W _W;

typedef volatile UB _UB;

typedef volatile UH _UH;

typedef volatile UW _UW;

typedef int INT; /* Signed integer of processor bit width */

typedef unsigned int UINT; /* Unsigned integer of processor bit width */

typedef INT ID; /* ID in general */

typedef INT MSEC; /* time (milliseconds) in general */

typedef void (*FP)(); /* function address in general */

typedef INT (*FUNCP)(); /* function address in general */

#define LOCAL static /* Local symbol definition */

#define EXPORT /* Global symbol definition */

#define IMPORT extern /* Global symbol reference */

/*

* Boolean values

* TRUE = 1 is defined below, but any value other than 0 is TRUE.

* A decision such as bool == TRUE must be avoided for this reason.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

37 TEF021-S003-01.00.00/en

* Instead, use bool != FALSE.

*/

typedef INT BOOL;

#define TRUE 1 /* True */

#define FALSE 0 /* False */

/*

* TRON code

*/

typedef UH TC; /* TRON character code */

#define TNULL ((TC)0) /* TRON code string terminating character */

* The difference between VB and B, between VH and H, and between VW and W is that the former means only the

bit width is known, not the contents of the data type, whereas the latter clearly indicate integer type.

* Processor bit width must be 32 bits or more. INT and UINT must therefore always have a width of 32 bits or

more.

* BOOL defines TRUE = 1, but any value other than 0 is also TRUE. For this reason, a decision such as bool ==

TRUE must be avoided. Instead, use bool != FALSE.

[Additional Notes]

Parameters that do not take negative values in principle are also signed integer (INT) data types. This is in keeping

with the overall TRON rule that integers should be treated as signed numbers to the extent possible. As for the

timeout (TMO tmout) parameter, its being a signed integer permits the use of TMO_FEVR (= -1) having special

meaning. Parameters with unsigned data type are those treated as bit patterns (object attribute, event flag, etc.).

3.1.2 Other Defined Data Types

The following names are used for other data types that appear frequently or have special meaning, in order to

make the parameter meaning clear.

typedef INT FN; /* Function code */

typedef INT RNO; /* Rendezvous port number */

typedef UINT ATR; /* Object/Handler attributes */

typedef INT ER; /* Error code */

typedef INT PRI; /* Priority */

typedef INT TMO; /* Timeout */

typedef UINT RELTIM; /* Relative time */

typedef struct systim { /* System time */

 W hi; /* High 32 bits */

 UW lo; /* Low 32 bits */

} SYSTIM;

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

38 TEF021-S003-01.00.00/en

/*

* Common constants

*/

#define NULL 0 /* Null pointer */

#define TA_NULL 0 /* No special attributes indicated */

#define TMO_POL 0 /* Polling */

#define TMO_FEVR (-1) /* Eternal wait */

* A data that can take the value of two or more data types is declared using its main data type. For example, the

value returned by tkse_cre_prc can be a process ID or error code. However, since it is mainly a process ID, the

data type is ID.

3.2 Error Codes

3.2.1 Overview

System call return codes are in principle to be signed integers. When an error occurs, a negative error code is

returned; and if processing is completed normally, E_OK (= 0) or a positive value is returned. The meaning of the

returned values for normal completion is specified separately for each system call. An exception to this principle is

that there are some system calls that do not return a return code when called.

A system call that does not return a return code is declared in the C language API as having no return code (that is,

a void type function).

An error code consists of the main error code and sub error code. The low 16 bits of the error code are the sub

error code, and the remaining high bits are the main error code. Main error codes are classified into error classes

based on the necessity of their detection, and the circumstances in which they occur and other factors.

#define MERCD(er) ((ER)(er) >> 16) /* Main error code */

#define SERCD(er) ((H)(er)) /* Sub error code */

#define ERCD(mer, ser) ((ER)(mer) << 16 | (ER)(UH)(ser))

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

39 TEF021-S003-01.00.00/en

3.2.2 List of Error Codes

The following shows error codes of AMP TKSE. Main error codes from 0 to -255 are error codes compatible with

T-Kernel and have the same meaning as those for AMP T-Kernel. Error codes from -256 and downward are error

codes unique to Standard Extension. There is no error code unique to AMP TKSE.

Error codes in a range not defined as an error class are reserved for the purpose of future expansions.

━━━ Normal Completion Error Class (0) ━━━━━━━━━━━━━━━━━━━━━━━━

E_OK 0 Normal completion

━━━ Internal Error Class (-5 to -8) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

E_SYS ERCD(-5, 0) System error

An error of unknown cause affecting the system as a whole.

E_NOCOP ERCD(-6, 0) The specified co-processor cannot be used

This error code is returned when the specified co-processor is not installed in the currently running hardware,

or abnormal co-processor operation was detected.

━━━ Unsupported Error Class (-9 to -16) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

E_NOSPT ERCD(-9, 0) Unsupported function

When some system call functions are not supported and such a function was called, error code E_RSATR or

E_NOSPT is returned. If E_RSATR does not apply, error code E_NOSPT is returned.

E_RSFN ERCD(-10, 0) Reserved function code number

This error code is returned when it is attempted to execute a system call specifying a reserved function code

(undefined function code), and also when an attempt to execute an undefined extended SVC handler (when

the function code is positive) is made.

E_RSATR ERCD(-11, 0) Reserved attribute

This error code is returned when an undefined or unsupported object attribute is specified.

 Checking for this error may be omitted if system-dependent optimization is implemented.

━━━ Parameter Error Class (-17 to -24) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

E_PAR ERCD(-17, 0) Parameter error

Checking for this error may be omitted if system-dependent optimization is implemented.

E_ID ERCD（-18, 0) Invalid ID number

E_ID is an error code that occurs only for objects having an ID number.

Error code E_PAR is returned when a static error is detected because, for example, the specified ID number is

a reserved number or out of range of interrupt definition numbers.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

40 TEF021-S003-01.00.00/en

━━━ Call Context Error Class (-25 to -32) ━━━━━━━━━━━━━━━━━━━━━━━━━━

E_CTX ERCD(-25, 0) Context error

This error code indicates that the specified system call cannot be issued in the current context (the context

must be the task portion/task-independent portion or handler RUN state).

This error is always returned whenever a system call is issued in a semantically incorrect context, for example,

when a system call that sends its own task into WAIT state is issued from a task-independent portion. This

error is returned also for other system calls when, due to implementation limitations, they cannot be issued in a

given context (such as an interrupt handler).

E_MACV ERCD(-26, 0) Memory cannot be accessed; memory access privilege error

Error detection is implementation-dependent.

E_OACV ERCD(-27, 0) Object access privilege error

This error code is returned when a user task tries to manipulate a system object.

 The definition of system objects and error detection are implementation-dependent.

E_ILUSE ERCD(-28, 0) System call illegal use

━━━ Resource Constraint Error Class (-33 to -40) ━━━━━━━━━━━━━━━━━━━━━━━━━━━

E_NOMEM ERCD(-33, 0) Insufficient memory

This error code is returned when there is insufficient memory (no memory) for allocating an object control block

space, user stack space, memory pool space, message buffer space or the like.

E_LIMIT ERCD(-34, 0) System limit exceeded

This error code is returned when an attempt to create more objects than the system allows is made.

━━━ Object State Error Class (-41 to -48) ━━━━━━━━━━━━━━━━━━━━━━━━━━

E_OBJ ERCD(-41, 0) Invalid object state

E_NOEXS ERCD(-42, 0) Object does not exist

E_QOVR ERCD(-43, 0) Queuing or nesting overflow

━━━ Wait Error Class (-49 to -56) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

E_RLWAI ERCD(-49, 0) WAIT state released

E_TMOUT ERCD(-50, 0) Polling failed or timeout

E_DLT ERCD(-51, 0) The object being waited for was deleted

E_DISWAI ERCD(-52, 0) Wait released by wait disabled state

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

41 TEF021-S003-01.00.00/en

━━━ Device Error Class (-57 to -64) (T-Kernel/SM) ━━━━━━━━━━━━━━━━━━━━━━━

E_IO ERCD(-57, 0) IO error

* Error information specific to individual devices may be defined in E_IO sub-codes.

E_NOMDA ERCD(-58, 0) No media

━━━ Status Error Class (-65 to -67) (T-Kernel/SM) ━━━━━━━━━━━━━━━━━━━━━━━

E_BUSY ERCD(-65, 0) Busy

E_ABORT ERCD(-66, 0) Processing was aborted

E_RONLY ERCD(-67, 0) Write protected

━━━Domain Error Class (-68～-70) (MP T-Kernel) ━━━━━━━━━━━━━━━━━━━━━━━

E_DOMAIN ERCD(-68, 0) Domain error

This error code indicates that an operation is not permitted due to its inter-domain nature, i.e., when the operation

was attempted for an object that belongs to another domain.

E_ONAME ERCD(-69, 0) Object name error

This error code indicates that the specified object name has already been used in the domain.

E_DACV ERCD(-70, 0) Access protection error

This error code indicates that the operation is not permitted due to access protection of an object.

━━━Error Class Between Processors (-71～-73) (MP T-Kernel) ━━━━━━━━━━━━━━━━━━━━━

E_IPC ERCD(-71, 0) Interprocessor communication error

This error code indicates that a failure occurred in some sort of communication between processors during the

execution of a system call, and the execution result of the system call was unknown.

This error occurs when reply from another processor could not be received normally. When this error code is

returned, the result of the system call is not guaranteed. There is also the possibility that the requested operation is

executed on another processor. If the cause of failure of the requested operation can be elaborated more, an

E_IPCA or E_IPCS which is described below is returned instead of this error code.

E_IPCA ERCD(-72, 0) Absolute interprocessor communication error

This error code indicates that a failure occurred in some sort of communication between processors during the

execution of a system call and the requested system call ended unsuccessfully. The difference between the E_IPC

and this error is this error guarantees the execution result of the system call is a failure.

E_IPCS ERCD(-73, 0) Interprocessor communication status error

This error code indicates that communication between processors is not possible due to some reason.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

42 TEF021-S003-01.00.00/en

This error code is returned when communication between processors cannot be done in normal state such as the

other processor in DORMAT state or during initialization. When communication between processors is not possible

in a failure state, E_IPCA is returned.

━━━ Memory Management Error Class (-257 to -260) (AMP TKSE and SMP TKSE) ━━━━━━━━━━━━

E_SYSMEM ERCD(-257, 0) Insufficient system memory space

This error code is returned when there is insufficient memory space to be used inside AMP TKSE.

━━━ File Management Error Class (-261 to -280) (AMP TKSE and SMP TKSE) ━━━━━━━━━━━━━━

E_FNAME ERCD(-261, 0) Invalid path name; invalid file name

E_FD ERCD(-262, 0) Invalid file descriptor

E_FACV ERCD(-263, 0) File access privilege error

E_PERM ERCD(-264, 0) Undeletable file

E_PWD ERCD(-265, 0) Invalid password

Should not be used by AMP TKSE.

E_ENDR ERCD(-266, 0) The end record has been reached

E_REC ERCD(-267, 0) Invalid record type

E_NOLNK ERCD(-268, 0) Not a link file

E_LOCK ERCD(-269, 0) The record is locked

E_XFS ERCD(-270, 0) Belongs to a different file system

E_NOFS ERCD(-271, 0) File system not connected

E_NODSK ERCD(-272, 0) Insufficient disk space

E_ILFMT ERCD(-273, 0) Invalid disk format

E_SEIO ERCD(-274, 0) Standard input/output error

━━━ Device Management Error Class (-281 to -290) (AMP TKSE and SMP TKSE)━━━━━━━━━━━━━

E_NODEV ERCD(-281, 0) The device does not exist

E_ERDEV ERCD(-282, 0) Abnormal device status

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

43 TEF021-S003-01.00.00/en

4. AMP T-Kernel Standard Extension Functions
4.1 Memory Management Function

4.1.1 Overview of the Memory Management Function

The Memory Management Function of the “AMP TKSE” manages data memory areas. It manages four types of

data memory areas: local memory area, shared memory area, system memory area and memory space between

kernels. It provides the function of allocating and freeing a specified number of memory blocks for each area.

System calls provide the functions to allocate memory in blocks only. The block size depends on the MMU

functions and others, and is set to the optimum value for your system.

To divide and manage the memory area smaller in size than in blocks unit, the library shall be used or the

necessary processes shall be executed in your application. Normally, library shall be used instead of using system

calls directly; system calls shall be directly used only if library is insufficient.

The allocated memory blocks have successive logical addresses, and the starting logical address is returned to

your application. Because the logical address will not change once allocated, you can directly access the memory

blocks with the returned address. You are free to write/read data to/from the allocated memory blocks, but as a

general rule, programs cannot be run in them.

Because an exclusive memory access control is not provided, it shall be implemented in your application, by using

semaphores, etc. if necessary.

The memory managed by the memory management function of AMP TKSE is the memory for its own processor

only. It cannot operate the memory of other processors.

As for API specification of the memory management function of AMP TKSE, the operation of shared memory

between kernels has been added to T-Kernel AMP TKSE Version 1.00 Specification.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

44 TEF021-S003-01.00.00/en

4.1.2 System Calls

Get Memory Block
tkse_get_mbk

C Language Interface

 ER ercd = tkse_get_mbk(VP *adr, INT nblk, UINT atr);

Parameter

VP *adr area where start address of allocated memory area is returned

INT nblk the number of allocated memory blocks (> 0)

UINT atr attributes of memory blocks

 [(M_COMMON || M_SYSTEM ･ M_INTERKER)] | [M_RESIDENT] | [TA_DELEXIT]

 M_COMMON : specify common memory

 M_SYSTEM : specify system memory

 M_INTERKER : allocates the area in shared memory space between kernels

 M_RESIDENT : specify resident

 TA_DELEXIT : specify deletion on process termination

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_MACV access to inaccessible access not allowed (adr)

E_NOMEM insufficient memory area

E_SYSMEM Insufficient system memory area

E_PAR illegal parameter

Description

Allocates the contiguous memory area as many as the number of blocks specified by “nblk” and return the start

address to “*adr”.

Specify the attribute of memory area for “atr” as follows:

When “M_COMMON” attribute is specified, the memory block area is allocated to the shared memory space. This

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

45 TEF021-S003-01.00.00/en

memory block becomes accessible from all processes of its own AMP TKSE.

When “M_SYSTEM” attribute is specified, the memory areas are accessible as system memory only from systems

(OS, device drivers, etc.). This specification shall not be used from application processes.

・When the M_INTERKER attribute is specified, the memory block area is allocated to the shared memory space

between kernels. This memory block becomes accessible from the processes of all AMP TKSE.

When “M_COMMON”, “M_SYSTEM” and “M_INTERKER” are not specified, only local memory is enabled. Local

memory is accessible only from the processes to which memory blocks are allocated.

When the “M_RESIDENT” attribute is specified, the memory area constantly exists as resident memory in the main

memory without being swapped out to disks. Without the specification, it is set to nonresident memory. However,

even if the M_RESIDENT attribute is not specified, the shared memory between kernels is always resident

memory.

In systems without virtual memory, this setting has no particular meaning (equal to resident).

When the “TA_DELEXIT” attribute is specified, memory blocks are automatically released after the process exits

which allocated the memory blocks. However, in the case of local memory, the memory blocks are released when

the process is terminated with or without this setting.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

46 TEF021-S003-01.00.00/en

Release Memory Block
tkse_rel_mbk

C Language Interface

ER ercd = tkse_rel_mbk(VP adr);

Parameter

VP adr address of memory block to be released

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_PAR illegal memory block address

Description

Releases the memory block specified by “adr”. “adr” should be the address obtained by “tkse_get_mbk()”.

The memory area allocated in the local memory space cannot be released from other processes.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

47 TEF021-S003-01.00.00/en

Refer to Memory State
tkse_mbk_sts

C Language Interface

ER ercd = tkse_mbk_sts(M_STATE *pk_sts);

Parameter

M_STATE pk_sts area whose memory state is returned

Return Parameter

ER ercd error code

content of pk_sts

 typedef struct m_state {
 INT blksz; /* block size */
 INT total; /* total number of blocks */
 INT free; /* the number of remaining blocks */
 } M_STATE;

 blksz memory allocation unit byte number (one block).The number of bytes in memory

allocation unit(one block). In general, this is the CPU's page size. 4KB on the standard
scale.

 total total number of blocks across the system.
 free The number of unused blocks across the system.

Error Code

E_OK normal completion
E_MACV access to inaccessible address (sts) not allowed

Description

Gets the current memory usage status and stores it in the area pk_sts displays.
The total number of blocks becomes the memory block total for all attributes currently being allocated.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

48 TEF021-S003-01.00.00/en

Supplement
In systems with virtual memory, the total number of blocks and the number of remaining blocks may not be
uniquely determined.
Therefore, concrete meanings of as implementation-dependent of each element of "pk_sts."
However, "free/total" shall be set to as a reference value to indicate the remaining memory ratio.
When concrete value cannot be set by implementation, both the total number of blocks and the number of
remaining blocks may be set to-1.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

49 TEF021-S003-01.00.00/en

4.1.3 Library Calls

Allocate Nonresident Local Memory
malloc

C Language Interface

void* adr = malloc(size_t size);

Parameter

size_t size number of bytes to be allocated (> 0)

Return Parameter

void* adr != NULL normal completion (allocated memory address)

 ＝ NULL error

Description

Allocates specified size of memory from nonresident local memory, and return the start address.

When the allocation of the memory area fails, NULL is returned.

The attribute of allocated memory is set to “TA_DELEXIT”.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

50 TEF021-S003-01.00.00/en

Allocate Nonresident Local Memory
calloc

C Language Interface

void* adr = calloc(size_t nelem, size_t elsize);

Parameter

size_t nelem the number of elements to be allocated (> 0)

size_t elsize the number of one element (> 0)

Return Parameter

void* adr != NULL normal completion (allocated memory address)

 ＝ NULL error

Description

Allocates storage area of the elements which are as many as the number of “nelem” and as large as the size of

“elsize” from nonresident local memory, and return the start address.

When the allocation of the memory area fails, NULL is returned. The contents of the allocated area are initialized

with 0.

The attribute of allocated memory is set to “TA_DELEXIT”.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

51 TEF021-S003-01.00.00/en

Reallocate Nonresident Local Memory
realloc

C Language Interface

void* adr = realloc(void *ptr, size_t size);

Parameter

void *ptr address of the area to be resized

 an area is newly allocated when “NULL” is specified

size_t size the number of bytes to be allocated (≧ 0)

 the area is released when zero is specified

Return Parameter

void* adr != NULL normal completion (allocated memory address)

 ＝ NULL error

Description

The size of the nonresident memory area specified by “ptr” which was already allocated to the local memory space

is changed to “size” and reallocated, and the header address is returned.

If NULL is specified for ptr, the area of “size” is newly allocated to the local memory space, and the header address

is returned.

If 0 is specified for “size”, the area specified by “ptr” is released. At this time, “ptr” must be the address allocated by

“malloc()”, “calloc()”, and “realloc()”.

If “ptr” = NULL and size = 0 is specified at the same time, nothing is processed and NULL is returned.

If allocation of the memory area fails and release of the area is specified, NULL is returned.

“ptr” must be an address allocated by “malloc()”, “calloc()”, and “realloc()” in NULL or within the same process. The

result when other values are specified is undefined.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

52 TEF021-S003-01.00.00/en

Free Nonresident Local Memory

free

C Language Interface

 void free(void *ptr);

Parameter

 void *ptr address of the area to be freed

Return Parameter

 none

Description

Frees the area in nonresident local memory specified by “ptr”.

If NULL is specified for “ptr”, nothing is processed.

”ptr” must be the address allocated by “malloc()”, “calloc()”, and “realloc()” in NULL or within the same process. The

result when other values are specified is undefined.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

53 TEF021-S003-01.00.00/en

Allocate Nonresident Common Memory

Smalloc

C Language Interface

void* adr = Smalloc(size_t size);

Parameter

size_t size the number of bytes to be allocated (> 0)

Return Parameter

void* adr != NULL normal completion (allocated memory address)

 ＝ NULL error

Description

Allocates the nonresident memory area of a specified size to the shared memory space and returns the header

address.

When the allocation of the memory area fails, NULL is returned.

The attribute of allocated memory is set to “TA_DELEXIT”.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

54 TEF021-S003-01.00.00/en

Allocate Nonresident Common Memory

 Scalloc

C Language Interface

void* adr = Scalloc(size_t nelem, size_t elsize);

Parameter

size_t nelem the number of elements to be allocated (> 0)

size_t elsize the number of one element (> 0)

Return Parameter

void* adr != NULL normal completion (allocated memory address)

 ＝ NULL error

Description

Allocates a storage area of the elements which are as many as the number of “nelem” and as large as the size of

“elsize” from nonresident common memory, and return the start address.

When the allocation of the memory area fails, NULL is returned.

The attribute of allocated memory is set to “M_COMMON”, and the area is initialized with zero.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

55 TEF021-S003-01.00.00/en

Reallocate Nonresident Common Memory

Srealloc

C Language Interface

void* adr = Srealloc(void *ptr, size_t size);

Parameter

void *ptr address of the area to be resized

 an area is newly allocated when NULL is specified

size_t size the number of bytes to be reallocated (>= 0)

 the area is released when zero is specified

Return Parameter

void* adr != NULL normal completion (allocated memory address)

 ＝ NULL error

Description

The size of the nonresident memory area specified by “ptr” which was already allocated to the shared memory

space is changed to “size” and reallocated, and the header address is returned.

If NULL is specified for “ptr”, the area of “size” is newly allocated to the shared memory space, and the header

address is returned.

If 0 is specified for “size”, the area specified by “ptr” is released. At this time, “ptr” must be the address allocated by

“Smalloc()”, “Scalloc()”, and “Srealloc()” within the same process.

If “ptr”= NULL and size = 0 are specified at the same time, nothing is processed and NULL is returned.

If allocation of the memory area fails or the release of the area is specified, NULL is returned.

"ptr" must be NULL or an address allocated by "Smalloc()", "Scalloc()", and "Srealloc()" within the same process.

The result for when other values are specified is undefined.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

56 TEF021-S003-01.00.00/en

Free Nonresident Common Memory

Sfree

C Language Interface

void Sfree(void *ptr);

Parameter

void *ptr address of the area to be released

Return Parameter

 none

Description
Frees an area in nonresident common memory specified by “ptr”.

If NULL is specified for "ptr", nothing is processed.

"ptr" must be NULL or an address allocated by "Smalloc()", "Scalloc()", and "Srealloc()" within the same process.

The result for when other values are specified is undefined.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

57 TEF021-S003-01.00.00/en

4.2 Process/Task Management Function

4.2.1 Process/Task Management Function Overview

AMP TKSE process / task management function offers the function for carrying out parallel operation of many

processes.

Process/Task management has a function about creation and termination of the process or the task, state change,

and information acquisition. When performing synchronization/communication between processes and between

tasks, the synchronization/communication function between tasks (event flag, message buffer, etc) and the

interprocess communication function (message, global name, shared memory, etc) are used.

The process and task management function targets processes and tasks of its own AMP TKSE. It cannot operate

processes and tasks of other AMP TKSE.

The API specification of the process and task management function is the same as the T-Kernel AMP TKSE

Version 1.00 Specification

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

58 TEF021-S003-01.00.00/en

4.2.2 System Calls

Create/Execute Processes
tkse_cre_prc

C Language Interface

ER ercd = tkse_cre_prc(T_CPRC *pk_cprc, MESSAGE* msg);

Parameter

T_CPRC *pk_cprc process creation information

MESSAGE *msg initial process message

 typedef struct {

 ATR prcatr; /* process attribute */

 VP prchdr; /* handler for the source object of a process */

 PRI pri; /* process priority */

 0 <= pri <= 255 any priority

 ＝ -1 the same priority as this process

 UB oname[8]; /* object name */

 /* other implementation-dependent information */

 } T_CPRC;

 prcatr indicates process attribute and specifies the following:

 prcatr := (TPA_SYS || TPA_USR) | (TPA_SEIO || TPA_LINK || TPA_PTR) | TPA_ONAME

 TPA_SYS create as a system process

 TPA_USR create as a user process

 TPA_SEIO a handle for the process is a path name of standard input/output file

 TPA_LINK a handle for the process is a link to the file of the standard file system

 TPA_PTR a handle for the process is a pointer to the codes loaded in memory

 TPA_ONAME specify the object name

 typedef struct {

 W msg_type; /* message type */

 W msg_size; /* message size (number of bytes) */

 MSGBODY msg_body; /* message body (msg_size bytes) */

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

59 TEF021-S003-01.00.00/en

 } MESSAGE;

 * For details of the MSGBODY union, refer to "4.2.2 Message Structure"

Return Parameter

ER ercd >= 0 normal completion (created process ID)

 ＜ 0 error

Error Code

E_FACV no access privileges (E) for the file (when TPA_SEIO, TPA_LINK is specified)

E_MACV access to address (msg, hdr(TPA_PTR)) not allowed

E_BUSY could not open the file because it is already opened exclusively

E_IO input/output error occurred

E_NOEXS file does not exist

E_NOFS the file system to which the file belongs is not connected

E_NOMEM insufficient memory area (insufficient memory area to load)

E_REC no program record present in the file. or the content of the program record

 is unusual (when TPA_LINK is specified)

E_ONAME the specified object name has already been used

Description

 Creates a process and allocates a process ID.

 prcatr of T_CPRC structure indicates the attribute of a created process.

 If TPA_SEIO attribute is specified, a new process is created using the content of the specified file as its program

code. Specify the path name of the standard input/output of the target file for prchdr.

 IF TPA_LINK the attribute is specified, a new process is created using the content of the first executable program

record in the file of the specified standard file system as its program code. Specify the link (LINK*) to the

standard file system file for prchdr.

 If TPA_PTR attribute is specified, new process is created using program codes in memory. Specify the pointer of

the program codes in memory for prchdr. Note that the format of the program codes in memory and the running

methods are implementation-dependent.

When the TPA_ONAME attribute is specified, the object name specified with oname becomes valid. When the

TPA_ONAME attribute is not specified, there is no object name.

 The priority of created process will be specified by pri value. At the same time, the main task is created and it

starts.

 When the process (main task) starts to run, the message specified by msg is passed. This message structure is

essentially the same as the structure of the interprocess message.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

60 TEF021-S003-01.00.00/en

Supplement

TPA_PTR attribute is assumed to be the romization of program codes. There are several possible ways to run the

process's program codes in the ROM, such as to directly run the program in the ROM or to run it after transferring it

to the RAM. The optimal method is determined according to the applications being applied and the hardware.

Therefore, the format and the running method for the program codes may be determined

implementation-dependently.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

61 TEF021-S003-01.00.00/en

Exit Process

tkse_ext_prc

C Language Interface

void tkse_ext_prc(W code);

Parameter

W code process exit code

Return Parameter

none

Description

Exits this process normally, and send the process normal completion message with a specified “code” to the parent

process.

All the resources such as files used in invoking process are automatically released excepting certain resources

(options such as “tkse_cre_sem” without “TA_DELEXIT” specification).

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

62 TEF021-S003-01.00.00/en

Terminate Other Process

tkse_ter_prc

C Language Interface

ER ercd = tkse_ter_prc(ID pid, W code, W opt);

Parameter

ID pid target process ID

 ＞ 0 any process

 ＝ 0 invoking process (cannot be specified: error)

 ＝ -1 parent process

W code exit code

W opt specify how to terminate

 (TERM_NRM || TERM_ALL)

 TERM_NRM Terminate the specified process only

 TERM_ALL Terminate the specified process and all the descendant processes

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_ILUSE invoking process is specified (pid = 0 or PID of invoking process)

 E_NOEXS process (pid) does not existt

E_PAR illegal parameter (specification other than “opt” = “TERM_NRM” and ”TERM_ALL”)

Description

Terminates the specified process, and send the process termination message with a specified “code” to the parent

process of the specified process.

When “TERM_ALL” is specified, specified process and all the descendant processes are killed. In this case, the

termination messages of the descendant processes of the specified process are not sent. When the parent process

of invoking process or further its own parent process is specified, invoking processed is also killed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

63 TEF021-S003-01.00.00/en

Change Priority of Processes/Tasks

tkse_chg_pri

C Language Interface

ER ercd = tkse_chg_pri(ID id, PRI pri, W opt);

Parameter

ID id target process ID or task ID

PRI pri priority to be changed

W opt specify how to change the priority

 (P_ABS || P_REL) | [P_TASK]

 P_ABS absolute specification (change to specified priority)

 P_REL relative specification (change to current priority + “pri”)

 P_TASK Set task as target

Return Parameter

ER ercd >= 0 normal completion (priority after change: 0-255)

 P_TASK specified priority of task with ID id

 P_TASK unspecified priority of main task of a process with ID id

 ＜ 0 error code

Error Code

E_NOEXS process (id) does not exist

E_ID no task (id) existent or, no task in invoking process

E_PAR priority value is out of range (in relative specification, new priority is out of current priority

group) illegal parameter (specification of the parameter other than opt =

“P_ABS”,”P_REL”,or “P_TASK”)

Description

Changes the priority of the specified process/task.

When “P_TASK” is not specified:

id = 0 Change the priorities of all the tasks in invoking process.

id = -1 Change the priorities of all the tasks in the parent process.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

64 TEF021-S003-01.00.00/en

id ＞ 0 Change the priorities of all the tasks in a process with process ID specified by “id”.

When “P_TASK” is specified:

id ＝ 0 Change the priority of invoking task.

id ＞ 0 Change the priority of task with task ID specified by “id”. The tasks which can be specified are only

the tasks in invoking process.

When “P_ABS” is specified (absolute specification), the priority after change is set to the value specified by “pri”.

When “P_REL” is specified (relative specification), the priority after change is set to current priority value added by

the value specified by “pri”.

In a priority change with relative specification, a priority cannot be changed to the priority other than the priorities in

current priority group.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

65 TEF021-S003-01.00.00/en

Get Process State
tkse_prc_sts

C Language Interface

ER ercd = tkse_prc_sts(ID pid, P_STATE* buff, TC* name);

Parameter

ID pid target process ID

 ＞ 0 any process

 ＝ 0 invoking process

 ＝ -1 parent process

P_STATE* buff storage area in process state

 (not stored in the case of NULL)

TC* name storage area of process name (area for process name's maximum length +

one character)

 (not stored in the case of NULL)

Return Parameter

ER ercd ＞ 0 normal completion (specified process ID)

 ＜ 0 error code

P_STATE* buff process state

 typedef struct {

 UW state; /* process state */

 PRI priority; /* current process priority (0 - 255) */

 ID parpid; /* process ID of the parent process */

 } P_STATE;

The content of name Process name

Error Code
E_MACV access to inaccessible address (buff, path) not allowed

E_NOEXS process (pid) does not exist

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

66 TEF021-S003-01.00.00/en

Description

Retrieves the process state specified by “pid”, and store it in the area specified by “buff”. Also the process name of

the specified process shall be stored in the area specified by “name”. When either “buff” or “name” is set to NULL,

no information is stored.

The process name is a name added by the system when the process is created. When the process is created from

the file of a standard file system, the file name becomes the process name. In other cases, the name created by the

system automatically becomes the process name.

The process state (state) is as follows: Each value "1" indicates that a process is in the state.

 MSB LSB
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 │ │ │ │ │ │ │ │ │
 └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
 └───────┬──────┘│││└─────┬─────┘
 reserved │││ reserved
 ││└───── P_WAIT wait state
 │└────── P_READY ready state
 └─────── P_RUN run state

[Figure 8] Process state

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

67 TEF021-S003-01.00.00/en

Get Statistics Information about Processes

tkse_get_inf

C Language Interface

ER ercd = tkse_get_inf(ID pid, P_INFO* buff);

Parameter

ID pid target process ID

 ＞ 0 any process

 ＝ 0 invoking process

 ＝ -1 parent process

P_INFO* buff storage area of statistical information

Return Parameter

 ER ercd error code

 The content of buffer

 typedef struct {

 UW etime; /*cumulative elapsed time (in seconds)*/

 UW utime; /*cumulative CPU time spent in process*/

 UW stime; /*cumulative CPU time spent in system*/

 W tmem; /*total memory size required to execute*/

 W wmem; /*currently allocated actual memory size*/

 W resv[11]; /*reserved*/

 } P_INFO;

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_MACV access to inaccessible address (buff) not allowed

E_NOEXS process (pid) does not exist

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

68 TEF021-S003-01.00.00/en

Description

Gets statistical information on the specified process.

“utime” and “stime” are set to the total time of all tasks existing at the time which are included in the process.

Therefore, the time spent by previously terminated tasks is not included. The sum of “utime” and “stime” is the

cumulative CPU time spent by the process.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

69 TEF021-S003-01.00.00/en

Process Exit Message
tkse_req_emg

C Language Interface

ER ercd = tkse_req_emg(ID pid, W t_mask);

Parameter

ID pid target process ID

 ＝ -1 parent process

 ＞ 0 any process

W t_mask specify exit message type (specify with OR)

 0 clear notification

 MM_ABORT notify when target process is aborted

 MM_EXIT notify when target process is terminated normally

 MM_TERM notify when target process is killed

Return Parameter

ER ercd ＞ 0 normal completion (original “t_mask”)

 ＜ 0 error code

Error Code

E_ILUSE invoking process is specified (“pid = 0” or “PID” of invoking process)

E_NOEXS process (pid) does not exist

E_PAR illegal parameter (illegal t_mask)

Description

Sending of the exit message shall be set to invoking process when the process specified by “pid” is terminated.

“pid= -1” indicates a parent process. Invoking process cannot be specified (E_ILUSE).

Specify the types of termination to be notified by “t_mask”.

t_mask = [MM_ABORT] | [MM_EXIT] | [MM_TERM]

MM_ABORT notify when target process is aborted

MM_EXIT notify when target process normally exits

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

70 TEF021-S003-01.00.00/en

MM_TERM notify when target process is terminated

When “t_mask = 0”, exit message is cleared. When “t_mask < 0”, the setting remains unchanged.

The old setting value of “t_mask” shall be returned as a return value when invoking process is terminated, the

setting is automatically cleared.

The exit messages have the following formats:

 typedef struct {

 W type; /* message type (MS_SYS2) */

 W size; /* message size */

 W kind; /* termination type (MS_ABORT,MS_EXIT,MS_TERM) */

 ID pid; /* process ID of the terminated process */

 W code; /* exit code */

 } EXITMSG;

 “kind”, “pid”, and “code” have the same content as the termination message to be sent to parent

process.

 kind termination message type (any of “MS_ABORT”, “MS_EXIT”, or “MS_TERM”)

 pid process ID of the terminated process

 code system error code or exit code specified by “tkse_ext_prc()” and “tkse_tE_prc()”

“EXITMSG” is set to one of various “MS_SYS2” system messages.

 typedef union {

 struct { /* MS_SYS2 basic form*/

 W type; /* message type (MS_SYS2) */

 W size; /* message size */

 W kind; /* kind */

 VW info[1]; /* various information different per each type */

 } base;

 EXITMSG exitmsg; /* exit message*/

 } MSG_SYS2;

The exit message is sent differently from normal completion messages notifying the parent process when child

process is terminated. Therefore, if exit message is set to a child process, a further termination message may be

received after receiving the exit message (MS_ABORT,MS_EXIT,MS_TERM)..

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

71 TEF021-S003-01.00.00/en

Retrieve Various Information about Processes
tkse_prc_inf

C Language Interface

ER ercd = tkse_prc_inf(ID pid, W item, VP buf, W len);

Parameter

ID pid target process ID

 ＝ 0 this process

 ＝ -1 parent process

 ＞ 0 any process

W item type of information

 PI_LINK (0x00010000) retrieve the link to program file

 PI_NTSK (0x00020000) retrieve the number of tasks in a process

 PI_TSKSTAT (0x00030000) retrieve the states of each task

 PI_CREINF (0x00040000) information during process creation

VP buf buffer for storing information

 (If NULL, not stored)

W len byte length of buffer area (buf) for storing information

Return Parameter

ER ercd ＞ 0 normal completion (size necessary for buf (number of bytes))

 ＜ 0 error code

 The content of buffer Various information on the acquired process

Error Code

E_MACV access to address (buff, path) not allowed

E_NOEXS process (pid) does not exist

E_PAR illegal parameter (insufficient len, illegal item)

Description

Retrieves various information about the process specified by pid (process ID) to store in buf.

Specify the type of information as an item. pid = 0 indicates this process and pid = -1 indicates parent process.

len indicates buf size (number of bytes). If len is less than the necessary size, an error (E_PAR) occurs and nothing

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

72 TEF021-S003-01.00.00/en

is stored in buf. Returns the size (number of bytes) necessary for buf. If buf = NULL is specified, information will not

be stored, but the size necessary for buf will be returned as a return value. In this case, len will be ignored.

Specify one of the following for the type of information (item):

#define PI_LINK 0x00010000 /* link to the program file */

#define PI_NTSK 0x00020000 /* number of tasks in a process */

#define PI_TSKSTAT 0x00030000 /* each task state */

#define PI_CREINF 0x00040000 /* information during process creation */

PI_LINK :

 item PI_LINK

 buf LINK Link information for the program file

 Retrieves the link to program file.

Information can be acquired only if the process is created from a link for a standard file system.

PI_NTSK :

 item PI_NTSK

 buf W ntsk

 Retrieves the number of tasks (total number of main and sub tasks) in the processes.

PI_TSKSTAT :

 item PI_TSKSTAT + n

 buf P_TSKSTAT tskstat Task status information

 typedef struct {

 ID tskid; /* task ID */

 UW state; /* task state */

 PRI priority; /* task priority */

 } P_TSKSTAT;

 state :＝ P_DORMANT || P_WAIT || P_READY || P_RUN

Retrieves the state information about the nth task. If n = 0, then main task will be retrieved. If n >= 1, then

subtask will be retrieved. n is valid only until number of tasks retrieved by PI_NTSK is minus 1.

PI_CREINF :

 item PI_CREINF

 buf P_CREINF creinf Process creation information

 typedef struc {

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

73 TEF021-S003-01.00.00/en

 PRI pri; /* process priority */

 ATR prcatr; /* process attribute */

 VB prchdr[1]; /* handler for the source object of a process */

 } P_CREINF;

Returns information during process creation with tkse_cre_prc().

Since the size of prchdr[1] is not a fixed length, it is necessary to acquire actual information after acquiring the size

of the area necessary for storing all information and then securing buf.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

74 TEF021-S003-01.00.00/en

Subtask Creation
tkse_cre_tsk

C Language Interface

ER ercd = tkse_cre_tsk(FP entry, PRI pri);

Parameter

FP entry subtask start address

W pri subtask priority

Return Parameter

ER ercd ＞ 0 normal completion (created subtask ID)

 ＜ 0 error code

Error Code

E_MACV illegal address (entry)

E_LIMIT subtask count limit exceeded

E_NOMEM insufficient memory area

Description

Creates a subtask in this process. The created subtask enters dormant state.

The task ID of the created subtask is returned if creation is successful.

The subtask is defined as a function in the following format:

 void subtask(W arg)

 {

 /* Program execution code */

 tkse_ext_tsk();

 }

As for the argument arg of the subtask function, the subtask start parameter specified by subtask start

tkse_sta_tsk() is passed.

When subtask ends, tkse_ext_tsk() is used. Subtask cannot end in a return.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

75 TEF021-S003-01.00.00/en

Subtask Startup

tkse_sta_tsk

C Language Interface

ER tkse_sta_tsk(ID id, W arg)

Parameter

ID id subtask ID

W arg subtask start parameter

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_ID illegal task ID (id is invalid or cannot be used)

E_NOEXS object does not exist (the task specified in id does not exist)

E_OBJ illegal object state (the task is not in DORMANT state)

Description

Runs the subtask created by tkse_cre_tsk().

Only a subtask in dormant state can be started. If a task in another state is about to start, error code E_OBJ is

returned.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

76 TEF021-S003-01.00.00/en

Subtask Creation and Startup

tkse_crs_tsk

C Language Interface

ER ercd = tkse_crs_tsk(FP entry, PRI pri, W arg);

Parameter

FP entry subtask start address

W pri subtask priority

W arg subtask start parameter

Return Parameter

ER ercd ＞ 0 normal completion (created subtask ID)

 ＜ 0 error code

Error Code

E_MACV illegal address (entry)

E_LIMIT subtask count limit exceeded

E_NOMEM insufficient memory area

Description

Creates and starts a subtask in this process.

The task ID of the created subtask is returned when creation is successful.

Equivalent to tkse_cre_tsk() call excepting that it enters into executable state after creation.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

77 TEF021-S003-01.00.00/en

Exit invoking task

tkse_ext_tsk

C Language Interface

void tkse_ext_tsk(void);

Parameter

none

Return Parameter

none

Description

Exits invoking task.

It can also be used from either the main task or the subtask.

When exiting the main task, process is exited. Therefore, all tasks in the process will be exited.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

78 TEF021-S003-01.00.00/en

Terminate Other Task

tkse_ter_tsk

C Language Interface

ER ercd = tkse_ter_tsk(ID tskid);

Parameter

ID tskid target task ID

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_ID illegal task ID (tskid)

Description

Terminates the specified task.

Only subtasks in invoking process can be specified. Invoking task and the main task cannot be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

79 TEF021-S003-01.00.00/en

Task Sleep

tkse_slp_tsk

C Language Interface

ER ercd = tkse_slp_tsk(TMO tmout);

Parameter

TMO tmout timeout period

 ＞ 0 wait for a specific period of time (milliseconds)

 ＝ -1 wait for an infinite period of time

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_TMOUT not woken up although the timeout period has expired

E_DISWAI waiting suspended because message handler is invoked

E_PAR illegal parameter (time)

Description

Puts this task into sleep state.

Prior to when the timeout period specified by tmout expires, if wakeup is conducted by tkse_wup_tsk in this task

from another task, the WAIT state is released and normal completion E_OK is returned.

When wakeup by tkse_wup_tsk is not conducted while the timeout period specified by tmout expires, the WAIT

state is released and timeout error code E_TMOUT is returned.

If the message is received during the period when the task is in WAIT state and the message handler starts, the

WAIT state is released and error E_DISWAI is returned.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

80 TEF021-S003-01.00.00/en

Task Wake up

tkse_wup_tsk

C Language Interface

ER ercd = tkse_wup_tsk(ID tskid);

Parameter

ID tskid target task ID

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_ID illegal task ID (tskid)

E_LIMIT exceeded the limit of wake-up request queueing

Description

When the task specified by “tskid” is in the sleep state, the wait state is released. When the specified task is not in

the sleep state, the wake-up request is queued.

Only tasks in invoking process can be specified. Tasks of other process cannot be woken up. Besides, invoking

task cannot be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

81 TEF021-S003-01.00.00/en

Cancel Task Wake-up Request

tkse_can_wup

C Language Interface

ER ercd = tkse_can_wup(ID tskid);

Parameter

ID tskid target task ID

 ＞ 0 any task

 ＝ 0 invoking task

Return Parameter

 ER ercd >= 0 Normal completion (Number of queued wakeup requests)

 ＜ 0 error code

Error Code

 E_ID Task ID(tskid) is invalid

Description

Cancels all queued wakeup requests in tasks specified by tskid, and returns the canceled number of queuing

wakeup requests.

When completion is normal, the number of queued wakeup requests is returned.

Only tasks in invoking process can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

82 TEF021-S003-01.00.00/en

Delay Task

tkse_dly_tsk

C Language Interface

ER ercd = tkse_dly_tsk(RELTIM dlytim);

Parameter

RELTIM dlytim delay time (milliseconds >= 0)

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_DISWAI waiting suspended because message handler is invoked

E_PAR illegal parameter (dlytim)

Description

Puts invoking task into the wait state for specified time duration.

When a message is received during the period when the task is in WAIT state and the message handler starts, the

WAIT state is released and error code E_DISWAI is returned.

Unlike tkse_slp_tsk(), when the delay time specified by dlytim expires, normal completion E_OK is returned. In

addition, even if the wakeup request is conducted by tkse_wup_tsk() during delay time, it does not become wait

release.

When “dlytim = 0” is specified, the execution is suspended and the task is rescheduled. That is, this changes the

task from the execution state to the executable state.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

83 TEF021-S003-01.00.00/en

Get Invoking Task ID

tkse_get_tid

C Language Interface

ER ercd = tkse_get_tid();

Parameter

none

Return Parameter

ER ercd ＞ 0 normal completion (invoking task ID)

 ＜ 0 error code

Description

Gets task ID of invoking task.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

84 TEF021-S003-01.00.00/en

Load Module

tkse_lod_mod

C Language Interface

ER ercd = tkse_lod_mod(T_LMOD *pk_mod, P_DYNLDINF *info);

Parameter

T_LMOD *pk_mod load module information

P_DYNLDINF* info information concerning loaded object

 typedef struct {

 ATR modatr; /* load module attribute */

 VP modhdr; /* handler for a load module */

 } T_LMOD;

 modatr indicates an attribute of the load module and is specified as follows:

 modatr :＝ (TMA_SEIO || TMA_LINK || TMA_PTR)

 TMA_SEIO a handle for the load module is a standard input/output file path

 TMA_LINK a handle for the load module is a link to the file of the standard file system

 TMA_PTR a handle for the load module is a pointer to the codes loaded in memory

 typedef struct {

 VP loadaddr; /* load address */

 UW loadsize; /* load size */

 FP entry; /* entry address */

 UW info[3]; /* machine-dependent information */

 } P_DYNLDINF;

Return Parameter

ER ercd ＞ 0 normal completion (load ID)

 ＜ 0 error code

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

85 TEF021-S003-01.00.00/en

Error Code

E_FACV no access privileges (E) for the file (when TMA_SEIO, TMA_LINK is specified)

E_MACV access to address (info, hdr(TMA_PTR)) not allowed

E_BUSY could not open the file because it is already opened exclusively

E_IO input/output error occurred

E_NOEXS file does not exist

E_NOFS the file system to which the file belongs is not connected

E_NOMEM insufficient memory area (insufficient memory area to load)

E_REC no program record existent in the file. Or the content of program record is unusual

(when TMA_LINK is specified).

Description

Loads a load module into the local space of this process, and then allocates a load ID to it.

modatr of T_LMOD structure indicates an attribute of the load module.

If TMA_SEIO attribute is specified, the content of the specified file is loaded as a load module. Specify the path

name of the standard input/output of the target file for modhdr.

If TMA_LINK the attribute is specified, the content of the first executable program record in the file of the specified

standard file system is loaded as load modules. Specify the link (LINK*) to the standard file system file for modhdr.

If TMA_PTR attribute is specified, object code in memory may be loaded as a load module. Specify the pointer of

the object codes in memory for modhdr. Note that the format of the object codes in memory and the running

methods are implementation-dependent.

If the load is successful, returns information concerning the loaded load module to info.

The load module is loaded (mapped) in memory, but no processing such as a relocation is done. If the same load

module as that has been already loaded is also specified, another new memory space is allocated to load it.

Only the load module is simply loaded on memory (mapping), and processing of the relocation of the symbol

address, etc. is not conducted. In addition, even when the same module as the load module that has already been

loaded is specified, another memory space is newly allocated and loading is conducted. In this case, separate load

IDs are respectively allocated.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

86 TEF021-S003-01.00.00/en

Unload Module

tkse_unl_mod

C Language Interface

ER ercd = tkse_unl_mod(ID loadid);

Parameter

ID loadid load ID of load module (ID obtained by “tkse_lod_mod()”)

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_ID specified load module does not exist

Description

Unloads the load module specified by “loaded”.

For the area mapped on memory for the load module, all maps are released.

There is no concern whether the load module is in use or not.

Meanwhile, all load modules are automatically unloaded when the process is terminated.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

87 TEF021-S003-01.00.00/en

4.3 Interprocess Message Function

4.3.1 Interprocess Message Function Overview

The interprocess messages function of the “AMP TKSE” provides the functions to send and receive messages

among any processes.

Each process has a specific message queue, and interprocess message communication is executed through this

message queue. The destination of the message is specified by the process ID. The source is also discriminated

by the process ID of sending process.

This function is also used for sending exit messages of the child process by the system as well as communicating

interprocesses message by application.

The interprocess message can be sent to this process as well as other processes. As an example of this type of

message, there are timeout messages.

The message queue is FIFO and messages are always put in the order of sending. When the message queue on

the receiving side is full at sending of messages, you can designate a wait until availability of queue or a return on

error.

Normally, received messages are stored in the message queue and picked up by the request to receive message.

However, definition of message handler allows an asynchronous processing of message when messages of the

specified type are received.

In the message function between processes, the sending and receiving of messages to and from the processes of

its own AMP TKSE as well as the processes of other AMP TKSE is possible.

The API specification of the message function between processes is the same as the T-Kernel AMP TKSE Version

1.00 Specification

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

88 TEF021-S003-01.00.00/en

4.3.2 Message Type

 Messages are classified into 31 types of messages from 1 to 31 according to the type number.

 The message type is defined as follows:

 #define MS_ABORT (1) /* abort process */

 #define MS_EXIT (2) /* exit process */

 #define MS_TERM (3) /* terminate process */

 #define MS_TMOUT (4) /* timeout */

 #define MS_SYSEVT (5) /* system event (kill) */

 #define MS_SYS1 (6) /* used in system */

 #define MS_SYS2 (7) /* used in system */

 #define MS_SYS3 (8) /* used in system */

 #define MS_SYS4 (9) /* used in system */

 #define MS_SYS5 (10) /* used in system */

 #define MS_MNG0 (11) /* reserved */

 #define MS_MNG1 (12) /* reserved */

 #define MS_MNG2 (13) /* reserved */

 #define MS_MNG3 (14) /* reserved */

 #define MS_MNG4 (15) /* reserved */

 #define MS_MNG5 (16) /* reserved */

 #define MS_MNG6 (17) /* reserved */

 #define MS_MNG7 (18) /* reserved */

 #define MS_MNG8 (19) /* reserved */

 #define MS_MNG9 (20) /* reserved */

 #define MS_MNG10 (21) /* reserved */

 #define MS_MNG11 (22) /* reserved */

 #define MS_MNG12 (23) /* reserved */

 #define MS_TYPE0 (24) /* application definition */

 #define MS_TYPE1 (25) /* application definition */

 #define MS_TYPE2 (26) /* application definition */

 #define MS_TYPE3 (27) /* application definition */

 #define MS_TYPE4 (28) /* application definition */

 #define MS_TYPE5 (29) /* application definition */

 #define MS_TYPE6 (30) /* application definition */

 #define MS_TYPE7 (31) /* application definition */

 #define MS_MIN (1) /* minimal message type */

 #define MS_MAX (31) /* maximal message type */

Message type number 0 is used inside the AMP TKSE system in order to receive and pass the start message when

a process is created. This number cannot be directly used by the message function between processes.

Each message type is associated with a bit ready type mask, and multiple target message types can be specified

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

89 TEF021-S003-01.00.00/en

by using a union (OR) pattern of type masks.

The message type mask is defined as follows:

 #define MSGMASK(msgtype) (1 << ((msgtype) - 1))

 #define MM_ABORT MSGMASK(MS_ABORT) /* abort process */

 #define MM_EXIT MSGMASK(MS_EXIT) /* exit process */

 #define MM_TERM MSGMASK(MS_TERM) /* terminate process */

 #define MM_TMOUT MSGMASK(MS_TMOUT) /* timeout */

 #define MM_SYSEVT MSGMASK(MS_SYSEVT) /* system event (kill) */

 #define MM_SYS1 MSGMASK(MS_SYS1) /* used in system */

 #define MM_SYS2 MSGMASK(MS_SYS2) /* used in system */

 #define MM_SYS3 MSGMASK(MS_SYS3) /* used in system */

 #define MM_SYS4 MSGMASK(MS_SYS4) /* used in system */

 #define MM_SYS5 MSGMASK(MS_SYS5) /* used in system */

 #define MM_MNG0 MSGMASK(MS_MNG0) /* reserved */

 #define MM_MNG1 MSGMASK(MS_MNG1) /* reserved */

 #define MM_MNG2 MSGMASK(MS_MNG2) /* reserved */

 #define MM_MNG3 MSGMASK(MS_MNG3) /* reserved */

 #define MM_MNG4 MSGMASK(MS_MNG4) /* reserved */

 #define MM_MNG5 MSGMASK(MS_MNG5) /* reserved */

 #define MM_MNG6 MSGMASK(MS_MNG6) /* reserved */

 #define MM_MNG7 MSGMASK(MS_MNG7) /* reserved */

 #define MM_MNG8 MSGMASK(MS_MNG8) /* reserved */

 #define MM_MNG9 MSGMASK(MS_MNG9) /* reserved */

 #define MM_MNG10 MSGMASK(MS_MNG10) /* reserved */

 #define MM_MNG11 MSGMASK(MS_MNG11) /* reserved */

 #define MM_MNG12 MSGMASK(MS_MNG12) /* reserved */

 #define MM_TYPE0 MSGMASK(MS_TYPE0) /* application definition */

 #define MM_TYPE1 MSGMASK(MS_TYPE1) /* application definition */

 #define MM_TYPE2 MSGMASK(MS_TYPE2) /* application definition */

 #define MM_TYPE3 MSGMASK(MS_TYPE3) /* application definition */

 #define MM_TYPE4 MSGMASK(MS_TYPE4) /* application definition */

 #define MM_TYPE5 MSGMASK(MS_TYPE5) /* application definition */

 #define MM_TYPE6 MSGMASK(MS_TYPE6) /* application definition */

 #define MM_TYPE7 MSGMASK(MS_TYPE7) /* application definition */

 #define MM_ALL (0x7fffffff) /* all masks */

 #define MM_NULL (0) /* blank mask */

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

90 TEF021-S003-01.00.00/en

4.3.3 Message Structure

 A message has the following structure:

 typedef struct message {

 W msg_type; /* message type */

 W msg_size; /* message body size (bytes) */

 MSGBODY msg_body; /* message body */

 } MESSAGE;

 The structure of the message body (MESSAGE) is determined by “msg_type”.

4.3.4 System Message

The Messages with message number 1-5 are called system messages. These are messages to notify the

application about events that occurred in the system. Meanwhile, applications are not particularly prohibited to

transfer system messages

The system messages are essentially not affected by an overflow of message queing and would not be discarded.

For this reason, it is necessary for processes that receive system messages to discard system messages placed in

the message queue by receiving the messages.

Each system message is described as follows:

(1) MS_ABORT -- abort message of the child process

It is automatically sent from child process to parent process when a process is aborted by a system error.

 W msg_type : 1 message type = MS_ABORT

 W msg_size : 8 the number of message body bytes (8byte)

 MSGBODY msg_body : message body

 struct {

 ID pid; /* process ID of the terminated child process */

 W code; /* system error code */

 };

Where a code is a generated system error code, and is set to zero for an abort with “MH_TERM” message handler.

(2) MS_EXIT -- normal completion message of the child process

 It is automatically sent from child process to parent process when a process is normally terminated by the

system call “tkse_ext_prc()”.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

91 TEF021-S003-01.00.00/en

 W msg_type : 2 message type = MS_EXIT

 W msg_size : 8 the number of message body bytes (8byte)

 MSGBODY msg_body : message body

 struct {

 ID pid; /* process ID of the terminated child process */

 W code; /* exit code specified by “tkse_ext_prc()” */

 };

(3) MS_TERM -- termination message of the child process

 It is automatically sent from child process to parent process when a process is terminated by the system call

“tkse_ter_prc()”.

 W msg_type : 3 message type = MS_EXIT

 W msg_size : 8 the number of message body bytes (8byte)

 MSGBODY msg_body : message body

 struct {

 ID pid; /* process ID of the terminated child process */

 W code; * exit code specified by “tkse_ter_prc()” */

 };

(4) MS_TMOUT -- timeout message of invoking process

 A timeout message requested by the system call “tkse_req_tmg()”. It is automatically sent to this process after

the specified time period.

 W msg_type : 4 message type = MS_TMOUT

 W msg_size : 4 the number of message body bytes (8byte)

 MSGBODY msg_body : message body

 struct {

 W code; /* code specified by tkse_req_tmg() */

 };

4.3.5 Message Handler

The message handler is a mechanism to process the reception of interprocess messages asynchronously.

The message handler processes the messages asynchronously to the ongoing process when messages of the

specified type are received. Therefore, up to 31 types of message handlers corresponding to the respective

message types can be simultaneously defined.

The message handlers are executed as follows:

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

92 TEF021-S003-01.00.00/en

• When a message with the corresponding type is received, the message handler is executed to interrupt the

current process in the main task.

• Also when a message is sent in the wait state by some system call, the message handler is invoked, and the

main task of the process goes into an execution state. In this case, a system call whose main task is in a long wait

state is unconditionally interrupted, and is led to an uncertain result. That is, when message handler is terminated,

the interrupted system call returns as “E_DISWAI” error code.

• The message handler works as a part of the normal process codes, there is no limit on the executable system

calls, etc.

• When the message handler is terminated, the main task is usually resumed from the interrupted point; but, it is

possible to move the execution point to any position of the main task (position specified by “setjmp”) using “longjmp

()” directly from the message handler.

• The message handler is not nested. More specifically, a start-up of new message handler (including other

message types) waits until the currently processing message handler exits.

• When the message handler is invoked, the message which invoked the message handler is picked up from the

message queue, and the pointer is passed as the parameter of a handler.

• The message handler must always exits by “tkse_ret_msg()” system call.

The message handlers are defined as functions with the following form:

 void msg_hdr(W pid, MESSAGE *r_msg)

 {

 /* where “pid” is a sending process ID. (zero for this process) */

 /* “r_msg” is a pointer to the received message. */

 Process of Received Messages

 tkse_ret_msg (0); /* exit (when returning to the interrupted point) */

 or

 tkse_ret_msg (1); /* exit (when moving to any point) */

 longjmp (reent, code); /* jump to reent */

 }

You can use the following message handlers defined as special message handlers by system instead of message

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

93 TEF021-S003-01.00.00/en

handler function address:

(1) MH_NONE : Messages are ignored without any processing. In this case, system calls with a wait are

exceptionally not interrupted. This is used to simply ignore the specific types of messages entirely without

queueing.

(2) MH_BREAK : Messages are ignored without any processing. In this case, system calls with a wait are not

interrupted, and “E_DISWAI” error code is returned. This is used to process timeouts, etc.

(3) MH_TERM : invoking process are aborted and “MS_ABORT” message (error code = 0) are sent to parent

process.

The initial process cannot use message handlers other than MH_NONE. When a message handler other than

MH_NONE is specified, the handler is not executed even if the message is received. Moreover, the specifications

for MH_BREAK and MH_TERM are also ignored.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

94 TEF021-S003-01.00.00/en

4.3.6 System Calls

Send Message
tkse_snd_msg

C Language Interface

ER ercd = tkse_snd_msg(ID pid, MESSAGE* msg, W opt);

Parameter

ID pid destination process ID

 ＞ 0 any process

 ＝ 0 invoking process

 ＝-1 parent process

MESSAGE* msg sending message

W opt specify how to wait for sending

 (NOWAIT || WAIT || CONFM)

 NOWAIT : not wait for message queue to be free

 WAIT : wait for message queue to be free

 CONFM : wait to receive messages

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_MACV access to inaccessible address (msg) not allowed

E_DISWAI wait processing interrupted because message handler is invoked

E_NOEXS process (pid) does not exist

E_PAR illegal parameter (illegal option and illegal message type)

E_ILUSE invoking process is specified (“pid = 0” or “PID of invoking process”)(when “CONFM” is

specified)

E_LIMIT size of message body exceeded the system limit, or is zero or less

E_SYSMEM insufficient system memory area (destination message queue is full (when “NOWAIT” is

specified))

Description

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

95 TEF021-S003-01.00.00/en

Sends messages to the process specified by “pid”.

”opt” specifies the behavior of send wait when the message is transmitted.

In the case “opt = NOWAIT ” is specified, the task is normally terminated when messages are put in the message

queue of the destination process. When the destination message queue is full, an exit by error occurs.

In the case “opt = WAIT” is specified, the task is normally terminated when messages are put in the message

queue of the destination process. When the message queue is full, it waits for it to be free. When the destination

process is terminated during a waiting, an exit by error occurs.

A message is put in the message queue of the destination process in the case “opt = CONFM” is specified, and

then the task is normally terminated when the message sent by the destination process is received or when it is

cleared from the message queue. Wait until then. When only header section is obtained by “tkse_rcv_msg()” with

the “CHECK” option, the message is not considered to be received. When a message is received with an “NOCLR”

option, it is considered to be received even if it remains in the queue. When the destination process is terminated

during a waiting, an error exit occurs. When this process is the destination, the “CONFM” option causes an error.

The destination process of a message can specify the processes of other AMP TKSE. In other words, messages

between processes can be sent between AMP TKSE. However, if the destination process is the process of another

AMP TKSE, opt = WAIT cannot be specified

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

96 TEF021-S003-01.00.00/en

Receive Message

tkse_rcv_msg

C Language Interface

ER ercd = tkse_rcv_msg(W t_mask, MESSAGE* msg, W msgsz, W opt);

Parameter

W t_mask message type mask targeted to be received

MESSAGE* msg storage area of received message

W msgsz byte size of total storage area of received message. “msgsz >= 8” is required since

message header section is included.

W opt specify the action to receive

 (WAIT || NOWAIT || WAIEVT) | (CLR || NOCLR) | (CHECK)

 WAIT : wait to receive messages of the specified type

 NOWAIT : not wait for messages of the specified type

 WAIEVT : wait for the messages of the specified type to be received and the

event to occur

 CLR : after receiving message, the message is eliminated from the queue

 NOCLR : after receiving message, the message is left in the queue

 CHECK : check whether there are messages or not

Return Parameter

ER ercd ＞ 0 normal completion (source process ID of received message)

 ＝ 0 normal completion (invoking process is the source of received message)

 ＜ 0 error code

Error Code

E_MACV access to inaccessible address (msg) not allowed

E_DISWAI wait processing interrupted because message handler is invoked

E_TMOUT no messages of the specified type are existent (t_mask) (When NOWAIT is specified)

E_PAR illegal parameter (“msgsz” is too small. “t_mask<=0” When non- “WAIEVT” is specified,

“t_mask<0” When “WAIEVT” is specified)

Description

Receives the messages of the specified type to invoking process.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

97 TEF021-S003-01.00.00/en

When received messages cannot be put in specified area, they are stored in the area of “msg” only within the range

of “msgsz” and an error exit occurs. In this case, messages are left in the buffer regardless of the CLR option.

However, when “msgsz < 8”, .nothing is stored in the area of “msg” and return the errors. When the entire message

cannot be stored, the actual message size is determined from the header section of the stored messages.

Therefore, this system call will be executed again after preparing sufficient size of area to store the message.

"opt" specifies the behavior when the message is received.

In the case “opt = WAIT” is specified, wait until the arrival of message when the messages of the specified type

have not been received.

In the case “opt = NOWAIT” is specified, execute an error exit when the messages of the specified type have not

been received.

In the case “opt = WAIEVT” is specified, the basic behavior of the “WAIEVT” is the same as the “WAIT”, but the

notification of event occurrence by “tkse_brk_msg()” clears the wait state even if messages have not been received.

In this case, an error (E_NOME) exit occurs.

In the case “WAIEVT” is specified, “t_mask = 0” can also be specified. In this case, no message will be received

and the task waits until the notification of event occurrence.

Only one “WAIEVT” can be simultaneously specified for tasks over the entire system, When multiple tasks invoke

“tkse_rcv_msg()” with the “WAIEVT” option, only the “WAIEVT” of last invoked task is available. Other tasks are

processed in the same manner as the “WAIT” option.

“WAIEVT” is premised on using in the upper system (T-Shell, etc) than AMP TKSE. “WAIEVT” usually shall not be

specified by applications.

In the case “opt = CLR” is specified, eliminate the messages from the queue after the messages are received.

In the case opt = “NOCLR” is specified, leave the messages in the queue even after the messages are received.

In the case “opt = CHECK” is specified, the behavior is as follows:

 1. When no message exists, the “WAIT” or “WAIEVT” puts the task in a wait state, and the “NOWAIT” causes

error exit.

 2. When messages of the specified type exist, the task is normally terminated after the messages are stored in

“msg”. The “CLR” eliminates messages from the queue while the “NOCLR” leaves messages in the queue.

 3. When messages of the specified type do not exist and the other types of messages exist, only the top 8

bytes of the messages (msg_type and msg_size) are stored in “msg” and the task is normally terminated. In

this case, messages are left in the queue regardless of the “CLR”.

When “CHECK” is specified, since the messages other than the specified typed ones may be obtained, the type of

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

98 TEF021-S003-01.00.00/en

received message should be always checked.

Clear Message

tkse_clr_msg

C Language Interface

ER ercd = tkse_clr_msg (W t_mask, W last_mask);

Parameter

W t_mask message type mask targetd to clear

 (all message types in the case “MM_ALL” is specified)

W last_mask message type mask for clear exit

 (cleared to the end of the message queue in the case “MM_NULL” is specified)

 (only one message is cleared when “MM_ALL” is specified）

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_PAR illegal parameter (t_mask<=0, last_mask<0)

Description

Clears the received messages of the specified type to invoking process.

Out of the messages received in the message queue of invoking process, messages of the type specified by

"t_mask” shall be cleared to the right before of the message of the type specified by “last_mask”. The messages of

the type specified by “last_mask” are not cleared. However, only one message of the “last_mask “type is cleared in

the case “last_mask = MM_ALL”.

Examples of specifying “t_mask” and the “last_mask” are shown as follows:

 t_mask last_mask behavior

 MM_ALL MM_NULL clear all the received messages

 - MM_ALL clear only one message specified by “t_mask”

 MM_ALL MM_ALL clear only the top one message

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

99 TEF021-S003-01.00.00/en

Request Timeout Message
tkse_req_tmg

C Language Interface

ER ercd = tkse_req_tmg (TMO tmout, W code);

Parameter

TMO tmout time for sending message (milliseconds)

W code timeout message code

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_PAR illegal parameter (time <= 0)

E_SYSMEM insufficient system memory area

Description

Requests to send the timeout message (MS_TMOUT) to invoking process after specified time period is passed.

This function is used to monitor the timeout of specific processings in combination with message handler.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

100 TEF021-S003-01.00.00/en

Cancel Timeout Message

tkse_can_tmg

C Language Interface

ER ercd = tkse_can_tmg();

Parameter

none

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

Description

Cancels all the timeout message requests of invoking process. When there is no timeout message request, nothing

shall be done.

The timeout messages that have been already sent and put in the message queue are not cleared.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

101 TEF021-S003-01.00.00/en

Notify The Occurrence of Event

tkse_brk_msg

C Language Interface

ER ercd = tkse_brk_msg();

Parameter

none

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

Description

Releases the wait on “tkse_rcv_msg()” by the “WAIEVT” attribute specification.

In the case “tkse_brk_msg()” is invoked, if no task is put in the wait state by the“WAIEVT” specification, the request

to release waiting is recorded. However, the request count to release waiting is not recorded.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

102 TEF021-S003-01.00.00/en

Define Message Handler

tkse_def_msg

C Language Interface

ER ercd = tkse_def_msg (W t_mask, FUNCP msg_hdr);

Parameter

W t_mask target message type mask

FUNCP msg_hdr message handler start address

 NULL release message handler definition

 MH_NONE system definition handler (ignored)

 MH_BREAK system definition handler (suspended)

 MH_TERM system definition handler (process exit)

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_MACV access to inaccessible address (msg_hdr) not allowed

E_PAR illegal parameter (t_mask<=0)

Description

Defines a message handler“msg_hdr”corresponding to the message of a specified type.

When a message handler for a message of the same type has already been defined, the message handler which

was defined later becomes valid.

If msg_hdr = NULL, the defined message handler is released

Initial processes cannot use message handlers other than MH_NONE. When a message handler other than

MH_NONE is specified, even if the message is received, the handler is not executed. Moreover, the specifications

of MH_BREAK and MH_TERM are ignored.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

103 TEF021-S003-01.00.00/en

Exit Message Handler

tkse_ret_msg

C Language Interface

ER ercd = tkse_ret_msg (W ret)

Parameter

W ret return specification

 ＝ 0: resume the execution from the point interrupted by message handler

 != 0: return from this system call to directly continue executing

Return Parameter

ER ercd error code

 (When “ret ＝ 0”) no return 0

 (When “ret != 0”) =0 normal

Error Code

E_OK normal completion

Description

Terminates the execution of message handler.

When “ret = 0” is specified, the execution is resumed from the position interrupted by message handler instead of

being returned from this system call. In this case, the execution does not return from tkse_ret_msg(). When an

interruption occurs while executing a system call including a wait, an error code which indicates the invoking

(start-up) of message handler is returned from the system call, in stead of ensuring the execution of the system

call.

When “ret != 0” is specified, instead of being resumed at the position interrupted by the message handler, the task

shall continue the execution after returning from this system. In this case, the control will usually be moved

elsewhere by ”longjmp()” at the end of the handler.

Regardless of the specification of ret, execution must be conducted at the end of processing of the message

handler. Moreover, the execution must not be conducted in locations other than the message handler. Behavior

when the execution is conducted in places other than the message handler is undefined.

If multiple message handler start requests occur, the requested message handler starts following the execution of

tkse_ret_msg().

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

104 TEF021-S003-01.00.00/en

4.4 Global Name

4.4.1 Overview of the Global Name

The global name function of the “AMP TKSE” provides the functions to create data shared among processes by

giving any name and to refer to the data by using the created name.

The global name data is a single 32-bit data (W), and the data can be named with up to 256 characters. Meaningful

character codes are usually used as a name without any special restriction, and any data with up to 256 letters

(512 bytes) until “TNULL(0)” can be used. Although meaningful names as TRON code are usually used for the

names, it is possible to use data other than TRON code for the name if the termination is TNULL.

The data shared by global name can be referred to and changed from all processes. Moreover, change and

deletion from processes other than the process which created global name can be prohibited.

The main use of global name is sharing of the following data, however, it is also possible to use global name for

purposes other than the following.

・Process ID

・Address of the shared memory area

・Synchronization and communication object ID such as semaphore, message buffer and rendezvous

・Environment parameter used in the entire system

 The global name function targets only the global name of its own AMP TKSE. It cannot operate the global names

of other AMP TKSE.

The API specification of the global name function is the same as the T-Kernel TKSE Version 1.00 Specification

Although the sharing of data for the process and synchronization and communication object was described as the

main use of the global name in T-Kernel TKSE Version 1.00 Specification, AMP TKSE has a process and object

ID retrieval function, therefore, the use of AMP TKSE is recommended. However, global names can be used to

share IDs for interchangeability with the existing software.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

105 TEF021-S003-01.00.00/en

4.4.2 System Calls

Create Global Name Data
tkse_cre_nam

C Language Interface

ER ercd = tkse_cre_nam(TC* name, W data, W opt);

Parameter

TC* name target global name (only top 256 characters (512 bytes) valid)

W data data to register

W opt specify data creation

 (N_CREATE || N_MODIFY || N_FORCE) | [NA_PROTECT] | [TA_DELEXIT]

 N_CREATE : create new

 N_MODIFY : modification

 N_FORCE : creation and modification

 NA_PROTECT : protect specification against modification and removal

 TA_DELEXIT : auto removal specification

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_MACV access to address (name) not allowed

E_OBJ name already present (for N_CREATE)

 name is protected (for N_MODIFY, N_FORCE)

E_NOEXS name does not exist (for N_MODIFY)

E_PAR illegal parameter (illegal opt, blank name)

E_SYSMEM insufficient system memory area

Description

Creates or modifies global name data specified by the name.

”opt” specifies behavior of creation and change of global name.

If opt ＝ N_CREATE is specified and the global name data with specified name is not present, then it is created. If

the data is already present, an error occurs.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

106 TEF021-S003-01.00.00/en

If opt ＝ N_MODIFY is specified and the global name data with specified name is present, then the data is

modified. If the data is not present, an error occurs.

If opt ＝ N_FORCE is specified and the global name data with specified name is present, then the data is

modified. If the data is already present, an error occurs.

NA_PROTECT as well as N_CREATE and N_Force may be specified. If NA_PROTECT is specified, processes

other than those that created the global name data are prohibited from modifying and removing it. If this or

tkse_del_nam() calls is issued from processes other than those that created the global name data to which

NA_PROTECT is specified, E_OBJ error occurs. NA_PROTECT specification is valid until the object is removed.

TA_DELEXIT as well as other options can be specified. If TA_DELEXIT is specified, global name data will be

removed automatically when the process which created or last modified the data exits. Even if TA_DELEXIT is

already specified by other process, the last process which executed this system call by specifying TA_DELEXIT is

processed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

107 TEF021-S003-01.00.00/en

Remove Global Name Data

tkse_del_nam

C Language Interface

ER ercd = tkse_del_nam(TC* name);

Parameter

TC* name target global name (only top 256 characters (512 bytes) valid)

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_MACV access to address (name) not allowed

E_OBJ name is protected

E_NOEXS name does not exist

E_PAR illegal parameter (blank name)

Description

Removes global name data specified by the name.

If NA_PROTECT is specified during global name data creation and processes other than those that created the

global name data try to remove it, E_OBJ error code is returned.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

108 TEF021-S003-01.00.00/en

Get Global Name Data

tkse_get_nam

C Language Interface

ER ercd = tkse_get_nam (TC* name, W* data);

Parameter

TC* name target global name (only up to the top 256 characters (512 bytes) valid)

W* data get data storage area

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_MACV access to inaccessible address (name, data) not allowed

E_NOEXS name does not exist

E_PAR illegal parameter (blank name)

Description

Gets global name data specified by the name.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

109 TEF021-S003-01.00.00/en

4.5 Synchronous Intertask Communication Function

4.5.1 Synchronous Intertask Communication Function Overview

The synchronous intertask communication function of the “AMP TKSE” provides the followings as a mechanism

for synchronization and communication among tasks.

 •· semaphore

 •· mutex

 • eventflag

 • mailbox

 • message buffer

 • rendezvous

Each function is almost equal to the corresponding functions in AMP T-Kernel. However, they are not completely

compatible since there are restrictions on parts of the functions.

Since the ID of each object ID such as semaphores is managed with AMP TKSE, it is different from IDs used by

AMP T-Kernel system calls. For this reason, object IDs created with AMP TKSE cannot be used with AMP T-Kernel

as they are. Moreover, objects created with AMP T-Kernel cannot be handled with AMP TKSE. However, task IDs

are the same in AMP TKSE and AMP T-Kernel as an exception.

As for the task communication function, the functions of the object name and the access attribute are extended to

the T-Kernel Standard Extension Version 1.00 Specification.

The object name is specified when the synchronization and communication object is created, and can be used to

retrieve ID numbers.

Access from tasks to the synchronization and communication object is determined in accordance with the access

attribute specified during creation. If access is not possible due to the access attribute, error code E_DACV will be

returned (For details, refer to "2.3.3 Task Communication Function").

The task communication function can operate AMP TKSE objects of other kernels. In other words, task

synchronization and communication between kernels can be conducted. However, the creation and deletion of

objects only targets objects of its own AMP TKSE.

The following section describes only the differences (restrictions) with AMP T-Kernel system calls. Refer to AMP

T-Kernel specifications for details of each system call.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

110 TEF021-S003-01.00.00/en

4.5.2 System Calls (Semaphore)

Create Semaphore
tkse_cre_sem

C Language Interface

 ID semid = tkse_cre_sem (T_CSEM *pk_csem);

Parameter

T_CSEM *pk_csem semaphore creation information

 typedef struct t_csem {

 VP exinf; /* extended information */

 ATR sematr; /* semaphore attribute */

 INT isemcnt; /* semaphore's initial count value */

 INT maxsem; /* semaphore's maximum count value */

 ID domid; /* domain ID (reserved) */

 UB oname[8]; /* object name */

 } T_CSEM;

 semaphore attribute sematr

 sematr:＝ (TA_TFIFO || TA_TPRI) | (TA_FIRST || TA_CNT) | TA_DELEXIT

 |(TA_GLOBAL || TA_KLOCAL || TA_PLOCAL) | TA_ONAME

 TA_TFIFO manage wait tasks with “FIFO”

 TA_TPRI manage wait tasks with priority order

 TA_FIRST prioritize a task at the top of the queue

 TA_CNT priotize tasks with few requests

 TA_DELEXIT specify auto deletion

 TA_GLOBAL specify global attribute to access attribute

TA_KLOCAL specify Kernel Local to access attribute

 TA_PLOCAL specify Process Local to access attribute

 TA_ONAME specify the object name

Return Parameter

ID semid ＞ 0 semaphore ID (normal completion)

 ＜ 0 error code

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

111 TEF021-S003-01.00.00/en

Error code

 E_NOMEM Insufficient Memory(Memory for control block cannot be allocated)

 E_LIMIT Number of semaphores exceeds the system limit

 E_RSATR Reserved attribute(sematr is invalid or cannot be used)

 E_PAR Parameter error(pk_csem is invalid, isemcnt or maxsem is negative or invalid)

 E_ONAME Specified object name has already been used

Description

Creates a semaphore according to “pk_csem”. However, “exinf” and “domid” are ignored.

In the case the “TA_DELEXIT” attribute is specified, the semaphore is automatically deleted when the process

which created the semaphore exits. TA_GLOBAL, TA_KLOCAL, and the TA_PLOCAL attributes specify the

access attributes of the semaphore. When the TA_PLOCAL attribute is specified, the TA_DELEXIT attribute is

automatically specified as well.

Although the other attributes are equivalent to the AMP T-Kernel semaphore, the “TA_NODISWAI”, “TA_DOMID”,

“TA_PUBLIC” “TA_PROTECTED” and “TA_PRIVATE” attributes cannot be specified.

Semaphores of other AMP TKSE cannot be created.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

112 TEF021-S003-01.00.00/en

Delete Semaphore

tkse_del_sem

C Language Interface

ER ercd = tkse_del_sem(ID semid);

Parameter

ID semid semaphore ID

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (semid is invalid or cannot be used)

 E_NOEXS Object does not exist (the semaphore specified in semid does not exist)

 E_DACV Access protection violation

Description

Deletes the semaphore specified by “semid”.

Semaphores of other AMP TKSE cannot be deleted.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

113 TEF021-S003-01.00.00/en

Return Semaphore Resource

tkse_sig_sem

C Language Interface

ER ercd = tkse_sig_sem (ID semid, INT cnt);

Parameter

ID semid semaphore ID

INT cnt the number of returned resources

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (semid is invalid or cannot be used)

 E_NOEXS Object does not exist (the semaphore specified in semid does not exist)

 E_QOVR Queuing or nesting overflow (Overflow of queue count semcnt)

 E_PAR Parameter error (cnt <= 0)

 E_DACV Access protection violation

Description

Returns as many resources as the number of “cnt” to semaphore specified by “semid”.

Semaphores with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

114 TEF021-S003-01.00.00/en

Get Semaphore Resource

tkse_wai_sem

C Language Interface

ER ercd = tkse_wai_sem (ID semid, INT cnt, TMO tmout);

Parameter

ID semid semaphore ID

INT cnt the number of returned resources

TMO tmout timeout period

Return Parameter

ER ercd error code

Error Code

E_OK Normal completion

E_ID Invalid ID number (semid is invalid or cannot be used)

E_NOEXS Object does not exist (the semaphore specified in semid does not exist)

E_PAR Parameter error (tmout <= (-2), cnt < 0)

E_DLT The object being waited for was deleted (the specified semaphore was deleted while waiting)

E_RLWAI Wait state released

E_DISWAI Wait released by wait disabled state

E_TMOUT Polling failed or timeout

E_DACV Access protection violation

Description

Gets as many resources as the number of “cnt” from semaphore specified by “semid”.

When the task is interrupted by the message handler, the wait state is released and “E_DISWAI” is returned.

Semaphores with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

115 TEF021-S003-01.00.00/en

Refer to Semaphore State

tkse_ref_sem

C Language Interface

ER ercd = tkse_ref_sem (ID semid, T_RSEM *pk_rsem);

Parameter

T_RSEM *pk_rsem address to which the semaphore state is returned

 typedef struct t_rsem {

 VP exinf; /* extended information */

 ID wtsk; /* waiting task ID */

 INT semcnt; /* current semaphore count value */

 } T_RSEM;

Return Parameter

ER ercd error code

Error Code

E_OK Normal completion

E_ID Invalid ID number (semid is invalid or cannot be used)

E_NOEXS Object does not exist (the semaphore specified in semid does not exist)

E_PAR Parameter error (address of the return parameter packet cannot be used)

E_DACV Access protection violation

Description

Refers to the semaphore state specified by “semid”, and return its content to the address indicated by “pk_rsem”.

However, exinf always becomes NULL regardless of the specification when it was created.

Semaphores with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

116 TEF021-S003-01.00.00/en

4.5.3 System Calls (Mutex)

Create Mutex
tkse_cre_mtx

C Language Interface

ID mtxid = tkse_cre_mtx (T_CMTX *pk_cmtx);

Parameter

T_CMTX *pk_cmtx mutex creation information

 typedef struct t_cmtx {

 VP exinf; /* extended information */

 ATR mtxatr; /* mutex attribute */

 PRI ceilpri; /* mutex's ceiling on priority level*/

 ID domid; /* domain ID(reserved) */

 UB oname[8]; /* object name */

 } T_CMTX;

 mutex attribute mtxatr

 mtxatr :＝ (TA_TFIFO || TA_TPRI) | TA_DELEXIT

 |(TA_GLOBAL || TA_KLOCAL || TA_PLOCAL) | TA_ONAME

 TA_TFIFO manage wait tasks with “FIFO”

 TA_TPRI manage wait tasks with priority order

 TA_DELEXIT specify auto deletion

 TA_GLOBAL specify global attribute to access attribute

 TA_KLOCAL specify Kernel Local to access attribute

 TA_PLOCAL specify Process Local to access attribute

 TA_ONAME specify the object name

Return Parameter

ID mtxid ＞ 0 mutex ID (normal completion)

 ＜ 0 error code

Error Code

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

117 TEF021-S003-01.00.00/en

 E_NOMEM Insufficient memory(memory for control block cannot be allocated)

 E_LIMIT Number of mutex exceeded the system limit

 E_RSATR Reserved attribute (mtxatr is invalid or cannot be used)

 E_PAR Parameter error (pk_cmtx,ceilpri is invalid)

 E_ONAME Specified object name has already been used

Description

Creates the mutex according to “pk_cmtx”. However, “exinf”, “ceilpri” and “domid” are ignored.

When the “TA_DELEXIT” attribute is specified, the mutex is automatically deleted when the process which created

the mutex exits. The TA_GLOBAL, TA_KLOCAL, and TA_PLOCAL attribute specify the access attribute of the

mutex. When the TA_PLOCAL attribute is specified, the TA_DELEXIT attribute is automatically specified as well.

Although other attributes are equivalent to the AMP T-Kernel mutex, the “TA_NODISWAI”, “TA_INHERIT”,

“TA_CEILING”, “TA_DOMID”, “TA_PUBLIC”, “TA_PROTECTED” and “TA_PRIVATE” attributes cannot be

specified.

Mutexes of other AMP TKSE cannot be created.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

118 TEF021-S003-01.00.00/en

Delete Mutex

tkse_del_mtx

C Language Interface

ER ercd = tkse_del_mtx (ID mtxid)

Parameter

ID mtxid mutex ID

Return Parameter

ER ercd error code

Error Code

E_OK Normal completion

E_ID Invalid ID number (mtxid is invalid or cannot be used)

E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)

E_DACV Access protection violation

Description

Deletes the mutex specified by “mtxid”.

Mutexes of other AMP TKSE cannot be deleted.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

119 TEF021-S003-01.00.00/en

Lock Mutex

tkse_loc_mtx

C Language Interface

ER ercd = tkse_loc_mtx (ID mtxid, TMO tmout);

Parameter

ID mtxid mutex ID

TMO tmout timeout period

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (mtxid is invalid or cannot be used)

 E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)

 E_PAR Parameter error (tmout <= (-2))

 E_DLT The object being waited for was deleted (the mutex was deleted while waiting for a lock)

 E_RLWAI Wait state released

 E_DISWAI Wait released by wait disabled state

 E_TMOUT Polling failed or timeout

 E_ILUSE Illegal use (multiple lock, or upper priority limit exceeded)

 E_DACV Access protection violation

Description

Locks the mutex specified by “mtxid”.

When the task is interrupted by the message handler, the wait state is released and “E_DISWAI” is returned.

Mutexes with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

120 TEF021-S003-01.00.00/en

Unlock Mutex

tkse_unl_mtx

C Language Interface

ER ercd = tkse_unl_mtx (ID mtxid);

Parameter

ID mtxid mutex ID

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (mtxid is invalid or cannot be used)

 E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)

 E_ILUSE Illegal use (not a mutex locked by the invoking task)

 E_DACV Access protection violation

Description

Unlocks the mutex specified by “mtxid”.

Mutexes with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

121 TEF021-S003-01.00.00/en

Refer to Mutex State

tkse_ref_mtx

C Language Interface

ER ercd = tkse_ref_mtx (ID mtxid, T_RMTX *pk_rmtx);

Parameter

ID mtxid mutex ID

T_RMTX *pk_rmtx the address to which the mutex state is returned

 typedef struct t_rmtx {

 VP exinf; /* extended information */

 ID htsk; /* locked task ID */

 ID wtsk; /* lock wait task ID */

 } T_RMTX;

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (mtxid is invalid or cannot be used)

 E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)

 E_PAR Parameter error (the address of the return parameter packet cannot be used)

 E_DACV Access protection violation

Description

Refers to the mutex state specified by “mtxid”, and returns its content to the address indicated by “pk_rmtx”.

However, NULL is always returned to “exinf”.

Mutexes with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

122 TEF021-S003-01.00.00/en

4.5.4 System Calls (Eventflag)

Create Eventflag
tkse_cre_flg

C Language Interface

ID flgid = tkse_cre_flg (T_CFLG *pk_cflg)

Parameter

T_CFLG *pk_cflg eventflag create information

 typedef struct t_cflg {

 VP exinf; /* extended information */

 ATR flgatr; /* eventflag attribute */

 UINT iflgptn; /* eventflag initial value */

 ID domid; /* domain ID (reserved) */

 UB oname[8]; /* object name */

 } T_CFLG;

 eventflag attribute flgatr

 flgatr:＝ (TA_TFIFO || TA_TPRI) | (TA_WMUL || TA_WSGL) | TA_DELEXIT

 |(TA_GLOBAL || TA_KLOCAL || TA_PLOCAL) | TA_ONAME

 TA_TFIFO manage wait tasks with “FIFO”

 TA_TPRI manage wait tasks with priority order

 TA_WSGL disallow a wait on multiple tasks

 TA_WMUL allow a wait on multiple tasks

 TA_DELEXIT specify auto deletion

 TA_GLOBAL specify global attribute to access attribute

 TA_KLOCAL specify Kernel Local to access attribute

 TA_PLOCAL specify Process Local to access attribute

 TA_ONAME specify the object name

Return Parameter

ID flgid ＞ 0 eventflag ID (normal completion)

 ＜ 0 error code

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

123 TEF021-S003-01.00.00/en

Error Code

 E_NOMEM Insufficient memory (memory for control block cannot be allocated)

 E_LIMIT Number of event flags exceeded system limit

 E_RSATR Reserved attribute (flgatr is invalid or cannot be used)

 E_PAR Parameter error(pk_cflg is invalid)

 E_ONAME Specified object name has already been used.

Description

Creates an eventflag according to “pk_cflg”. However, “exinf” and “domid” are ignored.

flgatr specifies the attribute of the event flag to be created. In the case the “TA_DELEXIT” attribute is specified, the

eventflag is automatically deleted when the process which created the eventflag exits. The TA_GLOBAL,

TA_KLOCAL, and TA_PLOCAL attribute specify the access attribute of the event flag. When the TA_PLOCAL

attribute is specified, the TA_DELEXIT attribute is automatically specified.

Although the other attributes are equivalent to the AMP T-Kernel eventflag, the “TA_NODISWAI” “TA_DOMID”,

“TA_PUBLIC”, “TA_PROTECTED” and the “TA_PRIVATE” attributes cannot be specified.

Event flags of other AMP TKSE cannot be created.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

124 TEF021-S003-01.00.00/en

Delete Eventflag

tkse_del_flg

C Language Interface

ER ercd = tkse_del_flg (ID flgid);

Parameter

ID flgid eventflag ID

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (flgid is invalid or cannot be used)

 E_NOEXS Object does not exist (domain of domid does not exist)

 E_DACV Access protection violation

Description

Deletes the eventflag specified by “flgid”.

Event flags of other AMP TKSE cannot be deleted.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

125 TEF021-S003-01.00.00/en

Set Eventflag

tkse_set_flg

C Language Interface

ER ercd = tkse_set_flg (ID flgid, UINT setptn);

Parameter

ID flgid eventflag ID

UINT setptn bit pattern to be set

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (flgid is invalid or cannot be used)

 E_NOEXS Object does not exist (the event flag specified in flgid does not exist)

 E_DACV Access protection violation

Description

Sets the pattern of “setptn” to the eventflag specified by “flgid”.

Event flags with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

126 TEF021-S003-01.00.00/en

Clear Eventflag

tkse_clr_flg

C Language Interface

ER ercd = tkse_clr_flg (ID flgid, UINT clrptn);

Parameter

ID flgid eventflag ID

UINT clrptn bit pattern to be cleared

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (flgid is invalid or cannot be used)

 E_NOEXS Object does not exist (the event flag specified in flgid does not exist)

 E_DACV Access protection violation

Description

The eventflag specified by “flgid” shall be cleared with the pattern of “clrptn”.

Event flags with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

127 TEF021-S003-01.00.00/en

Wait Eventflag

tkse_wai_flg

C Language Interface

ER ercd = tkse_wai_flg (ID flgid, UINT waiptn, UINT wfmode, UINT *p_flgptn, TMO tmout);

Parameter

ID flgid eventflag ID

UINT waiptn wait bit pattern

UINT wfmode wait mode

 TWF_ANDW AND wait

 TWF_ORW OR wait

 TWF_CLR specify to clear all

 TWF_BITCLR specify to clear conditional bit only

UINT *p_flgptn the address to which bit pattern is returned when a wait is cleared

TMO tmout timeout period

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (flgid is invalid or cannot be used)

 E_NOEXS Object does not exist (the event flag specified in flgid does not exist)

 E_PAR Parameter error (waiptn = 0, wfmode is invalid, or tmout <= (-2))

 E_OBJ Invalid object state (multiple tasks are waiting for an event flag with TA_WSGL

attribute)

 E_DLT The object being waited for was deleted (the specified event flag was deleted while

waiting)

 E_RLWAI Wait state released

 E_DISWAI Wait released by wait disabled state

 E_TMOUT Polling failed or timeout

 E_DACV Access protection violation

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

128 TEF021-S003-01.00.00/en

Description

Waits until the bit specified by “waiptn” is set to the eventflag specified by “flgid” in the wait condition specified by

“wfmode”.

When the task is interrupted by the message handler, the wait state is released and “E_DISWAI” is returned.

Event flags with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

129 TEF021-S003-01.00.00/en

Refer to Eventflag State

tkse_ref_flg

C Language Interface

ER ercd = tkse_ref_flg (ID flgid, T_RFLG *pk_rflg);

Parameter

T_RFLG *pk_rflg the address to which the eventflag state is returned

 typedef struct t_rflg {

 VP exinf; /* extended information */

 ID wtsk; /* waiting task ID */

 UINT flgptn; /* current eventflag pattern */

 } T_RFLG;

Return Parameter

ER ercd error code

Error Codes

 E_OK Normal completion

 E_ID Invalid ID number (flgid is invalid or cannot be used)

 E_NOEXS Object does not exist (the event flag specified in flgid does not exist)

 E_PAR Parameter error (pk_msg is a value that cannot be used)

 E_DACV Access protection violation

Description

Refers to the semaphore state specified by “flgid” and return its content to the address indicated by “pk_rflg”.

However, NULL is always returned to “exinf”.

Event flags with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

130 TEF021-S003-01.00.00/en

4.5.5 System Calls (Mailbox)

Create Mailbox
tkse_cre_mbx

C Language Interface

ID mbxid = tkse_cre_mbx(T_CMBX *pk_cmbx);

Parameter

T_CMBX* pk_cmbx mailbox creation information

 typedef struct t_cmbx {

 VP exinf; /* extended information */

 ATR mbxatr; /* mailbox attribute */

 ID domid; /* domain ID (reserved) */

 UB oname[8]; /* object name */

 } T_CMBX;

 mailbox attribute mbxatr

 mbxatr:＝ (TA_TFIFO || TA_TPRI) | (TA_MFIFO || TA_MPRI) | TA_ONAME

 TA_TFIFO queueing of waiting tasks is in FIFO

 TA_TPRI queueing of waiting tasks is in priority order

 TA_MFIFO queueing of messages is in FIFO

 TA_MPRI queueing of messages is in priority order

 TA_ONAME specify the object name

Return Parameter

ID mbxid ＞ 0 mailbox ID (normal completion)

 ＜ 0 error code

Error Code

 E_NOMEM Insufficient memory (memory for a control block or buffer cannot be allocated)

 E_LIMIT Maximum number of mailboxes of the system exceeded

 E_RSATR Reserved attribute (mbxatr is invalid or cannot be used)

 E_PAR Parameter error (pk_cmbx is invalid)

 E_ONAME Specified object name has already been used

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

131 TEF021-S003-01.00.00/en

Description

Creates the mailbox according to pk_cmbx. However, exinf and domid are ignored.

The attribute specification is equivalent to AMP T-Kernel mailbox, but TA_NODISWAI, TA_DOMID, TA_PUBLIC,

TA_PROTECTED and TA_PRIVATE attributes cannot be specified. Also, if TA_DELEXIT is specified, it will be

ignored.

Since the pointer to the data is passed, the mailbox is only available within the process which created the mailbox.

It is not available in communications between different processes. Therefore, all mailboxes are process local

attributes, and when the created process ends, the mailboxes are automatically deleted.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

132 TEF021-S003-01.00.00/en

Remove Mailbox

tkse_del_mbx

C Language Interface

ER ercd = tkse_del_mbx (ID mbxid) ;

Parameter

ID mbxid mailbox ID

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (mbxid is invalid or cannot be used)

 E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)

 E_DACV Access protection violation

Description

Removes the mailbox denoted by mbxid.

If processes other than the process which created the mailbox try to remove the mailbox, an access protection

error occurs.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

133 TEF021-S003-01.00.00/en

Send to Mailbox
tkse_snd_mbx

C Language Interface

ER ercd = tkse_snd_mbx (ID mbxid, T_MSG *pk_msg);

Parameter

ID mbxid mailbox ID

T_MSG* pk_msg start address of message packet

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (mbxid is invalid or cannot be used)

 E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)

 E_PAR Parameter error (pk_msg is a value that cannot be used)

 E_DACV Access protection violation

Description

Sends the message packet whose start address is pk_msg to the target mailbox denoted by mbxid.

The content of message packet is not copied and only start address (pk_msg value) is passed on receiving.

If processes other than the process which created the mailbox try to send to the mailbox, an access protection

error occurs.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

134 TEF021-S003-01.00.00/en

Receive from Mailbox

tkse_rcv_mbx

C Language Interface

ER ercd = tkse_rcv_mbx (ID mbxid, T_MSG **ppk_msg, TMO tmout) ;

Parameter

ID mbxid mailbox ID

TMO tmout timeout specification

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

T_MSG* pk_msg start address of message packet

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (mbxid is invalid or cannot be used)

 E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)

 E_PAR Parameter error (tmout <= (-2))

 E_DLT The object being waited for was deleted (the mailbox was deleted while waiting)

 E_RLWAI Wait state released

 E_DISWAI Wait released by wait disabled state

 E_TMOUT Polling failed or timeout

 E_DACV Access protection violation

Description

Receives a message from the mailbox denoted by mbxid.

If processes other than the process which created the mailbox try to receive from the mailbox, an access protection

error occurs.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

135 TEF021-S003-01.00.00/en

Refer to Mailbox State

tkse_ref_mbx

C Language Interface

ER tkse_ref_mbx (ID mbxid, T_RMBX *pk_rmbx) ;

Parameter

ID mbxid mailbox ID

T_RMBX* pk_rmbx packet address to which the mailbox state is returned

 typedef struct t_rmbx {

 VP exinf; /* extended information */

 ID wtsk; /* presence of waiting task */

 T_MSG* pk_msg; /* start address of the next message packet to be received */

 } T_RMBX;

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Error Code
 E_OK Normal completion

 E_ID Invalid ID number (mbxid is invalid or cannot be used)

 E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)

 E_PAR Parameter error (the return parameter packet address cannot be used)

 E_DACV Access protection violation

Description

Refers to the mailbox state specified by mbxid and returns its content to the address denoted by pk_rmbx .

However, exinf always becomes NULL regardless of the specification when it was created.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

136 TEF021-S003-01.00.00/en

4.5.6 System Calls (Message buffer)

Create Message buffer
tkse_cre_mbf

C Language Interface

ID mbfid = tkse_cre_mbf (T_CMBF *pk_cmbf);

Parameter

T_CMBF *pk_cmbf message buffer create information

 typedef struct t_cmbf {

 VP exinf; /* extended information */

 ATR mbfatr; /* message buffer attribute */

 INT bufsz; /* message buffer size (bytes) */

 INT maxmsz; /* maximum length of message (bytes) */

 ID domid; /* domain ID (reserved) */

 UB oname[8]; /* object name */

 } T_CMBF;

 message buffer attribute mbfatr

 mbfatr :＝ (TA_TFIFO || TA_TPRI) | TA_DELEXIT

 |(TA_GLOBAL || TA_KLOCAL || TA_PLOCAL) | TA_ONAME

 TA_TFIFO manage wait tasks with “FIFO”

 TA_TPRI manage wait tasks with priority order

 TA_DELEXIT specify auto deletion

 TA_GLOBAL specify global attribute to access attribute

 TA_KLOCAL specify Kernel Local to access attribute

 TA_PLOCAL specify Process Local to access attribute

 TA_ONAME specify the object name

Return Parameter

ID mbfid ＞ 0 message buffer ID (normal completion)

 ＜ 0 error code

Error Code

 E_NOMEM Insufficient memory (memory for a control block or ring buffer cannot be allocated)

 E_LIMIT Maximum number of message buffers of the system exceeded

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

137 TEF021-S003-01.00.00/en

 E_RSATR Reserved attribute (mbfatr is invalid or cannot be used)

 E_PAR Parameter error (pk_cmbf is invalid, bufsz or maxmsz is negative or invalid)

 E_ONAME Specified object name has already been used

Description

Creates message buffer according to “pk_cmbf”. However, “exinf” and “domid” ignored.

mbfatr specifies the message buffer attribute. When the “TA_DELEXIT” attribute is specified, the message buffer is

automatically deleted when the process which created the message buffer exits. The TA_GLOBAL, TA_KLOCAL,

and TA_PLOCAL attribute specify the access attribute of the message buffer. When the TA_PLOCAL attribute is

specified, the TA_DELEXIT attribute is automatically specified.

Although the other attributes are equivalent to the AMP T-Kernel message buffer, the “TA_NODISWAI”,

“TA_DOMID”, “TA_PUBLIC”, “TA_PROTECTED” and “TA_PRIVATE” attributes cannot be specified.

Message buffers of other AMP TKSE cannot be created.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

138 TEF021-S003-01.00.00/en

Delete Message buffer

tkse_del_mbf

C Language Interface

ER ercd = tkse_del_mbf (ID mbfid);

Parameter

ID mbfid message buffer ID

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (mtxid is invalid or cannot be used)

 E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)

 E_DACV Access protection violation

Description

Deletes the message buffer specified by “mbfid”.

Message buffers of other AMP TKSE cannot be deleted.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

139 TEF021-S003-01.00.00/en

Send to Message buffer

tkse_snd_mbf

C Language Interface

ER ercd = tkse_snd_mbf (ID mbfid, VP msg, INT msgsz, TMO tmout);

Parameter

ID mbfid message buffer

VP msg start address of a sending data

INT msgsz size of a sending data (bytes)

TMO tmout timeout period

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (mbfid is invalid or cannot be used)

 E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)

 E_PAR Parameter error (msgsz < 0, msgsz > maxmsz, value in msg can not be used, or tmout

<= (-2))

 E_DLT The object being waited for was deleted (message buffer was deleted while waiting)

 E_RLWAI Wait state released (tk_rel_wai received in wait state)

 E_DISWAI Wait released by wait disabled state

 E_TMOUT Polling failed or timeout

 E_DACV Access protection violation

Description

Sends data specified by “msg” and “msgsz” to the message buffer specified by “mbfid”.

When the task is interrupted by the message handler, the wait state is released and “E_DISWAI” is returned.

Message buffers with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

140 TEF021-S003-01.00.00/en

Receive from Message buffer

tkse_rcv_mbf

C Language Interface

INT msgsz = tkse_rcv_mbf (ID mbfid, VP msg, TMO tmout);

Parameter

ID mbfid message buffer

VP msg start address to store received data

TMO tmout timeout period

Return Parameter

INT msgsz ＞ 0 size of receiving data (bytes)

 ＜ 0 error code

Error Code

 E_ID Invalid ID number (mbfid is invalid or cannot be used)

 E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)

 E_PAR Parameter error (value in msg cannot be used, or tmout <= (-2))

 E_DLT The object being waited for was deleted (message buffer was deleted while waiting)

 E_RLWAI Wait state released (tk_rel_wai received in wait state)

 E_DISWAI Wait released by wait disabled state

 E_TMOUT Polling failed or timeout

 E_DACV Access protection violation

Description

Receives data from the message buffer specified by “mbfid” to store in “msg”.

When the task is interrupted by the message handler, the wait state is released and “E_DISWAI” is returned.

Message buffers with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

141 TEF021-S003-01.00.00/en

Refer to Message Buffer State

tkse_ref_mbf

C Language Interface

ER ercd = tkse_ref_mbf (ID mbfid, T_RMBF *pk_rmbf);

Parameter

ID mbfid message buffer

T_RMBF *pk_rmbf message buffer state information

 typedef struct t_rmbf {

 VP exinf; /* extended information */

 ID wtsk; /* receive wait task ID of the task waiting to be received*/

 ID stsk; /* send wait task ID of the task waiting to be sent*/

 INT msgsz; /* size of the next message to be received (bytes) */

 INT frbufsz; /* free buffer size (bytes) */

 INT maxmsz; /* maximum length of message (bytes) */

 } T_RMBF;

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (mbfid is invalid or cannot be used)

 E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)

 E_PAR Parameter error (the address of the return parameter packet cannot be used)

 E_DACV Access protection violation

Description

Refers to the message buffer state specified by “mbfid” and return its content to the address indicated by

“pk_rmbf”.

However, NULL is always returned to “exinf”.

Message buffers with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

142 TEF021-S003-01.00.00/en

4.5.7 System Calls (Rendezvous Port)

Create Rendezvous Port
tkse_cre_por

C Language Interface

ID porid = tkse_cre_por (T_CPOR *pk_cpor);

Parameter

T_CPOR *pk_cpor rendezvous port create information

 typedef struct t_cpor {

 VP exinf; /* extended information */

 ATR poratr; /* port attribute */

 INT maxcmsz; /* maximum length of call out message (bytes) */

 INT maxrmsz; /* maximum length of response message (bytes) */

 ID domid; /* domain ID(reserved) */

 UB oname[8]; /* object name */

 } T_CPOR;

 rendezvous port attribute poratr

 poratr:＝ (TA_TFIFO || TA_TPRI) | TA_DELEXIT

 |(TA_GLOBAL || TA_KLOCAL || TA_PLOCAL) | TA_ONAME

 TA_TFIFO manage wait tasks with FIFO

 TA_TPRI manage wait tasks with priority order

 TA_DELEXIT auto removal specification

 TA_GLOBAL specify global attribute to access attribute

 TA_KLOCAL specify Kernel Local to access attribute

 TA_PLOCAL specify Process Local to access attribute

 TA_ONAME specify the object name

Return Parameter

ID porid ＞ 0 rendezvous ID (normal completion)

 ＜ 0 error code

Error Code

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

143 TEF021-S003-01.00.00/en

 E_NOMEM Insufficient memory (memory for control block cannot be allocated)

 E_LIMIT Maximum number of rendezvous ports of the system exceeded

 E_RSATR Reserved attribute (poratr is invalid or cannot be used)

 E_PAR Parameter error (pk_cpor is invalid, maxcmsz or maxrmsz is negative or invalid)

 E_ONAME Specified object has already been used

Description

Creates rendezvous port according to “pk_cpor”. However, “exinf” and “domid” is ignored.

poratr specifies the attribute of the rendezvous port. When the “TA_DELEXIT” attribute is specified, the rendezvous

port is automatically deleted when the process which created the rendezvous port exits. TA_GLOBAL,

TA_KLOCAL, and the TA_PLOCAL attribute specify the access attributes of the rendezvous port. When the

TA_PLOCAL attribute is specified, the TA_DELEXIT attribute is automatically specified as well.

Although the other attributes are equivalent to the AMP T-Kernel eventflag, the “TA_NODISWAI”, “TA_DOMID”,

“TA_PUBLIC”, “TA_PROTECTED” and “TA_PRIVATE” attributes cannot be specified.

Rendezvous ports of other AMP TKSE cannot be created.

.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

144 TEF021-S003-01.00.00/en

Delete Rendezvous Port

tkse_del_por

C Language Interface

ER ercd = tkse_del_por (ID porid);

Parameter

ID porid rendezvous port ID

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (porid is invalid or cannot be used)

 E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)

 E_DACV Access protection violation

Description

Deletes the rendezvous port specified by “porid”

Rendezvous ports of other AMP TKSE cannot be deleted.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

145 TEF021-S003-01.00.00/en

Call Rendezvous

tkse_cal_por

C Language Interface

INT rmsgsz = tkse_cal_por (ID porid, UINT calptn, VP msg, INT cmsgsz, TMO tmout);

Parameter

ID porid rendezvous port ID

UINT calptn bit pattern to designate selection condition

VP msg start address of message

INT cmsgsz size of calling message (bytes)

TMO tmout timeout period

Return Parameter

INT rmsgsz ＞ 0 size of response message (the number of bytes)

 ＜ 0 error code

Error Code

 E_ID Invalid ID number (porid is invalid or cannot be used)

 E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)

 E_PAR Parameter error (cmsgsz < 0, cmsgsz > maxcmsz, calptn = 0, value that cannot be used in msg,

tmout <= (-2))

 E_DLT The object being waited for was deleted (the rendezvous port was deleted while waiting)

 E_RLWAI Wait state released (tk_rel_wai received in wait state)

 E_DISWAI Wait released by wait disabled state

 E_TMOUT Polling failed or timeout

 E_DACV Access protection violation

Description

Calls the rendezvous for the rendezvous port specified by “porid”.

When the task is interrupted by the message handler, the wait state is released and “E_DISWAI” is returned.

Rendezvous ports with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

146 TEF021-S003-01.00.00/en

Accept Rendezvous

tkse_acp_por

C Language Interface

INT cmsgsz = tkse_acp_por (ID porid, UINT acpptn, RNO *p_rdvno, VP msg, TMO tmout);

Parameter

ID porid rendezvous port ID

UINT acpptn bit pattern to designate selection condition

INT *p_rdvno the address to which the rendezvous number is returned

VP msg start address of message

TMO tmout timeout period

Return Parameter

INT cmsgsz ＞ 0 size of calling message (bytes)

 ＜ 0 error code

Error Code

 E_ID Invalid ID number (porid is invalid or cannot be used, or porid is a rendezvous port of another node)

 E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)

 E_PAR Parameter error (acpptn = 0, value that cannot be used in msg, or tmout <=(-2))

 E_DLT The object being waited for was deleted (the rendezvous port was deleted while waiting)

 E_RLWAI Wait state released (tk_rel_wai received in wait state)

 E_DISWAI Wait released by wait disabled state

 E_TMOUT Polling failed or timeout

 E_DACV Access protection violation

Description

Accepts the rendezvous for the rendezvous port specified by “porid”.

When the task is interrupted by the message handler, the wait state is released and “E_DISWAI” is returned.

Rendezvous ports with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

147 TEF021-S003-01.00.00/en

Forward Rendezvous

tkse_fwd_por

C Language Interface

ER ercd = tkse_fwd_por (ID porid, UINT calptn, RNO rdvno, VP msg, INT cmsgsz);

Parameter

ID porid rendezvous port ID

UINT calptn bit pattern to designate selection condition

INT rdvno rendezvous number before forwarding

VP msg start address of message

INT cmsgsz calling message size (bytes)

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (porid is invalid or cannot be used, or porid is a rendezvous port of another node)

 E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)

 E_PAR Parameter error (cmsgsz < 0, cmsgsz > maxcmsz after forwarding, cmsgsz > maxrmsz before

forwarding, calptn = 0, or msg has a value that cannot be used)

 E_OBJ Invalid object state (rdvno is invalid, or maxrmsz (after forwarding) > maxrmsz (before forwarding))

 E_DISWAI Wait released by wait disabled state

 E_DACV Access protection violation

Description

Forwards the accepted rendezvous to another rendezvous port.

Rendezvous ports with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

148 TEF021-S003-01.00.00/en

Reply to Rendezvous

tkse_rpl_rdv

C Language Interface

ER ercd = tkse_rpl_rdv (RNO rdvno, VP msg, INT rmsgsz);

Parameter

INT rdvno rendezvous number

VP msg start address of response reply message

INT rmsgsz size of reply message size (the number of bytes)

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_PAR Parameter error (rmsgsz＜0,rmsgsz＞maxrmsz, or value in msg cannot be used)

 E_OBJ Invalid object state (rdvno is invalid)

Description

 Returns rendezvous response reply to exit rendezvous.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

149 TEF021-S003-01.00.00/en

Refer to Rendezvous Port State

tkse_ref_por

C Language Interface

ER ercd = tkse_ref_por (ID porid, T_RPOR *pk_rpor);

Parameter

ID porid rendezvous port ID

T_RPOR *pk_rpor rendezvous port state information

 typedef struct t_rpor {

 VP exinf; /* extended information */

 ID wtsk; /* call wait task ID */

 ID atsk; /* accept wait task ID */

 INT maxcmsz; /* maximum length of call out message (bytes) */

 INT maxrmsz; /* maximum length of response message (bytes) */

 } T_RPOR;

Return Parameter

ER ercd error code

Error Code

 E_OK Normal completion

 E_ID Invalid ID number (porid is invalid or cannot be used)

 E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)

 E_PAR Parameter error (the return parameter packet address cannot be used)

 E_DACV Access protection violation

Description

Refers to the message buffer state specified by “porid” and returns its content to the address indicated by

“pk_rpor”.

However, NULL is always returned to “exinf”.

Rendezvous ports with the global attribute of other AMP TKSE can be specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

150 TEF021-S003-01.00.00/en

4.6 Object Management

4.6.1 Overview

The object management function of AMP TKSE provides a kernel domain ID reference and ID number retrieval

function.

The kernel domain ID is an identification number for identifying the kernel. It is also used to identify AMP TKSE.

The kernel domain ID is automatically allocated by the kernel. The kernel domain ID allocated to the processor can

be acquired by specifying the processor number.

The ID number retrieval function retrieves ID numbers by using the object name of the process and the

synchronization and communication object. Only objects that can be operated from itself can be retrieved. In other

words, the following objects can be retrieved.

 All objects with global attributes

 For objects with the kernel local attribute, objects of the same AMP TKSE as itself

 For objects with the process local attribute, objects of the same process as itself

The ID number retrieval specifies the object name and the target of retrieval.

When objects with the global attribute or kernel local attribute are retrieved, the kernel domain ID of AMP TKSE

that the object belongs to is specified in the target of the retrieval. When objects with the process local attribute are

retrieved, only its own process can be specified.

Although the access attribute cannot be specified for processes during creation, processes are treated as global

attributes in the object management function.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

151 TEF021-S003-01.00.00/en

4.6.2 System Calls

Get kernel domain ID
tkse_get_kdm

C Language Interface

ID domid ＝ tkse_get_kdm(ID prcid);

Parameter

 ID prcid Processor ID number

Return Parameter

 ID domid ＞ 0 Kernel domain ID (normal completion)

 ＜ 0 error code

Error Code

 E_ID Invalid ID number (prcid is invalid or cannot be used)

Description

Acquires the kernel domain ID number of the AMP T-Kernel that operates by the processor shown by prcid.

If prcid = PRC_SELF = 0, its own kernel domain ID will be returned.

The Kernel domain ID can be used to identify AMP T-Kernel and AMP TKSE operating on the AMP T-Kernel.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

152 TEF021-S003-01.00.00/en

Object ID Retrieval

 tkse_fnd_prc, tkse_fnd_sem, tkse_fnd_flg, tkse_fnd_mbx,
tkse_fnd_mbf, tkse_fnd_mtx, tkse_fnd_por

C Language Interface

ID prcid = tkse_fnd_prc (ID domid, UB *oname) ; /* process */

ID semid = tkse_fnd_sem (ID domid, UB *oname) ; /* semafor */

ID flgid = tkse_fnd_flg (ID domid, UB *oname) ; /* event flag */

ID mbxid = tkse_fnd_mbx (ID domid, UB *oname) ; /* mailbox */

ID mbfid = tkse_fnd_mbf (ID domid, UB *oname) ; /* message buffer */

ID mtxid = tkse_fnd_mtx (ID domid, UB *oname) ; /* mutex */

ID porid = tkse_fnd_por (ID domid, UB *oname) ; /* rendezvous port */

Parameter

 ID domid Kernel domain ID

 UB* oname Object name

Return Parameter

 ID ～id ＞ 0 Specified object ID (normal completion)

 ＜ 0 Error code

Error Code

E_ID Invalid ID number (domid is invalid or cannot be used)

E_NOEXS Object does not exist (object of oname does not exist)

E_PAR Parameter error (oname is invalid or cannot be used)

Description

Retrieves the object that belongs to the kernel or the process shown by domid by the object name, and gets the

object ID. Specifies the object name of the object to be retrieved in oname.

In order to retrieve the object of other AMP TKSE, specify the kernel domain ID of the AMP TKSE in domid.

Objects with the global attribute of a specified AMP TKSE become the target of the retrieval.

If domid=TAR_SELF(=0) is specified, objects with the global attribute and kernel local attribute in its own AMP

TKSE become the target of the retrieval.

If domid=TAR_PRIV(=-1) is specified, objects with the process local attribute of its own process become the target.

If the domain ID of its own AMP TKSE is specified, it is the same as when TAR_SELF is specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

153 TEF021-S003-01.00.00/en

If the object specified in domid and oname is found, the ID of the object is returned. If the corresponding object

does not exist, E_NOEXS is returned.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

154 TEF021-S003-01.00.00/en

Object ID Retrieval

 tkse_fnd_prc, tkse_fnd_sem, tkse_fnd_flg, tkse_fnd_mbx,
tkse_fnd_mbf, tkse_fnd_mtx, tkse_fnd_por

C Language Interface

ID prcid = tkse_fnd_prc (ID domid, UB *oname) ; /* process */

ID semid = tkse_fnd_sem (ID domid, UB *oname) ; /* semafor */

ID flgid = tkse_fnd_flg (ID domid, UB *oname) ; /* event flag */

ID mbxid = tkse_fnd_mbx (ID domid, UB *oname) ; /* mailbox */

ID mbfid = tkse_fnd_mbf (ID domid, UB *oname) ; /* message buffer */

ID mtxid = tkse_fnd_mtx (ID domid, UB *oname) ; /* mutex */

ID porid = tkse_fnd_por (ID domid, UB *oname) ; /* rendezvous port */

Parameter

 ID domid Kernel domain ID
 UB* oname Object name

Return Parameter

E_ID Invalid ID number (domid is invalid or cannot be used)
E_NOEXS Object does not exist (object of oname does not exist)
E_PAR Parameter error (oname is invalid or cannot be used)

Description

Retrieves the object that belongs to the kernel or the process shown by domid by the object name, and gets the

object ID. Specifies the object name of the object to be retrieved in oname.

In order to retrieve the object of other AMP TKSE, specify the kernel domain ID of the AMP TKSE in domid.

Objects with the global attribute of a specified AMP TKSE become the target of the retrieval.

If domid=TAR_SELF(=0) is specified, objects with the global attribute and kernel local attribute in its own AMP

TKSE become the target of the retrieval.

If domid=TAR_PRIV(=-1) is specified, objects with the process local attribute of its own process become the

target.

If the domain ID of its own AMP TKSE is specified, it is the same as when TAR_SELF is specified.

If the object specified in domid and oname is found, the ID of the object is returned. If the corresponding object

does not exist, E_NOEXS is returned.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

155 TEF021-S003-01.00.00/en

4.7 Standard Input/Output Function

4.7.1 Standard Input/Output Function Overview

Standard input/output of AMP TKSE mainly provides functions related to file input/output. The API specification of

the AMP TKSE standard input/output function is the same as the T-Kernel Standard Extension Version 1.00

Specification.

The standard input/output function conducts file operations by using the following system calls in order to handle

file systems with various specifications in a uniform manner unlike the standard file management function.

ER tkse_attach(const TC *devnm, const char *connm, int mode) file system connection

ER tkse_detach(const TC *devnm, int eject) file system disconnection

ER tkse_open(const char *path, int oflag, mode_t mode) open file system

ER tkse_close(int fildes) close file system

ER tkse_lseek(int fildes, off_t offset, int whence) move the current position of a file/directory

ER tkse_read(int fildes, void *buf, size_t nbyte) read file

ER tkse_write(int fildes, const void *buf, size_t nbyte) write file

ER tkse_getdents(int fildes, struct dirent *buf, size_t nbyte) fetch directory entry

ER tkse_stat(const char *path, struct stat *sb) retrieval of file information 1

ER tkse_lstat(const char *path, struct stat *sb) retrieval of file information 2

ER tkse_fstat(inf fildes, struct stat *sb) retrieval of file information 3

ER tkse_rename(const char *from, const char *to) rename file

ER tkse_unlink(const char *path) remove directory entry

ER tkse_mkdir(const char *path, mode_t mode) directory creation

ER tkse_rmdir(const char *path) directory removal

ER tkse_dup(int oldd) file descriptor replication 1

ER tkse_dup2(int oldd, int newd) file descriptor replication 2

ER tkse_fsync(int fildes) file's disk cache content and disk synchronization

ER tkse_chdir(const char *path) modify current directory 1

ER tkse_fchdir(int fildes) modify current directory 2

ER tkse_chmod(const char *path, mode_t mode) modify file mode 1

ER tkse_fchmod(int fildes, mode_t mode) modify file mode 2

ER tkse_creat(const char *path, mode_t mode) file creation

ER tkse_utimes(const char *path, const struct timeval times[2]) modify access time, modification time

ER tkse_umask(mode_t cmask) set file creation mask

ER tkse_truncate(const char *path, off_t length) set file size to the specified length 1

ER tkse_ftruncate(int fildes, off_t length) set file size to the specified length 2

ER tkse_sync(void) disk cache content and disk synchronization

ER tkse_getfsstat(struct statfs *buf, W bufsize, int flags) retrieve a list of file systems

ER tkse_getlink(const char *path, char *buf) retrieve a LINK to standard file

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

156 TEF021-S003-01.00.00/en

4.7.2 Target File System

File systems that can be handled by standard input/output are the following four kinds.

(1) T-Kernel Standard File System

 Files and directories are not distinguished in the standard file system. On the standard input/output, they are

classified as either a file or a directory according to the following conditions:

 • directory

Files which include link records.

Indicates this directory and parent directories whose file type (file's application type) are 6 (cabinet pictogram)

 • file

Files other than directory.

* The file's destination is one leading record only whose record type is 31. The target record is fixed when

tkse_open or tkse_write is called first time after file creation, and remains the same until tkse_close is called.

(2) FAT File System

Accommodates FAT12, FAT16, FAT32 file system. Accommodates VFAT long file name.

It is accessible to both disks without partition information such as floppy disks and disks with partition information

such as hard disks. However, for partition information, only basic partitions are supported.

(3) CD-ROM File System

Accommodates ISO 9660 Level 1 file system. Read only and unable to write.

(4) Shared Filesystem

Shared filesystems are shared by filesystem sharing management. For details, refer to “4.9 Filesystem Sharing

Management”.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

157 TEF021-S003-01.00.00/en

4.7.3 File Access

(1) attach/detach file system

First, in order to access the file system on the device using STDIO, it is necessary to attach the file

system(tkse_attach). The name of the file system specified at this time is called the "connection name".

To cancel connection, it is necessary to detach the file system(tkse_detach).

(2) open/close file

Writing and reading of the file become possible by opening of the file after file system connection. Success of

opening of the file will assign a new file descriptor. File descriptor is the identifier with zero or more integral values,

and performs the file operation using this identifier.

By closing of the file (tkse_close), the file descriptor becomes invalid.

The file descriptor is effective only within the process which opened the applicable file. File operation cannot be

performed using the file descriptor which other processes opened.

All the files that the process opened are closed by the process termination.

A directory can also obtain the file descriptor by opening/closing.

4.7.4 Initial State of File Descriptor

The following file descriptors will be automatically opened at process startup:

 STDIN_FILENO 0 standard Input

 STDOUT_FILENO 1 standard output

 STDERR_FILENO 2 standard error output

These are all console I/Os assigned to the invoked process.

They cannot be closed unlike regular file descriptors.

4.7.5 Disk Cache

Using the disk cache, writing and reading can be performed efficiently. The data of the disk cache can be made to

reflect in the file on a device by performing Close of the file, or the synchronization (tkse_sync, tkse_fsync) of the

disk cache.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

158 TEF021-S003-01.00.00/en

4.7.6 File Name

Directories and files cannot have the names which Japanese EUC (Including ASCII code) cannot describe. Note

that directories and files with such names cannot be created. If there exist directories and files which have the

names which Japanese EUC cannot describe, the results of retrieving the names are uncertain.

The maximum length of each file name may differ according to target file systems, any portion that exceeds the

maximum length in each file system will be ignored.

 • When referring a file:

 The matching file name is found after any part greater than the maximum length is ignored.

 • When creating a file:

 The file is created with the name after any part greater than the maximum length is truncated.

 • retrieval of file name

 The file name is retrieved after any part greater than the maximum length is truncated.

* The following unique specification is applied only when the T-Kernel standard file system is used.

(1) Conversion to TRON code

In order to use TRON code for a file name in the T-Kernel standard file system, Japanese EUC is converted to

TRON code inside the standard input/output.

In conversion from Japanese EUC to TRON code, single-byte characters are converted to corresponding

double-byte characters (JIS level-1).

The conversion from TRON code to Japanese EUC is the reverse, and if there exist corresponding single-byte

characters, they are converted to single-byte characters. However, two characters "/" and ":" are not converted to

single-byte characters to distinguish path name and a delimiter representing the order in which it appears.

For example, file name string "Example1" is retrieved from the file called "Example1". When specifying this file,

since either "Example1" or "Example1" is converted to "Example1", the same file will be specified.

In file names such as "Manuscript paper/E1", "/" is treated as a delimiter of path names, so the file called

"Manuscript paper/E1" may not be specified. In this cases, the file may be specified by specifying "Manuscript

paper/E1".

(2) Maximum filename length

File names up to 20 characters are allowed in the T-Kernel standard file system, but the maximum number of file

names consisting of ASCII characters only will be extended to 34 characters by employing special encoding of file

names.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

159 TEF021-S003-01.00.00/en

Only if a file name is greater than 20 characters and it consists of ASCII characters (but characters only in the

range 0x20-0x7e), the following special encoding will apply. Besides this, a file name is only converted from

Japanese EUC to TRON code.

• Special encoding

 Each character used in file names in the T-Kernel standard file system is encoded with two bytes (TC type =

TRON code). Leading three characters of this file name consisting of two bytes/character are assumed to be a

start mark of special encoding, 34 bytes of the remaining 17 characters make up a file name encoded with one

byte/character.

• Start mark of special encoding

 TK_U(0x2355), TK_X(0x2358), 0xA121

• File name encoding

 ASCII codes (0x20-0x7e) are converted to 0x80-0xde and two characters each are packed and converted to TC

type (two bytes/character format).

 ((c1 + 0x60) << 8) | (c2 + 0x60) -> TC type

 c1: odd number character

 c2: even number character

 If the number of characters of a file name is odd, last one character will not be packed and be

assumed to be a normal TRON code (TC type).

 * 0xA121 corresponds to 1-1 code of JIS X 0212 (supplemental kanji set). This is undefined in JIS code and is

usually not used.

 * After packing, they are either undefined characters in D zone of TRON code or characters corresponding to

KSC5601 (Korean).

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

160 TEF021-S003-01.00.00/en

4.7.7 Path Name

The path name is a character string that shows the location of the file. The character string of the path name

sequences the route of the directory tree until it reaches the corresponding file from the root directory which is the

starting point.

/connection name/directory name/file name

Example: "/CD/DIR_1/FILE.EXT"

 The character code is Japanese EUC. The delimiter codes "/", "." may be single-byte characters (ASCII).

 In T-Kernel standard file system, specification in the order it appears such as ":1" is available.

 Example: "/SYS/DIR:1/FILE.EXT:2"

":" and numerals may be single-byte characters (ASCII).

* If all characters after ":" are numerals, the order they appear is specified. And, to find a file which already exists,

use the file name with the order in which it appears, and to create a new file, use the file name without the order it

appears.

For example, to create a file called "NEW_FILE:3", find NEW_FILE with the order in which it appears as "3". If it

does not exist, create a file called "NEW_FILE".

* Since current directory function is not implemented, full path name should always be specified.

4.7.8 Root Directory

The root directory is a virtual directory with the highest rank among all other directories. The entity of the root

directory does not exist on the file system.

Immediately under the root directory, all file systems currently connected exist as a virtual subdirectory. The name

of each subdirectory becomes the connection name of the file system. When the file system is connected, a new

virtual subdirectory is created under the root directory, and actual files and the directory are arranged under this

virtual subdirectory.

The root directory is a directory for read only, and normal files and directories cannot be created immediately

under the root directory. Moreover, it is not possible to change the name of a virtual subdirectory immediately

under the root directory (connection name) by using the file name change system call.

For root directory, you can open and close the directory, fetch the directory entry, and retrieve directory

information. You can also move current directory to root directory. If root directory is specified in other system

calls, an error occurs.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

161 TEF021-S003-01.00.00/en

4.7.9 Current Directory

A process maintains each individual current directory information. The current directory is used to realize file and

directory access with the relative path name.

Current directory information of the process is succeeded by the child process. Moreover, the current directory of

the initial process becomes the root directory "/ "in the initial state.

Directories in which any process is set in the current directory cannot be deleted. However, the directory name

can be changed.

4.7.10 This Directory "." and Parent Directory ".."

Its own directory "." and parent directory ".." can be used as the path name.

Its own directory displays the current directory, and the parent directory displays the directory which is one rank

above. However, as an exception, the parent directory of the root directory displays the root directory itself.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

162 TEF021-S003-01.00.00/en

4.7.11 Error Code

In libraries which the leverage standard input/output system calls, the following error codes are set to a variable

errno when an error occurs:

 #include <errno.h>

EFAULT illegal address

EINVAL illegal parameter

ENOMEM insufficient memory

EEXIST already exist(s)

EMFILE maximum open files exceeded

ESRCH no process

EINTR interrupted by a system call

EBADF illegal file descriptor

EACCES no access privileges

EPERM processing not allowed

EROFS unwritable file system

EXDEV not the same file system

ENOENT no file or directory

ENOSPC insufficient disk space

ENODEV processing on device not allowed

EIO input/output error

EDEADLK abnormal lock

EBUSY busy

＜ 0 other error

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

163 TEF021-S003-01.00.00/en

4.7.12 System Calls

Attach file system
tkse_attach

C Language Interface

ER ercd = tkse_attach(const TC *devnm, const char *connm, int mode);

Parameter

const TC *devnm device name

const char *connm connection name

int mode connection mode

 (SF_STDFS || SF_FATFS || SF_CDROM) | [SF_RONLY]

 SF_RONLY 0x0001 read only

 SF_STDFS 0x0000 T-Kernel Standard File system

 SF_FATFS 0x0100 FAT File system

 SF_CDROM 0x0200 CD-ROM File system

Return Parameter

ER ercd = 0 normal completion

 ＜ 0 error code

Description

Connects the file system of a device with the device name of devnm by using the connection name of connm and

connection mode of mode.

Connection names are 16 bytes or less (excluding '¥0' at the end of the character string). However, it becomes

eight characters or less (in the case of 1 byte characters, 8 bytes or less, and in the case of 2 byte characters only,

16 bytes or less) for the T-Kernel standard file system.

The connection mode "mode" specifies the kind of connected file system.

T-Kernel standard file system/FAT file system/CD-ROM file system are each connected respectively by specifying

SF_STDFS/SF_FATFS/SF_CDROM.

When SF_RONLY is specified in the mode in addition to the kind of file system, the file system is connected as

read only.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

164 TEF021-S003-01.00.00/en

Detach file system
tkse_detach

C Language Interface

ER tkse_detach(const TC *devnm, int eject);

Parameter

const TC *devnm device name

int eject eject specification

 ＝0 No eject

 !=0 Eject (Ignores devices in which eject is possible)

Return Parameter

ER ercd = 0 normal completion

 ＜ 0 error code

Description

Detaches the file systems of devices with device name devnm.

When a file in the filesystem has been opened, detach is not possible.

Everything is synchronized when data exists on the disk cache.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

165 TEF021-S003-01.00.00/en

Open File/Directory
tkse_open

C Language Interface

ER ercd = tkse_open(const char *path, int oflag, mode_t mode);

Parameter

const char *path file path to open

int oflag open mode of file/directory

mode_t mode mode when “O_CREAT” is specified

Return Parameter

ER ercd >= 0 normal completion (file descriptor)

 ＜ 0 error code

Description

Open the file/directory specified by the path name “path” in the open mode “oflag”.

If successful, file descriptor (>=0) is returned to a return parameter.

The file descriptor is the minimum among the all unused numbers.

 oflag := (O_RDONLY || O_WRONLY || O_RDWR) | [O_CREAT | [O_EXCL]] | [O_TRUNC] | [O_APPEND]

“oflag” can be one of the following:

 O_RDONLY 0x0000 read only

 O_WRONLY 0x0001 write only

 O_RDWR 0x0002 read/write

Optionally, “oflag” can also be OR of the above and the following:

 O_CREAT 0x0200 Create the file if there is not a file

 O_TRUNC 0x0400 Delete file content

 O_EXCL 0x0800 An error occurs if there is a file

 O_APPEND 0x0008 Constantly appended at the end

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

166 TEF021-S003-01.00.00/en

 O_CREAT Create the file if there is not a file. If the file already exists, the flag has no effect.

 Create a file in the mode specified by “mode”.

 O_EXCL Specify this along with “O_CREAT”. If the file already exists, an error occurs.

Ignore if O_CREAT is not specified.

 O_TRUNC Discard file content and set file size to zero.

 Ignored if set to directory.

 Ignored in the case of read-only open (“O_RDONLY” specification).

 O_APPEND Constantly appended at the end of file when writing to the file.

 At this point, the current position is moved to the end.

 Same as moving to the end of file by using “tkse_lseek” just before “tkse_write”.

“mode” should be specified only when “O_CREAT” is specified.

Specify the “mode” by taking the union of the followings with OR:

 S_IRWXU 00700 owner RWX mask

 S_IRUSR 00400 owner R read permission

 S_IWUSR 00200 owner W write permission

 S_IXUSR 00100 owner X execute permission

 S_IRWXG 00070 group RWX mask

 S_IRGRP 00040 group R read permission

 S_IWGRP 00020 group W write permission

 S_IXGRP 00010 group X execute permission

 S_IRWXO 00007 other RWX mask

 S_IROTH 00004 other R read permission

 S_IWOTH 00002 other W write permission

 S_IXOTH 00001 other X execute permission

 S_ISUID 04000 run time user ID setting

 S_ISGID 02000 run time group ID setting

 S_ISVTX 01000 sticky bit

These “mode” specifications have different scopes according to the target file systems. Invalid specifications will be

ignored in the target file system.

In addition, the mask with “umask” will not be executed since the “umask” function is not currently implemented.

• T-Kernel Standard File system

 The file type determined at “tkse_open()” time remains unchanged until the execution of “tkse_close()”. For

example, when the file including link record is opened at “tkse_open()” as a directory, its file type is held as a

directory even if link record is entirely deleted by other processes until the execution of “tkse_close()”

 Set the file access attributes to read-only when read-only permission is given to its owner, group, and the others.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

167 TEF021-S003-01.00.00/en

In other cases, write permission is given.

 The file access mode is always set to default.

• FAT File system

 The read-only attribute is set when read-only permission is given to the owner, group, and others.

 In other cases, write permission is given.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

168 TEF021-S003-01.00.00/en

Close file / directory

tkse_close

C Language Interface

ER ercd = tkse_close(int fildes);

Parameter

int fildes file descriptor

Return Parameter

ER ercd ＝ 0 normal completion

 ＜ 0 error code

Description

Closes the file/directory specified by the file descriptor “fildes”.

When a file which is open for writing is closed, if the same file is not open for writing at the same time in other

locations, disk cache synchronization processing of the file (processing of writing back the content of the change

from the disk cache to the disk) is conducted.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

169 TEF021-S003-01.00.00/en

Move the current position of a file/directory

tkse_lseek

C Language Interface

ER ercd = tkse_lseek(int fildes, off_t offset, int whence);

Parameter

int fildes file descriptor

off_t offset offset from the specified position

int whence specify to start whence

 (SEEK_SET || SEEK_CUR || SEEK_END)

 SEEK_SET 0 move to the “offset” position

 SEEK_CUR 1 move to the current position + offset

 SEEK_END 2 move to the end + offset

Return Parameter

ER ercd >= 0 normal completion （Current position following the move）

 ＜ 0 error code

Description

Moves the current position (position in bytes) of the file/directory specified by the file descriptor “fildes”.

When “fildes” designates a directory, “tkse_lseek” should not be used for purposes other than those of setting the

current position to zero.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

170 TEF021-S003-01.00.00/en

Read file

tkse_read

C Language Interface

ER ercd = tkse_read (int fildes, void *buf, size_t nbyte);

Parameter

int fildes file descriptor

void *buf read buffer

size_t nbyte read size (in bytes)

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Description

Reads “nbyte” bytes from the current position of the file specified by the file descriptor “fildes” to “buf”. Advance the

file's current position for the number of read bytes.

The number of bytes that succeeded in reading is returned as a return parameter. When the current position of the

file is file terminal, 0 is returned. When an error occurs during reading, the error code is returned. In this case, the

current position of the file is not changed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

171 TEF021-S003-01.00.00/en

Write file

tkse_write

C Language Interface

ER ercd = tkse_write(int fildes, const void *buf, size_t nbyte);

Parameter

const int fildes file descriptor

void *buf write-buffer

size_t nbyte write size (bytes)

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Description

Writes “buf” from the current position of the file specified by the file descriptor “fildes” to “nbyte” bytes. Advance the

file's current position for the number of written bytes.

The return parameter zero indicates the end of file. When an error occurres during writing, it is indeterminate how

much data is written, but the file's current position is unchanged. When the current position of the file exceeds the

actual file size, the behavior is as follows.

 • T-Kernel Standard File system

 An error occurs.

 • FAT File system

 The byte sequence of zero is written from the end of the file to the current position.

 The number of bytes of the return parameter is not included in this area.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

172 TEF021-S003-01.00.00/en

Get directory entry

tkse_getdents

C Language Interface

ER ercd = tkse_getdents(int fildes, struct dirent *buf, size_t nbyte);

Parameter

int fildes file descriptor

struct dirent *buf read buffer of directory entry

size_t nbyte read size (bytes)

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Description

Reads directory entry (record) from the current position of the directory specified by the file descriptor “fildes”, and

convert it into a “struct dirent” format to write to “buf”.

Specifies the size of “buf” in “nbyte” (bytes). Read contiguous directory entries to be entered into this size. Move

the directory's current position so that the directory entry next to the directory entry that is lastly read can be

indicated.

 struct dirent {

 unsigned int d_fileno; /* file number */

 unsigned short d_reclen; /* record length (the number of bytes) */

 unsigned char d_type; /* file type */

 unsigned char d_namlen; /* string length of “d_name” */

 char d_name[255+1]; /* file name */

 };

 file type:

 DT_UNKNOWN 0 unknown

 DT_FIFO 1 named pipe (FIFO)

 DT_CHR 2 character type special file

 DT_DIR 4 directory

 DT_BLK 6 block type special file

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

173 TEF021-S003-01.00.00/en

 DT_REG 8 normal file

 DT_LNK 10 symbolic link

 DT_SOCK 12 socket

“struct dirent” is a variable length data, and its size can be determined from “d_reclen”. When multiple directory

entries are read, the position in “buf” where the next directory entry was stored can be determined by “d_reclen”.

The return parameter zero indicates the end of directory.

The number of bytes that succeeded in reading is returned as a return parameter. When the current position of the

file is file terminal, 0 is returned. When an error occurs during reading, the error code is returned. In this case, the

current position of the file is not changed.

 • T-Kernel Standard File system

 The file name including the order of appearance is stored in “d_name”. When directory entries are obtained by

“tkse_getdents” multiple times, the order in which they appear may become incorrect by the accesses from

other processes.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

174 TEF021-S003-01.00.00/en

Get file information

tkse_stat

C Language Interface

ER ercd = tkse_stat (const char *path, struct stat *sb);

Parameter

const char *path file path name

struct stat *sb buffer to get file information

Return Parameter

 ER ercd ＝ 0 Normal completion

 ＜ 0 Error code

Description

Get the information of the file specified by the path name “path” to store in “sb”.

 struct stat {

 dev_t st_dev; /* device ID */

 ino_t st_ino; /* file serial number */

 mode_t st_mode; /* file mode */

 nlink_t st_nlink; /* the number of links */

 uid_t st_uid; /* owner ID */

 gid_t st_gid; /* group ID */

 dev_t st_rdev; /* device type */

 struct timespec st_atimespec; /* latest access time */

 struct timespec st_mtimespec; /* latest update time */

 struct timespec st_ctimespec; /* latest file state update time */

 off_t st_size; /* file size (bytes) * /

 int64_t st_blocks; /* the number of assigned blocks of file */

 u_int32_t st_blksize; /* block size (the number of bytes) */

 u_int32_t st_flags; /* user-defined flag */

 u_int32_t st_gen; /* file generate number */

 int32_t st_lspare; /* (reserved) */

 int64_t st_qspare[2]; /* (reserved) */

 };

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

175 TEF021-S003-01.00.00/en

 #define st_atime st_atimespec.tv_sec

 #define st_mtime st_mtimespec.tv_sec

 #define st_ctime st_ctimespec.tv_sec

 #define S_BLKSIZE 512 /* block size (bytes) as an unit of “st_blocks */

The union (OR) value of the following values is returned to the file mode “st_mode”

 #define S_IRWXU 0000700 /* owner RWX mask */

 #define S_IRUSR 0000400 /* owner R read permission */

 #define S_IWUSR 0000200 /* owner W write permission */

 #define S_IXUSR 0000100 /* owner X execute permission */

 #define S_IRWXG 0000070 /* group RWX mask */

 #define S_IRGRP 0000040 /* group R read permission */

 #define S_IWGRP 0000020 /* group W write permission */

 #define S_IXGRP 0000010 /* group X execute permission */

 #define S_IRWXO 0000007 /* other RWX mask */

 #define S_IROTH 0000004 /* other R read permission */

 #define S_IWOTH 0000002 /* other W write permission */

 #define S_IXOTH 0000001 /* other X execute permission */

 #define S_ISUID 0004000 /* run time user ID setting */

 #define S_ISGID 0002000 /* run time group ID setting */

 #define S_ISVTX 0001000 /* sticky bit */

 #define S_IFMT 0170000 /* file type mask */

 #define S_IFIFO 0010000 /* named pipe (FIFO) */

 #define S_IFCHR 0020000 /* character type special file */

 #define S_IFDIR 0040000 /* directory */

 #define S_IFBLK 0060000 /* block type special file */

 #define S_IFREG 0100000 /* normal file */

 #define S_IFLNK 0120000 /* symbolic link */

 #define S_IFSOCK 0140000 /* socket */

 The user defined flag st_flags returns the logical sum of the following values.

 #define SF_ARCHIVED 0x00010000 /* archive file */

 #define SF_SYSTEM 0x40000000 /* system file */

 #define SF_HIDDEN 0x80000000 /* hidden file */

 struct timespec {

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

176 TEF021-S003-01.00.00/en

 time_t tv_sec; /* seconds */

 long tv_nsec; /* nano seconds */

 };

The number of seconds starting from the date and time at 00:00:00 GMT, Jan 1, 1985 shall be set to “time_t”. (It is

based on TRON specifications, and is different from UNIX.)

When the time recorded in a file is prior to the standard date and time, zero (tv_sec=0, tv_nsec=0) is returned.

When the time recorded in a file is beyond the time range designated by “time_t”, 0x7fffffff (tv_sec=0x7fffffff,

tv_nsec=0) is returned.

The time recorded in a file is updated at the timing specified in the File system.

The information to be obtained may differ according to target File systems.

 • T-Kernel Standard File system

 st_dev device ID

 Since device IDs are dynamically assigned when devices are registered, they are not fixed values.

 “st_ino” file ID

 “st_mode”, “S_IRUSR”, “S_IRGRP” and “S_IROTH” are constantly set.

 “S_IXUSR”, “S_IXGRP”, and “S_IXOTH” are constantly set.

 “S_IWUSR”, “S_IWGRP”, and “S_IWOTH” are set only when the read-only attribute is not set.

Owner, group, and other independent attributes are not set. It is always the same.

For the file type, either “S_IFDIR” or “S_IFREG” is set.

The file type at opening is set by “tkse_fstat”, and other attributes are determined according to the current file

type or with or without a link record.

Other attributes are never set.

 st_nlink the number of file references

 st_uid (always 0)

 st_gid (always 0)

 st_rdev (always 0)

 st_atimespec latest access time

 st_mtimespec latest update time

 st_ctimespec file create time

 st_size target record size

 Only the size of record targeted for access is taken into account. Therefore, it will be smaller than the actual

file size when multiple data records are included.

 When the file type of the target file is a directory, the number of link records is set.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

177 TEF021-S003-01.00.00/en

 st_blocks total number of used blocks

 the number of used blocks including total records and management

information.

 st_blksize logical block size

 st_flags “SF_HIDDEN” is set for hidden virtual object.

 st_gen (always 0)

 • FAT File system

 st_dev device ID

 Since device IDs are dynamically assigned when devices are registered, they are not fixed values.

 st_ino value based on the position of directory entry in the disk

 not always a fixed value.

 st_mode “S_IRUSR”, “S_IRGRP”, and “S_IROTH” are constantly set..

 “S_IXUSR”, “S_IXGRP”, and “S_IXOTH” are constantly set.

 “S_IWUSR”, “S_IWGRP”, and “S_IWOTH” are set only when the read-only

 Owner, group, and other independent attributes are not set. It is always the

same.

 For the file type, either “S_IFDIR” or “S_IFREG” is set.

 Other attributes are never set.

 st_nlink (always 1)

 st_uid (always 0)

 st_gid (always 0)

 st_rdev (always 0)

 st_atimespec latest access date (time is constantly 00:00:00)

 st_mtimespec latest update time

 st_ctimespec file create time

access time and creation time are only set to VFAT. In other cases, update time

is set to every attribute.

 st_size file size

 st_blocks the number of used blocks

 st_blksize cluster size

 st_flags “SF_ARCHIVED”, “SF_SYSTEM”, and “SF_HIDDEN” are set according to FAT

file types.

 st_gen (always 0)

 • CD-ROM File system

 st_dev device ID

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

178 TEF021-S003-01.00.00/en

 Since device IDs are dynamically assigned when devices are registered,

 they are not fixed values.

 st_ino value based on the position of directory record in the disk

 st_mode “S_IRUSR”, “S_IRGRP”, and “S_IROTH” are constantly set.

 “S_IXUSR”, “S_IXGRP”, and “S_IXOTH” are constantly set.

 For the file type, either “S_IFDIR” or “S_IFREG” is set.

 Other attributes are never set.

 st_nlink (always 1)

 st_uid (always 0)

 st_gid (always 0)

 st_rdev (always 0)

 st_atimespec date and time for recording

 st_mtimespec date and time for recording

 st_ctimespec date and time for recording

 st_size file size

 st_blocks the number of blocks to be used

 st_blksize logical block size

 st_flags “SF_HIDDEN” is set for a hidden file.

 st_gen (always 1)

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

179 TEF021-S003-01.00.00/en

Get file information

tkse_lstat

C Language Interface

ER ercd = tkse_lstat(const char *path, struct stat *sb);

Parameter

const char *path file path name

struct stat *sb buffer to get file information

Return Parameter

 ER ercd ＝ 0 normal completion

 ＜ 0 error code

Description

Gets the information of the file specified by the path name “path” to store in “sb”.

Since the standard input/output function does not support symbolic link, the behavior of tkse_lstat() is the same as

tkse_stat().

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

180 TEF021-S003-01.00.00/en

Get file information

tkse_fstat

C Language Interface

ER ercd = tkse_fstat(int fildes, struct stat *sb);

Parameter

int fildes file descriptor

struct stat *sb buffer to get file information

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Description

Gets the information of the file specified by the path name “path” to store in “sb”.

Not only normal files but the console I/O (standard input/output) descriptor can also be specified.

 • Console I/O (standard input/output)

 st_dev (always 0)

 st_ino (always 0)

 st_mode “S_IRUSR|S_IWUSR|S_IFCHR” are set. (Fixed value)

 st_nlink (always 1)

 st_uid (always 0)

 st_gid (always 0)

 st_rdev (always 0)

 st_atimespec (always 0)

 st_mtimespec (always 0)

 st_ctimespec (always 0)

 st_size (always 0)

 st_blocks (always 0)

 st_blksize (always 0)

 st_flags (always 0)

 st_gen (always 0)

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

181 TEF021-S003-01.00.00/en

Rename file

tkse_rename

C Language Interface

ER ercd = tkse_rename (const char *from, const char *to);

Parameter

const char *from file name before changing

const char *to file name after changing

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Description

Renames the file name 'from' to the file name 'to'.

When 'to' already exists, 'to' is deleted. In this case, 'from' and 'to' should be the same type (both are files or

directories).

When 'from' and 'to' are in different directories, the files are moved between directories.

'from' and 'to' must be in the same file system. If 'from' and 'to' exist on different file systems, an error is returned.

 • T-Kernel Standard file system

 When the read-only attribute is set to the file indicated by 'to', an error occurs.

 The file path name indicated by 'to' must be in the unopen state.

In the case 'from' is included in the path name 'to' or 'to' is a subdirectory of 'from' when renaming a directory,

the directory is renamed.

 * If 'from' is included in the path name 'to', files may not be accessed by using the path name hereafter.

 • FAT File system

 'to' must be in the unopen state.

 In the case 'from' is included in the path name 'to' when renaming a directory, an error occurs.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

182 TEF021-S003-01.00.00/en

Unlink directory entry
tkse_unlink

C Language Interface

ER ercd = tkse_unlink(const char *path);

Parameter

const char *path directory path to be deleted

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Description

Deletes the file specified by the path name “path”.

A directory or an open file cannot be deleted.

 • T-Kernel Standard File system

 In the case file type is other than six, discriminate file type depending on whether a link record exists at the

invoked time or not. Therefore, an error occurs if the file type is six or the file includes a link record.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

183 TEF021-S003-01.00.00/en

Make directory

tkse_mkdir

C Language Interface

ER ercd = tkse_mkdir(const char *path, mode_t mode);

Parameter

const char *path directory name to create

mode_t mode directory create mode

 * same as the “mode” of “tkse_open()”.

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Description

 Makes the directory specified by the path name “path”.

 The directory name "." and ".." cannot be made.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

184 TEF021-S003-01.00.00/en

Remove directory
tkse_rmdir

C Language Interface

ER ercd = tkse_rmdir(const char *path);

Parameter

const char *path directory name to remove

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Description

Removes the directory specified by the path name “path”.

The directory to be removed (except "." and "..") must be blank.

The directory "." and ".." cannot be removed. The directory must be in the unopen state.

 • T-Kernel Standard File system

 Discriminates file type depending on with or without a link record at the invoked time.

 Therefore, files without link records are targeted for deletion regardless of the file type.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

185 TEF021-S003-01.00.00/en

Replicate File Descriptor

tkse_dup

C Language Interface

ER ercd = tkse_dup(int oldd);

Parameter

int oldd file descriptor to replicate

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Description

Replicates the file descriptor "oldd" and returns a new file descriptor.

The file descriptor becomes the minimum number among numbers not being used.

The replicated file descriptor is handled as the same descriptor as "oldd" and the current location pointer is

shared.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

186 TEF021-S003-01.00.00/en

Replicate File Descriptor
tkse_dup2

C Language Interface

ER ercd = tkse_dup2(int oldd, int newd);

Parameter

int oldd file descriptor to replicate

int newd any new file descriptor

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Description

Replicates the file descriptor "oldd" as a new file descriptor.

The replicated file descriptor is handled as the same descriptor as "oldd" and the current location pointer is

shared.

If newd has already been used, close the file first, and then replicate.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

187 TEF021-S003-01.00.00/en

File's Disk Cache Content and Disk Synchronization
tkse_fsync

C Language Interface

ER ercd = tkse_fsync(int fildes);

Parameter

int fildes file descriptor

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Description

Writes back data which has not been written back (not synchronized) from the disk cache to the disk among the

writing operations to the file descriptor "fildes".

Returns after writing to the disk is complete.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

188 TEF021-S003-01.00.00/en

Modify Current Directory
tkse_chdir

C Language Interface

ER ercd = tkse_chdir(const B *path);

Parameter

const B *path directory path to be changed

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error exit

Description

Changes the current directory (working directory) to the directory indicated by the path name "path".

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

189 TEF021-S003-01.00.00/en

Modify Current Directory
tkse_fchdir

C Language Interface

ER ercd = tkse_fchdir(int fildes);

Parameter

int fildes file descriptor

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Description

Changes the current directory (working directory) to the directory that has been opened as file descriptor "fildes".

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

190 TEF021-S003-01.00.00/en

Change File Mode
tkse_chmod

C Language Interface

#include <extension/seio.h>

ER tkse_chmod(const B *path, mode_t mode);

Parameter

const B *path file and directory path

mode_t mode mode specification

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error code

Description

Changes the mode of the file or the directory specified by the path name "path".

Mode is a logical sum of the following values.

 S_IRWXU 00700 owner RWX mask

 S_IRUSR 00400 owner R read permission

 S_IWUSR 00200 owner W write permission

 S_IXUSR 00100 owner X execute permission

 S_IRWXG 00070 group RWX mask

 S_IRGRP 00040 group R read permission

 S_IWGRP 00020 group W write permission

 S_IXGRP 00010 group X execute permission

 S_IRWXO 00007 other RWX mask

 S_IROTH 00004 other R read permission

 S_IWOTH 00002 other W write permission

 S_IXOTH 00001 other X execute permission

 S_ISUID 04000 run time user ID setting

 S_ISGID 02000 run time group ID setting

 S_ISVTX 01000 sticky bit

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

191 TEF021-S003-01.00.00/en

 These mode settings have different scopes according to the target file systems. Invalid settings will be ignored in

the target file system.

 If the file modes of already opened files are changed, the changes here will not affect them until they are closed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

192 TEF021-S003-01.00.00/en

Change File Mode
tkse_fchmod

C Language Interface

ER ercd = tkse_fchmod(int fildes, mode_t mode);

Parameter
int fildes file descriptor

mode_t mode mode specification

Return Parameter
ER ercd >= 0 normal completion

 ＜ 0 error code

Description

 Changes the mode of the file or the directory that has been opened as file descriptor "fildes".

As for the mode specification, the valid range differs according to targeted file system. Invalid specifications are

ignored in the targeted file system.

When the file modes of already opened files are changed, the changes will not affect them until they are closed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

193 TEF021-S003-01.00.00/en

Create File
tkse_creat

C Language Interface

ER ercd = tkse_creat(const B *path, mode_t mode);

Parameter
 const B *path file and directory path

 mode_t mode mode specification

Return Parameter
ER ercd >= 0 normal completion (file descriptor of created file)

 ＜ 0 error exit

Description

Creates and opens files with path name “path”.

The file descriptor as a return value is the minimum of all unused numbers.

Performs a processing equivalent to the setting (O_CREAT | O_WRONLY | O_TRUNC) to open's oflag.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

194 TEF021-S003-01.00.00/en

Modify Access Time, Modification Time
tkse_utimes

C Language Interface

ER ercd = tkse_utimes(const B *path, const struct timeval times[2]);

Parameter

const B *path file and directory path

const struct timeval times[2] modify access time, modification time

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error exit

Description

 Changes the access time, the modification time of a file/directory to which the path name path points.

 utimes sets times[0].tv_sec to access time, times[1].tv_sec to modification time.

 Sets seconds since the date and time at 00:00:00 GMT, Jan 1, 1985 to time_t, timeval.tv_sec. (It is based on

TRON specifications, and is different from UNIX.)

 If NULL is set to times, file's access time and modification time are set to current time.

• Standard File system

 If zero is set to access time and modification time, these times are unchanged.

 struct timeval {

 long tv_sec; /* second */

 long tv_usec; /* microsecond */

 };

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

195 TEF021-S003-01.00.00/en

Set File Creation Mask
tkse_umask

C Language Interface

mode_t tkse_umask(mode_t cmask);

Parameter

mode_t cmask mask value

Return Parameter

 ER ercd >= 0 normal completion (Mask value prior to setting)

 ＜ 0 error code

Description

Sets the file creation mask value of its own process in cmask.

The value specified in mask value "cmask" is removed from the mode value "mode" specified when the file is

created. This value is the mode value which is applied when the file is created.

cmask is a logical sum of the following values..

 S_IRWXU 00700 owner RWX mask

 S_IRUSR 00400 owner R read permission

 S_IWUSR 00200 owner W write permission

 S_IXUSR 00100 owner X execute permission

 S_IRWXG 00070 group RWX mask

 S_IRGRP 00040 group R read permission

 S_IWGRP 00020 group W write permission

 S_IXGRP 00010 group X execute permission

 S_IRWXO 00007 other RWX mask

 S_IROTH 00004 other R read permission

 S_IWOTH 00002 other W write permission

 S_IXOTH 00001 other X execute permission

 S_ISUID 04000 run time user ID setting

 S_ISGID 02000 run time group ID setting

 S_ISVTX 01000 sticky bit

These umask settings have different scopes according to the target file systems. Invalid settings will be ignored

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

196 TEF021-S003-01.00.00/en

in the target file system.

The initial value of system's cmask is set to zero, and the process inherits parent process's cmask.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

197 TEF021-S003-01.00.00/en

Set File Size to the Specified Length
tkse_truncate

C Language Interface

ER ercd = tkse_truncate(const B *path, off_t length);

Parameter

const B *path file and directory path

off_t length file size to specify

Return Parameter

ER ercd >= 0 normal completion

 ＜ 0 error

Description

Extends or truncates the file size of a file to which path name path points or the file size of a file opened by fildes to

the specified size length bytes.

If length is less than the file size, the file size will be truncated to length bytes, and truncated portion will be lost.

If length is greater than the file size, the file size will be extended to length bytes, and zero is written in the

extended portion.

If length is equal to the file size, nothing is done.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

198 TEF021-S003-01.00.00/en

Set File Size to the Specified Length
tkse_ftruncate

C Language Interface

ER ercd = tkse_ftruncate(int fildes, off_t length);

Parameter

int fildes file descriptor

off_t length file size to specify

Return Parameter

ER ercd >= 0 normal completion (file descriptor of created file)

 ＜ 0 error exit

Description

Extends or truncates the file size of a file to which path name path points or the file size of a file opened by fildes to

the specified size length bytes.

If length is less than the file size, the file size will be truncated to length bytes, and truncated portion will be lost.

If length is greater than the file size, the file size will be extended to length bytes, and zero is written in the

extended portion.

If length is equal to the file size, nothing is done.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

199 TEF021-S003-01.00.00/en

Disk Cache Content and Disk Synchronization
tkse_sync

C Language Interface

void tkse_sync(void);

Parameter

none

Return Parameter

none

Error Code

none

Description

Writes all the not yet written data in memory to disk.

Returns after writing to disk is complete.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

200 TEF021-S003-01.00.00/en

Retrieve a List of File systems
tkse_getfsstat

C Language Interface

ER ercd = tkse_getfsstat(struct statfs *buf, W bufsize, int flags);

Parameter

struct statfs *buf retrieval information storage area

W bufsize storage area size

int flags flags（unused）

Return Parameter

ER ercd >= 0 normal completion (file descriptor of created file)

 ＜ 0 error exit

Description

Retrieves information about all the connected file systems to store it in buf.

bufsize is the size (number of bytes) of buf's area, all the information that can be stored in buf concerning file

system. For example, if bufsize = sizeof(struct statfs) * 10, information concerning up to ten file systems will be

stored. Information on the number of file systems that were successfully acquired is returned as a return value. If

NULL is set to buf, bufsize will be ignored and the number of connected file systems will be returned as a return

value.

flags is an argument reserved for future extensions.. Always specify MNT_WAIT (= 1).

Since the root file system is a virtual file system, file system information cannot be acquired.

 typedef struct fsid {

 W val[2];

 } fsid_t; /* file system ID */

 #define MNAMELEN 90 /* maximum length of connection name/device name */

 struct statfs {

 W f_spare2; /* (blank) */

 W f_bsize; /* logical block size (B: number of bytes) */

 W f_iosize; /* optimal block size to transfer (B) */

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

201 TEF021-S003-01.00.00/en

 W f_blocks; /* file system space (LB: number of logical blocks) */

 W f_bfree; /* file system free space (LB) */

 W f_bavail; /* free space available to general users (LB) */

 W f_files; /* * maximum number of files */

 W f_ffree; /* * number of blank files */

 fsid_t f_fsid; /* file system ID (always 0) */

 uid_t f_owner; /* connected user (always zero) */

 int f_type; /* file system type */

 int f_flags; /* connect flag */

 W f_spare[6]; /* (blank) */

 B f_mntonname[MNAMELEN]; /* connection name */

 B f_mntfromname[MNAMELEN]; /* device name */

 };

 * The value of items marked with * may be undefined according to file systems. In such cases, the items will be

set to -1.

In the current implementation, free space f_bavail available to general users is equal to file system free space

f_bfree.

The file system type f_type is one of the following:

 #define MOUNT_FATDS 4 /* FAT File system */

 #define MOUNT_CDFS 14 /* CD-ROM File system */

 #define MOUNT_STDFS 20 /* Standard File system */

 #define MOUNT_SFS 42 /* Shared File System */

 The value of connect flag f_flags is set to the result of taking the union of the following information:

 #define MNT_RDONLY 0x00000001 /* read-only */

 The connection name f_mntonname is a path name from root.

 Example: "/SYS"

 The device name f_mntfromname is set to the device name pretended by "/dev/".

 Example: "/dev/pca0"

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

202 TEF021-S003-01.00.00/en

Retrieve a LINK to Standard File
tkse_getlink

C Language Interface

ER ercd = tkse_getlink(const B *path, B *buf);

Parameter

const B *path file path of standard input/output

B *buf LINK information storage area

Return Parameter

ER ercd >= 0 normal completion (file descriptor of created file)

 ＜ 0 error exit

Description

Returns LINK information based on standard file system specifications of a file or directory denoted by the path

name path to buf.

buf should be an area with the size greater than or equal to sizeof(LINK).

LINK information is stored to buf and zero is returned as a return value, only if the file or directory specified by

path is a file in standard file system. If the file or directory specified by path is not a file in standard file system. The

content of buf is indefinite and an error is returned.

LINK information is retrievable without access privileges to the file or directory specified by path. However, access

privileges to the target file or directories which is included in path is needed just like the access privileges to

directories would be required when a file is opened with a file is opened with tkse_open().

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

203 TEF021-S003-01.00.00/en

4.8 Standard File Management Function

4.8.1 Standard File Management Function Overview

The standard file management function provides the standard file system of “AMP TKSE” and the functions to

manipulate its files.

“AMP TKSE” recommends that normal file manipulation should be executed by using the standard input/output

functions. If you wish to use the functions specific to standard file system, the standard file management functions

shall be used.

The standard file system has a structure based on real/virtual object models, with following features:

・File organization consisting of ordered record sequence with variable length (record stream)

・Any network-like reference relationships via links (virtual object) included in files

 (A directory in the traditional file system does not exist.)

・Direct access to files via links (virtual object)

Since files are used by multiple users in chronological order and furthermore used simultaneously by multiple

users in network environment, detailed file access management and high-level protection mechanism are

provided.

However, the current version of “AMP TKSE” does not support multiple users.

The API specification of the AMP TKSE standard file management function is the same as the T-Kernel Standard

Extension Version 1.00 Specification.

4.8.2 File and Link

A file consists of ordered record sequence with variable length.

A link is a kind of key pointer for referring to a file, and it has a data structure composed of data which indicates

referred file and several attribute data specific to the link.

The link can exist as a record with being embedded in any files. Multiple links indicating a file can exist, and

consequently network-like reference relationships among any files can be defined as a whole.

In the correspondence to real/virtual object model, a file has one-on-one correspondence to a real object and a

link has one-on-one correspondence to a virtual object.

In general, a file is directly referred via the link. Therefore, a file name does not have absolute meaning and is

used as a search key. A file can have any file name of up to 20 characters, and it doesn’t matter if multiple files

with the identical file name exist.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

204 TEF021-S003-01.00.00/en

 Link (Virtual object) File (Real object)

 ┏━━━━━━┓ ┏━━━┯━━━┓

 ┃(Attribute ┃───→┃Name │ ┃

 ┃ data) ┃ ┌─→┠───┘ ┃

 ┗━━━━━━┛ │ ┃ ┃

 Link │ ┃ ┃

 (Virtual object) │ ┃ (File data) ┃

 ┏━━━━━━┓ │ ┃ ┃

 ┃(Attribute ┃─┘ ┃ ┃

 ┃ data) ┃ ┃ ┃

 ┗━━━━━━┛ ┗━━━━━━━┛

[Figure 9] Relation of file and links

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

205 TEF021-S003-01.00.00/en

4.8.3 File System

A file system is a physical unit for managing files, is built in storage media, and has ahas a ceiling on physical

size.

The file system certainly has a root file, and all files in the file system are reachable by sequentially following the

links included in the root file.

In the correspondence to real/virtual object model, a root file corresponds to a device real object.

In general, reference relationships between files via links are defined and integrated in a single file system, but a

indirect link for referring to files in other file system is available and particularly called a indirect link. Because a

reference via the indirect link is not integrated with changes in other destination file system, be aware that the

existence of destination file is not assured.

The file system name and the device location name are set when the file system is generated.

A file system name is a name of up to 20 characters that is also set as a root file name and used by the system

and users to absolutely discriminate file systems. A file system name must be unique, because file systems with

identical file system name are regarded as the identical.

The device location name consists of up to 20 characters that indicate a physical device where a file system is

stored. And it used to access other machines via the network or to ask the installation of floppy, etc.

4.8.4 Connect File System

There is no file system available at system startup, a file system will become available just after the connection

operation. Therefore, minimum connection of file system is normally required as system initialization.

A file system is connected by specifying the logical device name where destination file system exists and the

connection name. The connection name is a name of up to 8 characters for discriminating a connected file system,

and is used as an absolute path name that indicates a root file of connected file system. When connected, a link to

the root file of the connected file system is also obtained.

Therefore, use of link or connection name obtained at connection enables the access to a root file of the

connected file system the access to a root file of the connected file system is enabled by using link or connection

name obtained at connection, and sequential tracing of the following links from a root file allows you to access any

file in the connected file system the access to any file in the connected file system is enabled by following links

from a root file.

A file system is disconnected by specifying the logical device name of the file system targeted to be disconnected.

Consequently, a file access via the link which indicates a file in disconnected file system is unavailable. This state

is called a disconnected state.

In the correspondence to real/virtual object model, a link in disconnected state corresponds to a virtual object.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

206 TEF021-S003-01.00.00/en

The connection of file system is a function simply to register the existence of file system dynamically with the file

management function, and is a flat connection without any structure. Therefore, network-like static file reference

structure across multiple file systems is built by using indirect links which refer to files in the different file systems.

4.8.5 File ID

At file generation, a unique number called file ID is attached to every file in the file system to be internally

discriminated. A file ID is a value in the range from 0 (maximum file ID), and the maximum file ID (namely,

maximum file count) is defined at file system generation. Since the file ID is represented by 16 bit numeric value,

the maximum file ID can not exceed 65535.

A root file in the file system constantly has the file ID 0.

4.8.6 Link

A link is a kind of key pointer for accessing a file, and it has a data structure which holds file system name where

destination file exists, file ID, and several attribute data as links.

The link is simply a dynamic data as a pointer, but it becomes a fixed existence by being stored as a record in a

file. Thus, the stored link is particularly called a fixed link. Since the fixed link does not have file system name, only

the reference to the file in the same file system is possible. And when fixed link is taken out from the file, the file

system name to which the file belongs is set as a data structure of the link.

Thus, to store a link which refers to different file system in a file as a fixed link, a special file called a link file shall

be generated in the file system to be stored in advance, and a link in it which indicates the link file shall be stored

as a fixed file.

A link file is a special file which holds file system name where the file to be referred exists, file ID, file name, and

generation time and date. And the access to the link file is automatically interpreted as an access to a file in the

different destination file system. A link which indicates a link file is particularly called an indirect link, and a link

which indicates a normal file is called a direct link.

Since a multiple indirect link, namely reference to file via more than two link files, is not supported, an error

indicating that the file does not exist occurs when accessed.

A file reference via the link file by an indirect link is as follows:

・Identify a file system by its file system name. An access is disabled when unconnected. In addition, a connection

name is irrelevant to the access via a link file.

・Check the file in the file system identified by file ID. And when both or either of file name and generation time

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

207 TEF021-S003-01.00.00/en

matches and the file is not a link file, accesses the file as a target. In other cases, the file to be referred is regarded

as nonexistent and the access is disabled.

4.8.7 Working File

The file currently targeted for processing by certain process is called a working file of the process. A process

enables any file to be a working file by using system call.

A working file is held as an execution environment in a process, and is inherited to generated child processes.

The working file can be undefined, and the working file of a process first generated in a system is in undefined

state.

4.8.8 Path Name

In general, a file is directly referred by a link. However, a link cannot be interactively traced in a batch-style

application, etc, so a file can be referred by specifying link sequence to be directly traced.

As a link sequence for this purpose, a list in order of file names referred by each link is called a path name. In this

case, only a file name does not assure the uniqueness. So, a file name shall be used by appending it with the

order of appearance.

The order it appears is a serial number assigned from 0 to (n-1) when there are “n” number of links referring to

files with the identical file name in a file. When the order it appears is omitted, it is assumed to be zero, namely the

first time.

 File XYZ

 ┏━━━━━━━┓

 ┃ ┃ ┏━━━━━━━┓

 ┃│ (1) ○──┃───→┃File ABC ┃

 ┃│ ┃ ┌─→┗━━━━━━━┛

 ┃│ (2) ○──┃──┐

 ┃│ ┃ ││ ┏━━━━━━━┓

 ┃│ (3) ○──┃─┘└→┃File ABC ┃

 ┃↓ ┃ ┗━━━━━━━┛

 ┃ ┃

 ┗━━━━━━━┛

 The reference to link (1) is ABC or ABC:0

 The reference to link (2) is ABC:1

 The reference to link (3) is ABC:2

 [Figure 10] Example of the order of appearance in pathname

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

208 TEF021-S003-01.00.00/en

 The path name has the following syntax and is treated as one character-string of up to 256 characters:

 [Path name] ::= [Special reference]|[Special reference] /

[Simple path name]|[Simple path name]

 [Simple path name] ::= [Simple path name] / [Reference specification]|

[Reference specification]

 [Reference specification] ::= [File name] |[File name]:[Order it appears]

 [Special reference] ::= / [Connection name]| ≡

 [Order it appears] ::= Numeric value

 [File name] ::= String (up to 20 characters)

 [Connection name] ::= String (up to 8 characters)

 A special reference has the following meaning:

 / [Connection name] -- indicating the root file of the file system connected by the specified

connection name.

 ≡ -- indicating a working file.

As the symbols “/, ≡, :” are special codes as follows, displayable all characters including blank(space) is enabled

as the file name. If "/" is existent at the end of path name character-string, it will be ignored.

 / TC_FDLM 0xff21

 : TC_FSEP 0xff22

 ≡ TC_FOWN 0xff23

The path name beginning with "/ [Connection name]" is a path name from the root file of a file system, and is

called an absolute path name. In other cases, a path name is a relative path name from the current working file,

and is called a relative path name.

A path name can be indicated as follows:

 /latest/project/software specifications/core specification/file management

 external specification/chapter 10/example:1

 ≡

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

209 TEF021-S003-01.00.00/en

4.8.9 File Type

 There are mainly two types of files as follows, and a file simply means a normal file.

 Normal file : a file in a usual sense in terms of the place where data is stored.

 Link file : a special file used to indirectly refer to files in another file system, and an indirect link is the link

indicating this type of file.

4.8.10 Normal File Composition

A normal file is composed of an ordered sequence of any byte-length records, namely record streams, and each

record is composed of the following elements:

 ・Record type

 ・Record subtype

 ・Record size

 ・Record body

 The record type is a value in the range of 0 to 31 which indicates the type of a record.

 0 Link record

 A record which stores a link to the other file. Since the content is directly treated by file management

function, direct manipulation of it from applications is restricted.

 1-31 Data record

 A record type defined as a system. File management function, however, has no concern with its

content and treats it as just a byte sequence.

The record subtype is an auxiliary type specification used according to the record type and a16 bit unsigned

numeric value used for a keyword.

The record size is 32 bit data that indicates the number of bytes of a record body. Although the link record does

not have record size information, the size (52 bytes) of LINK structure, which indicates the size of an area required

for input/output of records, is set to the record size. However, the size of this link record is not counted in the total

number of bytes as file management information.

The record body is a data sequence of the number of bytes specified by the record size, and its content is

determined depending on the record type. The record body of the link record is specially treated.

4.8.11 Record Number / Current Record

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

210 TEF021-S003-01.00.00/en

Each record of a file is numbered in sequence according to the order of record defining the first record as “0”, and

this number is called a record number. As the record number indicates the order of records, it dynamically

changes by record insertion/deletion.

A record next to the last record is deemed to virtually exist, and this record is called the end record. If there are “N”

pieces of records, the end record will have record number “N”.

A current record is defined as a target record to be currently accessed in the opened files, and a data access is

executed to the record of the current record. A current record can be moved by specifying the record number, and

a search based on the record type, etc.

The current record is not changed even by record insertion/deletion, and only the record number corresponding to

the current record is changed.

 ┏━━┓┏━━┓┏━━┓ ┏━━┓ ┏━━┓┌──┐
 ┃ #0 ┃┃ #1 ┃┃ #2 ┃……┃ #X ┃……┃#N-1┃│ #N │
 ┗━━┛┗━━┛┗━━┛ ┗━━┛ ┗━━┛└──┘
 Start │ Current record Last End record
 │If deleted
 ↓
 ┏━━┓┌──┐┏━━┓ ┏━━┓ ┏━━┓┌──┐
 ┃ #0 ┃│ │┃ #1 ┃……┃#X-1┃……┃#N-2┃│#N-1│
 ┗━━┛└──┘┗━━┛ ┗━━┛ ┗━━┛└──┘
 Start Current record Last End record

 [Figure 11] Change of the record number by record deletion

4.8.12 Link File Composition

A link file is a file which is generated and used to indirectly refer to a file in the different file systems. In the link file,

there is not any application data, but only the following management data is stored:

 ・File ID of the file to be referred

 ・Application type of the file to be referred

 ・File name of the file to be referred

 ・Generation date and time of the file to be referred

 ・File system name where the file to be referred exists

 ・Device location name of the file system where the file to be referred exists

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

211 TEF021-S003-01.00.00/en

4.8.13 File Control

A file is accessed by processes. A positive integer called file descriptor (fd > 0) defined by each process is

assigned to the open file, and the actual file is accessed using this file descriptor.

On process termination, all the opened files are automatically closed. A current record is also defined as a target

record to be accessed for the opened file.

The file descriptor and the current record location are defined as specific to the process, and are not especially

passed on to child processes.

A working file is passed on to child processes as a process environment.

4.8.14 Reference Count of File

In a file, a reference count which indicates the number of fixed links referring to the file in the same file system

exists. The reference count is zero at file generation, and is incremented by one when a fixed link to the file is

generated, namely a link is stored in the file. Conversely, the reference count is decremented by one when fixed

link is deleted.

As the reference count indicates references in the same file system, file references via link file are not reflected in

the reference count. In addition, the reference count is applied to the link file itself, too.

A file deletion is enabled only for a file with reference count zero. If a fixed link is included in the deleted file, the

reference count of the file to which the fixed link refers is decremented by one. And even if it results in zero, the file

will not be deleted. Meanwhile, a file deletion which includes a fixed link is enabled only when forced deletion is

specified at deletion.

The same holds for link file deletion, and it is enabled when the reference count of the link file itself is zero. Note

that the destination file of the link file cannot be deleted via link file.

The reference count of the root file in the file system is exceptionally one from the beginning, so the way it works

that it cannot be deleted at all.

A file with reference count zero does not have a fixed link which refers to it. Therefore, when dynamic link is lost, it

cannot be accessed in the usual way. However, it can be accessed by retrieving links to all files in the file system.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

212 TEF021-S003-01.00.00/en

4.8.15 File Access

A file is to be opened by specifying any of “READ”/”WRITE”/”UPDATE”, and the following mode specification is

enabled in order to restrict the simultaneous open of the same file from others at opening: The mode setting

defaults to share mode, but usually an exclusive write mode is a safe option.

 Exclusive mode: prohibit any simultaneous open from others

 Exclusive write mode: prohibit simultaneous open for writing/updating from others.

 Share mode: not prohibit any simultaneous open from others.

T combination of the mode that enables a new simultaneous open to the mode that has been already opened is

as shown below. If newly simultaneous open is not enabled, an error occurs at opening.

[Table 1] Simultaneous Open Mode Combinations

 | Newly simultaneous open mode

 | | Exclusive |

 | Exclusive | write | Share

 Existing open mode | R W U | R W U | R W U

 ----------------------------+---------------+---------------+----------------

 Exclusive mode R | × × × | × × × | × × ×

 W | × × × | × × × | × × ×

 U | × × × | × × × | × × ×

 -----------------------------+---------------+---------------+----------------

 Exclusive write mode R | × × × | ○ × × | ○ × ×

 W | × × × | × × × | ○ × ×

 U | × × × | × × × | ○ × ×

 -----------------------------+---------------+---------------+----------------

 Share mode R | × × × | ○ ○ ○ | ○ ○ ○

 W | × × × | × × × | ○ ○ ○

 U | × × × | × × × | ○ ○ ○

 A record lock function to prohibit others from executing access to each record of the opened file is also prepared.

 The accesses to the locked record from others are as follows:

 ・To read, write, replace, reduce size, and delete the record result in an error.

 ・To make the record search target or the current record is enabled.

 When you try to lock an already locked record, an error occurs or you are forced to wait until it is unlocked.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

213 TEF021-S003-01.00.00/en

4.8.16 File System Management Information

The following management information for each file system can be read:

 typedef struct {

 UH fs_bsize; /* the number of bytes of logical block */

 UH fs_nfile; /* maximum number of files */

 H fs_lang; /* language used in the file system */

 H fs_level; /* access management level of the file system */

 W fs_nblk; /* total number of blocks */

 W fs_nfree; /* total number of unused blocks */

 STIME fs_mtime; /* last updated time of the system block */

 STIME fs_ctime; /* creation time of a file system */

 TC fs_name[L_FSNM]; /* file system name */

 TC fs_locat[L_DLNM]; /* device location name */

 } FS_STATE;

 ・”fs_bsize” is the number of bytes of one logical block, and shall be the power of 2.

 ・”fs_nfile” indicates the maximum number of file registrable in the file system. This value equals to the maximum

file ID + 1.

 ・”fs_lang” indicates the language used in the file system, and represents the character code system used in this

file system.

 ・”fs_level” represents an access management level in the file system, and can be the following values:

 0: Level 0 -- no access management

 1: Level 1 -- access management (no hidden name)

 2: Level 2 -- access management (hidden name)

 ・”fs_nblk” indicates total number of logical blocks in the file system, and this value equals to maximum value of

logical block number +1.

 ・”fs_nfree” is a current total number of unused logical blocks, and this data fluctuates dynamically.

 ・”fs_mtime” and ”fs_ctime” are respectively the last updated time and the generated time of the file system

represented by seconds since the reference date and time at starting from 00:00:00 GMT, Jan 1, 1985.

 ・”fs_name” and ”fs_locat” are respectively the names set at generation time (at the time of format)of the file

system, and it is padded with trailing zeros if the name is less than 20 characters in length.

The management information of the file system is set at generation time (format time) of the file system, and

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

214 TEF021-S003-01.00.00/en

thereafter unchanged except for total number of unused logical blocks (fs_nfree), last updated time of the system

blocks (fs_mtime), file system name and device location name.

4.8.17 File Management Information

The following management information for each file can be read: However in case of the link file, the information

of a file to which the link file refers will be read, and the management information of the link file itself can not be

read.

 File name:

 A file name of 20 characters. It may be modified.

 Reference count:

 Indicate the number of fixed links referring to the file in the same file system.

 File management information:

Various management information is as shown below:

 typedef struct {

 UH f_type; /* file type/owner access mode */

 UH f_atype; /* application type */

 TC f_owner[L_USRNM]; /* file owner name (in the case of hidden name, it is

constantly zero) */

 TC f_group[L_USRNM]; /* owner group name (in the case of hidden name, it is

constantly zero) */

 UH f_grpacc; /* group access level */

 UH f_pubacc; /* general access level */

 H f_nlink; /* the number of included links */

 H f_index; /* index level */

 W f_size; /* total number of bytes of the file */

 W f_nblk; /* total number of used logical blocks */

 W f_nrec; /* total number of records */

 STIME f_ltime; /* shelf life of the file (date and time) */

 STIME f_atime; /* latest access time */

 STIME f_mtime; /* last updated time */

 STIME f_ctime; /* file create time */

 } F_STATE;

・”f_type” indicates file type, access attribute, and owner access mode, as follows:

 TTTT xxxx BAPO xRWE

 T: file type

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

215 TEF021-S003-01.00.00/en

 0 link file

 1 normal file

 2- reserved

 P: permanent attribute

 The value one indicates that this file is prohibited from removal.

 0: read-only attribute

 The value one indicates that this file is read-only.

 A: application attribute 1

 B: application attribute 2

 The attribute specified and used by an application. The file management has no concern with its meaning.

 RWE: file owner access mode (Respectively enabled in the case of 1)

 x : reserved (zero)

・Application type (f_atype) is the data set and used by an application, and this data is not used by the file

management.

・Owner name (f_owner) and owner group name (f_group) consist of 12 characters each; if it consists of less than

12 characters, it is padded with trailing zeros. The subsequent hidden name of two characters is always

obtained as zeros.

・The group access level (f_grpacc) and the general access level (f_pubacc) have the following compositions:

 xxxx RRRR WWWW EEEE

 RRRR : lowest readable user level (0-15)

 WWWW : lowest writable user level (0-15)

 EEEE : lowest executable user level (0-15)

 xxxx : unused (0)

・The number of included links (f_nlink) indicates the number of link records which the file includes.

・The index level indicates the indirect multiplicity of 0-based record index.

・The total number of bytes of the file (f_size) is the total number of bytes of data actually written in the file, and is

the total amount of the record size of each record. In this case, the record size of the link record is counted as

zero.

・The total number of logical blocks in use indicates the total number of logical blocks used in the file.

・The total number of records indicates the total number of records existent in the file.

・The date and time is set to the number of seconds starting from the date and time at 00:00:00 GMT (Greenwich

Mean Time), Jan 1, 1985. This data is indicated to be invalid in the case the value is -1.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

216 TEF021-S003-01.00.00/en

Latest access time (f_atime)

 Time when the file data is last read or the index is last updated. At file generation, -1 (if not supported) or

generation time of the file is set.

Last updated time (f_mtime)

The time when the file data is last updated. At file generation, the generation time is set.

File creation time (f_ctime)

The time when the file is generated for the first time.

Shelf life (f_ltime)

Shelf life of the file. -1 is set when file is generated. This data is set and used by an application. It is not

used in the file management.

File location information:

The file system information to which each file belongs. This content is a part of the management

information of the file system.

 typedef struct {

 STIME fs_ctime; /* creation time of a file system */

 TC fs_name[L_FSNM]; /* file system name */

 TC fs_locat[L_DLNM]; /* device location name */

 TC fs_dev[L_DEVNM]; /* logical device name */

 } F_LOCATE;

・The logical device name is the name of the block type device where the file system exists at the point.

Link file information:

For the link file, the following destination information held in the link file itself can be obtained: This

information can be retrieved even when the destination file system is not connected.

4.8.18 Link Structure

Used to access files. The link has following data structure:

 typedef struct {

 TC fs_name[L_FSNM]; /* file system name */

 UH f_id; /* file ID */

 UH atr1; /* Attribute data 1 */

 UH atr2; /* Attribute data 2 */

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

217 TEF021-S003-01.00.00/en

 UH atr3; /* Attribute data 3 */

 UH atr4; /* Attribute data 4 */

 UH atr5; /* Attribute data 5 */

 } LINK;

・The file system name is the connected file system name itself and used to absolutely discriminate the file

system. When it is set to fixed link, this information will not be stored in the file.

・The file ID is a file ID in the file system identified by the file system name.

・Attribute data 1-5 are attribute data held as link itself and their usage, and determined by upper level

applications since the file management has no concern with their contents in general. All the default values of

a newly generated link shall be zero. This data is stored in the file when it is set to fixed link, and the content

stored in the file is retrieved when the fixed link is read.

In the file management, actual file access is executed only by using the file system name and the file ID.

In general, a link obtained from the file management function is used, but an application can create the link by

directly setting the file system name and the file ID.

For example, as the file ID of a root file is zero, a direct link to the root file in the file system can be created by an

application if the file system name is available.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

218 TEF021-S003-01.00.00/en

4.8.19 System Calls

Get Link to File
tkse_get_lnk

C Language Interface

 ER ercd = tkse_get_lnk(TC *path, LINK *lnk, W mode);

Parameter

 TC *path target path name

 NULL target is a working file

 LINK *lnk storage area of obtained link (output)

 specify working file (input: when “F_BASED” is set)

 W mode mode to get link

 (F_NORM || F_BASED) | [F_DIRECT]

 F_NORM specify normal file

 F_BASED specify working file

 F_DIRECT specify to get direct link

Return Parameter

 ER ercd ＜ 0 error code

 0 normal completion (a link to a normal file)

 1 normal completion (a link to a link file: F_DIRECT not specified)

 2 normal completion (a link to a normal file to which the link file refers: When “F_DIRECT”

is set)

Error Code

 E_FACV No route file access right (E) within the path name (path)

 E_MACV Address (path,lnk) access is not permitted

 E_FNAME Path name (path) is empty, invalid or too long.

 E_IO Input/output error occurred

 E_NOFS The file system to which the file within the path name (path) and the reference file of the link

file (when F_DIRECT is specified) belong are not connected

 E_NOEXS The file within the path name (path) and the reference file of the link file (when F_DIRECT is

specified) do not exist or working file is undefined

 E_PAR Parameter is invalid. (mode is invalid)

 E_SYSMEM Memory area of the system is insufficient

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

219 TEF021-S003-01.00.00/en

Description

Gets a link to the file specified by the path name.

When NULL is specified by the path name, get a link to the current working file.

When the path name is relative path name, with F_NORM specification, the link shall be based on the current

working file, and with “F_BASED” specification, the link shall be based on the file specified by “lnk” as a working

file.

When the specified file is a link file, without “F_DIRECT” specification, a link to the link file itself shall be obtained.

In this case, the existence of the normal file to which obtained link file refers is not assured.

In the case of “F_DIRECT” specification, a direct link to the normal file to which the link file refers is obtained.

To retrieve the link to a file, an access privileges to execute/search (E) each file included in the path name is

needed, but an access privileges to execute/search (E) the destination file itself is not needed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

220 TEF021-S003-01.00.00/en

Change Working File

tkse_chg_wrk

C Language Interface

 ER ercd = tkse_chg_wrk(LINK *lnk);

Parameter

 LINK *lnk working file to be changed

 NULL set working file as undefined

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_FACV No file (lnk) access right (E)

 E_MACV Address (lnk) access is not permitted

 E_IO Input/output error occurred

 E_NOEXS File (lnk) does not exist

 E_NOFS File system where the file (lnk) belongs is not connected

 E_SYSMEM Memory area of the system is insufficient

Description
Sets the specified file to a working file of invoking process.

To set a working file, an access privileges to execute/search (E) the file is required.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

221 TEF021-S003-01.00.00/en

Create File

tkse_cre_fil

C Language Interface

 ER ercd = tkse_cre_fil(LINK *lnk, TC *name, A_MODE *mode, UH atype, W opt);

Parameter

 LINK *lnk storage area of the link to created file (output)

 specify file system (input: when “F_FLOAT” is set)

 specify parent file (input: when “F_FIX” is set)

 specify file to be created (input: when “F_FILEID” is set)

 TC *name file name (valid for 0 or up to maximum number of file name characters)

 A_MODE *mode access mode

 NULL apply default access mode

 UH atype file application type

 W opt attribute of creation

 (FLOAT || F_FIX || F_FILEID)

 F_FLOAT floating link specification

 F_FIX fixed link specification

 F_FILEID file ID specification

Return Parameter

 ER ercd ＜ 0 error code

 ＞ 0 normal completion (file descriptor)

Error Code

 E_OK Normal completion

 E_FACV No file (lnk) access right (W) (when F_FIX is specified)

 E_MACV Address (lnk,name,mode) access is not permitted

 E_BUSY Since file (lnk) has already been exclusively opened, the file could not be opened

simultaneously (when F_FIX is specified)

 E_OBJ File (lnk) already exists (when F_FILEID is specified)

 E_FNAME File name (name) is empty or invalid

 E_IO Input/output error occurred

 E_LIMIT Maximum number of files exceeded or maximum number of files which can be opened

simultaneously exceeded

 File (lnk) exceeded the maximum size of the system (when F_FI X is specified)

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

222 TEF021-S003-01.00.00/en

 E_NODSK Disk area is insufficient

 E_NOEXS File (lnk) does not exist (when F_FI X is specified)

 E_NOFS File system where the file (lnk) belongs is not connected

 E_PAR Parameter is invalid (f_grpno<0,>4 ,opt is invalid)

 E_RONLY File (lnk) is write-protected or file system that file belongs to is write-protected

 E_SYSMEM Memory area of the system is insufficient

Description

Create normal new file and open it to update in the file system where the file (in the case of link file, a normal file to

which the link file refers) specified by “lnk” exists.

All the attribute data of the link to the generated file are set to zero, and are stored in the area specified by “lnk”.

In the case of “F_FLOAT” specification, a file shall be simply created. The reference count of the created file is set

to 0.

In this case, since only the file system name specified by “lnk” is valid and file ID is ignored, the file specified by

“lnk” doesn’t need to exist.

In the case of “F_FIX” specification, a link to the created file is appended to the last record position of the file

specified by”Ink” as a link record (subtype = 0) at the last record position of the file specified by “lnk”. The

reference count of the created file shall be set to 1. In this case, the file specified by “lnk” shall exist and be able to

be write opened.

In the case of “F_FILEID” specification, create a file with the same file ID as the file ID specified by “lnk”.

The reference count of the created file is set to 0. In this case, the file specified by “lnk” shall not exist.

“A_MODE” specifies the access mode of created file.

Even when owner access mode of the created file is read-only, the file is opened to update, and the record

number is set to zero.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

223 TEF021-S003-01.00.00/en

Create Link File

tkse_cre_lnk

C Language Interface

 ER ercd = tkse_cre_lnk(LINK *lnk, F_LINK *ref, W opt);

Parameter

 LINK *lnk storage area of the link to created file (output)

 specify file system (input: when “F_FLOAT” is specified)

 specify parent file (input: when “F_FIX” is specified)

 specify file to be created (input: when “F_FILEID” is specified)

 F_LINK *ref link file content to be created

 W opt content of link file to be created

 (F_FLOAT || F_FIX || F_FILEID)

 F_FLOAT floating link specification

 F_FIX fixed link specification

 F_FILEID file ID specification

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_FACV No file (lnk) access right (W) (when F_FIX is specified)

 E_MACV Address (lnk,ref) access is not permitted

 E_BUSY Since file (lnk) has already been exclusively opened, the file could not be opened

simultaneously (when F_FIX is specified)

 E_OBJ File (lnk) already exists (when F_FILEID is specified)

 E_FNAME File name (ref->f_name) or file system name (ref->fs_name) is empty or invalid

 E_IO Input/output error occurred

 E_LIMIT Maximum number of files exceeded

 File (lnk) exceeded the maximum size of the system (when F_FI X is specified)

 E_NODSK Disk area is insufficient

 E_NOEXS File (lnk) does not exist (when F_FI X is specified)

 E_NOFS File system where file (lnk) belongs is not connected

 E_PAR Parameter is invalid (opt is invalid, same file system)

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

224 TEF021-S003-01.00.00/en

 E_RONLY File (lnk) is write-protected or file system that file belongs to is write-protected (when F_FI X is

specified)

 E_SYSMEM Memory area of the system is insufficient.

Description

Creates a link file with the content specified by “ref” in the file system where the file (In the case of link file, a

normal file to which the link file refers) specified by “lnk” exists.

All the link attribute data of the link to the created file are set to zero, and are stored in the area specified by “lnk”.

The meaning of “F_FLOAT”, “F_FIX”, and “F_FILEID” is identical with “tkse_cre_fil()”.

The content of the created link file is the one specified by “ref”, but the creation time is set to the time when this

system call is executed instead of “ref->f_ctime”.

The actual existence of the file specified by “ref” is not checked.

When “ref->fs_name” is identical with the file system name specified by “lnk”, a link file cannot be created. That

results in an error.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

225 TEF021-S003-01.00.00/en

Generate File Directly

tkse_gen_fil

C Language Interface

 ER ercd = tkse_gen_fil(LINK *lnk, TC *name, F_STATE *stat, F_LINK *ref, W opt);

Parameter

 LINK *lnk storage area of generated file link (output)

 specify file system (input: when “F_FLOAT” is specified)

 specify parent file (input: when “F_FIX” is specified)

 specify file to be generated (input: when “F_FILEID” is specified)

 TC *name file name (valid for 0 or up to maximum number of file name characters)

 (valid only at normal file generation; when name is NULL at this time, an error occurs)

 (Not referred at all when generating a link to file)

 F_STATE *stat file content to be generated

 F_LINK *ref link file content to be generated

 (valid only at link file generation)

 W opt attribute of generation

 (F_FLOAT || F_FIX || F_FILEID)

 F_FLOAT floating link specification

 F_FIX fixed link specification

 F_FILEID file ID specification

Return Parameter

 ER ercd ＜ 0 error code

 ＝ 0 normal completion (at link file generation)

 ＞ 0 normal completion (file descriptor: at normal file generation)

Error Code

 E_FACV Not level 0 user

 E_MACV Address (lnk,ref, name, stat) access is not permitted

 E_BUSY Since file (lnk) has already been exclusively opened, the file could not be opened

simultaneously (when F_FIX is specified)

 E_OBJ File (lnk) already exists (when F_FILEID is specified)

 E_FNAME File name (name), file name (ref->f_name) and file system name (ref->fs_name) are empty or

invalid

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

226 TEF021-S003-01.00.00/en

 E_IO Input/output error occurred

 E_LIMIT Maximum number of files exceeded or maximum number of files which can be opened

simultaneously exceeded

 File (lnk) exceeded the maximum size of the system (when F_FI X is specified)

 E_NODSK Disk area is insufficient

 E_NOEXS File (lnk) does not exist

 E_NOFS File system where the file (lnk) belongs is not connected

 E_PAR Parameter is invalid (opt is invalid, contents of same file system, ref, stat are invalid)

 E_RONLY File (lnk) is write-protected or file system that file belongs to is write-protected

 E_SYSMEM Memory area of the system is insufficient

Description

Newly generates a normal file or a link file in the file system where the file (In the case of link file, normal file to

which the link file refers) specified by “lnk” exists, and open it for updating if a normal file is generated

All the attribute data of the link to the generated link file is set to zero, and is stored in an area specified by “lnk”.

The meaning of “F_FLOAT”, “F_FIX”, and “F_FILEID” is identical with “tkse_cre_fil()”.

The generated file content is specified by “stat”, and whether it is a normal file or a link file is distinguished by

“stat->f_type”.

At normal file generation, a normal file with the name specified by “name” shall be generated and the generated

file management information shall be set to the content specified by “stat”. However, the values of “f_nlink”,

“f_index”, “f_size”, “f_nblk”, and “f_nrec” are ignored and initialized at file generation.

All other contents of “stat” are ignored and link file of “ref” content is generated. It is same as the behavior of

“tkse_cre_lnk()”, and “ref->f_ctime” is valid as well.

Since this system call is used for special purpose of restoring a file system, etc., it can be executed only in a

process at user level 0.

At normal file generation, the file is opened for updating. Since there is no record in this state, the current record

indicates the end record and the record number is zero.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

227 TEF021-S003-01.00.00/en

Open File

tkse_opn_fil

C Language Interface

 ER ercd = tkse_opn_fil(LINK *lnk, W o_mode, TC *pwd);

Parameter

 LINK *lnk target file

 W o_mode open mode

 (F_READ || F_WRITE || F_UPDATE) | [F_EXCL || F_WEXCL]

 F_READ open for reading

 F_WRITE open for writing

 F_UPDATE open for updating (reading/writing)

 F_EXCL exclusive mode

 F_WEXCL exclusive write mode

 TC *pwd password

 NULL no password specification

Return Parameter

 ER ercd ＜ 0 error code

 ＞ 0 normal completion (file descriptor)

Error Code

 E_FACV No file (lnk) access right (o mode is supported)

 E_MACV Address (lnk,pwd) access is not permitted.

 E_BUSY Since file (lnk) has already been exclusively opened, the file could not be opened

simultaneously

 E_IO Input/output error occurred

 E_LIMIT Maximum number of files which can be opened simultaneously exceeded

 E_NOEXS File (lnk) does not exist

 E_NOFS File system where the file (lnk) belongs is not connected

 E_PAR Parameter is invalid (o mode is invalid)

 E_PWD The password of file (lnk) does not match

 E_RONLY File (lnk) is write-protected or file system that file belongs to is write-protected

 E_SYSMEM Memory area of the system is insufficient

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

228 TEF021-S003-01.00.00/en

Description

Opens the file specified by “lnk” in the specified mode. To open a file, an access privileges corresponding to the

open mode is required.

Since password function is currently unsupported, “pwd” is set to NULL.

The current record is set to the start record of the opened file. When there is no record in the file, the current

record is set to the end record.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

229 TEF021-S003-01.00.00/en

Close File

tkse_cls_fil

C Language Interface

 ER ercd = tkse_cls_fil(W fd);

Parameter

 W fd file descriptor

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_FD File descriptor does not exist

 E_IO Input/output error occurred

Description

Closes the opened file.

When the process which opened the file exits, the file will be automatically closed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

230 TEF021-S003-01.00.00/en

Delete File

tkse_del_fil

C Language Interface

 ER ercd = tkse_del_fil(LINK *org, LINK *lnk, W force);

Parameter

 LINK *org parent file of the file targeted to be deleted

 NULL no parent file specification

 LINK *lnk file targeted to be deleted

 W force forcible deletion specification

 ＝ 0 : not deleted when the destination file includes a link record.

 != 0 : deleted when the destination file includes a link record.

Return Parameter

 ER ercd ＜ 0 error code

 >= 0 normal completion (the number of link records when reference count results in

zero after deletion)

Error Code

 E_FACV No file (org) access rights (W) (when org!=NULL)

 E_MACV Address (org, lnk) access is not permitted

 E_BUSY Since file (org) has already been exclusively opened, the file could not be opened

simultaneously (when org!=NULL)

 File (lnk) is being opened or is a working file

 The reference count of file (lnk) is not 0 (when org=NULL)

 The link record which displays file (lnk) is being used as current record by another open file.

(When org=NULL)

 E_IO Input/output error occurred

 E_LOCK The link record which displays the file (lnk) is being locked by another link (when org!= NULL)

 E_NOEXS File (org, lnk) does not exist (or the link record which displays the file (lnk) specified within org

does not exist)

 E_NOFS File system where the file (org, lnk) belongs is not connected

 E_PERM File (lnk) cannot be deleted (deletion impossible attribute is set)

 E_REC File contains link record. (when force=0)

 E_RONLY File (org) cannot be written or the file system that the file belongs to cannot be written (when

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

231 TEF021-S003-01.00.00/en

org!= NULL)

 File system (lnk) that the file belongs to cannot be written

 E_SYSMEM Memory area of the system is insufficient

Description

Delete the link record which indicates the file specified by “lnk” in the parent file specified by “org”, and decrement

the reference count of the file by one. When reference count results in zero, the file itself specified by “lnk” shall be

deleted. In this case, an access privileges to write (W) parent file is required.

In the case of no parent file setting (org = NULL), if the reference count of the file specified by “lnk” is zero, the file

shall be deleted. An error is caused by the reference count other than zero.

When the file targeted for deletion is a link file, the link file itself is the target for deletion; the destination file for

reference of the link file will not be deleted.

In the case of no forced deletion (force = 0), if the file to be deleted include a link record, the file will not be deleted

as an error. In the case of forced deletion (force != 0), if the file to be deleted includes a link record, the file shall

be deleted and the reference count of the file shall be decremented by one which the included link record

indicates. And as the result, the number of link records whose reference count results in zero is set to return

value.

When the file to be deleted is in any of the following, an error occurs without the deletion of the file:

 ・Permanent attribute is set

 ・open process is existent

 ・process which is used as a working file is existent

The file can be deleted even when read-only attribute is set.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

232 TEF021-S003-01.00.00/en

Move Current Record

tkse_see_rec

C Language Interface

 ER ercd = tkse_see_rec(W fd, W offset, W mode, W *recnum);

Parameter

 W fd file descriptor

 W offset offset to move

 W mode move mode

 ＝ 0 move to the record number for current record number + offset

 ＞ 0 move to the position for “offset” record number

 It should be offset >= 0

 ＜ 0 move to the record number position for the end of record number + “offset”

 It should be offset <=0

 W *recnum storage area of the current record number after move

 NULL not stored

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_MACV Address (recnum) access is not permitted

 E_FD File descriptor does not exist

 E_IO Input/output error occurred

 E_REC Range of the existing record exceeded

Description

Moves the current record position for the opened file to the specified location.

When specified destination exceeds the existing range of record, an error occurs and the current record will not be

changed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

233 TEF021-S003-01.00.00/en

Find Record

tkse_fnd_rec

C Language Interface

 ER ercd = tkse_fnd_rec(W fd, W mode, UW typemask, UH subtype, W *recnum);

Parameter

 W fd file descriptor

 W mode search mode (specify start position/direction to search)

 (F_FWD || F_NFWD || F_BWD || F_NBWD || F_TOPEND || F_ENDTOP)

 F_FWD from the current record to the end record

 F_NFWD from the record next to the current one to the end of record

 F_BWD from the current record to the top record

 F_NBWD from the record previous to the current one to top record

 F_TOPEND from the top record to the end of record

 F_ENDTOP from the end of record to the top record

 UW typemask “bitmask” of the record type targeted for search

 support for LSB type 0

 support for MSB type 31

 UH subtype record subtype targeted for search

 0 applied to all subtypes (without subtype check)

 W *recnum storage area of the current record number as a result of search

 NULL not stored

Return Parameter

 ER ercd ＜ 0 error code

 >= 0 normal completion (searched record type)

Error Code

 E_MACV Address (recnum) access is not permitted

 E_FD File descriptor does not exist

 E_IO Input/output error occurred

 E_PAR Parameter is invalid (mode is invalid)

 E_REC Record matching to the specified retrieval conditions does not exist (including cases when

typemask=0)

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

234 TEF021-S003-01.00.00/en

Description

Searches the specified record in the opened file, and sets the found record as the current record.

When target record is not found, an error occurs and the current record will not be changed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

235 TEF021-S003-01.00.00/en

Find Link Record

tkse_fnd_lnk

C Language Interface

 ER ercd = tkse_fnd_lnk(W fd, W mode, LINK *lnk, UH subtype, W *recnum);

Parameter

 W fd file descriptor

 W mode search mode (specification of start position/direction/content to search)

 (F_FWD || F_NFWD || F_BWD || F_NBWD || F_TOPEND || F_ENDTOP)

| [F_SFILE] | [F_SNAME]

 | [F_SATR1] | [F_SATR2] | [F_SATR3] |

 [F_SATR4] | [F_SATR5]

 same as F_FWD～F_ENDTOP tkse_fnd_rec()

 F_SFILE link record which indicates the same file as “lnk”

 F_SNAME link record which indicates the file with the same file name as “lnk”

 F_SATR1 link record with the same attribute data 1 as “lnk”

 F_SATR2 link record with the same attribute data 2 as “lnk”

 F_SATR3 link record with the same attribute data 3 as “lnk”

 F_SATR4 link record with the same attribute data 4 as “lnk”

 F_SATR5 link record with the same attribute data 5 as “lnk”

 LINK *lnk targeted link for search

 enabled only when F_SFILE - F_SATR5 is specified

 UH subtype targeted record subtype for search

 0 applied to all subtypes (without subtype check)

 W *recnum storage area of the current record number as a result

 NULL not stored

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_MACV Address (lnk,recnum) access is not permitted (Ink is accessed only when the retrieval

conditions are specified)

 E_FD File descriptor does not exist

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

236 TEF021-S003-01.00.00/en

 E_IO Input/output error occurred

 E_NOEXS File (lnk) does not exist

 E_NOFS File system where file (lnk) belongs is not connected

 E_PAR Parameter is invalid (mode is invalid)

 E_REC Record matching the specified retrieval conditions does not exist

 E_SYSMEM Memory area of the system is insufficient

Description

Searches the specified link record in the opened file, and sets the found link record as the current record.

When destination record is not found, an error occurs and the current record will not be changed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

237 TEF021-S003-01.00.00/en

Read Record

tkse_rea_rec

C Language Interface

 ER ercd = tkse_rea_rec(W fd, W offset, B *buf, W size, W *r_size, UH *subtype);

Parameter

 W fd file descriptor

 W offset byte position to start reading (>=0)

 B *buf storage area of read data

 NULL not stored

 W size byte size of read data storage area (>=0)

 W *r_size remaining byte size from the starting byte position

 storage area with the size (record size - offset)

 NULL not stored

 UH *subtype storage area of record type

 NULL not stored

Return Parameter

 ER ercd ＜ 0 error code

 >= 0 normal completion (the record type of the current record)

Error Code

 E_MACV Address (buf,r_size,subtype) access is not permitted

 E_ENDR Current record is an end record

 E_FD File descriptor does not exist or is F_WRITE open

 E_IO Input/output error occurred

 E_LOCK Current record is locked from others

 E_PAR Parameter is invalid (Offset and size are invalid in size<0, offset<0, and the link record)

Description

Reads the current record of the opened file.

When record size < offset + size, only the (record size - offset) bytes data is read and stored in “buf”.

When “offset >= record size”, “buf = NULL”, or “size = 0”, nothing is stored in “buf” but values corresponding to

“*r_size” and “*subtype” are stored. This is used when retrieving record type or subtype only.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

238 TEF021-S003-01.00.00/en

When the current record is a link record, the content of the entire “LINK” structure is read to “buf”, and the size of

“LINK” structure is stored in “*r_size”. In this case, the condition must be met that “offset = 0”, “size >= size of

“LINK” structure” (or size = 0).

When the current record is the end record, or is locked by other process, an error occurs.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

239 TEF021-S003-01.00.00/en

Write Record

tkse_wri_rec

C Language Interface

 ER ercd = tkse_wri_rec(W fd, W offset, B *buf, W size, W *r_size, UH *subtype, UW units);

Parameter

 W fd file descriptor

 W offset byte position to start writing (-1 <= offset < record size)

 -1: write to the end of record (addition)

 B *buf pointer to the write data

 NULL not written

 W size byte size of write data (>=0)

 W *r_size remaining byte size from the starting byte position

 storage area of the size (record size after writing - offset)

 NULL not stored

 UH *subtype pointer to the record type to be modified

 NULL No change

 UW units unit to get block (K bytes)

 0 any

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_MACV Address (buf,r_size,subtype) access is not permitted

 E_ENDR Current record is an end record

 E_FD File descriptor does not exist or is F_READ open

 E_IO Input/output error occurred

 E_LOCK Current record is locked from others

 E_NODSK Disk area is insufficient or specified continuous block area could not be acquired

 E_PAR Parameter is invalid (size<0, offset is invalid, and offset, size are invalid in the link record)

 E_LIMIT The maximum file size of the system was exceeded

Description

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

240 TEF021-S003-01.00.00/en

Writes to the current record of the opened file.

When record size < offset + size, the record size increases after writing.

"units" specifies the unit of getting additional blocks in K bytes necessary for record size increase, and specifies to

allocate consecutive block area of greater than or equal to “units” size (less than or equal to “size”).

“units = 0” means that any way to allocate blocks is allowed.

When “size = 0” or “buf = NULL”, data is not written. When “subtype != NULL”, record subtype is changed.

When “buf = NULL” and “record size < offset + size”, record size is increased. The data for(of) increased portion is

indeterminate. This is used when reserving record's additional block area in combination with “units” setting.

When “offset = -1”, data is constantly written to the end of record at this point, and the value of “size” is stored in

“*r_size”. Even when the same record is opened by multiple processes and simultaneously opened, this setting

assures that written data is not overwritten by another data.

When the current record is a link record, the content of “buf” is “LINK” structure. However, only portion of attribute

data is written, the file itself to be referred cannot be changed. In this case, the condition must be met that “offset =

0”, “size >= size” of LINK structure (or “size = 0”).

When the current record is the end record or the current record is locked by other process, an error occurs.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

241 TEF021-S003-01.00.00/en

Insert Record

tkse_ins_rec

C Language Interface

 ER ercd = tkse_ins_rec(W fd, B *buf, W size, W type, UH subtype, UW units);

Parameter

 W fd file descriptor

 B *buf pointer to the inserted record data

 NULL data is not written

 W size byte size of the inserted record (>=0)

 W type record type of inserted record

 UH subtype subtype of the inserted record

 UW units unit to get block (K bytes)

 UH subtype record subtype of inserted record

 0 any

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_MACV Address (buff) access is not permitted

 E_FD File descriptor does not exist or is F_READ open

 E_IO Input/output error occurred

 E_LIMIT The file in the reference link exceeded the maximum reference count (255) of the system

 The maximum file size of the system was exceeded

 E_NODSK Disk area is insufficient or specified continuous block area could not be acquired

 E_NOEXS The file at the reference link does not exist

 E_PAR Parameter is invalid (type is invalid, size<0 and units are invalid, and size and buff are invalid

when type=0)

 E_REC Link is referring to a different file system

Description

Inserts new record just before current record of the opened file.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

242 TEF021-S003-01.00.00/en

"units" specifies the unit to get blocks in K bytes necessary in inserted record, and specifies to allocate

consecutive block area of greater than or equal to “units” size (less than or equal to size). The “units = 0“ means

that any way to allocate blocks is allowed.

When “buf = NULL”, the size of inserted record becomes “size”, but the data is indeterminate. This is used to get

record's block area beforehand in combination with “units” specification.

When “type = 0”, a link record is inserted and the content of “buf” is set to the “LINK” structure. By inserting a link

record, the reference count of the file which the link indicates is incremented by one. In this case, the condition

must be met that ”buf != NULL”, “size = size of “LINK” structure”, and the file which the link indicates must exist in

the same file system.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

243 TEF021-S003-01.00.00/en

Append Record

tkse_apd_rec

C Language Interface

 ER ercd = tkse_apd_rec(W fd, B *buf, W size, W type, UH subtype, UW units);

Parameter

 W fd file descriptor

 B *buf pointer to the additional record data

 NULL data is not written

 W size byte size of the additional record (>=0)

 W type record type of additional record

 U subtype record subtype of the additional record

 UW units unit to get block (K bytes)

 0 any

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_MACV Address (buff) access is not permitted

 E_FD File descriptor does not exist or is F_READ open

 E_IO Input/output error occurred

 E_LIMIT The file in the reference link exceeded the maximum reference count (255) of the system

 The maximum file size of the system was exceeded

 E_NODSK Disk area is insufficient or specified continuous block area could not be acquired

 E_NOEXS The file at the reference link does not exist

 E_PAR Parameter is invalid (type is invalid, size<0 and units are invalid, and size and buff when type

=0 are invalid)

 E_REC Link is referring to a different file system

Description

Inserts new record into the end of the opened file.

This system call is identical with “tkse_ins_rec()” excepting that a record is constantly inserted into the last record

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

244 TEF021-S003-01.00.00/en

(before the end of record) regardless of the position of current record.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

245 TEF021-S003-01.00.00/en

Delete Record

tkse_del_rec

C Language Interface

 ER ercd = tkse_del_rec(W fd);

Parameter

W fd file descriptor

Return Parameter

 ER ercd ＜ 0 error code

 ＝ 1 normal completion (deletion of link record results in reference count = 0)

 ＝ 0 normal completion (other than the mentioned above)

Error Code

 E_BUSY It is being used as current record by another open file

 E_ENDR Current record is an end record

 E_FD File descriptor does not exist or is F_READ open

 E_IO Input/output error occurred

 E_LOCK Current record is locked from others

 E_SYSMEM Memory area of the system is insufficient

Description

Deletes the current record of the opened file and moves the current record to the next record of the deleted one.

When the deleted record is a link record, the reference count of the file which the link record indicates is

decremented by one. When reference count then results in zero, return value one is returned.

An error occurs when the current record is the end record, is locked by other process, or is the current record of

other open process.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

246 TEF021-S003-01.00.00/en

Truncate Record Size
tkse_trc_rec

C Language Interface

 ER ercd = tkse_trc_rec(W fd, W size);

Parameter

 W fd file descriptor

 W size record byte size to be reduced (>=0)

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_ENDR Current record is an end record

 E_FD File descriptor does not exist or is F_READ open

 E_IO Input/output error occurred

 E_LOCK Current record is locked from others

 E_PAR Parameter is invalid (size<0)

 E_REC Current record is a link record

Description

Truncates record size of the current record of the opened file to “size” bytes. Nothing shall be executed when

record size <= ”size”.

An Error occurs when current record is the end record, link record, or locked by other processes.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

247 TEF021-S003-01.00.00/en

Exchange File Content
tkse_xch_fil

C Language Interface

 ER ercd = tkse_xch_fil(W fd_1, W fd_2);

Parameter

 W fd_1 file descriptor 1

 W fd_2 file descriptor 2

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_FD File descriptor does not exist or is not (F_UPDATE|F_EXCL). It is open.

 E_IO Input/output error occurred

 E_LOCK Current record is locked from others (record is locked)

 E_PAR Parameter is invalid (fd_1 and fd_2 are the same file)

 E_XFS File (fd_1, fd_2) belongs to a different file system

 E_SYSMEM Memory area of the system is insufficient

Description

Exchanges the contents of the opened two files.

Only data part of file are exchanged; the file management information remains unchanged except access date

and update time.

The two files to be exchanged must exist in the same file system and must be opened for update in the exclusive

mode.

The current records after exchange are respectively the top record.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

248 TEF021-S003-01.00.00/en

Record lock
tkse_loc_rec

C Language Interface

 ER ercd = tkse_loc_rec(W fd, W mode);

Parameter

 W fd file descriptor

 W mode lock mode

 (F_UNLOCK || F_LOCK || F_TSLOCK || F_CKLOCK)

 F_LOCK lock setting (waiting)

 F_UNLOCK unlock

 F_TSLOCK lock setting (no waiting)

 F_CKLOCK check lock state

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_ENDR Current record is an end record

 E_FD File descriptor does not exist

 E_IO Input/output error occurred

 E_LIMIT The maximum number of records that can be locked simultaneously exceeded

 E_LOCK Current record is locked from others. Current record is already locked from others (when

F_TSLOCK/F_CKLOCK is specified)

 It has already been locked from another file descriptor of its own process (when F_LOCK is

specified)

 Lock cannot be released since it is locked by another file descriptor (when F_UNLOCK is

specified)

 E_DISWAI Since the message handler has been started, WAIT processing was interrupted (when

F_UNLOCK is specified)

 E_PAR Parameter is invalid (mode is invalid)

 E_SYSMEM Memory area of the system is insufficient

Description

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

249 TEF021-S003-01.00.00/en

Locks the current record of the opened file.

When “F_LOCK” (lock (waiting)) is set and locked by other process, waits until it will be unlocked (waiting shall be

in the priority order of process while the waiting with same priority shall be in the order of entering into WAIT state).

Normal completion shall be executed without any processing when locked by the same file descriptor of invoking

process. An error occurs when locked by the other file descriptor of invoking process.

In the case “F_UNLOCK” (unlock) is set, normal completion shall be executed without any processing when the

record is unlocked. Unlock is enabled only when locked by the same file descriptor of this process, otherwise an

error occurs.

In the case “F_TSLOCK” (lock (no waiting)) is set, an error occurs when the record was locked by other process

or other file descriptor.

In the case “F_CKLOCK” (check lock state) is set, when the record was locked by other process or other file

descriptor, an error occurs, and otherwise normal completion shall be executed without any processing.

The file descriptor other than the locked file descriptor is prohibited from reading, writing, resizing, modifying and

deleting the locked record.

The lock set by the opened process is released at file close.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

250 TEF021-S003-01.00.00/en

Check File Access Privileges
tkse_chk_fil

C Language Interface

 ER ercd = tkse_chk_fil(LINK *lnk, W mode, TC *pwd);

Parameter

 LINK *lnk target file

 W mode check mode

 ([F_READ] | [F_WRITE] | [F_EXCUTE]) || [F_EXIST]

 F_READ check access privileges to read (R)

 F_WRITE check access privileges to write (W)

 F_EXCUTE check access privileges to execute/search (E)

 F_EXIST check existence of file

 TC *pwd password (valid only when “F_READ” or “F_WRITE” is specified)

 NULL no password specification

Return Parameter

 ER ercd ＜ 0 error code

 ＝ 0 normal completion (when non-“F_EXIST” is specified)

 >= 0 normal completion (file access information: when “F_EXIST” is specified)

Error Code

 E_FACV No file (lnk) access right (when F_EXIST is specified)

 E_MACV Address (lnk) access is not permitted.

 E_IO Input/output error occurred

 E_NOEXS File (lnk) does not exist

 E_NOFS File system where file (lnk) belongs is not connected.

 E_PAR Parameter is invalid (mode is invalid)

 E_PWD The password of file (lnk) does not match (when F_READ/F_WRITE is specified)

 E_RONLY Non-writable attribute of the file (when F_WRITE is specified) is set or file system that it

belongs to is write-protected

 E_SYSMEM Memory area of the system is insufficient

Description

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

251 TEF021-S003-01.00.00/en

Checks whether the access specified by specified file is enabled or not.

An error occurs when the access specified in combination with “F_READ”, “F_WRITE”, and “F_EXCUTE” is

disabled.

Since password function is currently unsupported, “pwd” is set to NULL.

In the case of “F_EXIST” specification, an error occurs when the file does not exist; when the file exists, the

following access information is returned as return value:

 0.....0 BAPO SRWE

 B: application attribute 2 (1: ON, 0: OFF)

 A: application attribute 1 (1: ON, 0: OFF)

 P: permanent attribute (1: ON, 0: OFF)

 O: read-only attribute (1: ON, 0: OFF)

 S: with or without password (1: with password, 0: without password)

 R: access privileges to read (R) (1: with password, 0: without password)

 W: access privileges to write (W) (1: with password, 0: without password)

 E: access privileges to execute/search (E) (1: with password, 0: without password)

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

252 TEF021-S003-01.00.00/en

Change File Access Mode
tkse_chg_fmd

C Language Interface

 ER ercd = tkse_chg_fmd(LINK *lnk, A_MODE *mode);

Parameter

 LINK *lnk target file

 A_MODE *mode access mode to be changed

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_FACV Not file (lnk) owner or level 0 user

 E_MACV Address (lnk, mode) access is not permitted

 E_IO Input/output error occurred

 E_NOEXS File (lnk) does not exist

 E_NOFS File system where file (lnk) belongs is not connected

 E_PAR Parameter is invalid. (contents of mode are invalid)

 E_RONLY File (lnk) is unwritable or file system that it belongs to is unwritable

 E_SYSMEM Memory area of the system is insufficient

Description

Changes access mode of the specified file.

“F_NOCHG” specification to the each of following data of access mode means that the item should not be

changed.

 ・owner access mode (f_ownac)

 ・group access level (f_grpacc)

 ・public access level (f_pubacc)

 ・owner group number (f_grpno)

Regarding the change of access mode, when access level in the file system is zero, anyone can change the

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

253 TEF021-S003-01.00.00/en

access mode, however when access level is not zero, it can be changed by the process of the file owner only.

When the access modes of the files that have been already opened are changed, the changes will not affect the

files that have been already opened.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

254 TEF021-S003-01.00.00/en

Change File Access Attribute
tkse_chg_fat

C Language Interface

 ER ercd = tkse_chg_fat(LINK *lnk, W attr);

Parameter

 LINK *lnk target file

 W attr access attribute to be changed

 (F_SETRONLY || F_RSTRONLY || F_SETPERM || F_RSTPERM ||

 F_SETA1 || F_RSTA1 || F_SETA2 || F_RSTA2)

 F_SETRONLY set read-only attribute

 F_RSTRONLY reset read-only attribute

 F_SETPERM set permanent attribute

 F_RSTPERM reset permanent attribute

 F_SETA1 set application attribute 1

 F_RSTA1 reset application attribute 1

 F_SETA2 set application attribute 2

 F_RSTA2 reset application attribute 2

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_FACV Not file (lnk) owner or level 0 user

 E_MACV Address (lnk) access is not permitted

 E_IO Input/output error occurred

 E_NOEXS File (lnk) does not exist

 E_NOFS File system where file (lnk) belongs is not connected.

 E_PAR Parameter is invalid (attr is invalid)

 E_RONLY File (lnk) is unwritable or file system that it belongs to is unwritable

 E_SYSMEM Memory area of the system is insufficient

Description

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

255 TEF021-S003-01.00.00/en

Changes the access attribute to the specified file.

Regarding the change of access mode, when access level in the file system is zero, only the access mode can be

changed by anyone. However when access level is not zero, it can be changed by the process of the file owner.

When the access modes of the files that have been already opened are changed, the changes will not affect the

files that have been already opened.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

256 TEF021-S003-01.00.00/en

Change File name
tkse_chg_fnm

C Language Interface

 ER ercd = tkse_chg_fnm(LINK *lnk, TC *name);

Parameter

 LINK *lnk target file

 TC *name file name to be changed (valid to TNULL or the maximum number of file name characters)

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_FACV Not file (lnk) owner or level 0 user

 E_MACV Address (lnk, name) access is not permitted

 E_IO Input/output error occurred

 E_NOEXS File (lnk) does not exist

 E_NOFS File system where file (lnk) belongs is not connected.

 E_FNAME File name (name) is empty or invalid

 E_PERM File (lnk) cannot be deleted (deletion impossible attribute is set)

 E_RONLY File is write-protected or file system that it belongs to is write-protected

 E_SYSMEM Memory area of the system is insufficient

Description

Changes the file name of the specified file.

Regarding the change of file name, when access level in the file system is zero, the file name can be changed by

anyone. However when access level is not zero, it can be changed by the process of the file owner only.

The name of the file whose write-protected or unremovable attribute is set cannot be changed. When the specified

file is a link file, both the name of destination file for reference and reference file held in the link file are changed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

257 TEF021-S003-01.00.00/en

Change File Date and Time
tkse_chg_ftm

C Language Interface

 ER ercd = tkse_chg_ftm(LINK *lnk, F_TIME *times);

Parameter

 LINK *lnk target file

 F_TIME *times date and time to be changed

 NULL set to the current date and time

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_FACV Not file (lnk) owner or level 0 user

 E_MACV Address (lnk, times) access is not permitted

 E_IO Input/output error occurred

 E_NOEXS File (lnk) does not exist

 E_NOFS File system where the file (lnk) belongs is not connected.

 E_RONLY File is write-protected or file system that it belongs to is write-protected

 E_SYSMEM Memory area of the system is insufficient

Description

Changes the shelf life, the latest access time, and the last updated time of the specified file.

When each value of “F_TIME” is less than or equal to zero, the item is not changed.

When access level in the file system is zero, the file date and time can be changed. However when access level is

not zero, it can be change by the process of the file owner only.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

258 TEF021-S003-01.00.00/en

Get file information
tkse_fil_sts

C Language Interface

 ER ercd = tkse_fil_sts(LINK *lnk, TC *name, F_STATE *stat, F_LOCATE *locat);

Parameter

 LINK *lnk target file

 TC *name storage area of file name (area for maximum file name + one character)

 NULL not stored

 F_STATE *stat storage area of the file management information

 NULL not stored

 F_LOCATE *locat storage area of the file location information

 NULL not stored

Return Parameter

 ER ercd ＜ 0 error code

 >= 0 normal completion (reference count of the file)

Error Code

 E_MACV Address (lnk,name,stat,locat) access is not permitted

 E_IO Input/output error occurred

 E_NOEXS File (lnk) does not exist

 E_NOFS File system where the file (lnk) belongs is not connected

 E_SYSMEM Memory area of the system is insufficient

Description

Retrieves the specified file information.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

259 TEF021-S003-01.00.00/en

Get file information
tkse_ofl_sts

C Language Interface

 ER ercd = tkse_ofl_sts(W fd, TC *name, F_STATE *stat, F_LOCATE *locat);

Parameter

 W fd file descriptor

 TC *name storage area of file name (area for maximum file name + one character)

 NULL not stored

 F_STATE *stat storage area of the file management information

 NULL not stored

 F_LOCATE *locat storage area of the file location information

 NULL not stored

Return Parameter

 ER ercd ＜ 0 error code

 >= 0 normal completion (reference count of the file)

Error Code

 E_MACV Address (name, stat, locat) access is not permitted

 E_FD File descriptor does not exist

 E_IO Input/output error occurred

 E_SYSMEM Memory area of the system is insufficient

Description

Retrieves the opened file information.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

260 TEF021-S003-01.00.00/en

Get Link File Information
tkse_lnk_sts

C Language Interface

 ER ercd = tkse_lnk_sts(LINK *lnk, F_LINK *stat);

Parameter

 LINK *lnk target link file

 F_LINK *stat storage area of the link file information

 NULL not stored

Return Parameter

 ER ercd ＜ 0 error code

 >= 0 normal completion (reference count of the link file)

Error Code

 E_MACV Address (lnk, stat) access is not permitted

 E_IO Input/output error occurred

 E_NOEXS File (lnk) does not exist

 E_NOFS File system where the file (lnk) belongs is not connected

 E_NOLNK Not a link file

 E_SYSMEM Memory area of the system is insufficient

Description

Retrieves the link file information of the specified link file.

When the specified file is not a link file, an error occurs.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

261 TEF021-S003-01.00.00/en

Synchronize Link File
tkse_syn_lnk

C Language Interface

 ER ercd = tkse_syn_lnk(LINK *lnk, W opt);

Parameter

 LINK *lnk target link file

 W opt synchronization attribute

 ＝ 0 check only

 != 0 check and update

Return Parameter

 ER ercd ＜ 0 error code

 >= 0 normal completion (synchronization state)

Error Code

 E_MACV Address (lnk) access is not permitted

 E_IO Input/output error occurred

 E_NOEXS File (lnk) does not exist

 E_NOFS File system where the file (lnk) or file at reference destination belongs is not connected

 E_NOLNK Not a link file

 E_RONLY File is write-protected or file system that it belongs to is write-protected

 E_SYSMEM Memory area of the system is insufficient

Description

Checks whether the file name, the generation time held by the specified link file are matched with the actual file

name and generation time of the destination file for reference.

Only check shall be executed when “opt=0”. When “opt != 0” and the data does not match, updating shall be

executed so that the information held by specified link file can be matched with the actual file name and

generation time of the destination file for reference.

The return value indicates the following synchronization state:

 F_SYNC matching

 F_DNAME different file name

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

262 TEF021-S003-01.00.00/en

 F_DDATE different generation time

 F_DBOTH different in both file name and generation time

When the specified file is not a link file, an error occurs.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

263 TEF021-S003-01.00.00/en

Get default access mode
tkse_get_dfm

C Language Interface

 ER ercd = tkse_get_dfm(DA_MODE *mode);

Parameter

 DA_MODE *mode storage area of default access mode

 typedef struct {

 UH f_ownacc; /* owner access mode */

 UH f_grpacc; /* group access level */

 UH f_pubacc; /* public access level */

 H f_grpno; /* group number (0-4) */

 UH f_gacc[N_GRP]; /* group access level */

 } DA_MODE;

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_MACV Address (mode) access is not permitted

Description

Gets default access mode.

The default access mode is applied when the access mode is not specified at file generation.

While “f_gacc[4]” as a data just for reference indicates a group access level set to each user group, “f_grpacc” as

an actual group access level is actually applied.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

264 TEF021-S003-01.00.00/en

Set default access mode
tkse_set_dfm

C Language Interface

 ER ercd = tkse_set_dfm(DA_MODE *mode);

Parameter

 DA_MODE *mode default access mode to be set

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_PAR Parameter is invalid (content of mode is invalid)

 E_MACV Address (mode) access is not permitted

Description

Sets default access mode.

The changed default access mode is valid for all processes.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

265 TEF021-S003-01.00.00/en

Attach File System
tkse_att_fls

C Language Interface

 ER ercd = tkse_att_fls(TC *dev, TC *name, LINK *lnk, UW mode);

Parameter

 TC *dev device name

 TC *name connection name (valid to TNULL or maximum number of characters for connection name)

 LINK *lnk storage area of the link to root file of the attached file system

 NULL not stored

 UW mode connection mode

 (FS_SYNC || FS_ASYN || FS_RONLY)

 FS_SYNC: synchronous write

 FS_ASYN: asynchronous write

 FS_RONLY: read-only

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_FACV No logical device(dev) access right (connection)

 E_MACV Address (dev, name, lnk) access is not permitted

 E_BUSY Logical device (dev) has already been opened or connected

 E_OBJ Connection name (name) already exists or a file system with same file system name has

already been connected

 E_FNAME File name (name) is empty or invalid

 E_IO Input/output error occurred

 E_LIMIT The maximum number of file systems that can be connected simultaneously exceeded

 E_NODEV Access to device is not possible (dev)

 E_NOEXS Device (dev) is not registered or not a block type device

 E_NOMDA Media is not present in device (dev)

 E_ILFMT Not a standard file system format

 E_SYSMEM Memory area of the system is insufficient

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

266 TEF021-S003-01.00.00/en

Description

Connects up the file system in the specified device to the system by the specified connection name.

The connection name is used to specify the root file in the connected file system by absolute path name. It should

not be the same as the connection names that have been already connected.

In the case “FS_SYNC” (synchronous write) is specified, writing into file is necessarily executed at the time of

executing a write system call.

In the case “FS_ASYN” (asynchronous write) is specified, writing into file is not necessarily executed at the time of

executing a write system call.

In the case “FS_RONLY” (read-only) is specified, every file write is prohibited.

An error occurs when reconnection of the connected file system is attempted or file system with the same file

system name as the name of file system to which connecting is attempted is already connected.

To connect the file system, connection access privileges to the device is needed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

267 TEF021-S003-01.00.00/en

Detach File system
tkse_det_fls

C Language Interface

 ER ercd = tkse_det_fls(TC *dev, W eject);

Parameter

 TC *dev device name

 W eject specify to eject

 ＝ 0 not eject

 != 0 eject (ignored, when device is unable to be ejected)

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_FACV No logical device(dev) access right (connection)

 E_MACV Address (dev) access is not permitted

 E_BUSY File system is being used

 E_IO Input/output error occurred

 E_NOEXS Device (dev) is not registered or is not a block type device

 E_NOFS File system where the logical device (dev) belongs is not connected

 E_NOMDA Device media does not exist.

 E_RONLY File cannot be written or file system that the file belongs to cannot be written

 E_SYSMEM Memory area of the system is insufficient

Description

Detach the connected file system in the specified device from the system. At this time, when the content, etc.

temporarily held in the memory exists, they shall be all written to the file system.

Detach is unavailable when a file in the file system targeted for detach is opened, or a process used as a working

file exists.

To detach the file system, connection access privileges to the device is needed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

268 TEF021-S003-01.00.00/en

Synchronize File system
tkse_syn_fls

C Language Interface

 ER ercd = tkse_syn_fls(void);

Parameter

none

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_IO Input/output error occurred

 E_NOMDA Device media does not exist.

 E_RONLY File cannot be written or file system that the file belongs to cannot be written

 E_SYSMEM Memory area of the system is insufficient

Description

The content, etc. temporarily held in the memory shall be all written to the file system, and the entire file system is

updated to be existent for eliminating inconsistency. It shall be executed to all the connected file systems.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

269 TEF021-S003-01.00.00/en

Get File system Management Information
tkse_fls_sts

C Language Interface

 ER ercd = tkse_fls_sts(TC *dev, FS_STATE *buff);

Parameter

 TC *dev device name

 FS_STATE *buff storage area of the file system management information

Return Parameter

 ER ercd ＜ 0 error code

 ＝ 0 normal completion (file system writable)

 ＝ 1 normal completion (file system read-only)

Error Code

 E_FACV No logical device(dev) access right (connection)

 E_MACV Address (dev, buf) access is not permitted

 E_BUSY Logical device has already been opened.

 E_IO Input/output error occurred

 E_NODEV Access to device (dev) is not possible.

 E_NOEXS Device (dev) is not registered or not a block type device

 E_NOMDA Media is not present in device (dev)

 E_ILFMT Not a standard file system format

 E_SYSMEM Memory area of the system is insufficient

Description

Retrieves the management information of the connected file system in the specified device.

To retrieve the management information of the file system, connection access privileges to the device is needed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

270 TEF021-S003-01.00.00/en

Change File system Information
tkse_chg_fls

C Language Interface

 ER ercd = tkse_chg_fls(TC *dev, TC *fs_name, TC *fs_locate);

Parameter

 TC *dev device name

 An error occurs in the case of NULL.

 TC *fs_name file system name to be changed

 NULL No change

 TC *fs_locate device location name to be changed

 NULL No change

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_FACV No logical device(dev) access right (connection, write)

 E_MACV Address (dev, fs_name, fs_locate) access is not permitted

 E_BUSY Logical device has already been opened.

 E_OBJ File system with specified file system name already exists (connected)

 E_FNAME File system name is empty or invalid

 E_IO Input/output error occurred

 E_NODEV Access to device (dev) is not possible

 E_NOEXS Device (dev) is not registered or not a block type device

 E_NOMDA Media is not present in device (dev)

 E_RONLY File cannot be written or file system that the file belongs to cannot be written

 E_ILFMT Not a standard file system format

 E_SYSMEM Memory area of the system is insufficient

Description

Changes the names of both file system and the device location of the connected file system in the specified

device.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

271 TEF021-S003-01.00.00/en

To change file system information, connection access privileges and write access privileges to the device are

needed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

272 TEF021-S003-01.00.00/en

Get Links Sequentially
tkse_get_nlk

C Language Interface

 ER ercd = tkse_get_nlk(LINK *lnk);

Parameter

 LINK *lnk link to the start file (input)

 storage area of link to next file (output)

Return Parameter

 ER ercd ＜ 0 error code

 >= 0 normal completion (reference count of the retrieved file)

Error Code

 E_MACV Address (lnk) access is not permitted

 E_IO Input/output error occurred

 E_NOFS File system where the file (lnk) belongs is not connected

 E_NOEXS File with a larger file ID than file (lnk) does not exist

 E_SYSMEM Memory area of the system is insufficient

Description

Retrieve the link to a file with a minimum file ID among (out of) files with the file ID greater than the file ID of the

specified start file.

The file ID of the start file can be that of nonexistent file in practice. All the attribute data to the link to the retrieved

file is set to zero.

All links to the file (including reference count = 0 file) that exist in the file system can be taken out by sequentially

acquiring the link from the route file of the file system (file ID = 0).

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

273 TEF021-S003-01.00.00/en

Get File system
tkse_lst_fls

C Language Interface

 ER ercd = tkse_lst_fls(F_ATTACH *buff, W cnt);

Parameter

 F_ATTACH *buff storage area of the file system connection information (array)

 typedef struct {

 TC a_name[L_CONNM]; /* connection name */

 TC dev[L_DEVNM]; /* logical device name */

 } F_ATTACH;

 W cnt ＞ 0 Indicate the element number of “buff”.

 ＝ F_GETDEV Get device name.

 ＝ F_GETNAM Get connection name.

Return Parameter

 ER ercd ＜ 0 error code

 >= 0 normal completion (the number of the connected file systems)

 ＝ 1 normal completion (when “F_GETDEV” and “F_FETNAM” is specified)

Error Code

 E_MACV Address (buff) access is not permitted

 E_NOFS File system is not connected (When cnt=－1,－2)

 E_PAR Parameter is invalid (cnt=0,<－2)

Description

Retrieve the connection name and the device name of the file systems that have been already connected.

When “cnt > 0”, retrieve connection information of all the connected file systems to store in “buff”.

When the number of the connected file systems is greater than the number of specified element (cnt), retrieve

only the first pieces as many information as the number of element (cnt).

When “cnt” is set to “F_GETDEV”, the device name corresponding to the connection name set to “buff->a_name[]

“ shall be stored into in “buff->dev[]”.

When “cnt” is set to “F_GETNAM”, the connection name corresponding to the device name set to “buff->dev[]”

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

274 TEF021-S003-01.00.00/en

shall be stored into in “buff->a_name[]”.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

275 TEF021-S003-01.00.00/en

Map Record
tkse_map_rec

C Language Interface

 ER ercd = tkse_map_rec(W fd, W offset, B **addr, W size, W mode);

Parameter

 W fd file descriptor

 W offset byte offset to start map

 B **addr storage area of the mapped memory address

 W size byte size to be mapped

 W mode map mode

 ([F_READ] | [F_WRITE] | [F_EXCUTE]) | [F_COMMON || F_SYSTEM]

 F_READ map to read

 F_WRITE map to write

 F_EXECUTE map to execute

 F_COMMON mapped to the shared memory space

 F_SYSTEM mapped to the system memory space

Return Parameter

 ER ercd ＜ 0 error code

 ＞ 0 normal completion (map ID)

Error Code

 E_FD File descriptor does not exist.

 Map mode contradicts the open mode

 E_REC Current record is a link record..

 E_MACV Address (addr) access is not permitted

 E_ENDR Current record is an end record.

 E_LOCK Current record is locked from others

 E_IO Input/output error occurred

 E_PAR Parameter is invalid

 E_NOSPT Mapping no possible due to system restrictions

Description

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

276 TEF021-S003-01.00.00/en

Map the “size” bytes from “offset” of the current record of the opened file to memory space. The content of the

mapped record can be accessed as a memory.

When “F_COMMON” is specified, it is mapped to the shared memory space. In this case, the access from all

processes is enabled. When “F_SYSTEM” is specified, it is mapped to the system memory space. In this case,

accessed from all system processes is enabled. The general application process, even if it is the mapped process

itself, cannot access from the public application process. Consequently, this setting shall not be used by an

application process.

When neither “F_COMMON” nor “F_SYSTEM” is specified, it is mapped on the local memory space of the

mapping process. In this case, access from the non-mapping process is not enabled.

The address to be mapped is determined by the system, and cannot be specified by the application.

The map mode specification shall be consistent with the opened mode. (E_FD)

 ・”F_READ” open does not allow the mapping in “F_WRITE” mode.

 ・”F_WRITE” open does not allow the mapping in “F_READ” and “F_EXCUTE” mode.

A link record cannot be mapped. (E_REC)

During mapping, the following manipulations are prohibited, and an E_BUSY error occurs.

 ・del_rec when the mapped record is targeted.

 ・wri_rec when the mapped record is targeted.

 ・trc_rec when the mapped record is targeted.

 ・xch_fil when the file including the mapped record is targeted.

Mapping is restricted in the following cases:

 ・file system in the removable media

 ・file system with logical block size less than 4KB

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

277 TEF021-S003-01.00.00/en

Unmap Record
tkse_ump_rec

C Language Interface

 ER ercd = tkse_ump_rec(W fd, W mapid);

Parameter

 W fd file descriptor

 W mapid map ID

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_FD File descriptor does not exist

 E_NOEXS Map ID does not exist

 E_IO Input/output error occurred

Description

Release the map specified by map ID of the opened file. The map set by the opened process is released at file

close.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

278 TEF021-S003-01.00.00/en

Change File system Connection Mode
tkse_chg_fsm

C Language Interface

 ER ercd = tkse_chg_fsm(TC *dev, UW mode);

Parameter

 TC *dev logical device name

 UW mode connection mode (same as the mode of att_fls)

 (FS_SYNC || FS_ASYN || FS_RONLY)

 FS_SYNC synchronization

 FS_ASYN asynchronization

 FS_RONLY read-only

Return Parameter

 ER ercd ＜ 0 error code

 >= 0 normal completion (connection mode before change)

Error Code

 E_FACV Logical device (dev) does not have a connection access right

 E_MACV Address (dev) access is not permitted

 E_IO Input/output error occurred

 E_PAR Parameter is invalid

 E_NOFS Logical device (dev) is not connected as a file system

Description

Change the connection state of the device “dev” to the connection mode specified by “mode”. “dev” must be an

device that has been already connected. The connection mode before change is returned as a return value.

To change the connection mode, connection access privileges to the device “dev” is required.

When writable attribute is set before the connection mode change, even if the attribute is changed to unwritable,

the write mode record map mapped by “tkse_map_rec()” is valid and writing is enabled. In the case a file is

“F_WRITE” or “F_UPDATE” open, when connection mode is changed to read-only, writing to the file by

“tkse_wri_rec()”, etc. returns an “E_RONLY” error code.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

279 TEF021-S003-01.00.00/en

Synchronize on File Basis
tkse_syn_fil

C Language Interface

 ER ercd = tkse_syn_fil(W fd);

Parameter

 fd file descriptor

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_FD File descriptor does not exist

Description

Regarding the file in specified open, the content, etc. temporarily held in memory of specified open file shall be

written to the disk. Also the content written on the record map (tkse_rec_map) shall be written to the disk

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

280 TEF021-S003-01.00.00/en

4.9 Filesystem Sharing Management
4.9.1 Filesystem Sharing Management Overview

The filesystem sharing management function of AMP TKSE is a function for sharing filesystems between AMP

TKSE. A filesystem that has already been connected by other AMP TKSE becomes the source of sharing, and the

filesystem can be operated as a filesystem of its own standard input/output management. In AMP TKSE, which is

the source of sharing, the disk device must actually exist.

The filesystem sharing management function provides the functions of sharing filesystems and releasing shared

filesystems only. Operations to shared filesystems are conducted by using the API of standard input/output

management.

The filesystem type of shared filesystems is MOUNT_SFS (shared filesystem). Although operations can be

conducted in the same way as other filesystems, it is not possible to detach the connection (tkse_detach). When

the use of the shared filesystem ends, sharing is released.

When reading and writing data is conducted for files on the shared filesystem, the file buffer area to be specified

must specify the shared memory between kernels. The targets are the standard input/output calls below.

・tkse_read

・tkse_write

・tkse_getdents

・tkse_getfsstat

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

281 TEF021-S003-01.00.00/en

4.9.2 System Call

Sharing of Filesystems
tkse_sharefs

C Language Interface

 ER ercd = tkse_sharefs(ID kdmid, const char *sfsnm, const char *connm, int mode);

Parameter

 ID kdmid Kernel Domain ID

 const char* sfsnm Connection name of a shared existing filesystem

 const char* connm New connection name of a shared filesystem

 int mode Connection mode

 [SF_RONLY]

 SF_RONLY 0x0001 Read only

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_ID kdmid is invalid

 E_NOFS Filesystem is not connected

 E_OBJ Already shared

Description

Shares filesystems with the connection name specified by sfsnm as its own filesystem in the AMP TKSE of the

kernel specified by kdmid. The connection name of the shared filesystem is connm,

Its own AMP TKSE cannot be specified in kdmid.

sfsnm must be the connection name of the filesystem that has already been connected. This call shares the

connected filesystem only, and a function to connect newly is not provided.

If NULL(0) is specified in common, the connection name of the shared filesystem becomes sfsnm.

If SF_RONLY is specified in mode, the filesystem is shared by reading only.

In order to discontinue the use of a shared filesystem, release the sharing (tkse_removefs). It is impossible to

detach the shared filesystem (tkse_detach). In addition, shared filesystems cannot be detached (tkse_detach) in

AMP TKSE which is the source of sharing.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

282 TEF021-S003-01.00.00/en

Filesystem Sharing Release
tkse_removefs

C Language Interface

 ER ercd = tkse_removefs(const char *connm);

Parameter

 const char* connm Device connection name

Return Parameter

 ER ercd error code

Error Code

 E_OK Normal completion

 E_PAR Not shared (sharing has already been released)

Description

Releases the sharing of shared filesystems with the connection name specified by connm.

The shared filesystem cannot be used later.

If a file which is being used (file that has been opened) exists in the specified shared filesystem, sharing cannot be

released.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

283 TEF021-S003-01.00.00/en

4.10 Event Management

4.10.1 Event Management Overview

The event management function of AMP TKSE uniformly treats notifications of phenomena from various devices

as "events". The main purpose of event management function is to achieve interactive human interfaces. Therefore,

keyboard and pointing devices are mainly assumed as the target devices of event management, but other devices

can be supported.

The following figure describes the overview of event management scheme:

 ┌───────────┐

┌─────┐ device event ┌────────────┐ │TKSE event management │

│ device │ notification │ message buffer │ │ ┌──────┐ │

│ driver │──────→ │ for event notification │──│→│ event queue│ │

 └─────┘ └────────────┘ │ └──────┘ │

 └─────│─────┘

 event │

 or event notification message ↓

 ┌───────────┐

 | application |

 └───────────┘

[Figure 12] Position of Event Management

The event notification from various devices is conveyed to the event management using the AMP T-Kernel device

event notification function. The event management creates events based on event notification from devices to

sequentially store in the event queue.

The interface between the event management and devices essentially shall be device event notifications only. The

function to control devices directly from the event management is not provided. In addition, the event management

does not depend upon specific devices.

An application sequentially fetches an event from the event queue to execute an action corresponding to it.

The application also can get the notification of event occurrence by using the interprocess message function. Then,

the notification (“tkse_brk_msg” call) of event occurrence in the interprocess message function is invoked from the

event management when an event occurs.

At a certain point, it is premised on the rule that specific processes only fetch events by using the event

management function. Applications should work according to the rule. The event management function itself does

not provide a specific mechanism to ensure this rule.

The event management function targets the event queue of its own AMP TKSE only. Moreover, events stored in

the event queue are only events from devices registered in the AMP T-Kernel of its own processor. Therefore, the

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

284 TEF021-S003-01.00.00/en

event management function cannot be used between kernels.

The API specification of the event management function is the same as in the T-Kernel Standard Extension

Version 1.00 Specification.

4.10.2 Event Type

Events are distinguished by type number of 0-15 and, events of the following types are defined:

• type number 0 null event (EV_NULL):

 the pseudo event indicating that a target event has not occurred.

• type number 1 button down event (EV_BUTDWN):

 It occurs when the device button is pressed.

• type number 2 button up event (EV_BUTUP):

 It occurs when the device button is released.

• type number 3 key down event (EV_KEYDWN):

 It occurs when a key on the keyboard is pressed.

• type number 4 key up event (EV_KEYUP):

 It occurs when a key on the keyboard is released.

• type number 5 auto repeat key event (EV_AUTKEY):

 It periodically repeats when the target key of auto repeat is kept held down. The time (offset) taken until the

first auto repeat key event from when the target key of auto repeat is pressed, and the recurrence interval

(interval) can be set to any values.

• type number 6 device event (EV_DEVICE):

 It is a generic event which occurs according to device's certain operation, and the content depends on the

device. This event occurs when removable media such as a disk are installed.

• type number 7 extended device event (EV_EXDEV):

 It is the device event (EV_DEVICE) appended by extended information.

 Used for the device events which have extended information such as ucode (ubiquitous ID).

• type number 8 - 15 application event (EV_APPL1 - EV_APPL8):

 Defined and used by applications and used as a communication function among applications.

 A type mask corresponding to each event type is also defined and the target event type can be specified by this

mask. The type mask is bit ready and the events of the type corresponding to "1" are targeted. However, a mask is

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

285 TEF021-S003-01.00.00/en

not defined for a null event in the nature.

[Table 2] Event Type Number and Event Type Mask

 Event type number type mask
 --

 EV_NULL 0 ------

 EV_BUTDWN 1 EM_BUTDWN (0x0001)

 EV_BUTUP 2 EM_BUTUP (0x0002)

 EV_KEYDWN 3 EM_KEYDWN (0x0004)

 EV_KEYUP 4 EM_KEYUP (0x0008)

 EV_AUTKEY 5 EM_AUTKEY (0x0010)

 EV_DEVICE 6 EM_DEVICE (0x0020)

 EV_EXDEV 7 EM_EXDEV (0x0040)

 EV_APPL1 8 EM_APPL1 (0x0080)

 : : : :

 EV_APPL8 15 APPL8 (0x4000)

 Meanwhile, the following special masks are prepared as type masks:

 EM_NULL 0x0000

 EM_ALL 0x7fff

4.10.3 Event Creation from Device Event Notifications

The event management creates the event (Chapter 9.5: EVENT Structure) from the event types (TDEvtTyp) for the

device event notifications to be stored in the event queue. There are four event types, and each of them

determines an event type as follows:

 (1) Basic Event (TDEvtTyp = 0x0001 - 0x002F)

 (A) Basic events other than keyboard / pointing device:

defined events:

 TDE_unknown 0x00 undefined

 TDE_MOUNT 0x01 media insert

 TDE_EJECT 0x02 media eject

 TDE_ILLMOUNT 0x03 illegal media insert

 TDE_ILLEJECT 0x04 illegal media eject

 TDE_REMOUNT 0x05 media reinsert

 TDE_CARDBATLOW 0x06 card battery remaining alarm

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

286 TEF021-S003-01.00.00/en

 TDE_CARDBATFAIL 0x07 card battery failure

 TDE_REQEJECT 0x08 media eject request

 → These events are stored in the event queue as device event (EV_DEVICE).

 Also, basic events other than the following keyboard and pointing device are device events

(EV_DEVICE):

 (B) Basic events such as keyboard / pointing device:

defined events:

 TDE_PDBUT 0x11 PD button state change

 TDE_PDMOVE 0x12 PD position move

 TDE_PDSTATE 0x13 PD state change

 TDE_PDEXT 0x14 PD extended event

 TDE_KEYDOWN 0x21 key down

 TDE_KEYUP 0x22 key up

 TDE_KEYMETA 0x23 meta key state change

 → These events are stored in the event queue as button down (EV_BUTDWN), button up (EV_BUTUP),

key down (EV_KEYDWN), and key up (EV_KEYUP).

 (2) System Event (TDEvtTyp = 0x0030 - 0x007F)

defined events

 TDE_POWEROFF 0x31 power switch off

 TDE_POWERLOW 0x32 power remaining alarm

 TDE_POWERFAIL 0x33 power failure

 TDE_POWERSUS 0x34 auto power suspend

 TDE_POWERUPTM 0x35 time update

 TDE_CKPWON 0x41 autopower on notification

 • The system events are not stored in the event queue.

 (3) Event with Extended Information (TDEvtTyp = 0x0080 - 0x00FF)

defined events

 → nothing special.

 • Events with extended information are stored in the event queue as an extended device event (EV_EXDEV).

 (4) User-defined Event (TDEvtTyp = 0x0100 - 0xFFFF)

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

287 TEF021-S003-01.00.00/en

defined events

 → nothing special.

 • The user-defined events are not stored in the event queue. Also, it is not used in event management as a

general rule.

4.10.4 Priority of Event Queue and Event

The event queue is the queue exclusively prepared in the system for storing events, and the events are stored in

the order they occur. If there is no space in the queue, newly occurring events, namely the newest event is not put

in the queue to be discarded.

The events to be stored in the event queue are restricted by system event masks. That is, only the events of the

type corresponding to the bit of system event mask "1" are put in the event queue. The events of the type

corresponding to the bit of system event mask "0" are ignored by the entire system to be discarded.

At system startup, the event queue is blank while the system event mask is zero. And because the event

management function does not work practically, the system event mask necessarily must be set to an appropriate

value.

The following priorities are applied to the events according to each event type, and the event with the higher priority

is fetched from the event queue. The events with same priority are fetched in the order they occur.

 (1: highest priority - 6: lowest priority)

 1. EV_APPL1-4

 2. EV_BUTDWN, EV_BUTUP, EV_KEYDWN, EV_KEYUP

 3. EV_AUTKEY

 4. EV_DEVICE, EV_EXDEV

 5. EV_APPL5-8

 6. EV_NULL

The null event (EV_NULL) and the auto repeat event (EV_AUTKEY) are not actually put in the event queue, they

are automatically created when condition is realized at an event fetch request.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

288 TEF021-S003-01.00.00/en

4.10.5 Keyboard Events

(1) Regular Key and Meta Key

The keys are classified into regular keys which generate events when pressed or released and a meta key which

does not generate events. The meta keys are keys which are used in combination with other regular keys, such as

the shift key.

The following events are generated by pressing or releasing regular keys:

• Key down event (EV_KEYDWN): generated when a keyboard key is pressed.

• Key up event (EV_KEYUP): generated when a keyboard key is released.

• an auto repeat event (EV_AUTKEY): generated periodically when the target key is kept held down.

(2) Auto Repeat Key

Auto repeat key events (EV_AUTKEY) generated when the target auto repeat key is kept held down.

When one key is held down and while holding down another key, only the auto repeat key event of the last pressed

key generated.

The key targeted for auto repeat can be set to any keys except meta keys which generate no event key, and every

key except meta keys can be the target of auto repeat at system startup.

System calls for setting/fetching the time (offset time) taken to the first occurrence from pressing and the

subsequent recurrence interval (interval time) are provided. This time is in milliseconds. However, the recurrence

interval of auto repeat key events depends on the implementation. The offset time and the interval time are

rounded to the unit of event occurrence time.

4.10.6 Character Code

At key events, the key top code designating a key's physical location, and the encoded character code are

returned.

The key top code is a fixed 8 bit code (0 - 255) according to key's physical location.

The character code is a code encoded by the state of key top code and the meta key. The encode is executed by

drivers or hardware, etc. below event management, and has no concern in event management.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

289 TEF021-S003-01.00.00/en

4.10.7 Pointing Device Event

The pointing device is used to select objects shown on the screen, and has absolute coordinate values as current

position corresponding to the screen resolution. The absolute coordinate values are the coordinate values which

have the origin (0, 0) in the upper-left corner of the screen and employ one pixel on the screen as a unit.

The following events are generated by pressing or releasing buttons of the pointing device:

• button down event (EV_BUTDWN): generated when device button is pressed.

• button up event (EV_BUTUP): generated when device button is released.

4.10.8 Designates the Operation Type of the Pointing Device

 The pointing devices are classified into the following two types from their behaviors as a whole:

(1) Absolute operation type

Those tablet typed pointing devices such as a digital pen, etc. and their coordinate values are absolutely

determined by the physical position of the pointing device.

(2) Relative operation type (differential type):

Those pointing devices with coordinate values that are relatively determined by the physical movement of the

position of a pointing device such as mouse.

The calculation of absolute coordinate values in relative operation type is executed by drivers or hardware, etc.

below event management and has no concern in event management.

4.10.9 Wheel Support

The wheel rotation of a wheel mouse is treated as an auto repeat key (EV_AUTKEY). However, the priority of an

“EV_AUTKEY” event with the wheel is unlike those of the original “EV_AUTKEY” with key repeat, and is set to the

lowest priority (higher than “EV_NULL”).

“EV_KEYDWN” and “EV_KEYUP” events by wheel rotation are not generated.

Wheel's events will automatically disappear from the event queue when either of the following conditions is

realized:

(1) An application did not fetch the wheel event within 300 ms after the wheel is turned.

(2) An application fetched the events (except “EV_NULL”) other than the wheel event.

In addition, when the wheel was turned multiple times until an application fetches the event, the total amount is

treated as one event. However, once the rotation direction is reversed, the previous rotation amount is discarded.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

290 TEF021-S003-01.00.00/en

4.10.10 Event Structure

 An Event is defined by the following structure:

 typedef struct {

 W type; /* event type */

 UW time; /* event occurrence time */

 PNT pos; /* the position of pointing device when an event occurs */

 EVDATA data; /* event specific data */

 UW stat; /* meta key, button state */

 UB exdat[16]; /* extended information */

 } EVENT;

(1) type

The event type is indicated by a value in the range of 0-15.

(2) time

Indicate relative time in milliseconds, which shows the order and the interval of event occurrence and is

meaningless as absolute time.

The event occurrence time is measured by an event timer. The event timer is implemented by using the system

time management function in T-kernel. The event timer resolution depends on the implementation.

(3) pos

Indicate the coordinate values of the pointing device at an event occurrence in the value of absolute coordinates

which have the origin (0, 0) in the upper-left corner of the screen. And it is the value of following “PNT” type.

 typedef struct point {

 H x; /* horizontal coordinate value */

 H y; /* vertical coordinate value */

 } PNT;

 Meanwhile, the meaning of “pos” in the application events depends on the event definition.

(4) data

 Indicate event-specific data and has event type-dependent content.

 typedef union {

 struct { /* EV_KEYUP,EV_KEYDWN,EV_AUTKEY */

 UH keytop; /* key top code */

 TC code; /* character code */

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

291 TEF021-S003-01.00.00/en

 } key;

 struct { /* EV_DEVICE,EV_EXDEV */

 H kind; /* device event type */

 H devno; /* device number */

 } dev;

 W info; /* other data for event */

 } EVDATA;

In the case of “EV_KEYDWN”, “EV_KEYUP”, or “EV_AUTKEY”, keys are applied, with consisting of key top code,

which indicates the key's physical position, and the encoded character code.

The content of “EV_AUTKEY” event generated by wheel rotation is as follows:

data.key.keytop : 0x8000 + rotation amount

 rotation amount ＞ 0 rotate the wheel forward

 rotation amount ＜ 0 rotate the wheel backward

data.key.code : KC_SS_D rotate the wheel forward

 KC_SS_U rotate the wheel backward

In the case of “EV_DEVICE”,”dev” is applied. And the type (kind) of device event and the device number (devno)

which indicates the device generated by event are set. The event types are defined as follows:

 kind = DE_unknown 0 -- undefined unknown

 DE_MOUNT 0x01 -- media insert

 DE_EJECT 0x02 -- media eject

 DE_ILLMOUNT 0x03 -- illegal media insert

 DE_ILLEJECT 0x04 -- illegal media eject

 DE_REMOUNT 0x05 -- media reinsert

 DE_BATLOW 0x06 -- battery remaining alarm

 DE_BATFAIL 0x07 -- battery failure

 DE_REQEJECT 0x08 -- media eject request

 0x09- -- reserved

 0x7F

Also in the case of “EV_EXDEV”, ”dev” is applied. And the type (kind) of device event and the device number

(devno) which indicates the device generated by event are set. Usually, the event type of the device event

notification is set only for the device event type (kind).

 kind = XXXXXXXXXXX 0x80- -- extended device event type (= device event type)

 0xFF

 In the case of “EV_NULL”, “EV_BUTDWN”, or “EV_BUTUP”, this “data” is not used, and “info” is always zero.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

292 TEF021-S003-01.00.00/en

 In the case of application event (EV_APPL1-8), an event definition-dependent content is set.

(5) stat

 Indicate bit ready for the state of the key or the button which does not generate events alone, such as a meta key

at an event occurrence. For each bit, "0" means released (OFF) state and "1" means pressed (ON) state. The

meaning of each bit is defined as follows:

• bit 0 - 1 (2bit) PD basic button:

 It indicates the state of main button and subbutton on the pointing device.

• bit 2 - 20 (19bit) meta key :

 It indicates the state of meta keys on the keyboard.

 The correspondence between each meta key and bit is undefined in the event management.

• bit 21 (1bit) PDtype :

 It indicates the type of the pointing device.

• bit 22 - 23 (2bit) PD state :

 It indicates the state of the pointing device.

• bit 24 - 31 (8bit) PD extended button:

 It indicates the state of extended button on the pointing device.

 The correspondence between each button and bit is not defined in the event management.

(6) exdat

 Valid when the event type (type) is an extended device event (EV_EXDEV).

 Used to store the extended information (16 bytes) mainly passed from the device event notification, such as

ucode.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

293 TEF021-S003-01.00.00/en

4.10.11 System Calls

Get Event
tkse_get_evt

C Language Interface

ER ercd = tkse_get_evt(W t_mask, EVENT* evt, W opt);

Parameter

W t_mask mask of target event type

EVENT* evt storage area of obtained event

W opt attribute of obtainment

 (CLR || NOCLR)

 CLR eliminated from the event queue

 NOCLR not eliminated from the event queue

Return Parameter

ER ercd >= 0 normal completion (obtained event type)

 ＜ 0 error code

Error Code

E_MACV access to inaccessible address (evt) not allowed

E_IO input/output error occurred (some device error occurred)

E_PAR illegal parameter (t_mask <= 0, illegal “opt”)

E_SYSMEM insufficient system memory area

Description

Fetch the event of the type specified by “t_mask” from the event queue to be stored in the area specified by “evt”.

Without the event of specified type, “EV_NULL” is fetched.

The process when fetching an event from the event queue is specified by “opt”.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

294 TEF021-S003-01.00.00/en

Event Occurrence
tkse_put_evt

C Language Interface

ER ercd = tkse_put_evt(EVENT* evt, W opt);

Parameter

EVENT* evt event to occur

W opt occurrence attribute

 (EP_NONE || EP_ALL || ([EP_POS] | [EP_STAT] | [EP_TIME]))

 EP_NONE “time”, “pos”, and “stat” are set to the content of “evt” as-is.

 EP_ALL all of “time”, “pos”, and “stat” are set.

 EP_POS position of the current pointing device is set to “pos”.

 EP_STAT state of the current meta key/PD button is set to “stat”.

 EP_TIME value of the current event timer is set to “time”.

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_MACV access to inaccessible address (evt) not allowed

E_IO input/output error occurred (some device error occurred)

E_PAR illegal parameter (illegal event type, illegal “opt”)

E_SYSMEM insufficient system memory area

Description

Generate the event specified by “evt” and put in the event queue. An error occurs when the event queue is full or

“EV_NULL” and “EV_AUTKEY” are specified. Also, events out of target in the system event mask are actually not

generated and ignored.

The generated events are considered to be generated when this system call is executed, regardless of the “time”

value, and are always put in the end of the event queue.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

295 TEF021-S003-01.00.00/en

Clear Event
tkse_clr_evt

C Language Interface

ER ercd = tkse_clr_evt(W t_mask, W last_mask);

Parameter

W t_mask event type mask targeted to clear

 EM_ALL all event types

W last_mask last event type mask to clear

 EM_ALL clear only one event

 EM_NULL target is to the end of the event queue

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_PAR illegal parameter (“t_mask <= 0”, “last_mask ＜ 0”)

Description

Clear generated events.

Out of the events in the event queue, events of the type specified by “t_mask” shall be cleared to the right before of

the events of the type specified by the “last_mask”. The events of the type of specified by the “last_mask” are not

cleared. However, when “last_mask” = “EM_ALL”, it means that only one event of the “last_mask” type is

specifically cleared. Also, when “last_mask” = “EM_NULL”, the target is set to the end of the event queue.

Examples to combine “t_mask” and the “last_mask” are shown as follows:

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

296 TEF021-S003-01.00.00/en

[Table 3] Combination of t_mask and last_mask

t_mask last_mask behavior

--

EM_ALL EM_NULL clear all events

-- EM_ALL clear only one event specified by “t_mask”

EM_ALL EM_ALL clear only the one start event

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

297 TEF021-S003-01.00.00/en

Get Event Timer Value
tkse_get_etm

C Language Interface

RR ercd = tkse_get_etm(UW* time);

Parameter

UW *time storage area of event timer value

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_MACV access to inaccessible address (time) not allowed

Description

Fetch the current value of the event timer.

The event timer is a relative time in milliseconds, but its actual resolution depends on the implementation.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

298 TEF021-S003-01.00.00/en

Change System Event Mask
tkse_chg_emk

C Language Interface

ER o_mask = tkse_chg_emk(W mask);

Parameter

W mask system event mask to set

 ＜ 0 not change (obtain current system event mask)

Return Parameter

ER o_mask original system event mask

Description

Change the system event mask to the value specified by the “mask”, and return the value of the original system

event mask as a return value.

When “mask < 0”, the value of current system event mask shall be returned as a return value without any changes.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

299 TEF021-S003-01.00.00/en

Request Event Message
tkse_req_evt

C Language Interface

ER ercd = tkse_req_evt(W t_mask);

Parameter

W t_mask target event type mask

Return Parameter

ER ercd error code

Error Code

The messages are as follows:

E_OK normal completion

E_PAR illegal parameter

E_LIMIT the system limit is exceeded by the number of registration of event message requests

Description

When an event of the type specified by the “t_mask” is generated, sending of the event as a message to this

process is requested. However, “EV_NULL” and “EV_AUTKEY” cannot be sent as messages.

In addition, the event is not eliminated from the event queue even if it is sent as message.

The event message request is cleared by specifying “EM_NULL” to the “t_mask”. Also, it shall be automatically

cleared after the process is completed.

 struct {

 W msg_type; /* message type = MS_SYS5 */

 W msg_size; /* message size */

 EVENT evt; /* event */

 VB info[]; /* additional information */

 }

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

300 TEF021-S003-01.00.00/en

“msg_type” shall be fixed to “MS_SYS5”.

The generated events are stored in “evt”. Meanwhile, additional information may be stored in info according to

event types. Therefore, “msg_size” is at least equivalent to “sizeof”(EVENT) and its size increases by the size of

additional information. The size varies according to the content of additional information.

Additional information is appended in the case of device event (EV_DEVICE). Additional information is the content

of the event notification itself from the device driver.

The sending process ID when receiving messages from “tkse_rcv_msg()” is the process ID when invoking

“tkse_put_evt()”. In the case the event was generated by “tkse_put_evt()”. Otherwise, ID = 1 (initial process).

When sending is unsuccessful because the process message queue is full, the event message is simply discarded.

The maximum number of processes to simultaneously execute the requests of process event message is limited

by the system.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

301 TEF021-S003-01.00.00/en

Get Elapsed Time from the Last Event Occurrence
tkse_las_evt

C Language Interface

ER ercd = tkse_las_evt(W t_mask);

Parameter

W t_mask target event type mask

Return Parameter

ER ercd >= 0 normal completion (elapsed time from the last event occurrence)

 ＜ 0 error code

Error Code

E_PAR illegal parameter

Description

Out of events of the type specified by “t_mask”, elapsed time shall be retuned in milliseconds from the last

generated event to the current time.

When “EM_BUTDWN” or “EM_BUTUP” is specified to “t_mask”, the pointer movement and the menu button

operation are treated as event occurrences well. Also when “EM_KEYDWN” or “EM_KEYUP” is specified, the

change of the meta key state is treated as an event occurrence.

The current time is set to the last occurrence time of events of all types by specifying “EM_NULL” to “t_mask”.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

302 TEF021-S003-01.00.00/en

Set Auto Repeat Target Key
tkse_set_krm

C Language Interface

ER ercd = tkse_set_krm(KeyMap keymap);

Parameter

KeyMap keymap keymap targetd for auto repeat

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_MACV access to inaccessible address (keymap) not allowed

Description

Set the key targetd for auto repeat to the value specified by the “keymap”.

The “keymap” is an array which associates a single key (key top code) with one bit, and is defined as follows:

 typedef UB KeyMap[KEYMAX/8];

“KEYMAX” is a maximum value of key top codes. The “keymap” structure is as follows:

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

303 TEF021-S003-01.00.00/en

MSB LSB

┌──┬──┬──┬──┬──┬──┬──┬──┐

0 │ 00 │ 01 │ 02 │ 03 │ 04 │ 05 │ 06 │ 07 │

│ │ │ │ │ │ │ │ │

～ ～

├──┼──┼──┼──┼──┼──┼──┼──┤

31 │ F8 │ F9 │ FA │ FB │ FC │ FD │ FE │ FF │

└──┴──┴──┴──┴──┴──┴──┴──┘

number is key top code in hexadecimals

[Figure 13] KeyMap structure

The key corresponding to the bit of the specified keymap "1" is set to the target of the auto repeat, the key

corresponding to the bit of keymap "0" is not set to the target of the auto repeat.

Meta keys which do not generate events are ignored even if they are set to the auto repeat target.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

304 TEF021-S003-01.00.00/en

Get Auto Repeat Target Key
tkse_get_krm

C Language Interface

ER ercd = tkse_get_krm(KeyMap keymap);

Parameter

KeyMap keymap storage area of key map targeted for auto repeat

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_MACV access to inaccessible address (keymap) not allowed

Description

Fetch the key targeted for auto repeat to be stored in the area specified by the “keymap”.

The key corresponding to the bit of the fetched keymap "1" is the target of the auto repeat while the key

corresponding to the bit of keymap "0" is not the target of the auto repeat.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

305 TEF021-S003-01.00.00/en

Set Auto Repeat Interval
tkse_set_krp

C Language Interface

ER ercd = tkse_set_krp(W offset, W interval);

Parameter

W offset time taken to the occurrence of first auto repeat (in milliseconds)

W interval auto repeat recurrence interval (in milliseconds)

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_PAR illegal parameter (offset<=0, interval<=0)

Description

The time and interval until the occurrence of auto repeat key event (EV_AUTKEY) shall be set to the value

specified by “offset” and “interval”.

The time is set in milliseconds, however its actual resolution depends on the implementation.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

306 TEF021-S003-01.00.00/en

Get Auto Repeat Interval
tkse_get_krp

C Language Interface

ER ercd = tkse_get_krp(W* offset, W* interval);

Parameter

W *offset storage area of the elapsed time until the first occurrence of auto repeat (in milliseconds)

W *interval storage of the interval of the occurrence of auto repeat (in milliseconds)

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_MACV access to inaccessible address (“offset”, ”interval”) not allowed

Description

Fetch the time and interval until the occurrence of auto repeat event (EV_AUTKEY), to be stored in the area

specified by the “offset” and “interval”.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

307 TEF021-S003-01.00.00/en

Get PD Position
tkse_get_pdp

C Language Interface

ER ercd = tkse_get_pdp(PNT* pos);

Parameter

PNT* pos storage area of PD position

 typedef struct point {

 H x; /* horizontal coordinate value */

 H y; /* vertical coordinate value */

 } PNT;

Return Parameter

ER ercd >= 0 type of occurred event (normal completion)

 ＜ 0 error code

Error Code

E_MACV access to inaccessible address (pos) not allowed

Description

The position of the current pointing device is fetched in absolute coordinate values. The content of the event queue

shall be unchanged.

The type of simultaneously occurring event shall be returned. “EV_NULL“ shall be returned when no event occurs.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

308 TEF021-S003-01.00.00/en

4.11 Device Management Function

4.11.1 Device Management Function Overview

The device management function of AMP TKSE provides a function to operate devices registered in the system by

using the device management function of AMP T-Kernel.

AMP TKSE does not have the function to register devices.

The device management function targets devices registered in the AMP T-Kernel of its own processor only. It

cannot operate devices of other AMP T-Kernel.

The API specification of the device management function is the same as the T-Kernel Standard Extension Version

1.00 Specification.

4.11.2 Basic Concepts

(1) Device Name (UB* type)

A device name is a string of up to 8 characters consisting of the following elements.

 #define L_DEVNM 8 /* Device name length */

・ Type:

 Name indicating the device type

 Characters a to z and A to Z can be used.

・ Unit:

 One letter indicating a physical device

 Each unit is assigned a letter from a to z in order starting from a.

・ Subunit:

 One to three digits indicating a logical device

 Each subunit is assigned a number from 0 to 254 in order starting from 0.

Device names take the format type + unit + subunit. Some devices may not have a unit or subunit, in which case

the corresponding field is omitted.

A name consisting of type + unit is called a physical device name. A name consisting of type + unit + subunit may

be called a logical device name to distinguish it from a physical device name. If there is no subunit, the physical

device name and logical device name are identical. The term "device name" by itself means the logical device

name.

A subunit generally refers to a partition on a hard disk, but can be used to mean other logical devices as well.

Examples:

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

309 TEF021-S003-01.00.00/en

 hda Hard disk (entire disk)hda

 hda0 Hard disk (1st partition)

 fda Floppy disk

 rsa Serial port

 kbpd Keyboard/pointing device

(2) Device ID (ID type)

By registering a device (device driver) with T-Kernel/SM, a device ID (> 0) is assigned to the device (physical

device name). Device IDs are assigned to each physical device. The device ID of a logical device consists of the

device ID assigned to the physical device to which is appended the subunit number + 1 (1 to 255).

 The device ID assigned at device registration

 devid Physical device

 devid + n + 1 The nth subunit (logical device)

Examples:

 hda devid Entire hard disk

 hda0 devid + 1 1st partition of hard disk

 hda1 devid + 2 2nd partition of hard disk

(3) Device Attribute (ATR type)

Device attributes are defined as follows, in order to classify devices by their properties.

 IIII IIII IIII IIII PRxx xxxx KKKK KKKK

The high 16 bits are device-dependent attributes defined for each device. The low 16 bits are standard attributes

defined as follows.

 #define TD_PROTECT 0x8000 /* P: write protection */

 #define TD_REMOVABLE 0x4000 /* R: removable media */

 #define TD_DEVKIND 0x00ff /* K: device/media kind */

 #define TD_DEVTYPE 0x00f0 /* device type */

/* device type*/

 #define TDK_UNDEF 0x0000 /* undefined/unknown */

 #define TDK_DISK 0x0010 /* disk device */

 /* disk kind*/

 #define TDK_DISK_UNDEF 0x0010 /* miscellaneous disk */

 #define TDK_DISK_RAM 0x0011 /* RAM disk */

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

310 TEF021-S003-01.00.00/en

 #define TDK_DISK_ROM 0x0012 /* ROM disk */

 #define TDK_DISK_FLA 0x0013 /* Flash ROM or other silicon disk */

 #define TDK_DISK_FD 0x0014 /* floppy disk */

 #define TDK_DISK_HD 0x0015 /* hard disk */

 #define TDK_DISK_CDROM 0x0016 /* CD-ROM */

Currently no device types other than disks are defined. Other devices are assigned to undefined type (TDK

UNDEF). Note that device types are defined for the sake of distinguishing devices from the standpoint of the user

as necessary, such as when applications must change their processing based on the type of device or media.

Devices for which no such distinctions are necessary do not have to have a device type assigned. See the

individual device driver specifications regarding device-dependent attributes.

(4) Device Descriptor (ID type)

A device descriptor (> 0) is an identifier used for accessing a device, assigned by T-Kernel/SM when a device is

opened.

A device descriptor belongs to a resource group. Operations using a device descriptor can be performed only by

tasks belonging to the same resource group as the device descriptor.

(5) Request ID (ID type)

When an IO request is made to a device, a request ID (> 0) is assigned identifying the request. This ID can be used

to wait for IO completion.

(6) Data Number (INT type)

Device data is specified by a data number. Data is classified into device-specific data and attribute data as follows.

・ Device-specific data: Data number >= 0

 As device-specific data, the data numbers are defined separately for each device.

 Examples:

 Disk Data number = physical block number

 Serial port Data number = 0 only

・ Attribute data: Data number < 0

 Attribute data specifies driver or device state acquisition and setting modes, and special functions, etc.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

311 TEF021-S003-01.00.00/en

4.11.3 System Calls

Open Device
tkse_opn_dev

C Language Interface

ID dd = tkse_opn_dev(UB *devnm, UINT omode) ;

Parameter

UB* devnm device name

UNIT o_mode open mode

 (TD_READ || TD_WRITE || TD_UPDATE) |

 [TD_EXCL || TD_WEXCL || TD_REXCL]

 TD_READ open for reading

 TD_WRITE open for writing

 TD_UPDATE open for updating (reading/writing)

 TD_EXCL exclusive

 TD_WEXCL exclusive write

 TD_REXCL exclusive read

Return Parameter

ID dd ＞ 0 device descriptor (normal completion)

 ＜ 0 error code

Error Code

E_MACV access to address (dev, error) not allowed

E_BUSY the device (dev) is already opened exclusively.

E_OACV the read or write processing to the device (dev) is not allowed.

E_NOEXS device (dev) does not exist (not registered)

E_LIMIT maximum number of open devices exceeded

Others errors returned from device drivers

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

312 TEF021-S003-01.00.00/en

Description

Opens the device specified by dev in the mode specified by o_mode, and returns a device descriptor if successful.

The exclusive mode and exclusive write mode limit the opening of one device at the same time.

When the process which opened a device exits, the device will be automatically closed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

313 TEF021-S003-01.00.00/en

Close Device
tkse_cls_dev

C Language Interface

ER ercd = tkse_cls_dev(ID dd, UINT option);

Parameter

ID dd device descriptor

UINT option close option

 TD_EJECT media eject (ignored for unejectable devices)

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_ID no device descriptor present

Others error codes returned from device drivers

Description

Closes the device specified by dd.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

314 TEF021-S003-01.00.00/en

Read Device Data (Asynchronus)
tkse_rea_dev

C Language Interface

ID reqid = tkse_rea_dev(ID dd, INT start, VP buf, INT size, TMO tmout);

Parameter

ID dd device descriptor

INT start start position for reading (>= 0: specific data, ＜ 0: attribute data)

VP buf storage area of read data

INT size read data size

TMO tmout timeout for request accept (millisecond)

Return Parameter

ID reqid ＞ 0 request ID (normal completion)

 ＜ 0 error code

Error Code

E_MACV not allowed to access address

E_ID there exists no device descriptor, or it is D_WRITE opened.

E_OACV the read processing to the device (dd) is not allowed.

E_NOMDA Media is not present in device (dd)

E_LIMIT maximum number of requests exceeded

E_TMOUT timeout

E_ABORT abort

Others error codes returned from device drivers

Description

Starts to read the data of the device specified by dd from the start position specified by start by the size specified by

size to the area specified by buf.

Returns to its caller without waiting for completion of reading. It is necessary to maintain the buf area until reading

is complete. When reading normally begins, the request ID is returned as the return value.

If size = 0, actual reading is not performed, but current readable data size is checked.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

315 TEF021-S003-01.00.00/en

Read Device Data (Synchronus)
tkse_srea_dev

C Language Interface

ER ercd = tkse_srea_dev(ID dd, INT start, VP buf, INT size, INT *asize);

Parameter

ID dd device descriptor

INT start start position for reading (>= 0: specific data, ＜ 0: attribute data)

VP buf storage area of read data

INT size read data size

INT* asize read data size

Return Parameter

ER ercd error code

Error Code

E_MACV not allowed to access address

E_ID there exists no device descriptor, or it is D_WRITE opened.

E_OACV the read processing to the device (dd) is not allowed.

E_NOMDA no device (dd) media present

E_LIMIT maximum number of requests exceeded

E_ABORT abort

Others error codes returned from device drivers

Description

 Read the data of the device specified by dd from the start position specified by start by the size specified by size

to the area specified by buf.

 When reading is finished, the control is returned to the caller, and the actual read size is set to (*assize).

 If size = 0, actual reading is not performed, but current readable data size is returned to asize.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

316 TEF021-S003-01.00.00/en

Write Data to Device (Asynchronus)
tkse_wri_dev

C Language Interface

ID reqid = tkse_wri_dev(ID dd, INT start, VP buf, INT size, TMO tmout);

Parameter

ID dd device descriptor

INT start start position for writing (>= 0: specific data, ＜ 0: attribute data)

VP buf storage area of write data

INT size read data size

TMO tmout timeout for request accept (millisecond)

Return Parameter

ID reqid ＞ 0 request ID (normal completion)

 ＜ 0 error code

Error Code

E_MACV access to address (buf, a_size, error) not allowed

E_ID there exists no device descriptor, or it is D_READ opened.

E_OACV the write processing to the device (dev) is not allowed.

E_NOMDA Media is not present in device (dd)

E_RONLY write-protected device (dev)

E_LIMIT maximum number of requests exceeded

E_TMOUT timeout

E_ABORT abort

Others error codes returned from device drivers

Description

Starts to write data to the device specified by dd from the start position specified by start by the size specified by

size from the area specified by buf.

Returns to its caller without waiting for completion of writing. It is necessary to maintain the area and content of buf

until reading is complete. When reading normally begins, the request ID is returned as the return value.

If size = 0, actual writing is not performed, but current writable data size is checked.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

317 TEF021-S003-01.00.00/en

Write Data to Device (Synchronus)
tkse_swri_dev

C Language Interface

ER ercd = tkse_swri_dev(ID dd, INT start, VP buf, INT size, INT *asize);

Parameter

ID dd device descriptor

INT start start position for writing (>= 0: specific data, ＜ 0: attribute data)

VP buf storage area of write data

INT size read data size

INT asize read data size

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_MACV access to address (buf, a_size, error) not allowed

E_ID there exists no device descriptor, or it is D_READ opened.

E_OACV the write processing to the device (dev) is not allowed.

E_NOMDA no device (dd) media present

E_RONLY write-protected device (dev)

E_LIMIT maximum number of requests exceeded

E_ABORT abort

Others error codes returned from device drivers

Description

Write data to the device specified by dd from the start position specified by start by the size specified by size from

the area specified by buf. When the writing is finished, the control is returned to the caller, and the written size is set

to *asize.

If size = 0, actual writing is not performed, but current writable data size is returned to asize.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

318 TEF021-S003-01.00.00/en

Wait for Request Completion for Device
tkse_wai_dev

C Language Interface

ID reqid = tkse_wai_dev(ID dd, ID reqid, INT *asize, ER *ioer, TMO tmout);

Parameter

ID dd device descriptor

ID reqid request ID

INT* asize read/write size

ER* ioer input/output error

TMO tmout timeout (millisecond)

Return Parameter

ER ercd error code

Error Code

E_ID illegal dd or reqid

E_OBJ reqid request is waiting for other task's completion

E_NOEXS no processing request (when reqid = 0)

E_TMOUT timeout

E_ABORT abort

Others error codes returned from device drivers

Description

Waits for reqid request's completion for the device specified by dd.

If reqid = 0, the completion of one of the requests for dd is waited.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

319 TEF021-S003-01.00.00/en

Request to Suspend Device
tkse_sus_dev

C Language Interface

ER ercd = tkse_sus_dev(UINT mode);

Parameter

UINT mode mode specification

 D_EMRGSUS || D_SUSPEND | [D_FORCE]

 || D_DISSUS || D_ENASUS || D_CHECK

 || D_NOTIFY | [D_NOTSUS] | [D_NOTRES]

 D_SUSPEND suspend

 D_DISSUS disable suspend

 D_ENASUS enable suspend

 D_CHECK check suspend prohibit count

 D_EMRGSUS emergency suspend

 D_FORCE forced suspend specification

 D_NOTIFY notification request

 D_NOTSUS notification to suspend

 D_NOTRES resume notification

Return Parameter

ER ercd >= 0 normal completion (if D_CHECK, suspend prohibit request count)

 ＜ 0 error code

Error Code

E_BUSY unable to suspend because of suspend inhibited state

E_PAR illegal parameter

E_LIMIT suspend prohibit request count limit exceeded

E_DISWAI processing suspended because message handler is invoked

Description

Conducts suspend related control of systems specified by mode specification “mode”.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

320 TEF021-S003-01.00.00/en

Retrieve Device Name
tkse_get_dev

C Language Interface

ID pdid = tkse_get_dev(ID devid, UB *devnm)

Parameter

ID devid device ID

UB* devnm storage area of device name

Return Parameter

ID pdid >= 0 normal completion (physical device ID)

 ＜ 0 error code

Error Code

E_MACV access to address (dev) not allowed

E_NOEXS device ID does not exist

Description

Retrieves the device name of the device with device ID specified by devno, and stores it to the area specified by

devnm.

Then, the device ID of the physical device to which the device belongs is returned as a return value.

The specified device ID is a device number fetched by a device event.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

321 TEF021-S003-01.00.00/en

Retrieve Device Information
tkse_ref_dev

C Language Interface

 ID devid ＝ tkse_ref_dev(UB *devnm, T_RDEV *rdev);

Parameter

UB* devnm target device name

T_RDEV* rdev storage area of device management information

Return Parameter

ID devid >= 0 normal completion (device ID)

 ＜ 0 error code

device management information

 typedef struct {

 ATR devatr; /* device attribute */

 INT blksz; /* physical block size (-1: unknown) */

 INT nsub; /* number of subunits */

 INT subno; /* 0: physical device, 1 - nsub: subunit number + 1 */

 } T_RDEV;

Error Code

E_MACV not allowed to access address

E_NOEXS device does not exist

Description

 Retrieves information of the device specified by devnm, and stores it to the area specified by rdev.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

322 TEF021-S003-01.00.00/en

Retrieve Device Information
tkse_oref_dev

C Language Interface

 ID devid ＝ tkse_oref_dev(ID dd, T_RDEV *rdev) ;

Parameter

 ID dd target device descriptor

 T_RDEV* rdev storage area of device management information

Return Parameter

 ID devid >= 0 normal completion (device ID)

 ＜ 0 error code

device management information

 typedef struct {

 ATR devatr; /* device attribute */

 INT blksz; /* physical block size (-1: unknown) */

 INT nsub; /* number of subunits */

 INT subno; /* 0: phsycal device, 1 - nsub: subunit number +1 */

 } T_RDEV;

Error Code

E_MACV not allowed to access address

E_NOEXS device does not exist

Description

Retrieves information of the device specified by dd, and stores it to the area specified by rdev.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

323 TEF021-S003-01.00.00/en

Retrieve Registered Devices
tkse_lst_dev

C Language Interface

 INT num ＝ tkse_lst_dev(T_LDEV *ldev, INT start, INT ndev) ;

Parameter

T_LDEV *ldev storage area of registered device information (array)

INT start start number

INT ndev retrieved number

Return Parameter

INT num >= 0 normal completion (remaining registered number)

 ＜ 0 error code

 typedef struct {

 ATR devatr; /* device attribute */

 INT blksz; /* specific data's block size (-1: unknown)

 INT nsub; /* number of subunits */

 UB devnm[L_DEVNM]; /* physical device name */

 } T_LDEV;

Error Code

E_MACV access to address (dev) not allowed

E_NOEXS start exceeds the registered number

E_PAR illegal parameter (ndev＜ 0)

Description

Retrieves registered device information and stores it to the area specified by ldev.

Then, remaining device number is returned as a return value.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

324 TEF021-S003-01.00.00/en

4.12 Time Management

4.12.1 Time Management Overview

The time management function of AMP TKSE provides such functions as to retrieve and set the system time as

base time held within system, and to convert between system time and calendar date and time.

The system time is used to represent system's internal times such as the date and time to create, update or access

files.

The system time is a 32 bit value represented by seconds since the date and time at 00:00:00 GMT (Greenwich

Mean Time), Jan 1, 1985, and is defined as follows:

 typedef W STIME;

As opposed to system time, the time of the region in which the machine actually exists is called local time. The time

management function also holds the time difference between system time and local time, and provides functions to

retrieve and set date and time based upon local time.

The relationship between system time and local time is defined as time compensation data as follows:

 typedef struct {

 W adjust; /* time difference with system time (second) */

 W dst_flg; /* DST application type */

 W dst_adj; /* DST running-in time (minute) */

 } TIMEZONE;

dst_flg indicates the application type of Daylight Saving Time (DST), and zero value indicates no application. The

values other than zero indicate application. The value other than zero is meaningless in the time management

function, only whether the data is zero or not is important.

dst_adj is a value in the range - (12 x 60) - + (12 x 60) which indicates DST running-in time (minute). The time

management function does not determine whether to apply DST or not. At the start time of the period during which

DST is actually applied, the system program is assumed to set an appropriate value to dst_adj, and at the end time

of the period during which DST is applied, it is assumed to set zero to dst_adj.

The time compensation data allows you to define local time with the following expression:

 local time (second)

 = system time (second) - adjust + (dst_flg ? (dst_adj x 60): 0)

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

325 TEF021-S003-01.00.00/en

The time management function also supports calendar date and time defined by the following structure, and

provides a function to convert between this and system time:

 typedef struct {

 W d_year; /* offset from 1985 (85-) */

 W d_month; /* month (1 - 12, 0) */

 W d_day; /* day (1 - 31) */

 W d_hour; /* hour (0 - 23) */

 W d_min; /* minute (0 - 59) */

 W d_sec; /* second (0 - 59) */

 W d_week; /* week (1 - 54) */

 W d_wday; /* a day of the week (0 - 6, 0: Sunday) */

 W d_days; /* day (1 - 366) */

 } DATE_TIM;

d_week represents a week number when week 1 starts at the week of Jan 1 of the year, and d_days represents a

day number when day 1 starts on Jan 1 of the year. In addition, d_month = 0 is used to hold a special meaning.

The API specification of the time management function is the same as the T-Kernel Standard Extension Version

1.00 Specification.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

326 TEF021-S003-01.00.00/en

4.12.2 System Calls

Refer System Time
tkse_get_tim

C Language Interface

ER ercd = tkse_get_tim(SYSTIM *pk_tim);

Parameter

SYSTIM* pk_tim packet address which returns current time

content of pk_tim

SYSTIM systim current time for system setting

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_PAR illegal parameter (illegal pk_tim)

Description

 Reads current value of the system time and returns it in the pk_tim.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

327 TEF021-S003-01.00.00/en

Set System Time
tkse_set_tim

C Language Interface

ER ercd = tkse_set_tim(SYSTIM *pk_tim);

Parameter

SYSTIM* pk_tim packet address which indicates current time

content of pk_tim

SYSTIM systim current time for system setting

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_PAR illegal parameter (illegal pk_tim)

Description

 Sets the value denoted by pk_tim to system time value.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

328 TEF021-S003-01.00.00/en

Refer System Uptime
tkse_get_otm

C Language Interface

ER ercd = tkse_get_otm(SYSTIM *pk_tim);

Parameter

SYSTIM* pk_tim packet address which returns uptime

content of pk_tim

SYSTIM opetim current time for system setting

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_PAR illegal parameter (illegal pk_tim)

Description

 Retrieves the system uptime.

 The system uptime is different from system time, and it represents simply increasing uptime from system startup.

Not affected by the time setting using tkse_set_tim. The system uptime should have the same precision as system

time.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

329 TEF021-S003-01.00.00/en

4.12.3 Library Calls

Conversion functions for system time, calendar date, local time, and Greenwich mean time (GMT).

The valid value for total number of seconds is in the range of 0x00000000-24*60*60 - 0x7fffffff+24*60*60 (including

a day before or after system time for time compensation by TIMEZONE). The valid years are 1985-2053. For

functions which take calendar time as a parameter, the operation is not ensured when illegal calendar time is

specified.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

330 TEF021-S003-01.00.00/en

Convert Calendar Date to total number of seconds
DATEtoTIME

C Language Interface

void DATEtoTIME(STIME *time, DATE_TIM *date);

Parameter

STIME *time storage area of total number of seconds

DATE_TIM *date calendar time

Return Parameter

none

Description

Convert the calendar date specified by “date” to total number of seconds starting from 00:00:00 GMT, Jan 1, 1985

to be stored in “time”.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

331 TEF021-S003-01.00.00/en

Convert consecutive seconds the total number of seconds to Calendar Date
TIMEtoDATE

C Language Interface

void TIMEtoDATE(DATE_TIM *date, STIME time);

Parameter

DATE_TIM *date storage area of calendar time

STIME time total number of seconds

Return Parameter

none

Description

Convert the total number of seconds specified by “time” starting from 00:00:00 GMT, Jan 1, 1985 to calendar time

to be stored in “date”.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

332 TEF021-S003-01.00.00/en

local time compensation
GMTtoLT

C Language Interface

STIME ltim = GMTtoLT(STIME time, TIMEZONE *tz);

Parameter

STIME time storage area of total number of seconds

TIMEZONE *tz time compensation

Return Parameter

STIME ltim local time

Description

Apply time compensation specified by “tz” to system (GMT) time specified by “time”, and return the time after the

conversion to local time.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

333 TEF021-S003-01.00.00/en

standard time compensation
LTtoGMT

C Language Interface

STIME gtim = LTtoGMT(STIME time, TIMEZONE *tz);

Parameter

STIME time

TIMEZONE *tz time compensation

Return Parameter

STIME gtim system (GMT) time

Description

Apply time compensation specified by “tz” to local time specified by “time”, and return the time after the conversion

to local time to system (GMT) time.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

334 TEF021-S003-01.00.00/en

4.13 System Management Function

4.13.1 System Management Function Overview

The system management function of AMP TKSE provides a function to load and unload system programs, and a

function to acquire system information.

(1) Load and Unload of System Programs

System programs are AMP T-Kernel based programs arranged in system memory. System programs operate at

the same protection level (level 0) as AMP T-Kernel, and the API of AMP T-Kernel can be executed and system

memory can be accessed.

System programs are mainly used for the registration of device drivers and subsystems.

(2) Acquisition of System Information

AMP TKSE version information can be acquired as system information.

The API specification of the system management function is the same as the T-Kernel Standard Extension Version

1.00 Specification.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

335 TEF021-S003-01.00.00/en

4.13.2 System Calls

Load System Programs
tkse_lod_spg

C Language Interface

ER ercd = tkse_lod_spg(T_LSPG *pk_sysprg, TC *arg, VW info[N_SPG_INFO]);

Parameter

T_LSPG *pk_sysprg system program information

TC* arg string passed as arguments during loading system programs

VW info[N_SPG_INFO] storage area of loading information (N_SPG_INFO=2)

 typedef struct {

 ATR spgatr system program attribute

 VP spghdr handle to system program to load

 /* other implementation-dependent information */

 } T_LSPG;

 spgatr indicates process attribute and specifies the following:

 spgatr :＝ (TMA_SEIO || TMA_LINK || TMA_PTR)

 TMA_SEIO a handle for the program is a path name of standard input/output file

 TMA_LINK a handle for the program is a link to the file of the standard file system

 TMA_PTR a handle for the program is a pointer to the codes loaded in memory

Return Parameter

ER ercd >= 0 normal completion (system program ID)

 ＜ 0 error code

Error Code

E_FACV no access privileges (E) for the file (when TMA_SEIO, TMA_LINK is specified)

E_MACV access to address (info, hdr (when TMA_PTR is specified)) not allowed

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

336 TEF021-S003-01.00.00/en

E_BUSY could not open the file because it is already opened exclusively

E_IO input/output error occurred

E_NOEXS file does not existt

E_NOFS the file system to which the file belongs is not connected

E_NOMEM insufficient memory area (insufficient memory area to load)

E_REC no program record present in the file. Or the content of program record is unusual

 (when TMA_LINK is specified).

Description

Loads the program code to the system memory space as a system program, and allocates a unique system

program ID.

spgatr of T_LSPG structure indicates the attribute of a created process.

If TMA_SEIO attribute is specified, the content of the specified file is loaded as a program code. Specify the path

name of the standard input/output of the target file for spghdr.

IF TMA_LINK the attribute is specified, the content of the first executable program record in the file of the specified

standard file system is loaded as program codes. Specify the link (LINK*) to the standard file system file for

spghdr.

If TMA_PTR attribute is specified, program codes in memory may be set to system program. Specify the pointer of

the program codes in memory for spghdr. Note that the format of the program codes in memory and the running

methods are implementation-dependent.

If load is successful, loaded start address is returned to info[0], and loaded last address is returned to info[1].

System programs are simply loaded (mapped) on memory only, and relocation of the symbol address, etc. is not

processed. Moreover, when the specified system program is the same as the one which has already been loaded,

a different new memory space is allocated and loading is conducted. In this case, a different system program ID is

allocated respectively.

The area where the system program was loaded is always made resident.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

337 TEF021-S003-01.00.00/en

Unload System Programs

tkse_unl_spg

C Language Interface

ER ercd = tkse_unl_spg(W progid);

Parameter

W progid system program ID

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_ID no system program (progid) existent

Description

Unload the loaded system program specified by “progid”. For all areas which were mapped in memory for the

system program, map release is conducted. Whether or not the system program is being used is not a concern.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

338 TEF021-S003-01.00.00/en

Get Version
tkse_get_ver

C Language Interface

ER ercd = tkse_get_ver(T_VER* version);

Parameter

T_VER *version storage area of version

 typedef struct {

 UH maker; /* maker*/

 UH id; /* style number */

 UH spver; /* specification version */

 UH prver; /* product version */

 UH prno[4]; /* product management information */

 UH cpu; /* CPU information */

 UH var; /* variation descriptor */

 } T_VER;

Return Parameter

ER ercd error code

Error Code

E_OK normal completion

E_MACV access to inaccessible address (version) not allowed

Description

Acquires AMP TKSE version information and stores it in version.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

339 TEF021-S003-01.00.00/en

4.14 Shared Library Function

4.14.1 Shared Library Function Overview

The shared library function of AMP TKSE manages the program codes (libraries) shared from multiple processes

loaded at runtime.

Shared libraries are present as shared library files in file system, and are loaded using a library function at

program's runtime, and become available after symbols resolution.

The loading and symbols resolution of shared libraries are performed by a function call provided as a library. The

shared libraries also allow you to load and resolve symbols automatically by placing them on shared library path

specified when building the system.

The features of both methods mentioned above are as follows:

 (1) Available using library function from user program

 - Load and symbols resolution explicitly call library function

 - Shared library files can be placed anywhere in the system

 (2) Automatically used when process is created

 - Loading is done automatically when process is created

 - Symbols resolution is done automatically at runtime

 - Shared library files should be placed on the path specified when building the system

Shared library function depends on language processor functions such as compiler, linker. To create shared library

files, language processor should have the function to create position independent codes.

The API specification of the common library management function is the same as in the T-Kernel Standard

Extension Version 1.00 Specification.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

340 TEF021-S003-01.00.00/en

4.14.2 Library Call

Open Shared Library
dlopen

C Language Interface

void *handle = dlopen(const char *filename, int flag);

Parameter

const char* filename path name of shared library files
int flag symbols resolution setting

 (RTLD_LAZY || RTLD_NOW) | [RTLD_GLOBAL]

 RTLD_LAZY (0x01) resolve ambiguous symbols in order at runtime
 RTLD_NOW (0x02) resolve all ambiguous symbols at loading time
 RTLD_GLOBAL (0x100) set symbols to global

Return Parameter

void * handle ＞ 0 normal completion (handle to shared library)
 ＝ 0 error exit

Description

Loads shared library in the path specified by filename to the local space of this process.
The path name follows the path name specification of standard input/output function.
If loading is successful, a handle to shared library (>0) is returned as a return value. If path name is NULL pointer,
shared library is not loaded and a handle to main program is returned.
The retrieved handle is used as an argument to dlsym().

The symbols resolution is set by specifying either RTLD_LAZY or RTLD_NOW to flag. At the same time,
RTLD_GLOBAL is also set by taking the logical union (OR).
If RTLD_NOW is specified, dlopen() returns after resolving all the undefined symbols in libraries. If unsuccessful,
an error will be returned.
If RTLD_LAZY is specified, symbols values are resolved the first time they are required at runtime. The operation is
not ensured when ambiguous symbols are not resolved (normally, exception occurs).
If RTLD_GLOBAL is specified, external symbols of loaded shared library can be used to resolve symbols of other
shared libraries opened afterward.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

341 TEF021-S003-01.00.00/en

Find Symbol of Shared Library
dlsym

C Language Interface

void *val = dlsym(void *handle, const char *symbol);

Parameter

void * handle handle to shared library

const char * symbol specified symbol

Return Parameter

 void * val != NULL normal completion (symbol value)

 ＝ NULL error

Description

Finds the symbol specified by symbol from shared library specified by handle and returns the value.

If symbol is not found, NULL will be returned.

Special handles such as RTLD_NEXT, RTLD_DEFAULT can be set to handle.

If RTLD_NEXT is set to handle, symbols search begins with "next" shared library after the shared library which

called dlsym().

If RTLD_DEFAULT is set to handle, symbols search is done in the scope of the shared library which called dlsym().

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

342 TEF021-S003-01.00.00/en

Close Shared Library
dlclose

C Language Interface

int rtn = dlclose(void *handle);

Parameter

void * handle handle to shared library

Return Parameter

int rtn ＝ 0 normal completion

 ＜ 0 error

Description

Closes the shared library specified by handle.

If the shared library was called by dlopen() multiple times, it is at last closed after it was called by dlclose() that

many times.

If shared library is closed, symbols in the library will become unavailable.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

343 TEF021-S003-01.00.00/en

Retrieve Symbol Information of Shared Library
dladdr

C Language Interface

int rtn = dladdr(void *addr, Dl_info *info);

Parameter

void * addr symbol's address

Dl_info * info specified symbol information

 typedef struct {

 const char *dli_fname; /* file name */

 void *dli_fbase; /* base address */

 const char *dli_sname; /* symbol name */

 void *dli_saddr; /* symbol's address */

 } Dl_info;

Return Parameter

int rtn ＝ 0 error

 != 0 normal completion

Description

If the address specified by addr is inside the one of shared libraries, symbol information at the address is returned

to info.

The pointer to the file name of shared library is stored to dli_fname. The file name convention complies with

standard input/output specification.

The base address (load offset) of shared library is stored to dli_fbase. This is used as an argument to dlsym() as a

handle to shared library.

The pointer to the name of closest symbol is stored to dli_sname with the same or smaller value specified by addr.

The symbol value (address) of dli_sname is stored to dli_saddr.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

344 TEF021-S003-01.00.00/en

5. Implementation Method
5.1 Overview

AMP TKSE is a function extension program for AMP T-Kernel, and its functions are implemented as AMP T-Kernel

subsystems. The following shows a list of subsystems used by AMP TKSE.

• Memory management subsystem

• Segment management subsystem

• Process/Task management subsystem

• Interprocess message subsystem

• Global name subsystem

• Intertask synchronization and communication subsystem

• Standard input/output subsystem

• Standard file management subsystem

• Filesystem Sharing Management Subsystem

• Event management subsystem

• Device management subsystem

• Time management subsystem

• Object Management Subsystem

An application invokes a AMP TKSE function using a system call (tkse_xxx_yyy) implemented as the subsystem

extended SVC. This system call is usually invoked via an interface library linked to the application.

5.2 Memory Management and Segment Management

The memory space of AMP TKSE is managed by two subsystems: Memory management subsystem and segment

management subsystem.

The memory management subsystem executes block-by-block memory area management.

When a memory area is allocated, each of the memory blocks making up this area is registered to a page table. A

page table is a data structure used to retain associations between logical and physical addresses and various

attributes of memory blocks. MMUs realize conversions between logical and physical addresses and restriction on

access to memory areas using the information in a page table. A page table, existing independently for each

process, is initialized at process creation and discarded at process exit.

The segment management subsystem conducts virtual memory and memory space management such as mapping

of a memory space to a disk or setting of resident/non-resident attributes.

If the physical memory runs short while virtual memory is enabled, segment management writes out a memory

page currently not in use to a page file, discards the memory page (page-out), and allocates it as a new memory

area. If there is memory access to a memory page that has been paged out, segment management reads this

memory page into the memory (page-in) and executes the access.

The page-in and page-out processes are executed in a task context. While the task-independent portion is

executed, therefore, the physical memory must not run short or the memory area that has been paged out must not

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

345 TEF021-S003-01.00.00/en

be accessed. The codes that run as the task-independent portion and the data that it references while running must

be located in resident memory.

5.3 Process/Task Management

(1) Memory space

The local memory space of a process is implemented as a task space of AMP T-Kernel. All the processes

have an independent task space, and the tasks in a process belong to the task space of this process.

(2) Resource group

Each process has an independent resource group. A new resource group is created at process creation and

deleted at process exit.

A resource group is used to keep information unique to its process such as process management information,

file descriptor, and current directory information.

(3) Task protection level

A task in a user process runs at protection level 3 and a task in a system process runs at protection level 1.

These processes cannot access the system area used by drivers and the OS (area at protection level 0).

As an exception, the initial process runs at protection level 0. Therefore, the initial process can access the

system area.

(4) Task priority allocation and scheduling

The task priority (sepri) of AMP TKSE is allocated to the AMP T-Kernel task priority (kpri) as follows:

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

346 TEF021-S003-01.00.00/en

[Table4] Task priority allocation

AMP TKSE

task priority (sepri)

AMP T-Kernel

task

priority (kpri)

Priority assignment method
Slice time

(milliseconds)

− 1 to 7 Not assigned −

0 to 127

(Absolute priority group)

8 to 135 kpri = sepri + 8 10 (Fixed value)

− 136 to 137 Not assigned −

128 to 191

(Round robin group 1)

138 kpri = 138 (Fixed value) 192 - sepri

192 to 255

(Round robin group 2)

139 kpri = 139 (Fixed value) 256 - sepri

− 140 Not assigned −

For a task in the absolute priority group, the sum of the AMP TKSE task priority and the offset value (plus eight) is

assigned to the AMP T-Kernel task priority. Since relative relationship of priorities is preserved, a task in the

absolute priority group is scheduled in the same order of priorities as in AMP T-Kernel. If there are multiple tasks

with the same priority, AMP TKSE schedules them equally in a round robin fashion at fixed intervals (10 msec), but

AMP T-Kernel does not automatically pass the execution privilege among them unless the slice time of a task is

explicitly set.

All the tasks in round robin group 1 are allocated to the AMP T-Kernel task priority of 138 regardless of the AMP

TKSE task priority. The round robin algorithm is realized by setting the task time slice according to the AMP TKSE

task priority and by changing precedences the same AMP T-Kernel task priorities. The task slice time is as

follows; (slice time) = 192-(AMP TKSE task priority).

Likewise, all the tasks in round robin group 2 are set to the AMP T-Kernel task priority of 139. The round robin

algorithm is realized in the same way as in round robin group 1. The task slice time is as follows; (slice time) =

256-(AMP TKSE task priority).

AMP T-Kernel task priorities (1 to 7, 136 and 137, and 140) not allocated as the AMP TKSE task priorities are not

available in AMP TKSE. However, AMP T-Kernel applications can freely use these priorities.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

347 TEF021-S003-01.00.00/en

5.4 Interprocess Messages

The content of a message that has been sent is copied to an area of system memory space reserved by the sender

and is inserted to the message queue of a destination process. The inserted data is copied again to the buffer area

specified at message reception.

The synchronization at message transmission and reception is realized by a task event. Task event number 1 is

used to wait for message reception when CONFM was specified at message transmission. Task event number 2 is

used to release the wait state using tkse_brk_msg(). Software other than message management must not send

these task event numbers to any task in the process.

To use a message handler, it is necessary to realize asynchronous reception of a message by raising a task

exception in the main task of the process in which the message handler has been registered. Software other than

message management must not raise a task exception in the main task in a process. In the initial process that runs

at protection level 0, no task exception can be raised due to a restriction on AMP T-Kernel. Therefore,

asynchronous message reception using a message handler cannot be executed.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

348 TEF021-S003-01.00.00/en

5.5 Intertask Synchronization and Communication Functions

The intertask synchronization and communication functions are realized by indirectly invoking a relevant system

call of AMP T-Kernel.

An extended function of AMP TKSE is automatic object deletion at process exit (specification of TA_DELEXIT).

To realize this function, each process has the list information of objects that have been created as a resource group.

Furthermore, this list information is associated with each object using the extended information exinf of the object.

Therefore, the AMP TKSE intertask synchronization and communication functions cannot use the extended

information exinf.

5.6 Device Management Function

The device management functions are realized by indirectly invoking the device management functions of AMP

T-Kernel/SM. However, devices cannot be registered or deleted from AMP TKSE.

5.7 Time Management Function

The time management functions are implemented using the AMP T-Kernel time management functions.

System time is initialized by reading the RTC time using the clock driver when AMP TKSE is started. If there is no

clock driver or the RTC time is invalid, the system time is undefined.

5.8 Object Management

Object management is implemented by using the domain function of AMP T-Kernel.

The kernel domain of AMP TKSE is implemented as a kernel domain of AMP T-Kernel. Both are same in the

implementation.

The process domain is created as a domain of the public attribute that belongs to the kernel domain when the

process is created. When the process is deleted, the process domain is deleted.

For the synchronization and communication object, the domain that the object belongs to and access protection

attribute of AMP T-Kernel are decided according to the access attribute when the object is created. The table below

shows the correspondence.

AMP TKSE Access Attributes Domain that the Object Belongs to AMP T-Kernel Access Protection

Attribute

Global Attribute Kernel Domain Public Attribute

Kernel Local Attribute Kernel Domain Protect Attribute

Process Local Attribute Process Domain Private Attribute

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

349 TEF021-S003-01.00.00/en

Although tasks belong to the process domain and act as private attributes on AMP TKSE, the access protection of

AMP T-Kernel is specified for the public attribute. Protection against access for tasks from other processes is

realized by AMP TKSE. This is due to the fact that access by tasks from other processes must be possible since

task events and task exceptions are used for messages between processes.

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

350 TEF021-S003-01.00.00/en

6. Configuration
6.1 System Configuration Information

AMP TKSE can be configured by changing the system configuration information in the same way as for AMP

T-Kernel.

The following information is defined as AMP TKSE configuration information.

“N:” stands for numeric string information and “S:” stands for character string information.

• Product information

N: OS-Ver Product version

Product management information (four entries at the maximum)

Set the product version and the product management information in the version information that can be obtained

using tkse_get_ver.

0 is set by default.

• Process/Task management

N: MaxProc Maximum number of processes

N: MaxSubTsks Maximum number of tasks in a process

N: SysStkSz System stack size (in bytes) of tasks in a process

N: UsrStkSz Default user stack size (in bytes) of tasks in a process

N: MaxSysPrg Maximum number of system programs

• Segment management

N: MaxMapID Maximum number of disk maps

N: MaxDiskID Maximum number of disk connections

N: MaxPageIO Maximum number of contiguous pages in disk input/output

N: SyncPeriod Disk synchronization interval (in milliseconds)

The content of the disk buffer is synchronized with that of the disk at specified intervals.

N: SafetyMargin Safety margin pages to be left at memory allocation

• Memory management

N: SRsvMem Minimum size of system memory to be reserved (in pages)

• Interprocess message

N: TotalMsgMax Maximum total size of messages

N: MaxMsgSz Maximum size of each message

• Intertask synchronization and communication

N: TcBufLim Upper limit of buffer size for intertask synchronization and communication (in bytes)

 AMP T-Kernel Standard Extension Specification / Ver. 1.00.00

351 TEF021-S003-01.00.00/en

• Global name

N: GlobalNameLimit Maximum number of global names

• Time management

N: CmClkUpd Clock update notification (0: Enabled, 1: Disabled)

Issues a clock update notification at zero second every minute. A notification is issued by invoking

tkse_brk_msg.

• Standard file management

N: FmTskPri File management task priority (common task)

 File management task priority (task of each file system)

N: MaxOpenF Maximum number of files that can be opened simultaneously

N: SyncTimeOut Synchronization timeout time (in milliseconds)

N: FmTimeStamp Time stamp update control (0: Updated, 1: Not updated)

 Control whether or not to update the time stamp when reading a record.

Update when set to 0. Don't update when set to 1.

• Event management

N: EmTskPri Device event reception task priority

N: MaxEvtQ Event queue size (in bytes)

N: MaxEvMsg Maximum number of registrations of event message

N: EvtLife Event lifetime (in milliseconds)

Set the lifetime of a wheel event.

• Standard input/output

N: UxMaxOpenF Maximum number of files that can be opened simultaneously (in each process)

N: UxFsTskPri File system task priority

N: UxSyncTimeOut Synchronization timeout time (in milliseconds)

