

AMP T-Kernel Specification
Ver. 1.00.00

TEF021-S001-01.00.00/en

February 2009

AMP T-Kernel Specification / Ver. 1.00.00

 2 TEF021-S001-01.00.00/en

AMP T-Kernel Specification (Ver.1.00.00)

T-Engine Forum owns the copyright of this specification.
Permission of T-Engine Forum is necessary for copying, republishing, posting on servers,
or redistribution to lists of the contents of this specification.
The contents written in this specification may be changed without a prior notice for
improvement or other reasons in the future.

About this specification, please refer to follows;

TEF021-S001-01.00.00/en
February 2009

Copyright © 2006-2009 T-Engine Forum. All Rights Reserved.

.

Publisher
T-Engine Forum

The 28th Kowa Building 2-20-1 Nishi-gotanda
Shinagawa-Ward Tokyo 141-0031 Japan

TEL：+81-3-5437-0572 FAX：+81-3-5437-2399

E-mail：office@t-engine.org

AMP T-Kernel Specification / Ver. 1.00.00

 3 TEF021-S001-01.00.00/en

Chapter 1 AMP T-Kernel Overview... 9
1.1 Position of AMP T-Kernel ... 9
1.2 Background ... 9
1.3 Policies of Specification Establishment .. 9

1.3.1 Fundamental Policy ... 9
1.3.2 Hardware Prerequisites.. 10

Chapter 2 Concepts Underlying the AMP T-Kernel Specification ... 13
2.1 Definition of Basic Terminology... 13

2.1.1 Implementation-Related Terminology... 13
2.1.2 System-Related Terminology .. 13
2.1.3 Meaning of Other Basic Terminology ... 14

2.2 AMP T-Kernel System... 15
2.2.1 Processor ... 15
2.2.2 Processor and AMP T-Kernel .. 15
2.2.3 Differences with the T-Kernel 1.00 Specification ... 15

2.3 Task States and Scheduling Rules ... 18
2.3.1 Task States ... 18
2.3.2 Task Scheduling Rules .. 22

2.4 System States... 25
2.4.1 System States While Non-task Portion Is Executing... 25
2.4.2 Task-Independent Portion and Quasi-Task Portion ... 25

2.5 Objects... 28
2.6 Memory ... 29

2.6.1 Address Space ... 29
2.6.2 Resident Memory and Nonresident Memory .. 29

2.7 Protection Levels... 31
2.8 Domains .. 32

2.8.1 Concept of Domain.. 32
2.8.2 Kernel Domains and Hierarchical Structure of Domains .. 32
2.8.3 ID Number Search Function.. 33
2.8.4 Domains and Access Protection Attributes.. 33
2.8.5 Target and Restrictions of Access Protection .. 34

2.9 Interrupt and Exception ... 36
2.9.1 Interrupt Handling ... 36
2.9.2 Task Exception Handling .. 36

2.10 Low-Level Operation Function ... 37
Chapter 3 Common AMP T-Kernel Specifications... 38

3.1 Data Types ... 38
3.1.1 General Data Types ... 38
3.1.2 Other Defined Data Types ... 39

AMP T-Kernel Specification / Ver. 1.00.00

 4 TEF021-S001-01.00.00/en

3.2 System Calls .. 40
3.2.1 System Call Format ... 40
3.2.2 System Calls Possible from Task-Independent Portion and Dispatch Disabled State ... 40
3.2.3 Restricting System Call Invocation ... 40
3.2.4 Modifying a Parameter Packet .. 41
3.2.5 Function Codes.. 41
3.2.6 Error Codes.. 41
3.2.7 Timeout.. 42
3.2.8 Relative Time and System Time.. 42

3.3 High-Level Language Support Routines ... 44
Chapter 4 AMP T-Kernel/OS Functions... 45

4.1 Task Management Functions ... 46
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.4.2 Task-Dependent

Synchronization Functions .. 70
・ 4.2 Task-Dependent Synchronization Functions ... 71
4.3 Task Exception Handling Functions.. 87
4.4 Synchronization and Communication Functions... 95

4.4.1 Semaphore ... 95
4.4.2 Event Flag.. 102
4.4.3 Mailbox ... 111

4.5 Extended Synchronization and Communication Functions... 121
4.5.1 Mutex .. 121
4.5.2 Message Buffer.. 131
4.5.3 Rendezvous Port.. 140

4.6 Memory Pool Management Functions .. 158
4.6.1 Fixed-size Memory Pool ... 159
4.6.2 Variable-size Memory Pool ... 168

4.7 Time Management Functions .. 176
4.7.1 System Time Management .. 176
4.7.2 Cyclic Handler... 180
4.7.3 Alarm Handler ... 188

4.8 Domain Management Functions.. 196
4.9 Interrupt Management Functions .. 205
4.10 System Management Functions... 209
4.11 Subsystem Management Functions ... 222

Chapter 5 AMP T-Kernel/SM Functions .. 234
5.1 System Memory Management Functions .. 235

5.1.1 System Memory Allocation... 235
5.1.2 Memory Allocation Libraries .. 239

5.2 Address Space Management Functions ... 240

AMP T-Kernel Specification / Ver. 1.00.00

 5 TEF021-S001-01.00.00/en

5.2.1 Address Space Configuration .. 240
5.2.2 Address Space Checking ... 240
5.2.3 Get Address Space information ... 241
5.2.4 Cache Mode Setting .. 242
5.2.5 Control of Cache ... 243
5.2.6 Get Physical Address... 243
5.2.7 Map Memory... 244

5.3 Device Management Functions ... 245
5.3.1 Basic Concepts .. 245
5.3.2 Application Interface ... 247
5.3.3 Device Registration ... 253
5.3.4 Device Driver Interface ... 255
5.3.5 Attribute Data .. 258
5.3.6 Device Event Notification ... 260
5.3.7 Device Suspend/Resume Processing ... 260
5.3.8 Special Properties of Disk Devices ... 261

5.4 Interrupt Management Functions .. 261
5.4.1 CPU Interrupt Control ... 262
5.4.2 Control of Interrupt Controller .. 264

5.5 I/O Port Access Support Functions... 265
5.5.1 I/O Port Access.. 265
5.5.2 Micro wait ... 266

5.6 Interprocessor Management Functions... 267
5.6.1 Spinlock Control.. 267
5.6.2 Atomic Function.. 270
5.6.3 Memory Barriers ... 271

5.7 Power Management Functions .. 272
5.8 System Configuration Information Management Functions ... 273

5.8.1 System Configuration Information Acquisition... 273
5.8.2 Standard System Configuration Information... 274

Chapter 6 Starting AMP T-Kernel .. 276
6.1 Initialization Handlers ... 276
6.2 Subsystem and Device Driver Starting.. 277

Chapter 7 AMP T-Kernel/DS Functions .. 280
7.1 Kernel Internal State Reference Functions .. 281
7.2 Trace Functions ... 301

Chapter 8 Reference... 306
8.1 List of Error Codes .. 306

AMP T-Kernel Specification / Ver. 1.00.00

 6 TEF021-S001-01.00.00/en

───┐
 ├┐
 List of Figures││

[Figure 1] System Configuration Diagram of AMP T-Kernel 11
[Figure 2] Synchronization at System Initialization 16
[Figure 3] Task State Transitions 20
[Table 1] State Transitions Distinguishing Invoking Task and Other Tasks 21
[Figure 4(a)] Precedence in Initial State 23
[Figure 4(b)] Precedence After Task B Goes To RUN State 23
[Figure 4(c)] Precedence After Task B Goes To WAIT State 23
[Figure 4(d)] Precedence After Task B WAIT State Is Released 24
[Figure 5] Classification of System States 25
[Figure 6(a)] Delayed Dispatching in an Interrupt Handler 27
[Figure 6(b)] Delayed Dispatching in Interrupt Handlers (Interrupt Nesting) 27
[Figure 6(c)] Dispatching in the Quasi-task Portion 27
[Table 2] List of Kernel Objects in AMP T-Kernel 28
[Figure 7] Address Space 29
[Table 3] Protection Level 31
[Figure 8] Hierarchical Structure of Domains (Example) 33
[Figure 9] Behavior of High-Level Language Support Routine 44
[Table 4] Target Task State and Execution Result (tk_ter_tsk) 55
[Table 5] Values of tskwait and wid 70
[Table 6] Task States and Results of tk_rel_wai Execution 76
[Figure 10] Multiple Tasks Waiting for One Event Flag 109
[Figure 11] Format of Messages Using a Mailbox 111
[Figure 12] Synchronous Communication Using Message Buffer of bufsz =0 134
[Figure 13] Rendezvous Operation 141
[Figure 14(a)] Sample ADA-like Program Using select Statement 151
[Figure 14(b)] Using Rendezvous to Implement ADA select Function 151
[Figure 15] Server Task Operation Using tk_fwd_por 154
[Figure 16(a)] Precedence Before Issuing tk_rot_rdq 210
[Figure 16(b)] Precedence After Issuing tk_rot_rdq (tskpri = 2) 211
[Figure 17(a)] maker Field Format 219
[Figure 17(b)] prid Field Format 220
[Figure 17(c)] spver Field Format 220
[Figure 18] T-Kernel Subsystems 222
[Figure 19] Relationship Between Subsystems and Resource Groups 223
[Figure 20] Device Management Functions 245
[Table 7] Possible or not to open the same device at the same time 248

List of Figures

List of Figures

AMP T-Kernel Specification / Ver. 1.00.00

 7 TEF021-S001-01.00.00/en

[Figure 21(a)] When an asynchronous initialization handler completes processing first 277
[Figure 21(b)] When an synchronous initialization handler completes processing first 277
[Figure 21(c)] In case of an unregistered initialization handler 277

AMP T-Kernel Specification / Ver. 1.00.00

 8 TEF021-S001-01.00.00/en

System Call Notation

In the parts of this specification that describe system calls, the specification of each system call is explained in the format

illustrated below.

System Call Name Summary Description

-System call name:-

[C Language Interface]
 - Indicates the C language interface for invoking the system call.-

[Parameters]
 - Describes the system call parameters, i.e., the information passed to the OS when the system call is executed.-

[Return Parameters]
 - Describes the system call return parameters, i.e., the information returned by the OS when execution of the system call

ends.-

[Error Codes]

- Describes the errors that can be returned by the system call. -

* The following error codes are common to all system calls and are not included in the error code listings for individual

system calls.
E_SYS, E_NOSPT, E_RSFN, E_MACV, E_OACV

* Error code E_CTX is included in the error code listings for individual system calls only when the conditions for its
occurrence are clear (e.g., system calls that enter WAIT state). Depending on the implementation, however, the E_CTX
error code may be returned by other system calls as well. The implementation-specific occurrences of E_CTX are not
included in the error code specifications for individual system calls.

[Description]

- Describes the system call functions. -
 * When the values to be passed in a parameter are selected from various choices, the following notation is used in the

parameter descriptions.

 (x || y || z) - Set one of x, y, or z.
 x ｜ y - Both x and y can be set at the same time (in which case the logical sum of x and y is taken).
 s [x] - x is optional.

 Example:
 wfmode := (TWF_ANDW || TWF_ORW) ｜ [TWF_CLR], wfmode can be specified in any of the following four ways.
 TWF_ANDW
 TWF_ORW
 (TWF_ANDW | TWF_CLR)
 (TWF_ORW | TWF_CLR)

[Additional Notes]
 - Supplements the description by noting matters that need special attention or caution, etc.-

[Rationale for the Specification]
 - Explains the reason for adopting a particular specification. –

[Items Concerning AMP T-Kernel]
 - Describes sections where the T-Kernel 1.00 Specification differs from AMP T-Kernel.-

AMP T-Kernel Specification / Ver. 1.00.00

 9 TEF021-S001-01.00.00/en

Chapter 1 AMP T-Kernel Overview

1.1 Position of AMP T-Kernel

 AMP T-Kernel is a real-time operating system for asymmetric multiprocessors (AMP: Asymmetric Multiple Processor). The
functions of AMP T-Kernel have been extended to support AMP on top of the T-Kernel 1.00 Specification for single processor
embedded systems.

Multiprocessors have symmetric multiprocessors (SMP: Symmetric Multiple Processor) in addition to AMP. The T-Kernel
used for SMP is called SMP T-Kernel. AMP T-Kernel and SMP T-Kernel aim to share specifications as much as possible in
consideration of compatibility between them. Both are collectively referred to as "MP T-Kernel".

1.2 Background

The necessity of multiprocessors has been increasing along with the increasing size and sophistication of embedded systems.
In past embedded systems that have used multiprocessors, generally it was not the OS but the application program that handled
control and communication between processors in its own scheme. However, in the future it is preferable that this handling
should be standardized from the viewpoint of software compatibility and portability. Additionally, high-speed communication
between cores has become possible and OS level control between processors is now simpler in recent multicore processors
where the cores of multiple processors have been built inside a single chip. Based on the above observation, extension of the
function of T-Kernel to support multiprocessor systems was examined.

The multiprocessor is classified broadly into AMP and SMP according to the configuration. In AMP, roles are set in each
processor statically, and statically assigned programs which include the OS operate in each processor. In SMP, all roles of a
processor are equal, and programs are dynamically allocated by the OS to each processor. The functions and implementation of
OS are very different in the case of AMP and SMP in this way. Therefore, AMP T-Kernel and SMP T-Kernel were examined
separately during the establishment of specifications.
However, as the number of processors increases, it is conceivable an SMP and AMP combination system will appear. Moreover,
the demand that would like to see software shared among AMP, SMP, and single processor systems is also significant. Thus,
compatibility between AMP T-Kernel and SMP T-Kernel is deemed very important, and the future integration of AMP T-Kernel
and SMP T-Kernel is being considered as a result.

1.3 Policies of Specification Establishment

1.3.1 Fundamental Policy

AMP T-Kernel is the real-time OS that mainly targets embedded systems.
In the existing T-Kernel 1.00 Specification, one of the purposes was to improve the portability and distribution of software in

various embedded systems. AMP T-Kernel is a successor of T-Kernel, and improving the portability and distribution of software
in various AMP systems is also one of its goals. In addition, the portability and distribution of software that has non-SMP
architecture, namely AMP and single processor are also important.

Based on the above observation, the following fundamental policy was set during the establishment of the AMP T-Kernel
Specification.

(1) Compatibility with the T-Kernel 1.00 Specification

The aim for AMP T-Kernel is to have upper compatibility with the T-Kernel 1.00 Specification at the source code level so that
software (modules) can be shared as long as the functions extended in AMP T-Kernel are not used. Moreover, as for the
functions of synchronization and communication between processors, porting from the T-Kernel 1.00 Specification shall be
facilitated by extending the functions of synchronization and communication of the T-Kernel 1.00 Specification so they can be
used between processors.

(2) Reducing the Hardware-Dependency and Supporting Various AMP Systems

In systems that use AMP, there are various forms of hardware which differ in the communication method used between
processors and the type and combination of processors. The goal of AMP T-Kernel is the support of various types of hardware
without depending on the architecture of specific hardware making porting simple.

As a specific example, synchronization and communication processing between processors within the AMP T-Kernel is
modularized as a low-level driver between processors. This driver conceals differences in communication methods between

AMP T-Kernel Specification / Ver. 1.00.00

 10 TEF021-S001-01.00.00/en

processors and differences of individual processors. Porting to hardware of different AMPs is done by changing this driver.

(3) Valuing Performance as a Real-time OS Targeting Embedded Systems

The functions of a real-time OS that the T-Kernel 1.00 Specification possesses shall be provided by AMP T-Kernel as well.
Therefore, when these functions are used in a single processor system, the goal is execution efficiency equal to that of T-Kernel
1.00 implementation on a single processor. In addition, the communication overhead between processors is paid due attention
during design.

1.3.2 Hardware Prerequisites

The hardware prerequisites are stipulated as follows according to the fundamental policy stated above:

(1) Each processor that configures AMP must possess the capability to operate the T-Kernel 1.00 Specification on its own.

Specifically, CPU shall be 32-bit or more powerful with MMU (Memory Management Unit). Although the MMU is not
indispensable, restrictions will be imposed on functions without the MMU.

Each processor does not have to be the same type. In other words, hardware that will be configured by different types of
processors is the target of AMP T-Kernel.

(2) Sufficiently fast communication between processors.

There are various types of hardware for communication between processors: from hardware in which high speed
communication is possible such as shared memory to hardware with low-speed communication rates by serial communication,
etc. In AMP T-Kernel, the system for communication between processors itself is implementation-defined and not stipulated as
part of the specification. However, communication between processors takes place during system calls in order to extend the
synchronization and communication functions of the T-Kernel 1.00 Specification to synchronization and communication
between processors. Thus, a communication function with a sufficiently high speed between processors is required.

"Sufficiently high speed" refers to the speed at which the processing satisfies the efficiency requirement of application on the
real-time performance and communication between processors. This largely depends on the requirement of the application and
therefore the communication speed is not specifically stipulated.

[Additional Notes]

By making the specification of the communication between processors at the hardware level to be implementation-defined,
the choice of target hardware is broadened. In principle, it will become possible to provide support for many systems: from
multicore processors realized with single chips to hardware in which independent processor chips are connected by some sort of
data communication means.

Actual restrictions are determined by the communication speed according to the specification for communication between
processors. However, the required communication speed differs greatly depending on the application. If an application requires
the speed of synchronization and communication between processors to be comparable to that on a single processor, shared
memory (or equivalent) at the same access speed as the main memory of the processor will be necessary. Conversely, if the
requirements of the application are not so demanding, the application can be operated even in systems without shared memory.

AMP T-Kernel Specification / Ver. 1.00.00

 11 TEF021-S001-01.00.00/en

[Figure 1] System Configuration Diagram of AMP T-Kernel

Individual AMP T-Kernel that makes up a system has functions which synchronize and communicate with other AMP

T-Kernels within the system. User programs can synchronize and communicate with user programs under other AMP T-Kernel
by using this AMP T-Kernel function. The software that actually executes synchronization and communication between
processors is a communication driver between processors within an AMP T-Kernel. However, since this driver is concealed
within AMP T-Kernel, the application is not aware of the driver. The purpose of using this form of a communication driver
between processors is to consolidate and conceal the differences of communication between processors at the hardware level.
The communication between processors at the hardware level is not specified in AMP T-Kernel. When AMP T-Kernel is ported
to different hardware, this driver should be implemented according to the specification of communication between processors
of the hardware.

Like the T-Kernel 1.00 Specification, individual AMP T-Kernel consists of the following three parts:

T-Kernel/OperatingSystem(T-Kernel/OS), T-Kernel/SystemManager(T-Kernel/SM), and T-Kernel/DebuggerSupport
(T-Kernel/DS) as well as the T-Kernel 1.00 Specification.

T-Kernel/OperatingSystem (T-Kernel/OS) provides the following functions.

・ Task Management Functions
・ Task-Dependent Synchronization Functions
・ Task Exception Handling Functions
・ Synchronization and Communication Functions
・ Extended Synchronization and Communication Functions
・ Memory Pool Management Functions
・ Time Management Functions
・ Domain Management Functions
・ Interrupt Management Functions
・ System Status Management Functions
・ Subsystem Management Functions

T-Kernel/SystemManager (T-Kernel/SM) provides the following functions.

・ System Memory Management Functions
・ Address Space Management Functions
・ Device Management Functions
・ Interrupt Management Functions
・ I/O Port Access Support Function
・ Interprocessor Management Functions

Processor 1 Processor 2 Processor n

AMP T-Kernel AMP T-Kernel AMP T-Kernel
・・・

User Program 1 User Program 2 User Program n

Service Call
Interprocessor

Communication

AMP T-Kernel Specification / Ver. 1.00.00

 12 TEF021-S001-01.00.00/en

・ Power Management Functions
・ System Configuration Information Management Functions

T-Kernel/DebuggerSupport (T-Kernel/DS) provides the following functions exclusively for the debugger.

・ Kernel Internal State Reference
・ Trace

 [Rationale for the Specification]

Definition of AMP T-Kernel required a careful examination. There were two candidate definitions: One is what is allocated to
each processor should be considered as AMP T-Kernel. The other is the entire system should be considered as AMP T-Kernel.
In the end, it was chosen that the former would be used due to the following reasons. First, since the functions of single
processor T-Kernel have corresponding functions in AMP T-Kernel on each processor, it is easy for users to understand and also
easy to make the specifications compatible. Secondly, when we build a system that mixes AMP and SMP processors in the
future and uses AMP and SMP T-Kernels, it is expected that SMP T-Kernel and AMP T-Kernel on a processor will be treated at
the same conceptual level.

AMP T-Kernel Specification / Ver. 1.00.00

 13 TEF021-S001-01.00.00/en

Chapter 2 Concepts Underlying the AMP T-Kernel Specification

2.1 Definition of Basic Terminology

The basic terminology is provided for the AMP T-Kernel Specification. These terms are common with the T-Kernel 1.00
Specification.

2.1.1 Implementation-Related Terminology

(1) Implementation-defined

There are items that have not been standardized as specifications. Therefore, specifications must be stipulated for each
implementation. Specific implementation details must be noted in the implementation specification. In application programs,
portability is not assured for sections which are dependent on implementation- defined items.

(2) Implementation-dependent

In the specification, something that is implementation-dependent refers to an item which changes in behavior according to the
target system or the operating conditions of the system. Behavior must be described for each implementation and specific
implementation details must be noted in the implementation specification. In application programs, the sections which depend
on implementation-dependent items basically need to be changed when porting.

2.1.2 System-Related Terminology

(1) Device Driver

A device driver is a program that mainly controls hardware.
Each device driver is placed under the management of T-Kernel, and the interface between T-Kernel and the device driver is

stipulated in the specifications of T-Kernel. Furthermore, the standard specification of device drivers is stipulated as the
T-Kernel Standard Device Driver Specification.

(2) Subsystem

A sub-system is a program that realizes extended system calls (extension SVC), and extends the functions of T-Kernel. The
sub-system is placed under the management of T-Kernel, and the interface between T-Kernel and the sub-system is stipulated in
the T-Kernel Specification.

(3) T-Monitor

T-Monitor is a program that mainly performs hardware initialization, system startup, exception and interrupt handling, and
provision of basic debugging functions.

Initially, T-Monitor starts when the hardware power is turned on (system reset). T-Monitor then initializes the necessary
hardware, and starts T-Kernel.

T-Monitor is not part of T-Kernel and is not included in the T-Kernel Specification.

(4) T-Kernel Extension

T-Kernel Extension is a program for extending the functions of T-Kernel and realizes the functions of a more sophisticated
OS. T-Kernel Extension has some specifications including T-Kernel Standard Extension as the standard specification.

T-Kernel Standard Extension is implemented as a subsystem of T-Kernel and provides file system and process management
functions.

The realization of functions of a more sophisticated OS becomes possible by combining these T-Kernel Extensions with
T-Kernel. Moreover, an OS with different functions can be realized by replacing T-Kernel Extensions.

(5) Application and System Software

An application is a program created by the user on system software.
System software is a program for operating applications, and it is divided into the hierarchy of T-Monitor, T-Kernel, and

T-Kernel Extension from the standpoint of the application. However, T-Monitor and T-Kernel Extension do not always exist.
Finally, device drivers are handled as part of T-Kernel.

(6) Kernel Object

AMP T-Kernel Specification / Ver. 1.00.00

 14 TEF021-S001-01.00.00/en

A resource which is an operational object of T-Kernel is called a Kernel Object or Object for short. Execution programs such
as tasks and synchronization handlers and resources for synchronization and communication such as semaphores and event
flags are all Kernel Objects.

The Kernel Object is identified by a numerical ID. For example, the Task ID identifies a task. All Object IDs are dynamically
and automatically allocated in T-Kernel during program execution.

2.1.3 Meaning of Other Basic Terminology

(1) Task, invoking task
The basic logical unit of concurrent program execution is called a “task”.While instructions within one task are executed in

sequence, instructions within different tasks can be executed in parallel. This concurrent processing is a conceptual view from
the standpoint of applications. In reality, multiple executing tasks cannot exceed the number of processors and be truly executed
concurrently. In such cases, processing is accomplished by time-sharing among tasks as controlled by the kernel.

A task that invokes a system call is called the “invoking task”.

(2) Dispatch, dispatcher
The switching of tasks executed by the processor is called “dispatching” (or task dispatching). The kernel mechanism by

which dispatching is realized is called a “dispatcher” (or task dispatcher).

(3) Scheduling, scheduler
The processing to determine which task to execute next is called “scheduling” (or task scheduling). The kernel mechanism by

which scheduling is realized is called a “scheduler” (or task scheduler). Generally a scheduler is implemented inside system call
processing or in the dispatcher.

(4) Context

The environment in which a program runs is generally called “context”. For two contexts to be called identical, at the very
least, the processor operation mode（Execution mode of the program stipulated by the processor such as privilege and user）
must be the same and the stack space must be the same (part of the same contiguous memory area). Note that context is a
conceptual view from the standpoint of applications; even when processing must be executed in independent contexts, in actual
implementation both contexts may sometimes use the operation mode of the same processor and the same stack space.

(5) Precedence

The relationship among different execution requests that determines their order of execution is called “precedence”. When a
higher-precedence execution request becomes ready for execution while a low-precedence execution request is satisfied and in
progress, as a general rule, the higher-precedence execution request is run ahead of the other request.

(6) API and System Calls

The standard interface to call functions provided by T-Kernel from the application and middleware is collectively called API
(Application Program Interface). API includes those which are realized as macros and libraries in addition to system calls the
OS functions directly.

[Additional Notes]

Priority is a parameter assigned by an application to control the order of task or message processing. Precedence, on the other
hand, is a concept in the specification used to make clear the order in which processing is to be executed. Precedence relation
among tasks is determined based on task priority.

AMP T-Kernel Specification / Ver. 1.00.00

 15 TEF021-S001-01.00.00/en

2.2 AMP T-Kernel System

2.2.1 Processor

The AMP system is configured with multiple processors. Each processor is identified by Processor ID number. Processor ID

numbers are consecutive numbers beginning with 1 and are designated statically as one item of system configuration
information during system construction. When a specific processor operates at system startup, the ID number for the processor
is 1. The allocation of other numbers is implementation-defined.

Processor ID numbers are used when a processor is directly specified.
In AMP, system resources are allocated to any one of the processors. Resources allocated to a certain processor are said to

belong to that processor. However, some exceptional resources such as memory shared among processors do not belong to a
specific processor.

2.2.2 Processor and AMP T-Kernel

One AMP T-Kernel is allocated for each processor that comprises an AMP system. The allocation of the processor and AMP

T-Kernel is determined statically when the system is built. Processor ID numbers to which AMP T-Kernel are allocated are used
to identify individual AMP T-Kernels. However, AMP T-Kernels are not directly specified from applications. Applications
perform various operations to the Kernel Object on each AMP T-Kernel.

One AMP T-Kernel allocated to each processor has the functions of the T-Kernel 1.00 Specification in addition to the
functions of synchronization and communication between processors described in the next paragraph. The management of
various resources is performed independently in individual AMP T-Kernel, like the T-Kernel 1.00 Specification. For example,
the management of kernel objects, task scheduling, system management such as devices and subsystems, and management of
resources such as memory are performed in each individual AMP T-Kernel in the whole system.

2.2.3 Differences with the T-Kernel 1.00 Specification
Basic functions of individual AMP T-Kernel that comprise a system are the same as the T-Kernel 1.00 Specification, and it is

possible to consider AMP T-Kernel as a whole single processor T-Kernels operating with synchronization, communication, and
coordination. The following synchronization and communication are possible between kernels.

(1) Synchronization at System Initialization

The initialization of each AMP T-Kernel is conducted independently at system startup. Therefore, the time at which the
initialization of AMP T-Kernel ends and time at which any application task starts is not synchronized. An initialization handler
can be defined in order to synchronize the initialization of AMP T-Kernel.

The initialization handler is executed at the end of the initialization processing of AMP T-Kernel. The creation of the kernel
objects and registration of the handlers can be done within the initialization handler. The kernel objects and handlers created
within the initialization handler already exist when the execution of an AMP T-Kernel task begins. It is possible to synchronize
the end of the initialization handler with the end of other initialization handlers. If the end of an initialization handler is
synchronized, it is guaranteed that kernel objects and handlers created in the initialization handlers of other AMP T-Kernels will
exist when the execution of a task begins (for more details on initialization handlers, refer to "6.1 Initialization Handler").

AMP T-Kernels without defined initialization handlers are not synchronized at initialization with other AMP T-Kernels.

AMP T-Kernel Specification / Ver. 1.00.00

 16 TEF021-S001-01.00.00/en

[Figure 2] Synchronization at System Initialization

[Additional Notes]
Sample usages assumed by initialization handlers are the following cases.
In order for an application to start synchronization and communication between AMP T-Kernels after the startup of the

application, the initialization of other AMT T-Kernels must end and target kernel objects must be created. If neither
initialization nor creation of the object has been completed, an error occurs. However, the time it takes for an AMP T-Kernel to
initialize is different according to processor hardware and functions, and estimating when initialization finishes from other AMP
T-Kernels is difficult. Therefore, if the initialization of each AMP T-Kernel is synchronized using the initialization handler and
the object necessary for initial synchronization and communication is created within the initialization handler, the
synchronization and communication later can be definitely guaranteed.

It is also possible to calculate the timing according to the actual value measured during the initialization of each AMP
T-Kernel without using the initialization handler. However, since this calculation depends on a specific system and portability is
impaired, it is not recommended.

(2) Synchronization and Communication between Tasks
In AMP T-Kernel, the kernel objects of other AMP T-Kernels can be operated with system calls. This enables the

synchronization and communication of tasks between processors.
What is possible among AMP T-Kernels is synchronization and communication by operation of the object, and information

reference regarding the object only.
Specifically, it is possible to use a system call which realizes synchronization, communication, and information references by

specifying the target Object ID and operating on the object. However, operations concerning task scheduling and resource
management cannot be performed. Moreover, even for synchronization and communication, some complex operations and
operations irrelevant for AMP T-Kernel have been omitted and can not be used..

From the standpoint of applications, instead of distinguishing the kernel object in an AMP T-Kernel on the same processor
from kernel objects on other processors, the same system call can be used for operation. Conversely, semantics of the same
system call are not allowed to change according to whether or not the target object is on the same AMP T-Kernel.

In the implementation of a system, processor information is included in Object IDs, and when the objects of other processors
are specified in the processing of system calls, communication between processors is performed. The application does not need
to be aware of this.

[Additional Notes]

Processor 1 Kernel

Initialization

Initialization

Handler

Task Execution

Processor 2 Kernel

Initialization

Initialization

Handler

Task Execution

Processor 3 Kernel

Initialization

Initialization

Handler

Task Execution

Start of task execution is synchronized.

AMP T-Kernel Specification / Ver. 1.00.00

 17 TEF021-S001-01.00.00/en

In the operation of synchronization and communication objects by system calls, semantics does not change according to
whether or not the object is an object of the same AMP T-Kernel. However, the execution speed of the system call is affected.
Since operations for kernel objects on other processors accompany communication between processors, generally it requires
more time than object operations within the same AMP T-Kernel.

The decrease in execution speed due to communication between processors is greatly affected by the hardware and the
implementation of communication between processors; therefore, it is implementation-dependent.

[Rationale for the Specification]

The reasons why system calls that can be used between AMP T-Kernels are limited to synchronization, communication, and
referencing the object by object operation are as follows.

First, if the function of a system call differs according to the location of the target object, the portability of software and
readability of the source code are greatly impaired, and therefore it was decided to avoid this as much as possible. Operations
concerning task scheduling fall under this category. For example, the operations of Rotate Ready Queue (tk_rot_rdq), Disable
Dispatch (tk_dis_dsp), and Change Task Priority (tk_chg_pri), etc. are different for operations for the AMP T-Kernel of CPU of
the invoking task and operations for other AMP T-Kernel.

Next, since resources are completely independent in each processor in AMP, it was determined that operations concerning
resource management should not be performed by other processors. This includes the creation and deletion of the objects as
well. To begin with, since the memory address of the execution code is necessary to create the task and handler, it is difficult to
perform operations against other processors.

The conclusion was reached that if you would like to realize closer scheduling and the management of resources between
processors, SMP T-Kernel which is available in MP T-Kernel should be used, and AMP T-Kernel should be used to support
highly independent systems in each processor.

AMP T-Kernel Specification / Ver. 1.00.00

 18 TEF021-S001-01.00.00/en

2.3 Task States and Scheduling Rules

2.3.1 Task States
State of tasks of AMP T-Kernel are not different from those of the T-Kernel 1.00 Specification. However, it must be noted that

task states are managed by each individual AMP T-Kernel which comprises a system. For example, since a task in RUN state
exists in each individual AMP T-Kernel, multiple tasks are in RUN state in the entire system.
Task states are classified primarily into the five below. Of these, the Wait state in the broad sense is further classified into

three states. Saying that a task is in a Run state means it is in either RUN state or READY state.

(a) RUN state
The task is currently being executed. When a task-independent portion is executing, except when otherwise specified, the task

that was executing prior to the start of task-independent portion execution is said to be in RUN state.

(b) READY state
The task has completed preparations for running, but cannot run because a task with higher precedence is running. In this state,

the task is able to run whenever it becomes the task with the highest precedence among the tasks in READY state.

(c) Wait states

The task cannot run because the conditions for running are not in place. In other words, the task is waiting for the conditions
for its execution to be met. While a task is in one of the Wait states, the program counter, register values, and other information
representing the program execution state, are saved. When the task resumes running from this state, the program counter,
registers and other values revert to their values immediately prior to going into the Wait state. This state is subdivided into the
following three states.

(c.1) WAIT state

Execution is stopped because a system call was invoked that interrupts execution of the invoking task until some condition is
met.

(c.2) SUSPEND state

Execution was forcibly interrupted by another task.

(c.3) WAIT-SUSPEND state
The task is both in WAIT state and SUSPEND state at the same time. WAIT-SUSPEND state results when another task

requests suspension of a task already in WAIT state. T-Kernel makes a clear distinction between WAIT state and SUSPEND
state. A task cannot go to SUSPEND state on its own.

(d) DORMANT state

The task has not yet been started or has completed execution. While a task is in DORMANT state, information representing
its execution state is not saved. When a task is started from DORMANT state, execution starts from the task start address.
Except when otherwise specified, the register values are not saved.

(e) NON-EXISTENT state

A virtual state before a task is created, or after it is deleted, and is not registered in the system.

Depending on the implementation, there may also be transient states that do not fall into any of the above categories (see

section 2.4).

When a task going to READY state has higher precedence than the currently running task, a dispatch may occur at the same

time as the task goes to READY state and it may make an immediate transition to RUN state. In such a case, the task that was
in RUN state up to that time is said to have been preempted by the task newly going to RUN state. Note also that in
explanations of system call functions, even when a task is said to go to READY state, depending on the task precedence it may
go immediately to RUN state further.

Task starting means transferring a task from DORMANT state to READY state. A task is therefore said to be in a “started”
state if it is in any state other than DORMANT or NON-EXISTENT. Task exit means that a task in a started state goes to
DORMANT state.

Task wait release means that a task in WAIT state goes to READY state, or a task in WAIT-SUSPEND state goes to
SUSPEND state. The resumption of a suspended task means that a task in SUSPEND state goes to READY state, or a task in

AMP T-Kernel Specification / Ver. 1.00.00

 19 TEF021-S001-01.00.00/en

WAIT-SUSPEND state goes to WAIT state.
Task state transitions in a typical implementation are shown in Figure 3. Depending on the implementation, there may be

other states besides those shown here.

AMP T-Kernel Specification / Ver. 1.00.00

 20 TEF021-S001-01.00.00/en

[Figure 3] Task State Transitions

READY

state

RUN

state

WAIT

state

WAIT-
SUSPENDED

state

SUSPEND

state

DORMANT

state

NON-

EXISTENT

Dispatching
 Preemption

Terminate

(tk_ter_tsk)

Terminate

(tk_ter_tsk)

Terminate (tk_ter_tsk) Exit (tk_ext_tsk)

Exit and

delete

(tk_exd_tsk)

Start (tk_sta_tsk)

Terminate
(tk_ter_tsk)

Suspend
(tk_sus_tsk)

Resume
(tk_rsm_tsk,
tk_frsm_tsk)

Wait
condition

Release
wait

Release
wait

Suspend
(tk_sus_tsk)

Resume
(tk_rsm_tsk,
tk_frsm_tsk)

Delete
(tk_del_tsk)

Create
(tk_cre_tsk)

Terminate

 (tk_sus_tsk,
tk_rsm_tsk)

 (tk_sus_tsk, tk_rsm_tsk)

AMP T-Kernel Specification / Ver. 1.00.00

 21 TEF021-S001-01.00.00/en

A feature of T-Kernel is the clear distinction made between system calls that perform operations affecting the invoking task

and those whose operations affect other tasks (see Table 2.1). The reason for this is to clarify task state transitions and facilitate
understanding of system calls. This distinction between system call operations in the invoking task and operations affecting
other tasks can also be seen as a distinction between state transitions from RUN state and those from other states.

[Table 1] State Transitions Distinguishing Invoking Task and Other Tasks

Operations in invoking task

(transitions from RUN state)

Operations on other tasks

(transitions from other states)

Task transition to a WAIT state

(including SUSPEND)

tk_slp_tsk

RUN

↓

WAIT

tk_sus_tsk

READY WAIT

 ↓ ↓

 SUSPEND WAIT-SUSPEND

Task exit

tk_ext_tsk

RUN

↓

DORMANT

tk_ter_tsk

READY WAIT

↓ ↓

DORMANT

Task deletion

tk_exd_tsk

RUN

↓

NON-EXISTENT

tk_del_tsk

DORMANT

↓

NON-EXISTENT

[Additional Notes]
WAIT state and SUSPEND state are orthogonally related in that a request for transition to SUSPEND state cannot have any

effect on the conditions for task wait release. That is, the task wait release conditions are the same whether the task is in WAIT
state or WAIT-SUSPEND state. Thus even if transition to SUSPEND state is requested for a task that is in a state of waiting to
acquire some resource (semaphore resource, memory block, etc.), and the task goes to WAIT-SUSPEND state, the conditions
for allocation of the resource do not change but remain the same as before the request to go to SUSPEND state.

[Rationale for the Specification]

The reason the T-Kernel specification makes a distinction between WAIT state (wait caused by the invoking task) and
SUSPEND state (wait caused by another task) is that these states sometimes overlap. By distinguishing this overlapped state as
WAIT-SUSPEND state, the task state transitions become clearer and system calls are easier to understand. On the other hand,
since a task in WAIT state cannot invoke a system call, different types of WAIT state (e.g., waiting for wakeup, or waiting to
acquire a semaphore resource) will never overlap. Since there is only one kind of WAIT state caused by another task
(SUSPEND state), the T-Kernel specification treats overlapping of SUSPEND states as nesting, thereby achieving clarity of
task state transitions.

AMP T-Kernel Specification / Ver. 1.00.00

 22 TEF021-S001-01.00.00/en

2.3.2 Task Scheduling Rules

When the priority level of a task is changed due to a system call etc. in T-Kernel, task scheduling is performed. A
dispatch occurs when a task in RUN state changes its state due to scheduling. Task scheduling is a preemptive priority-based
scheduling based on priority levels assigned to each task. Task scheduling between tasks having the same priority is done on a
FCFS (First Come First Served) basis. In AMP T-Kernel, task scheduling is performed for each AMP T-Kernel of each
processor. The task scheduling performed by each AMP T-Kernel is not different from that of T-Kernel 1.00 for single
processors.

Task scheduling is conducted as follows:

 Precedence is given to tasks that can be executed. Among tasks having different priorities, a task having higher priority
has higher precedence. Among tasks having the same priority, the one first going to a RUN state (RUN state or READY
state) has the highest precedence. It is possible, however, to use a system call to change the precedence relation among
tasks having the same priority.

 The task with the highest precedence goes to RUN state, and other tasks goes to READY state.
 When the task with the highest precedence changes from one task to another, a dispatch occurs immediately and the task

in RUN state is switched. If dispatching is not allowed, however, the switching of the task in RUN state is held off until
dispatch occurs.

In other words, tasks that can be executed are considered to be in a queue according to precedence. The task at the front of the

queue goes to READY state. If the change in the precedence of tasks is allowed and the first task in the queue is thus replaced,
dispatch occurs.

The task scheduling is described in the example of Figure 4. Figure 4(a) illustrates the precedence relation among tasks after

Task A of priority 1, Task E of priority 3, and Tasks B, C and D of priority 2 are started in that order. The task with the highest
precedence, Task A, goes to RUN state.

When Task A exits, Task B with the next-highest precedence goes to RUN state (Figure 4(b)). When Task A is again started,
Task B is preempted and reverts to READY state; but since Task B went to a RUN state earlier than Task C and Task D, it still
has the highest precedence among tasks having the same priority. In other words, the task precedence reverts to that in Figure
4(a).

Next, consider what happens when Task B goes to WAIT state in the conditions in Figure 4(b). Since task precedence is
defined among tasks that can be run, the precedences of tasks become as shown in Figure 4(c). Thereafter, when the Task B’s
WAIT state is released, Task B goes to RUN state after Task C and Task D, and thus will have the lowest precedence among
tasks of the same priority (Figure 4(d)).

AMP T-Kernel Specification / Ver. 1.00.00

 23 TEF021-S001-01.00.00/en

 [Figure 4(a)] Precedence in Initial State

[Figure 4(b)] Precedence After Task B Goes To RUN State

[Figure 4(c)] Precedence After Task B Goes To WAIT State

Precedence

Priority
<Priority 1>

<Priority 2>

<Priority 3>

high

low

Task A

[Task B] [Task C] [Task D]

[Task E]

Precedence

Priority
<Priority 1>

<Priority 2>

<Priority 3>

high

low

Task B [Task C] [Task D]

[Task E]

Precedence

Priority
<Priority 1>

<Priority 2>

<Priority 3>

high

low

Task C [Task D]

[Task E]

AMP T-Kernel Specification / Ver. 1.00.00

 24 TEF021-S001-01.00.00/en

[Figure 4(d)] Precedence After Task B WAIT State Is Released

Summarizing the above, immediately after a task that went from READY state to RUN state reverts to READY state, it has

the highest precedence among tasks of the same priority; but after a task went from RUN state to WAIT state and then the wait
is released, its precedence is the lowest among tasks of the same priority.

[Additional Notes]

According to the scheduling rules adopted in the T-Kernel specification 1.00, so long as there is a high precedence task in a
RUN state, a task with lower precedence will simply not run.

That is, unless the highest-precedence task goes to WAIT state or can not run for other reason, other tasks are not run. This is
a fundamental difference from TSS (Time Sharing System) scheduling in which multiple tasks are treated in a fair and equal
manner.

In the same way as AMP T-Kernel, tasks with low precedence in READY state are not executed unless a task with a higher
precedence cannot run due to reasons such as going to WAIT state.

It is possible, however, to issue a system call for changing the precedence relation among tasks having the same priority. An
application can use such a system call to realize round-robin scheduling, which is a typical kind of scheduling method used in
TSS.

Precedence

Priority
<Priority 1>

<Priority 2>

<Priority 3>

high

low

[Task C] [Task D] [Task B]

[Task E]

AMP T-Kernel Specification / Ver. 1.00.00

 25 TEF021-S001-01.00.00/en

2.4 System States
There is no difference between the system state of AMP T-Kernel and that of the T-Kernel 1.00 Specification. However, it

must be noted that the system state is managed by each individual AMP T-Kernel comprising a system.

2.4.1 System States While Non-task Portion Is Executing
When programming tasks to run on T-Kernel, the changes in task states can be tracked by looking at a task state transition

diagram. In the case of routines such as interrupt handlers or extended SVC handlers, however, the user must perform
programming at a level closer to the kernel than ordinary tasks. In this case, consideration must be made also of system states
while a nontask portion is executing, otherwise programming cannot be done properly. An explanation of T-Kernel system
states is therefore given here.

System states are classified as in Figure 5.
Of these, a “transient state” is equivalent to OS running state (system call execution). From the standpoint of the user, it is

important to note that each of the system calls issued by the user be executed indivisibly, and that the internal states while a
system call is executing cannot be seen by the user. For this reason, the state while the OS is running is considered a “transient
state” and it is treated as a blackbox.

In the following cases, however, a transient state is not executed indivisibly.

・ When memory is being allocated or freed in the case of a system call that gets or releases memory
(while a T-Kernel/SM system memory management function is called).

・ In a virtual memory system, when nonresident memory is accessed during system call processing.

When a task is in a transient state such as these, the behavior of a task termination (tk_ter_tsk) system call is not well-defined.

Moreover, task suspension (tk_sus_tsk) may cause a deadlock or other problems by stopping the task without clearing the
transient state.

Accordingly, as a rule, tk_ter_tsk and tk_sus_tsk should not be used in programs. These system calls should be used only in a
subsystem such as a debugger that is so close to OS layer that it can be thought of as part of the OS.

A task-independent portion and quasi-task portion are states while a handler is executing. The part of a handler that runs in a
task context is a quasi-task portion, and the part with a context independent of a task is a task-independent portion. An extended
SVC handler, which processes extended system calls defined by the user, is executed as a quasi-task portion when it is called
from tasks. An interrupt handler or time event handler triggered by an external interrupt is executed as a task-independent
portion. In a quasi-task portion, tasks have the same kinds of state transitions as ordinary tasks and system calls can be issued
that transitions tasks even to WAIT state.

A transient state, task-independent portion and quasi-task portion are together called a nontask portion. When ordinary task
programs are running, outside of these, this is “task portion running” state.

 ┌ Transient state
 │ OS running, etc.
 │
 │
 ├ Task-independent portion running
 │ Interrupt handler, etc
 │
 System state ┬ Nontask portion ┤
 │ running │
 │ └ Quasi-task portion running
 │ Extended SVC handler (OS extended part), etc.
 │
 │
 │
 └ Task portion running

[Figure 5] Classification of System States

2.4.2 Task-Independent Portion and Quasi-Task Portion

A feature of a task-independent portion (interrupt handlers, time event handlers, etc.) is that because the task that was running

immediately prior to entering a task-independent portion is unrelated and independent, the concept of “invoking task” does not

AMP T-Kernel Specification / Ver. 1.00.00

 26 TEF021-S001-01.00.00/en

exist. Accordingly, a system call that enters WAIT state, or the ones that implicitly specify the invoking task, cannot be called
from a task-independent portion. Moreover, the task-independent portion is executed in preference to all tasks. Therefore, there
is no task switching (dispatching) while the task-independent portion is running. If dispatching is necessary, it is delayed until
processing leaves the task-independent portion. This is called delayed dispatching.

A feature of the quasi-task portion is that it is invoked from the task executing prior to entering the quasi-task portion (the

requesting task), and the task state of the requesting task continues; moreover, it is even possible to go to WAIT state while in a
quasi-task portion. Accordingly, dispatching occurs in a quasi-task portion in the same way as in ordinary task. As a result, even
though the OS extended part and other quasi-task portion is a nontask portion, its execution does not necessarily have higher
priority at all times over the task portion. This is in contrast to interrupt handlers, which must always be given execution
precedence over ordinary tasks.

The example in Figure 6 describes the difference between a task-independent portion and quasi-task portion. In this example,

the tasks are Task A (low priority) and Task B (high priority) only.

 An interrupt occurs while Task A (low priority) is running, and in its interrupt handler (task-independent portion)
tk_wup_tsk is issued for Task B (high priority). In accordance with the principle of delayed dispatching, however,
dispatching does not yet occur at this point. Instead, after tk_wup_tsk execution, first the remaining part of the interrupt
handler is executed. Only when tk_ret_int is executed at the end of the interrupt handler, does dispatching occur, causing
Task B to run [Figure 6(a)].

 In the previous example, assume further that multiple interrupts are permitted, and interrupt handler Y is invoked while
interrupt handler X is executing. The principle of delayed dispatching is applied, and there is no dispatching to the return
of tk_ret_int from interrupt handler Y either. Dispatching occurs for the first time after the return of tk_ret_int from
interrupt handler X and task B is executed [Figure 6(b)].

 Assume that an extended system call is executed in Task A (low priority), and in its extended SVC handler (quasi-task
portion) tk_wup_tsk is issued for Task B (high priority). In this case, the principle of delayed dispatching is not applied,
so dispatching occurs in tk_wup_tsk processing. Task A goes to READY state in a quasi-task portion, and Task B goes to
RUN state. Task B is therefore executed before the rest of the extended SVC handler is completed. The rest of the
extended SVC handler is executed after dispatching occurs again and Task A goes to RUN state.

AMP T-Kernel Specification / Ver. 1.00.00

 27 TEF021-S001-01.00.00/en

[Figure 6(a)] Delayed Dispatching in an Interrupt Handler

[Figure 6(b)] Delayed Dispatching in Interrupt Handlers (Interrupt Nesting)

[Figure 6(c)] Dispatching in the Quasi-task Portion

Task A
(Low Priority)

Task B
(High Priority)

Interrupt Handler X
(Task-independent

Portion)

Interrupt

 tk_wup_tsk B

tk_ret_int

Interrupt Handler Y
(Task-independent

Portion)

tk_ret_int

Interrupt

Task A
(Low Priority)

Task B
(High Priority)

Extended SVC
Handler X (Quasi-task

Portion)

Interrupt

tk_wup_tsk B

Dispatching is not delayed.

tk_slp_tsk

Task A
(Low Priority)

Task B
(High Priority)

Interrupt Handler X
(Task-independent Portion)

Interrupt

tk_wup_tsk B

tk_ret_int

Dispatching is delayed until the end of

the task-independent portion.

AMP T-Kernel Specification / Ver. 1.00.00

 28 TEF021-S001-01.00.00/en

2.5 Objects

“Object” is the general term for resources handled by T-Kernel. Besides tasks, objects include memory pools, semaphores,

event flags, mailboxes and other synchronization and communication mechanisms, as well as time event handlers (cyclic
handlers and alarm handlers).

In AMP T-Kernel, domains are newly added to objects of the T-Kernel 1.00 Specification.
Table 2 shows the list of AMP T-Kernel objects.

 [Table 2] List of Kernel Objects in AMP T-Kernel

Each object is identified by an ID number. In the T-Kernel, the ID number cannot be specified by users and is automatically

allocated when an object is created. For this reason, the ID number of the object must be dynamically acquired during execution
of the program. In AMP T-Kernel, when each object is created, the object name can be specified. From this object name, the ID
number can be acquired by using the domain function.

Object names are character strings of eight characters or less. One character is 1 byte long and when the name length is less
than 8 bytes, 0s are used to fill up the remaining bytes. The usable characters are from a-z, A-Z, and 0-9 but AMP T-Kernel does
not check the character-code value.

Attributes can generally be specified when an object is created. Attributes determine differences in object behavior or the

initial object state. When TA_XXXXX is specified for an object, that object is called a “TA_XXXXX attribute object”. If there
is no particular attribute to be defined, TA_NULL (=0) is specified. Generally, there is no interface provided for reading
attributes after an object is created.

In the value of an object or handler, the lower bits indicate system attributes and the upper bits indicate
implementation-dependent attributes. This specification does not define the bit position at which the upper and lower distinction
is to be made. In principle, however, the system attribute portion is assigned from the least significant bit (LSB) toward the
most significant bit (MSB), and implementation-dependent attributes from the MSB toward the LSB. Bits not defining any
attribute must be cleared to 0.

In some cases, an object may contain extended information. Extended information is specified when the object is created.
Information passed in parameters when an object starts execution has no effect on T-Kernel behavior. Extended information has
no effect on T-Kernel behavior. Extended information can be read by invoking a system call to refer to the status of the object.

Classification Kernel Object
Task-Related Tasks

Synchronization/Communication
-Related

Semaphores
/Event Flags
/Mailboxes

Extended
Synchronization/Communication

-Related

Mutex
/Message Buffers
/Rendezvous Ports

Memory Pool-Related Fixed Length Memory
Pools

/Variable-size Memory
Pools

Time Management-Related Cyclic Handler
/Alarm Handler

Domain-Related Domains

AMP T-Kernel Specification / Ver. 1.00.00

 29 TEF021-S001-01.00.00/en

2.6 Memory

2.6.1 Address Space

Memory address space of T-Kernel 1.00 specification is distinguished as system space (shared space) or task space (user space). In

addition, there is system space between kernels in AMP T-Kernel.

 Logical addresses (examples)
 0x00000000

 0x3fffffff
 0x40000000

 0x7fffffff
 0x80000000

 0x800fffff

 [Figure 7] Address Space

Each address space is as follows.

(1) Task Space
Task space is accessible only from tasks belonging to this space. Multiple tasks can belong to one task space.

(2) System Space
System space is accessible from all tasks on the same AMP T-Kernel. Access from tasks on other AMP T-Kernel is not

possible. It is the same as system space in the T-Kernel 1.00 Specification.

(3) System Space between Kernels
System space between kernels can be accessed equally by all tasks on an AMP T-Kernel. System space between kernels is
space which is accessible from tasks on all AMT T-Kernels. Since whether or not there is system space between kernels
depends on the hardware, it is implementation-defined.

Due to depending on hardware limitations, the arrangement of spaces in the logical address space is implementation-defined.

However, as much as possible, they should be arranged from low addresses as in the following order.

(Low) Task space < System space < System space between kernels (High)

Task-independent portions such as interrupt handlers belong to the task space of tasks executing immediately prior to entering

the task-independent portion. This is the same as the task space of the currently running task returned with tk_get_tid. When
there is no task in RUN state, task space is indeterminate.

T-Kernel does not create or manage address space. Normally, the creation and management of address spaces, etc. is realized
by subsystems which manage the virtual memory, etc. of upper level systems such as Extensions.

All memory (system memory) where kernel can dynamically allocate is managed by the system memory management
function. Memory used within the kernel and task stacks, message buffers, and memory pools are also allocated here. The target
of system memory management is the memory of the system space between kernels and the system space. The memory
management of task space is not performed in the kernel.

The system space between kernels can be accessed from any AMP T-Kernel, but management of memory allocation, etc.,
must be performed by each AMP T-Kernel. That is, each AMP T-Kernel owns the memory for the system space between kernels.
Memory allocation of system space between kernels to each AMP T-Kernel is implementation-defined.

In a system with no MMU (or not using an MMU), it is assumed that task space does not exist. Likewise, task spaces do not
exist in systems where only a single logical address space exists for each processor even if MMU is used.

2.6.2 Resident Memory and Nonresident Memory

Task space

#1

Task space

#2

Task space

#n

System space

System space

between kernels

AMP T-Kernel Specification / Ver. 1.00.00

 30 TEF021-S001-01.00.00/en

Memory may be resident or nonresident. For nonresident memory, data is copied to memory from external storage such disks
by accessing that memory. Therefore complicated processing such as disk access by a device driver is required. In T-Kernel,
only declaring memory as resident and nonresident is performed and copying from disks, etc. by accessing nonresident memory
is not performed. Normally, copying from disks, etc. is realized by subsystems which manage the virtual memory, etc. of upper
level systems such as Extensions.

Accordingly, when nonresident memory is accessed, the device driver, etc. must be in operational state. Access is not
possible during dispatch disabled or interrupts disabled state, or while a task-independent portion is executing. Similarly, in
T-Kernel internal processing, it is necessary to avoid accessing nonresident memory in critical sections. One such case would
be when the memory address passed in a system call parameter points to nonresident memory. Whether or not system call
parameters are allowed to be in nonresident memory is an implementation-dependent matter.

The system space between kernels is always resident memory.
In a system that does not use virtual memory, system call parameters or the like pointing to nonresident memory can be

treated as being in resident memory by treating all memory spaces as resident.

AMP T-Kernel Specification / Ver. 1.00.00

 31 TEF021-S001-01.00.00/en

2.7 Protection Levels
Protection levels in T-Kernel are set to the task and memory area. The AMP T-Kernel protection level specification is the

same as that of the T-Kernel 1.00 Specification.
There are four protection levels from level 0 to level 3 with lower numbers indicating higher privilege. Tasks having

protection level N can access the memory area of protection level N or higher. For example, a task with protection level 2 can
access memory with protection levels 2 and 3.

A non-task portion (task-independent portion, quasi-task portion, etc.) runs at protection level 0. Only a task portion can run
at protection levels 1 to 3. A task portion can also run at protection level 0.

Changing from one protection level to another is accomplished by invoking a system call or extended SVC, or by interrupt or
CPU exception.

Usage of protection levels is defined as shown in Table 3.

[Table 3] Protection Level

Protection Level Use

0 OS, Subsystem, Device Drivers, etc.

1 (Reserved)

2 (Reserved)

3 Application Program Task

Reserved protection levels will be used by T-Kernel Extension, etc.

By using protection levels properly, access to memory area can be prohibited even in the shared memory area in system space.

As a result, destruction of the memory area content of the system by applications can be prevented. As a result, issues such as
destroying the memory area contents of the system by the application can be prevented, (for example).

The protection level of the memory area of system space between kernels is implementation-defined. However, it must be set
to protection level 3 at the very least.

The protection level has been implemented by using functions of hardware such as CPU and MMU. Thus, the realized

function of the protection level depends on hardware. For example, some MMUs support only two protection levels, privileged
and user levels. In such a case, protection levels 0 to 2 are assigned to hardware-supported privileged level, and protection level
3 to the user level, as if there were four hardware-supported levels. In this case, level 3 is allocated to the user mode and levels
0 to 2 are allocated to the privileged mode. In execution, memory protection is not performed among level 0 to level 2. In a
system with no MMU, all protection levels 0 to 3 are treated as identical.

The protection level of a task has the following functions and restrictions in addition to memory access restriction.

 Restrictions on system calls
System calls cannot be used in protection levels that have a lower privilege than the set protection level (refer to Section
3.2.3).

 Access protection restrictions to kernel objects
Access protection is ignored for tasks that have the same or higher privilege than the set protection level (Refer to
Section 2.8.4).

 Task exception restrictions
Task exceptions cannot be used for tasks at protection level 0.

[Additional Notes]

Although the protection level was described in the "Memory" chapter in the T-Kernel 1.00 Specification, related functions are
described in an independent chapter because it has the call restrictions on system calls and the restrictions on access protection
to the object, etc. in addition to access restrictions on memory.

AMP T-Kernel Specification / Ver. 1.00.00

 32 TEF021-S001-01.00.00/en

2.8 Domains

2.8.1 Concept of Domain
Domains show the logical location where kernel objects reside. Domains are functions introduced in MP T-Kernel and are not

in T-Kernel 1.00 Specification
We can specify a domain when we create kernel object. The created object belongs to the specified domain. Only domains

managed by AMP T-Kernel where the object is created can be specified. That is, AMP T-Kernel domains of other processors
cannot be specified. Kernel objects always belong to any one of the domains. If the domain is not specified when a kernel
object is created, the kernel domain to be described later is automatically selected as default domain.

Domains realize the following functions.

(1) Search function for the kernel object ID number
Kernel objects can search for ID numbers from the object name specified at creation and the domain to which the kernel

objects belong.

(2) Access protection function provision to kernel objects
Access protection on kernel objects is performed on operations from other objects according to the protection attribute

specified during creation.
For example, objects with ‘private’ attribute can be operated only by the tasks that belong to the same domain.

[Rationale for the Specification]
In AMP or the combination model of AMP and SMP, a framework that shows to which processor (kernel) the kernel object

belongs is necessary. Moreover, a function that acquires the ID number of kernel objects of other processors and the access
protection function for kernel objects between processors are also necessary. Domains are introduced as the framework to put
together these functions and to show where a kernel object resides.

The concept of a domain is effective for creating groups of kernel objects not only between processors or between kernels but
also in large software systems.

For example, in the T-Kernel 1.00 Specification, some methods such as sharing the ID number as a variable or performing
some kind of communication are necessary in order to pass the dynamically allocated ID number to other tasks. In large
software systems, it is preferable that there be a regular method for acquiring the ID number of target objects. Here, when the
search function for ID numbers by object name was discussed for draft specification, the duplication of names becomes a
problem. For individual objects, assigning unique names inside a large system is difficult and it nullifies the advantage of
assigning ID numbers automatically. Consequently, by using the domain as a name space to show where the name is valid,
assigning names freely becomes possible for each processor or units of software components and middleware that comprise an
application.

Based on these examinations, domain in MP T-Kernel was introduced as a general feature.

2.8.2 Kernel Domains and Hierarchical Structure of Domains
Domains are treated as kernel objects. Therefore, domains are created and deleted by system calls like other objects and are

identified by ID numbers.
However, kernel domain is an exception. Kernel domains are created during system initialization. In AMP T-Kernel, one

kernel domain exists in each AMP T-Kernel that comprises a system. A kernel domain is created when an AMP T-Kernel is
initialized and cannot be deleted.

Since a domain itself is an object, it belongs to one of the other domains. Therefore, domains form a hierarchical tree
structure as shown in Figure 8. However, kernel domains do not belong to other domains since they are created initially at the
same time. Consequently, a kernel domain is considered as belonging to itself. Kernel domains are also the roots in the
hierarchical structure of domains.

AMP T-Kernel Specification / Ver. 1.00.00

 33 TEF021-S001-01.00.00/en

[Figure 8] Hierarchical Structure of Domains (Example)

[Additional Notes]
One kernel domain exists for each AMP T-Kernel and runs on a one-to-one basis with each processor comprising an AMP

system. Therefore, kernel domains can also be thought of as abstracted processors. However, the location that the domain
shows is a logical location, and kernel domains only correspond to physical processors in AMP T-Kernels. For example, in SMP
T-Kernel, an entire system including multiple processors becomes one kernel domain.

2.8.3 ID Number Search Function
In T-Kernel, the object ID number is dynamically allocated when the object is created. Therefore, the ID number is not

statically known in a program. The domain provides a function to search for the ID number of the object which belongs to the
domain.

Object names can be specified when objects are created. Object names must be unique among objects of the same type inside
a domain to which the object belongs. For example, the same object name cannot be used for different semaphores belonging to
one domain.

For a given object, the ID number of the object can be searched by using the domain, to which the object belongs, and the
object name. Specifically, the ID number of the corresponding object can be acquired as a return value by passing the domain
ID and the object name as arguments to system call tk_dmi_XXX (the XXX part changes for each object type).

Omitting the object name specification is also possible during object creation. In this case, the object does not have an object
name. Objects without object names cannot use the ID number search function.

2.8.4 Domains and Access Protection Attributes
Access protection attributes can be specified when objects are created. Access protection provides restrictions on the

operations of an object according to the access protection attribute specified for the domain to which the object belongs and the
object itself, and realizes a protection function for an object.

The specifiable access protection attributes which can be specified for objects are the following types.

(1) Private Attribute
Private attribute objects can only be accessed from tasks and handlers that belong to the same domain as itself. Access

from objects belonging to other domains is not possible.

Kernel

Domain

Domain

1

Domain

2

Domain

3

Objects other than

domains

Objects other than

domains

Objects other than

domains

Objects other than

domains

AMP T-Kernel Specification / Ver. 1.00.00

 34 TEF021-S001-01.00.00/en

(2) Protected Attribute

Protected attribute objects can only be accessed from tasks and handlers that belong to domains including the domains to
which the object belongs and domain below in the domain hierarchy. Protected attribute objects that belong to kernel
domains are accessible from all objects in the AMP T-Kernel to which the objects belong.

(3) Public Attribute

Public attributes do not receive access restrictions according to the domain. Access is possible from all tasks and handlers
that include ones belonging to the AMP T-Kernels on other processors.

Objects that have not specified access protection attributes have public attributes by default.
Access protection attributes can only be specified when objects are created, and cannot be dynamically changed.
The domains have public attribute by definition, and access protection attributes cannot be specified.
When an object is created, objects that will not be accessible due to the protection attribute from the context that issues the

creation system calls cannot be created. For example, private attribute objects cannot be created in domains which are
different from the domain to which the invoking task belong. The case where access is possible due to the exceptions from the
protection levels to be described later is not included. Moreover, if access is possible, the creation of objects in other domains is
possible.

[Additional Notes]

The purposes of access protection are the following two points.
First, the internal portion of domains is concealed and objects are protected from erroneous access. In large applications,

programs are divided into components and modules, and it is important to conceal the internal portions of modules. The
creation of object groups that comprise an application is possible due to the introduction of domains. By adding the access
protection function to this group, concealing the internal portion of the domain, and dividing the program into modules
becomes possible. However, erroneous operations are what the access protection function catches. Protection from malicious
programs, or security function in other words, is not supported.

Second, implementation can be optimized by clarifying the range of access to objects. In particular, in AMP T-Kernel,
whether or not there is access from other AMP T-Kernels becomes important. Generally, objects accessed from within the same
AMP T-Kernel only are able to improve implementation efficiency more than objects with the possibility of being accessed
from the AMP T-Kernel of other processors.

[Rationale for the Specification]

The following are reasons why the purpose of access protection is only protection from erroneous operations and why the
security is not supported against malicious programs.

Although the function of security is important, the access protection of objects alone is inadequate for supporting security.
Even for many other functions, modification is necessary, and this could end up with harming compatibility with the T-Kernel
1.00 Specification (compatibility may leave security holes). Such a change goes beyond the study of the MP T-Kernel
Specification and disagrees with the design policy of MP T-Kernel which values compatibility with the T-Kernel 1.00
Specification. Therefore, security is handled outside the MP T-Kernel specifications.

2.8.5 Target and Restrictions of Access Protection
Access protection restricts access to object itself from others. It does not restrict access from object itself to others. For

example, the task with private attribute does not allow access from tasks belonging to other domains, but it can access
public attribute objects belonging to other domains.

That being said, the following are exceptions.

(1) Debugging Support Function
The debugger-support function provided by T-Kernel/DS acquires an internal state of an OS, traces the execution for the

debugger, and must access all objects.However, use by general applications and middleware is prohibited as a rule. Therefore,
the debugging support function is excluded from general access protection.

(2) Restrictions According to the Protection Level

Access protection can be restricted according to the protection level. For system calls from tasks and handlers at the specified
protection level or greater, access protection becomes null.

For example, when the access privilege is null for system calls from protection level 1 or smaller, access by a system calls
from protection levels 0 and 1 becomes possible regardless of the access protection attribute of the object.

Such privileged access is used to access all objects from AMP T-Kernel and interrupt handlers, and upper level systems

AMP T-Kernel Specification / Ver. 1.00.00

 35 TEF021-S001-01.00.00/en

(Extensions and debuggers, etc.).
When an extended SVC handler is called from the task, the extended SVC handler is executed at protection level 0 but

restrictions are maintained according to the protection level of the access protection of the task. That is, access to the object
from the quasi-task portion is restricted by the protection level of the task portion that called it.

The protection level that restricts access is set by the system configuration information management function.

[Additional Notes]

Handlers are executed as the non-task portion. Since the protection level of the non-task portion is 0, the access protection
becomes null. Consequently, handlers can access all objects.

AMP T-Kernel Specification / Ver. 1.00.00

 36 TEF021-S001-01.00.00/en

2.9 Interrupt and Exception

2.9.1 Interrupt Handling
Interrupts in the T-Kernel specification include both external interrupts from devices and interrupts due to CPU exceptions.

One interrupt handler can be defined for each interrupt number. Interrupt handlers can be designed for starting directly,
(basically without OS intervention), or for starting via a high-level language support routine.

The interrupt processing of AMP T-Kernel is the same as that of the T-Kernel 1.00 Specification. Interrupt processing is
executed by the processor where the interrupt occurs as a hardware function. Therefore, the interrupt handler runs on the
processor where the interrupt occurs.

Since the correspondence of external interrupts and processors largely depends on hardware and system design, it is not
specified in AMP T-Kernel and is implementation-defined.

2.9.2 Task Exception Handling
The T-Kernel specification defines task exception handling functions as dealing with exceptions. Note that exceptions other

than those in the CPU are treated as interrupts.
A task exception handling function invokes a system call requesting task exception handling. It interrupts execution of a task,

and runs a task exception handler. Execution of the task exception handler takes place in the same context as the interrupted
task. Upon return from the task exception handler, the interrupted processing continues.

One task exception handler per task can be registered with an application.

AMP T-Kernel Specification / Ver. 1.00.00

 37 TEF021-S001-01.00.00/en

2.10 Low-Level Operation Function

In MP T-Kernel, the function that operates hardware directly or at a level close to hardware is called low-level operation

function.
It is difficult to share low-level operation functions because hardware-dependency is high, and functions are different in each

system. However, providing a standard API specification is preferable from the standpoint that it improves software portability
and readability. Consequently, although the standard API specification is provided in MP T-Kernel, the details are
implementation-defined. Implementation that closely matches the standard specification as much as possible is requested but in
the event there are difficulties in implementing the specification due to circumstances unique to the system, not implementing
the API is permitted. Moreover, when a function that has not been implemented is called, if there is no problem with ignoring
the call, it is requested so that execution of the application continues instead of system’s returning an error in order to improve
the portability of software. However, if ignoring the request affects the operation, E_NOSPT error shall be returned.

The following functions of TK/SM are examples of the low-level operation functions.

・ Address Space Management Function
・ Interrupt Management Function
・ I/O Port Access Support Function
・ Inter-processor Management Function

[Additional Notes]
One of the roles of an OS is to abstract hardware and to conceal the details. However, the operation at a level close to

hardware is necessary in embedded systems. Consequently, in MP T-Kernel, the low-level operation functions are provided.
The low-level operation functions use API standard, but a main part of the functions are implementation-dependent.

Therefore, when software is ported, low-level functions of the particular implementation of MP T-Kernel must be checked
carefully.

Generally, applications that conduct low-level operations which need to be aware of system software and hardware such as
device drivers and subsystems should use standard functions. It is preferable not to use low-level functions from the standpoint
of portability of upper-level applications. If low-level functions are to be used, adequate attention needs to be paid.

[Rationale for the Specification]

In MP T-Kernel, when the cache management function and spin lock control function were added, a framework for low-level
operation functions was created in addition to the interrupt management function and the I/O port access support function of the
existing T-Kernel specification. Since these functions operate hardware directly or at a level close to hardware as described in
the text, even if the API is standardized, change is necessary prior to porting application to different hardware. The purpose of
the specification of low-level operation function is clarification and attracting attention.

AMP T-Kernel Specification / Ver. 1.00.00

 38 TEF021-S001-01.00.00/en

Chapter 3 Common AMP T-Kernel Specifications

3.1 Data Types

3.1.1 General Data Types

The general data types used in AMP T-Kernel are listed in the following. These data types are common with the T-Kernel

1.00 Specification.

 typedef char B; /* signed 8-bit integer */
 typedef short H; /* signed 16-bit integer */
 typedef int W; /* signed 32-bit integer */
 typedef unsigned char UB; /* unsigned 8-bit integer */
 typedef unsigned short UH; /* unsigned 16-bit integer */
 typedef unsigned int UW; /* unsigned 32-bit integer */

 typedef char VB; /* 8-bit data without a fixed type */
 typedef short VH; /* 16-bit data without a fixed type */
 typedef int VW; /* 32-bit data without a fixed type */
 typedef void *VP; /* pointer to data without a fixed type */

 typedef volatile B _B; /* volatile declaration */
 typedef volatile H _H;
 typedef volatile W _W;
 typedef volatile UB _UB;
 typedef volatile UH _UH;
 typedef volatile UW _UW;

 typedef int INT; /* signed integer of processor bit width */
 typedef unsigned int UINT; /* unsigned integer of processor bit width */

 typedef INT ID; /* ID in general */
 typedef INT MSEC; /* time (milliseconds) in general */

 typedef void (*FP)(); /* function address in general */
 typedef INT (*FUNCP)(); /* function address in general */

 #define LOCAL static /* local symbol definition */
 #define EXPORT /* global symbol definition */
 #define IMPORT extern /* global symbol reference */

 /*
 * Boolean values
 * TRUE = 1 is defined below, but any value other than 0 is TRUE.
 * A decision such as bool == TRUE must be avoided for this reason.
 * Instead use bool != FALSE.
 */
 typedef INT BOOL;
 #define TRUE 1 /* True */
 #define FALSE 0 /* False */

 /*
 * TRON character codes
 */
 typedef UH TC; /* TRON character code */
 #define TNULL ((TC)0) /* TRON code string termination */

AMP T-Kernel Specification / Ver. 1.00.00

 39 TEF021-S001-01.00.00/en

[Additional Notes]
VB, VH, and VW differ from B, H, and W in that the former mean only the bit width is known, not the contents of the data

type, whereas the latter clearly is used for integer type.
Processor bit width must be 32 bits or above. INT and UINT must therefore always have a width of 32 bits or more.
Parameters such as stksz, wupcnt, and message size that clearly do not take negative values are also in principle signed

integer (INT, W) data type. This is in keeping with the overall TRON rule that integers should be treated as signed numbers as
much as possible. As for the timeout (TMO tmout) parameter, its being a signed integer permits the use of TMO_FEVR (= -1)
having special meaning. Parameters with unsigned data type are those treated as bit patterns (object attribute, event flag, etc.).

3.1.2 Other Defined Data Types

The following names are used for other data types that appear frequently or have special meaning, in order to make the
parameter meaning clear.

 typedef INT FN; /* Function code */
 typedef INT RNO; /* Rendezvous number */
 typedef UINT ATR; /* Object/handler attributes */
 typedef INT ER; /* Error code */
 typedef INT PRI; /* Priority */
 typedef INT TMO; /* Timeout */
 typedef UINT RELTIM; /* Relative time */

 typedef struct systim { /* System time */
 W hi; /* High 32 bits */
 UW lo; /* Low 32 bits */
 } SYSTIM;

 /*
 * Common constants
 */
 #define NULL 0 /* Null pointer */
 #define TA_NULL 0 /* No special attributes indicated */
 #define TMO_POL 0 /* Polling */
 #define TMO_FEVR (-1) /* Eternal wait */

A data type that combines two or more data types is represented by its main data type. For example, the value returned by

tk_cre_tsk can be a task ID or error code, but since it is mainly a task ID, the data type is ID.

AMP T-Kernel Specification / Ver. 1.00.00

 40 TEF021-S001-01.00.00/en

3.2 System Calls

The basic specification such as the format for the system call specification of AMP T-Kernel conforms to the T-Kernel 1.00

Specification. There is only a minor difference between the T-Kernel 1.00 Specification and the content described in this
chapter. However, it must be noted that the timeout interval and the relative time specified within system calls as well as the
management of time such as system time are performed in each individual AMP T-Kernel.

3.2.1 System Call Format

T-Kernel adopts C as the standard high-level language, and standardizes interfaces for system call execution from C language

routines.
On the other hand, the interface for system call execution from assembly language is implementation-defined. Calling by

means of a C language interface is recommended even when an assembly language program is created. In this way, portability
is assured for programs written in assembly language even if the OS changes, as long as the CPU is the same.

The following common rules are established for system call interfaces.

・All system calls are defined as C functions.
・A function return code of 0 or a positive value indicates normal completion, while negative values are used for error codes.

All system call interfaces are provided as libraries. C language macros, in-line functions and in-line assembly code are not

used. The reason is that C macros and in-line functions can be used only from a C program. Moreover, since in-line functions
and in-line assembly are not standard C features, their functioning is in many cases compiler-dependent, diminishing
portability.

3.2.2 System Calls Possible from Task-Independent Portion and Dispatch Disabled State

Even when the following system calls are issued from the task-independent portion or dispatch disabled state, the system
calls must operate in the same way as if they were issued from the task portion (E_CTX must not be returned either).

 tk_sta_tsk Start task
 tk_wup_tsk Wakeup task
 tk_rel_wai Release wait
 tk_sus_tsk Suspend task
 tk_sig_sem Signal semaphore
 tk_set_flg Set event flag
 tk_rot_rdq Rotate task queue
 tk_get_tid Get task ID
 tk_sta_cyc Start cyclic handler
 tk_stp_cyc Stop cyclic handler
 tk_sta_alm Start alarm handler
 tk_stp_alm Stop alarm handler
 tk_ref_tsk Reference task status
 tk_ref_cyc Reference cyclic handler status
 tk_ref_alm Reference alarm handler status
 tk_get_prc Get executing Processor ID
 tk_ref_sys Reference system status
 tk_ret_int Return from interrupt handler

 Even when the following system calls are issued from the dispatch disabled state, the system calls must operate in the same
way as if they were issued from the dispatchable state (E_CTX must not be returned either).

 tk_fwd_por Forward rendezvous to Rendezvous port
 tk_rpl_rdv Reply Rendezvous

 Operations for when system calls other than the above are issued from the task-independent portion and the dispatch disabled
state are implementation-defined.

3.2.3 Restricting System Call Invocation

AMP T-Kernel Specification / Ver. 1.00.00

 41 TEF021-S001-01.00.00/en

The protection levels at which a system call is invokable can be restricted. In this case, if a system call is issued from a task

(task portion) running at lower than the specified protection level, the error code E_OACV is returned. Extended SVC calling
cannot be restricted.

If, for example, system call issuing from a protection level lower than 1 is prohibited, system calls cannot be invoked from
tasks running at protection levels 2 and 3. Tasks running at those levels will only be able to make extended SVC calls, and are
programmed using subsystem functions only.

This kind of restriction is used when T-Kernel is combined with T-Kernel Extension, to prevent tasks based on T-Kernel
Extension specification from directly accessing T-Kernel functions. It allows T-Kernel to be used as a micro-kernel.

The protection level restriction on system call invocation is set using the system configuration information management
functions (see 5.7).

3.2.4 Modifying a Parameter Packet

Some parameters passed to system calls use a packet format. The packet format parameters are of two kinds, either input
parameters passing information to a system call (e.g., T_CTSK) or output parameters returning information from a system call
(e.g., T_RTSK).

Additional information that is implementation-dependent may be added to a parameter packet. However, changing the data
types and the order of information defined in the standard specification or deleting any of this information is not allowed. When
implementation-dependent information is added, it must be placed after the standard defined information.

When implementation-dependent information is added to a packet of input information passed to a system call (T_CTSK,
etc.), if the system call is invoked while this additional information is not yet initialized (memory contents indeterminate), the
system call must still function normally.

Ordinarily a flag indicating that valid values are set in the additional information is defined in the implementation-dependent
area of attribute flag included in the standard specification. When that flag is set (1), the additional information is to be used;
and when the flag is not set (0), the additional information is not initialized (memory contents indeterminate) and the default
settings are to be used.

The reason for this specification is to ensure that a program developed within the scope of the standard specification will be
capable of running on an OS with implementation-dependent functional extensions, simply by recompiling.

3.2.5 Function Codes

Function codes are numbers assigned to each system call and used to identify the system call.
Although specific values for the function code of system calls are implementation-defined, different negative values are

allocated in each respective system call.
Positive values are allocated to the function code of extended SVC. For more details, refer to tk_def_ssy.

3.2.6 Error Codes

System call return codes are in principle to be signed integers. When an error occurs, a negative error code is returned; and if
processing is completed normally, E_OK (= 0) or a positive value is returned. The meaning of returned values in the case of
normal completion is specified separately for each system call. An exception to this principle is that there are some system calls
that do not return when called. A system call that does not return is declared in the C language API as having no return code
(that is, a void type function).

An error code consists of the main error code and sub error code. The low 16 bits of the error code are the sub error code, and
the remaining high bits are the main error code. T-Kernel/OS does not use a sub error code, the low bits are always 0.

The following macros are prepared for the conversion of error codes, main error codes, and sub error codes.

 #define MERCD(er) ((ER)(er) >> 16) /* Main error code */
 #define SERCD(er) ((H)(er)) /* Sub error code */
 #define ERCD(mer, ser) ((ER)(mer) << 16 | (ER)(UH)(ser))

Main error codes are classified into error classes based on the necessity of their detection, the circumstances in which they

occur and other factors. For more details on error codes and error classes, refer to 5.2 Error Code List.

AMP T-Kernel Specification / Ver. 1.00.00

 42 TEF021-S001-01.00.00/en

3.2.7 Timeout

A system call that may enter WAIT state has a timeout function. If processing is not completed by the time the specified
timeout interval has elapsed, the processing is canceled and the system call returns it.

In AMP T-Kernel, the timeout interval is measured by the AMP T-Kernel where the system call was issued.

A system call returns an E_TMOUT when it returns due to a timeout. In accordance with the principle that there should be no
side-effects from invoking a system call if that system call returns an error code, the invocation of a system call that times out
should in principle result in no change in system state. An exception to this is when the functioning of the system call is such
that it cannot return to its original state if processing is canceled. This is indicated in the system call description.

If the timeout interval is set to 0, a system call does not enter WAIT state even when a situation arises in which it would
ordinarily go to WAIT state. In other words, a system call with timeout set to 0 when it is invoked has no possibility of entering
WAIT state. Invoking a system call with timeout set to 0 is called polling; that is, a system call that performs polling has no
chance of entering WAIT state.

The descriptions of individual system calls, as a rule, describe the behavior when there is no timeout (in other words, when
an eternal wait occurs). Even if the system call description says that the system call “enters WAIT state” or “is put in WAIT
state”, if a timeout is set and that time interval elapses before processing is completed, the WAIT state is released and the
system call returns error code E_TMOUT. In the case of polling, the system call returns E_TMOUT without entering WAIT
state.

Timeout (TMO type) may be a positive integer, TMO_POL (= 0) for polling, or TMO_FEVR (=−1) for eternal wait. If a
timeout interval is set, the timeout processing must be guaranteed to take place after the specified interval from the system call
issuing has elapsed.

[Additional Notes]

Since a system call that performs polling does not enter WAIT state, there is no change in the precedence of the task calling
it.

In a general implementation, when the timeout is set to 1, timeout processing takes place on the second time tick after a
system call is invoked. Since a timeout of 0 cannot be specified (0 being allocated to TMO_POL), in this kind of
implementation timeout does not occur on the initial time tick after the system call is invoked.

3.2.8 Relative Time and System Time

When the time of an event occurrence is specified relative to another time, such as the time when a system call was invoked,
relative time (RELTIM type) is used. If relative time is used to specify event occurrence time, it is necessary to guarantee that
event processing will take place after the specified time has elapsed from the time base. Aside from event occurrence, relative
time (RELTIM type) is also used for cases such as the interval between two event occurrences. In such cases, the method of
interpreting the given relative time is specified for each case.

The time management of AMP T-Kernel is performed independently in each AMP T-Kernel of each processor. Since relative
time is measured by each AMP T-Kernel, difference of relative time between processors is implementation-dependent.

When time is specified as an absolute value, system time (SYSTIM type) is used. The T-Kernel specification provides a

function for setting system time, but even if the system time is changed using this function, there is no change in the real world
time (actual time) at which an event, which was specified using relative time, occurs. What changes is the system time at which
an event occurs that was specified using relative time.

Since system time is managed in each AMP T-Kernel of each processor, when the system time is set, a change is made only
to the AMP T-Kernel that executed the system call. Moreover, the margin of error for the interval between processors is
implementation-dependent.

 - SYSTIM System time
 Time resolution 1 millisecond, 64-bit signed integer

 typedef struct systim {

W hi; /* high 32 bits */
UW lo; /* low 32 bits */

 } SYSTIM;

 - RELTIM: Relative time

AMP T-Kernel Specification / Ver. 1.00.00

 43 TEF021-S001-01.00.00/en

 Time resolution 1 millisecond, 32-bit or longer unsigned integer (UW)

 typedef UW RELTIM;

 - TMO: Timeout time
 Time resolution 1 millisecond, 32-bit or longer signed integer (W)

 typedef W TMO;

 Eternal wait can be specified as TMO_FEVR = (−1).

[Additional Notes]

Timeout or other such processing must be guaranteed to occur after the time specified as RELTIM or TMO has elapsed. For
example, if the timer interrupt cycle is 1 ms and a timeout of 1 ms is specified, timeout occurs on the second timer interrupt. (At
the first timer interrupt, the elapsed time does not exceed 1 ms.)

[Rationale for the Specification]

The following are reasons why time management is performed independently in AMP T-Kernel of individual processor.
The time management of T-Kernel has been normally realized by measuring the operating time by using a periodic timer

interrupt. Absolute time is also calculated from this operating time. The mechanism of this timer interrupt largely depends on
the hardware and implementation. For example, when either a separate timer is allocated for each processor or one timer is
shared, there is a large difference. It is possible that the cycle time of the timer interrupt is different in each processor of some
systems. In accordance with the policy that AMP T-Kernel supports various AMP systems, time management is independent in
each AMP T-Kernel, and the synchronization and controlling the difference of time kept in each AMP are
implementation-dependent.

However, when file control, etc. is performed, time management must be conducted in the overall system. Therefore, time
management common in the overall system is realized with upper level systems such as T-Kernel Extension.

AMP T-Kernel Specification / Ver. 1.00.00

 44 TEF021-S001-01.00.00/en

3.3 High-Level Language Support Routines

In T-Kernel, high-level language support routine is provided so that even if a task or handler is written in a high-level

language, the kernel-related processing can be kept separate from the language environment-related processing. Whether or not
high-level language support routine is used is specified as either the object attribute or the handler attribute (TA_HLNG).
High-level language support routine in AMP T-Kernel is the same as that of the T-Kernel 1.00 Specification.

When TA_HLNG is not specified, a task or handler is started directly from the start address passed in a parameter to tk_cre_tsk
or tk_def_???; whereas when TA_HLNG is specified, first the high-level language startup processing routine (high-level
language support routine) is started, then from this routine an indirect jump is made to the task start address or handler address
passed in a parameter passed to tk_cre_tsk or tk_def_???. Viewed from the OS, the task start address or handler address is a
parameter pointing to the high-level language support routine. Separating the kernel processing from the language environment
processing in this way facilitates support for different language environments.

Use of high-level language support routine has the further advantage that when a task or handler is written as a C language
function, a system call for task exit or return from a handler can be executed automatically, simply by performing a function
return (return or “)”).

In a system that uses an MMU, however, whereas it is relatively easy to implement a high-level language support routine in
the case of an interrupt handler or the like that runs at the same protection level as the OS, it is more difficult in the case of a
task or task exception handler running at a different protection level from that of the OS. For this reason, when a high-level
language support routine is used for a task, there is no guarantee that the task will exit by a return from the function. In the case
of a task exception handler, the high-level language support routine is supplied as source code and is to be embedded in the user
program.

The internal working of a high-level language support routine is as illustrated in Figure 9.

 ┌─Handler as seen from T-Kernel─┐

 High-level language C function representing
 T-Kernel suport routine handler

 ：
 ：
 JSR, etc
 ：
 ：
 T-Kernel← TRAPA[tk_ret_int]
 return()

[Figure 9] Behavior of High-Level Language Support Routine

AMP T-Kernel Specification / Ver. 1.00.00

 45 TEF021-S001-01.00.00/en

Chapter 4 AMP T-Kernel/OS Functions
This chapter describes in detail the system calls provided by the T-Kernel Operating System (T-Kernel/OS).
The following functions exist in AMP T-Kernel/OS.

・ Task Management Functions
・ Task-Dependent Synchronization Functions
・ Task Exception Handling Functions
・ Synchronization and Communication Functions
・ Extended Synchronization and Communication Functions
・ Memory Pool Management Functions
・ Time Management Functions
・ Domain Management Functions
・ Interrupt Management Functions
・ System Management Functions
・ Subsystem Management Functions

AMP T-Kernel Specification / Ver. 1.00.00

 46 TEF021-S001-01.00.00/en

4.1 Task Management Functions

Task management functions manipulate or reference task states. Functions are provided for creating and deleting a task, for

task starting and exit, changing task priority, and referencing task states. A task is an object identified by an ID number called a
task ID. Task states and scheduling rules are explained in 2.3 Task States and Scheduling Rules.

For control of execution order, a task has a base priority and current priority. When simply “task priority” is talked about, this
means the current priority. The base priority of a task is initialized as the startup priority when a task is started. If the mutex
function is not used, the task current priority is always identical to its base priority. For this reason, the current priority
immediately after a task is started is the task startup priority. When the mutex function is used, the current priority is set as
discussed in "4.5.1 Mutex".

The kernel does not perform processing for freeing of resources acquired by a task (semaphore resources, and memory blocks,
etc.) upon task exit, other than mutex unlocking. Freeing of task resources is the responsibility of the application.

In AMP T-Kernel, new members are added to the structure passed as parameter to tk_cre_tsk so that the designation of the

domain and the access protection attribute to which the task belongs is possible when the task is created. Moreover, access
protection is applied to all system calls that specify the ID of other tasks.

In AMP T-Kernel, it is possible to start tasks on the AMP T-Kernels of other processors and refer to the information. The
system calls that can be used between processors are summarized in the table below. For more details, refer to explanation of
each system call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_cre_tsk Create Task × ×

tk_del_tsk Delete Task × ×

tk_sta_tsk Start Task ○ △

tk_ext_tsk Exit Task × ○

tk_exd_tsk Exit and Delete Task × ○

tk_ter_tsk Terminate Task × ×

tk_chg_pri Change Task Priority × ×

tk_chg_slt Change Task Slice-time × ×

tk_get_tsp Get Task Space × ×

tk_set_tsp Set Task Space × ×

tk_get_rid Get Task Resource ID × ×

tk_set_rid Set Task Resource ID × ×

tk_get_reg Get Task Registers × ×

tk_set_reg Set Task Registers × ×

tk_get_cpr Get Task Co-processor Registers × ×

tk_set_cpr Set Task Co-processor Registers × ×

tk_inf_tsk Get task statistics ○ △

tk_ref_tsk Reference Task Status ○ △

Different from T-Kernel 1.00 Specification ○:No ×:Yes △: Different only in that E_DACV is returned due to the access
protection

AMP T-Kernel Specification / Ver. 1.00.00

 47 TEF021-S001-01.00.00/en

Create Task tk_cre_tsk

tk_cre_tsk: Create Task

C Language Interface]

ID tskid = tk_cre_tsk (T_CTSK *pk_ctsk) ;

[Parameters]
T_CTSK* pk_ctsk Packet of Create Task Information about the task to be created

 pk_ctsk detail:
 VP exinf Extended Information
 ATR tskatr Task Attribute
 FP task Task Start Address
 PRI itskpri Initial Task Priority
 INT stksz Stack Size (bytes)
 INT sstksz SystemStackSize (bytes)
 VP stkptr UserStackPointer
 VP uatb Task space page table
 INT lsid LogicalSpaceID
 ID resid ResourceID
 ID domid DomainID
 UB oname[8] Object name
 ──(Other implementation-dependent parameters may be added beyond this point.))──

[Return Parameters]
 ID tskid Task ID
 or Error Code

[Error Codes]
 E_NOMEM Insufficient memory (memory for control block or user stack cannot be allocated)
 E_LIMIT Number of tasks exceeds the system limit
 E_RSATR Reserved attribute (tskatr is invalid or cannot be used), or the specified co-processor does not exist
 E_NOSPT Unsupported function (when TA_USERSTACK or TA_TASKSPACE is not supported)
 E_PAR Parameter error (pk_ctsk, task, stkptr, and itskpri are invalid)
 E_ID Invalid resource ID (resid, or domid is invalid)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_NOCOP The specified co-processor cannot be used (not installed in the currently running hardware, or
abnormal co-processor operation was detected).
 E_DOMAIN Domain of other AMP T-Kernel was specified
 E_ONAME The specified object name has already been used

[Description]

Creates a task, assigning it to a task ID number. This system call allocates a TCB (Task Control Block) for the created task
and initializes it based on itskpri, task, stksz and other parameters.

Tasks cannot be created on other processors in AMP T-Kernel. Only processor tasks executed by this call can be created.
After the task is created, it is initially in the DORMANT state.
Itskpri specifies the initial priority at the time the task is started. itskpri specifies the initial priority at the time the task is

started. Task priority values are specified from 1 to 140, with smaller numbers indicating higher priority.
exinf can be used freely by the user to insert miscellaneous information about the task. The information set here is passed to

the task as a startup parameter information and can be referred to by calling tk_ref_tsk. If a larger area is needed for indicating
user information, or if the information may need to be changed after the task is created, it can be done by allocating separate
memory for this purpose and putting the memory packet address in exinf. The OS pays no attention to the contents of exinf.

tskatr indicates system attributes in its low bits and implementation-dependent information in the high bits. The system
attributes part of tskatr is as follows.

 tskatr := (TA_ASM || TA_HLNG)

AMP T-Kernel Specification / Ver. 1.00.00

 48 TEF021-S001-01.00.00/en

 | [TA_SSTKSZ] | [TA_USERSTACK] | [TA_TASKSPACE] | [TA_RESID] | [TA_ONAME]
 | (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3)
 | [TA_DOMID] | [(TA_PROTECTED || TA_PRIVATE || TA_PUBLIC)]
 | [TA_COP0] | [TA_COP1] | [TA_COP2] | [TA_COP3] | [TA_FPU]

 TA_ASM Indicates that the task is written in assembly language
 TA_HLNG Indicates that the task is written in high-level language
 TA_SSTKSZ Specifies the system stack size
 TA_USERSTACK Points to the user stack
 TA_TASKSPACE Points to the task space
 TA_RESID Specifies the resource group to which the task belongs
 TA_ONAME Specifies the object name
 TA_RNGn Indicates that the task runs at protection level n
 TA_DOMID Specifies the domain to which the task belongs
 TA_PROTECTED Sets the access protection attribute to protect
 TA_PRIVATE Sets the access protection attribute to private
 TA_PUBLIC Sets the access protection attribute to public
 TA_COPn Specifies use of the nth co-processor (including floating point co-processor or DSP)
 TA_FPU Specifies use of a floating point co-processor (when a co-processor specified in TA COPn is

a general-purpose FPU particularly for floating point processing and not dependent on the
CPU)

The function for specifying implementation-dependent attributes can be used, for example, to specify that a task is subject to

debugging.

 #define TA_ASM 0x00000000 /* Assembly program */
 #define TA_HLNG 0x00000001 /* High-level language program */
 #define TA_SSTKSZ 0x00000002 /* System stack size */
 #define TA_USERSTACK 0x00000004 /* User stack pointer */
 #define TA_TASKSPACE 0x00000008 /* Task space pointer */
 #define TA_RESID 0x00000010 /* Task resource group */
 #define TA_ONAME 0x00000040 /* Object name */
 #define TA_RNG0 0x00000000 /* Run at protection level 0 */
 #define TA_RNG1 0x00000100 /* Run at protection level 1 */
 #define TA_RNG2 0x00000200 /* Run at protection level 2 */
 #define TA_RNG3 0x00000300 /* Run at protection level 3 */
 #define TA_COP0 0x00001000 /* Use ID=0 coprocessor */
 #define TA_COP1 0x00002000 /* Use ID=1 coprocessor */
 #define TA_COP2 0x00004000 /* Use ID=2 coprocessor */
 #define TA_COP3 0x00008000 /* Use ID=3 coprocessor */
 #define TA_DOMID 0x00010000 /* Specify the domain */
 #define TA_PRIVATE 0x00040000 /* Set the protection attribute to private */
 #define TA_PROTECTED 0x00080000 /* Set the protection attribute to protect */
 #define TA_PUBLIC 0x00000000 /* Set the protection attribute to public */

When TA_HLNG is specified, exception of the task does not pass control to the task start address directly, but by going
through a high-level language environment configuration program (high-level language support routine). The task takes the
following form in this case.

 void task(INT stacd, VP exinf)
 {
 /*
 processing
 */
 tk_ext_tsk();or tk_exd_tsk(); /* Exit task */
 }

The startup parameters passed to the task include the task startup code stacd specified in tk_sta_tsk, and the extended
information exinf specified in tk_cre_tsk.

AMP T-Kernel Specification / Ver. 1.00.00

 49 TEF021-S001-01.00.00/en

The task cannot (must not) be terminated by a simple return from the function.
The form of the task when the TA_ASM attribute is specified is implementation-dependent, but stacd and exinf must be

passed as startup parameters.

The task runs at the protection level specified in the TA_RNGn attribute. When a system call or extended SVC is called, the
protection level goes to 0, then goes back to its original level upon return from the system call or extended SVC.

Each task has two stack areas, a system stack and user stack. The user stack is used at the protection level specified in
TA_RNGn, while the system stack is used at protection level 0. When the calling of a system call or extended SVC causes the
protection level to change, the stack is also switched. Note that a task running at TA_RNG0 does not switch protection levels,
so there is no stack switching either. When TA_RNG0 is specified, the combined total of the user stack size and system stack
size is the size of one stack, employed as both a user stack and system stack.

When TA_SSTKSZ is specified, sstksz is valid. If TA_SSTKSZ is not specified, sstksz is ignored and the default size is used.

When TA_USERSTACK is specified, stkptr is valid. In this case, a user stack is not provided by the OS, but must be
allocated by the caller. stksz must be set to 0. If TA_USERSTACK is not specified, stkptr is ignored. Note that if TA_RNG0 is
set, TA_USERSTACK cannot be specified.

When TA_TASKSPACE is specified, uatb and lsid are valid and are set as task space. If TA_TASKSPACE is not specified,
uatb and lsid are ignored and task space is undefined. During the time task space is undefined, only system space can be
accessed; access to task (user) space is not allowed. Whether or not TA_TASKSPACE was specified, task space can be changed
after a task is created. Note that when task space is changed, in no case does it revert to the task space set at task creation, even
when the task returns to DORMANT state, but the task always uses the most recently set task space.

When TA_RESID is specified, resid is valid and specifies the resource group to which the task belongs. If TA_RESID is not
specified, resid is ignored and the task belongs to the system resource group. Note that if the resource group of a task is changed,
in no case does it revert to the resource group set at task creation, even when the task returns to DORMANT state, but the task
always retains the most recently set resource group (see tk_cre_res).

When TA_DOMID is specified, domid is valid, and the domain of domid is set as the domain to which the task belongs.

When TA_DOMID is not specified, domid is ignored and the task belongs to the domain to which the kernel domain belongs.
The domain ID specifiable by domid is a kernel domain of the AMP T-Kernel where this system call is executed and is a lower
level domain in the hierarchy. When the domains of other AMP T-Kernels are set, E_DOMAIN is returned.

TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC specify the access protection attribute of a task. When either of the
access protection attributes is not specified, access protection is set to the public attribute. Tasks that invoking tasks cannot
access due to access protection with the combination of the domain to which the task belongs and the access protection attribute,
cannot be created. When the corresponding specification is done, E_PAR is returned.

When TA_ONAME is specified, oname is valid and is set as the object name. When TA_ONAME is not specified, the object
name is not set. The object name must be unique inside the domain to which the task belongs. When an object name that has
already been used by other tasks is specified, E_ONAME is returned. When the length of the character string specified for
oname is 0 (initial character is termination 0), the object name is not set regardless of the TA_ONAME specification.

[Additional Notes]

A task runs either at the protection level set in TA_RNGn or at protection level 0. For example, a task for which TA_RNG3 is
specified in no case runs at protection level 1 or 2.

In a system with a separate interrupt stack, interrupt handlers also use the system stack. An interrupt handler runs at
protection level 0.

The system stack default size is decided taking into account the amount taken up by system call execution and, in a system
with separate interrupt stack, the amount used by interrupt handlers.

The system stack is resident memory in system space used at protection level 0. If TA_USERSTACK is not specified, the
user stack is resident memory in system space used at the protection level specified in the TA_RNGn attribute. If
TA_USERSTACK is specified, the user stack memory attributes are as specified by the caller of this system call. Task space
may be made nonresident memory.

The definition of TA_COPn is dependent on the CPU and other hardware and is not portable. TA_FPU is provided as a
portable notation method only for the definition in TA_COPn of a floating point processor. If, for example, the floating point
processor is TA_COP0, then TA_FPU = TA_COP0. If there is no particular need to specify the use of a co-processor for
floating point operations, TA_FPU = 0 is set.

Even in a system without an MMU, for the sake of portability all attributes including TA_RNGn must be accepted. It is

AMP T-Kernel Specification / Ver. 1.00.00

 50 TEF021-S001-01.00.00/en

possible, for example, to handle all TA_RNGn as equivalent to TA_RNG0, but error must not be returned. In the case of
TA_USERSTACK and TA_TASKSPACE, however, E_NOSPT may be returned, since there are many cases where these cannot
be supported without an MMU.

[Items Concerning AMP T-Kernel]

Since resource managements such as creating and deleting objects, etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors. .

Differences from the T-Kernel 1.00 Specification are as follows.

 TA_DOMID, TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC are added to the task attribute, and the domain to
which the task belongs and the access protection attribute can be specified.

 The DS object name was abolished and replaced by the establishment of the object name. While the former was a name
for debugging, the latter is a name which can be used in general for searching domain IDs, etc. The object name cannot
use the existing same name with the same type of object in the same domain.

AMP T-Kernel Specification / Ver. 1.00.00

 51 TEF021-S001-01.00.00/en

Delete Task tk_del_tsk

 tk_del_tsk: Delete Task

[C Language Interface]

ER ercd = tk_del_tsk (ID tskid) ;

[Parameters]
 ID tskid Task ID

[Return Parameters]
 ER ercd Error Code

[Error Codes]
 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invalid object state (the task is not in DORMANT state)
 E_DOMAIN Task for other AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]

Deletes the task specified in tskid.

This system call changes the state of the task specified in tskid from DORMANT state to NONEXISTENT state (no longer
exists in the system), releasing the TCB and stack area that were assigned to the task. The task ID number is also released.
When this system call is issued for a task not in DORMANT state, error code E_OBJ is returned.
This system call cannot specify the invoking task. If the invoking task is specified, error code E_OBJ is returned because the
invoking task is not in DORMANT state. The invoking task is deleted not by this system call but by the tk_exd_tsk system call.
 This system call cannot specify the tasks of other AMP T-Kernels. Only tasks on the same AMP T-Kernel can be deleted.
 Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting object is conducted in individual AMP T-Kernels, this call cannot
be used between processors.

Differences from the T-Kernel 1.00 Specification are as follows.

・ When the task of other AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 52 TEF021-S001-01.00.00/en

Start Task tk_sta_tsk

 tk_sta_tsk: Start Task

[C Language Interface]
 ER ercd = tk_sta_tsk (ID tskid, INT stacd) ;

[Parameters]
 ID tskid Task ID
 INT stacd Task start code

[Return Parameters]
 ER ercd Error Code

[Error Codes]
 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invalid object state (the task is not in DORMANT state)
 E_DACV Access protection violation

[Description]
 Starts the task specified in tskid. This system call changes the state of the specified task from DORMANT state to READY
state.
 Parameters to be passed to the task when it starts can be set in stacd. These parameters can be referred to from the started task,
enabling use of this feature for simple message passing.
 The task priority when it starts is the task startup priority (itskpri) specified when the started task was created.
 Start requests by this system call are not queued. If this system call is issued while the target task is in a state other than
DORMANT state, the system call is ignored and error code E_OBJ is returned to the calling task.
 This system call can specify tasks for other AMP T-Kernels.
 Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (Between AMP T-Kernel).
Differences from the T-Kernel 1.00 Specification are as follows.

・ When the specified task cannot be accessed due to the access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 53 TEF021-S001-01.00.00/en

Exit Task tk_ext_tsk

 tk_ext_tsk: Exit Task

[C Language Interface]
 void tk_ext_tsk (void) ;

[Parameters]
 None

[Return Parameters]
 * Does not return to the context issuing the system call.

[Error Codes]
 * The following error can be detected; but since this system call does not return to the context issuing the system call, even

when an error is detected, an error code cannot be passed directly in a system call return parameter. The behavior in case
an error occurs is implementation-dependent.

 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]
 Exits the invoking task normally and changes its state to DORMANT state.

[Additional Notes]

 When a task terminates by tk_ext_tsk, the resources acquired by the task up to that time (memory blocks, semaphores, etc.)
are not automatically freed. The user is responsible for releasing such resources before the task exits.
 tk_ext_tsk is a system call that does not return to the context from which it was called. Even if an error code is returned when
an error of some kind is detected, normally no error checking is performed in the context from which the system call was
invoked, leaving the possibility that the program will hang. For this reason, these system calls do not return even if an error is
detected.
 As a rule, the task priority and other information included in the TCB is reset when the task returns to DORMANT state. If,
for example, the task priority is changed by tk_chg_pri and later terminated by tk_ext_tsk, the task priority reverts to the startup
priority (itskpri) specified when the task was started. It does not keep the task priority in effect at the time tk_ext_tsk was
executed.
 System calls that do not return to the calling context are those named tk_ret_??? or tk_ext_??? (tk_exd_???).

[Items Concerning AMP T-Kernel]
There is no difference from the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 54 TEF021-S001-01.00.00/en

Exit and Delete Task tk_exd_tsk

 tk_exd_tsk: Exit and Delete Task

[C Language Interface]
 void tk_exd_tsk (void) ;

[Parameters]

None.

[Return Parameters]

* Does not return to the context issuing the system call.

[Error Codes]

* The following error can be detected; but since this system call does not return to the context issuing the system call, even
when an error is detected, an error code cannot be passed directly in a system call return parameter. The behavior in case an
error occurs is implementation-dependent.

E_CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]
 Terminates the invoking task normally and also deletes it. This system call changes the state of the invoking task to
NON-EXISTENT state (no longer exists in the system).

[Additional Notes]
 When a task terminates by tk_exd_tsk, the resources acquired by the task up to that time (memory blocks, and semaphores,
etc.) are not automatically freed. The user is responsible for releasing such resources before the task exits.
 tk_exd_tsk is a system call that does not return to the context from which it was called. Even if an error code is returned when
an error of some kind is detected, normally no error checking is performed in the context from which the system call is invoked,
leaving the possibility that the program will hang. For this reason, these system calls do not return even if an error is detected.

[Items Concerning AMP T-Kernel]
 There is no difference from the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 55 TEF021-S001-01.00.00/en

Terminate Task tk_ter_tsk

 tk_ter_tsk: Terminate Task

[C Language Interface]
 ER ercd = tk_ter_tsk (ID tskid) ;

[Parameters]

ID tskid Task ID Task ID

[Error Codes]

ER ercd Error Code Error code

[Error Codes]

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (the target task is in DORMANT state or is the invoking task)

 E_DOMAIN Task for another AMP T-Kernel domain was specified
E_DACV Access protection violation

[Description]
 Forcibly terminates the task specified in tskid. This system call changes the state of the target task specified in tskid to
DORMANT state.

 Even if the target task was in a wait state (including SUSPEND state), the wait state is released and the task is terminated. If
the target task was in some kind of queue (semaphore wait, etc.), executing tk_ter_tsk results in its removal from the queue.
 This system call cannot specify the invoking task. If the invoking task is specified, error code E_OBJ is returned.
 This system call cannot specify the tasks of other AMP T-Kernels. Only tasks on the same AMP T-Kernel can be terminated.
Additionally, access protection is applied.

 The relationships between target task states and the results of executing tk_ter_tsk are summarized in Table 4.

[Table 4] Target Task State and Execution Result (tk_ter_tsk)
 ──
 Target Task State tk_ter_tsk ercd Parameter Processing

──
 RUN or READY state E_OK Forced termination
 (except for invoking task)
 RUN state (invoking task) E_OBJ No operation
 WAIT state E_OK Forced termination
 (WAITING, SUSPENDED, WAITING-SUSPENDED)
 DORMANT state E_OBJ No operation
 NON-EXISTENT state E_NOEXS No operation

──

[Additional Notes]

 When a task is terminated by tk_ter_tsk, the resources acquired by the task up to that time (memory blocks, and
semaphores, etc.) are not automatically released. The user is responsible for releasing such resources before the task is
terminated.
 As a rule, the task priority and other information included in the TCB are reset when the task returns to DORMANT state. If,
for example, the task priority is changed by tk_chg_pri and later terminated by tk_ter_tsk, the task priority reverts to the startup
priority (itskpri) specified when the task was started. It does not keep the task priority in effect at the time tk_ter_tsk was
executed.

 Forcible termination of another task is intended for use only by a debugger or a few other tasks closely elated to the OS. As a
rule, this system call is not to be used by ordinary applications or middleware, for the following reason.

 Forced termination occurs irrespective of the running state of the target task. If, for example, a task were forcibly terminated
while the task was calling a middleware function, the task would terminate right while the middleware was executing. If such a

AMP T-Kernel Specification / Ver. 1.00.00

 56 TEF021-S001-01.00.00/en

situation were allowed, normal operation of the middleware could not be guaranteed.
 This is an example of how task termination cannot be allowed when the task status (what it is executing) is unknown.
Ordinary applications therefore must not use the forcible termination function.

[Items Concerning AMP T-Kernel]

This call is a function that is intended for use in system software, and cannot be used between processors.
Differences from the T-Kernel 1.00 Specification are as follows.

・ When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 57 TEF021-S001-01.00.00/en

Change Task Priority tk_chg_pri

 tk_chg_pri: Change Task Priority

[C Language Interface]
 ER ercd = tk_chg_pri (ID tskid, PRI tskpri) ;

[Parameters]
 ID tskid Task ID Task ID
 PRI tskpri Task Priority Task priority

[Return Parameters]
 ER ercd Error Code Error code

[Error Codes]
 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_PAR Parameter error (tskpri is invalid or cannot be used)
 E_ILUSE Illegal use (upper priority limit exceeded)
 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Changes the base priority of the task specified in tskid to the value specified in tskpri. The current priority of the task also
changes as a result.
 Task priority values are specified from 1 to 140 with the smaller numbers indicating higher priority.
 When TSK_SELF (= 0) is specified in tskid, the invoking task is the target task. Note, however, that when tskid =
TSK_SELF is specified in a system call issued from a task-independent portion, error code E_ID is returned. When TPRI_INI
(= 0) is specified as tskpri, the target task base priority is changed to the initial priority when the task was started (itskpri).
 A priority changed by this system call remains valid until the task is terminated. When the task reverts to DORMANT state,
the task priority before its exit is discarded, with the task again assigned to the initial priority when the task was started (itskpri).
A priority changed while the task is already in DORMANT state, however, becomes valid, so that the task has the new priority
as its initial priority the next time it is started.
 If as a result of this system call execution the target task current priority matches the base priority (this condition is always
met when the mutex function is not used), processing is as follows.
 If the target task is in a run state, the task precedence changes according to its priority. The target task has the lowest
precedence among tasks of the same priority after the change.
 If the target task is in some kind of priority-based queue, the order in that queue changes in accordance with the new task
priority. Among tasks of the same priority after the change, the target task is queued at the end.
 If the target task has locked a TA_CEILING attribute mutex or is waiting for a lock, and the base priority specified in tskpri
is higher than any of the ceiling priorities, error code E_ILUSE is returned.
 This system call cannot specify the tasks of other AMP T-Kernels. Only tasks on the same AMP T-Kernel can be specified.
Additionally, access protection is applied.

[Additional Notes]
 In some cases, when this system call results in a change in the queued order of the target task in a task priority-based queue,
it may be necessary to release the wait state of another task waiting in that queue (in a message buffer send queue, or in a queue
waiting to acquire a variable-size memory pool).
 In some cases, when this system call results in a base priority change while the target task is waiting for a TA_INHERIT
attribute mutex lock, dynamic priority inheritance processing may be necessary.
 When a mutex function is not used and the system call is issued specifying the invoking task as the target task, setting the
new priority to the base priority of the invoking task, the order of execution of the invoking task becomes the lowest among
tasks of the same priority. This system call can therefore be used to relinquish execution privilege.

[Items Concerning AMP T-Kernel]

The task priority is a value which has the meaning of being managed in individual AMP T-Kernel. Therefore, this call cannot

AMP T-Kernel Specification / Ver. 1.00.00

 58 TEF021-S001-01.00.00/en

be used between processors.
Differences from the T-Kernel 1.00 Specification are as follows.

• When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
• When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 59 TEF021-S001-01.00.00/en

Change Task Slice-time tk_chg_slt

 tk_chg_slt:Change Task Slicetime

[C Language Interface]
 ER ercd = tk_chg_slt (ID tskid, RELTIM slicetime) ;

[Parameters]
 ID tskid TaskID Task ID
 RELTIM slicetime Time slice (ms)

[Return Parameters]
 ER ercd ErrorCode Error code

[Error Codes]
 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_PAR Parameter error (slicetime is invalid)
 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Changes the time slice of the task specified in tskid to the value specified in slicetime.
 The time slice function is used for round robin task scheduling. When a task runs continuously for the length of time
specified in slicetime or longer, its precedence is switched to the lowest among tasks of the same priority, automatically
yielding the execution privilege to the next task.
 Setting slicetime = 0 indicates unlimited time, and the task does not automatically yield execution privilege. When a task is
created, by default it is set to slicetime = 0.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when a system call is issued from
a task-independent portion and tskid = TSK_SELF = 0 is specified, error code E_ID is returned.
 The time slice as changed by this system call remains valid until the task is terminated. When the task reverts to DORMANT
state, the time slice before termination is discarded, and the value at the time of task creation (slicetime = 0) is assigned. A time
slice changed while the task is already in DORMANT state, however, becomes valid, being applied the next time the task is
started.
 This system call cannot specify the tasks of other AMP T-Kernels. Only tasks on the same AMP T-Kernel can change the
slice-time. Additionally, access protection is applied.

[Additional Notes]
 The time while execution privilege is preempted by a higher-priority task does not count in the continuous run time;
moreover, even if execution privilege is preempted by a higher-priority task, the run time is not treated as discontinuous. In
other words, the time while execution privilege is preempted by a higher-priority task is ignored for the purposes of counting
run time.
 If the specified task is the only one running at its priority, the time slice is effectively meaningless and the task runs
continuously.
 If a task of slicetime = 0 is included in tasks of the same priority, as soon as that task obtains execution right, round robin
scheduling is stopped.
 The method of counting run time is implementation-dependent, but does not need to be especially precise. In fact,
applications should not expect very high precision.

[Items Concerning AMP T-Kernel]

The task slice-time is a value which has the meaning of being managed in individual AMP T-Kernel. Therefore, this call
cannot be used between processors.

Differences from the T-Kernel 1.00 Specification are as follows.

• When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
• When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 60 TEF021-S001-01.00.00/en

Get Task Space tk_get_tsp

 tk_get_tsp:Get Task Space

[C Language Interface]
 ER ercd = tk_get_tsp (ID tskid, T_TSKSPC *pk_tskspc) ;

[Parameters]
 ID tskid Task ID

[Return Parameters]
 T_TSKSPC tskspc Task space information
 ER ercd Error code

 typedef struct t_tskspc {
 VP uatb; Task space page table address
 INT lsid; Task space ID (logical space ID)
 } T_TSKSPC;

[Error Codes]
 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_PAR Parameter error (the return parameter packet address cannot be used)
 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Gets the current task space information for the task specified in tskid.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when a system call is issued from
a task-independent portion and tskid = TSK_SELF = 0 is specified, error code E_ID is returned.
 This system call cannot specify the tasks of other AMP T-Kernels. Only tasks on the same AMP T-Kernel can reference the
task space information. Additionally, access protection is applied.

[Additional Notes]
 The accuracy of T_TSKSPC (uatb, lsid) is implementation-dependent, but the above definitions should be followed to the
extent possible.

[Items Concerning AMP T-Kernel]

The value of task space (T_TSKSPC contents) is a value which has the meaning of being managed in individual AMP
T-Kernel. Therefore, this call cannot be used between processors.

Differences with the T-Kernel 1.00 Specification are as follows.

• When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
• When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 61 TEF021-S001-01.00.00/en

Set Task Space tk_set_tsp

 tk_set_tsp:Set Task Space

[C Language Interface]
 ER ercd = tk_set_tsp (ID tskid, T_TSKSPC *pk_tskspc) ;

[Parameters]
 ID tskid Task ID
 T_TSKSPC tskspc Task space

 typedef struct t_tskspc {

VP uatb; Task space page table address
INT lsid; Task space ID (logical space ID)

 } T_TSKSPC;

[Return Parameters]
 ER ercd Error code

[Error Codes]
 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_PAR Parameter error (pk_tskspc is invalid or cannot be used)
 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Sets the task space of the task specified in tskid.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when a system call is issued from
a task-independent portion and tskid = TSK_SELF = 0 is specified, error code E_ID is returned.
 The OS is not aware of the effects of task space changes. If, for example, a task space is changed while a task is using it for
its execution, the task may hang or encounter other problems. The caller is responsible for avoiding such problems.
 This system call cannot specify the tasks of other AMP T-Kernels. Only tasks on the same AMP T-Kernel can specify the task
space. Additionally, access protection is applied.

[Additional Notes]
 The accuracy of T_TSKSPC (uatb, lsid) is implementation-dependent, but the above definitions should be followed to the
extent possible.

[Items Concerning AMP T-Kernel]

The value of task space (T_TSKSPC contents) is a value which has the meaning of being managed in individual AMP
T-Kernel. Therefore, this call cannot be used between processors.

Differences with the T-Kernel 1.00 Specification are as follows.

• When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
• When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 62 TEF021-S001-01.00.00/en

Get Task Resource ID tk_get_rid

 tk_get_rid:Get Task Resource ID

[C Language Interface]
 ID resid = tk_get_rid (ID tskid) ;

[Parameters]
 ID tskid Task ID

[Return Parameters]
 ID resid Resource ID
 or Error Code

[Error Codes]
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Task does not belong to a resource group
 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Returns the resource group to which the task specified in tskid currently belongs.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when a system call is issued from
a task-independent portion and tskid = TSK_SELF = 0 is specified, error code E_ID is returned.
 This system call cannot specify the tasks of other AMP T-Kernels. Only tasks on the same AMP T-Kernel can reference the
resource group. Additionally, access protection is applied.

[Additional Notes]
 If a resource group is deleted, this system call may return the Resource ID of the deleted resource group. Whether or not an
error code (E_OBJ) is returned is implementation-dependent. (See tk_cre_res, tk_del_res.)

[Items Concerning AMP T-Kernel]

The resource group is managed in individual AMP T-Kernel. Therefore, this call cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

• When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
• When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 63 TEF021-S001-01.00.00/en

Set Task Resource ID tk_set_rid

 tk_set_rid:Set Task Resource ID

[C Language Interface]
 ID oldid = tk_set_rid (ID tskid, ID resid) ;

[Parameters]
 ID tskid Task ID
 ID resid New resource ID

[Return Parameters]
 ID oldid Old resource ID

or Error Code

[Error Codes]
 E_ID Invalid ID number (tskid or resid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid or resid does not exist)
 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Changes the current resource group of the task specified in tskid to the resource group specified in resid. The Resource ID of
the old resource group before the change is passed in a return parameter.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when a system call is issued from
a task-independent portion and tskid = TSK_SELF = 0 is specified, error code E_ID is returned.
 This system call cannot specify the tasks of other AMP T-Kernels. Only tasks on the same AMP T-Kernel can specify the
resource group.
 Access protection is applied to this system call.

[Additional Notes]
 In some cases error is not returned even if resid was previously deleted. Whether or not an error code (E_NOEXS) is
returned is implementation-dependent. In principle it is the responsibility of the caller not to specify a deleted resource group.

[Items Concerning AMP T-Kernel]

The resource group is managed in individual AMP T-Kernel. Therefore, this call cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.

・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 64 TEF021-S001-01.00.00/en

Get Task Register tk_get_reg

 tk_get_reg: Get Task Registers

[C Language Interface]

 ER ercd = tk_get_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs) ;

[Parameters]
 ID tskid Task ID Task ID
 T_REGS pk_regs Packet of Registers General registers
 T_EIT pk_eit Packet of EIT Registers saved when EIT occurs
 T_CREGS pk_cregs Packet of Control Registers Control registers
[Return Palrameters]
 ER ercd Error Code Error code

 The contents of T_REGS, T_EIT, and T_CREGS are defined for each CPU and implementation

[Error Codes]
 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invalid object state (called for the invoking task)

E_CTX Context error (called from task-independent portion)
 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Gets the current register contents of the task specified in tskid.
 If NULL is set in pk_regs, pk_eit, or pk_cregs, the corresponding registers are not referenced.
 The referenced register values are not necessarily the values at the time the task portion was executing.
 If this system call is issued for the invoking task, error code E_OBJ is returned.
 This system call cannot specify the tasks of other AMP T-Kernels. Only tasks on the same AMP T-Kernel can acquire the task
register.
 Access protection is applied to this system call.

[Additional Notes]
 In principle, all registers in the task context can be referenced. This includes not only physical CPU registers but also those
treated by the OS as virtual registers.

[Items Concerning AMP T-Kernel]

The task register has the meaning of in an individual processor. Therefore, this call cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 65 TEF021-S001-01.00.00/en

Set Task Registers tk_set_reg

 tk_set_reg: Set Task Registers

[C Language Interface]
 ER ercd = tk_set_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs) ;

[Parameters]
 ID tskid Task ID Task ID
 T_REGS pk_regs Packet of Registers General registers
 T_EIT pk_eit Packet of EIT Registers saved when EIT occurs
 T_CREGS pk_cregs Packet of Control Registers Control registers

 The contents of T_REGS, T_EIT, and T_CREGS are defined for each CPU and implementation.

[Return Parameters]
 ER ercd Error Code Error code

[Error Codes]
 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invalid object state (called for the invoking task)
 E_CTX Context error (called from task-independent portion)
 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Sets the current register contents of the task specified in tskid.
 If NULL is set in pk_regs, pk_eit, or pk_cregs, the corresponding registers are not set.
 The set register values are not necessarily the values while the task portion is executing. The OS is not aware of the effects of
register value changes
 If this system call is issued for the invoking task, error code E_OBJ is returned.
 This system call cannot specify the tasks of other AMP T-Kernels. Only tasks on the same AMP T-Kernel can set the task
register.
 Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

The task register has the meaning of in an individual processor. Therefore, this call cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 66 TEF021-S001-01.00.00/en

Get Task Co-processor Registers tk_get_cpr

 tk_get_cpr:Get Task Coprocessor Registers

[C Language Interface]

 ER ercd = tk_get_cpr (ID tskid, INT copno, T_COPREGS *pk_copregs) ;

[Parameters]

 ID tskid Task ID
 INT copno Co-processor number (0 to 3)

[Return Parameters]

 T_COPREGS pk_copregs Co-processor registers
 ER ercd Error code

 typedef union {

T_COP0REG cop0; Co-processor number 0 register
T_COP1REG cop1; Co-processor number 1 register
T_COP2REG cop2; Co-processor number 2 register
T_COP3REG cop3; Co-processor number 3 register

 } T_COPREG;

 The contents of T_COPn REG are defined for each CPU and implementation.

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invalid object state (called for the invoking task)
 E_CTX Context error (called from task-independent portion)
 E_PAR Parameter error (copno is invalid or the specified co-processor does not exist)
 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Gets the current contents of the register specified in copno of the task specified in tskid.
 The referenced register values are not necessarily the values at the time the task portion was executing.
 If this system call is issued for the invoking task, error code E_OBJ is returned.
 This system call cannot specify the tasks of other AMP T-Kernels. Only tasks on the same AMP T-Kernel can acquire the
co-processor register value.
 Access protection is applied to this system call.

[Additional Notes]
 In principle, all registers in the task context can be referenced. This includes not only physical CPU registers but also those
treated by the OS as virtual registers.

[Items Concerning AMP T-Kernel]

The co-processor register has the meaning of in an individual processor. Therefore, this call cannot be used between
processors.

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 67 TEF021-S001-01.00.00/en

Set Task Co-processor Registers tk_set_cpr

 tk_set_cpr:Set Task Coprocessor Registers

[C Language Interface]

 ER ercd = tk_set_cpr (ID tskid, INT copno, T_COPREGS *pk_copregs) ;

[Parameters]

 ID tskid Task ID
 INT copno Co-processor number (0 to 3)
 T_COPREGS pk_copregs Co-processor registers

[Return Parameters]

 ER ercd Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invalid object state (called for the invoking task)
 E_CTX Context error (called from task-independent portion)
 E_PAR Parameter error (copno is invalid or the specified co-processor does not exist), or the set register value is

invalid (implementation-dependent)
 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Sets the contents of the register specified in copno of the task specified in tskid.
 The set register values are not necessarily the values while the task portion is executing. The OS is not aware of the effects of
register value changes.
 It is possible, however, that some registers or register bits cannot be changed if the OS does not allow such changes
(implementation-dependent).
 If this system call is issued for the invoking task, error code E_OBJ is returned.
 This system call cannot specify the tasks of other AMP T-Kernels. Only tasks on the same AMP T-Kernel can specify the
co-processor value.
 Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

The co-processor register has the meaning of in an individual processor. Therefore, this call cannot be used between
processors.

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 68 TEF021-S001-01.00.00/en

Get Task Information tk_inf_tsk

tk_inf_tsk:Get Task Information

[C Language Interface]

 ER ercd = tk_inf_tsk (ID tskid, T_ITSK *pk_itsk, BOOL clr) ;

[Parameters]

 ID tskid Task ID
 T_ITSK* pk_itsk Address of packet for returning task information
 BOOL clr Clear task information

[Clear task information]

 ER ercd Error code

 pk_itsk detail:

RELTIM stime Cumulative system-level run time (ms)
RELTIM utime Cumulative user-level run time (ms)

 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_PAR Parameter error (the return parameter packet address cannot be used)
 E_DACV Access protection violation

[Description]
 Gets statistical information for the task specified in tskid.
 If clr = TRUE = 0, the cumulative information is reset (cleared to 0) after getting the information.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when a system call is issued from
a task-independent portion and tskid = TSK_SELF = 0 is specified, error code E_ID is returned.
 This system call can acquire statistical information on tasks of other AMP T-Kernel. Moreover, access security is applied in
such case.

[Additional Notes]
 The system-level run time is that while running at TA_RNG0, and the user-level run time is that while running at protection
levels other than TA_RNG0. A task created to run at TA_RNG0 is therefore counted entirely as system-level run time.
 The method of counting run time is implementation-dependent, but does not need to be especially precise. In fact,
applications should not expect very high precision.

[Items Concerning AMP T-Kernel]

This call can be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 69 TEF021-S001-01.00.00/en

Reference Task Status tk_ref_tsk

 tk_ref_tsk:Reference Task Status

[C Language Interface]

 ER ercd = tk_ref_tsk (ID tskid, T_RTSK *pk_rtsk) ;

[Parameters]

 ID tskid TaskID Task ID
 T_RTSK* pk_rtsk Packet to Refer Task Address of packet for returning task status

[Return Parameters]

 ER ercd ErrorCode Error code

 The contents of pk_rtsk

VP exinf ExtendedInformation Extended information
PRI tskpri TaskPriority Current task priority
PRI tskbpri Base priority
UINT tskstat TaskState Task state
UINT tskwait Wait factor
ID wid Waiting object ID
INT wupcnt Queued wakeup requests
INT suscnt Nested suspend requests
RELTIM slicetime Maximum continuous run time allowed (ms)
UINT waitmask Disabled wait factors
UINT texmask Allowed task exceptions
UINT tskevent Task events

 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_PAR Parameter error (the return parameter packet address cannot be used)
 E_DACV Access protection violation

[Description]
 Gets the state of the task specified in tskid.
 tskstat takes the following values.

 tskstat:
 TTS_RUN 0x0001 RUN
 TTS_RDY 0x0002 READY
 TTS_WAI 0x0004 WAIT
 TTS_SUS 0x0008 SUSPEND
 TTS_WAS 0x000c SUSPEND
 TTS_DMT 0x0010 DORMANT
 TTS_NODISWAI 0x0080 Wait state disabled

 Task states such as TTS_RUN and TTS_WAI are expressed by corresponding bits, which is useful when making a complex
state decision (e.g., deciding that the state is one of either RUN or READY state). Note that of the above states, TTS_WAS is a
combination of TTS_SUS and TTS_WAI, but TTS_SUS is never combined with other states (TTS_RUN, TTS_RDY, and
TTS_DMT).
). In the case of TTS_WAI (including TTS_WAS), if wait states are disabled by tk_dis_wai, TTS_NODISWAI is set.
TTS_NODISWAI is never combined with states other than TTS_WAI.

AMP T-Kernel Specification / Ver. 1.00.00

 70 TEF021-S001-01.00.00/en

 When tk_ref_tsk is executed for an interrupted task from an interrupt handler, RUN (TTS_RUN) is returned as tskstat.
 When tskstat is TTS_WAI (including TTS_WAS), the values of tskwait and wid are as shown in Table 5.

[Table 5] Values of tskwait and wid
 ───────────────────────────────────

 tskwait Value Description wid
 ───────────────────────────────────

 TTW_SLP 0x00000001 Wait caused by tk_slp_tsk 0
 TTW_DLY 0x00000002 Wait caused by tk_dly_tsk 0

 TTW_SEM 0x00000004 Wait caused by tk_wai_sem semid
 TTW_FLG 0x00000008 Wait caused by tk_wai_flg flgid

 TTW_MBX 0x00000040 Wait caused by tk_rcv_mbx mbxid
 TTW_MTX 0x00000080 Wait caused by tk_loc_mtx mtxid

 TTW_SMBF 0x00000100 Wait caused by tk_snd_mbf mbfid
 TTW_RMBF 0x00000200 Wait caused by tk_rcv_mbf mbfid
 TTW_CAL 0x00000400 Wait on rendezvous call porid

 TTW_ACP 0x00000800 Wait for rendezvous acceptance porid
 TTW_RDV 0x00001000 Wait for rendezvous completion 0

 (TTW_CAL|TTW_RDV) 0x00001400 Wait on rendezvous call or
 wait for rendezvous completion 0

 TTW_MPF 0x00002000 Wait for tk_get_mpf mpfid
 TTW_MPL 0x00004000 Wait for tk_get_mpl mplid

 TTW_EV1 0x00010000 Wait for task event #1 0
 TTW_EV2 0x00020000 Wait for task event #1 0

 TTW_EV3 0x00040000 Wait for task event #3 0
 TTW_EV4 0x00080000 Wait for task event #3 0

 TTW_EV5 0x00100000 Wait for task event #5 0
 TTW_EV6 0x00200000 Wait for task event #5 0
 TTW_EV7 0x00400000 Wait for task event #7 0

 TTW_EV8 0x00800000 Wait for task event #8 0
 ───────────────────────────────────

 When tskstat is not TTS_WAI (including TTS_WAS), both tskwait and wid are 0.
 waitmask is the same bit array as tskwait.
 For a task in DORMANT state, wupcnt = 0, suscnt = 0, and tskevent = 0.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when a system call is issued from
a task-independent portion and tskid = TSK_SELF = 0 is specified, error code E_ID is returned.
 When the task specified with tk_ref_tsk does not exist, error code E_NOEXS is returned.

This system call can reference task information on tasks of other AMP T-Kernel.
Access protection is applied for this system call.

[Additional Notes]
 Even when tskid = TSK_SELF is specified in this system call, the ID of the invoking task is not known. Use tk_get_tid to
find out the ID of the invoking task.

[Items Concerning AMP T-Kernel]

This call can be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 71 TEF021-S001-01.00.00/en

4.2 Task-Dependent Synchronization Functions

Task-dependent synchronization functions achieve synchronization among tasks by direct manipulation of task states. They
include functions for task sleep and wakeup, for canceling wakeup requests, for forcibly releasing task WAIT state, for
changing a task state to SUSPEND state, and for delaying execution of the invoking task.

Wakeup requests for a task are queued. That is, when it is attempted to wake up a task that is not sleeping, the wakeup request
is remembered, and the next time the task is to go to a sleep state (waiting for wakeup), it does not enter that state. Queuing of
task wakeup requests is realized by having the task keep a task wakeup request queuing count. When the task is started, this
count is cleared to 0.

Suspend requests for a task are nested. That is, if it is attempted to suspend a task already in SUSPEND state (including
WAIT-SUSPEND state), the request is remembered and later when it is attempted to resume the task in SUSPEND state
(including WAIT-SUSPEND state), it is not resumed. Nesting of suspend requests is realized by having the task keep a suspend
request nesting count. When the task is started, this count is cleared to 0.

In AMP T-Kernel, task-dependent synchronization functions can be used for tasks on the AMP T-Kernels of other processors.

In other words, they can be used for synchronization and communication between processors. Moreover, access protection is
applied to all system calls that specify the ID of other tasks.

System calls that can be used between processors are summarized in the table below. For more details refer to the explanation
on each system call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_slp_tsk Putting Invoking Task to Sleep × ○

tk_wup_tsk Wakeup Task ○ �

tk_can_wup Cancel Wakeup Task ○ �

tk_rel_wai Release Wait ○ �

tk_sus_tsk Suspend Other Task × ×

tk_rsm_tsk Resume Suspended Task × ×

tk_frsm_tsk Force Resume Task × ×

tk_dly_tsk Delay Task × ○

tk_sig_tev Send Event to Task ○ �

tk_wai_tev Wait Task Event ○ ○

tk_dis_wai Disable Task Wait × ×

tk_ena_wai Enable Task Wait × ×
Different from T-Kernel 1.00 Specification ○:No X:Yes �: Only different in that E_DACV error returns by the access

protection

AMP T-Kernel Specification / Ver. 1.00.00

 72 TEF021-S001-01.00.00/en

Sleep Task tk_slp_tsk

 tk_slp_tsk: Sleep Task

[C Language Interface]

 ER ercd = tk_slp_tsk (TMO tmout) ;

[Parameters]

 TMO tmout Timeout Timeout

[Return Parameters]

 ER ercd Error Code Error code

[Error Codes]

 E_OK Normal completion
 E_PAR Parameter error (tmout <= (-2))
 E_RLWAI Wait state released (tk_rel_wai received in wait state)
 E_DISWAI Wait released due to disabled state
 E_TMOUT Polling failed or timeout
 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]
 Changes the state of the invoking task from RUN state to sleep state (WAIT for tk_wup_tsk).
 If tk_wup_tsk is issued for the invoking task before the time specified in tmout has elapsed, this system call completes
normally. If timeout occurs before tk_wup_tsk is issued, error code E_TMOUT is returned. Specifying tmout = TMO_FEVR
=(-1) means waiting forever. In this case, the task stays in waiting state until tk_wup_tsk is issued.

[Additional Notes]
 Since tk_slp_tsk is a system call that puts the invoking task into a wait state, tk_slp_tsk can never be nested. It is possible,
however, for another task to issue tk_sus_tsk for a task that was put in a wait state by tk_slp_tsk. In this case, the task goes to
WAIT-SUSPEND state.
 For simply delaying a task, tk_dly_tsk should be used rather than tk_slp_tsk. The task sleep function is intended for use by
applications and as a rule should not be used by middleware. The reason is that attempting to achieve synchronization by
putting a task to sleep in two or more places would cause confusion, leading to mis-operation. For example, if sleep were used
by both an application and middleware for synchronization, a wakeup request might arise in the application while middleware
has the task sleeping. In such a situation, normal operation would not be possible in either the application or middleware.
 Proper task synchronization is not possible because it is not clear where the wait for wakeup originated. Task sleep is often
used as a simple means of task synchronization. Applications should be able to use it freely, which means, as a rule, it should
not be used by middleware.

[Items Concerning AMP T-Kernel]

There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 73 TEF021-S001-01.00.00/en

Wakeup Task tk_wup_tsk

 tk_wup_tsk: Wakeup Task

[C Language Interface]

 ER ercd = tk_wup_tsk (ID tskid) ;

[Parameters]

 ID tskid Task ID Task ID

[Return Parameters]

 ER ercd Error Code Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invalid object state (called for the invoking task or for a task in DORMANT state)

E_QOVR Queuing or nesting overflow (too many queued wakeup requests in wupcnt)
E_DACV Access protection violation

[Description]
 If the task specified in tskid was put in WAIT state by tk_slp_tsk, this system call releases the WAIT state.
 This system call cannot be called for the invoking task. If the invoking task is specified, error code E_OBJ is returned.
 If the target task has not called tk_slp_tsk and is not in WAIT state, the wakeup request by tk_wup_tsk is queued. That is, the
calling of tk_wup_tsk for the target task is recorded when tk_slp_tsk is called after that, the task does not go to WAIT state.
This is what is meant by queuing of wakeup requests.
 The queuing of wakeup requests works as follows. Each task keeps a wakeup request queuing count (wupcnt) in its TCB. Its
initial value (when tk_sta_tsk is executed) is 0. When tk_wup_tsk is issued for a task not sleeping (not in WAIT state), the count
is incremented by 1; but each time tk_slp_tsk is executed, the count is decremented by 1. When tk_slp_tsk is executed for a task
whose wakeup queuing count is 0, the queuing count does not become negative but rather the task goes to WAIT state.
 It is always possible to queue tk_wup_tsk one time (wupcnt = 1), but the maximum queuing count (wupcnt) is
implementation-dependent and may be set to any appropriate value of 1 or above. In other words, issuing tk_wup_tsk once for a
task not in WAIT state does not return error, but whether error is returned for the second or subsequent time tk_wup_tsk is
called is an implementation-dependent matter.
 When calling tk_wup_tsk causes wupcnt to exceed the maximum allowed value, error code E_QOVR is returned.
 This system call can specify tasks of other AMP T-Kernels.
 Access protection is applied for this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 74 TEF021-S001-01.00.00/en

Cancel Wakeup Task tk_can_wup

 tk_can_wup: Cancel Wakeup Task

[C Language Interface]

 INT wupcnt = tk_can_wup (ID tskid) ;

[Parameters]

 ID tskid Task ID Task ID

[Return Parameters]

 INT wupcnt Wakeup Count Number of queued wakeup requests

または Error Code Error Code

[Error Codes]

 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invalid object state (called for a task in DORMANT state)
 E_DACV Access protection violation

[Description]
 Passes the wakeup request queuing count (wupcnt) for the task specified in tskid and also cancels all wakeup requests at the
same time. That is, this system call clears the wakeup request queuing count (wupcnt) to 0 for the specified task.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when a system call is issued from
a task-independent portion and tskid = TSK_SELF = 0 is specified, error code E_ID is returned.
 This system call can specify tasks of other AMP T-Kernels.
 Access protection is applied for this system call.

[Additional Notes]
 When processing is performed that involves cyclic wakeup of a task, this system call is used to determine whether the
processing was completed within the allotted time. Before processing of a prior wakeup request is completed and tk_slp_tsk is
called, the task monitoring this calls tk_can_wup. If wupcnt in the return parameter is 1 or more, it means that the previous
wakeup request was not processed within the allotted time. A processing delay or other measure can then be taken accordingly.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 75 TEF021-S001-01.00.00/en

Release Wait tk_rel_wai

tk_rel_wai: Release Wait

[C Language Interface]

 ER ercd = tk_rel_wai (ID tskid) ;

[Parameters]

 ID tskid Task ID Task ID

[Return Parameters]

 ER ercd Error Code Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invalid object state (called for a task not in WAIT state
 (including when called for the invoking task, or for a task in DORMANT state))
 E_DACV Access protection violation

[Description]
 If the task specified in tskid is in some kind of wait state (not including SUSPEND state), forcibly releases that state.
 This system call returns error code E_RLWAI to the task whose WAIT state was released.
 Wait release requests by tk_rel_wai are not queued. That is, if the task specified in tskid is already in WAIT state, the WAIT
state is cleared; but if it is not in WAIT state when this system call is issued, error code E_OBJ is returned to the caller.
Likewise, error code E_OBJ is returned when this system call is issued specifying the invoking task.
 The tk_rel_wai system call does not release a SUSPEND state. If it is issued for a task in WAITSUSPEND state, the task
goes to SUSPEND state. If it is necessary to release SUSPEND state, the system call tk_frsm_tsk is used instead.
 This system call can specify tasks of other AMP T-Kernels.
 Access protection is applied for this system call.

 The states of the target task when tk_rel_wai is called and the results of its execution in each state are shown in Table 6.

AMP T-Kernel Specification / Ver. 1.00.00

 76 TEF021-S001-01.00.00/en

[Table 6] Task States and Results of tk_rel_wai Execution

 ───

 Target Task State ercd of tk_rel_wai Processing
 ───

 Run state (RUN, READY) E_OBJ No operation
 (not for invoking task)

 RUN state (for invoking task) E_OBJ No operation
 WAIT state E_OK Wait released.*
 (SUSPENDED) E_OBJ No operation
 (WAITING-SUSPENDED) E_OK To SUSPENDED state

 DORMANT state E_OBJ Wait released.
 NON-EXISTENT state E_NOEXS Wait released.
 ───

*Error code E_RLWAI is returned to the target task. The target task is guaranteed to be released from its wait state
without any resource allocation (without the wait release conditions being met).

[Additional Notes]
 A function similar to timeout can be realized by using an alarm handler or the like to issue this system call after a given task
has been in WAIT state for a set time.
 The main differences between tk_rel_wai and tk_wup_tsk are the following.
 - Whereas tk_wup_tsk releases only WAIT state effected by tk_slp_tsk, tk_rel_wai also releases WAIT state caused by other
factors (tk_wai_flg, tk_wai_sem, tk_rcv_mbf, etc.).
 - From the respective of the task in WAIT state, release of the WAIT state by tk_wup_tsk returns a Normal completion
(E_OK), whereas release by tk_rel_wai returns an error code (E_RLWAI).
 - Wakeup requests by tk_wup_tsk are queued if tk_slp_tsk has not yet been executed. If tk_rel_wai is issued for a task not in
WAIT state, error code E_OBJ is returned.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 77 TEF021-S001-01.00.00/en

Suspend Task tk_sus_tsk

 tk_sus_tsk: Suspend Task

[C Language Interface]

 ER ercd = tk_sus_tsk (ID tskid) ;

[Parameters]

 ID tskid Task ID Task ID

[Return Parameters]

 ER ercd Error Code Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invalid object state (called for the invoking task or for a task in DORMANT state)
 E_CTX A task in RUN state was specified in dispatch disabled state
 E_QOVR Queuing or nesting overflow (too many nested requests in suscnt)
 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Puts the task specified in tskid in SUSPEND state and interrupts execution of the task.
 SUSPEND state is released by issuing system call tk_rsm_tsk or tk_frsm_tsk.
 If tk_sus_tsk is called for a task already in WAIT state, the state goes to a combination of WAIT state and SUSPEND state
(WAIT-SUSPEND state). Thereafter, when the task wait release conditions are met, the task goes to SUSPEND state. If
tk_rsm_tsk is issued for a task in WAIT-SUSPEND state, the task state reverts to WAIT state.
 Since SUSPEND state means task interruption by a system call issued by another task, this system call cannot be issued for
the invoking task. If the invoking task is specified, error code E_OBJ is returned.
 When this system call is issued from a task-independent portion, if a task in RUN state is specified while dispatching is
disabled, error code E_CTX is returned.
 If tk_sus_tsk is issued more than once for the same task, the task is put in SUSPEND state multiple times. This is called
nesting of suspend requests. In this case, the task reverts to its original state only when tk_rsm_tsk has been issued for the same
number of times as tk_sus_tsk (suscnt). Accordingly, nesting of the pair tk_sus_tsk . tk_rsm_tsk is possible.
 The limit value of the issue count and whether or not nesting of suspend requests (function to issue tk_sus_tsk for the same
task more than once) is supported are implementation- dependent.
 If tk_sus_tsk is issued multiple times in a system that does not allow suspend request nesting, or if the nesting count exceeds
the allowed limit, error code E_QOVR is returned.
 This system call cannot set tasks of other AMP T-Kernels. Only tasks on the same AMP T-Kernel can be SUSPEND state.
 Access protection is applied for this system call.

[Additional Notes]
 When a task is in WAIT state for resource acquisition (semaphore wait, etc.) and is also in SUSPEND state, the resource
allocation (semaphore allocation, etc.) takes place under the same conditions as when the task is not in SUSPEND state.
Resource allocation is not delayed by the SUSPEND state, and there is no change whatsoever in the priority of resource
allocation or release from WAIT state. In this way SUSPEND state has an orthogonal relation with other processing and task
states.
 In order to delay resource allocation to a task in SUSPEND state (temporarily lower its priority), the user can use tk_sus_tsk
and tk_rsm_tsk in combination with tk_chg_pri.
 Forced task waiting is in principle only used for parts closely related to the OS such as breakpoint processing of the debugger.
As a rule it should not be used in ordinary applications or in middleware.

AMP T-Kernel Specification / Ver. 1.00.00

 78 TEF021-S001-01.00.00/en

 The reason is that task suspension takes place regardless of the running state of the target task. If, for example, a task is put in
SUSPEND state while it is calling a middleware function, the task will be stopped in the course of middleware internal
processing. In some cases middleware performs resource management or other mutual exclusion control. If a task stops inside
middleware while it has resources allocated, other tasks may not be able to use that middleware. This situation can cause a
chain reaction, with other tasks stopping and leading to a system-wide deadlock.
 For this reason, a task should not be stopped without knowing its status (what it is doing at the time), and ordinary tasks
should not use the task suspension function.

[Items Concerning AMP T-Kernel]

This call is a function that is intended for use in system software and cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 79 TEF021-S001-01.00.00/en

Resume Task tk_rsm_tsk
Force Resume Task tk_frsm_tsk

 tk_rsm_tsk: Resume Task
 tk_frsm_tsk: Force Resume Task

[C Language Interface]

 ER ercd = tk_rsm_tsk (ID tskid) ;
 ER ercd = tk_frsm_tsk (ID tskid) ;

[Parameters]

 ID tskid Task ID Task ID

[Return Parameters]

 ER ercd Error Code Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invalid object state (the specified task is not in SUSPEND state (including when this system call specifies

the invoking task or a task in DORMANT state))
 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Releases the SUSPEND state of the task specified in tskid. If the target task was earlier put in SUSPEND state by the
tk_sus_tsk system call, this system call releases that SUSPEND state and resumes the task execution.
 When the target task is in a combined WAIT state and SUSPEND state (WAIT-SUSPEND state), executing tk_rsm_tsk
releases only the SUSPEND state, putting the task in WAIT state. This system call cannot be issued for the invoking task. If the
invoking task is specified, error code E_OBJ is returned.
 Executing tk_rsm_tsk once clears only one nested suspend request (suscnt). If tk_sus_tsk was issued more than once for the
target task (suscnt>=2), the target task remains in SUSPEND state even after tk_rsm_tsk is executed. When tk_frsm_tsk is
issued, on the other hand, all suspend requests are released (suscnt is cleared to 0) even if tk_sus_tsk was issued more than once
(suscnt>=2). The SUSPEND state is always cleared, and unless the task was in WAIT-SUSPEND state execution resumes.
 When the target task is not Suspend state (SUSPENDED), error code E_OBJ is returned.
This system call cannot specify tasks of other AMP T-Kernels. Only tasks on the same AMP T-Kernel can be specified.
 Access protection is applied for this system call.

[Additional Notes]
 After a task in RUN state or READY state is put in SUSPEND state by tk_sus_tsk and then resumed by tk_rsm_tsk or
tk_frsm_tsk, the task has the lowest precedence among tasks of the same priority.
 When, for example, the following system calls are executed for tasks A and B of the same priority, the result is as indicated
below.
 tk_sta_tsk (tskid＝task_A, stacd_A);
 tk_sta_tsk (tskid＝task_B, stacd_B);
 /* By the rule of FCFS, precedence becomes task_A --> task_B. */

 tk_sus_tsk (tskid＝task_A);
 tk_rsm_tsk (tskid＝task_A);
 /* In this case precedence becomes task_B --> task_A. */

AMP T-Kernel Specification / Ver. 1.00.00

 80 TEF021-S001-01.00.00/en

[Items Concerning AMP T-Kernel]
This call is a function that is intended for use in system software and cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 81 TEF021-S001-01.00.00/en

Delay Task tk_dly_tsk

 tk_dly_tsk: Delay Task

[C Language Interface]

 ER ercd = tk_dly_tsk (RELTIM dlytim) ;

[Parameters]

 RELTIM dlytim Delay Time Delay time

[Return Parameters]

 ER ercd Error Code Error code

[Error Codes]

 E_OK Normal completion
 E_PAR Parameter error (dlytim is invalid)
 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)
 E_RLWAI Wait state released (tk_rel_wai received in wait state)
 E_DISWAI Wait released due to disabled state

[Description]
 Temporarily stops execution of the invoking task and waits for time dlytim to elapse.
 The state while the task waits for the delay time to elapse is a WAIT state and is subject to release by tk_rel_wai.
 If the task issuing this system call goes to SUSPEND state or WAIT-SUSPEND state while it is waiting for the delay time to
elapse, the time continues to be counted in the SUSPEND state.
 The time base for dlytim (time unit) is the same as that for system time (= 1 ms).

[Additional Notes]
 This system call differs from tk_slp_tsk in that normal completion, not an error code, is returned when the delay time elapses
and tk_dly_tsk terminates. Moreover, the wait is not released even if tk_wup_tsk is executed during the delay time. The only
way to terminate tk_dly_tsk before the delay time elapses is by calling tk_ter_tsk or tk_rel_wai.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 82 TEF021-S001-01.00.00/en

Signal Task Event tk_sig_tev

 tk_sig_tev:Signal Task Event

[C Language Interface]

 ER ercd = tk_sig_tev (ID tskid, INT tskevt) ;

[Parameters]

 ID tskid Task ID
 INT tskevt Task event number (1 to 8)

[Return Parameters]

 ER ercd Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invalid object state (called for a task in DORMANT state)
 E_PAR Parameter error (tskevt is invalid)
 E_DACV Access protection violation

[Description]
 Sends the task event specified in tskevt to the task specified in tskid.
 There are eight task event types stored for each task, specified by numbers 1 to 8.
 The task event send count is not saved, only whether the event occurs or not.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when a system call is issued from
a task-independent portion and tskid = TSK_SELF = 0 is specified, error code E_ID is returned.
 This system call can specify tasks of other AMP T-Kernels..

Access protection is applied for this system call.

[Additional Notes]
 The task event function is used for synchronization much like tk_slp_tsk and tk_wup_tsk, but differs from the use of those
system calls in the following ways.
 ・The wakeup request (task event) count is not kept.
 ・Wakeup requests can be classified by the eight event types.
 Using the same event type for synchronization in two or more places in the same task would cause confusion. Event type
allocation should be clearly defined.
 The task event function is intended for use in middleware, and as a rule should not be used in ordinary applications. Use of
tk_slp_tsk and tk_wup_tsk is recommended for applications.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 83 TEF021-S001-01.00.00/en

Wait Task Event tk_wai_tev

 tk_wai_tev:Wait Task Event

[C Language Interface]

 INT tevptn = tk_wai_tev (INT waiptn, TMO tmout) ;

[Parameters]

 INT waiptn Task event pattern
 TMO tmout Timeout

[Return Parameters]

 INT tevptn Task event status when wait released
 or Error Code

[Error Codes]

 E_PAR Parameter error (waiptn or tmout is invalid)
 E_RLWAI Wait state released (tk_rel_wai received in wait state)
 E_DISWAI Wait released due to disabled state
 E_TMOUT Polling failed or timeout
 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]
 Waits for the occurrence of one of the task events specified in waiptn. When the wait is released by a task event, the task
events specified in waiptn are cleared (raised task event &= ~waiptn). The task event status occurring when the wait was
released (the state before clearing) is passed in the return code (tevptn).
 The parameters waiptn and tevptn consist of logical OR values of the bits for each task event in the form 1 << (task event
number -1).
 A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition is met
(tk_sig_tev is not executed), the system call terminates, returning timeout error code E_TMOUT.
 Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for system time (= 1 ms).
 When TMO_POL =0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned without
entering WAIT state even if no task event occurs. When TMO_FEVR = (-1) is set in tmout, this means infinity was specified as
the timeout value, and the task continues to wait for a task event without timing out.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 84 TEF021-S001-01.00.00/en

Disable Task Wait tk_dis_wai

 tk_dis_wai:Disable Task Wait

[C Language Interface]

 INT tskwait = tk_dis_wai (ID tskid, UINT waitmask) ;

[Parameters]

 ID tskid Task ID
 UINT waitmask Task wait disabled setting

[Return Parameters]

 INT tskwait Task state after task wait disabled
 or Error Code

[Error Codes]

 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_PAR Parameter error (waitmask is invalid)
 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Disables waits for the wait factors set in waitmask by the task specified in tskid. If the task is already waiting for a factor
specified in waitmask, that wait is released.
 waitmask is specified as the logical OR of any combination of the following wait factors.

#define TTW_SLP 0x00000001 /* Wait caused by sleep */
#define TTW_DLY 0x00000002 /* Wait for task delay */
#define TTW_SEM 0x00000004 /* Wait for semaphore */
#define TTW_FLG 0x00000008 /* Wait for event flag */
#define TTW_MBX 0x00000040 /* Wait for mailbox */
#define TTW_MTX 0x00000080 /* Wait for mutex */
#define TTW_SMBF 0x00000100 /* Wait for message buffer sending */
#define TTW_RMBF 0x00000200 /* Wait for message buffer receipt */
#define TTW_CAL 0x00000400 /* Wait on rendezvous call */
#define TTW_ACP 0x00000800 /* Wait for rendezvous acceptance */
#define TTW_RDV 0x00001000 /* Wait for rendezvous completion */
#define TTW_MPF 0x00002000 /* Wait for fixed-size memory pool */
#define TTW_MPL 0x00004000 /* Wait for variable-size memory pool */
#define TTW_EV1 0x00010000 /* Wait for task event #1 */
#define TTW_EV2 0x00020000 /* Wait for task event #2 */
#define TTW_EV3 0x00040000 /* Wait for task event #3 */
#define TTW_EV4 0x00080000 /* Wait for task event #4 */
#define TTW_EV5 0x00100000 /* Wait for task event #5 */
#define TTW_EV6 0x00200000 /* Wait for task event #6 */
#define TTW_EV7 0x00400000 /* Wait for task event #7 */
#define TTW_EV8 0x00800000 /* Wait for task event #8 */
#define TTX_SVC 0x80000000 /* Extended SVC disabled */

 TTX_SVC is a special parameter disabling not task wait but the calling of an extended SVC. If TTX_SVC is specified when
a task attempts to call an extended SVC, E_DISWAI is returned without calling the extended SVC. This parameter does not
have the effect of terminating an already called extended SVC.
 WAIT state of tasks after the completion of wait disable processing by tk_dis_wai is returned. This value is the same value as
tskwait of tk_ref_tsk. Information regarding TTX_SVC is not returned in tskwait. A tskwait value of 0 means the task has not
entered WAIT state (or the wait was released). If tskwait is not 0, this means the task is in WAIT state for a cause other than

AMP T-Kernel Specification / Ver. 1.00.00

 85 TEF021-S001-01.00.00/en

those disabled in waitmask.
 When a task wait is cleared by tk_dis_wai or the task is prevented from entering WAIT state while this system call is in effect,
E_DISWAI is returned.
 When a system call for which there is the possibility of entering a WAIT state is invoked during wait disabled state,
E_DISWAI is returned even if the processing could be performed without waiting. For example, even if message buffer space is
available when tk_snd_mbf is called and message buffer sending is possible without entering a WAIT state, E_DISWAI is
returned and the message is not sent.
 A wait disable set while an extended SVC is executing will be cleared automatically upon return from the extended SVC to
its caller. It is automatically cleared also when an extended SVC is called, reverting to the original setting upon return from the
extended SVC.
 A wait disable setting is cleared also when the task reverts to DORMANT state. The setting made while a task is in
DORMANT state, however, is valid and the wait disable is applied the next time the task is started.
 In the case of semaphores and most other objects, TA_NODISWAI can be specified when the object is created. An object
created with TA_NODISWAI specified cannot have waits disabled, and rejects any wait disable attempt by tk_dis_wai.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when a system call is issued from
a task-independent portion and tskid = TSK_SELF = 0 is specified, error code E_ID is returned.
 This system call cannot specify tasks of other AMP T-Kernel. Only tasks on the same AMP T-Kernel can disable WAIT state.
 Access protection is applied for this system call.

[Additional Notes]
 The wait disable function is provided for preventing execution of an extended SVC handler and is for use mainly (though not
exclusively) in break functions.
 Wait disable in the case of a rendezvous is more complex than other cases. Essentially, wait disabled state is detected based
on a change in the rendezvous wait state, and then the wait is released.
 Some specific examples are given here.
 When waiting by TTW_CAL is not disabled but TTW_RDV waits are disabled, a task enters into wait on rendezvous call
state; but when the rendezvous is accepted and a wait for rendezvous completion would normally begin, the wait is released and
E_DISWAI is returned. At this time a message is sent to the receiving task, the receiving task declares acceptance of the
message and the task goes to rendezvous established state. Only when the accepting task replies (tk_rpl_rdv) does it become
clear that there is no other task in the rendezvous, and error code E_OBJ is returned.
 Wait disable applies also when a rendezvous is forwarded. In that case, the attribute of the destination rendezvous port
applies. That is, if the TA_NODISWAI attribute is specified for the destination port, wait disable is rejected. If TTW_CAL wait
is disabled after going to wait for rendezvous completion state, and a rendezvous is forwarded in that state, the state goes to
WAIT on rendezvous call as a result of the forwarding, so wait is disabled by TTW_CAL. In that case, E_DISWAI is returned
to both the rendezvous calling task (tk_cal_por) and forwarding task (tk_fwd_por).

[Items Concerning AMP T-Kernel]

This call is a function that is intended for use in system software and cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

When WAIT of the task is released by this function, and if the target of WAIT is an object of another AMP T-Kernel,

communication between processors occurs.

AMP T-Kernel Specification / Ver. 1.00.00

 86 TEF021-S001-01.00.00/en

Enable Task Wait tk_ena_wai

 tk_ena_wai:Enable Task Wait

[C Language Interface]

 ER ercd = tk_ena_wai (ID tskid) ;

[Parameters]

 ID tskid Task ID

[Return Parameters]

 ER ercd Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Releases all wait disable conditions set by tk_dis_wai for the task specified in tskid.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when a system call is issued from
a task-independent portion and tskid = TSK_SELF = 0 is specified, error code E_ID is returned.
 This system call cannot specify tasks of other AMP T-Kernel. Only tasks on the same AMP T-Kernel can release WAIT
disable.
 Access protection is applied for this system call.

[Items Concerning AMP T-Kernel]

This call is a function that is intended for use in system software and cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 87 TEF021-S001-01.00.00/en

4.3 Task Exception Handling Functions

Task exception handling functions handle exception events occurring in a task, in the context of that task, interrupting normal
task processing.

A task exception handler is executed as a part of the task where the task exception occurred, in the context of that task and at
the protection level specified when the task was created. The task states in a task exception handler, except for those states
concerning task exceptions, are the same as the states when running an ordinary task portion; and the same system calls are
available.

A task exception handler can be started only when the target task is running a task portion. If the task is running any other
portion when a task exception is raised, the task exception handler is started only after the task returns to the task portion. If a
quasi-task portion (extended SVC) is executing when a task exception is raised, a break function corresponding to that extended
SVC is called. The break function interrupts the extended SVC processing, and the task returns to the task portion.

Requested task exceptions are cleared when the task exception handler is called (when the task exception handler starts
running).

Task exceptions cannot be used for tasks with protection level 0.

Task exceptions are specified by task exception codes from 0 to 31, of which 0 is the highest priority and 31 the lowest. Task

exception code 0 is handled differently from the others, as explained below.

Task exception codes 1 to 31 :
・ These task exception handlers are not nested. A task exception (other than task exception code 0) raised while a task

exception handler is running will be made pending.
・ On return from a task exception handler, the task resumes from the point where processing was interrupted by the

exception.
・ It is also possible to use longjmp() or the like to jump to any point in the task without returning from the task exception

handler.

Task exception code 0:
・ This exception can be nested even while a task exception handler is executing for an exception of task exception code 1 to

31. Execution of task exception code 0 handlers is not nested.
・ A task exception handler runs after setting the user stack pointer to the initial setting when the task was started. In a system

without a separate user stack and system stack, however, the stack pointer is not reset to its initial setting.
・ A task exception code 0 handler does not return to task processing. The task must be terminated.

In AMP T-Kernel, exception handling including task exceptions is independent for individual processors, and task exception

handling functions cannot be used between processors. Access protection is applied to all system calls that specify a task ID.
System calls for task exception handling functions are summarized in table below. For more details refer to the explanation

for each system call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_def_tex Define Task Exception Handler × ×

tk_ena_tex Enable Task Exception × ×

tk_dis_tex Disable Task Exception × ×

tk_ras_tex Raise Task Exception × ×

tk_end_tex End Task Exception Handler × ○

tk_ref_tex Reference Task Exception Status × ×
Different from T-Kernel 1.00 Specification ○:No X:Yes �: Only different in that E_DACV error returns by the access

protection

AMP T-Kernel Specification / Ver. 1.00.00

 88 TEF021-S001-01.00.00/en

Define Task Exception Handler tk_def_tex

 tk_def_tex:Define Task Exception Handler

[C Language Interface]

 ER ercd = tk_def_tex (ID tskid, T_DTEX *pk_dtex) ;

[Parameters]

 ID tskid Task ID
 T_DTEX* pk_dtex Task exception handler definition information
 pk_dtex detail:
 ATR texatr Task exception handler attributes
 FP texhdr Task exception handler address
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Return Parameters]

 ER ercd Error code

[Error Codes]

E_OK Normal completion
E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (the task specified in tskid runs at protection level 0 (TA_RNG0))
E_RSATR Reserved attribute (texatr is invalid or cannot be used)
E_PAR Parameter error (pk_dtex , or texhdr is invalid or cannot be used)

 E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Defines a task exception handler for the task specified in tskid. Only one task exception handler can be defined per task; if
one is already defined, the last-defined handler is valid. Setting pk_dtex = NULL cancels a definition.
 Defining or canceling a task exception handler clears pending task exception requests and disables all task exceptions.
 The parameter texatr indicates system attributes in is low bits and implementation-dependent attributes in its high bits. The
texatr system attributes are not assigned in the present version, and system attributes are not used.
 A task exception handler takes the following form.

void texhdr(INT texcd)

{
/*
Task exception handling
*/

/* Task exception handler termination */
if (texcd == 0) {

tk_ext_tsk()or tk_exd_tsk();
} else {

tk_end_tex();
return or longjmp();

}
}

 A task exception handler behaves only like a TA_ASM attribute object and cannot be called via a high-level language
support routine. The entry part of the task exception handler must be written in assembly language. The OS vendor must
provide the assembly language source of the entry routine for calling the above C language task exception handler. That is,

AMP T-Kernel Specification / Ver. 1.00.00

 89 TEF021-S001-01.00.00/en

source code equivalent to a high-level language support routine must be provided.
 A task set to protection level TA_RNG0 when it is created cannot use task exceptions.

[Additional Notes]
 At the time a task is created, no task exception handler is defined and task exceptions are disabled.
 When a task reverts to DORMANT state, the task exception handler definition is canceled and task exceptions are disabled.
Pending task exceptions are cleared. It is possible, however, to define a task exception handler for a task in DORMANT state.
 Task exceptions are software interrupts raised by tk_ras_tex, with no direct relation to CPU exceptions.

[Items Concerning AMP T-Kernel]

Task exception functions cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 90 TEF021-S001-01.00.00/en

Enable Task Exception tk_ena_tex
Disable Task Exception tk_dis_tex

 tk_ena_tex:Enable Task Exception
 tk_dis_tex:Disable Task Exception

[C Language Interface]

 ER ercd = tk_ena_tex (ID tskid, UINT texptn) ;

 ER ercd = tk_dis_tex (ID tskid, UINT texptn) ;

[Parameters]

ID tskid Task ID
UINT texmask Task exception pattern

[Return Parameters]

ER ercd Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist or no task exception handler is defined)
 E_PAR Parameter error (texptn is invalid or cannot be used)

E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Enables or disables task exceptions for the task specified in tskid.
 The parameter texptn is a logical OR bit array representing task exception codes in the form 1 << task exception code.
 tk_ena_tex enables the task exceptions specified in texptn. tk_dis_tex disables the task exceptions specified in texptn. If the
current exception enabled status is texmask, it changes as follows.
 Enable：texmask |= texptn
 Disable：texmask &= ~texptn
 A disabled task exception is ignored, and is not made pending. If exceptions are disabled for a task while there are pending
task exceptions, the pending task exception requests are discarded (their pending status is cleared).
 Task exceptions cannot be enabled for a task with no task exception handler defined.
 These system calls are applicable to tasks in DORMANT state.

[Items Concerning AMP T-Kernel]

Task exception functions cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 91 TEF021-S001-01.00.00/en

Raise Task Exception tk_ras_tex

tk_ras_tex:Raise Task Exception

[C Language Interface]

 ER ercd = tk_ras_tex (ID tskid, INT texcd) ;

[Parameters]

ID tskid Task ID
INT texcd Task exception code (0 to 31)

[Return Parameters]

ER ercd Error code

[Error code]

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist or no task exception handler is defined)
E_OBJ Invalid object state (called for a task in DORMANT state)
E_PAR Parameter error (texcd is invalid or cannot be used)
E_CTX Context error (issued from task-independent portion or in dispatch disabled state)
E_DOMAIN Task for another AMP T-Kernel domain was specified

 E_DACV Access protection violation

[Description]
 Raises the task exception specified in texcd for the task specified in tskid.
 If a task exception handler is already running in the task specified in tskid, the newly raised task exception is made pending.
If an exception is pending, a break function is not executed even if the target task is executing an extended SVC.
 In the case of texcd = 0, however, exceptions are not made pending even if the target task is executing an exception handler.
If the target task is running a task exception handler for an exception of task exception codes 1 to 31, the task exception is
accepted; and if an extended SVC is executing, a break function is called. If the target task is running a task exception handler
for an exception of task exception code 0, task exceptions are ignored.
 The invoking task can be specified by setting tskid = TSK_SELF = 0.
 If this system call is issued from a task-independent portion, error code E_CTX is returned.

[Additional Notes]
 If the target task is executing an extended SVC, the break handler or the extended SVC runs in the context that called
tk_ras_tex. In such a case, tk_ras_tex does not return control until the break function processing ends. Task exceptions raised in
the task that called tk_ras_tex while the break function is running are held until the break function ends.

[Items Concerning AMP T-Kernel]

Task exception functions cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 92 TEF021-S001-01.00.00/en

End Task Exception Handler tk_end_tex

tk_end_tex:End Task Exception Handler

[C Language Interface]

 INT texcd = tk_end_tex (BOOL enatex) ;

[Parameters]

BOOL enatex Task exception handler calling enabled flag

[Return Parameters]

INT texcd Raised exception code
 or Error Code

[Error Codes]

 E_CTX Context error (called for other than a task exception handler or task exception code 0 (detection is

implementation-dependent))

[Description]

 Ends a task exception handler and enables the new task exception handler. If there are pending task exceptions, the
highest-priority task exception code among them is passed in the return code. If there are no pending task exceptions, 0 is
returned.
 If enatex = FALSE and there are pending task exception, calling the new task exception handler is not allowed. In this case,
the exception handler specified in return code texcd is in running state upon return from tk_end_tex. If there are no pending
task exceptions, calling the new task exception handler is allowed.
 If enatex = TRUE, calling the new task exception handler is allowed regardless of whether there are pending task exceptions.
Even if there are pending task exceptions, the task exception handler is in terminated status.
 There is no way of ending a task exception handler other than by calling tk_end_tex. A task exception handler continues
executing from the time it is started until tk_end_tex is called. Even if return is made from a task exception handler without
calling tk_end_tex, the task exception handler will still be running at the point of return. Similarly, even if longjmp is used to
get out of a task exception handler without calling tk_end_tex, the task exception handler will still be running at the jump
destination.
 Calling tk_end_tex while task exceptions are pending results in a new task exception being accepted. At this time even when
tk_end_tex is called from an extended SVC handler, a break function cannot be called for that extended SVC handler. If
extended SVC calls are nested, then when the extended SVC nesting goes down one level, the break function corresponding to
the extended SVC return destination can be called. Calling of a task exception handler takes place upon return to the task
portion.
 The tk_end_tex system call cannot be issued in the case of task exception code 0, since the task exception handler cannot be
ended. The behavior when tk_end_tex is called for a handler of task exception code 0 is undefined (implementation-dependent).
 This system call cannot be issued from other than a task exception handler. The behavior when it is called from other than a
task exception handler is undefined (implementation-dependent).

[Additional Notes]
 When tk_end_tex (TRUE) is set and there are pending task exceptions, another task exception handler call is made
immediately following tk_end_tex. Moreover, for that reason a task exception handler is called without restoring the stack,
giving rise to possible stack overflow.
 Ordinarily tk_end_tex (FALSE) can be used, and processing looped as illustrated below while there are task exceptions
pending.

void texhdr(INT texcd)
{

if (texcd == 0) tk_exd_tsk();
do {

/*

AMP T-Kernel Specification / Ver. 1.00.00

 93 TEF021-S001-01.00.00/en

Task exception handling
*/

} while ((texcd = tk_end_tex(FALSE)) > 0);
}

 Strictly speaking, if a task exception were to occur during the interval after 0 is returned by tk_ena_tex ending the loop and
before exit from texhdr, the possibility exists of reentering texhdr without restoring the stack. Since task exceptions are software
driven, however, ordinarily they do not occur with no relation to tasks; so in practice this is not a problem.

[Items Concerning AMP T-Kernel]

There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 94 TEF021-S001-01.00.00/en

Reference Task Exception Status tk_ref_tex

tk_ref_tex:Reference Task Exception Status

[C Language Interface]

 ER ercd = tk_ref_tex (ID tskid, T_RTEX *pk_rtex) ;

[Parameters]

ID tskid Task ID
T_RTEX* pk_rtex Address of packet for returning task exception status

[Return Parameters]

ER ercd Error code
 The contents of pk_rtex
 UINT pendtex Pending task exceptions
 UINT texmask Allowed task exceptions
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_PAR Parameter error (the return parameter packet address cannot be used)

E_DOMAIN Task for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Gets the status of task exceptions for the task specified in tskid.
 pendtex indicates the currently pending task exceptions. A raised task exception is indicated in pendtex from the time the task
exception is raised until its task exception handler is called.
 texmask indicates allowed task exceptions.

 Both pendtex and texmask are bit arrays of the form 1 << task exception code.
 The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when a system call is issued from
a task-independent portion and tskid = TSK_SELF = 0 is specified, error code E_ID is returned.

[Items Concerning AMP T-Kernel]

Task exception functions cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the task of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified task cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 95 TEF021-S001-01.00.00/en

4.4 Synchronization and Communication Functions

 Synchronization and communication functions use objects independent of tasks to synchronize tasks and achieve
communication between tasks. The objects available for these purposes include semaphores, event flags and mailboxes.

4.4.1 Semaphore

 A semaphore is an object indicating the availability of a resource and its quantity as a numerical value. A semaphore is used
to realize mutual exclusion control and synchronization when using a resource. Functions are provided for creating and deleting
a semaphore, acquiring and returning resources corresponding to semaphores, and referencing semaphore status. A semaphore
is an object identified by an ID number called a semaphore ID.

 A semaphore contains a resource count indicating whether the corresponding resource exists and in what quantity, and a
queue of tasks waiting to acquire the resource. When a task (the task making event notification) returns m resources, it
increments the semaphore resource count by m. When a task (the task waiting for an event) acquires n resources, it decreases
the semaphore resource count by n. If the number of semaphore resources is insufficient (i.e., further reducing the semaphore
resource count would cause it to become a negative value), a task attempting to acquire resources goes into WAIT state until the
next time resources are returned. A task waiting for semaphore resources is put in the semaphore queue.
 To prevent too many resources from being returned to a semaphore, a maximum resource count can be set for each
semaphore. An error is reported if it is attempted to return resources to a semaphore that would cause this maximum count to be
exceeded.

In AMP T-Kernel, access to semaphores on the AMP T-Kernels of other processors is possible as its own AMP T-Kernel. In
other words, they can be used for synchronization and the communication between processors. Moreover, access protection is
applied to all system calls that specify a semaphore ID.

System calls that can be used between processors are summarized in the table below. For more details refer to the explanation
for each system call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_cre_sem Create Semaphore × ×

tk_del_sem Delete Semaphore × ×

tk_sig_sem Signal Semaphore ○ �

tk_wai_sem Wait for Semaphore Resource ○ �

tk_ref_sem Reference Semaphore Status ○ �
Different from T-Kernel 1.00 Specification ○:No ×:Yes �: Only different in that E_DACV error returns by the access

protection

AMP T-Kernel Specification / Ver. 1.00.00

 96 TEF021-S001-01.00.00/en

Create Semaphore tk_cre_sem

 tk_cre_sem:Create Semaphore

[C Language Interface]

 ID semid = tk_cre_sem (T_CSEM *pk_csem) ;

[Parameters]

T_CSEM* pk_csem Packet to Create Semaphore Information about the semaphore to be created

 pk_csem detail:
 VP exinf ExtendedInformation Extended information
 ATR sematr SemaphoreAttribute Semaphore attributes
 INT isemcnt InitialSemaphoreCount Initial semaphore count
 INT maxsem MaximumSemaphoreCount Initial semaphore count
 ID domid DomainID Domain ID
 UB oname[8] Object name Object name
 ──(Other implementation-dependent parameters may be added beyond this point.))──

[Return Parameters]

ID semid SemaphoreID Semaphore ID
 or ErrorCode Error Code

[[Error Codes]
 E_NOMEM Insufficient memory (memory for control block cannot be allocated)
 E_LIMIT Semaphore count exceeds the system limit
 E_RSATR Reserved attribute (sematr is invalid or cannot be used)
 E_PAR Parameter error (pk_csem is invalid; isemcnt or maxsem is negative or invalid)
 E_ID Invalid ID number (domid is invalid or cannot be used)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_DOMAIN Domain of another AMP T-Kernel was specified
 E_ONAME Specified object name has already been used

[Description]
 Creates a semaphore, assigning it to a semaphore ID. This system call allocates a control block to the created semaphore,
setting the initial count to isemcnt and maximum count (upper limit) to maxsem. It must be possible to set maxsem to at least
65535. Whether values above 65536 can be set is implementation-dependent.

In AMP T-Kernel, semaphores cannot be created on other AMP T-Kernels. Only semaphores of the AMP T-Kernel where this
call was executed can be created.
 exinf can be used freely by the user to store miscellaneous information about the created semaphore. The information set in
this parameter can be referenced by tk_ref_sem. If a larger area is needed forindicating user information, or if the information
needs to be changed after the semaphore is created, this can be done by allocating separate memory for this purpose and putting
the memory packet address in exinf. The OS pays no attention to the contents of exinf.
 sematr indicates system attributes in its low bits and implementation-dependent information in the high bits. The system
attributes part of sematr is as follows.

sematr:= (TA_TFIFO || TA_TPRI) | (TA_FIRST || TA_CNT) | [TA_ONAME] | [TA_NODISWAI]
 | [TA_DOMID] | [(TA_PROTECTED || TA_PRIVATE || TA_PUBLIC)]

 TA_TFIFO Tasks are queued in FIFO order
 TA_TPRI Tasks are queued in priority order
 TA_FIRST The first task in the queue has precedence
 TA_CNT Tasks with fewer requests have precedence
 TA_ONAME Specifies an object name

AMP T-Kernel Specification / Ver. 1.00.00

 97 TEF021-S001-01.00.00/en

 TA_NODISWAI Wait disabling by tk_dis_wai is prohibited
 TA_DOMID Specifies the domain to which the task belongs
 TA_PROTECTED Sets the access protection attribute to protect
 TA_PRIVATE Sets the access protection attribute to private
 TA_PUBLIC Sets the access protection attribute to public

 The queuing order of tasks waiting for a semaphore can be specified in TA_TFIFO or TA_TPRI. If the attribute is TA_TFIFO,
tasks are ordered by FIFO, whereas TA_TPRI specifies queuing of tasks in order of their priority setting.
 TA_FIRST and TA_CNT specify precedence of resource acquisition. TA_FIRST and TA_CNT do not change the order of the
queue, which is determined by TA_TFIFO or TA_TPRI.
 When TA_FIRST is specified, resources are allocated starting from the first task in the queue regardless of request count. As
long as the first task in the queue cannot obtain the requested number of resources, tasks behind it in the queue are prevented
from obtaining resources.
 TA_CNT means resources are assigned based on the order in which tasks are able to obtain the requested number of
resources. The request counts are checked starting from the first task in the queue, and tasks to which their requested amounts
can be allocated receive the resources. This is not the same as allocating in order of fewest requests.

When TA_ONAME is specified, oname is valid and is set as the object name. When TA_ONAME is not specified, the object
name is not set. The object name must be unique within the domain to which the semaphore belongs. When an object name that
has already been used with another semaphore is specified, error E_ONAME is returned. When the length of the character
string specified for oname is 0 (initial character is termination 0), the object name is not set regardless of the specification of
TA_ONAME.

When TA_DOMID is specified, domid is valid, and the domain of domid is set as the domain to which it belongs. When
TA_DOMID is not specified, domid is ignored and is the domain to which the kernel domain belongs. The domain ID
specifiable by domid is a kernel domain of the AMP T-Kernel where this system call is executed or a domain with a lower
position in the hierarchy. When a domain of another AMP T-Kernel is specified, error E_DOMAIN is returned.

TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC specify the access protection attribute of the semaphore. When either of
the access protection attributes is not specified, the access protection is set to the public attribute. In the combination of the
domain to which the task belongs and the access protection attribute, semaphores that invoking tasks cannot access due to
access protection cannot be created. When the corresponding specification is done, E_PAR is returned.

 #define TA_TFIFO 0x00000000 /* manage queue by FIFO */
 #define TA_TPRI 0x00000001 /* manage queue by priority */
 #define TA_FIRST 0x00000000 /* first task in queue has precede nce */
 #define TA_CNT 0x00000002 /* tasks with fewer requests have precedence */
 #define TA_ONAME 0x00000040 /* Object name is specified */
 #define TA_NODISWAI 0x00000080 /* reject wait disabling */
 #define TA_DOMID 0x00010000 /* specify the domain */
 #define TA_PRIVATE 0x00040000 /* set the protection attribute to private */
 #define TA_PROTECTED 0x00080000 /* set the protection attribute to protect*/
 #define TA_PUBLIC 0x00000000 /* set the protection attribute to public */

[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting objects etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors. .

Differences with the T-Kernel 1.00 Specification are as follows.

 TA_DOMID, TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC were added to the semaphore attribute, and the
domain to which it belongs and the access protection attribute are specifiable.

 The DS object name was abolished, and replaced by the establishment of the object name. While the former was a name
for debugging, the latter is a name which can be used in general for searching domain ID's etc. The object name cannot
use the same name with the same type of object in the same domain.

AMP T-Kernel Specification / Ver. 1.00.00

 98 TEF021-S001-01.00.00/en

Delete Semaphore tk_del_sem

 tk_del_sem:Delete Semaphore

[C Language Interface]

 ER ercd = tk_del_sem (ID semid) ;

[Parameters]

 ID semid SemaphoreID Semaphore ID

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (semid is invalid or cannot be used)
 E_NOEXS Object does not exist (the semaphore specified in semid does not exist)
 E_DOMAIN Semaphore for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Deletes the semaphore specified in semid.
 The semaphore ID and control block area are released as a result of this system call.
 This system call completes normally even if there is a task waiting on the semaphore, but error code E_DLT is returned to the
task in WAIT state.
 This system call cannot specify the semaphores of other AMP T-Kernels. Only semaphores on the same AMP T-Kernel can
be deleted.
 Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting objects etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors. .

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the semaphore of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified semaphore cannot be accessed due to access protection, E_DACV is returned.

When a task waiting for condition fulfillment in the target semaphore is a task of another AMP T-Kernel, communication

between processors occurs during semaphore deletion processing.

AMP T-Kernel Specification / Ver. 1.00.00

 99 TEF021-S001-01.00.00/en

Signal Semaphore tk_sig_sem

 tk_sig_sem:Signal Semaphore

[C Language Interface]

 ER ercd = tk_sig_sem (ID semid, INT cnt) ;

[Parameters]

 ID semid SemaphoreID Semaphore ID
 INT cnt Resource return count

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (semid is invalid or cannot be used)
 E_NOEXS Object does not exist (the semaphore specified in semid does not exist)
 E_QOVR Queuing or nesting overflow (semcnt is higher than the limit)
 E_PAR Parameter error (cnt <= 0)
 E_DACV Access protection violation

[Description]
 Returns to the semaphore specified in semid the number of resources indicated in cnt. If there is a task waiting for the
semaphore, its request count is checked and resources allocated if possible. A task that has been allocated resources goes to
READY state.
 . If the semaphore count increases to the point where the maximum count (maxcnt) would be exceeded by the return of more
resources, error code E_QOVR is returned. In this case, no resources are returned and the count (semcnt) does not change.
 This system call can specify the semaphores of other AMP T-Kernels.

Access protection is applied to this system call.

[Additional Notes]
 An error is not returned even if semcnt exceeds the semaphore initial count (isemcnt). When semaphores are used for
synchronization (in place of tk_wup_tsk and tk_slp_tsk) and not for mutual exclusion control, the semaphore count (semcnt)
will sometimes exceed the initial setting (isemcnt). The semaphore function can be used for mutual exclusion control by setting
isemcnt and the maximum semaphore count (maxsem) to the same value and checking for failure of mutual exclusion by
catching E_QVR.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified semaphore cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 100 TEF021-S001-01.00.00/en

Wait on Semaphore tk_wai_sem

 tk_wai_sem:Wait on Semaphore

[C Language Interface]

 ER ercd = tk_wai_sem (ID semid, INT cnt, TMO tmout) ;

[Parameters]

 ID semid SemaphoreID Semaphore ID
 INT cnt Resource request count
 TMO tmout Timeout timeout

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

E_OK Normal completion
E_ID Invalid ID number (semid is invalid or cannot be used)
E_NOEXS Object does not exist (the semaphore specified in semid does not exist)
E_PAR Parameter error (tmout <= (-2), cnt <= 0)
E_DLT The object being waited for was deleted (the specified semaphore was deleted while waiting)
E_RLWAI Wait state released (tk_rel_wai received in wait state)
E_DISWAI Wait released due to disabled state
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion or in dispatch disabled state)
E_DACV Access protection violation

[Description]
 From the semaphore specified in semid, the number of resources indicated in cnt. If the requested resources can be allocated,
the task issuing this system call does not enter WAIT state but continues executing. In this case, the semaphore count (semcnt)
is decreased by the value of cnt. If the resources are not available, the task issuing this system call enters WAIT state, and is put
in the queue of tasks waiting for the semaphore. The semaphore count (semcnt) for this semaphore does not change in this case.
 A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition is met
(tk_sig_sem is not executed), the system call terminates returning timeout error code E_TMOUT.
 Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for system time (= 1 ms).

 When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned without
entering WAIT state even if no resources are acquired. When TMO_FEVR = (-1) is set in tmout, this means infinity was
specified as the timeout value and the task continues to wait for resource acquisition without timing out.

This system call can specify the semaphores of other AMP T-Kernels.
Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified semaphore cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 101 TEF021-S001-01.00.00/en

Reference Semaphore Status tk_ref_sem

 tk_ref_sem:Reference Semaphore Status

[C Language Interface]

 ER ercd = tk_ref_sem (ID semid, T_RSEM *pk_rsem) ;

[Parameters]

 ID semid SemaphoreID Semaphore ID
 T_RSEM* pk_rsem Packet to Refer Semaphore Address of packet for returning status information

[Return Parameters]

 ER ercd ErrorCode Error code

 The contents of pk_rsem
 VP exinf ExtendedInformation Extended information
 ID wtsk WaitTaskInformation Waiting task information
 INT semcnt SemaphoreCount Semaphore count
 ──(Other implementation-dependent parameters may be added beyond this point.))──

[Error Codes]

E_OK Normal completion
E_ID Invalid ID number (semid is invalid or cannot be used)
E_NOEXS Object does not exist (the semaphore specified in semid does not exist)
E_PAR Parameter error (address of the return parameter packet cannot be used)
E_DACV Access protection violation

[Description]
 References the status of the semaphore specified in semid, passing in the return parameters the current semaphore count
(semcnt), information on tasks waiting for the semaphore (wtsk), and extended information (exinf).
 wtsk indicates the ID of a task waiting for the semaphore. If there are two or more such tasks, the ID of the task at the head of
the queue is returned. If there are no waiting tasks, wtsk = 0 is returned.
 If the specified semaphore does not exist, error code E_NOEXS is returned.
 This system call can specify the semaphores of other AMP T-Kernels.

Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified semaphore cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 102 TEF021-S001-01.00.00/en

4.4.2 Event Flag

 An event flag is an object used for synchronization, consisting of a pattern of bits used as flags to indicate the existence of
the corresponding event. Functions are provided for creating and deleting an event flag, for event flag setting and clearing,
event flag waiting, and referring event flag status. An event flag is identified by an ID number, called an event flag ID.
 In addition to the bit pattern indicating the existence of corresponding events, an event flag has a queue of tasks waiting for
the event flag. The event flag bit pattern is sometimes simply called event flag. The event notifier sets or clears the specified
bits of the event flag. A task can be made to wait for all or some of the event flag bits to be set. A task waiting for an event flag
is put in the queue of that event flag.

In AMP T-Kernel, access to event flags on the AMP T-Kernels of other processors is possible as its own AMP T-Kernel. In
other words, they can be used for synchronization and the communication between processors. Moreover, access protection is
applied to all system calls that specify an event flag ID.

System calls that can be used between processors are summarized in the table below. For more details refer to the explanation
for each system call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_cre_flg Create Event Flag × ×

tk_del_flg Delete Event Flag × ×

tk_set_flg Set Event Flag ○ �

tk_clr_flg Clear Event Flag ○ �

tk_wai_flg Wait Event Flag ○ �

tk_ref_flg Reference Event Flag Status ○ �
Different from T-Kernel 1.00 Specification ○:No X:Yes �: Only different in that E_DACV error returns by the access

protection

AMP T-Kernel Specification / Ver. 1.00.00

 103 TEF021-S001-01.00.00/en

Create Event Flag tk_cre_flg

 tk_cre_flg:Create EventFlag

[C Language Interface]

 ID flgid = tk_cre_flg (T_CFLG *pk_cflg) ;

[Parameters]

 T_CFLG* pk_cflg Packet to Create EventFlag Information about the event flag to be created

 The contents of pk_cflg
 VP exinf ExtendedInformation Extended information
 ATR flgatr EventFlagAttribute Event flag attributes
 UINT iflgptn InitialEventFlagPattern Initial event flag pattern
 ID domid DomainID Domain ID
 UB oname[8] Object name Object name
 ──(Other implementation-dependent parameters may be added beyond this point.))──

[Return Parameters]

ID flgid EventFlagID Event flag ID
 or ErrorCode Error Code

[Error Codes]

 E_NOMEM Insufficient memory (memory for control block cannot be allocated)
 E_LIMIT Number of event flags exceeds the system limit
 E_RSATR Reserved attribute (flgatr is invalid or cannot be used)
 E_PAR Parameter error (pk_cflg is invalid)

E_ID Invalid ID number (domid is invalid or cannot be used)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_DOMAIN Domain of another AMP T-Kernel was specified
 E_ONAME Specified object name has already been used

[Description]

Creates an event flag, assigning it to an event flag ID. This system call allocates a control block to the created event flag and
sets its initial value to iflgptn.

In AMP T-Kernel, event flags cannot be created on other AMP T-Kernel. Only event flags of the AMP T-Kernel where this
call was executed can be created.

In T-Kernel, one word’s worth of bits of the processor is grouped with one event flag. Operation is all in units of one word.
When the number of one word’s worth of bits of each processor is different in AMP T-Kernel, the number of the smallest bits is
the valid number of bits. In processors where one word’s worth of bits is greater than this, extra bits in the word are invalid.

exinf can be used freely by the user to store miscellaneous information about the created event flag. The information set in
this parameter can be referenced by tk_ref_flg. If a larger area is needed for indicating user information, or if the information
needs to be changed after the event flag is created, this can be done by allocating separate memory for this purpose and putting
the memory packet address in exinf. The OS pays no attention to the contents of exinf.

flgatr indicates system attributes in its low bits and implementation-dependent information in the high bits. The system
attributes part of flgatr is as follows.

flgatr:= (TA_TFIFO || TA_TPRI) | (TA_WMUL || TA_WSGL) | [TA_ONAME] | [TA_NODISWAI]
 | [TA_DOMID] | [(TA_PROTECTED || TA_PRIVATE || TA_PUBLIC)]

 TA_TFIFO Tasks are queued in FIFO order
 TA_TPRI Tasks are queued in priority order
 TA_WSGL Waiting for multiple tasks is not allowed (Wait Single Task)
 TA_WMUL Waiting for multiple tasks is allowed (Wait Multiple Task)

AMP T-Kernel Specification / Ver. 1.00.00

 104 TEF021-S001-01.00.00/en

 TA_ONAME Specifies an object name
 TA_NODISWAI Wait disabling by tk_dis_wai is prohibited
 TA_DOMID Specifies the domain to which the task belongs
 TA_PROTECTED Sets the access protection attribute to protect
 TA_PRIVATE Sets the access protection attribute to private
 TA_PUBLIC Sets the access protection attribute to public

 When TA_WSGL is specified, multiple tasks cannot be in WAIT state at the same time. Specifying TA_WMUL allows
waiting by multiple tasks at the same time.
 The queuing order of tasks waiting for an event flag can be specified in TA_TFIFO or TA_TPRI. If the attribute is
TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing of tasks in order of their priority setting. When
TA_WSGL is specified, however, since tasks cannot be queued, TA_TFIFO or TA_TPRI makes no difference.
 When multiple tasks are waiting for an event flag, tasks are checked in order from the head of the queue, and the wait is
released for tasks meeting the conditions. The first task to have its WAIT state released is therefore not necessarily the first in
the queue. If multiple tasks meet the conditions, wait state is released for each of them.

When TA_ONAME is specified, oname is valid and is set as the object name. When TA_ONAME is not specified, the object
name is not set. The object name must be unique within the domain to which the event flag belongs. When an object name that
has already been used with another event flag is specified, error E_ONAME is returned. When the length of the character string
specified for oname is 0 (initial character is termination 0), the object name is not set regardless of the specification of
TA_ONAME.

When TA_DOMID is specified, domid is valid, and the domain of domid is set as the domain to which it belongs. When
TA_DOMID is not specified, domid is ignored and is the domain to which the kernel domain belongs. The domain ID
specifiable by domid is a kernel domain of the AMP T-Kernel where this system call was executed or a domain with a lower
position in the hierarchy. When a domain of another AMP T-Kernel is specified, error E_DOMAIN is returned.

TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC specify the access protection attribute of the event flag. When either of
the access protection attributes is not specified, the access protection is set to the public attribute. In the combination of the
domain to which the task belongs and the access protection attribute, event flags that invoking tasks cannot access due to access
protection cannot be created. When the corresponding specification is done, E_PAR is returned.

 #define TA_TFIFO 0x00000000 /* manage queue by FIFO */
 #define TA_TPRI 0x00000001 /* manage queue by priority */
 #define TA_WSGL 0x00000000 /* prohibit multiple task waiting */
 #define TA_WMUL 0x00000008 /* allow multiple task waiting */
 #define TA_ONAME 0x00000040 /* specify an object name */
 #define TA_NODISWAI 0x00000080 /* prohibit wait disabling */
 #define TA_DOMID 0x00010000 /* specify the domain */
 #define TA_PRIVATE 0x00040000 /* set the protection attribute to private */
 #define TA_PROTECTED 0x00080000 /* set the protection attribute to protect */
 #define TA_PUBLIC 0x00000000 /* set the protection attribute to public */

[Additional Notes]

In T-Kernel, an event flag groups one word’s worth of bits and defines it as a UINT. Since the bit width of one word depends
on the processor, the bit width of the event flag also depends on the processor. Moreover, in AMP T-Kernel, when a processor
with a different bit width exists, the smallest bit width is the effective bit width of the event flag. Therefore it is possible that not
all bits in one word can be used (some bits are invalid).

The bit width of the event flag must be noted during porting as above. However, even in the T-Kernel 1.00 Specification and
AMP T-Kernel, the bit width of the processor is 32 bits or more. Therefore, at least 32 bits are guaranteed as the bid width of
event flags.

[Items Concerning AMP T-Kernel]

Since resource management such as object creation and deletion is conducted in individual AMP T-Kernel, this call cannot be
used between processors.

Differences with the T-Kernel 1.00 Specification are as follows.

 TA_DOMID, TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC were added to the event flag attribute, and the domain
to which it belongs and the access protection attribute are specifiable.

 The DS object name was abolished, and replaced by the establishment of the object name. While the former was a name
for debugging, the latter is a name which can be used in general for searching domain ID's etc. The object name cannot
use the same name with the same type of object in the same domain.

AMP T-Kernel Specification / Ver. 1.00.00

 105 TEF021-S001-01.00.00/en

Delete Event Flag tk_del_flg

 tk_del_flg:Delete EventFlag

[C Language Interface]

 ER ercd = tk_del_flg (ID flgid) ;

[Parameters]

 ID flgid EventFlagID Event flag ID

[Return Parameters]

 ER ercd ErrorCode Error code

[[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (flgid is invalid or cannot be used)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_DOMAIN Event flag of another AMP T-Kernel was specified
 E_DACV Access protection violation

[Description]
 Deletes the event flag specified in flgid.
 Issuing this system call releases the corresponding event flag ID and control block memory space.
 This system call is completed normally even if there are tasks waiting for the event flag, but error code E_DLT is returned to
each task waiting on this event flag.
 This system call cannot specify the event flags of other AMP T-Kernels. Only event flags on the same AMP T-Kernel can be
deleted.
Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since resource management such as object creation and deletion is conducted in individual AMP T-Kernel, this call cannot be
used between processors.

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the event flag of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified event flag cannot be accessed due to access protection, E_DACV is returned.

When the task waiting for condition fulfillment in the target event flag is a task of other AMP T-Kernel, communication

between processors occurs during event flag deletion processing.

AMP T-Kernel Specification / Ver. 1.00.00

 106 TEF021-S001-01.00.00/en

Set Event Flag tk_set_flg
Clear Event Flag tk_clr_flg

 tk_set_flg:Set EventFlag
 tk_clr_flg:Clear EventFlag

[C Language Interface]

 ER ercd = tk_set_flg (ID flgid, UINT setptn) ;
 ER ercd = tk_clr_flg (ID flgid, UINT clrptn) ;

[Parameters (tk_set_flg)]

 ID flgid EventFlagID Event flag ID
 UINT setptn SetBitPattern Bit pattern to be set

[Parameters (tk_clr_flg)]

 ID flgid EventFlagID Event flag ID
 UIN T clrptn ClearBitPattern Bit pattern to be cleared

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (flgid is invalid or cannot be used)
 E_NOEXS Object does not exist (the event flag specified in flgid does not exist)
 E_DACV Access protection violation

[Description]
 tk_set_flg sets the bits indicated in setptn in the one-word event flag specified in flgid. i.e., a logical sum is taken of the
values of the event flag specified in flgid and the values indicated in setptn. tk_clr_flg clears the bits of the one-word event flag
based on the corresponding zero bits of clrptn. i.e., a logical product is taken of the values of the event flag specified in flgid
and the values indicated in clrptn.
 After event flag values are changed by tk_set_flg, if the condition for releasing the wait state of a task that called tk_wai_flg
is met, the WAIT state of that task is cleared, putting it in RUN state or READY state (or SUSPEND state if the waiting task
was in WAIT-SUSPEND state).
 Issuing tk_clr_flg never results in wait conditions being released for a task waiting for the specified event flag; thus,
dispatching never occurs as a result of calling tk_clr_flg.
 Nothing will happen to the event flag if all bits of setptn are cleared to 0 with tk_set_flg or if all bits of clrptn are set to 1
with tk_clr_flg. No error will result in either case.
 Multiple tasks can wait for a single event flag if that event flag has the TA_WMUL attribute. The event flag in that case has a
queue for the waiting tasks. A single tk_set_flg call for such an event flag may result in the release of multiple waiting tasks.

This system call can specify the event flags of other AMP T-Kernels.
Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (Between AMP T-Kernel).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified event flag cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 107 TEF021-S001-01.00.00/en

Wait Event Flag tk_wai_flg

 tk_wai_flg:Wait EventFlag

[C Language Interface]

 ER ercd = tk_wai_flg (ID flgid, UINT waiptn, UINT wfmode, UINT *p_flgptn, TMO tmout) ;

[Parameters]

 ID flgid EventFlagID Event flag ID
 UINT waiptn WaitBitPattern Wait bit pattern
 UINT wfmode WaitEventFlagMode Wait release condition
 TMO tmout Timeout timeout

[Return Parameters]

 ER ercd ErrorCode Error code
 UINT flgptn EventFlagBitPattern Event flag bit pattern

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (flgid is invalid or cannot be used)
 E_NOEXS Object does not exist (the event flag specified in flgid does not exist)
 E_PAR Parameter error (waiptn = 0, wfmode is invalid, or tmout <= (-2))
 E_OBJ Invalid object state (multiple tasks are waiting for an event flag with TA_WSGL attribute)
 E_DLT The object being waited for was deleted (the specified event flag was deleted while waiting)
 E_RLWAI Wait state released (tk_rel_wai received in wait state)
 E_DISWAI Wait released due to disabled state
 E_TMOUT Polling failed or timeout
 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)
 E_DACV Access protection violation

[Description]

 Waits for the event flag specified in flgid to be set, fulfilling the wait release condition specified in wfmode.

 If the event flag specified in flgid already meets the wait release condition set in wfmode, the waiting task continues
executing without going to WAIT state.
 wfmode is specified as follows.

wfmode := (TWF_ANDW || TWF_ORW) ｜ [TWF_CLR || TWF_BITCLR]
 TWF_ANDW 0x00 AND wait condition
 TWF_ORW 0x01 OR wait condition
 TWF_CLR 0x10 Clear all
 TWF_BITCLR 0x20 Clear condition bit only

 If TWF_ORW is specified, the issuing task waits for any of the bits specified in waiptn to be set for the event flag specified
in flgid (OR wait). If TWF_ANDW is specified, the issuing task will wait for all of the bits specified in waiptn to be set for the
event flag specified in flgid (AND wait).
 If TWF_CLR specification is not specified, the event flag values will remain unchanged even after the conditions have been
satisfied and the task has been released from WAIT state. If TWF_CLR is specified, all bits of the event flag will be cleared to 0
once wait conditions of the waiting task have been met. If TWF_BITCLR is specified, then when the conditions are met and the
task is released from WAIT state, only the bits matching the event flag wait release conditions are cleared to 0 (event flag
values &= ~wait release conditions).
 The return parameter flgptn returns the value of the event flag after the WAIT state of a task has been released due to this
system call. If TWF_CLR or TWF_BITCLR was specified, the value before event flag bits were cleared is returned. The value
returned by flgptn fulfills the wait release conditions of this system call. The contents of flgptn are indeterminate if the wait is
released due to other reasons such as timeout.

AMP T-Kernel Specification / Ver. 1.00.00

 108 TEF021-S001-01.00.00/en

 A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition is met, the
system call terminates, returning timeout error code E_TMOUT.
 Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for system time (= 1 ms).

 When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned without
entering WAIT state even if the condition is not met. When TMO_FEVR = (-1) is set in tmout, this means infinity was specified
as the timeout value, and the task continues to wait for the condition to be met without timing out.
In the case of a timeout, the event flag bits are not cleared even if TWF_CLR or TWF_BITCLR was specified.
 Setting waiptn to 0 results in Parameter error E_PAR.

 A task cannot execute tk_wai_flg for an event flag having the TA_WSGL attribute while another task is waiting for it. Error
code E_OBJ will be returned for the task issuing the subsequent tk_wai_flg, regardless of whether that task would have gone to
WAIT state; i.e., regardless of whether the wait release conditions would be met.
If an event flag has the TA_WMUL attribute, multiple tasks can wait for it at the same time. Waiting tasks can be queued, and
the WAIT states of multiple tasks can be released by issuing tk_set_flg just once.
 If multiple tasks are queued for an event flag with TA_WMUL attribute, the behavior is as follows.

 - Tasks are queued in either FIFO or priority order. (Release of wait state does not always start from the head of the queue,
however, depending on factors such as waiptn and wfmode settings.)

 - If TWF_CLR or TWF_BITCLR was specified by a task in the queue, the event flag is cleared when that task is released
from WAIT state.
 - Tasks later in the queue than a task specifying TWF_CLR or TWF_BITCLR will see the event flag after it has already been
cleared.

 If multiple tasks having the same priority are simultaneously released from waiting as a result of tk_set_flg, the order of tasks
in the ready queue (precedence) after release will continue to be the same as their original order in the event flag queue.
 This system call can specify the event flags of other AMP T-Kernels.

Access protection is applied to this system call.

[Additional Notes]
 If a logical sum of all bits is specified as the wait release condition when tk_wai_flg is called (waiptn=0xfff... ff,
wfmode=TWF_ORW), it is possible to transfer messages using one-word bit patterns in combination with tk_set_flg. However,
it is not possible to send a message containing only 0s for all bits. Moreover, if the next message is sent before a previous
message has been read by tk_wai_flg, the previous message will be lost. i.e., message queuing is not possible.
 Since setting waiptn = 0 will result in an E_PAR error, it is guaranteed that the waiptn of tasks waiting for an event flag will
not be 0. The result is that if tk_set_flg sets all bits of an event flag to 1, the task at the head of the queue will always be
released from waiting no matter what its wait condition is.
 The ability to have multiple tasks wait for the same event flag is useful in situations like the following. Suppose, for example,
that Task B and Task C are waiting for tk_wai_flg calls (2) and (3) until Task A issues (1) tk_set_flg. If multiple tasks are
allowed to wait for the event flag, the result will be the same regardless of the order in which system calls (1)(2)(3) are
executed (see Figure 4.1). On the other hand, if multiple task waiting is not allowed and system calls are executed in the order
(2), (3), (1), an E_OBJ error will result from the execution of (3) tk_wai_flg.

AMP T-Kernel Specification / Ver. 1.00.00

 109 TEF021-S001-01.00.00/en

 [Task A] [Task B] [Task C]
 │ │ │
 │ │ │
 │ │ │
 (1)tk_set_flg (2)tk_wai_flg (3)tk_wai_flg

 │ │(no clear) │(no clear)
 │ │ │

 │ │ │

[Figure 10] Multiple Tasks Waiting for One Event Flag

[Rationale for the Specification]
 The reason for returning E_PAR error for specifying waiptn = 0 is that if waiptn = 0 were allowed, it would not be possible to
get out of WAIT state regardless of the subsequent event flag values.

[Items Concerning AMP T-Kernel]

This call can be used between processors (Between AMP T-Kernel).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified event flag cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 110 TEF021-S001-01.00.00/en

 Reference Event Flag Status tk_ref_flg

 tk_ref_flg:Reference EventFlag Status

[C Language Interface]

 ER ercd = tk_ref_flg (ID flgid, T_RFLG *pk_rflg) ;

[Parameters]

 ID flgid EventFlagID Event flag ID
 T_RFLG* pk_rflg Packet to Refer Eventflag Address of packet for returning status information

[Return Parameters]

 ER ercd ErrorCode Error code

 The contents of pk_rflg
 VP exinf ExtendedInformation Extended information
 ID wtsk WaitTaskInformation Waiting task information
 UINT flgptn EventFlagBitPattern Event flag bit pattern
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (flgid is invalid or cannot be used)
 E_NOEXS Object does not exist (the event flag specified in flgid does not exist)
 E_PAR Parameter error (the address of the return parameter packet cannot be used)
 E_DACV Access protection violation

[Description]
 References the status of the event flag specified in flgid, passing in the return parameters the current flag pattern (flgptn),
waiting task information (wtsk), and extended information (exinf).
 wtsk returns the ID of a task waiting for this event flag. If more than one task is waiting (only when the TA_WMUL was
specified), the ID of the first task in the queue is returned. If there are no waiting tasks, wtsk = 0 is returned.
 If the specified event flag does not exist, error code E_NOEXS is returned.
 This system call can specify the event flags of other AMP T-Kernels.

Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (Between AMP T-Kernel).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified event flag cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 111 TEF021-S001-01.00.00/en

4.4.3 Mailbox

 A mailbox is an object used to achieve synchronization and communication by passing messages in system (shared) memory
space. Functions are provided for creating and deleting a mailbox, sending and receiving messages in a mailbox, and
referencing the mailbox status. A mailbox is an object identified by an ID number called the mailbox ID.
 A mailbox has a message queue for sent messages, and a task queue for tasks waiting to receive messages. At the message
sending end (making event notification), messages to be sent go in the message queue. On the message receiving end (waiting
for event notification), a task fetches one message from the message queue. If there are no queued messages, the task goes to a
state of waiting to receive a message from the mailbox until the next message is sent. Tasks waiting for message receipt from a
mailbox are put in the task queue of that mailbox.
 Since the contents of messages using this function are in memory shared by the sending and receiving sides, only the start
address of a message located in this shared space is actually sent and received. The contents of the messages themselves are not
copied. T-Kernel manages messages in the message queue by means of a link list. At the beginning of a message to be sent, an
application program must allocate space for link list use by T-Kernel. This area is called the message header. The message
header and the message body together are called a message packet. When a system call sends a message to a mailbox, the start
address of the message packet (pk_msg) is passed in a parameter.
 When a system call receives a message from a mailbox, the start address of the message packet is passed in a return
parameter.
 If messages are assigned a priority in the message queue, the message priority (msgpri) of each message must be specified in
the message header (see Figure 11).
 The user puts the message contents not at the beginning of the packet but after the header part (msgcont in the figure).

pk_msg →

Mesage header
* May include massage priority (msgpri)

Message content (msgcont)

[Figure 11] Format of Messages Using a Mailbox

 T-Kernel overwrites the contents of the header when a message is put in the message queue (except for the message priority
area). An application, on the other hand, must not overwrite the header of a message in the queue (including the message
priority area). The behavior if an application overwrites the message header is not defined. This restriction applies not only to
the direct writing of a message header by an application program, but also to the passing of a header address to T-Kernel and
having T-Kernel overwrite the message header with the contents. Accordingly, the behavior when a message already in the
message queue is again sent to a mailbox is undefined.

In AMP T-Kernel, access to mailboxes on the AMP T-Kernels of other processors is possible as its own AMP T-Kernel. In
other words, they can be used for synchronization and the communication between processors. However, when mailboxes are
used between processors, messages must be placed on the memory area of system space between kernels. When memory is sent
or received between processors, whether or not messages within system calls are on the memory area of system space between
kernels is checked, and if they are not, an error will be returned. Moreover, access protection is applied to all system calls that
specify a mailbox ID.

System calls that can be used between processors are summarized in the table below. For more details refer to the explanation
for each system call.

Call Name

Function

Available

Between Systems

Different from

T-Kernel 1.00

Specification

AMP T-Kernel Specification / Ver. 1.00.00

 112 TEF021-S001-01.00.00/en

tk_cre_mbx Create Mailbox × ×

tk_del_mbx Delete Mailbox × ×

tk_snd_mbx Send Message to Mailbox ○ ×

tk_rcv_mbx Receive Message from Mailbox ○ ×

tk_ref_mbx Reference Mailbox Status ○ �
Different from T-Kernel 1.00 Specification ○:No X:Yes �: Only different in that E_DACV error returns by the access

protection

[Additional Notes]
 Since the application program allocates the message header space for this mailbox function, there is no limit on the number
of messages that can be queued. A system call sending a message does not enter WAIT state.
 Memory blocks can be allocated dynamically from a fixed-size memory pool a variable-size memory pool or a statically
allocated area can be used for message packets; however, these must not be located in task space.
 Generally, a sending task allocates a memory block from a memory pool, sending that as a message packet. After a task on
the receiving end receives the message, it returns the memory block directly to its memory pool.

AMP T-Kernel Specification / Ver. 1.00.00

 113 TEF021-S001-01.00.00/en

Create Mailbox tk_cre_mbx

 tk_cre_mbx:Create Mailbox

[C Language Interface]

 ID mbxid = tk_cre_mbx (T_CMBX* pk_cmbx) ;

[Parameters]

 T_CMBX* pk_cmbx Packet to Create Mailbox Information about the mailbox to be created

 The contents of pk_cmbx
 VP exinf ExtendedInformation Extended information
 ATR mbxatr MailboxAttribute Mailbox attributes
 ID domid DomainID Domain ID
 UB oname[8] Object name object name
 ──(Other implementation-dependent parameters may be added beyond this point.))──

[Return Parameters]

 ID mbxid MailboxID Mailbox ID
 or ErrorCode Error Code

[Error Codes]

 E_NOMEM Insufficient memory (memory for the control block or buffer cannot be allocated)
 E_LIMIT Number of mailboxes exceeds the system limit
 E_RSATR Reserved attribute (mbxatr is invalid or cannot be used)
 E_PAR Parameter error (pk_cmbx is invalid)

E_ID Invalid ID number (domid is invalid or cannot be used)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_DOMAIN Domain of another AMP T-Kernel was specified
 E_ONAME Specified object name has already been used

[Description]
 Creates a mailbox, assigning it to a mailbox ID. This system call allocates a control block, etc. for the created mailbox.

In AMP T-Kernel, mailboxes cannot be created on other AMP T-Kernels. Only mailboxes of the AMP T-Kernel where this
call was executed can be created.
 exinf can be used freely by the user to store miscellaneous information about the created mailbox. The information set in this
parameter can be referenced by tk_ref_mbx. If a larger area is needed for indicating user information, or if the information
needs to be changed after the mailbox is created, this can be done by allocating separate memory for this purpose and putting
the memory packet address in exinf. The OS pays no attention to the contents of exinf.
 mbxatr indicates system attributes in its low bits and implementation-dependent information in the high bits. The system
attributes part of mbxatr is as follows.

mbxatr:= (TA_TFIFO || TA_TPRI) | (TA_MFIFO || TA_MPRI) | [TA_ONAME] | [TA_NODISWAI]
 | [TA_DOMID] | [(TA_PROTECTED || TA_PRIVATE || TA_PUBLIC)]

 TA_TFIFO Tasks are queued in FIFO order
 TA_TPRI Tasks are queued in priority order
 TA_MFIFO Messages are queued in FIFO order
 TA_MPRI Messages are queued in priority order
 TA_ONAME Specifies an object name
 TA_NODISWAI Wait disabling by tk_dis_wai is prohibited
 TA_DOMID Specifies the domain to which the task belongs
 TA_PROTECTED Sets the access protection attribute to protect
 TA_PRIVATE Sets the access protection attribute to private
 TA_PUBLIC Sets the access protection attribute to public

AMP T-Kernel Specification / Ver. 1.00.00

 114 TEF021-S001-01.00.00/en

 The queuing order of tasks waiting for a mailbox can be specified in TA_TFIFO or TA_TPRI. If the attribute is TA_TFIFO,
tasks are ordered by FIFO, whereas TA_TPRI specifies queuing of tasks in order of their priority setting.
 TA_MFIFO and TA_MPRI are used to specify the order of messages in the message queue (messages waiting to be received).
If the attribute is TA_MFIFO, messages are ordered by FIFO; TA_MPRI specifies queuing of messages in order of the priority.
Message priority is set in a special field in the message packet. Message priority is specified by positive values, with 1
indicating the highest priority and higher numbers indicating successively lower priority. The largest value that can be
expressed in the PRI type is the lowest priority. Messages having the same priority are ordered as FIFO.

When TA_ONAME is specified, oname is valid and is set as the object name. When TA_ONAME is not specified, the object
name is not set. The object name must be unique within the domain to which the mailbox belongs. When an object name that
has already been used with another mailbox is specified, error E_ONAME is returned. When the length of the character string
specified for oname is 0 (initial character is termination 0), the object name is not set regardless of the specification of
TA_ONAME.

When TA_DOMID is specified, domid is valid, and the domain of domid is set as the domain to which it belongs. When
TA_DOMID is not specified, domid is ignored and is the domain to which the kernel domain belongs. The domain ID
specifiable by domid is a kernel domain of the AMP T-Kernel where this system call was executed or a domain with a lower
position in the hierarchy. When a domain of another AMP T-Kernel is specified, error E_DOMAIN is returned.

TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC specify the access protection attribute of the mailbox. When either of
the access protection attributes is not specified, the access protection is set to the public attribute. In the combination of the
domain to which the task belongs and the access protection attribute, mailboxes that invoking tasks cannot access due to access
protection cannot be created. When the corresponding specification is done, E_PAR is returned.

 #define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
 #define TA_TPRI 0x00000001 /* manage task queue by priority */
 #define TA_MFIFO 0x00000000 /* manage message queue by FIFO */
 #define TA_MPRI 0x00000002 /* manage message queue by priority */
 #define TA_ONAME 0x00000040 /* specify an object name */
 #define TA_NODISWAI 0x00000080 /* reject wait disabling */
 #define TA_DOMID 0x00010000 /* specify the domain */
 #define TA_PRIVATE 0x00040000 /* set the protection attribute to private */
 #define TA_PROTECTED 0x00080000 /* set the protection attribute to protect */
 #define TA_PUBLIC 0x00000000 /* set the protection attribute to public*/

[Additional Notes]
 The body of a message passed by the mailbox function is located in system (shared) memory; only its start address is actually
sent and received. For this reason, a message must not be located in task space. The body of the message to be sent and received
between AMP T-Kernels must be placed on the memory area of the system space between kernels.

[Items Concerning AMP T-Kernel]

Since resource management such as object creation and deletion is conducted in individual AMP T-Kernel, this call cannot be
used between processors.

Differences with the T-Kernel 1.00 Specification are as follows.

 TA_DOMID, TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC were added to the mailbox attribute, and the domain
to which it belongs and the access protection attribute are specifiable.

 The DS object name was abolished, and replaced by the establishment of the object name. While the former was a name
for debugging, the latter is a name which can be used in general for searching domain ID's etc. The object name cannot
use the same name with the same type of object in the same domain.

AMP T-Kernel Specification / Ver. 1.00.00

 115 TEF021-S001-01.00.00/en

Delete Mailbox tk_del_mbx

 tk_del_mbx:Delete Mailbox

[C Language Interface]

 ER ercd = tk_del_mbx (ID mbxid) ;

[Parameters]

 ID mbxid MailboxID Mailbox ID

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mbxid is invalid or cannot be used)
 E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
 E_DOMAIN Mailbox of another AMP T-Kernel was specified
 E_DACV Access protection violation

[Description]

 Deletes the mailbox specified in mbxid.

 Issuing this system call releases the mailbox ID and control block memory space, etc., associated with the mailbox.
 This system call completes normally even if there are tasks waiting for messages in the deleted mailbox, but error code
E_DLT is returned to each of the tasks waiting on this mailbox. Even if there are messages in the mailbox, it is deleted without
returning an error code.
 This system call cannot specify the mailboxes of other AMP T-Kernels. Only mailboxes on the same AMP T-Kernel can be
deleted.
Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since resource management such as object creation and deletion is conducted in individual AMP T-Kernel, this call cannot be
used between processors.

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the mailbox of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified mailbox cannot be accessed due to access protection, E_DACV is returned.

When the task waiting for condition fulfillment in the target mailbox is a task of another AMP T-Kernel, communication

between processors occurs during mailbox deletion processing.

AMP T-Kernel Specification / Ver. 1.00.00

 116 TEF021-S001-01.00.00/en

Send Message to Mailbox tk_snd_mbx

 tk_snd_mbx:Send Message to Mailbox

[C Language Interface]

 ER ercd = tk_snd_mbx (ID mbxid, T_MSG *pk_msg) ;

[Parameters]

 ID mbxid MailboxID Mailbox ID
 T_MSG* pk_msg Packet of Message Message packet address

[Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mbxid is invalid or cannot be used)
 E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
 E_PAR Parameter error (pk_msg is a value that cannot be used)
 E_DOMAIN Mailbox of another AMP T-Kernel was specified
 (Message is not on the memory area of system space between kernels)
 E_DACV Access protection violation

[Description]
 Sends the message packet having pk_msg as its start address to the mailbox specified in mbxid. The message packet contents
are not copied; only the start address (pk_msg) is passed at the time of message receipt.

 If tasks are already waiting for messages in the same mailbox, the WAIT state of the task at the head of the queue is released,
and the pk_msg passed to tk_snd_mbx is sent to that task, becoming a parameter returned by tk_rcv_mbx. If there are no tasks
waiting for messages in the specified mailbox, the sent message goes in the message queue of that mailbox. In neither case does
the task issuing tk_snd_mbx enter WAIT state.
pk_msg is the start address of the packet containing the message, including its header. The message header has the following
format.

typedef struct t_msg {

? ? /* Impleme ntation-dep endent cont ents (fixed size) */
} T_MSG;
typedef struct t_msg_pri {
 T_MSG msgque; /* message queue area */
 PRI msgpri; /* message priority */
} T_MSG_PRI;

 The message header is T_MSG (if TA_MFIFO attribute is specified) or T_MSG_PRI (if TA_MPRI attribute is specified). In
either case, the message header has a fixed size, which can be obtained by size of (T_MSG) or size of (T_MSG_PRI).
 The actual message must be put in the area after the header. There is no limit on message size, which may be of variable
length.
 This system call can specify the mailboxes of other AMP T-Kernels. However, the body of messages to be sent to mailboxes
on other AMP T-Kernels must be on the memory area of system space between kernels. If the start address of the message
(pk_msg value) is not on the memory area of system space between kernels, E_DOMAIN is returned.
 Access protection is applied to this system call.

[Additional Notes]

AMP T-Kernel Specification / Ver. 1.00.00

 117 TEF021-S001-01.00.00/en

 Messages are sent by tk_snd_mbx regardless of the status of the receiving tasks. In other words, message sending is
asynchronous. What waits in the queue is not the task itself, but the sent message. So while there are queues of waiting
messages and receiving tasks, the sending task does not go to WAIT state.

[Items Concerning AMP T-Kernel]

This call can be used between processors (Between AMP T-Kernel).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified mailbox cannot be accessed due to access protection, E_DACV is returned.
・ When messages which are not on the memory area of system space between kernels are sent to mailboxes on other

processors, E_DOMAIN is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 118 TEF021-S001-01.00.00/en

Receive Message from Mailbox tk_rcv_mbx

 tk_rcv_mbx:Receive Message from Mailbox

[C Language Interface]

 ER ercd = tk_rcv_mbx (ID mbxid, T_MSG **ppk_msg, TMO tmout) ;

[Parameters]

 ID mbxid MailboxID Mailbox ID
 TMO tmout Timeout timeout

[Return Parameters]

 ER ercd ErrorCode Error code
 T_MSG* pk_msg Packet of Message Start address of message packet

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mbxid is invalid or cannot be used)
 E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
 E_PAR Parameter error (tmout <= (-2))
 E_DLT The object being waited for was deleted (the mailbox was deleted while waiting)
 E_RLWAI Wait state released (tk_rel_wai received in wait state)
 E_DISWAI Wait released due to disabled state
 E_TMOUT Polling failed or timeout
 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)
 E_DOMAIN Mailbox of another AMP T-Kernel was specified
 (Message is not on the memory area of system space between kernels)
 E_DACV Access protection violation

[Description]
 Receives a message from the mailbox specified in mbxid.
 If no messages have been sent to the mailbox (the message queue is empty), the task issuing this system call enters WAIT
state and is queued for message arrival. If there are messages in the mailbox, the task issuing this system call fetches the first
message in the message queue and passes it in the return parameter pk_msg.
 A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition is met (no
message arrives), the system call terminates, returning timeout error code E_TMOUT.
 Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for system time (= 1 ms).
 When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned without
entering WAIT state even if no message arrives. When TMO_FEVR = (-1) is set in tmout, this means infinity was specified as
the timeout value, and the task continues to wait for message arrival without timing out.
 This system call can specify the mailboxes of other AMP T-Kernels. However, the body of messages to be received from
mailboxes on other AMP T-Kernels must be on the memory area of system space between kernels. When the message to be
received is not on the memory area of system space between kernels, E_DOMAIN is returned. In this case, the message is
saved in the mailbox.
 Access protection is applied to this system call.

[Additional Notes]
 pk_msg is the start address of the packet containing the message, including header. The message header is T_MSG (if
TA_MFIFO attribute is specified) or T_MSG_PRI (if TA_MPRI attribute is specified).

[Items Concerning AMP T-Kernel]

This call can be used between processors (Between AMP T-Kernel).
Differences with the T-Kernel 1.00 Specification are as follows.

AMP T-Kernel Specification / Ver. 1.00.00

 119 TEF021-S001-01.00.00/en

・ When the specified mailbox cannot be accessed due to access protection, E_DACV is returned.
・ When messages to be received from mailboxes on other AMP T-Kernels are not on the memory area of system space

between kernels, E_DOMAIN is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 120 TEF021-S001-01.00.00/en

Reference Mailbox Status tk_ref_mbx

 tk_ref_mbx:Reference Mailbox Status

[C Language Interface]

 ER ercd = tk_ref_mbx (ID mbxid, T_RMBX *pk_rmbx) ;

[Parameters]

 ID mbxid MailboxID Mailbox ID
 T_RMBX* pk_rmbx Packet to Refer Mailbox Address of packet for returning status information

[Return Parameters]

 ER ercd ErrorCode Error code

 The contents of pk_rmbx
 VP exinf ExtendedInformation Extended information
 ID wtsk WaitTaskInformation Waiting task information

T_MSG* pk_msg Packet of Message Start address of next message packet to be received
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Error code]

 E_OK Normal completion
 E_ID Invalid ID number (mbxid is invalid or cannot be used)
 E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
 E_PAR Parameter error (the return parameter packet address cannot be used)
 E_DACV Access protection violation

[Description]
 References the status of the mailbox specified in mbxid, passing in the return parameters the next message to be received (the
first message in the message queue), waiting task information (wtsk), and extended information (exinf).
 wtsk indicates the ID of a task waiting for the mailbox. If there are multiple waiting tasks, the ID of the first task in the queue
is returned. If there are no waiting tasks, wtsk = 0 is returned.
 If the specified mailbox does not exist, error code E_NOEXS is returned.
 pk_msg indicates the message that will be received the next time tk_rcv_mbx is issued. If there are no messages in the
message queue, pk_msg = NULL is returned. At least one of pk_msg = NULL and wtsk = 0 is always true for this system call.
 This system call cannot specify the semaphores of other AMP T-Kernels.

Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (Between AMP T-Kernel).
Differences with the T-Kernel 1.00 Specification are as follows.
・ When the specified mailbox cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 121 TEF021-S001-01.00.00/en

4.5 Extended Synchronization and Communication Functions

 Extended synchronization and communication functions use objects independent of tasks to realize more sophisticated
synchronization and communication between tasks. The functions specified here include mutex, message buffer, and
rendezvous port functions.

4.5.1 Mutex

A mutex is an object for mutual exclusion control among tasks when using shared resources. A mutex can change the current
priority of a task along with the operation of mutex to prevent reversals in priorities without ceilings due to exclusive control.
However, in AMP T-Kernel, changing priority with a mutex is possible only on the same AMP T-Kernel.

Functions are provided for creating and deleting a mutex, locking and unlocking a mutex, and referencing mutex status. A
mutex is identified by an ID number called a mutex ID.

A mutex has a status (locked or unlocked) and a queue for tasks waiting to lock the mutex. For each mutex, T-Kernel keeps
track of the tasks locking it; and for each task, it keeps track of the mutexes it has locked. Before a task uses a resource, it locks
a mutex corresponding to that resource. If the mutex is already locked by another task, the task waits for the mutex to become
unlocked. Tasks in mutex lock waiting state are put in the mutex queue. When a task finishes with a resource, it unlocks the
mutex.

For each mutex, T-Kernel keeps track of the tasks locking it; and for each task, it keeps track of the mutexes it has locked.
When a task terminates and there are mutexes still locked by that task, all the mutexes are unlocked. The order in which
multiple locked mutexes are unlocked is implementation-dependent. See the description of tk unl mtx for the specific
processing involved.

Priority inheritance mutexes and priority ceiling mutexes are supported, as tools for managing the problem of unbounded
priority inversion that can occur in mutual exclusion control. A mutex with TA INHERIT(= 0x02) specified as mutex attribute
supports priority inheritance protocol, while one with TA CEILING(= 0x03) specified supports priority ceiling protocol.
However, in AMP T-Kernel, the mutex of the TA_INHERIT attribute and the TA_CEILING attribute cannot be used between
AMP T-Kernel.
A mutex with TA_INHERIT(= 0x02) specified as mutex attribute supports priority inheritance protocol, while one with
TA_CEILING(= 0x03) specified supports priority ceiling protocol. When a priority ceiling mutex is created, a ceiling priority is
assigned to it, indicating the base priority of the task having the highest base priority among the tasks able to lock that mutex. If
a task having a higher base priority than the ceiling priority of the mutex tries to lock it, error code E_ILUSE is returned. If
tk_chg_pri is issued in an attempt to set the base priority of a task locking a priority ceiling mutex to a value higher than the
ceiling priority of that mutex, E_ILUSE is returned by the tk_chg_pri system call.

When these protocols are used, unbounded priority inversion is prevented by changing the current priority of the task in a
mutex operation. Strict adherence to the priority inheritance protocol and priority ceiling protocol requires that the task current
priority must always be changed to match the peak value of the following priorities. This is called strict priority control.

・ The task base priority.
・ When tasks lock priority inheritance mutexes, the current priority of the task having the highest current priority of the

tasks waiting for those mutexes.
・ When tasks lock priority ceiling mutexes, the ceiling priority of the mutex having the highest ceiling priority among

those mutexes.

Note that when the current priority of a task waiting for a priority inheritance mutex changes as the result of a base priority
change brought about by mutex operation or tk_chg_pri, it may be necessary to change the current priority of the task locking
that mutex. This is called dynamic priority inheritance. Further, if this task is waiting for another priority inheritance mutex,
dynamic priority inheritance processing may be necessary also for the task locking that mutex.

The T-Kernel specification defines, in addition to the above strict priority control, a simplified priority control limiting the
situations in which the current priority is changed.

The choice between the two is an implementation-dependent matter. In the simplified priority control, whereas all changes in
the direction of raising the task current priority are carried out, changes in the direction of lowering that priority are made only
when a task is no longer locking any mutexes. (In this case, the task current priority reverts to the base priority.) More
specifically, processing to change the current priority is needed only in the following circumstances.

・ When a task with a higher current priority than that of the task locking a priority inheritance mutex starts waiting for that

mutex.
・ When a task waiting for a priority inheritance mutex is changed to a higher current priority than that of the task locking that

mutex.

AMP T-Kernel Specification / Ver. 1.00.00

 122 TEF021-S001-01.00.00/en

・ When a task locks a priority ceiling mutex having a higher ceiling priority than the task’s current priority.
・ When a task is no longer locking any mutexes.

When the current priority of a task is changed in connection with a mutex operation, the following processing is performed.
If the task whose priority changed is in a run state, the task precedence is changed in accordance with the new priority. Its

precedence among other tasks having the same priority is implementation-dependent. Likewise, if the task whose priority
changed is waiting in a queue of some kind, its order in that queue is changed based on its new priority. Its order among other
tasks having the same priority is implementation-dependent.

In AMP T-Kernel, access to mutexes on the AMP T-Kernels of other processors is possible as its own AMP T-Kernel. In other
words, they can be used for synchronization and the communication between processors. However, the mutex of the
TA_INHERIT attribute and the TA_CEILING attribute cannot be used between processors. Moreover, access protection is
applied to all system calls that specify a mutex ID.

System calls that can be used between processors are summarized in the table below. For more details refer to the explanation
for each system call.

Call Name

Function

Available

Between Systems

Different from

T-Kernel 1.00

Specification

tk_cre_mtx Create Mutex × ×

tk_del_mtx Delete Mutex × ×

tk_loc_mtx Lock Mutex ○ ×

tk_unl_mtx Unlock Mutex ○ ×

tk_ref_mtx Reference Mutex Status ○ △

Different from T-Kernel 1.00 Specification ○:No X:Yes �: Only different in that E_DACV error returns by the access
protection

[Additional Notes]

A mutex which does not change the current task priority (TA TFIFO attribute or TA TPRI attribute) has functionality
equivalent to that of a semaphore with a maximum of one resource (binary semaphore). The main differences are that a mutex
can be unlocked only by the task that locked it, and a mutex is automatically unlocked when the task locking it terminates.

The term “priority ceiling protocol” is used here in a broad sense. The protocol described here is not the same as the algorithm
originally proposed. Strictly speaking, it is what is otherwise referred to as a highest locker protocol or by other names.

When the change in current priority of a task due to a mutex operation results in that task’s order being changed in a
priority-based queue, it may be necessary to release the waiting state of other tasks waiting for that task or for that queue.

[Rationale for the Specification]

The precedence of tasks having the same priority as the result of a change in task current priority in a mutex operation is left
as implementation-dependent, for the following reason. Depending on the application, the mutex function may lead to frequent
changes in current priority. It would not be desirable for this to result in constant task switching, which is what would happen if
the precedence were made the lowest each time among tasks of the same priority. Ideally task precedence rather than priority
should be inherited, but that results in large overhead in implementation. This aspect of the specification is therefore made an
implementation-dependent matter.

The two reasons why priority changes by mutexes are possible on the same AMP T-Kernel only in AMP T-Kernel are as
follows. First, the priority of the task has meaning in each AMP T-Kernel, and even if the priority is changed in accordance with
the priority of tasks of other AMP T-Kernels, the expected effect is not always achieved. As a policy of AMP T-Kernel, logical
functions of system calls must be equal in spite of whether or not the target of the system calls is same AMP T-Kernel, and this
policy is contradicted. Secondly, if a change in priority by the mutex is permitted between AMP T-Kernels, there is the
possibility that communication between processors occurs except when objects on other AMP T-Kernels are directly operated.
For example, when the priority of a task on the same AMP T-Kernel is changed, if the task is waiting for a mutex and another
task which is locking the mutex is operating another AMP T-Kernel, the communication between processors occurs for the
dynamic priority inheritance processing.

AMP T-Kernel Specification / Ver. 1.00.00

 123 TEF021-S001-01.00.00/en

In addition, there is also a possibility that the communication between processors for dynamic priority inheritance processing
is consecutive between AMP T-Kernel. The occurrence of this kind of difficult to anticipate communication between processors
is undesirable on real-time operations. Therefore, mutexes of the TA_INHERIT attribute and the TA_CEILING attribute that
involve priority changes of tasks cannot be used from other AMP T-Kernels.

AMP T-Kernel Specification / Ver. 1.00.00

 124 TEF021-S001-01.00.00/en

Create Mutex tk_cre_mtx

 tk_cre_mtx:Create Mutex

[C Language Interface]

 ID mtxid = tk_cre_mtx (T_CMTX *pk_cmtx) ;

[Parameters]

 T_CMTX* pk_cmtx Information about the mutex to be created
 pk_cmtx detail:
 VP exinf Extended information Extended information
 ATR mtxatr Mutex attribute Mutex attributes
 PRI ceilpri Upper limit priority of mutex Mutex attributes
 ID domid DomainID Domain ID
 UB oname[8] Object name Object name
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Return Parameters]

 ID mtxid Mutex ID
 or Error Code

[Error Codes]

 E_NOMEM Insufficient memory (memory for control block cannot be allocated)
 E_LIMIT Number of mutex exceeds the system limit
 E_RSATR Reserved attribute (mtxatr is invalid or cannot be used)
 E_PAR Parameter error (pk_cmtx or ceilpri is invalid)
 E_ID Invalid ID number (domid is invalid or cannot be used)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_DOMAIN Domain of another AMP T-Kernel was specified
 E_ONAME Specified object name has already been used

[Description]
 Creates a mutex, assigning it to a mutex ID.

In AMP T-Kernel, a mutex cannot be created on other AMP T-Kernels. Only a mutex of the AMP T-Kernel in which this call
is executed can be created.
 exinf can be used freely by the user to store miscellaneous information about the created mutex. The information set in this
parameter can be referenced by tk_ref_mtx. If a larger area is needed for indicating user information, or if the information needs
to be changed after the mutex is created, this can be done by allocating separate memory for this purpose and putting the
memory packet address in exinf. The OS pays no attention to the contents of exinf.
 mtxatr indicates system attributes in its low bits and implementation-dependent information in the high bits. The system
attributes part of mtxatr is as follows.

 mtxatr:= (TA_TFIFO || TA_TPRI || TA_INHERIT || TA_CEILING) | [TA_ONAME] | [TA_NODISWAI]
 | [TA_DOMID] | [(TA_PROTECTED || TA_PRIVATE || TA_PUBLIC)]

 TA_TFIFO Tasks are queued in FIFO order
 TA_TPRI Tasks are queued in priority order
 TA_INHERIT Priority inheritance protocol
 TA_CEILING Priority ceiling protocol
 TA_ONAME Specifies an object name
 TA_NODISWAI Wait disabling by tk_dis_wai is prohibited
 TA_DOMID Specifies the domain to which the task belongs
 TA_PROTECTED Sets the access protection attribute to protect
 TA_PRIVATE Sets the access protection attribute to private

AMP T-Kernel Specification / Ver. 1.00.00

 125 TEF021-S001-01.00.00/en

 TA_PUBLIC Sets the access protection attribute to public

 When the TA_TFIFO attribute is specified, the order of the mutex task queue is FIFO. If TA_TPRI, TA_INHERIT, or
TA_CEILING is specified, tasks are ordered by their priority. TA_INHERIT indicates that priority inheritance protocol is used,
and TA_CEILING specifies priority ceiling protocol. The mutex for the TA_CEILING and the TA_INHERIT attribute cannot
be used from other AMP T-Kernels.
 Only when TA_CEILING is specified does ceilpri have validity, setting the mutex ceiling priority.

When TA_ONAME is specified, oname is valid and is set as the object name. When TA_ONAME is not specified, the object

name is not set. The object name must be unique within the domain to which the mutex belongs. When an object name that has
already been used with another mutex is specified, error E_ONAME is returned. When the length of the character string
specified for oname is 0 (initial character is termination 0), the object name is not set regardless of the specification of
TA_ONAME.

When TA_DOMID is specified, domid is valid, and the domain of domid is set as the domain to which it belongs. When
TA_DOMID is not specified, domid is ignored and is the domain to which the kernel domain belongs. The domain ID
specifiable by domid is a kernel domain of the AMP T-Kernel where this system call was executed or a domain with a lower
position in the hierarchy. When a domain of another AMP T-Kernel is specified, error E_DOMAIN is returned.

TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC specify the access protection attribute of the mutex. When either of the
access protection attributes is not specified, the access protection is set to the public attribute. In the combination of the domain
to which the task belongs and the access protection attribute, mutexes that invoking tasks cannot access due to access protection
cannot be created. When the corresponding specification is done, E_PAR is returned.

 #define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
 #define TA_TPRI 0x00000001 /* manage task queue by priority */
 #define TA_INHERIT 0x00000002 /* priority inheritance protocol */
 #define TA_CEILING 0x00000003 /* priority ceiling protocol */
 #define TA_ONAME 0x00000040 /* specifies an object name */
 #define TA_NODISWAI 0x00000080 /* reject wait disabling */
 ##define TA_DOMID 0x00010000 /* specifies the domain */
 #define TA_PRIVATE 0x00040000 /* sets the protection attribute to private */
 #define TA_PROTECTED 0x00080000 /* sets the protection attribute to protect */
 #define TA_PUBLIC 0x00000000 /* sets the protection attribute to public*/

[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting objects etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors. .

Differences with the T-Kernel 1.00 Specification are as follows.

 TA_DOMID, TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC were added to the mutex attribute, and the domain to
which it belongs and the access protection attribute are specifiable.

 The DS object name was abolished, and replaced by the establishment of the object name. While the former was a name
for debugging, the latter is a name which can be used in general for searching domain ID's etc. The object name cannot
use the same name with the same type of object in the same domain.

AMP T-Kernel Specification / Ver. 1.00.00

 126 TEF021-S001-01.00.00/en

Delete Mutex tk_del_mtx

 tk_del_mtx:Delete Mutex

[C Language Interface]

 ER ercd = tk_del_mtx (ID mtxid) ;

[Parameters]

 ID mtxid Mutex ID

[Return Parameters]

 ER ercd Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mtxid is invalid or cannot be used)
 E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)
 E_DOMAIN Mutex for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]

 Deletes the mutex specified in mtxid.

 Issuing this system call releases the mutex ID and control block memory space allocated to the mutex..

 This system call completes normally even if there are tasks waiting to lock the deleted mutex, but error code E_DLT is
returned to each of the tasks waiting on this mutex.
 When a mutex is deleted, a task locking the mutex will have fewer locked mutexes. If the mutex was a priority inheritance
mutex or priority ceiling mutex, it is possible that the priority of the task locking it will change as a result of its deletion.
 This system call cannot specify the mutexes of other AMP T-Kernels. Only mutexes on the same AMP T-Kernel can be
deleted.
 Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting objects etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors. .

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the mutex of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified mutex cannot be accessed due to access protection, E_DACV is returned.

When a task waiting for lock in the target mutex is a task of another AMP T-Kernel, communication between processors occurs
during mutex deletion processing.

AMP T-Kernel Specification / Ver. 1.00.00

 127 TEF021-S001-01.00.00/en

Lock Mutex tk_loc_mtx

 tk_loc_mtx:Lock Mutex

[C Language Interface]

 ER ercd = tk_loc_mtx (ID mtxid, TMO tmout) ;

[Parameters]

 ID mtxid Mutex ID
 TMO tmout timeout

[Return Parameters]

 ER ercd Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mtxid is invalid or cannot be used)
 E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)
 E_PAR Parameter error (tmout <= (-2))
 E_DLT The object being waited for was deleted (the mutex was deleted while waiting for a lock)
 E_RLWAI Wait state released (tk_rel_wai received in wait state)
 E_DISWAI Wait released due to disabled state
 E_TMOUT Polling failed or timeout
 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)
 E_ILUSE Illegal use (multiple lock, or upper priority limit exceeded)
 E_DOMAIN Mutex for another AMP T-Kernel domain was specified (TA_CEILING and TA_INHERIT attribute only)
 E_DACV Access protection violation

[Description]
 Locks the mutex specified in mtxid. If the mutex can be locked immediately, the task issuing this system call continues
executing without entering WAIT state, and the mutex goes to locked status. If the mutex cannot be locked, the task issuing this
system call enters WAIT state. That is, the task is put in the queue of this mutex.
 A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition is met, the
system call terminates, returning timeout error code E_TMOUT.
 Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for system time (= 1 ms).
 When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value and E_TMOUT is returned without
entering WAIT state even if the resource cannot be locked. When TMO_FEVR = (-1) is set in tmout, this means infinity was
specified as the timeout value, and the task continues to wait until the resource can be locked by it.
 If the invoking task has already locked the specified mutex, error code E_ILUSE (multiple lock) is returned.
 If the specified mutex is a priority ceiling mutex and the base priority2 of the invoking task is higher than the ceiling priority
of the mutex, error code E_ILUSE (upper priority limit exceeded) is returned. Base priority: The task priority before it is
automatically raised by the mutex. This is the priority last set by tk_chg_pri (including while the mutex is locked), or if
tk_chg_pri has never been issued, the priority set when the task was created.

This system call can specify the mutexes of other AMP T-Kernels. However, the mutex of the TA_CEILING attribute and the
TA_INHERIT attribute cannot be used between AMP T-Kernels. In this case, E_DOMAIN is returned.
 Access protection is applied to this system call.

[Additional Notes]
・ Priority inheritance mutex (TA_INHERIT attribute)
 If the invoking task is waiting to lock a mutex and the current priority of the task currently locking that mutex is lower than
that of the invoking task, the priority of the locking task is raised to the same level as the invoking task. If the wait ends before
the waiting task can obtain a lock (due to timeout or some other reason), the priority of the task locking that mutex can be

AMP T-Kernel Specification / Ver. 1.00.00

 128 TEF021-S001-01.00.00/en

lowered (implementation-dependent option) to the highest of the following three priorities.

 (a) The highest priority among the current priorities of tasks waiting to lock the mutex.
 (b) The highest priority among all the other mutexes locked by the task currently locking this mutex.
 (c) The base priority of the locking task.

・ Priority ceiling mutex (TA_CEILING attribute)
 If the invoking task obtains a lock and its current priority is lower than the mutex ceiling priority, the priority of the invoking
task is raised to the mutex ceiling priority.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels). However, the mutex of the TA_CEILING attribute and
the TA_INHERIT attribute cannot be used between processors.

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified mutex cannot be accessed due to access protection, E_DACV is returned.
・ When the specified mutex is a mutex of the TA_CEILING attribute or the TA_INHERIT attribute on other AMP

T-Kernels, E_DOMAIN is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 129 TEF021-S001-01.00.00/en

Unlock Mutex tk_unl_mtx

 tk_unl_mtx:UnLock Mutex

[C Language Interface]

 ER ercd = tk_unl_mtx (ID mtxid) ;

[Parameters]

 ID mtxid Mutex ID

[Return Parameters]

 ER ercd Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mtxid is invalid or cannot be used)
 E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)
 E_ILUSE Illegal use (not a mutex locked by the invoking task)
 E_DOMAIN Mutex for another AMP T-Kernel domain was specified (TA_CEILING and TA_INHERIT attribute only)
 E_DACV Access protection violation

[Description]
 Unlocks the mutex specified in mtxid.
 If there are tasks waiting to lock the mutex, the WAIT state of the task at the head of the queue for that mutex is released and
that task locks the mutex.
 If a mutex that was not locked by the invoking task is specified, error code E_ILUSE is returned.
 This system call can specify the mutexes of other AMP T-Kernels. However, the mutex of the TA_CEILING attribute and the
TA_INHERIT attribute cannot be used between AMP T-Kernels. In this case, E_DOMAIN is returned.

Access protection is applied to this system call.

[Additional Notes]
 If the unlocked mutex is a priority inheritance mutex or priority ceiling mutex, task priority must be lowered as follows.
 If as a result of this operation the invoking task no longer has any locked mutexes, the invoking task priority is lowered to its
base priority.
 If the invoking task continues to have locked mutexes after this operation, the invoking task priority is lowered to whichever
of the following priority levels is highest.

 (a) The highest priority of all remaining locked mutexes.
 (b) The base priority of the task.

 However, whether or not priority is lowered in the case locked mutex remain is implementation dependent.
 If a task terminates (goes to DORMANT state or NON-EXISTENT state) without explicitly unlocking mutexes, all its locked
mutexes are automatically unlocked.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels). However, the mutex of the TA_CEILING attribute and
the TA_INHERIT attribute cannot be used between processors.

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified mutex cannot be accessed due to access protection, E_DACV is returned.
・ When the specified mutex is a mutex of the TA_CEILING attribute or the TA_INHERIT attribute on other AMP

T-Kernels, E_DOMAIN is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 130 TEF021-S001-01.00.00/en

Reference Mutex Status tk_ref_mtx

 tk_ref_mtx:Reference Mutex Status

[C Language Interface]

 ER ercd = tk_ref_mtx (ID mtxid, T_RMTX *pk_rmtx) ;

[Parameters]

 ID mtxid Mutex ID
 T_RMTX* pk_rmtx Address of packet for returning status information

[Return Parameters]

 ER ercd Error code
 pk_rmtx detail:
 VP exinf Extended information
 ID htsk ID of task locking the mutex
 ID wtsk ID of first task waiting to lock the mutex
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mtxid is invalid or cannot be used)
 E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)
 E_PAR Parameter error (the address of the return parameter packet cannot be used)
 E_DACV Access protection violation

[Description]
 References the status of the mutex specified in mtxid, passing in the return parameters the task currently locking the mutex
(htsk), the first task waiting to lock the mutex (wtsk), and extended information (exinf).

 htsk returns the ID of the task locking the mutex. If no task is locking it, htsk = 0 is returned.

 wtsk indicates the ID of a task waiting to lock the mutex. If there are multiple tasks waiting, the ID of the task at the head of
the queue is returned. If no tasks are waiting, wtsk = 0 is returned.
 If the specified mutex does not exist, error code E_NOEXS is returned.
 This system call can specify the mutexes of other AMP T-Kernels.

Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified mutex cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 131 TEF021-S001-01.00.00/en

4.5.2 Message Buffer

 A message buffer is an object for achieving synchronization and communication by the passing of variable-size messages.
Functions are provided for creating and deleting a message buffer, sending and receiving messages using a message buffer, and
referencing message buffer status. A message buffer is an object identified by an ID number called a message buffer ID.

 A message buffer keeps a queue of messages waiting to be sent (send queue) and a queue of tasks waiting for message
receipt (receive queue). It also has a message buffer space for holding sent messages. The message sender (the side making
event notification) copies to the message buffer a message it wants to send. If there is insufficient space in the message buffer
area, the message is queued for sending until enough space is available.

 A task waiting to send a message to the message buffer is put in the send queue. On the message receipt side (waiting for
event notification), one message is fetched from the message buffer. If the message buffer has no messages, the task enters
WAIT state until the next message is sent. A task waiting for receipt from a message buffer is put in the receive queue of that
message buffer.
 Synchronous messaging can be realized by setting the message buffer space size to 0. In that case, both the sending task and
receiving task wait for a system call to be invoked by each other, and the message is passed when both sides issue system calls.

In AMP T-Kernel, access to message buffers on the AMP T-Kernels of other processors is possible as its own AMP T-Kernel.
In other words, they can be used for synchronization and the communication between processors. Moreover, access protection
is applied to all system calls that specify a message buffer ID.

System calls that can be used between processors are summarized in the table below. For more details refer to the explanation
for each system call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_cre_mbf Create Message Buffer × ×

tk_del_mbf Delete Message Buffer × ×

tk_snd_mbf Send Message to Message Buffer ○ �

tk_rcv_mbf Receive Message from Message Buffer ○ �

tk_ref_mbf Get Message Buffer Status ○ �
 Different from T-Kernel 1.00 Specification ○:No X:Yes �: Only different in that E_DACV error returns by the access

protection

[Additonal Notes]
 Tasks waiting to send to a message buffer send messages in their queued order. Suppose Task A wanting to send a 40-byte
message to a message buffer, and Task B wanting to send a 10-byte message, are queued in that order. If another task receives a
message opening 20 bytes of space in the message buffer, Task B is still required to wait until Task A sends its message.
A message buffer is used to pass variable-size messages by copying them. It is the copying of messages that makes this function
different from the mailbox function. It is assumed that the message buffer will be implemented as a ring buffer.

AMP T-Kernel Specification / Ver. 1.00.00

 132 TEF021-S001-01.00.00/en

Create Message Buffer tk_cre_mbf

 tk_cre_mbf:Create MessageBuffer

[C Language Interface]

 ID mbfid = tk_cre_mbf (T_CMBF *pk_cmbf) ;

[Parameters]

 T_CMBF* pk_cmbf Packet to Create MessageBuffer Information about the message buffer to be created

 The contents of pk_cmbf
 VP exinf ExtendedInformation Extended information
 ATR mbfatr MessageBufferAttribute Message buffer attributes
 INT bufsz BufferSize Message buffer size (in bytes)
 INT maxmsz MaxMessageSize Maximum message size (in bytes)
 ID domid DomainID Domain ID
 UB oname[8] Object name Object name
 ──(Other implementation-dependent parameters may be added beyond this point.))──

[Return Parameters]

 ID mbfid MessageBufferID Message buffer ID
 or ErrorCode Error Code

[Error Codes]

 E_NOMEM Insufficient memory (memory for control block or ring buffer area cannot be allocated)
 E_LIMIT Number of message buffers exceeds the system limit
 E_RSATR Reserved attribute (mbfatr is invalid or cannot be used)
 E_PAR Parameter error (pk_cmbf is invalid, or bufsz or maxmsz is negative or invalid)
 E_ID Invalid ID number (domid is invalid or cannot be used)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_DOMAIN Domain of another AMP T-Kernel was specified
 E_ONAME Specified object name has already been used

[解説]
 Creates a message buffer, assigning it to a message buffer ID. This system call allocates a control block to the created
message buffer. Based on the information specified in bufsz, it allocates a ring buffer area for message queue use (for messages
waiting to be received).

In AMP T-Kernel, message buffers cannot be created on other AMP T-Kernels. Only message buffers of the AMP T-Kernel
where this call was executed can be created.

 A message buffer is an object for managing the sending and receiving of variable-size messages. It differs from a mailbox
(mbx) in that the contents of the variable-size messages are copied when the message is sent and received. It also has a function
for putting the sending task in WAIT state when the buffer is full.
 exinf can be used freely by the user to store miscellaneous information about the created message buffer. The information set
in this parameter can be referenced by tk_ref_mbf. If a larger area is needed for indicating user information, or if the
information needs to be changed after the message buffer is created, this can be done by allocating separate memory for this
purpose and putting the memory packet address in exinf. The OS pays no attention to the contents of exinf.
 mbfatr indicates system attributes in its low bits and implementation-dependent information in the high bits. The system
attributes part of mbfatr is as follows.

 mbfatr:= (TA_TFIFO || TA_TPRI) | [TA_ONAME] | [TA_NODISWAI]
 | [TA_DOMID] | [(TA_PROTECTED || TA_PRIVATE || TA_PUBLIC)]

AMP T-Kernel Specification / Ver. 1.00.00

 133 TEF021-S001-01.00.00/en

 TA_TFIFO Waiting tasks waiting on call are queued in FIFO order
 TA_TPRI Waiting tasks are queued in priority order
 TA_ONAME Specifies an object name
 TA_NODISWAI Wait disabling by tk_dis_wai is prohibited
 TA_PROTECTED Sets the access protection attribute to protect

TA_PRIVATE Sets the access protection attribute to private
TA_PUBLIC Sets the access protection attribute to public

 The queuing order of tasks waiting for a message to be sent when the buffer is full can be specified in TA_TFIFO or
TA_TPRI. If the attribute is TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing of tasks in order of
their priority setting. Messages themselves are queued in FIFO order only.
 Tasks waiting for message receipt from a message buffer are likewise queued in FIFO order only.

When TA_ONAME is specified, oname is valid and is set as the object name. When TA_ONAME is not specified, the object
name is not set. The object name must be unique within the domain to which the message buffer belongs. When an object name
that has already been used with another message buffer is specified, error E_ONAME is returned. When the length of the
character string specified for oname is 0 (initial character is termination 0), the object name is not set regardless of the
specification of TA_ONAME.

When TA_DOMID is specified, domid is valid, and the domain of domid is set as the domain to which it belongs. When
TA_DOMID is not specified, domid is ignored and is the domain to which the kernel domain belongs. The domain ID
specifiable by domid is a kernel domain of the AMP T-Kernel where this system call is executed or a domain with a lower
position in the hierarchy. When a domain of another AMP T-Kernel is specified, error E_DOMAIN is returned.

TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC specify the access protection attribute of the message buffer. When
either of the access protection attributes is not specified, the access protection is set to the public attribute. In the combination of
the domain to which the task belongs and the access protection attribute, message buffers that invoking tasks cannot access due
to access protection cannot be created. When the corresponding specification is done, E_PAR is returned.

 #define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
 #define TA_TPRI 0x00000001 /* manage task queue by priority */
 #define TA_ONAME 0x00000040 /* specifies an object name */
 #define TA_NODISWAI 0x00000080 /* reject wait disabling */
 #define TA_DOMID 0x00010000 /* specifies the domain */
 #define TA_PRIVATE 0x00040000 /* sets the protection attribute to private */
 #define TA_PROTECTED 0x00080000 /* sets the protection attribute to protect */
 #define TA_PUBLIC 0x00000000 /* sets the protection attribute to public*/

[Additional Notes]
 When there are multiple tasks waiting to send messages, the order in which the messages are sent when buffer space becomes
available is always in their queued order.
 If, for example, a Task A wanting to send a 30-byte message is queued with a Task B wanting to send a 10-byte message, in
the order A-B, even if 20 bytes of message buffer space becomes available, Task B never sends its message before Task A.
 The ring buffer in which messages are queued also contains information for managing each message. For this reason, the
total size of queued messages will ordinarily not be identical to the ring buffer size specified in bufsz. Normally the total
message size will be smaller than bufsz. In this sense bufsz does not strictly represent the total message capacity.

 It is possible to create a message buffer with bufsz = 0. In this case, communication using the message buffer is completely
synchronous between the sending and receiving tasks. That is, if either tk_snd_mbf or tk_rcv_mbf is executed ahead of the
other task executing the first system call goes to WAIT state. When the other system call is executed, the message is passed
(copied) and both tasks resume running.
 In the case of a bufsz = 0 message buffer, the specific functioning is as follows.

 1)In Figure 12, Task A and Task B operate asynchronously. If Task A arrives at point (1) first and executes tk_snd_mbf

(mbfid), Task A goes to send wait state until Task B arrives at point (2). If tk_ref_tsk is issued for Task A in this state,
tskwait=TTW_SMBF is returned. If, on the other hand, Task B gets to point (2) first and calls tk_rcv_mbf (mbfid), Task B
goes to receive wait state until Task A gets to point (1). If tk_ref_tsk is issued for Task B in this state,
tskwait=TTW_RMBF is returned.

 2) At the point where both Task A has executed tk_snd_mbf (mbfid) and Task B has executed tk_rcv_mbf (mbfid), a message

AMP T-Kernel Specification / Ver. 1.00.00

 134 TEF021-S001-01.00.00/en

is passed from Task A to Task B, their wait states are released and both tasks resume running.

 [Task A] [Task B]

 (1)
 tk_snd_mbf(mbfid)

 (2)

 tk_rcv_mbf(mbfid)

 Message send wait (TTW_SMBF) if wait entered at (1)
 Message receive wait (TTW_RMBF) if wait entered at (2)

[Figure 12] Synchronous Communication Using Message Buffer of bufsz =0

[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting objects etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors. .

Differences with the T-Kernel 1.00 Specification are as follows.

 TA_DOMID, TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC were added to the message buffer attribute, and the
domain to which it belongs and the access protection attribute are specifiable.

 The DS object name was abolished, and replaced by the establishment of the object name. While the former was a name
for debugging, the latter is a name which can be used in general for searching domain ID's etc. The object name cannot
use the same name with the same type of object in the same domain.

AMP T-Kernel Specification / Ver. 1.00.00

 135 TEF021-S001-01.00.00/en

Delete Message Buffer tk_del_mbf

 tk_del_mbf:Delete MessageBuffer

[C Language Interface]

 ER ercd = tk_del_mbf (ID mbfid) ;

[Parameters]

 ID mbfid MessageBufferID Message buffer ID

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mbfid is invalid or cannot be used)
 E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
 E_DOMAIN Message buffer for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]

 Deletes the message buffer specified in mbfid.

 Issuing this system call releases the corresponding message buffer and control block memory space, as well as the message
buffer space.
 This system call completes normally even if there are tasks queued in the message buffer for message receipt or message
sending, but error code E_DLT is returned to the tasks waiting on this message buffer. Even if there are messages left in the
message buffer when it is deleted, the message buffer is deleted anyway. No error code is returned and the messages are
discarded.
 This system call cannot specify the message buffers of other AMP T-Kernels. Only message buffers on the same AMP
T-Kernel can be deleted.
Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting objects etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors.

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the message buffer of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified message buffer cannot be accessed due to access protection, E_DACV is returned.

When a task is waiting to receive a message or is waiting to receive a message in the target mutex is a task of another AMP
T-Kernel, communication between processors occurs during message buffer deletion processing.

AMP T-Kernel Specification / Ver. 1.00.00

 136 TEF021-S001-01.00.00/en

Send Message to Message Buffer tk_snd_mbf

 tk_snd_mbf:Send Message to MessageBuffer

[C Language Interface]

 ER ercd = tk_snd_mbf (ID mbfid, VP msg, INT msgsz, TMO tmout) ;

[Parameters]

 ID mbfid MessageBufferID Message buffer ID
 INT msgsz SendMessageSize Send message size (in bytes)
 VP msg Packet of SendMessage Start address of send message packet
 TMO tmout Timeout timeout

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mbfid is invalid or cannot be used)
 E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
 E_PAR Parameter error (msgsz <= 0, msgsz > maxmsz, value in msg can not be used, or tmout <= (-2))
 E_DLT The object being waited for was deleted (message buffer was deleted while waiting)
 E_RLWAI Wait state released (tk_rel_wai received in wait state)
 E_DISWAI Wait released due to disabled state
 E_TMOUT Polling failed or timeout
 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)
 E_DACV Access protection violation

[Description]

 Sends the message at the address specified in msg to the message buffer specified in mbfid. The message size is indicated in
msgsz. This system call copies msgsz bytes starting from msg to the message queue of message buffer mbfid. The message
queue is implemented as a ring buffer.

 If msgsz is larger than the maxmsz specified with tk_cre_mbf, error code E_PAR is returned.

 If there is not enough available buffer space to accommodate message msg in the message queue, the task issuing this system
call goes to send wait state and is queued waiting for buffer space to become available (send queue). Waiting tasks are queued
either in FIFO or priority order, depending on the setting specified at message buffer creation with tk_cre_mbf.

 A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition is met (before
there is sufficient buffer space), the system call terminates, returning timeout error code E_TMOUT.
Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for system time (= 1 ms).

 When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned without
entering WAIT state if there is not enough buffer space. When TMO_FEVR = (-1) is set in tmout, this means infinity was
specified as the timeout value, and the task continues to wait for buffer space to become available, without timing out.

 A message of size 0 cannot be sent. When msgsz <= 0 is specified, error code E_PAR is returned.
 When this system call is invoked from a task-independent portion or in dispatch disabled state, error code E_CTX is
returned; but in the case of tmout = TMO_POL, there may be implementations where execution from a task-independent
portion or in dispatch disabled state is possible.
 This system call can specify the message buffers of other AMP T-Kernels.

Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).

AMP T-Kernel Specification / Ver. 1.00.00

 137 TEF021-S001-01.00.00/en

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified message buffer cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 138 TEF021-S001-01.00.00/en

Receive Message from Message Buffer tk_rcv_mbf

 tk_rcv_mbf:Receive Message from MessageBuffer

[C Language Interface]

 INT msgsz = tk_rcv_mbf (ID mbfid, VP msg, TMO tmout) ;

[Parameters]

 ID mbfid MessageBufferID Message buffer ID
 VP msg Packet of ReceiveMessage Start address of receive message packet
 TMO tmout Timeout timeout

[Return Parameters]

 INT msgsz ReceiveMessageSize Received message size
 or ErrorCode Error Code

[Error Codes]

 E_ID Invalid ID number (mbfid is invalid or cannot be used)
 E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
 E_PAR Parameter error (value in msg cannot be used, or tmout <= (-2))
 E_DLT The object being waited for was deleted (message buffer was deleted while waiting)
 E_RLWAI Wait state released (tk_rel_wai received in wait state)
 E_DISWAI Wait released due to disabled state
 E_TMOUT Polling failed or timeout
 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)
 E_DACV Access protection violation

[Description]
 Receives a message from the message buffer specified in mbfid, putting it in the location specified in msg.

 This system call copies the contents of the first queued message in the message buffer specified in mbfid, and copies it to an
area of msgsz bytes starting at address msg.

 If no message has been sent to the message buffer specified in mbfid (the message queue is empty), the task issuing this
system call goes to WAIT state and is put in the receive queue of the message buffer to wait for message arrival. Tasks in the
receive queue are ordered by FIFO only.

 A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition is met (before
a message arrives), the system call terminates, returning timeout error code E_TMOUT.

 Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for system time (= 1 ms).

 When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned without
entering WAIT state even if there is no message. When TMO_FEVR = (-1) is set in tmout, this means infinity was specified as
the timeout value, and the task continues to wait for message arrival without timing out.

This system call can specify the message buffers of other AMP T-Kernels.
Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified message buffer cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 139 TEF021-S001-01.00.00/en

Get Message Buffer Status tk_ref_mbf

 tk_ref_mbf:Get MessageBuffer Status

[C Language Interface]

 ER ercd = tk_ref_mbf (ID mbfid, T_RMBF *pk_rmbf) ;

[Parameters]

 ID mbfid MessageBufferID Message buffer ID
 T_RMBF* pk_rmbf Packet to Refer MessageBuffer Address of packet for returning status information

[Return Parameters]

 ER ercd ErrorCode Error code

 The contents of pk_rmbf
 VP exinf ExtendedInformation Extended information
 ID wtsk WaitTaskInformation Waiting task information
 ID stsk SendTaskInformation Send task information
 INT msgsz MessageSize Size of the next message to be received (in bytes)
 INT frbufsz FreeBufferSize Free buffer size (in bytes)
 INT maxmsz Maximum message size (in bytes)
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mbfid is invalid or cannot be used)
 E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
 E_PAR Parameter error (the address of the return parameter packet cannot be used)
 E_DACV Access protection violation

[Description]

 References the status of the message buffer specified in mbfid, passing in the return parameters sending task information
(stsk), the size of the next message to be received (msgsz), free buffer size (frbufsz), maximum message size (maxmsz), waiting
task information (wtsk), and extended information (exinf).

 wtsk indicates the ID of the first task waiting to receive a message from the message buffer. The ID of the first task waiting
to send to the message buffer is indicated in stsk. If multiple tasks are waiting in the message buffer queues, the ID of the task
at the head of the queue is returned. If no tasks are waiting, 0 is returned.

 If the specified message buffer does not exist, error code E_NOEXS is returned.
 The size of the message at the head of the queue (the next message to be received) is returned in msgsz. If there are no
queued messages, msgsz = 0 is returned. A message of size 0 cannot be sent.
 At least one of msgsz = 0 and wtsk = 0 is always true for this system call.
 frbufsz indicates the free space in the ring buffer of the message queue. This value indicates the approximate size of
messages than can be sent.
 maxmsz returns the maximum message size as specified with tk_cre_mbf.
 This system call can specify the message buffers of other AMP T-Kernels.
Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified message buffer cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 140 TEF021-S001-01.00.00/en

4.5.3 Rendezvous Port

 Rendezvous is a function for synchronization and communication between tasks, supporting the procedures for making
processing requests by one task to another and for returning the processing result to the requesting task. The object for which
both of these tasks wait is called a rendezvous port. The rendezvous function is typically used to realize task communication in
a client/server model, but can also support more flexible synchronization and communication models.
Functions are provided for creating and deleting a rendezvous port, issuing a processing request to a rendezvous port (call
rendezvous), accepting a processing request from a rendezvous port (accept rendezvous), returning the processing result (reply
rendezvous), forwarding an accepted processing request to another rendezvous port (forward rendezvous to other port), and
referencing rendezvous port status and rendezvous status. A rendezvous port is identified by an ID number called a rendezvous
port ID.

 The task issuing a processing request to a rendezvous port (the client-side task) calls a rendezvous, specifying a message
(called a call message) with information about the rendezvous port, the rendezvous conditions, and the processing being
requested. The task accepting a processing request on a rendezvous port (the server-side task) accepts the rendezvous,
specifying the rendezvous port and rendezvous conditions.
The rendezvous conditions are indicated in a bit pattern. If the bitwise logical AND of the bit patterns on both sides (the
rendezvous conditions bit pattern of the task calling a rendezvous for a rendezvous port and the rendezvous conditions bit
pattern of the accepting task) is not 0, the rendezvous is established. The state of the task calling the rendezvous is WAIT on
rendezvous call until the rendezvous is established. The state of the task accepting a rendezvous is WAIT on rendezvous
acceptance until the rendezvous is established.
 When a rendezvous is established, a call message is passed from the task that called the rendezvous to the accepting task. The
state of the task calling the rendezvous goes to WAIT for rendezvous completion until the requested processing is completed.
The task accepting the rendezvous is released from WAIT state and it performs the requested processing. Upon completion of
the requested processing, the task accepting the rendezvous passes the result of the processing in a reply message to the calling
task and ends the rendezvous. At this point the WAIT state of the task that called the rendezvous is released.
 A rendezvous port has separate queues for tasks waiting on rendezvous call (call queue) and tasks waiting on rendezvous
acceptance (accept queue). Note, however, that after a rendezvous is established, both tasks that formed the rendezvous are
detached from the rendezvous port. In other words, a rendezvous port does not have a queue for tasks waiting for rendezvous
completion nor does it keep information about the task performing the requested processing.
 T-Kernel assigns an object number to identify each rendezvous when more than one is established at the same time. The
rendezvous object number is called the rendezvous number. The method of assigning rendezvous numbers is
implementation-dependent, but at a minimum information must be included for specifying the task that called the rendezvous.
Numbers must also be uniquely assigned to the extent possible; for example, even if the same task makes multiple rendezvous
calls, the first rendezvous and second rendezvous must have different rendezvous numbers assigned.

In AMP T-Kernel, access to rendezvous ports on the AMP T-Kernels of other processors is possible as its own AMP T-Kernel.
In other words, they can be used for synchronization and the communication between processors. Moreover, access protection
is applied to all system calls that specify a rendezvous port ID.

System calls that can be used between processors are summarized in the table below. For more details refer to the explanation

for each system call.

AMP T-Kernel Specification / Ver. 1.00.00

 141 TEF021-S001-01.00.00/en

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_cre_por Create Port for Rendezvous × ×

tk_del_por Delete Port for Rendezvous × ×

tk_cal_por Call Port for Rendezvous ○ △

tk_acp_por Accept Port for Rendezvous ○ △

tk_fwd_por Forward Rendezvous to Other Port ○ △

tk_rpl_rdv Reply Rendezvous ○ ○

tk_ref_por Reference Rendezvous Port Status ○ △

 Different from T-Kernel 1.00 Specification ○:No X:Yes �: Only different in that E_DACV error returns by the access
protection

[Additional Notes]
 Rendezvous is a synchronization and communication function introduced in the ADA programming language, based on
Communicating Sequential Processes (CSP). In ADA, however, the rendezvous function is part of the language specification
and therefore has a different role than in T-Kernel, which is a real-time kernel specification. The rendezvous ports provided by
the real-time kernel are OS primitives by which an ADA rendezvous capability is implemented. Since the ADA rendezvous
function differs from that in the T-Kernel specification in a number of ways, the T-Kernel-specification rendezvous functions
cannot necessarily be used to implement the ADA rendezvous.
 Rendezvous operation is explained here using the example in Figure 13. In this figure Task A and Task B are running
asynchronously.
・If Task A first calls tk_cal_por, Task A goes to WAIT state until Task B calls tk_acp_por. The state of Task A at this time is
WAIT on rendezvous call (a)
 ・If, on the other hand, Task B first calls tk_acp_por, Task B goes to WAIT state until Task A calls tk_cal_por. The state of Task
B at this time is WAIT on rendezvous acceptance (b).
 ・A rendezvous is established when both Task A has called tk_cal_por and Task B has called tk_acp_por. At this time Task A
remains in WAIT state while the WAIT state of Task B is released. The state of Task A is WAIT for rendezvous completion.
・The Task A WAIT state is released when Task B calls tk_rpl_rdv. Thereafter both tasks enter a run state.

 Task A Task B Task A Task B

 tk_cal_por tk_acp_por
 ： ：

 wait on call wait on acceptance
 ： ：

 ：──→ tk_acp_por tk_cal_por ──→
 ： ：

wait on completion wait on completion
 ： ：

 ←── tk_rpl_rdv ←── tk_rpl_rdv

 (a) tk_cal_por called first (b) tk_acp_por is called first

[Figure 13] Rendezvous Operation

 As an example of a specific method for assigning rendezvous object numbers, the ID number of the task calling the
rendezvous can go in the low bits of the rendezvous number, with the high bits used for a sequential number.

[Rationale for the Specification]

AMP T-Kernel Specification / Ver. 1.00.00

 142 TEF021-S001-01.00.00/en

 While it is true that the rendezvous functionality can be achieved through a combination of other synchronization and
communication functions, better efficiency and ease of programming are achieved by having a dedicated function for cases
where the communication involves an acknowledgment. One advantage of the rendezvous function is that since both tasks wait
until message passing is completed, no memory space needs to be allocated for storing messages.
The reason for assigning unique rendezvous numbers even when the same task does the calling is as follows. It is possible that a
task, after establishing a rendezvous and going to WAIT state for its completion, will have its WAIT state released due to
timeout or forcible release by another task, then again call a rendezvous and have that rendezvous established. If the same
number were assigned to both the first and second rendezvous, attempting to terminate the first rendezvous would end up
terminating the second rendezvous. If separate numbers are assigned to the two rendezvous and the task in WAIT state for
rendezvous completion is made to remember the number of the rendezvous for which it is waiting, error will be returned when
the attempt is made to terminate the first rendezvous.

AMP T-Kernel Specification / Ver. 1.00.00

 143 TEF021-S001-01.00.00/en

Create Port for Rendezvous tk_cre_por

 tk_cre_por:Create Port for Rendezvous

[C Language Interface]

 ID porid = tk_cre_por (T_CPOR *pk_cpor) ;

[Parameters]

 T_CPOR* pk_cpor Packet to Create Port Information about the rendezvous port to be created

 The contents of pk_cpor
 VP exinf ExtendedInformation Extended information
 ATR poratr PortAttribute Rendezvous port attributes
 INT maxcmsz MaxCallMessageSize Maximum call message size (in bytes)
 INT maxrmsz MaxReplyMessageSize Maximum reply message size (in bytes)
 ID domid DomainID Domain ID
 UB oname[8] Object name Object name
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Return Parameters]

 ID porid PortID Port ID
 or ErrorCode Error Code

[Error Codes]

 E_NOMEM Insufficient memory (memory for control block cannot be allocated)
 E_LIMIT Number of rendezvous ports exceeds the system limit
 E_RSATR Reserved attribute (poratr is invalid or cannot be used)
 E_PAR Parameter error (pk_cpor is invalid; maxcmsz or maxrmsz is negative or invalid)
 E_ID Invalid ID number (domid is invalid or cannot be used)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_DOMAIN Domain of another AMP T-Kernel was specified
 E_ONAME Specified object name has already been used

[Description]
 Creates a rendezvous port, assigning it to a rendezvous port ID number. A rendezvous port is an object used as OS primitive
for implementing a rendezvous capability.

In AMP T-Kernel, rendezvous ports cannot be created on other AMP T-Kernel. Only rendezvous ports of the AMP T-Kernel
where this call was executed can be created.

 exinf can be used freely by the user to store miscellaneous information about the created rendezvous port. The information
set in this parameter can be referenced by tk_ref_por. If a larger area is needed for indicating user information, or if the
information may need to be changed after the rendezvous port is created, this can be done by allocating separate memory for
this purpose and putting the memory packet address in exinf. The OS pays no attention to the contents of exinf.
poratr indicates system attributes in its low bits and implementation-dependent information in the high bits. The system
attributes part of poratr is as follows.

 poratr:= (TA_TFIFO || TA_TPRI) | [TA_ONAME] | [TA_NODISWAI]
 | [TA_DOMID] | [(TA_PROTECTED || TA_PRIVATE || TA_PUBLIC)]

 TA_TFIFO Tasks waiting on call are queued in FIFO order
 TA_TPRI Tasks waiting on call are queued in priority order
 TA_ONAME Specifies an object name
 TA_NODISWAI Wait disabling by tk_dis_wai is prohibited
 TA_DOMID Specifies the domain to which the task belongs
 TA_PROTECTED Sets the access protection attribute to protect

AMP T-Kernel Specification / Ver. 1.00.00

 144 TEF021-S001-01.00.00/en

TA_PRIVATE Sets the access protection attribute to private
TA_PUBLIC Sets the access protection attribute to public

 TA_TFIFO and TA_TPRI attributes specify the queuing order of tasks waiting on a rendezvous call. Tasks waiting on
rendezvous acceptance are queued in FIFO order only.

When TA_ONAME is specified, oname is valid and is set as the object name. When TA_ONAME is not specified, the object
name is not set. The object name must be unique within the domain to which the rendezvous port belongs. When an object
name that has already been used with another rendezvous port is specified, error E_ONAME is returned. When the length of the
character string specified for oname is 0 (initial character is termination 0), the object name is not set regardless of the
specification of TA_ONAME.

When TA_DOMID is specified, domid is valid, and the domain of domid is set as the domain to which it belongs. When
TA_DOMID is not specified, domid is ignored and is the domain to which the kernel domain belongs. The domain ID
specifiable by domid is a kernel domain of the AMP T-Kernel where this system call is executed or a domain with a lower
position in the hierarchy. When a domain of another AMP T-Kernel is specified, error E_DOMAIN is returned.

TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC specify the access protection attribute of the rendezvous port. When
either of the access protection attributes is not specified, the access protection is set to the public attribute. In the combination of
the domain to which the task belongs and the access protection attribute, rendezvous ports that invoking tasks cannot access due
to access protection cannot be created. When the corresponding specification is done, E_PAR is returned.

 #define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
 #define TA_TPRI 0x00000001 /* manage task queue by priority */
 #define TA_ONAME 0x00000040 /* specifies an object name */
 #define TA_NODISWAI 0x00000080 /* reject wait disabling */
 #define TA_DOMID 0x00010000 /* specifies the domain */
 #define TA_PRIVATE 0x00040000 /* sets the protection attribute to private */
 #define TA_PROTECTED 0x00080000 /* sets the protection attribute to protect */
 #define TA_PUBLIC 0x00000000 /* sets the protection attribute to public*/

[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting objects etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors. .

Differences with the T-Kernel 1.00 Specification are as follows.

 TA_DOMID, TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC were added to the rendezvous port attribute, and the
domain to which it belongs and the access protection attribute are specifiable.

 The DS object name was abolished, and replaced by the establishment of the object name. While the former was a name
for debugging, the latter is a name which can be used in general for searching domain ID's etc. The object name cannot
use the same name with the same type of object in the same domain.

AMP T-Kernel Specification / Ver. 1.00.00

 145 TEF021-S001-01.00.00/en

Delete Port for Rendezvous tk_del_por

 tk_del_por:Delete Port for Rendezvous

[C Language Interface]

 ER ercd = tk_del_por (ID porid) ;

[Parameters]

 ID porid PortID Rendezvous port ID

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (porid is invalid or cannot be used)
 E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
 E_DOMAIN Rendezvous port for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]

 Deletes the rendezvous port specified in porid.

 Issuing this system call releases the ID number and control block space allocated to the rendezvous port.

 This system call completes normally even if there are tasks waiting on rendezvous acceptance (tk_acp_por) or rendezvous
port call (tk_cal_por) at the specified rendezvous port, but error code E_DLT is returned to the tasks in WAIT state.
 Deletion of a rendezvous port by tk_del_por does not affect tasks for which rendezvous is already established. In this case,
nothing is reported to the task accepting the rendezvous (not in WAIT state), and the state of the task calling the rendezvous
(WAIT for rendezvous completion) remains unchanged. When the task accepting the rendezvous issues tk_rpl_rdv, that system
call will execute normally even if the port on which the rendezvous was established has been deleted.
 This system call cannot specify the rendezvous ports of other AMP T-Kernels. Only rendezvous ports on the same AMP
T-Kernel can be deleted.

Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting objects etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors.

Differences with the T-Kernel 1.00 Specification are as follows

・ When the rendezvous port of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified rendezvous port cannot be accessed due to access protection, E_DACV is returned.

When a task waiting to accept rendezvous or is waiting to be called in the target rendezvous port is a task of another AMP
T-Kernel, communication between processors occurs during rendezvous port deletion processing.

AMP T-Kernel Specification / Ver. 1.00.00

 146 TEF021-S001-01.00.00/en

Call Port for Rendezvous tk_cal_por

 tk_cal_por:Call Port for Rendezvous

[C Language Interface]

 INT rmsgsz = tk_cal_por (ID porid, UINT calptn, VP msg, INT cmsgsz, TMO tmout) ;

[Parameters]

 ID porid PortID Rendezvous port ID
 UINT calptn CallBitPattern Call bit pattern (indicating conditions of the caller)
 VP msg Packet of Message Message packet address
 INT cmsgsz CallMessageSize Call message size (in bytes)
 TMO tmout Timeout Timeout

[Return Parameters]

 INT rmsgsz ReplyMessageSize Reply message size (in bytes)
 or ErrorCode Error Code

[Error Codes]

 E_ID Invalid ID number (porid is invalid or cannot be used)
 E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
 E_PAR Parameter error (cmsgsz < 0, cmsgsz > maxcmsz, calptn = 0, value that cannot be used in msg, tmout <= (-2))
 E_DLT The object being waited for was deleted (the rendezvous port was deleted while waiting)
 E_RLWAI Wait state released (tk_rel_wai received in wait state)
 E_DISWAI Wait released due to disabled state
 E_TMOUT Polling failed or timeout
 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)
 E_DACV Access protection violation

[Description]

 Issues a rendezvous call for a rendezvous port.

 The specific operation of tk_cal_por is as follows. A rendezvous is established if there is a task waiting to accept a
rendezvous at the port specified in porid and rendezvous conditions between that task and the task issuing this call overlap. In
this case, the task waiting to accept the rendezvous enters READY state while the state of the task issuing tk_cal_por is WAIT
for rendezvous completion. The task waiting for rendezvous completion is released from WAIT state when the other (accepting)
task executes tk_rpl_rdv. The tk_cal_por system call completes at this time.

 If there is no task waiting to accept a rendezvous at the port specified in porid, or if there is a task but conditions for
establishing a rendezvous are not satisfied, the task issuing tk_cal_por is placed at the end of the call queue of that port and
enters WAIT state on rendezvous call. The order of tasks in the call queue is either FIFO or based on priority, depending on the
attributes specified when calling tk_cre_por.

 The decision on rendezvous establishment is made by checking conditions in the bit patterns acpptn of the accepting task and
calptn of the calling task. A rendezvous is established if the bitwise logical AND of these two bit patterns is not 0. Parameter
error E_PAR is returned if calptn is 0, since no rendezvous can be established in that case.

 When a rendezvous is established, the calling task can send a message (a call message) to the accepting task. The size of the
call message is specified in cmsgsz. In this operation, cmsgsz bytes starting at address msg as specified by the calling task when
calling tk_cal_por are copied to address msg as specified by the accepting task when calling tk_acp_por.

 Similarly, when the rendezvous completes, the accepting task may send a message (reply message) to the calling task. In this
operation, the contents of a reply message specified by the accepting task when calling tk_rpl_rdv are copied to address msg as
specified by the calling task when calling tk_cal_por. The size of the reply message rmsgsz is set in a return parameter of
tk_cal_por parameter. The original contents of the message area passed in msg by tk_cal_por end up being overwritten by the
reply message received when tk_rpl_rdv executes.

AMP T-Kernel Specification / Ver. 1.00.00

 147 TEF021-S001-01.00.00/en

 Note that it is possible that message contents will be destroyed when a rendezvous is forwarded, since an area no larger than
maxrmsz starting from the address msg as specified with tk_cal_por is used as a buffer. It is therefore necessary to reserve a
memory space of at least maxrmsz starting from msg, regardless of the expected size of the reply message, whenever there is
any possibility that a rendezvous requested by tk_cal_por might be forwarded (See the description of tk_fwd_por for details).

 Error code E_PAR is returned when cmsgsz exceeds the size maxcmsz specified with tk_cre_por. This error checking is done
before a task enters WAIT state on rendezvous call; and if error is detected, the task executing tk_cal_por does not enter WAIT
state.

 A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition is met
(rendezvous is not established), the system call terminates returning timeout error code E_TMOUT.

 Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for system time (= 1 ms).

 When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned without
entering WAIT state if there is no task waiting on a rendezvous at the rendezvous port, or if the rendezvous conditions are not
met.

 When TMO_FEVR = (-1) is set in tmout, this means infinity was specified as the timeout value, and the task continues to
wait for a rendezvous to be established without timing out.

 In any case tmout indicates the time allowed for a rendezvous to be established, and does not apply to the time from
rendezvous establishment to rendezvous completion.

 This system call can specify the rendezvous ports of other AMP T-Kernels.

Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified rendezvous port cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 148 TEF021-S001-01.00.00/en

Accept Port for Redezvous tk_acp_por

 tk_acp_por:Accept Port for Rendezvous

[C Language Interface]

 INT cmsgsz = tk_acp_por (ID porid, UINT acpptn, RNO *p_rdvno, VP msg, TMO tmout) ;

[Parameters]

 ID porid PortID Rendezvous port ID
 UINT acpptn AcceptBitPattern Accept bit pattern (indicating conditions for acceptance)
 VP msg Packet of CallMessage Message packet address
 TMO tmout Timeout Timeout

[Return Parameters]

 ER ercd ErrorCode Error code
 RNO rdvno RendezvousNumber Rendezvous number
 INT cmsgsz CallMessageSize Call message size (in bytes)

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (porid is invalid or cannot be used)
 E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
 E_PAR Parameter error (acpptn = 0, value that cannot be used in msg, or tmout <= (-2))
 E_DLT The object being waited for was deleted (the rendezvous port was deleted while waiting)
 E_RLWAI Wait state released (tk_rel_wai received in wait state)
 E_DISWAI Wait released due to wait disabled state
 E_TMOUT Polling failed or timeout
 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)
 E_DACV Access protection violation

[Description]

 Accepts a rendezvous on a rendezvous port.

 The specific operation of tk_acp_por is as follows. A rendezvous is established if there is a task queued for a rendezvous call
at the port specified in porid and if rendezvous conditions of that task and the task issuing this call overlap. In this case, the task
queued for a rendezvous call is removed from the queue, and its state changes from WAIT on rendezvous call to WAIT for
rendezvous completion. The task issuing tk_acp_por continues executing.

 If there is no task waiting to call a rendezvous at the port specified in porid, or if there is a task but conditions for establishing
a rendezvous are not satisfied, the task issuing tk_acp_por will enter WAIT state on rendezvous acceptance for that port. No
error results if there is already another task in WAIT state on rendezvous acceptance at this time; the task issuing tk_acp_por is
placed in the accept queue. It is possible to conduct multiple rendezvous operations on the same port at the same time.
Accordingly, no error results even if the next rendezvous is carried out while another task is still conducting a rendezvous
(before tk_rpl_rdv is called for a previously established rendezvous) at the port specified in porid.

 The decision on rendezvous establishment is made by checking conditions in the bit patterns acpptn of the accepting task and
calptn of the calling task. A rendezvous is established if the bitwise logical AND of these two bit patterns is not 0. If the first
task does not satisfy these conditions, each subsequent task in the call queue is checked in succession. If calptn and acpptn are
assigned to the same non-zero value, rendezvous is established unconditionally. Parameter error E_PAR is returned if acpptn is
0, since no rendezvous can be established in that case. All processing before a rendezvous is established is fully symmetrical on
the calling and accepting ends.

 When a rendezvous is established, the calling task can send a message (a call message) to the accepting task. The contents of
the message specified by the calling task are copied to an area starting from msg specified by the accepting task when
tk_acp_por is called. The call message size cmsgsz is passed in a return parameter of tk_acp_por.

AMP T-Kernel Specification / Ver. 1.00.00

 149 TEF021-S001-01.00.00/en

 A task accepting rendezvous can establish more than one rendezvous at a time. That is, a task that has accepted one
rendezvous using tk_acp_por may execute tk_acp_por again before executing tk_rpl_rdv on the first rendezvous. The port
specified for the second tk_acp_por call at this time may be the same port as the first rendezvous or a different one. It is even
possible for a task already conducting a rendezvous on a given port to execute tk_acp_por again on the same port and conduct
multiple rendezvous on the same port at the same time. Of course, the calling tasks will be different in each case. The return
parameter rdvno passed by tk_acp_por is used to distinguish different rendezvous when more than one has been established at a
given time.

 It is used as a return parameter by tk_rpl_rdv when a rendezvous completes. It is also passed as a parameter to tk_fwd_por
when forwarding a rendezvous. Although the exact contents of rdvno are implementation-dependent, it is expected to include
information specifying the calling task on the other end of the rendezvous.

 A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition is met
(rendezvous is not established), the system call terminates returning timeout error code E_TMOUT.

 Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for system time (= 1 ms).

 When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned without
entering WAIT state if there is no task waiting for a rendezvous call at the rendezvous port, or if the rendezvous conditions are
not met.

 When TMO_FEVR = (-1) is set in tmout, this means infinity was specified as the timeout value, and the task continues to
wait for a rendezvous to be established without timing out.

 This system call can specify the rendezvous ports of other AMP T-Kernels.

Access protection is applied to this system call.

[Additional Notes]
 The ability to queue tasks accepting rendezvous is useful when multiple servers perform the same processing concurrently.
This capability also takes advantage of the task-independent nature of ports.
 If a task accepting a rendezvous terminates abnormally for some reason before completing its rendezvous (before issuing
tk_rpl_rdv), the task calling for the rendezvous by issuing tk_cal_por will continue waiting indefinitely for rendezvous
completion without being released. To avoid such a situation, tasks accepting rendezvous should execute a tk_rpl_rdv or
tk_rel_wai call when they terminate abnormally, as well as notifying the task calling for the rendezvous that the rendezvous
ended in error.
 rdvno contains information specifying the calling task in the rendezvous, but unique numbers should be assigned to the
extent possible. Even if different rendezvous are conducted between the same tasks, a different rdvno value should be assigned
to the first and second rendezvous to avoid problems like the following.
 If a task that called tk_cal_por and is waiting for rendezvous completion has its WAIT state released by tk_rel_wai or by
tk_ter_tsk + tk_sta_tsk or the like, conceivably it may execute tk_cal_por a second time, resulting in establishment of a
rendezvous. If the same rdvno value is assigned to the first rendezvous and the subsequent one, then if tk_rpl_rdv is executed
for the first rendezvous it will end up terminating the second one. By assigning rdvno numbers uniquely and having the task in
WAIT state for rendezvous completion remember the number of the expected rdvno, it will be possible to detect the error when
tk_rpl_rdv is called for the first rendezvous.
 One possible method of assigning rdvno numbers is to put the ID number of the task calling the rendezvous in the low bits of
rdvno, using the high bits for a sequential number.
 The capability of setting rendezvous conditions in calptn and acpptn can be applied to implement a rendezvous selective
acceptance function like the ADA select function. A specific processing approach equivalent to an ADA select statement (Figure
14(a)) is shown in Figure 14(b).
 The ADA select function is provided only on the accepting end, but it is also possible to implement a select function on the
calling end by specifying multiple bits in calptn.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified rendezvous port cannot be accessed due to access protection, E_DACV is returned.

[Rationale for the Specification]
 The reason for specifying separate system calls tk_cal_por and tk_acp_por even though the conditions for establishing a
rendezvous mirror each other on the calling and accepting sides is because the processing required after a rendezvous is

AMP T-Kernel Specification / Ver. 1.00.00

 150 TEF021-S001-01.00.00/en

established differs for the tasks on each side. That is, whereas the calling task enters WAIT state after the rendezvous is
established, the accepting task enters READY state.

AMP T-Kernel Specification / Ver. 1.00.00

 151 TEF021-S001-01.00.00/en

──
 select

 when condition_A
 accept entry_A do ... end;

 or
 when condition_B
 accept entry_B do ... end;

 or
 when condition_C
 accept entry_C do ... end;

 end select;
──

 [Figure 14(a)] Sample ADA-like Program Using select Statement

──

 - Rather than entry_A, entry_B, and entry_C each corresponding to one rendezvous port, the entire select statement
corresponds to one rendezvous port.

 - entry_A, entry_B, and entry_C correspond to calptn and acpptn bits 2^0, 2^1, and 2^2.

 - A select statement in a typical ADA program looks like the following.

 ptn := 0;
 if conditon_A then ptn := ptn + 2^0 endif;
 if conditon_B then ptn := ptn + 2^1 endif;
 if conditon_C then ptn := ptn + 2^2 endif;
 tk_acp_por(acpptn := ptn);

- If the program contains in addition to the select statement a simple entry_A accept with no select,
 tk_acp_por(acpptn := 2^0);
 can be executed. If it is required to have entry_A, entry_B, and entry_C wait unconditionally by OR logic,
 tk_acp_por(acpptn := 2^2+2^1+2^0);
 can be executed.

- If the call on the rendezvous calling side is for entry_A,
 tk_cal_por(calptn := 2^0);
 can be executed; and if the call is for entry_C,
 tk_cal_por(calptn := 2^2);
 can be executed.

──

[Figure 14(b)] Using Rendezvous to Implement ADA select Function

AMP T-Kernel Specification / Ver. 1.00.00

 152 TEF021-S001-01.00.00/en

Forward Rendezvous to Other Port tk_fwd_por

 tk_fwd_por:Forward Rendezvous to Other Port

[C Language Interface]

 ER ercd = tk_fwd_por (ID porid, UINT calptn, RNO rdvno, VP msg, INT cmsgsz) ;

[Parameters]

 ID porid PortID Rendezvous port ID
 UINT calptn CallBitPattern Call bit pattern (indicating conditions of the caller)
 RNO rdvno RendezvousNumber Rendezvous number before forwarding
 VP msg Packet of CallMessage Message packet address
 INT cmsgsz CallMessageSize Call message size (in bytes)

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (porid is invalid or cannot be used)
 E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
 E_PAR Parameter error (cmsgsz < 0, cmsgsz > maxcmsz after forwarding, cmsgsz > maxrmsz before forwarding,

calptn = 0, or msg has a value that cannot be used)
 E_OBJ Invalid object state (rdvno is invalid, or maxrmsz (after forwarding) > maxrmsz (before forwarding))
 E_CTX Context error (issued from task-independent portion (implementation-dependent error))
 E_DISWAI Wait released due to wait disabled state
 E_DACV Access protection violation

[Description]
 Forward an accepted rendezvous to another rendezvous port.
 The task issuing this system call (here “Task X”) must have accepted the rendezvous specified in porid; i.e., this system call
can be issued only after executing tk_acp_por. In the discussion that follows, the rendezvous calling task is “Task Y”, and the
rendezvous number passed in a return parameter by tk_acp_por is rdvno. After tk_fwd_por is issued in this situation, the
rendezvous between Task X and Task Y is released, and all processing thereafter is the same as if Task Y had called for a
rendezvous on another port (rendezvous port B) passed to this system call in porid.
 The specific operations of tk_fwd_por are as follows.
 1.The rendezvous specified in rdvno is released.

 2. Task Y goes to WAIT state on rendezvous call for the rendezvous port specified in porid. The bit conditions
representing the call select conditions in this case are not those given in the calptn specified by Task Y when it called
tk_cal_por, but those in the calptn specified by Task X when it called tk_fwd_por. The state of Task Y goes from
WAIT for rendezvous completion back to WAIT on rendezvous call.

3. Then if a rendezvous for the rendezvous port specified in porid is accepted, a rendezvous is established between the
accepting task and Task Y. Naturally, if there is a task already waiting to accept a rendezvous on the rendezvous port
specified in porid and the rendezvous conditions are met, executing tk_fwd_por will immediately cause a rendezvous
to be established. Here too, as with calptn, the message sent to the accepting task when the rendezvous is established
is that specified in tk_fwd_por by Task X, not that specified in tk_cal_por by Task Y.

4. After the new rendezvous has completed, the reply message returned to the calling task by tk_rpl_rdv is copied to
the area specified in the msg parameter passed to tk_cal_por by Task Y, not to the area specified in the msg parameter
passed to tk_fwd_por by Task X.

Essentially the following situation:
Executing tk_fwd_por (porid=portB, calptn=ptnB, msg=mesB)
after tk_cal_por (porid=portA, calptn=ptnA, msg=mesA)

AMP T-Kernel Specification / Ver. 1.00.00

 153 TEF021-S001-01.00.00/en

is the same as the following:
Executing tk_cal_por (porid=portB, calptn=ptnB, msg=mesB).

Note that it is not necessary to log the history of rendezvous forwarding.

If tk_ref_tsk is executed for a task that has returned to WAIT on rendezvous call due to tk_fwd_por execution, the value
returned in tskwait is TTW_CAL. Here wid is the ID of the rendezvous port to which the rendezvous was forwarded.

tk_fwd_por execution completes immediately; in no case does this system call go to a WAIT state. A task issuing tk_fwd_por
loses any relationship to the rendezvous port on which the forwarded rendezvous was established, the forwarding destination
(the port specified in porid), and the tasks conducting rendezvous on these ports.

Error code E_PAR is returned if cmsgsz is larger than maxcmsz of the rendezvous port after forwarding. This error is checked
before the rendezvous is forwarded. If this error occurs, the rendezvous is not forwarded and the rendezvous specified in rdvno
is not released.

The send message specified with tk_fwd_por is copied to another memory space (such as the message area specified with
tk_cal_por) when tk_fwd_por is executed. Accordingly, even if the contents of the message area specified in the msg parameter
passed to tk_fwd_por are changed before the forwarded rendezvous is established, the forwarded rendezvous will not be
affected.

When a rendezvous is forwarded by tk_fwd_por, maxrmsz of the rendezvous port after forwarding (specified in porid) must be
no larger than maxrmsz of the rendezvous port on which the rendezvous was established before forwarding. If maxrmsz of the
rendezvous port after forwarding is larger than maxrmsz of the rendezvous port before forwarding, this means the destination
rendezvous port was not suitable, and error code E_OBJ is returned. The task calling the rendezvous readies a reply message
receiving area based on the maxrmsz of the rendezvous port before forwarding. If the maximum size for the reply message
increases when the rendezvous is forwarded, this may indicate that an unexpectedly large reply message is being returned to the
calling rendezvous port, which would cause problems. For this reason, a rendezvous cannot be forwarded to a rendezvous port
having a larger maxrmsz.

Similarly, cmsgsz indicating the size of the message sent by tk_fwd_por must be no larger than maxrmsz of the rendezvous port
on which the rendezvous was established before forwarding. This is because it is assumed that the message area specified with
tk_cal_por will be used as a buffer in implementing tk_fwd_por. If cmsgsz is larger than maxrmsz of the rendezvous port before
forwarding, error code E_PAR is returned (See Additional Notes for details).

It is not necessary to issue tk_fwd_por and tk_rpl_rdv from a task-independent portion, but it is possible to issue these system
calls from dispatch disabled or interrupts disabled state. This capability can be used to perform processing that is inseparable
from tk_fwd_por or tk_rpl_rdv. Whether or not error checking is done for issuing of these system calls from a task-independent
portion is implementation-dependent.

When, as a result of tk_fwd_por Task Y that was in WAIT state for rendezvous completion reverts to WAIT on rendezvous call,
the timeout until rendezvous establishment is always treated as Wait forever (TMO_FEVR).

The rendezvous port being forwarded to may be the same port used for the previous rendezvous (the rendezvous port on which
the rendezvous specified in rdvno was established). In this case, tk_fwd_por cancels the previously accepted rendezvous. Even
in this case, however, the call message and calptn parameters are changed to those passed to tk_fwd_por by the accepting task,
not those passed to tk_cal_por by the calling task.
It is possible to forward a rendezvous that has already been forwarded.
 This system call can specify the rendezvous ports of other AMP T-Kernels.

Access protection is applied to this system call. The destination rendezvous port must be accessible from both the task issuing
this call and the task forwarding the call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified rendezvous port cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 154 TEF021-S001-01.00.00/en

[Additional Notes]
 A server task operation using tk_fwd_por is illustrated in Figure 15.

Requeste Task X 152 Extended SVC

 SVC Server Distribution Tasks
???_??? tk_cal_por Accepting tk_acp_por

 Port

 Pre-processing

 tk_fwd_por tk_fwd_por tk_fwd_por

 Processing A Processing A Processing A
 WAIT Port for Port for Port for
 on rendezvous call Server Server Server
 or
 WAIT
 For tk_acp_por tk_acp_por tk_acp_por
 completion

 Processing A Processing A Processing A

 Server Server Server
 Task Task Task

 tk_rpl_rdv tk_rpl_rdv tk_rpl_rdv
 ： ： ：

 * Bold outlines indicate rendezvous ports (rendezvous entries)

* While it is possible to use tk_cal_por in place of tk_fwd_por, this results in rendezvous nesting. Assuming it is acceptable
for requesting Task X to resume execution after the processing of server tasks A to C is completed, use of tk_fwd_por does
away with the need for rendezvous nesting and results in more efficient operations.

[Figure 15] Server Task Operation Using tk_fwd_por

 Generally tk_fwd_por is executed by server distribution tasks (tasks for distributing server-accepted processing to other
tasks) as shown in Figure 15. Accordingly, a server distribution task that has executed tk_fwd_por must go on to processing for
acceptance of the next request regardless of whether the forwarded rendezvous is established or not. The tk_fwd_por message
area in this case is used for processing the next request, making it necessary to ensure that changes to the contents of this
message area will not affect the previously forwarded rendezvous. For this reason, after tk_fwd_por is executed, it must be
possible to modify the contents of the message area indicated in msg passed to tk_fwd_por even before the forwarded
rendezvous is established.
 In order to fulfill this requirement, in implementation it is allowed to use the message area specified with tk_cal_por as a
buffer. That is, in the tk_fwd_por processing, it is permissible to copy the call messages specified with tk_fwd_por to the
message area indicated in msg when tk_cal_por was called, and for the task calling tk_fwd_por to change the contents of the
message area. When a rendezvous is established, the message placed in the tk_cal_por message area is passed to the accepting
task, regardless of whether the rendezvous is one that was forwarded from another port.
 The following specifications are made to allow this sort of implementation to be used.
 - If there is a possibility that a rendezvous requested by tk_cal_por may be forwarded, a memory space of at least maxrmsz
bytes must be allocated starting from msg (passed to tk_cal_por), regardless of the size of the expected reply message.
 - The send message size cmsgsz passed to tk_fwd_por must be no larger than maxrmsz of the rendezvous port before
forwarding.
 - If a rendezvous is forwarded using tk_fwd_por, maxrmsz of the destination port rendezvous must not be larger than
maxrmsz of the port before forwarding.

AMP T-Kernel Specification / Ver. 1.00.00

 155 TEF021-S001-01.00.00/en

[Rationale for the Specification]
 The tk_fwd_por specification is designed not to require logging a history of rendezvous forwarding, so as to reduce the
number of states that must be kept track of in the system as a whole. Applications that require such a log to be kept can use
nested pairs of tk_cal_por and tk_acp_por rather than using tk_fwd_por.

AMP T-Kernel Specification / Ver. 1.00.00

 156 TEF021-S001-01.00.00/en

Reply Rendezvous tk_rpl_rdv

tk_rpl_rdv:Reply Rendezvous

[C Language Interface]

 ER ercd = tk_rpl_rdv (RNO rdvno, VP msg, INT rmsgsz) ;

[Parameters]

 RNO rdvno RendezvousNumber Rendezvous number
 VP msg Packet of ReplyMessage Reply message packet address
 INT rmsgsz ReplyMessageSize Reply message size (in bytes)

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_PAR Parameter error (rmsgsz＜0,rmsgsz＞maxrmsz, or value in msg cannot be used)
 E_OBJ Invalid object state (rdvno is invalid)
 E_CTX Context error (issued from task-independent portion (implementation-dependent error))

[Description]
 Returns a reply to the calling task in the rendezvous, ending the rendezvous.
 The task issuing this system call (here “Task X”) must be engaged in a rendezvous, i.e., this system call can be issued only
after executing tk_acp_por. In the discussion that follows, the rendezvous calling task is “Task Y”, and the rendezvous number
passed in a return parameter by tk_acp_por is rdvno. When tk_rpl_rdv is executed in this situation, the rendezvous state
between Task X and Task Y is released, and the state of Task Y goes from WAIT for rendezvous completion back to READY
state.
 When a rendezvous is ended by tk_rpl_rdv, accepting Task X can send a reply message to calling Task Y. The contents of the
message specified by the accepting task are copied to the memory space specified in msg passed by Task Y to tk_cal_por. The
size of the reply message rmsgsz is passed as a tk_cal_por return parameter.
 Error code E_PAR is returned if rmsgsz is larger than maxrmsz specified with tk_cre_por. When this error is detected, the
rendezvous is not ended and the task that called tk_cal_por remains in WAIT state for rendezvous completion.
 It is not necessary to issue tk_fwd_por and tk_rpl_rdv from a task-independent portion, but it is possible to issue these
system calls from dispatch disabled or interrupts disabled state. This capability can be used to perform processing that is
inseparable from tk_fwd_por or tk_rpl_rdv. Whether or not error checking is done for issuing of these system calls from a
task-independent portion is implementation-dependent.

[Additional Notes]
 If a task calling a rendezvous aborts for some reason before completion of the rendezvous (before tk_rpl_rdv is executed),
the accepting task has no direct way of knowing of the abort. In such a case, error code E_OBJ is returned to the rendezvous
accepting task when it executes tk_rpl_rdv.
 After a rendezvous is established, tasks are in principle detached from the rendezvous port and have no need to reference
information about each other. However, since the value of maxrmsz, used when checking the length of the reply message sent
using tk_rpl_rdv, is dependent on the rendezvous port, the task in rendezvous must record this information somewhere. One
possible implementation would be to put this information in the TCB of the calling task after it goes to WAIT state, or in
another area that can be referenced from the TCB, such as a stack area.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
There are no differences with the T-Kernel 1.00 Specification.

[Rationale for the Specification]

AMP T-Kernel Specification / Ver. 1.00.00

 157 TEF021-S001-01.00.00/en

 The parameter rdvno is passed to tk_rpl_rdv and tk_fwd_por as information for distinguishing one established rendezvous
from another, but the rendezvous port ID (porid) used when establishing a rendezvous is not specified. This is based on the
design principle that tasks are no longer related to rendezvous ports after a rendezvous has been established.
 Error code E_OBJ rather than E_PAR is returned for an invalid rdvno. This is because rdvno itself is an object indicating the
task that called the rendezvous.

AMP T-Kernel Specification / Ver. 1.00.00

 158 TEF021-S001-01.00.00/en

Reference Port Status tk_ref_por

 tk_ref_por:Refer Port Status

[C Language Interface]

 ER ercd = tk_ref_por (ID porid, T_RPOR *pk_rpor) ;

[Parameters]

 ID porid PortID Rendezvous port ID
 T_RPOR* pk_rpor Packet to Refer Port Start address of packet for returning status information

[Return Parameters]

 ER ercdErrorCode Error code pk_rpor detail:
 pk_rpor detail:
 VP exinf ExtendedInformation Extended information
 ID wtsk WaitTaskInformation Waiting task information
 ID atsk AcceptTaskInformation Accept task information
 INT maxcmsz Maximum call message size (in bytes)
 INT maxrmsz Maximum reply message size (in bytes)
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (porid is invalid or cannot be used)
 E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
 E_PAR Parameter error (the return parameter packet address cannot be used)
 E_DACV Access protection violation

[Description]
 References the status of the rendezvous port specified in porid, passing in return parameters information about the accepting
task (atsk), information about the task waiting on a rendezvous call (wtsk), maximum message sizes (maxcmsz, maxrmsz), and
extended information (exinf).
 wtsk indicates the ID of a task in WAIT state on rendezvous call at the rendezvous port. If there is no task waiting on
rendezvous call, wtsk = 0 is returned. atsk indicates the ID of a task in WAIT state on rendezvous acceptance at the rendezvous
port. If there is no task waiting for rendezvous acceptance, atsk = 0 is returned.
 If there are multiple tasks waiting on rendezvous call or acceptance at this rendezvous port, the ID of the task at the head of
the call queue and accept queue is returned.
 If the specified rendezvous port does not exist, error code E_NOEXS is returned.
 This system call can specify the rendezvous ports of other AMP T-Kernels.

Access protection is applied to this system call.

[Additional Notes]
 This system call cannot be used to get information about tasks involved in a currently established rendezvous.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified rendezvous port cannot be accessed due to access protection, E_DACV is returned.

4.6 Memory Pool Management Functions

 Memory pool management functions provide software-based management of memory pools and memory block allocation.
 There are fixed-size memory pools and variable-size memory pools, which are considered separate objects and require
separate sets of system calls for their operation. Memory blocks allocated from a fixed-size memory pool are all of one fixed

AMP T-Kernel Specification / Ver. 1.00.00

 159 TEF021-S001-01.00.00/en

size, whereas memory blocks from a variable-size memory pool can be of various sizes.
 The memory managed by the memory pool management functions is all in system space; there is no T-Kernel function for
managing task space memory.

4.6.1 Fixed-size Memory Pool

 A fixed-size memory pool is an object used for dynamic management of fixed-size memory blocks. Functions are provided
for creating and deleting a fixed-size memory pool, getting and returning memory blocks in a fixed-size memory pool, and
referencing the status of a fixed-size memory pool. A fixed-size memory pool is an object identified by an ID number called a
fixed-size memory pool ID.
 A fixed-size memory pool has a memory space used as the fixed-size memory pool (called a fixed-size memory pool area or
simply memory pool area), and a queue for tasks waiting for memory block allocation. A task wanting to allocate a memory
block from a fixed-size memory pool that lacks sufficient available memory space goes to WAIT state for fixed-size memory
block until memory blocks are returned to the pool. A task in this state is put in the task queue of the fixed-size memory pool.

 In AMP T-Kernel, access to fixed-size memory pools on the AMP T-Kernels of other processors is possible as its own AMP
T-Kernel. In other words, they can be used for synchronization and the communication between processors. However, the
memory area of memory pools with the possibility of use between processors must be specified in the system space between
kernels. Moreover, access protection is applied to all system calls that specify a fixed-sized memory pool ID.

System calls that can be used between processors are summarized in the table below. For more details refer to the explanation
for each system call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_cre_mpf Create Fixed-size Memory Pool × ×

tk_del_mpf Delete Fixed-size Memory Pool × ×

tk_get_mpf Get Fixed-size Memory Block ○ ×

tk_rel_mpf Release Fixed-size Memory Block ○ △

tk_ref_mpf Reference Fixed-size Memory Pool Status ○ △

 Different from T-Kernel 1.00 Specification ○:No X:Yes △: Only different in that E_DACV error returns by the access
protection

[Additional Notes]
 When memory blocks of various sizes are needed from fixed-size memory pools, it is necessary to provide multiple memory
pools of different sizes.

AMP T-Kernel Specification / Ver. 1.00.00

 160 TEF021-S001-01.00.00/en

Create Fixed-size Memory Pool tk_cre_mpf

 tk_cre_mpf:Create Fixed-size MemoryPool

[C Language Interface]

 ID mpfid = tk_cre_mpf (T_CMPF *pk_cmpf) ;

[Parameters]

 T_CMPF* pk_cmpf Packet to Create MemoryPool Information about the memory pool to be created

 pk_cmpf detail:
 VP exinf ExtendedInformation Extended information
 ATR mpfatr MemoryPoolAttribute Memory pool attributes
 INT mpfcnt MemoryPoolBlockCount Memory pool block count
 INT blfsz MemoryBlockSize Memory block size (in bytes)
 ID domid DomainID Domain ID
 UB oname[8] Object name Object name
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Return Parameters]

 ID mpfid MemoryPoolID Fixed-size memory pool ID
 or ErrorCode Error Code

[Error Codes]
 E_NOMEM Insufficient memory (memory for control block or memory pool area cannot be allocated)
 E_LIMIT Number of fixed-size memory pools exceeds the system limit
 E_RSATR Reserved attribute (mpfatr is invalid or cannot be used)
 E_PAR Parameter error (pk_cmpf is invalid; mpfsz or blfsz is negative or invalid)
 E_NOSPT Unsupported (Does not have system space between kernels)
 E_ID Invalid ID number (domid is invalid or cannot be used)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_DOMAIN Domain of another AMP T-Kernel was specified
 E_ONAME Specified object name has already been used

[Description]
 Creates a fixed-size memory pool, assigning it to a fixed-size memory pool ID. This system call allocates a memory space
for use as a memory pool based on the information specified in parameters mpfcnt and blfsz, and assigns a control block to the
memory pool. A memory block of size blfsz can be allocated from the created memory pool by calling the tk_get_mpf system
call.

In AMP T-Kernel, fixed-size memory pools cannot be created on other processors. Only fixed-sized memory pools of the
processor where this call was executed can be created.
 exinf can be used freely by the user to store miscellaneous information about the created memory pool. The information set
in this parameter can be referenced by tk_ref_mpf. If a larger area is needed for indicating user information, or if the
information needs to be changed after the memory pool is created, this can be done by allocating separate memory for this
purpose and putting the memory packet address in exinf. The OS pays no attention to the contents of exinf.
 mpfatr indicates system attributes in its low bits and implementation-dependent information in the high bits. The system
attributes part of mpfatr is as follows.

 mpfatr:= (TA_TFIFO || TA_TPRI) | [TA_ONAME] | [TA_NODISWAI]
 | (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3) | [TA_INTERKERNEL]
 | [TA_DOMID] | [(TA_PROTECTED || TA_PRIVATE || TA_PUBLIC)]

 TA_TFIFO Tasks waiting for memory allocation are queued in FIFO order
 TA_TPRI Tasks waiting for memory allocation are queued in priority order
 TA_RNGn Memory access privilege is set to protection level n
 TA_ONAME Specifies an object name

AMP T-Kernel Specification / Ver. 1.00.00

 161 TEF021-S001-01.00.00/en

 TA_NODISWAI Wait disabling by tk_dis_wai is prohibited
 TA_INTERKERNEL Common attribute between kernels

TA_DOMID Specifies the domain to which the task belongs
 TA_PROTECTED Sets the access protection attribute to protect

TA_PRIVATE Sets the access protection attribute is set to private
TA_PUBLIC Sets the access protection attribute is set to public

 The queuing order of tasks waiting for memory block allocation from a memory pool can be specified in TA_TFIFO or
TA_TPRI. If the attribute is TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing of tasks in order of
their priority setting.
 TA_RNGn is specified to limit the protection levels at which memory can be accessed. Only tasks running at the same or
higher protection level than the one specified can access the allocated memory. If a task running at a lower protection level
attempts access, a CPU protection fault exception is raised. For example, memory allocated from a memory pool specified as
TA_RNG1 can be accessed by tasks running at levels TA_RNG0 or TA_RNG1, but not by tasks running at levels TA_RNG2 or
TA_RNG3.
 When TA_INTERKERNEL is specified, the memory pool is created on the system space between kernels. Since whether or
not system space exists between kernels depends on the system, it is implementation-defined. If TA_INTERKERNEL is
specified when there is no system space between kernels, E_NOSPT is returned. Moreover, the protection level of the system
space between kernels is implementation-defined. If a protection level that cannot be set in the system space between kernels is
specified at the same time, E_NOSPT is returned.
 The created memory pool is in resident memory in system space. There is no T-Kernel function for creating a memory pool
in task space.

When TA_ONAME is specified, oname is valid and is set as the object name. When TA_ONAME is not specified, the object
name is not set. The object name must be unique within the domain to which the memory pool belongs. When an object name
that has already been used with another memory pool is specified, error E_ONAME is returned. When the length of the
character string specified for oname is 0 (initial character is termination 0), the object name is not set regardless of the
specification of TA_ONAME.

When TA_DOMID is specified, domid is valid, and the domain of domid is set as the domain to which it belongs. When
TA_DOMID is not specified, domid is ignored and is the domain to which the kernel domain belongs. The domain ID
specifiable by domid is a kernel domain of the AMP T-Kernel where this system call is executed or a domain with a lower
position in the hierarchy. When a domain of another AMP T-Kernel is specified, error E_DOMAIN is returned.

TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC specify the access protection attribute of the memory pool. When either
of the access protection attributes is not specified, the access protection is set to the public attribute. In the combination of the
domain to which the task belongs and the access protection attribute, memory pools that invoking tasks cannot access due to
access protection cannot be created. When the corresponding specification is done, E_PAR is returned.

 #define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
 #define TA_TPRI 0x00000001 /* manage task queue by priority */
 #define TA_ONAME 0x00000040 /* specifies an object name */
 #define TA_NODISWAI 0x00000080 /* reject wait disabling */
 #define TA_RNG0 0x00000000 /* protection level 0 */
 #define TA_RNG1 0x00000100 /* protection level 1 */
 #define TA_RNG2 0x00000200 /* protection level 2 */
 #define TA_RNG3 0x00000300 /* protection level 3 */
 #define TA_INTERKERNEL 0x00000800 /* specifies the system space between kernels */

#define TA_DOMID 0x00010000 /* specifies the domain */
 #define TA_PRIVATE 0x00040000 /* sets the protection attribute to private */
 #define TA_PROTECTED 0x00080000 /* sets the protection attribute to protect */
 #define TA_PUBLIC 0x00000000 /* sets the protection attribute to public*/

[Additional Notes]
 In the case of a fixed-size memory pool, separate memory pools must be provided for different block sizes. That is, if various
memory block sizes are required, memory pools must be created for each block size.
 For the sake of portability, the TA_RNGn attribute must be accepted even by a system without an MMU. It is possible, for
example, to treat all TA_RNGn as equivalent to TA_RNG0; but no error must be returned.
s
[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting objects etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors.

Differences with the T-Kernel 1.00 Specification are as follows

AMP T-Kernel Specification / Ver. 1.00.00

 162 TEF021-S001-01.00.00/en

・ TA_DOMID, TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC were added to the memory pool attribute, and the
domain to which it belongs and the access protection attribute are specifiable.

・ TA_INTERKERNEL was added to the memory pool attribute, and the system space between kernels is specifiable. This
specification is necessary for use in the memory pool between AMP T-Kernels.

・ The DS object name was abolished, and replaced by the establishment of the object name. While the former was a name
for debugging, the latter is a name which can be used in general for searching domain ID's etc. The object name cannot use
the same name with the same type of object in the same domain.

AMP T-Kernel Specification / Ver. 1.00.00

 163 TEF021-S001-01.00.00/en

Delete Fixed-size Memory Pool tk_del_mpf

 tk_del_mpf:Delete Fixed-size MemoryPool

[C Language Interface]

 ER ercd = tk_del_mpf (ID mpfid) ;

[Parameters]

 ID mpfid MemoryPoolID Fixed-size memory pool ID

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mpfid is invalid or cannot be used)
 E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
 E_DOMAIN Fixed-size memory pool for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Deletes the fixed-size memory pool specified in mpfid.
 No check or notification is made as to whether there are tasks using memory allocated from this memory pool. The system
call completes normally even if some blocks have not been returned to the pool.
 Issuing this system call releases the memory pool ID number, the control block memory space and the memory pool space
itself.
 This system call completes normally even if there are tasks waiting for memory block allocation from the deleted memory
pool, but error code E_DLT is returned to the tasks in WAIT state.
 This system call cannot specify the memory pools of other AMP T-Kernels. Only memory pools on the same AMP T-Kernel
can be deleted.

Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting objects etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors.

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the memory pool of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified memory pool cannot be accessed due to access protection, E_DACV is returned.

When a task waiting for memory allocation in the target memory pool is a task of another AMP T-Kernel, communication

between processors occurs during memory pool deletion processing.

AMP T-Kernel Specification / Ver. 1.00.00

 164 TEF021-S001-01.00.00/en

Get Fixed-size Memory Block tk_get_mpf

 tk_get_mpf:Get Fixed-size Memory Block

[C Language Interface]

 ER ercd = tk_get_mpf (ID mpfid, VP *p_blf, TMO tmout) ;

[Parameters]

 ID mpfid MemoryPoolID Fixed-size memory pool ID
 TMO tmout Timeout timeout

[Return Parameters]

 ER ercd ErrorCode Error code
 VP blf BlockStartAddress Memory block start address

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mpfid is invalid or cannot be used)
 E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
 E_PAR Parameter error (tmout <= (-2))
 E_DLT The object being waited for was deleted (the memory pool was deleted while waiting)
 E_RLWAI Wait state released (tk_rel_wai received in wait state)
 E_DISWAI Wait released due to disabled state
 E_TMOUT Polling failed or timeout
 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)
 E_DOMAIN Fixed-size memory pool for another AMP T-Kernel domain was specified (When it is not the

TA_INTERKERNEL attribute)
 E_DACV Access protection violation

[Description]
 Gets a memory block from the fixed-size memory pool specified in mpfid. The start address of the allocated memory block is
returned in blf. The size of the allocated memory block is the value specified in the blfsz parameter when the fixed-size
memory pool was created.
 The allocated memory is not cleared to zero, and the memory block contents are indeterminate.
 If a block cannot be allocated from the specified memory pool, the task that issued tk_get_blf is put in the queue of tasks
waiting for memory allocation from that memory pool, and waits until memory can be allocated.
A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition is met (memory
space does not become available), the system call terminates, returning timeout error code E_TMOUT.
 Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for system time (= 1 ms).
 When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned without
entering WAIT state even if memory cannot be allocated.
When TMO_FEVR =(-1) is set in tmout, this means infinity was specified as the timeout value, and the task continues to wait
for memory allocation without timing out.
 The queuing order of tasks waiting for memory block allocation is either FIFO or in the order of task priority, depending on
the memory pool attribute.
 This system call can specify the memory pools of other AMP T-Kernels. However, usable memory pools between AMP
T-Kernels are only those which have been specified in the memory area of system space between kernels. When other memory
pools are specified, E_DOMAIN is returned.
 Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified memory pool cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 165 TEF021-S001-01.00.00/en

・ When the specified memory pool is not on the memory area of the system space between kernels, E_DOMAIN is
returned.

AMP T-Kernel Specification / Ver. 1.00.00

 166 TEF021-S001-01.00.00/en

Release Fixed-size Memory Pool tk_rel_mpf

 tk_rel_mpf:Release Fixed-size Memory Block

[C Language Interface]

 ER ercd = tk_rel_mpf (ID mpfid, VP blf) ;

[Parameters]

 ID mpfid MemoryPoolID Fixed-size memory pool ID
 VP blf BlockStartAddress Memory block start address

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mpfid is invalid or cannot be used)
 E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
 E_PAR Parameter error (blf is invalid, or block returned to wrong memory pool)
 E_DACV Access protection violation

[Description]
 Returns the memory block specified in blf to the fixed-size memory pool specified in mpfid.
 Executing tk_rel_mpf may enable memory block acquisition by another task waiting to allocate memory from the memory
pool specified in mpfid, releasing the WAIT state of that task.
 When a memory block is returned to a fixed-size memory pool, it must be the same fixed-size memory pool from which the
block was allocated. If an attempt to return a memory block to a different memory pool is detected, error code E_PAR is
returned. Whether this error detection is permitted or not is implementation-dependent.
 This system call can specify the memory pools of other AMP T-Kernels.
 Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified memory pool cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 167 TEF021-S001-01.00.00/en

Reference Fixed-size Memory Pool tk_ref_mpf

 tk_ref_mpf:Refer Fixed-size MemoryPool Status

[C Language Interface]

 ER ercd = tk_ref_mpf (ID mpfid, T_RMPF *pk_rmpf) ;

[Parameters]

 ID mpfid MemoryPoolID Fixed-size memory pool ID
 T_RMPF* pk_rmpf Packet to Refer MemoryPool Address of packet for returning status information

[Return Parameters]

 ER ercd ErrorCode Error code

 pk_rmpf detail:
 VP exinf ExtendedInformation Extended information
 ID wtsk WaitTaskInformation Waiting task information
 INT frbcnt FreeBlockCount Free block count
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mpfid is invalid or cannot be used)
 E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
 E_PAR Parameter error (the return parameter packet address cannot be used)
 E_DACV Access protection violation

[Description]
 References the status of the fixed-size memory pool specified in mpfid, passing in return parameters the current free block
count frbcnt, waiting task information (wtsk), and extended information (exinf).
 wtsk indicates the ID of a task waiting for memory block allocation from this fixed-size memory pool. If multiple tasks are
waiting for the fixed-size memory pool, the ID of the task at the head of the queue is returned. If there are no waiting tasks,
wtsk = 0 is returned.
 If the fixed-size memory pool specified with tk_ref_mpf does not exist, error code E_NOEXS is returned.
 At least one of frbcnt = 0 and wtsk = 0 is always true for this system call.

This system call can specify the memory pools of other AMP T-Kernels.
 Access protection is applied to this system call.

[Additional Notes]
 Whereas frsz returned by tk_ref_mpl gives the total free memory size in bytes, frbcnt returns the number of unused memory
blocks.
 Although the amount of free memory can be confirmed by this call, whether or it can be used from the invoking task is not
guaranteed. Depending on the protection level of the memory pool, there may be cases where access is not possible in the
acquired memory block (exception occurs). Moreover, in case of memory pools of other AMP T-Kernels, if it is not a memory
pool of common attribute between kernels, the memory block cannot be acquired.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified memory pool cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 168 TEF021-S001-01.00.00/en

4.6.2 Variable-size Memory Pool

 A variable-size memory pool is an object for dynamically managing memory blocks of any size. Functions are provided for
creating and deleting a variable-size memory pool, allocating and returning memory blocks in a variable-size memory pool, and
referencing the status of a variable-size memory pool. A variable-size memory pool is an object identified by an ID number
called a variable-size memory pool ID.
 A variable-size memory pool has a memory space used as the variable-size memory pool (called a variable-size memory pool
area or simply memory pool area), and a queue for tasks waiting for memory block allocation. A task wanting to allocate a
memory block from a variable-size memory pool that lacks sufficient available memory space goes to WAIT state for
variable-size memory block until memory blocks are returned to the pool. A task in this state is put in the task queue of the
variable-size memory pool.

In AMP T-Kernel, access to variable length memory pools on the AMP T-Kernels of other processors is possible as its own
AMP T-Kernel. In other words, they can be used for synchronization and the communication between processors. However, the
memory area of memory pools with the possibility of use between processors must be specified in the system space between
kernels. Moreover, access protection is applied to all system calls that specify a variable length memory pool ID.

System calls that can be used between processors are summarized in the table below. For more details refer to the explanation
for each system call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_cre_mpl Create Variable-size Memory Pool × ×

tk_del_mpl Delete Variable-size Memory Pool × ×

tk_get_mpl Get Variable-size Memory Block ○ ×

tk_rel_mpl Release Variable-size Memory Block ○ △

tk_ref_mpl Reference Variable-size Memory Pool Status ○ △

Different from T-Kernel 1.00 Specification ○:No X:Yes △: Only different in that E_DACV error returns by the access
protection

[Additional Notes]
 When tasks are waiting for memory block allocation from a variable-size memory pool, they are served in queued order. If,
for example, Task A requesting a 400-byte memory block from a variable-size memory pool is queued along with Task B
requesting a 100-byte block, in A-B order, then even if 200 bytes of space are free, Task B is made to wait until Task A has
acquired the requested memory block.

AMP T-Kernel Specification / Ver. 1.00.00

 169 TEF021-S001-01.00.00/en

Create Variable-size Memory Pool tk_cre_mpl

 tk_cre_mpl:Create Variable-size MemoryPool

[C Language Interface]

 ID mplid = tk_cre_mpl (T_CMPL *pk_cmpl) ;

[Parameters]

 T_CMPL* pk_cmpl Packet to Create MemoryPool Information about the variable-size memory pool to be created

 pk_cmpl detail:
 VP exinf ExtendedInformation Extended information
 ATR mplatr MemoryPoolAttribute Memory pool attributes
 INT mplsz MemoryPoolSize Memory pool size (in bytes)
 ID domid DomainID Domain ID
 UB oname[8] Object name Object name
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Return Parameters]

 ID mplid MemoryPoolID Variable-size memory pool ID
 or ErrorCode Error Code

[Error Codes]

 E_NOMEM Insufficient memory (memory for control block or memory pool area cannot be allocated)
 E_LIMIT Number of variable-size memory pools exceeds the system limit
 E_RSATR Reserved attribute (mplatr is invalid or cannot be used)
 E_PAR Parameter error (pk_cmpl is invalid, or mplsz is negative or invalid)
 E_NSPT Unsupported (Does not have system space between kernels)
 E_ID Invalid ID number (domid is invalid or cannot be used)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_DOMAIN Domain of another AMP T-Kernel was specified
 E_ONAME Specified object name has already been used

[Description]
 Creates a variable-size memory pool, assigning it to a variable-size memory pool ID. This system call allocates a memory
space for use as a memory pool, based on the information in parameter mplsz, and allocates a control block to the created
memory pool.

In AMP T-Kernel, variable length memory pools cannot be created on other AMP T-Kernels. Only a variable length memory
pool of the AMP T-Kernel where this call is executed can be created.

 exinf can be used freely by the user to store miscellaneous information about the created memory pool. The information set
in this parameter can be referenced by tk_ref_mpl. If a larger area is needed for indicating user information, or if the
information needs to be changed after the memory pool is created, this can be done by allocating separate memory for this
purpose and putting the memory packet address in exinf. The OS pays no attention to the contents of exinf.
 mplatr indicates system attributes in its low bits and implementation-dependent information in the high bits. The system
attributes part of mplatr is as follows.

mplatr:= (TA_TFIFO || TA_TPRI) | [TA_ONAME] | [TA_NODISWAI]
 | (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3) | [TA_INTERKERNEL]
 | [TA_DOMID] | [(TA_PROTECTED || TA_PRIVATE || TA_PUBLIC)]

 TA_TFIFO Tasks waiting for memory allocation are queued in FIFO order
 TA_TPRI Tasks waiting for memory allocation are queued in priority order
 TA_RNGn Memory access privilege is set to protection level n
 TA_ONAME Specifies an object name

AMP T-Kernel Specification / Ver. 1.00.00

 170 TEF021-S001-01.00.00/en

 TA_NODISWAI Wait disabling by tk_dis_wai is prohibited
 TA_INTERKERNEL Common attribute between kernels

TA_DOMID Specifies the domain to which the task belongs
 TA_PROTECTED Sets the access protection attribute to protect

TA_PRIVATE Sets the access protection attribute is set to private
TA_PUBLIC Sets the access protection attribute is set to public

 The queuing order of tasks waiting to acquire memory from a memory pool can be specified in TA_TFIFO or TA_TPRI. If
the attribute is TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing of tasks in order of their priority
setting.
 When tasks are queued waiting for memory allocation, memory is allocated in the order of queuing. Even if other tasks in the
queue are requesting smaller amounts of memory than the task at the head of the queue, they do not acquire memory blocks
before the first task. If, for example, Task A requesting a 400-byte memory block from a variable-size memory pool is queued
along with Task B requesting a 100-byte block, in A-B order, then even if 200 bytes of space are free, Task B is made to wait
until Task A has acquired the requested memory block.
 TA_RNGn is specified to limit the protection levels at which memory can be accessed. Only tasks running at the same or
higher protection level than the one specified can access the allocated memory. If a task running at a lower protection level
attempts access, a CPU protection fault exception is raised. For example, memory allocated from a memory pool specified as
TA_RNG1 can be accessed by tasks running at levels TA_RNG0 or TA_RNG1, but not by tasks running at levels TA_RNG2 or
TA_RNG3.
 The created memory pool is in resident memory in system space. There is no T-Kernel function for creating a memory pool
in task space.
 When TA_INTERKERNEL is specified, the memory pool is created on the system space between kernels. Since whether or
not system space exists between kernels depends on the system, it is implementation-defined. If TA_INTERKERNEL is
specified when there is no system space between kernels, E_NOSPT is returned. Moreover, the protection level of the system
space between kernels is also implementation-defined. If a protection level that cannot be set in the system space between
kernels is specified at the same time, E_NOSPT is returned as well.
 Created memory pools become resident memory on the system space. There is no function for creating memory pools on task
space.

When TA_ONAME is specified, oname is valid and is set as the object name. When TA_ONAME is not specified, the object
name is not set. The object name must be unique within the domain to which the memory pool belongs. When an object name
that has already been used with another memory pool is specified, error E_ONAME is returned. When the length of the
character string specified for oname is 0 (initial character is termination 0), the object name is not set regardless of the
specification of TA_ONAME.

When TA_DOMID is specified, domid is valid, and the domain of domid is set as the domain to which it belongs. When
TA_DOMID is not specified, domid is ignored and is the domain to which the kernel domain belongs. The domain ID
specifiable by domid is a kernel domain of the AMP T-Kernel where this system call is executed or a domain with a lower
position in the hierarchy. When a domain of another AMP T-Kernel is specified, error E_DOMAIN is returned.

TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC specify the access protection attribute of the memory pool. When either
of the access protection attributes is not specified, the access protection is set to the public attribute. In the combination of the
domain to which the task belongs and the access protection attribute, memory pools that invoking tasks cannot access due to
access protection cannot be created. When the corresponding specification is done, E_PAR is returned.

 #define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
 #define TA_TPRI 0x00000001 /* manage task queue by priority */
 #define TA_ONAME 0x00000040 /* specifies an object name */
 #define TA_NODISWAI 0x00000080 /* reject wait disabling */
 #define TA_RNG0 0x00000000 /* protection level 0 */
 #define TA_RNG1 0x00000100 /* protection level 1 */
 #define TA_RNG2 0x00000200 /* protection level 2 */
 #define TA_RNG3 0x00000300 /* protection level 3 */
 #define TA_INTERKERNEL 0x00000800 /* specifies the system space between kernels */
 #define TA_DOMID 0x00010000 /* specifies the domain */
 #define TA_PRIVATE 0x00040000 /* sets the protection attribute to private */
 #define TA_PROTECTED 0x00080000 /* sets the protection attribute to protect */
 #define TA_PUBLIC 0x00000000 /* sets the protection attribute to public*/

[Additional Notes]
 If the task at the head of the queue waiting for memory allocation has its WAIT state forcibly released or if a different task

AMP T-Kernel Specification / Ver. 1.00.00

 171 TEF021-S001-01.00.00/en

becomes the first in the queue as a result of a change in task priority, allocation of memory to that task is attempted. If memory
can be allocated, the WAIT state of that task is released. In this way, it is possible under some circumstances for memory
allocation to take place and task WAIT state to be released even when memory is not released by tk_rel_mpl.
 For the sake of portability, the TA_RNGn attribute must be accepted even by a system without an MMU. It is possible, for
example, to treat all TA_RNGn as equivalent to TA_RNG0; but no error must be returned.

[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting objects, etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors.

Differences with the T-Kernel 1.00 Specification are as follows.

 TA_DOMID, TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC were added to the memory pool attribute, and the
domain to which it belongs and the access protection attribute are specifiable.

 TA_INTERKERNEL was added to the memory pool attribute, and the system space between kernels is specifiable. This
specification is necessary for use in memory pools between AMP T-Kernels.

 The DS object name was abolished, and replaced by the establishment of the object name. While the former was a name
for debugging, the latter is a name which can be used in general for searching domain ID's, etc. The object name cannot
use the same name with the same type of object in the same domain.

[Rationale for the Specification]
 The capability of creating multiple memory pools can be used for memory allocation as needed for error handling or in
emergencies, etc.

AMP T-Kernel Specification / Ver. 1.00.00

 172 TEF021-S001-01.00.00/en

Delete Variable-size Memory Pool tk_del_mpl

 tk_del_mpl:Delete Variable-size MemoryPool

[C Language Interface]

 ER ercd = tk_del_mpl (ID mplid) ;

[Parameters]

 ID mplid MemoryPoolID Variable-size memory pool ID

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mplid is invalid or cannot be used)
 E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not exist)
 E_DOMAIN Variable length memory pool for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Deletes the variable-size memory pool specified in mplid.
 No check or notification is made as to whether there are tasks using memory allocated from this memory pool. The system
call completes normally even if some blocks have not been returned to the pool.
 Issuing this system call releases the memory pool ID number, the control block memory space and the memory pool space
itself.
 This system call completes normally even if there are tasks waiting for memory block allocation from the deleted memory
pool, but error code E_DLT is returned to the tasks in WAIT state.
 This system call cannot specify the memory pools of other AMP T-Kernels. Only memory pools on the same AMP T-Kernel
can be deleted.
 Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting objects, etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors.

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the memory pool of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified memory pool cannot be accessed due to access protection, E_DACV is returned.

If the task waiting for memory acquisition in target memory pool is an AMP

T-Kernel task, communication occurs between processors during the processing of memory pool deletion.

AMP T-Kernel Specification / Ver. 1.00.00

 173 TEF021-S001-01.00.00/en

Get Variable-size Memory Block tk_get_mpl

 tk_get_mpl:Get Variable-size Memory Block

[C Language Interface]

 ER ercd = tk_get_mpl (ID mplid, INT blksz, VP *p_blk, TMO tmout) ;

[Parameters]

 ID mplid MemoryPoolID Variable-size memory pool ID
 INT blksz MemoryBlockSize Memory block size (in bytes)
 TMO tmout Timeout Timeout

[Return Parameters]

 ER ercd ErrorCode Error code
 VP blk BlockStartAddress Block start address

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mplid is invalid or cannot be used)
 E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not exist)
 E_PAR Parameter error (tmout <= (-2))
 E_DLT The object being waited for was deleted (the memory pool was deleted while waiting)
 E_RLWAI Wait state released (tk_rel_wai received in wait state)
 E_DISWAI Wait released due to disabled state
 E_TMOUT Polling failed or timeout
 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)
 E_DOMAIN Variable length memory pool for another AMP T-Kernel domain was specified (When it is not the

TA_INTERKERNEL attribute)
 E_DACV Access protection violation

[Description]
 Gets a memory block of size blksz (bytes) from the variable-size memory pool specified in mplid. The start address of the
allocated memory block is returned in blk.
 The allocated memory is not cleared to zero, and the memory block contents are indeterminate.
 If memory cannot be allocated, the task issuing this system call enters WAIT state.
 A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition is met
(memory space does not become available), the system call terminates, returning timeout error code E_TMOUT.
 Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for system time (= 1 ms).
 When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned without
entering WAIT state even if memory cannot be allocated.
 When TMO_FEVR = (-1) is set in tmout, this means infinity was specified as the timeout value, and the task continues to
wait for memory allocation without timing out.
 The queuing order of tasks waiting for memory block allocation is either FIFO or task priority order, depending on the
memory pool attribute.
 This system call can specify the memory pools of other AMP T-Kernels. However, usable memory pools between AMP
T-Kernels are only those which have been specified in the memory area of system space between kernels. When other memory
pools are specified, E_DOMAIN is returned.
 Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.
・ When the specified memory pool cannot be accessed due to access protection, E_DACV is returned.
・ When the specified memory pool is not on the memory area of the system space between kernels, E_DOMAIN is

returned.

AMP T-Kernel Specification / Ver. 1.00.00

 174 TEF021-S001-01.00.00/en

Release Variable-size Memory Block tk_rel_mpl

 tk_rel_mpl:Release Variable-size Memory Block

[C Language Interface]

 ER ercd = tk_rel_mpl (ID mplid, VP blk) ;

[Parameters]

 ID mplid MemoryPoolID Variable-size memory pool ID
 VP blk BlockStartAddress Memory block start address

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mplid is invalid or cannot be used)
 E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not exist)
 E_PAR Parameter error (blk is invalid, or block returned to wrong memory pool)
 E_DACV Access protection violation

[Description]
 Returns the memory block specified in blk to the variable-size memory pool specified in mplid.
 Executing tk_rel_mpl may enable memory block acquisition by another task waiting to allocate memory from the memory
pool specified in mplid, releasing the WAIT state of that task.
 When a memory block is returned to a variable-size memory pool, it must be the same variable-size memory pool from
which the block was allocated. If an attempt to return a memory block to a different memory pool is detected, error code
E_PAR is returned. Whether or not this error detection is carried out is implementation-dependent.
 This system call can specify the memory pools of other AMP T-Kernels.
 Access protection is applied to this system call.

[Additional Notes]
 When memory is returned to a variable-size memory pool in which multiple tasks are queued, multiple tasks may be released
at the same time depending on the amount of memory returned and the requested memory size. The task precedence among
tasks of the same priority after their WAIT state is released in such a case is the order in which they were queued.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified memory pool cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 175 TEF021-S001-01.00.00/en

Reference Variable-size Memory Pool status tk_ref_mpl

 tk_ref_mpl:Refer Variable-size MemoryPool Status

[C Language Interface]

 ER ercd = tk_ref_mpl (ID mplid, T_RMPL *pk_rmpl) ;

[Parameters]

 ID mplid MemoryPoolID Variable-size memory pool ID
 T_RMPL* pk_rmpl Packet to Refer MemoryPool Address of packet for returning status information

[Return Parameters]

 ER ercd ErrorCode Error code pk_rmpl detail:

 pk_rmpl detail:
 VP exinf ExtendedInformation Extended information
 ID wtsk WaitTaskInformation Waiting task information
 INT frsz FreeMemorySize Free memory size (in bytes)
 INT maxsz MaxMemorySize Maximum memory space size (in bytes)
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (mplid is invalid or cannot be used)
 E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not exist)
 E_PAR Parameter error (the address of the return parameter packet cannot be used)
 E_DACV Access protection violation

[Description]
 References the status of the variable-size memory pool specified in mplid, passing in return parameters the size of total free
space (frsz), the maximum size of memory immediately available (maxsz), waiting task information (wtsk), and extended
information (exinf).
 wtsk indicates the ID of a task waiting for memory block allocation from this variable-size memory pool. If multiple tasks
are waiting for the variable-size memory pool, the ID of the task at the head of the queue is returned. If there are no waiting
tasks, wtsk = 0 is returned.
 If the variable-size memory pool specified with tk_ref_mpl does not exist, error code E_NOEXS is returned.
 This system call can specify the memory pools of other AMP T-Kernels.
 Access protection is applied to this system call.

[Additional Notes]
 While the total size of the free memory in frsz of tk_ref_mpl is returned by the number of bytes, the unused memory block
count is returned in frbcnt of tk_ref_mpf.
 Although the amount of free memory can be confirmed by this call, whether or not it can be used from the invoking task is
not guaranteed. Depending on the protection level of the memory pool, there may be cases where the acquired memory block
cannot be accessed (exception occurs). Moreover, in case of memory pools for other AMP T-Kernels, the memory block cannot
be acquired if it is not a memory pool of a common attribute between kernels.

[Items Concerning AMP T-Kernel]

This call can be used between processors (between AMP T-Kernels).
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the specified memory pool cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 176 TEF021-S001-01.00.00/en

4.7 Time Management Functions

Time management functions are for performing time-dependent processing. They include functions for system time
management, cyclic handlers, and alarm handlers.

The general name used here for cyclic handlers and alarm handlers is time event handlers.

4.7.1 System Time Management

System time management functions are for manipulating system time. Functions are provided for setting and reading system
clock and for reading system operating time.

In AMP T-Kernel, the time management function including system time is handled independently in each AMP T-Kernel of
each processor. The synchronization and the margin of error of time between processors are implementation-defined. When
system time is set in a specific AMP T-Kernel, whether or not the system time of AMP T-Kernels of other processors is changed
in synchronization is also implementation-defined.

System calls for system time management cannot be used between processors. System calls for system time management are
summarized in the table below. For more details refer to the explanation for each system call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_set_tim Set Time × ○

tk_get_tim Get System Time × ○

tk_get_otm Get Operating Time × ○

[Additional Notes]

In AMP T-Kernel, even if the value for each system time is the same between processors, it is not guaranteed that it will be
the same time in real time because synchronization and the margin of error for time between processors are
implementation-defined. Therefore, if software that considers portability is created, it should be considered that system time is
only effective in the AMP T-Kernel.

[Rationale for the Specification]

The following reasons are why time management is conducted independently in each AMP T-Kernel of each processor.
The time management of T-Kernel is regularly realized by measuring the operating time by using a periodic timer interrupt.

Absolute time is also calculated from the operating time. The mechanism of this timer interrupt depends in large part on
hardware and the implementation. For example, whether or not a separate timer is allocated for each processor or a single timer
is shared between processors results in a large difference. There may also be systems in which the time cycle of the timer
interrupt is different in each processor. AMP T-Kernel follows the policy of supporting the system of various AMPs. Time
management is independent in each AMP T-Kernel and synchronization and the margin of error for time are
implementation-dependant.

However, when file control, etc. is carried out, it is necessary to manage time as an overall system. Therefore, common time
management in the entire system is realized with high-level systems such as T-Kernel Extension.

AMP T-Kernel Specification / Ver. 1.00.00

 177 TEF021-S001-01.00.00/en

Set Time tk_set_tim

 tk_set_tim:Set Time

[C Language Interface]

 ER ercd = tk_set_tim (SYSTIM *pk_tim) ;

[Parameters]

 SYSTIM* pk_tim Packet of CurrentTime Address of current time packet

 pk_tim detail: time to set as system time.
 W hi high 32 bits of the system time.
 W lo low 32 bits of the system time.

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_PAR Parameter error (pk_tim is invalid, or time setting is invalid)

[Description]
 Sets the system clock to the value specified in systim.
 System time is expressed as cumulative milliseconds from 0:00:00 (GMT), January 1, 1985.

[Additional Notes]
 The relative time specified in RELTIM or TMO does not change even if the system clock is changed by calling tk_set_tim
during system operation. For example, if a timeout is set to elapse in 60 seconds and the system clock is advanced by 60
seconds by tk_set_tim while waiting for the timeout, the timeout occurs not immediately but 60 seconds after it was set. Instead,
tk_set_tim changes the system time at which the timeout occurs.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 178 TEF021-S001-01.00.00/en

Get Time tk_get_tim

 tk_get_tim:Get Time

[C Language Interface]

 ER ercd = tk_get_tim (SYSTIM *pk_tim) ;

[Parameters]

 SYSTIM* pk_tim Packet of CurrentTime Address of time packet

[Return Parameters]

 ER ercd ErrorCode Error code

 pk_tim detail:
 SYSTIM systim CurrentSystemTime Current system time

[Error Codes]

 E_OK Normal completion
 E_PAR Parameter error (pk_tim is invalid)

[Description]
 Reads the current value of the system clock and returns it in systim.
 System time is expressed as cumulative milliseconds from 0:00:00 (GMT), January 1, 1985.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 179 TEF021-S001-01.00.00/en

Get Operating Time tk_get_otm

 tk_get_otm:Get Operating Time

[C Language Interface]

 ER ercd = tk_get_otm (SYSTIM *pk_tim) ;

[Parameters]

 SYSTIM* pk_tim Address of packet for returning operating time

[Return Parameters]

 ER ercd Error code

 pk_tim detail
 SYSTIM opetim System operating time

[Error Codes]

 E_OK Normal completion
 E_PAR Parameter error (pk_tim is invalid)

[Description]
 Gets the system operating time (up time).
 System operating time, unlike system time, indicates the length of time elapsed linearly since the system was started. It is not
affected by clock settings made by tk_set_tim.
 System operating time must have the same precision as system time.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 180 TEF021-S001-01.00.00/en

4.7.2 Cyclic Handler

 A cyclic handler is a time event handler started at regular intervals. Cyclic handler functions are provided for creating and
deleting a cyclic handler, activating and deactivating a cyclic handler operation, and referencing cyclic handler status. A cyclic
handler is an object identified by an ID number called a cyclic handler ID.
 The time interval at which a cyclic handler is started (cycle time) and the cycle phase are specified for each cyclic handler
when it is created. When a cyclic handler operation is requested, T-Kernel determines the time at which the cyclic handler
should not be started next based on the cycle time and cycle phase set for it. When a cyclic handler is created, the time when it
is to be started next is the time of its creation plus the cycle phase. When the time comes to start a cyclic handler, exinf,
containing extended information about the cyclic handler, is passed to it as a starting parameter. The time when the cyclic
handler is started plus its cycle time becomes the next start time. Sometimes when a cyclic handler is activated, the next start
time will be newly set.
 In principle the cycle phase of a cyclic handler is no longer than its cycle time. The behavior if the cycle phase is made
longer than the cycle time is implementation-dependent.
 A cyclic handler has two activation states, active and inactive. While a cyclic handler is inactive, it is not started even when
its start time arrives, although calculation of the next start time does take place. When a system call for activating a cyclic
handler is called (tk_sta_cyc), the cyclic handler goes to active state, and the next start time is decided if necessary. When a
system call for deactivating a cyclic handler is called (tk_stp_cyc), the cyclic handler goes to inactive state. Whether a cyclic
handler upon creation is active or inactive is decided by a cyclic handler attribute.
 The cycle phase of the cyclic handler is a relative time specifying the first time the cyclic handler is to be started, in relation
to the time when the system call creating it was invoked. The cycle time of a cyclic handler is likewise a relative time,
specifying the next time the cyclic handler is to be started in relation to the time it should have started (not the time it started).
For this reason, the intervals between times the cyclic handler is started will individually be shorter than the cycle time in some
cases, but their average over a longer time span will match the cycle time.

In AMP T-Kernel, the time management function including cyclic handler is independent in individual processors and cannot
use the time management function between processors. Access protection is applied to all system calls that specify a cyclic
handler ID.

System calls for cyclic handlers are summarized in the table below. For more details refer to the explanation for each system
call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_cre_cyc Create Cyclic Handler × ×

tk_del_cyc Delete Cyclic Handler × ×

tk_sta_cyc Start Cyclic Handler × ×

tk_stp_cyc Stop Cyclic Handler × ×

tk_ref_cyc Reference Cyclic Handler Status × ×

Different from T-Kernel 1.00 Specification ○:No X:Yes △: Only different in that E_DACV error returns by the access
protection

AMP T-Kernel Specification / Ver. 1.00.00

 181 TEF021-S001-01.00.00/en

Create Cyclic Handler tk_cre_cyc

 tk_cre_cyc:Create Cyclic Handler

[C Language Interface]

 ID cycid = tk_cre_cyc (T_CCYC *pk_ccyc) ;

[Parameters]

 T_CCYC* pk_ccyc Packet to Define CyclicHandler Address of cyclic handler definition packet

 pk_ccyc detail:
 VP exinf ExtendedInformation Extended information
 ATR cycatr CyclicHandlerAttribute Cyclic handler attributes
 FP cychdr CyclicHandlerAddress Cyclic handler address
 RELTIM cyctim CycleTime Cycle time
 RELTIM cycphs Cycle phase
 ID domid DomainID Domain ID
 UB oname[8] Object name Object name
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Return Parameters]

 ID cycid CyclicHandlerID Cyclic handler ID
 or ErrorCode Error Code

[Error Codes]

 E_NOMEM Insufficient memory (memory for control block cannot be allocated)
 E_LIMIT Number of cyclic handlers exceeds the system limit
 E_RSATR Reserved attribute (cycatr is invalid or cannot be used)
 E_PAR Parameter error (pk_ccyc, cychdr, cyctim, or cycphs is invalid or cannot be used)

E_ID Invalid ID number (domid is invalid or cannot be used)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_DOMAIN Domain of another AMP T-Kernel was specified
 E_ONAME Specified object name has already been used

[Description]
 Creates a cyclic handler, assigning it to a cyclic handler ID. A cyclic handler is a handler running at specified intervals as a
task-independent portion.

In AMP T-Kernel, cyclic handlers cannot be created on other AMP T-Kernels. Only cyclic handlers of the AMP T-Kernel
from which this call is executed can be created.
 exinf can be used freely by the user to store miscellaneous information about the created cyclic handler. The information set
in this parameter can be referenced by tk_ref_cyc. If a larger area is needed for indicating user information, or if the
information needs to be changed after the cyclic handler is created, this can be done by allocating separate memory for this
purpose and putting the memory packet address in exinf. The OS pays no attention to the contents of exinf.
 cycatr indicates system attributes in its low bits and implementation-dependent information in the high bits. The system
attributes part of cycatr is as follows.

 cycatr := (TA_ASM || TA_HLNG) | [TA_STA] | [TA_PHS] | [TA_ONAME]
 | [TA_DOMID] | [(TA_PROTECTED || TA_PRIVATE || TA_PUBLIC)]

 TA_ASM The handler is written in assembly language
 TA_HLNG The handler is written in high-level language
 TA_STA Activate immediately upon cyclic handler creation
 TA_PHS Save the cycle phase
 TA_ONAME Specifies an object name
 TA_DOMID Specifies the domain to which the task belongs

AMP T-Kernel Specification / Ver. 1.00.00

 182 TEF021-S001-01.00.00/en

 TA_PROTECTED Sets the access protection attribute to protect
TA_PRIVATE Sets the access protection attribute is set to private
TA_PUBLIC Sets the access protection attribute is set to public

 cychdr specifies the cyclic handler start address, cyctim the cycle time, and cycphs the cycle phase.
 When the TA_HLNG attribute is specified, the cyclic handler is started via a high-level language support routine. The
high-level language support routine takes care of saving and restoring register values. The cyclic handler terminates by a simple
return from the function. The cyclic handler takes the following format when the TA_HLNG attribute is specified.

 void cychdr(VP exinf)
 {
 /*
 Processing
 */

 return; /* Exit cyclic handler */
 }

 The cyclic handler format when the TA_ASM attribute is specified is implementation-dependent, but exinf must be passed to
the handler in a starting parameter when it starts.
 cycphs indicates the length of time until the cyclic hander is initially started after being created by tk_cre_cyc. Thereafter it is
started periodically at the interval set in cyctim. If zero is specified for cycphs, the cyclic handler starts immediately after it is
created. Zero cannot be specified for cyctim.
 The starting of the cyclic handler for the nth time occurs after at least chcphs + chctim × (n - 1) time has elapsed from the
cyclic handler creation.
 When TA_STA is specified, the cyclic handler goes to active state immediately on creation, and starts at the intervals noted
above. If TA_STA is not specified, the cycle time is calculated but the cyclic handler is not actually started.
 When TA_PHS is specified, then even if tk_sta_cyc is called activating the cyclic handler, the cycle time is not reset, and the
cycle time calculated as above from the time of cyclic handler creation continues to apply. If TA_PHS is not specified, calling
tk_sta_cyc resets the cycle time and the cyclic handler is started at cyctim intervals measured from the time tk_sta_cyc was
called. Note that the resetting of cycle time by tk_sta_cyc does not affect cycphs. In this case, the starting of the cyclic handler
for the nth time occurs after at least cyctim × n has elapsed from the calling of tk_sta_cyc.

When TA_ONAME is specified, oname is valid and is set as the object name. When TA_ONAME is not specified, the object
name is not set. The object name must be unique within the domain to which the cyclic handler belongs. When an object name
that has already been used with another cyclic handler is specified, error E_ONAME is returned. When the length of the
character string specified for oname is 0 (initial character is termination 0), the object name is not set regardless of the
specification of TA_ONAME.

When TA_DOMID is specified, domid is valid, and the domain of domid is set as the domain to which it belongs. When
TA_DOMID is not specified, domid is ignored and is the domain to which the kernel domain belongs. The domain ID
specifiable by domid is a kernel domain of the AMP T-Kernel where this system call is executed or a domain with a lower
position in the hierarchy. When a domain of another AMP T-Kernel is specified, error E_DOMAIN is returned.

TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC specify the access protection attribute of the cyclic handler. When
either of the access protection attributes is not specified, the access protection is set to the public attribute. In the combination of
the domain to which the task belongs and the access protection attribute, cyclic handlers that invoking tasks cannot access due
to access protection cannot be created. When the corresponding specification is done, E_PAR is returned.
 Even if a system call is invoked from a cyclic handler and this causes the task in RUN state up to that time to go to another
state, with a different task going to RUN state, dispatching (task switching) does not occur while the cyclic handler is running.
Completion of execution by the cyclic handler has precedence even if dispatching is necessary; only when the cyclic handler
terminates does the dispatch take place. In other words, a dispatch request occurring while a cyclic handler is running is not
processed immediately, but is delayed until the cyclic handler terminates. This is called delayed dispatching.
 A cyclic handler runs as a task-independent portion. As such, it is not possible to call in a cyclic handler a system call that
can enter WAIT state, or one that is intended for the invoking task.
 Cyclic handlers are managed independently by each AMP T-Kernel. They cannot be used between AMP T-Kernels.

 #define TA_ASM 0x00000000 /* assembly program */
 #define TA_HLNG 0x00000001 /* high-level language program */
 #define TA_STA 0x00000002 /* activate cyclic handler */
 #define TA_PHS 0x00000004 /* save cyclic handler cycle phase */
 #define TA_ONAME 0x00000040 /* specifies an object name */
 #define TA_DOMID 0x00010000 /* specifies the domain */

AMP T-Kernel Specification / Ver. 1.00.00

 183 TEF021-S001-01.00.00/en

 #define TA_PRIVATE 0x00040000 /* sets the protection attribute to private */
 #define TA_PROTECTED 0x00080000 /* sets the protection attribute to protect */
 #define TA_PUBLIC 0x00000000 /* sets the protection attribute to public*/

[Additional Notes]
 Once a cyclic handler is defined, it continues to run at the specified cycles either until tk_stp_cyc is called to deactivate it or
until it is deleted. There is no parameter to specify the number of cycles in tk_cre_cyc.
 When multiple time event handlers or interrupt handlers operate at the same time, it is an implementation-dependent matter
whether to have them run serially (after one handler exits, another starts) or nested (one handler operation is suspended, another
runs, and when that one finishes the previous one resumes). In either case, since time event handlers and interrupt handlers run
as task-independent portions, the principle of delayed dispatching applies.

[Items Concerning AMP T-Kernel]

Since time management is conducted in individual AMP T-Kernels, this call cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

 TA_DOMID, TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC were added to the cyclic handler attribute, and the
domain to which it belongs and the access protection attribute are specifiable.

 The DS object name was abolished, and replaced by the establishment of the object name. While the former was a name
for debugging, the latter is a name which can be used in general for searching domain ID's, etc. The object name cannot
use the same name with the same type of object in the same domain.

AMP T-Kernel Specification / Ver. 1.00.00

 184 TEF021-S001-01.00.00/en

Delete Cyclic Handler tk_del_cyc

 tk_del_cyc:Delete Cyclic Handler

[C Language Interface]

 ER ercd = tk_del_cyc (ID cycid) ;

[Parameters]

 ID cycid CyclicHandlerID Cyclic handler ID

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (cycid is invalid or cannot be used)
 E_NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)
 E_DOMAIN Cyclic handler for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Deletes the cyclic handler specified in cycid.
 This system call cannot specify the cyclic handlers of other AMP T-Kernels. Only cyclic handlers on the same AMP T-Kernel
can be deleted.
 Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since time management is conducted in individual AMP T-Kernels, this call cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the cyclic handler of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified cyclic handler cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 185 TEF021-S001-01.00.00/en

Start Cyclic Handler tk_sta_cyc

 tk_sta_cyc:Start Cyclic Handler

[C Language Interface]

 ER ercd = tk_sta_cyc (ID cycid) ;

[Parameters]

 ID cycid CyclicHandlerID Cyclic handler ID

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (cycid is invalid or cannot be used)
 E_NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)
 E_DOMAIN Cyclic handler for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Activates a cyclic handler, putting it in active state.
 If the TA_PHS attribute was specified, the cycle time of the cyclic handler is not reset when the cyclic handler goes to active
state. If it was already in active state when this system call was executed, it continues unchanged in active state.
 If the TA_PHS attribute was not specified, the cycle time is reset when the cyclic handler goes to active state. If it was
already in active state, it continues in active state but its cycle time is reset. In this case, the next time the cyclic handler starts is
after cyctim has elapsed.
 This system call cannot specify the cyclic handlers of other AMP T-Kernels. Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since time management is conducted in individual AMP T-Kernels, this call cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the cyclic handler of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified cyclic handler cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 186 TEF021-S001-01.00.00/en

Stop Cyclic Handler tk_stp_cyc

 tk_stp_cyc:Stop Cyclic Handler

[C Language Interface]

 ER ercd = tk_stp_cyc (ID cycid) ;

[Parameters]

 ID cycid CyclicHandlerID Cyclic handler ID

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (cycid is invalid or cannot be used)
 E_NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)
 E_DOMAIN Cyclic handler for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Deactivates a cyclic handler, putting it in inactive state. If the cyclic handler was already in inactive state, this system call has
no effect (no operation).
 This system call cannot specify the cyclic handlers of other AMP T-Kernels. Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since time management is conducted in individual AMP T-Kernels, this call cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the cyclic handler of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified cyclic handler cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 187 TEF021-S001-01.00.00/en

Reference Cyclic Handler Status tk_ref_cyc

 tk_ref_cyc:Refer Cyclic Handler Status

[C Language Interface]

 ER ercd = tk_ref_cyc (ID cycid, T_RCYC *pk_rcyc) ;

[Parameters]

 ID cycid CyclicHandlerID Cyclic handler ID
 T_RCYC* pk_rcyc Packet to Refer CyclicHandler Address of packet for returning status information

[Return Parameters]

 ER ercd ErrorCode Error code

 pk_rcyc detail:
 VP exinf ExtendedInformation Extended information
 RELTIM lfttim LeftTime Time remaining until the next start time
 UINT cycstat CyclicHandlerStatus Cyclic handler activation state
 ──(Other implementation-dependent parameters may be added beyond this point.))──

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (cycid is invalid or cannot be used)
 E_NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)
 E_PAR Parameter error (the address of the return parameter packet cannot be used)
 E_DOMAIN Cyclic handler for another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 References the status of the cyclic handler specified in cycid, passing in return parameters the cyclic handler activation state
cycstat, the time remaining until the next start lfttim, and extended information exinf.
 The following information is returned in cycstat.

 cycstat:= (TCYC_STP | TCYC_STA)

 #define TCYC_STP 0x00 /* cyclic handler is inactive */
 #define TCYC_STA 0x01 /* cyclic handler is active */
 If the cyclic handler specified in cycid does not exist, error code E_NOEXS is returned.

 This system call cannot specify the cyclic handlers of other AMP T-Kernels. Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since time management is conducted in individual AMP T-Kernels, this call cannot be used between processors.
Differences with the T-Kernel 1.00 Specification are as follows.

・ When the cyclic handler of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified cyclic handler cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 188 TEF021-S001-01.00.00/en

4.7.3 Alarm Handler

 An alarm handler is a time event handler that starts at a specified time. Functions are provided for creating and deleting an
alarm handler, activating and deactivating the alarm handler, and referencing the alarm handler status. An alarm handler is an
object identified by an ID number called an alarm handler ID.
 The time at which an alarm handler starts (called the alarm time) can be set independently for each alarm handler. When the
alarm time arrives, exinf, containing extended information about the alarm handler, is passed to it as a starting parameter.
 After an alarm handler is created, initially it has no alarm time set and is in inactive state. The alarm time is set when the
alarm handler is activated by calling tk_sta_alm, as relative time from the time that the system call is executed. When
tk_stp_alm is called deactivating the alarm handler, the alarm time setting is canceled. Similarly, when the alarm time arrives
and the alarm handler runs, the alarm time is canceled and the alarm handler becomes inactive.

In AMP T-Kernel, the time management function including alarm handlers is independent in individual processors and the
time management function cannot be used between processors. Access protection is applied to all system calls that specify an
alarm handler ID.
System calls for alarm handlers are summarized in the table below. For more details refer to the explanation for each system
call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_cre_alm Create Alarm Handler × ×

tk_del_alm Delete Alarm Handler × ×

tk_sta_alm Start Alarm Handler × ×

tk_stp_alm Stop Alarm Handler × ×

tk_ref_alm Reference Alarm Handler Status × ×

Different from T-Kernel 1.00 Specification ○:No X:Yes △: Only different in that E_DACV error returns by the access
protection

AMP T-Kernel Specification / Ver. 1.00.00

 189 TEF021-S001-01.00.00/en

Create Alarm Handler tk_cre_alm

 tk_cre_alm:Create Alarm Handler

[C Language Interface]

 ID almid = tk_cre_alm (T_CALM *pk_calm) ;

[Parameters]

 T_CALM* pk_calm Packet to Define AlarmHandler Address of packet for alarm handler definition

 pk_calm detail:
 VP exinf ExtendedInformation Extended information
 ATR almatr AlarmHandlerAttribute Alarm handler attributes
 FP almhdr AlarmHandlerAddress Alarm handler address
 ID domid DomainID Domain ID
 UB oname[8] Object name Object name

[Return Parameters]

 ID almid AlarmHandlerID Alarm handler ID
 or ErrorCode Error Code

[Error Codes]

 E_NOMEM Insufficient memory (memory for control block cannot be allocated)
 E_LIMIT Number of alarm handlers exceeds the system limit
 E_RSATR Reserved attribute (almatr is invalid or cannot be used)
 E_PAR Parameter error (pk_calm, almatr, or almhdr is invalid or cannot be used)
 E_ID Invalid ID number (domid is invalid or cannot be used)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_DOMAIN Domain of another AMP T-Kernel was specified
 E_ONAME Specified object name has already been used

[Description]
 Creates an alarm handler, assigning it to an alarm handler ID. An alarm handler is a handler running at the specified time as a
task-independent portion.

In AMP T-Kernel, alarm handlers cannot be created on other AMP T-Kernels. Only alarm handlers of the AMP T-Kernel
where this call is executed can be created.
 exinf can be used freely by the user to store miscellaneous information about the created alarm handler. The information set
in this parameter can be referenced by tk_ref_alm. If a larger area is needed for indicating user information, or if the
information needs to be changed after the alarm handler is created, this can be done by allocating separate memory for this
purpose and putting the memory packet address in exinf. The OS pays no attention to the contents of exinf.
 almatr indicates system attributes in its low bits and implementation-dependent information in the high bits. The system
attributes part of almatr is as follows.

 almatr := (TA_ASM || TA_HLNG) | [TA_ONAME]
 | [TA_DOMID] | [(TA_PROTECTED || TA_PRIVATE || TA_PUBLIC)]

 TA_ASM The handler is written in assembly language
 TA_HLNG The handler is written in a high-level language
 TA_ONAME Specifies an object name
 TA_DOMID Specifies the domain to which the task belongs
 TA_PROTECTED Sets the access protection attribute to protect
 TA_PRIVATE Set the access protection attribute to private
 TA_PUBLIC Set the access protection attribute to public

AMP T-Kernel Specification / Ver. 1.00.00

 190 TEF021-S001-01.00.00/en

 almhdr specifies the alarm handler start address.
 When the TA_HLNG attribute is specified, the alarm handler is started via a high-level language support routine. The
high-level language support routine takes care of saving and restoring register values. The alarm handler terminates by a simple
return from the function. The alarm handler takes the following format when the TA_HLNG attribute is specified.

 void almhdr(VP exinf)
 {
 /*
 Processing
 */

 return; /* exit alarm handler */
 }

 The alarm handler format when the TA_ASM attribute is specified is implementation-dependent, but exinf must be passed to
the handler in a parameter when it starts.

When TA_ONAME is specified, oname is valid and is set as the object name. When TA_ONAME is not specified, the object
name is not set. The object name must be unique within the domain to which the alarm handler belongs. When an object name
that has already been used with another alarm handler is specified, error E_ONAME is returned. When the length of the
character string specified for oname is 0 (initial character is termination 0), the object name is not set regardless of the
specification of TA_ONAME.

When TA_DOMID is specified, domid is valid, and the domain of domid is set as the domain to which it belongs. When
TA_DOMID is not specified, domid is ignored and is the domain to which the kernel domain belongs. The domain ID
specifiable by domid is a kernel domain of the AMP T-Kernel where this system call is executed or a domain with a lower
position in the hierarchy. When a domain of another AMP T-Kernel is specified, error E_DOMAIN is returned.

TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC specify the access protection attribute of the alarm handler. When either
of the access protection attributes is not specified, the access protection is set to the public attribute. In the combination of the
domain to which the task belongs and the access protection attribute, alarm handlers that invoking tasks cannot access due to
access protection cannot be created. When the corresponding specification is done, E_PAR is returned.
 Even if a system call is invoked from an alarm handler and this causes the task in RUN state up to that time to go to another
state, with a different task going to RUN state, dispatching (task switching) does not occur while the alarm handler is running.
Completion of execution by the alarm handler has precedence even if dispatching is necessary, dispatching takes place only
when the alarm handler terminates. In other words, a dispatch request occurring while an alarm handler is running is not
processed immediately, but is delayed until the alarm handler terminates. This is called delayed dispatching.
 An alarm handler runs as a task-independent portion. As such, it is not possible to call in an alarm handler a system call that
can enter WAIT state, or one that is intended for the invoking task.
 Alarm handlers are managed independently by each AMP T-Kernel and they cannot be used between AMP T-Kernels.

 #define TA_ASM 0x00000000 /* assembly program */
 #define TA_HLNG 0x00000001 /* high-level language program */
 #define TA_ONAME 0x00000040 /* specifies an object name */
 #define TA_DOMID 0x00010000 /* specifies the domain */
 #define TA_PRIVATE 0x00040000 /* sets the protection attribute to private */
 #define TA_PROTECTED 0x00080000 /* sets the protection attribute to protect */
 #define TA_PUBLIC 0x00000000 /* sets the protection attribute to public*/

[Additional Notes]
 When multiple time event handlers or interrupt handlers operate at the same time, it is an implementation-dependent matter
whether to have them run serially (after one handler exits, another starts) or nested (one handler operation is suspended, another
runs, and when that one finishes the previous one resumes). In either case, since time event handlers and interrupt handlers run
as task-independent portions, the principle of delayed dispatching applies.

[Items Concerning AMP T-Kernel]

Since time management is conducted independently in individual AMP T-Kernels, this call cannot be used between
processors.

Differences with the T-Kernel 1.00 Specification are as follows.

 TA_DOMID, TA_PROTECTED, TA_PRIVATE, and TA_PUBLIC were added to the alarm handler attribute, and the
domain to which it belongs and the access protection attribute are specifiable.

AMP T-Kernel Specification / Ver. 1.00.00

 191 TEF021-S001-01.00.00/en

 The DS object name was abolished and replaced by the establishment of the object name. While the former was a name
for debugging, the latter is a name which can be used in general for searching domain ID's, etc. The object name cannot
use the same name with the same type of object in the same domain.

AMP T-Kernel Specification / Ver. 1.00.00

 192 TEF021-S001-01.00.00/en

Delete Alarm Handler tk_del_alm

 tk_del_alm:Delete Alarm Handler

[C Language Interface]

 ER ercd = tk_del_alm (ID almid) ;

[Parameters]

 ID almid AlarmHandlerID Alarm handler ID

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (almid is invalid or cannot be used)
 E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)
 E_DOMAIN Alarm handler of another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
Deletes the alarm handler specified in almid.
 This system call cannot specify the alarm handlers of other AMP T-Kernels. Only alarm handlers on the same AMP T-Kernel
can be deleted.
 Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since time management is conducted independently in individual AMP T-Kernels, this call cannot be used between
processors.

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the alarm handler of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified alarm handler cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 193 TEF021-S001-01.00.00/en

Start Alarm Handler tk_sta_alm

 tk_sta_alm:Start Alarm Handler

[C Language Interface]

 ER ercd = tk_sta_alm (ID almid, RELTIM almtim) ;

[Parameters]

 ID almid AlarmHandlerID Alarm handler ID
 RELTIM almtim Alarm handler start time (alarm time)

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (almid is invalid or cannot be used)
 E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)
 E_DOMAIN Alarm handler of another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Sets the alarm time of the alarm handler specified in almid to the time given in almtim, putting the alarm handler in active
state. almtim is specified as relative time from the time of calling tk_sta_alm.After the time specified in almtim has elapsed, the
alarm handler starts. If the alarm handler is already active when this system call is invoked, the existing almtim setting is
canceled and the alarm handler is activated again with the alarm time specified here.
 If almtim = 0 is set, the alarm handler starts as soon as it is activated.
 This system call cannot specify the alarm handlers of other AMP T-Kernels. Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since time management is conducted independently in individual AMP T-Kernels, this call cannot be used between
processors. Differences with the T-Kernel 1.00 Specification are as follows.

・ When the alarm handler of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified alarm handler cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 194 TEF021-S001-01.00.00/en

Stop Alarm Handler tk_stp_alm

 tk_stp_alm:Stop Alarm Handler

[C Language Interface]

 ER ercd = tk_stp_alm (ID almid) ;

[Parameters]

 ID almid AlarmHandlerID Alarm handler ID

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (almid is invalid or cannot be used)
 E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)
 E_DOMAIN Alarm handler of another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 Cancels the alarm time of the alarm handler specified in almid, putting it in inactive state. If it was already in the inactive
state, this system call has no effect (no operation).
 This system call cannot specify the alarm handlers of other AMP T-Kernels. Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since time management is conducted independently in individual AMP T-Kernels, this call cannot be used between
processors.

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the alarm handler of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified alarm handler cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 195 TEF021-S001-01.00.00/en

Reference Alarm Handler Status tk_ref_alm

 tk_ref_alm:Refer Alarm Handler Status

[C Language Interface]

 ER ercd = tk_ref_alm (ID almid, T_RALM *pk_ralm) ;

[Parameters]

 ID almid AlarmHandlerID Alarm handler ID
 T_RALM* pk_ralm Packet to Refer AlarmHandler Address of packet for returning status information

[Return Parameters]

 ER ercd ErrorCode Error code

 pk_ralm の内容
 VP exinf ExtendedInformation Extended information
 RELTIM lfttim LeftTime Time remaining until the handler starts
 UINT almstat Alarm handler activation state
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (almid is invalid or cannot be used)
 E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)
 E_PAR Parameter error (the address of the return parameter packet cannot be used)
 E_DOMAIN Alarm handler of another AMP T-Kernel domain was specified
 E_DACV Access protection violation

[Description]
 References the status of the alarm handler specified in almno, passing in return parameters the time remaining until the
handler starts (lfttim), and extended information (exinf).
 The following information is returned in almstat.

 almstat:= (TALM_STP | TALM_STA)

 #define TALM_STP 0x00 /* alarm handler is inactive */
 #define TALM_STA 0x01 /* alarm handler is active */

 If the alarm handler is active (TALM_STA), lfttim returns the relative time until the alarm handler is scheduled to start. This
value is within the range almtim >= lfttim >= 0 specified with tk_sta_alm. Since lfttim is decremented with each timer interrupt,
lfttim = 0 means the alarm handler will start at the next timer interrupt.
 If the alarm handler is inactive (TALM_STP), lfttim is indeterminate.
 If the alarm handler specified with tk_ref_alm in almid does not exist, error code E_NOEXS is returned.
 This system call cannot specify the alarm handlers of other AMP T-Kernels. Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]

Since time management is conducted independently in individual AMP T-Kernels, this call cannot be used between
processors.

Differences with the T-Kernel 1.00 Specification are as follows.

・ When the alarm handler of another AMP T-Kernel is specified, E_DOMAIN is returned.
・ When the specified alarm handler cannot be accessed due to access protection, E_DACV is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 196 TEF021-S001-01.00.00/en

4.8 Domain Management Functions

Domains are objects for managing the location of kernel objects. Domain management functions include a function to create

or delete domains, a function to search for objects belonging to a specific domain by using the name, and a function to acquire
domain related information on each object. Domains are objects which can be identified by identification numbers. The
identification number of a domain is in turn called the domain ID.

Domains wait for the management table that registers kernel objects. The registration and deletion of an object on the
management table is conducted when the function of the domain is called within the system call when the object is created or
deleted. The registered object can search for the identification number from the object name.

When the kernel object operates by a system call, access protection is carried out based on the domain to which the target
object belongs, access protection attribute, and domain to which the program that issued the system call (tasks, handlers)
belongs.
 In AMP T-Kernel, domains can be used between processors. However, the object can only belong to the domain on the
processor where the object exists.

System calls that can be used between processors are summarized in the table below. For more details refer to the explanation
for each system call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_cre_dom Create domain × ※

tk_del_dom Delete domain × ※

tk_fnd_xxx Object ID retrieval ○ ※

tk_dmi_xxx Get domain information ○ ※

tk_get_kdm Get kernel domain ID × ※

tk_ref_dom Get domain status ○ ※

* Since it is a new system call, it does not exist in the T-Kernel 1.00 specification.

AMP T-Kernel Specification / Ver. 1.00.00

 197 TEF021-S001-01.00.00/en

Create Domain tk_cre_dom

 tk_cre_dom:Create Domain

[C Language Interface]

 ID domid = tk_cre_dom (T_CDOM *pk_cdom) ;

[Parameters]

T_CDOM* pk_cdom Packet to Create Domain Information about the domain to be created

 pk_cdom details
 VP exinf ExtendedInformation Extended information
 ATR domatr DomainAttribute Domain attributes
 ID domid DomainID Domain ID
 UB oname[8] Object name Object name
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Return Parameters]

ID domid DomainID Domain ID
 or ErrorCode Error code

[Error Codes]
 E_NOMEM Insufficient memory (memory for control block cannot be allocated)
 E_LIMIT Domain count exceeds the system limit
 E_RSATR Reserved attribute (domatr is invalid or cannot be used)
 E_PAR Parameter error (pk_cdom is invalid)
 E_ID Invalid ID number (domid is invalid or cannot be used)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_DOMAIN Domain of another AMP T-Kernel was specified
 E_ONAME Specified object name has already been used

[Description]

Creates a domain, assigning to it a domain ID. This system call allocates a control block to the created domain and carries out
initialization.

In AMP T-Kernel, domains cannot be created on other AMP T-Kernels. Only domains of the AMP T-Kernel where this call is
executed can be created.
exinf can be used freely by the user to set miscellaneous information about the created domain. The information set in this

parameter can be referenced by tk_ref_dom. If a larger area is needed for indicating user information, or if the information may

need to be changed after the domain is created, this can be done by allocating separate memory for this purpose and putting the

memory packet address in exinf. The kernel pays no attention to the contents of exinf.

domatr indicates system attributes in its low bits and implementation-dependent information in the high bits. The system

attributes part of tskatr is as follows.

 domatr := [TA_ONAME] | [TA_DOMID]

 TA_ONAME Specifies the object name
 TA_DOMID Specifies the domain to which it belongs

When TA_ONAME is specified, oname is valid and is set as the object name. When TA_ONAME is not specified, the object

name is not set. The object name must be unique within the domain to which the domain belongs. When an object name that
has already been used with another domain is specified, error E_ONAME is returned. When the length of the character string
specified for oname is 0 (initial character is termination 0), the object name is not set regardless of the specification of

AMP T-Kernel Specification / Ver. 1.00.00

 198 TEF021-S001-01.00.00/en

TA_ONAME.
When TA_DOMID is specified, domid is valid, and the domain of domid is set as the domain to which it belongs. When

TA_DOMID is not specified, domid is ignored and is the domain to which the kernel domain belongs. The domain ID
specifiable by domid is a kernel domain of the AMP T-Kernel where this system call is executed or a domain with a lower
position in the hierarchy. When a domain of another AMP T-Kernel is specified, error E_DOMAIN is returned.

All domains are public attributes and access protection attributes cannot be specified.

 #define TA_ONAME 0x00000040 /* specify an object name */
 #define TA_DOMID 0x00010000 /* specify the domain*/

[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting objects, etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors.

This call does not exist in the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 199 TEF021-S001-01.00.00/en

Delete Domain tk_del_dom

 tk_del_dom:Delete Domain

[C Language Interface]

 ER ercd = tk_del_dom (ID domid) ;

[Parameters]

 ID domid DomainID Domain ID

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (domid is invalid or cannot be used)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_OBJ Object status invalid (object belonging to the domain exists)
 E_DOMAIN Domain another AMP T-Kernel was specified

[Description]

Deletes the domain specified in domid.
The domain ID and control block area are released as a result of this system call.
When an object that belongs to the target domain exists, the domain is not deleted and error E_OBJ is returned.
This system call cannot specify the domains of other AMP T-Kernels. Only domains on the same AMP T-Kernel can be
deleted.
The kernel domain cannot be deleted. When it is to be deleted, E_OBJ is returned.

[Items Concerning AMP T-Kernel]

Since resource management such as creating and deleting objects, etc. is conducted in individual AMP T-Kernels, this call
cannot be used between processors.

This call does not exist in the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 200 TEF021-S001-01.00.00/en

 tk_fnd_dom, tk_fnd_tsk, tk_fnd_sem,tk_fnd_flg,
 tk_fnd_mbx, tk_fnd_mtx, tk_fnd_mbf, tk_fnd_por,
 tk_fnd_mpf, tk_fnd_mpl, tk_fnd_alm, tk_fnd_cyc
ID Retrieval of Each Object

tk_fnd_xxx: Find ObjectID

[C Language Interface]

ID domid = tk_fnd_dom (ID domid, UB *oname) ; /* Domain */
ID tskid = tk_fnd_tsk (ID domid, UB *oname) ; /* Task */
ID semid = tk_fnd_sem (ID domid, UB *oname) ; /* Semaphore */
ID flgid = tk_fnd_flg (ID domid, UB *oname) ; /* Event Flag */
ID mbxid = tk_fnd_mbx (ID domid, UB *oname) ; /* Mailbox */
ID mtxid = tk_fnd_mtx (ID domid, UB *oname) ; /* Mutex */
ID mbfid = tk_fnd_mbf (ID domid, UB *oname) ; /* Message Buffer */
ID porid = tk_fnd_por (ID domid, UB *oname) ; /* Rendezvous Port */
ID mpfid = tk_fnd_mpf (ID domid, UB *oname) ; /* Fixed-size Memory Pool */
ID mplid = tk_fnd_mpl (ID domid, UB *oname) ; /* Variable Length Memory Pool */
ID almid = tk_fnd_alm (ID domid, UB *oname) ; /* Alarm Handler */
ID cycid = tk_fnd_cyc (ID domid, UB *oname) ; /* Cyclic Handler */

[Parameters]

ID domid Domain ID
UB* oname Object name

[Return Parameters]

ID ～id Specified object ID
 or Error Code

[Error Codes]
E_ID Invalid ID number (domid is invalid or cannot be used)
E_NOEXS Object does not exist (object of oname does not exist)
E_PAR Parameter error (oname is invalid or cannot be used)

[Description]
Retrieves the object that belongs to the domain shown by domid by using the object name, and gets the object ID.
The object name of the object to be retrieved is specified in oname.
When the object specified by domid and oname is found, the ID of the object is returned. When the corresponding object
does not exist, E_NOEXS is returned.
Objects that can be retrieved are accessible objects only. For inaccessible objects due to access protection, retrieval fails and
E_NOEXS is returned.
This system call can retrieve the domains of other AMP T-Kernels. However, since the alarm handler and cyclic handler of
other AMP T-Kernels cannot be accessed, an error is always returned.

[Items Concerning AMP T-Kernel]
This call does not exist in the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 201 TEF021-S001-01.00.00/en

 tk_dmi_dom, tk_dmi_tsk, tk_dmi_sem,tk_dmi_flg,
 tk_dmi_mbx, tk_dmi_mtx, tk_dmi_mbf, tk_dmi_por,
 tk_dmi_mpf, tk_dmi_mpl, tk_dmi_alm, tk_dmi_cyc
Get Domain Information of Each Object

tk_dmi_xxx: Get Domain Information

[C Language Interface]

ER ercd = tk_dmi_dom (ID domid, T_DMI *pk_dmi) ; /* Domain */
ER ercd = tk_dmi_tsk (ID tskid, T_DMI *pk_dmi) ; /* Task */
ER ercd = tk_dmi_sem (ID semid, T_DMI *pk_dmi) ; /* Semaphore */
ER ercd = tk_dmi_flg (ID flgid, T_DMI *pk_dmi) ; /* Event Flag */
ER ercd = tk_dmi_mbx (ID mbxid, T_DMI *pk_dmi) ; /* Mailbox */
ER ercd = tk_dmi_mtx (ID mtxid, T_DMI *pk_dmi) ; /* Mutex */
ER ercd = tk_dmi_mbf (ID mbfid, T_DMI *pk_dmi) ; /* Message Buffer */
ER ercd = tk_dmi_por (ID porid, T_DMI *pk_dmi) ; /* Rendezvous Port */
ER ercd = tk_dmi_mpf (ID mpfid, T_DMI *pk_dmi) ; /* Fixed-size Memory Pool */
ER ercd = tk_dmi_mpl (ID mplid, T_DMI *pk_dmi) ; /* Variable Length Memory Pool */
ER ercd = tk_dmi_alm (ID almid, T_DMI *pk_dmi) ; /* Alarm Handler */
ER ercd = tk_dmi_cyc (ID cycid, T_DMI *pk_dmi) ; /* Cyclic Handler */

[Parameters]

ID ～id ObjectID Object ID
T_DMI* pk_dmi Packet to Domain Information Packet address where domain information is returned

[Return Parameters]

ER ercd ErrorCode Error Code

 pk_dmi details
 ATR domatr DomainAttribute Domain attribute
 ID domid DomainID ID of the domain to which it belongs
 ID kdmid Kernel Domain ID Kernel domain ID to which it belongs
 UB oname[8] Object name Object name

[Error Codes]

E_ID Invalid ID number (~id is invalid or cannot be used)
E_NOEXS Object does not exist (object of ~id does not exist)
E_PAR Parameter error (Value for which the packet address for the return parameter cannot be used)
E_DACV Access protection violation

[Description]

Gets information related to the domain of the target object displayed by ~id.
 The attribute related to the domain of the target object is set in domatr. domatr takes the following values.

domatr := [TA_ONAME]|(TA_PRIVATE || TA_PROTECTED || TA_PUBLIC)

 TA_ONAME Object name is specified
 TA_PROTECTED Access protection attribute is protect
 TA_PRIVATE Access protection attribute is private
 TA_PUBLIC Access protection attribute is public

The ID number of the domain to which the target object belongs is set in domid.

AMP T-Kernel Specification / Ver. 1.00.00

 202 TEF021-S001-01.00.00/en

The ID number of the kernel domain to which the target object belongs is set in kdmid.
The object name of the target object is set to oname. When the object name is not set to the target object, all contents are 0.
This system call can refer to domain information on the objects of other AMP T-Kernels. However, since the alarm handler
and cyclic handler of other AMP T-Kernels cannot be accessed, an error is always returned.
Access protection is applied to this system call.

[Items Concerning AMP T-Kernel]
This call does not exist in the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 203 TEF021-S001-01.00.00/en

 Get Kernel Domain ID tk_get_kdm

 tk_get_kdm: Get Kernel DomainID

[C Language Interface]

 ID kdmid = tk_get_kdm (ID prcid) ;

[Parameters]

 ID prcid ProcessorID Processor ID

[Return Parameters]

 ID kdmid Kernel DomeinID Kernel Domain ID

[Error Codes]

 E_ID Invalid ID number (prcid is invalid or cannot be used)

[Description]

Gets the ID number of the kernel domain of the AMP T-Kernel that is operated by the processor shown by prcid.
When prcid = PRC_SELF = 0, its own kernel domain is returned.

[Items Concerning AMP T-Kernel]

This call does not exist in the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 204 TEF021-S001-01.00.00/en

Reference Domain Status tk_ref_dom

 tk_ref_dom:Refer Domain Status

[C Language Interface]

 ER ercd = tk_ref_dom (ID domid, T_RDOM *pk_rdom) ;

[Parameters]

 ID domid DomainID Domain ID
 T_RDOM* pk_rdom Packet to Refer Domain Packet address to where the domain status is returned

[Return Parameters]

 ER ercd ErrorCode Error code

 pk_rdom detail:
 VP exinf ExtendedInformation Extended information
 ID domid DomainID Domain ID to which the domain belongs
 UINT objcnt ObjectCount Objects count that belongs to the domain
 ──(Other implementation-dependent parameters may be added beyond this point)──

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (domid is invalid or cannot be used)
 E_NOEXS Object does not exist (domain of domid does not exist)
 E_PAR Parameter error (Value for which the packet address for the return parameter cannot be used)

[Description]

References the various target domain statuses shown by domid, and returns extended information (exinf), the domain ID
(domid) to which the target domain belongs, and the object count which belongs to the target domain as return parameters.

Only objects that belong directly to the target domain are included in the object count (objcnt). Although the domain
(subdomain) that belongs to the target domain is included in the object count, the object which belongs to the subdomain is not
included in the number. That is, the object (including when it belongs without being specified by default) that specifies the
target domain as the domain to which the object belongs during creation becomes the target.

[Items Concerning AMP T-Kernel]

This call does not exist in the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 205 TEF021-S001-01.00.00/en

4.9 Interrupt Management Functions

Interrupt management functions are for defining and manipulating handlers for external interrupts and CPU exceptions.
An interrupt handler runs as a task-independent portion. System calls can be invoked in a task-independent portion in the

same way as in a task portion, but the following restriction applies to system call issuing in a task-independent portion.

 A system call that implicitly specifies the invoking task, or one that may put the invoking task in WAIT state cannot be
issued. Error code E_CTX is returned in such cases.

During task-independent portion execution, task switching (dispatching) does not occur. If system call processing results in a

dispatch request, the dispatch is delayed until processing leaves the task-independent portion. This is called delayed
dispatching.

External interrupts and CPU exceptions are independent functions in each processor, and are managed independently in each

AMP T-Kernel. Therefore, the interrupt management function cannot be used between processors. Each system call has no
differences from the T-Kernel 1.00 Specification.
Each system call is summarized in the table below. For more details refer to the explanation for each system call.

Different from T-Kernel 1.00 Specification ○:No X:Yes △: Only different in that E_DACV error returns by the access
protection

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_def_int Define Interrupt Handler × ○

tk_ret_int Return from interrupt handler × ○

AMP T-Kernel Specification / Ver. 1.00.00

 206 TEF021-S001-01.00.00/en

Define Interrupt Handler tk_def_int

 tk_def_int:Define Interrupt Handler

[C Language Interface]

 ER ercd = tk_def_int (UINT dintno, T_DINT *pk_dint) ;

[Parameters]

 UINT dintno InterruptDefineNumber Parameters
 T_DINT* pk_dint Packet to Define InterruptHandler Packet of interrupt handler definition information

 pk_dint detail:
 ATR intatr InterruptHandlerAttribute Interrupt handler attributes
 FP inthdr InterruptHandlerAddress Interrupt handler address
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_NOMEM Insufficient memory (memory for control block cannot be allocated)
 E_RSATR Reserved attribute (intatr is invalid or cannot be used)
 E_PAR Parameter error (dintno, pk_dint, or inthdr is invalid or cannot be used)

[Description]
 Here “interrupts” include both external interrupts from a device and CPU exceptions.

 Defines an interrupt handler for interrupt definition number dintno, and enables the use of the interrupt handler. This system
call maps the interrupt definition number indicated in dintno to the interrupt handler address and attributes.
 The specific signi.cance of dintno is defined separately for each implementation, but generally it means an interrupt vector
number.
 intatr indicates system attributes in its low bits, with the high bits used for implementation-dependent attributes. The system
attributes part of intatr is specified in the following format.

 intatr := (TA_ASM || TA_HLNG)

 TA_ASM The handler is written in assembly language
 TA_HLNG The handler is written in a high-level language

 #define TA_ASM 0x00000000 /* assembly program */
 #define TA_HLNG 0x00000001 /* high-level language program */

 When the TA_ASM attribute is specified, in principle the OS is not involved in interrupt handler starting. When an interrupt
is raised, the interrupt handling system of the CPU hardware (depending on the implementation, processing by T-Monitor may
be included) directly starts the interrupt handler defined by this system call. Accordingly, processing for saving and restoring
registers used by the interrupt handler is necessary at the beginning and end of the interrupt handler. An interrupt handler is
terminated by execution of the tk_ret_int system call or by the CPU interrupt return instruction (or equivalent means).
 Provision of a means for return from an interrupt handler without using tk_ret_int and without OS intervention is mandatory.
Note that if tk_ret_int is not used, delayed dispatching is not necessary.
 Support for return from an interrupt handler using tk_ret_int is mandatory, and in this case, delayed dispatching is necessary.
 When the TA_HLNG attribute is specified, the interrupt handler is started via a high-level language support routine. The
high-level language support routine takes care of saving and restoring register values. The interrupt handler terminates by a
simple return from the function. The interrupt handler takes the following format when the TA_HLNG attribute is specified.

AMP T-Kernel Specification / Ver. 1.00.00

 207 TEF021-S001-01.00.00/en

 void inthdr(UINT dintno)
 {
 /*
 Processing
 */
 return; /* exit interrupt handler */
 }

The parameter dintno passed to an interrupt handler is a number identifying the interrupt that was raised, and is the same as that
specified with tk_def_int. Depending on the implementation, other information about the interrupt may be passed in addition to
dintno. If such information is used, it must be defined for each implementation in a second parameter or subsequent parameters
passed to the interrupt handler.
 If the TA_HLNG attribute is specified, it is assumed that the CPU interrupt flag will be set to interrupts disabled state from
the time the interrupt is raised until the interrupt handler is called. In other words, as soon as an interrupt is raised, the state goes
to multiple interrupts disabled, and this state remains when the interrupt handler is called. If multiple interrupts are enabled, the
interrupt handler must include processing that enables interrupts by manipulating the CPU interrupt flag.
 Also in the case of the TA_HLNG attribute, upon entry into the interrupt handler, system call issuing must be possible. Note,
however, that assuming standard provision of the functionality described above, extensions such as adding a function for
entering an interrupt handler with multiple interrupts enabled are allowed.
 When the TA_ASM attribute is specified, the state upon entry into the interrupt handler is separately defined for each
implementation. Issues such as the status of the stack and registers upon interrupt handler entry, whether system calls can be
made, the method of invoking system calls, and the method of returning from the interrupt handler without OS intervention
must all be defined explicitly.
 In the case of the TA_ASM attribute, depending on the implementation, there may be cases where interrupt handler execution
is not considered to be a task-independent portion. In such a case, the following points need to be noted carefully.
・ If interrupts are enabled, there is a possibility that task dispatching will occur.
・ When a system call is invoked, it will be processed as having been called from a task portion or quasi-task portion.
If a method is provided for performing some kind of operation in an interrupt handler to have it detected as task-independent
portion, that method must be indicated for each implementation.
 Whether the TA_HLNG or TA_ASM attribute is specified, upon entry into an interrupt handler, the logical space at the time
the interrupt occurred is retained. No processing takes place upon return from the interrupt handler for restoring the logical
space to its state at the time the interrupt was raised. Switching logical spaces inside the interrupt handler is not prohibited, but
the OS is not aware of the effects of logical space switching.
 Even if a system call is invoked from an interrupt handler and this causes the task in RUN state up to that time to go to
another state, with a different task going to RUN state, dispatching (task switching) does not occur while the interrupt handler is
running. Completion of execution by the interrupt handler has precedence even if dispatching is necessary; dispatching takes
place only when the interrupt handler terminates. In other words, a dispatch request occurring while an interrupt handler is
running is not processed immediately, but is delayed until the interrupt handler terminates. This is called delayed dispatching.
 An interrupt handler runs as a task-independent portion. As such, it is not possible in an interrupt handler, to call a system
call that can enter WAIT state, or one that is intended for the invoking task.
 When pk_dint = NULL is set, a previously defined interrupt handler is canceled. When the handler for an interrupt is
canceled, the default handler defined by T-Monitor is used.
 It is possible to redefine an interrupt handler for an interrupt number already having a defined handler. It is not necessary first
to cancel the definition for that number. Defining a new handler for a dintno already having an interrupt handler defined does
not return an error.

[Additional Notes]
 The various specifications governing the TA_ASM attribute are mainly concerned with achieving an interrupt hook. For
example, when an exception is raised due to an illegal address access, ordinarily an interrupt handler defined in a higher-level
program detects this and performs the error processing; but in the case of debugging, in place of error processing by a
higher-level program, a T-Monitor interrupt handler does the processing and starts a debugger. In this case, the interrupt handler
defined by the higher-level program hooks the T-Monitor interrupt handler. After that, depending on the situation, either
interrupt handling is passed off to T-Monitor or the other program does the processing on its own.

[Items Concerning AMP T-Kernel]

Since interrupt management is conducted independently in individual AMP T-Kernels, this call cannot be used between
processors. Interrupt handlers can specify their own processors only.
 There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 208 TEF021-S001-01.00.00/en

Return from Interrupt Handler tk_ret_int

 tk_ret_int:Return from Interrupt Handler

[C Language Interface]

 void tk_ret_int (void) ;

 Although this system call is defined in the form of a C language interface, it will not be called in this format if a high-level
language support routine is used.

[Parameters]

None

[Return Parameters]

* Does not return to the context issuing the system call.

[Error Codes]

 * The following kind of error may be detected, but no return is made to the context issuing the system call even if the error is
detected. For this reason, the error code cannot be passed directly as a system call return parameter. If an error is detected, the
behavior is implementation-dependent.
 E_CTX Context error (issued from other than an interrupt handler (implementation-dependent error))

[Description]
 Exits an interrupt handler.
 System calls invoked from an interrupt handler do not result in dispatching while the handler is running; instead, the
dispatching is delayed until tk_ret_int is called to end the interrupt handler processing (delayed dispatching). Accordingly,
tk_ret_int results in the processing of all dispatch requests made while the interrupt handler was running.
 tk_ret_int is invoked only if the interrupt handler was defined specifying the TA_ASM attribute. In the case of a TA_HLNG
attribute interrupt handler, the functionality equivalent to tk_ret_int is executed implicitly in the high-level language support
routine, so tk_ret_int is not (must not be) called explicitly.
 As a rule, the OS is not involved in the starting of a TA_ASM attribute interrupt handler. When an interrupt is raised, the
defined interrupt handler is started directly by the interrupt system of the CPU hardware. The saving and restoring of registers
used by the interrupt handler must therefore be handled in the interrupt handler.
 For the same reason, the stack and register states at the time tk_ret_int is issued must be the same as those at the time of entry
into the interrupt handler. Because of this, in some cases function codes cannot be used in tk_ret_int, in this case, tk_ret_int may
be implemented using a trap instruction with a vector different from that used for other system calls.

[Additional Notes]
 tk_ret_int is a system call that does not return to the context from which it was called. Even if an error code is returned when
an error of some kind is detected, normally no error checking is performed in the context from which the system call was
invoked, leaving the possibility that the program will hang. For this reason, this system call does not return even if error is
detected.
 Using an assembly-language return (REIT) instruction instead of tk_ret_int to exit the interrupt handler is possible if it is
clear no dispatching will take place on return from the handler (the same task is guaranteed to continue executing), or if there is
no need for dispatching to take place.
 Depending on the CPU architecture and method of configuring the OS, it may be possible to perform delayed dispatching
even when an interrupt handler exits using an assembly-language REIT instruction. In such cases, the assembly-language REIT
instruction may be interpreted as though it were a tk_ret_int system call.
 Performing of E_CTX error checking when tk_ret_int is called from a time event handler is implementation-dependent.
Depending on the implementation, control may return from a different type of handler.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 209 TEF021-S001-01.00.00/en

4.10 System Management Functions

 System management functions are functions for changing and referencing system states. Functions are provided for rotating
task precedence in a queue, getting the ID of the task in RUN state, disabling and enabling task dispatching, referencing context
and system states, setting low-power mode, and referencing the T-Kernel version.

The system state is managed independently by each AMP T-Kernel. Therefore, the system state management function cannot
be used between processors. There are no differences between each system call and the T-Kernel 1.00 Specification.

Each system call is summarized in the table below. For more details refer to the explanation for each system call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_rot_rdq Rotate task queue × ○

tk_get_tid Get Task Identifier × ○

tk_dis_dsp Disable Dispatch × ○

tk_ena_dsp Enable Dispatch × ○

tk_get_prc Get Executing Processor ID × ※

tk_ref_sys Reference System Status × ○

tk_set_pow Set Power Mode × ○

tk_ref_ver Reference Version Information × ×

 Different from T-Kernel 1.00 Specification ○:No X:Yes △: Only different in that E_DACV error returns by the access
protection
 * Since it is a new system call, it does not exist in the T-Kernel 1.00 specification.

AMP T-Kernel Specification / Ver. 1.00.00

 210 TEF021-S001-01.00.00/en

Rotate Ready Queue tk_rot_rdq

 tk_rot_rdq:Rotate Ready Queue

[C Language Interface]

 ER ercd = tk_rot_rdq (PRI tskpri) ;

[Parameters]

 PRI tskpri TaskPriority Task priority

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_PAR Parameter error (tskpri is invalid)

[Description]
 Rotates the precedence among tasks having the priority specified in tskpri. This system call changes the precedence of tasks
in RUN or READY state having the specified priority, so that the task with the highest precedence among those tasks is given
the lowest precedence.
 By setting tskpri = TPRI_RUN = 0, this system call rotates the precedence of tasks having the priority level of the task
currently in RUN state. When tk_rot_rdq is called from an ordinary task, it rotates the precedence of tasks having the same
priority as the invoking task. When calling from a cyclic handler or other task-independent portion, it is also possible to call
tk_rot_rdq (tskpri = TPRI_RUN).

[Additional Notes]
 If there are no tasks in a run state having the specified priority, or only one such task, the system call completes normally
with no operation (no error code is returned).
 When this system call is issued in dispatch enabled state, specifying as the priority either TPRI_RUN or the current priority
of the invoking task as the priority, the precedence of the invoking task will become the lowest among tasks of the same priority.
In this way, the system call can be used to relinquish execution privilege.
 In dispatch disabled state, the task with highest precedence among tasks of the same priority is not always the currently
executing task.
 Examples of tk_rot_rdq execution are given in Figure 16(a) and Figure 16(b). When this system call is issued in the state
shown in Figure 16(a) specifying tskpri = 2, the new precedence order becomes that in Figure 16(b), and Task C becomes the
executing task.

 Priority
 High 1

 2 [Task B]→[Task C]→[Task D]

 Low 3 [Task E]

[Figure 16(a)] Precedence Before Issuing tk_rot_rdq

AMP T-Kernel Specification / Ver. 1.00.00

 211 TEF021-S001-01.00.00/en

 Priority
 High 1

 2 [Task C]→[Task D]→[Task B]

 Low 3 [Task E]

 * Task C executes next.

[Figure 16(b)] Precedence After Issuing tk_rot_rdq (tskpri = 2)

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

The precedence is rotated by this call only for the task of the AMP T-Kernel of the processor that issued the call. There is no
influence on the tasks of other AMP T-Kernels.

AMP T-Kernel Specification / Ver. 1.00.00

 212 TEF021-S001-01.00.00/en

Get Task Idenntifier tk_get_tid

 tk_get_tid:Get Task Identifier

[C Language Interface]

 ID tskid = tk_get_tid (void) ;

[Parameters]

 None

[Return Parameters]

 ID tskid TaskID ID of the task in RUN state

[Error Codes]

 None

[Description]
 Gets the ID number of the task currently in RUN state.
 When this call is issued from the task, the task ID of the invoking task can be acquired. When it is issued from the
task-independent portion, the ID number of the task that was being executed immediately prior to the task-independent portion
being executed can be acquired.
 If there is no task currently in RUN state, 0 is returned.

[Additional Notes]
 The task ID returned by tk_get_tid is identical to runtskid returned by tk_ref_sys.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

The task ID in RUN state in the AMP T-Kernel of the processor which issued this call is returned.

AMP T-Kernel Specification / Ver. 1.00.00

 213 TEF021-S001-01.00.00/en

Disable Dispatch tk_dis_dsp

 tk_dis_dsp:Disable Dispatch

[C Language Interface]

 ER ercd = tk_dis_dsp (void) ;

[Parameters]

None

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_CTX Context error (issued from task-independent portion)

[Description]
 Disables task dispatching. Dispatch disabled state remains in effect until tk_ena_dsp is called to enable task dispatching.
While dispatching is disabled, the invoking task does not change from RUN state to READY state or to WAIT state. External
interrupts, however, are still enabled, so even in dispatch disabled state an interrupt handler can be started. In dispatch disabled
state, the running task can be preempted by an interrupt handler, but not by another task.
 The specific operations during dispatch disabled state are as follows.

 Even if a system call issued from an interrupt handler or by the task that called tk_dis_dsp results in a task going to
READY state with a higher priority than the task that called tk_dis_dsp, that task will not be dispatched. Dispatching of
the higher-priority task is delayed until dispatch disabled state ends.

 If the task that called tk_dis_dsp issues a system call that may cause the invoking task to be put in WAIT state (e.g.,
tk_slp_tsk or tk_wai_sem), error code E_CTX is returned to it.

 When system status is referenced by tk_ref_sys, TSS_DDSP is returned in sysstat.

 If tk_dis_dsp is called for a task already in dispatch disabled state, that state continues with no error code returned. No matter
how many times tk_dis_dsp is called, calling tk_ena_dsp just once is sufficient to enable dispatching again. The operation when
the pair of system calls tk_dis_dsp and tk_ena_dsp are nested must therefore be managed by the user as required.

[Additional Notes]
 A task in RUN state cannot go to DORMANT state or NON-EXISTENT state while dispatching is disabled. If tk_ext_tsk or
tk_exd_tsk is called for a task in RUN state while interrupts or dispatching is disabled, error code E_CTX is detected. Since,
however, tk_ext_tsk and tk_exd_tsk are system calls that do not return to their original context, such errors are not passed in
return parameters by these system calls.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

Dispatch is prohibited by this call only for the AMP T-Kernel of the processor which issued the call. There is no influence on
the AMP T-Kernels of other processors.

AMP T-Kernel Specification / Ver. 1.00.00

 214 TEF021-S001-01.00.00/en

Enable Dispatch tk_ena_dsp

tk_ena_dsp:Enable Dispatch

[C Language Interface]

 ER ercd = tk_ena_dsp (void) ;

[Parameters]

 None

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_CTX Context error (issued from task-independent portion)

[Description]
 Enables task dispatching. This system call cancels the disabling of dispatching by the tk_dis_dsp system call.
 If tk_ena_dsp is called for a task not in dispatch disabled state, the dispatch enabled state continues and no error code is
returned.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

Dispatch is permitted by this call only for the AMP T-Kernel of the processor which issued the call. There is no influence on
the AMP T-Kernels of other processors.

AMP T-Kernel Specification / Ver. 1.00.00

 215 TEF021-S001-01.00.00/en

 Get Executing Processor ID tk_get_prc

 tk_get_prc: Get Processor Identifier

[C Language Interface]

 ID prcid = tk_get_prc (void) ;

[Parameters]

 None

[Return Parameters]

 ID prcid ProcessorID Executing Processor ID

[Error Codes]

 None

[Description]
 Gets the Processor ID of the processor executing the program that issued this call.

[Additional Notes]
 In AMP T-Kernel, the executing processor is decided by the AMP T-Kernel to which the program belongs. It is not changed
dynamically.

[Items Concerning AMP T-Kernel]

This call is a new system call that is not in the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 216 TEF021-S001-01.00.00/en

Reference System Status tk_ref_sys

 tk_ref_sys:Refer System Status

[C Language Interface]

 ER ercd = tk_ref_sys (T_RSYS *pk_rsys) ;

[Parameters]

 T_RSYS* pk_rsys Packet to Refer System Address of packet for returning status information

[Return Parameters]

 ER ercd ErrorCode Error code

 pk_rsys detail:
 INT sysstat SystemState System status
 ID runtskid ID of task currently in RUN state
 ID schedtskid ID of task scheduled to run next
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Error Codes]

 E_OK Normal completion
 E_PAR Parameter error (the return parameter packet address cannot be used)

[Description]
Gets the current system execution status, passing in return parameters system information such as the dispatch disabled state
and whether a task-independent portion is executing.

 The following values are returned in sysstat.

 sysstat := (TSS_TSK | [TSS_DDSP] | [TSS_DINT])
 || (TSS_QTSK | [TSS_DDSP] | [TSS_DINT])
 || (TSS_INDP)

 TSS_TSK 0 Task portion executing
 TSS_DDSP 1 Task portion executing
 TSS_DINT 2 Interrupts disabled

 TSS_INDP 4 Task-independent portion executing
 TSS_QTSK 8 Quasi-task portion executing

 The ID of the task currently in RUN state is returned in runtskid, while schedtskid indicates the ID of the next task scheduled
to go to RUN state. Normally runtskid = schedtskid, but this is not necessarily true if, for example, a higher-priority task was
wakened during dispatch disabled state. If there is no such task, 0 is returned.
 It must be possible to invoke this system call from an interrupt handler or time event handler.

[Additional Notes]
 Depending on the OS implementation, the information returned by tk_ref_sys is not necessarily guaranteed to be accurate at
all times.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

This call only returns system information for the AMP T-Kernel of the processor which issued the call.

AMP T-Kernel Specification / Ver. 1.00.00

 217 TEF021-S001-01.00.00/en

Set Power Mode tk_set_pow

 tk_set_pow:Set Power Mode

[C Language Interface]

 ER ercd = tk_set_pow (UINT powmode) ;

[Parameters]

 UINT powmode Low-power mode

[Return Parameters]

 ER ercd Error code

[Error Codes]

 E_OK Normal completion
 E_PAR Parameter error (value that cannot be used in powmode)
 E_QOVR Low-power mode disable count overflow
 E_OBJ TPW_ENALOWPOW was requested with low-power mode disable count at 0

[Description]
The following two power-saving functions are supported.

 ● Switching to low-power mode when the system is idle
 When there are no tasks to be executed, the system switches to a low-power mode provided in hardware.
 Low-power mode is a function for reducing power use during very short intervals, such as from one timer interrupt to the
next. This is accomplished, for example, by lowering the CPU clock frequency. It does not require complicated mode-switching
in software but is implemented mainly using hardware functionality.

 ● Automatic power-off
 When the operator performs no operations for a certain length of time, the system automatically cuts the power and goes to
suspended state. If there is a start request (interrupt, etc.) from a peripheral device or if the operator turns on the power, the
system resumes from the state when the power was cut.
 In the case of a power supply problem such as low battery, the system likewise cuts the power and goes to suspended state.
 In suspended state, the power is cut to peripheral devices and circuits as well as to the CPU, but the main memory contents
are retained.

 tk_set_pow sets the low-power mode.The power-saving functions (off_pow, low_pow) of T-Kernel/SM are called in the
power-saving mode according to the setting.

 powmode:= (TPW_DOSUSPEND || TPW_DISLOWPOW || TPW_ENALOWPOW)

 #define TPW_DOSUSPEND 1 Suspended state
 #define TPW_DISLOWPOW 2 Switching to low-power mode disabled
 #define TPW_ENALOWPOW 3 Switching to low-power mode enabled (default)

 ・TPW_DOSUSPEND
 Execution of all tasks and handlers is stopped, peripheral circuits (timers, interrupt controllers, etc.) are stopped, and the
power is cut (suspended). (off_pow is called.)
 When power is turned back on, peripheral circuits are restarted, execution of all tasks and handlers is resumed, operations
resume from the point before power was cut, and the system call returns.
 If for some reason the resume processing fails, normal startup processing (for reset) is performed and the system boots fresh.

 ・TPW_DISLOWPOW
 Switching to low-power mode in the dispatcher is disabled. (low_pow is not called.)

AMP T-Kernel Specification / Ver. 1.00.00

 218 TEF021-S001-01.00.00/en

 ・TPW_ENALOWPOW
 Switching to low-power mode in the dispatcher is enabled. (low_pow is called).

 The default at system startup is low-power mode enabled (TPW_ENALOWPOW).
 Each time TPW_DISLOWPOW is specified, the request count is taken. Low-power mode is enabled only when
TPW_ENALOWPOW is requested for as many times as TPW_DISLOWPOW was requested. The maximum request count is
implementation-dependent, but a count of at least 255 times must be possible.

[Additional Notes]
 off_pow and low_pow are T-Kernel/SM functions. See 5.6 for details.
 T-Kernel does not detect power supply problems or other factors for suspending the system. Actual suspension requires
suspend processing in each of the peripheral devices (device drivers). The system is suspended not by calling tk_set_pow
directly but by use of the T-Kernel/SM suspend function.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 219 TEF021-S001-01.00.00/en

Reference Version Information tk_ref_ver

 tk_ref_ver: Refer Version Information

[C Language Interface]

 ER ercd = tk_ref_ver (T_RVER *pk_rver) ;

[Parameters]

 T_RVER* pk_rver Packet of Version Information Start address of packet for version information

[Return Parameters]

 ER ercd Error Code Error code

 pk_rver detail:
 UH maker Maker T-Kernel maker code
 UH prid Product ID T-Kernel ID
 UH spver Specification Version Specification version
 UH prver Product Version T-Kernel version
 UH prno[4] Product Number T-Kernel products management information

[Error Codes]

 E_OK Normal completion
 E_PAR Parameter error (the address of the return parameter packet cannot be used)

[Description]
 Gets information about the T-Kernel version in use, returning that information in the packet specified in pk_rver. The
following information can be obtained.
 maker is the vendor code of the T-Kernel implementing vendor. The maker field has the format shown in Figure 17(a).

 [maker]

MAKER

[Figure 17(a)] maker Field Format

AMP T-Kernel Specification / Ver. 1.00.00

 220 TEF021-S001-01.00.00/en

 prid is a number indicating the T-Kernel type. The prid format is shown in Figure 17(b).
 Assignment of values to prid is left up to the vendor implementing T-Kernel. Note, however, that this is the only number
distinguishing product types, and that vendors should give careful thought to how they assign these numbers, doing so in a
systematic way. In that way the combination of maker code and prid becomes a unique identifier of the T-Kernel type.
 The reference code of AMP T-Kernel is provided by the T-Engine Forum, and the maker and prid are as follows.

 maker = 0x0000
 prid = 0x0000

[prid]

prid

[Figure 17(b)] prid Field Format

 The upper 4 bits of spver give the TRON specification series. The low 12 bits indicate the T-Kernel specification version
implemented. The format of spver is shown in Figure 17(c).
 If, for example, a product conforms to the AMP T-Kernel specification Ver 1.02.xx, spver is as follows.

 MAGIC = 0x4 (AMP T-Kernel)
 SpecVer = 0x102 (Ver 1.02)
 spver = 0x4102

 If a product implements the AMP T-Kernel specification draft version Ver 1.B0.xx, spver is as follows.

 MAGIC = 0x4 (AMP T-Kernel)
 SpecVer = 0x1B0 (Ver 1.B0)
 spver = 0x41B0

[spver]

 MAGIC SpecVer

 MAGIC: Types of OS Specifications
 0x0 TRON common (TAD, etc.)
 0x1 reserved
 0x2 reserved
 0x3 reserved

 0x4 AMP T-Kernel
 0x5 SMP T-Kernel

 0x6 μT-Kernel
 0x7 T-Kernel

 SpecVer: The version of the specification to which the kernel conforms. This is given as a

three-digit packed-format BCD code. In the case of a draft version, the letter A, B, or C
may appear in the second digit. In this case, the corresponding hexadecimal form of A, B,
or C is inserted.

[Figure 17(c)] spver Field Format

 prver is the version number of the T-Kernel implementation. The specific values assigned to prver are left to the vendor
implementing the T-Kernel to decide.
 prno is a return parameter for use in indicating T-Kernel product management information, product number, etc. The specific
meaning of values set in prno is left to the vendor implementing T-Kernel to decide.

[Additional Notes]
 The format of each member of the packet form and structure for acquiring version information is mostly shared among

AMP T-Kernel Specification / Ver. 1.00.00

 221 TEF021-S001-01.00.00/en

various T-Kernel specifications.
 The value obtained by tk_ref_ver in SpecVer is the first three digits of the specification version number. The numbers after
that indicate minor revisions such as those issued to correct misprints and the like, and are not obtained by tk_ref_ver. For the
purpose of matching to the specification contents, the first three numbers of the specification version are sufficient.

 An OS implementing a draft version may have A, B, or C as the second number of SpecVer. It must be noted that in such
cases the specification order of release may not correspond exactly to higher and lower SpecVer values. For example,
specifications may be released in the following order:

Ver 1.A1 Ver 1.A2 Ver 1.B1 Ver 1.C1 Ver 1.00 Ver 1.01 …
In this example, when going from Ver 1.Cx to Ver 1.00, SpecVer goes from a higher to a lower value.

[Items Concerning AMP T-Kernel]

Differences with the T-Kernel 1.00 Specification are as follows.

・AMP T-Kernel and SMP T-Kernel were added to MAGIC which shows the type of OS specification.

AMP T-Kernel Specification / Ver. 1.00.00

 222 TEF021-S001-01.00.00/en

4.11 Subsystem Management Functions

Subsystems are programs that realize extended system calls (extended SVC), and carry out the functional extensions of
T-Kernel. Subsystems are under the management of T-Kernel and the interface between T-Kernel and subsystems is stipulated
by the T-Kernel Specification.

Users can implement the subsystem, define the extended SVCs, and uniquely extend the functions of T-Kernel. Moreover,
T-Kernel/SM and Standard Extension, etc. have been realized by the use of subsystems in system software as well.

Subsystems are functions to extend each kernel and cannot be used between processors. In AMP T-Kernel, there are no
differences in the subsystem management function with the T-Kernel 1.00 Specification.

Each system call is summarized in the table below. For more details refer to the explanation for each system call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_def_ssy Define Subsystem × ○

tk_sta_ssy Call Startup Function of Subsystem × ○

tk_cln_ssy Call Cleanup Function of Subsystem × ○

tk_evt_ssy Call Event Function of Subsystem × ○

tk_ref_ssy Reference Subsystem Status × ○

tk_cre_res Create Resource Group × ○

tk_del_res Delete Resource Group × ○

tk_get_res Get Resource Management Block × ○

Different from T-Kernel 1.00 Specification ○:No X:Yes △: Only different in that E_DACV error returns by the access
protection

Subsystems consist of the extended SVC handler to accept the extended SVC, each function (break function/start-up

function/cleanup function/event function) for accepting requests by T-Kernel, and resource control blocks (Figure 18).

 Applications / Subsystems / Device Drivers / Other

 ↓

 Extended SVC
 Resource
 Subsystem Control #2
 block #1
 startup cleanup break event

 ↑ ↑ ↑ ↑

 T-Kernel

[Figure 18] T-Kernel Subsystems

The resource control block is a memory area for managing resources that the subsystem uses dynamically. The details of the

resources are also uniquely provided in each subsystem and when subsystems are created, the size of necessary resource control
blocks is specified.

Multiple resource control blocks can be created for one subsystem. Each resource control block is identified by the Resource
ID. Moreover, the number of resource control blocks is equal in all subsystems. Resource control blocks with the same resource

AMP T-Kernel Specification / Ver. 1.00.00

 223 TEF021-S001-01.00.00/en

ID are grouped together and called resource groups.
When a resource group is created, resource control blocks are created with the same ID in each subsystem. When a resource

group is deleted, the resource control block for each subsystem is also deleted. Moreover, when a subsystem is newly defined,
resource control blocks for resource groups that already exist are created (Figure 19).

 Resource group Resource group Resource group
 ID #1 ID #2 ID #3

 Subsystem A ResBlk ResBlk ResBlk

 Subsystem B ResBlk ResBlk ResBlk

 Subsystem C ResBlk ResBlk ResBlk

[Figure 19] Relationship Between Subsystems and Resource Groups

System resource groups always exist as special resource groups. System resource groups are one or more resource groups
which always exist when a system starts. System resource groups cannot be deleted. Except for existing at all times, there will
be no parts which are different between the system resource group and other resource groups.

Tasks can specify the resource group to which they belong during creation. If the resource group is not specified, the task
belongs to the system resource group.

[Additional Notes]

Intended uses of resource groups are described in the examples.
File management can be thought of as in the example on subsystems. This subsystem maintains various types of information

on disks, directories, and files when they are accessed during serial operations.
When multiple tasks independently use the file management subsystem at the same time (in parallel), information stored by

the subsystem must be held independently in each task. This is due to the reason that the files being accessed in each task are
different, etc. In this case, information held by the subsystem is allocated in the resource control block and if a resource group is
created when a task is created, information can be managed as independent resource control blocks in each task.

Situations in which a subsystem would like to manage information in each task can occur in addition to file control. If a
resource group is created for each task, a resource control block for each task can be created in all subsystems. Moreover, if the
resource group is deleted when the task is deleted, the resource control block for the task can be deleted in all subsystems.

If a certain subsystem does not need information management of each task, it can specify 0 for the size of the resource control
block.

In reality, it is not necessary to individually create resource control blocks for all tasks and in most cases, it is sufficient if a
resource group is created by an independent program unit comprising a program in a large application program.

For example, in Standard Extension, applications are comprised of units called processes, and these processes are comprised
of tasks for multiple T-Kernels. Standard Extension creates a resource group when a process is created, and tasks within the
same process belong to the same resource group. When a process is deleted, the resource group is deleted.

AMP T-Kernel Specification / Ver. 1.00.00

 224 TEF021-S001-01.00.00/en

Define Subsystem tk_def_ssy

tk_def_ssy:Define Sub-System

[C Language Interface]

 ER ercd = tk_def_ssy (ID ssid, T_DSSY *pk_dssy) ;

[Parameters]

 ID ssid Subsystem ID
 T_DSSY* pk_dssy Subsystem definition information

 pk_dssy detail:
 ATR ssyatr Subsystem attributes
 PRI ssypri Subsystem priority
 FP svchdr Extended SVC handler address
 FP breakfn Break function address
 FP startupfn Startup function address
 FP cleanupfn Cleanup function address
 FP eventfn Event handling function address
 INT resblksz Resource control block size (in bytes)
 ──(Other implementation-dependent parameters may be added beyond this point.))──

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (ssid is invalid or cannot be used)
 E_NOMEM Insufficient memory (memory for control block cannot be allocated)
 E_RSATR Reserved attribute (svcatr is invalid or cannot be used)
 E_PAR Parameter error (pk_dssy is invalid or cannot be used)
 E_OBJ ssid is already defined (when pk_dssy = NULL)
 E_NOEXS ssid is not defined (when pk_dssy = NULL)

[Description]
 Defines subsystem ssid.
 A subsystem ID must be assigned to each subsystem without overlapping with other subsystems. The OS does not have a
function for assigning these automatically.
 Subsystem IDs 1 to 9 are reserved for T-Kernel use. 10 to 255 are numbers used by middleware, etc. The maximum usable
subsystem ID value is implementation-dependent and may be lower than 255 in some implementations.
 ssyatr indicates system attributes in its low bits and implementation-dependent attributes in the high bits. The system
attributes in ssyatr are not assigned in this version, and no system attributes are used.
 ssypri indicates the subsystem priority. The startup function, cleanup function, and event handling function are called in order
of priority. The order of calling when priority is the same is undefined. Subsystem priority 1 is the highest priority, with larger
numbers indicating lower priorities. The range of priorities that can be specified is implementation-dependent, but it must be
possible to assign at least priorities 1 to 16.
 NULL can be specified in breakfn, startupfn, cleanupfn, and eventfn, in which case the corresponding function will not be
called.
 In case pk_dssy=NULL, the definition of the subsystem is erased. At this time, all resource control blocks of the subsystem
for ssid are deleted.
 Subsystems consist of the extended SVC handler to accept the extended SVC, each function (break function/start-up
function/cleanup function/event function) for accepting requests by T-Kernel, and the resource control blocks. Each respective
item is described here.

AMP T-Kernel Specification / Ver. 1.00.00

 225 TEF021-S001-01.00.00/en

・Extended SVC handler
 The extended SVC handler is the acceptance contact for requests from applications, etc. The extended SVC handler becomes
subsystem API. It can be called in the same way as an ordinary system call, and is normally invoked using a trap instruction or
the like.

 INT svchdr(VP pk_para, FN fncd)
 {
 /*
 Branching by fncd
 */
 return retcode; /* exit extended SVC handler */
 }

 fncd is a function code. The low 8 bits of the instruction code are the subsystem ID. The remaining high bits can be used in
any way by the subsystem. Ordinarily they are used as a function code inside the subsystem. A function code must be a positive
value, so the most significant bit is always 0.
 pk_para points to a packet of parameters passed to this system call. The packet format can be decided by the subsystem.
Generally a format like the stack passed to a C language function is used, which in many cases, is the same format as a C
language structure.
The return code passed by an extended SVC handler is passed to the caller transparently as the function return value. As a rule,
negative values are error codes and 0 or positive values are the return code for normal completion. If an extended SVC call fails
for some reason, the OS error code (which is also a negative value) is returned to the caller without invoking the extended SVC
handler, so it is best to avoid confusion with these values.
 The format by which an extended SVC is called is dependent on the OS implementation. As a subsystem API, however, it
must be specified in a C language function format independent of the OS implementation. The subsystem must provide an
interface library for converting from the C language function format to the OS-dependent extended SVC calling format.
 An extended SVC handler runs as a quasi-task portion.
 It can be called from a task-independent portion, and in this case the extended SVC handler also runs as a task-independent
portion.

・Break function
 A break function is a function called when a task exception is raised for a task while an extended SVC handler is executing.
 When a break function is called, the processing by the extended SVC handler running at the time the task exception was
raised must be stopped promptly and control must be returned from the extended SVC handler to its caller. The processing for
stopping the processing by the currently running extended SVC handler is called a break function.
 The format of a break function is as follows.

 void breakfn(ID tskid)
 {
 /*
 Stop the running extended SVC handler
 */
 }

 tskid is the ID of the task where the task exception was raised.
 A break function is called when a task exception is raised by tk_ras_tex. If extended SVC handler calls are nested, then when
return is made from an extended SVC handler and the nesting level drops by 1, the extended SVC handler corresponding to the
return destination is the one called.
 A break function is called one time only for one extended SVC handler per one task exception.
 If another nested extended SVC call is made while a task exception is raised, no break function is called for the called
extended SVC handler.
 A break function runs as a quasi-task portion. Its task context is either that of the task that called tk_ras_tex or that of the task
where the task exception was raised (the task running an extended SVC handler). In the former case, the break function runs
when tk_ras_tex is called, while in the latter case the break function runs when extended SVC nesting is reduced by one level.
This means it is possible that the task executing the break function will be different from the task executing the extended SVC
handler. In such a case, the break function and extended SVC handler run concurrently as controlled by task scheduling.
 It is thus conceivable that the extended SVC handler will return to its caller before the break function finished executing, but
in that case, the extended SVC handler waits at the point right before returning, until the break function completes. How this
wait state maps to the task state transitions is implementation-dependent, but preferably it should remain in READY state (a

AMP T-Kernel Specification / Ver. 1.00.00

 226 TEF021-S001-01.00.00/en

READY state that does not go to RUN state). The precedence of a task may change while it is waiting for a break function to
complete, but how task precedence is treated is implementation-dependent.
 Similarly, an extended SVC handler cannot call an extended SVC until break function execution completes.
 In other words, during the time from the raising of a task interrupt until the break function completes, the affected task must
stay in the extended SVC handler that was executing at the time of the task exception.
 If a break function and extended SVC handler run in different task contexts and the break function task priority is lower than
the extended SVC handler task priority, the task priority of the break function is raised to the same priority as the extended SVC
handler task only during the time while the break handler is executing. On the other hand, if the break function task priority is
the same as or higher than that of the extended SVC handler, the priority does not change. The priority that gets changed is the
current priority; the base priority stays the same.
 The change in priority occurs only right before entry into the break function; any changes after that in the extended SVC
handler task priority are not followed up by further changes in priority of the break function task. In no case does a change in
the break function priority while a break function is running result in a priority change in the extended SVC handler task. At the
same time there is no restriction on priority changes because a break function is running.
 When the break function completes, the current priority of its task reverts to base priority. If a mutex was locked, however,
the priority reverts to that as adjusted by the mutex. (In other words, the ability is provided to adjust the current priority at the
entry and exit of the break function only; other than that, the priority is the same as when an ordinary task is running.)

・Startup function
 The startup function is called by the tk_sta_ssy call and initializes resource control blocks.
 The format of a startup function is as follows.

 void startupfn(ID resid, INT info)
 {
 /*
 Resource control block initialization processing
 */
 }

 resid is the ID of the resource group to be initialized, and info is a parameter that can be used in any way. Both are passed to
tk_sta_ssy.
 Even if initialization of the resource control block fails for some reason, the startup function must be terminated normally. If
the resource control block could not be initialized, then when an API (extended SVC) that cannot be executed normally as a
result is called, error is passed in the return code of that API.
 A startup function runs as a quasi-task portion in the context of the task that called tk_sta_ssy.

・Cleanup function
 The cleanup function is called by the tk_cln_ssy call and releases resources.
 The format of a cleanup function is as follows.

 void cleanupfn(ID resid, INT info)
 {
 /*
 Resource release processing
 */
 }

 resid is the ID of the resource group subject to resource release, while info is a parameter that can be used freely. Both are
parameters passed to tk_cln_ssy.
 Even if resource release fails for some reason, the cleanup function must be terminated normally. The error handling, such as
logging of errors, can be decided for each subsystem.
 After the cleanup function completes its processing, the resource control block is automatically cleared to 0. If no cleanup
function was defined (cleanupfn = NULL), the tk_cln_ssy system call clears the resource control block to 0.
 A cleanup function runs as a quasi-task portion in the context of the task that called tk_cln_ssy.

・Event handling function

AMP T-Kernel Specification / Ver. 1.00.00

 227 TEF021-S001-01.00.00/en

 The event processing function is called by the tk_evt_ssy call and processes various requests for the subsystem.
 Note that it does not carry the obligation to process all requests for all subsystems. If processing is not required, it can simply
return E_OK without performing any operation.
 The format of an event handling function is as follows.

 ER eventfn(INT evttyp, ID resid, INT info)
 {
 /*
 Event processing
 */
 return ercd;
 }

 evttyp indicates the request type, resid gives the ID of the resource group, and info is a parameter that can be used freely. All
these parameters are passed to tk_evt_ssy. If the system call is not invoked for any particular resource group, resid can be set to
0.
 If processing completes normally, E_OK is passed in the return code; otherwise an error code (negative value) is returned.
 The following event types evttyp are defined. See 5.3 for details.

 #define TSEVT_SUSPEND_BEGIN 1 /* before suspending device */
 #define TSEVT_SUSPEND_DONE 2 /* after suspending device */
 #define TSEVT_RESUME_BEGIN 3 /* before resuming device */
 #define TSEVT_RESUME_DONE 4 /* after resuming device */
 #define TSEVT_DEVICE_REGIST 5 /* device registration notice */
 #define TSEVT_DEVICE_DELETE 6 /* device deletion notice */

 An event handling function runs as a quasi-task portion in the context of the task that called tk_evt_ssy.

・Resource control blocks
 Resource control blocks are memory blocks for grouping resources and managing the blocks to which the resources belong.
The size of the memory specified by resblksz is prepared for each resource group one at a time. If resblksz =0 is specified, a
resource control block is not allocated. However, in this case the resource ID (refer to tk_cre_res) is allocated.
 Tasks belong to one of the resource groups. When there is a request from a certain task for the subsystem, and the resources
in the subsystem are allocated in the task, the allocation information is registered in the resource control block. Which resources
are registered in the resource control block and how they are registered are decided by the subsystem side.
 Since the OS is not concerned about the details of the resource control block, it can be freely used by the subsystem side.
However, resblksz is made to be as small as possible. Therefore, if a larger memory block is necessary, the memory block must
be prepared separately on the subsystem side and the address must be registered in the resource control block.
 Resource control blocks are resident memory of system space.

[Additional Notes]
 Extended SVC handlers as well as break functions, startup functions, cleanup functions and event handling functions all are
equivalent of the TA_HLNG attribute only. There is no means of specifying the TA_ASM attribute.
 Prior to initialization of a resource control block by a startup function, and after resource release by a cleanup function, the
behavior if an extended SVC is called by a task belonging to that resource group is dependent on the subsystem implementation.
The OS does not make any attempt to prevent this kind of call. Basically it is necessary to avoid calling an extended SVC
before calling a startup function and after calling a cleanup function.
 There may be cases where, for some reason or other, a break function, cleanup function or event handling function is called
without first calling a startup function. These functions must execute normally even in such a case. A resource control block is
cleared to 0 when it is first created and when cleanup processing is executed by tk_cln_ssy. Accordingly, even if it was not
initialized properly by a startup function, the resource control block can still be assumed to have been cleared to 0.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

Subsystems are independently managed by each AMP T-Kernel.

AMP T-Kernel Specification / Ver. 1.00.00

 228 TEF021-S001-01.00.00/en

 tk_sta_ssy
Call Startup Function of Sub-Syste/ Call Cleanup Function of Sub-System tk_cln_ssy

 tk_sta_ssy:Call StartUp Function of Sub-System
 tk_cln_ssy:Call CleanUp Function of Sub-System

[C Language Interface]

 ER ercd = tk_sta_ssy (ID ssid, ID resid, INT info) ;
 ER ercd = tk_cln_ssy (ID ssid, ID resid, INT info) ;

[Parameters]

 ID ssid Subsystem ID
 ID resid Resource ID
 INT info Any parameter

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (ssid or resid is invalid or cannot be used)
 E_NOEXS Object does not exist (the subsystem specified in ssid is not defined)
 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]
 Calls the startup function/cleanup function of the subsystem specified in ssid.
 Specifying ssid = 0 makes the system call applicable to all currently defined subsystems. In this case, the startup/cleanup
functions of each subsystem are called in sequence.
tk_sta_ssy: Calls in order starting from the highest subsystem priority.
tk_cln_ssy: Calls in order starting from the lowest subsystem priority.
 The order among subsystems having the same priority is not defined.
 If there are dependency relationships among different subsystems, the subsystem priority must therefore be set with those
relationships in mind. If, for example, subsystem B uses functions in subsystem A, then the priority of subsystem A must be set
higher than that of subsystem B.
 Even if these system calls are issued for a subsystem with no startup function or cleanup function defined, those functions are
simply not called; no error results.
 If during startup/cleanup function execution a task exception is raised for the task that called tk_sta_ssy or tk_cln_ssy, the
task exception is held until the startup/cleanup function completes its processing.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

Subsystems are independently managed by each AMP T-Kernel.

AMP T-Kernel Specification / Ver. 1.00.00

 229 TEF021-S001-01.00.00/en

Call Event Function of Sub-System tk_evt_ssy

tk_evt_ssy:Call Event Function of Sub-System

[C Language Interface]

 ER ercd = tk_evt_ssy (ID ssid, INT evttyp, ID resid, INT info) ;

[Parameters]

 ID ssid Subsystem ID
 INT evttyp Event request type
 ID resid Resource ID
 INT info Any parameter

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (ssid, resid is invalid or cannot be used)
 E_NOEXS Object does not exist (the subsystem specified in ssid is not defined)
 E_CTX Context error (issued from task-independent portion or in dispatch disabled state)
Other Error code returned by the event handling function

[Description]
 Calls the event handling function of the subsystem specified in ssid.
 Specifying ssid = 0 makes the system call applicable to all currently defined subsystems. In this case, the event handling
function of each subsystem is called in sequence.
When evttyp is an odd number: Calls in order starting from the highest subsystem priority.
When evttyp is an even number: Calls in order starting from the lowest subsystem priority.
 The order among subsystems having the same priority is not defined.
 If this system call is issued for a subsystem with no event handling function defined, the function is simply not called; no
error results.
 If this system call is not invoked for any particular resource group, resid = 0 is specified.
 If the event handling function returns an error, the error code is passed transparently in the system call return code. When ssid
= 0 and an event handler returns an error, the event handling functions of all other subsystems continue to be called. In the
system call return code, only one error code is returned even if more than one event handling function returned an error. It is not
possible to know which subsystem’s event handling function returned the error.
 If during event handling function execution a task exception is raised for the task that called tk_evt_ssy, the task exception is
held until the event handling function completes its processing.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

Subsystems are independently managed by each AMP T-Kernel.

AMP T-Kernel Specification / Ver. 1.00.00

 230 TEF021-S001-01.00.00/en

Reference Subsystem Status tk_ref_ssy

 tk_ref_ssy:Refer Sub-System Status

[C Language Interface]

 ER ercd = tk_ref_ssy (ID ssid, T_RSSY *pk_rssy) ;

[Parameters]

 ID ssid Subsystem ID
 T_RSSY* pk_rssy Subsystem definition information

[Subsystem definition information]

 ER ercd ErrorCode Error code

 pk_rssy detail:
 PRI ssypri Subsystem priority
 INT resblksz Resource control block size (in bytes)
 ──(Other implementation-dependent parameters may be added beyond this point.)──

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (ssid is invalid or cannot be used)
 E_NOEXS Object does not exist (the subsystem specified in ssid is not defined)
 E_PAR Parameter error (pk_rssy is invalid or cannot be used)

[Description]
 References information about the status of the subsystem specified in ssid.
 resblksz returns the size of the resource control block specified with tk_def_ssy.
 If the subsystem specified in ssid does not exist, E_NOEXS is returned.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

Subsystems are independently managed by each AMP T-Kernel.

AMP T-Kernel Specification / Ver. 1.00.00

 231 TEF021-S001-01.00.00/en

Create Resource Group tk_cre_res

 tk_cre_res:Create Resource Group

[C Language Interface]

 ID resid = tk_cre_res (void) ;

[Parameters]

None

[Return Parameters]

 ID resid Resource ID
 or Error Code

[Error Codes]

 E_LIMIT Number of resource groups exceeds the system limit
 E_NOMEM Insufficient memory (memory for control block cannot be allocated)

[Description]
 Creates a new resource group, assigning it to a resource control block and resource ID.
 Resource IDs are assigned in common for the entire subsystem. A separate resource control block is created for each
subsystem.
 In some cases, a new subsystem will be defined when a resource group is already created. Even in such a case, it is necessary
to create a resource control block of an already existing resource group for the newly registered subsystem. In other words,
there may be cases where resource control block creation must be performed by tk_def_ssy.
 For example, if a new subsystem ID is defined in a situation like that shown in Figure 19, resource control blocks with
resource IDs #1, #2, and #3 must automatically be created for the subsystem.

[Additional Notes]
 A Resource ID is, in some cases, used also as a logical space ID (lsid). Resource IDs should therefore be assigned values that
can be used directly as logical space IDs or that can easily be converted for use as logical space IDs.
 Resource control block creation might be implemented in either of the following ways.
 (A) At the time of subsystem definition (tk_def_ssy), create as many resource control blocks as the maximum number of

resource groups, and use tk_cre_res simply to assign them.
 (B) Use tk_cre_res to create as many resource control blocks as there are subsystems and assign them.
 Since the specification requires clearing a resource control block to 0 when it is initially created, the timing of this clearing to
0 differs between methods (A) and (B). This difference should not have much of an effect; but since method (A) will have
fewer cases of clearing to 0, subsystems must be implemented assuming (A). Method (A) is also recommended for the OS
implementation.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

Resource groups are independently managed by each AMP T-Kernel.

AMP T-Kernel Specification / Ver. 1.00.00

 232 TEF021-S001-01.00.00/en

Delete Resource Group tk_del_res

 tk_del_res:Delete Resource Group

[C Language Interface]

 ER ercd = tk_del_res (ID resid) ;

[Parameters]

 ID resid Resource ID

[Return Parameters]

 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (resid is invalid or cannot be used)
 E_NOEXS Object does not exist (the resource specified in resid does not exist)

[Description]
 Deletes the resource control blocks of the resource group specified in resid, and releases the resource ID.
 The resource control blocks of all subsystems are deleted.

[Additional Notes]
 Resources are deleted even if there are still tasks belonging to a resource to be deleted. In principle, resource deletion must be
performed after exit and deletion of all tasks belonging to the resources. The behavior is not guaranteed if a resource is deleted
while a task belonging to that resource remains and is calling a subsystem (extended SVC). Likewise, the behavior is not
guaranteed if a task belonging to a deleted resource calls a subsystem (extended SVC).
 The timing for actual resource control block deletion is implementation-dependent. (See tk_cre_res.)
 The system resource group cannot be deleted (error code E_ID is returned).

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

Subsystems are independently managed by each AMP T-Kernel.

AMP T-Kernel Specification / Ver. 1.00.00

 233 TEF021-S001-01.00.00/en

Get Resource Management Block tk_get_res

 tk_get_res:Get Resource Management Block

[C Language Interface]

 ER ercd = tk_get_res (ID resid, ID ssid, VP *p_resblk) ;

[Parameters]

 ID resid Resource ID
 ID ssid Subsystem ID

[Return Parameters]

 VP resblk Resource control block
 ER ercd ErrorCode Error code

[Error Codes]

 E_OK Normal completion
 E_ID Invalid ID number (resid or ssid is invalid or cannot be used)
 E_NOEXS Object does not exist (the resource specified in resid or ssid does not exist)
 E_PAR Parameter error (value that cannot be used in p_resblk)

[Description]
 Gets the address of the resource control block of resource group resid for subsystem ssid.

[Additional Notes]
 E_OK might be returned even if this system call is issued for a deleted resource ID. Whether or not error (E_NOEXS) is
returned in this case is implementation-dependent.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

Subsystems are independently managed by each AMP T-Kernel.

AMP T-Kernel Specification / Ver. 1.00.00

 234 TEF021-S001-01.00.00/en

Chapter 5 AMP T-Kernel/SM Functions

Details of the functions provided by T-Kernel System Manager (T-Kernel/SM) are described in this chapter.
The following functions exist in AMP T-Kernel/SM.

・ System memory management functions
・ Address space management functions
・ Device management functions
・ Interrupt management functions
・ I/O port management functions
・ Power-saving functions
・ System configuration information management functions

[Overall notice and supplement]
・ In principle, functions whose name are tk_- is extended SVC, others are library functions (including in-line functions) or

macros of the C language.
・ Some libraries and macros call some extended SVC or system calls indirectly.
・ Error codes such as E_PAR, E_MACV, and E_NOMEM that always have the possibility of occurring are not described

here unless there is some special reason for doing so.
・ Except where otherwise noted, extended SVC and libraries of T-Kernel/SM can not be called from a task-independent

portion and while dispatching and interrupts are disabled. There may be some limitations, however, imposed by particular
implementations (E_CTX).

・ Extended SVC and libraries of T-Kernel/SM can not be invoked from a lower protection level than that at which
T-Kernel/OS system calls can be invoked (lower than TSVCLimit)(E_OACV).

・ Extended SVC and libraries of T-Kernel/SM are reentrant except that the special explanation is given. But some functions
make exclusive control internally.

・ Detection of error codes E_PAR, E_MACV, and E_CTX is implementation-dependent; these may not always be detected as
error. For this reason, the service calls must not be invoked in such a way that these errors might occur.

AMP T-Kernel Specification / Ver. 1.00.00

 235 TEF021-S001-01.00.00/en

5.1 System Memory Management Functions

System memory management functions manage all the memory allocated dynamically by T-Kernel (system memory).
This includes memory used internally by AMP T-Kernel as well as task stacks, message buffers, and memory pools.
System memory is managed in memory block units. The block size is normally the page size defined for the MMU.
A system that does not use an MMU can set any desired block size, but a size in the range of around 1 KB to 4 KB is

recommended. Block size can be learned by calling tk_ref_smb.
System memory is allocated in the system space. AMP T-Kernel does not manage task space memory. AMP T-Kernel handles

the system space between the system space and the kernel. The system space between kernels is accessible space from AMP
T-Kernels of all processors.

5.1.1 System Memory Allocation

System memory management functions are called as extended SVC. They are for use not only in AMP T-Kernel but also in

applications, subsystems and device drivers. In the case of AMP T-Kernel internal use, the calling of these functions without
going through extended SVC calls is an implementation-dependent option.

The system memory management function of AMP T-Kernels of other processors cannot be called.
The system calls for these functions are summarized in the table below. For more details refer to the explanation for each

system call.

Call Name

Function

Available

Between

Processors

Different from

T-Kernel 1.00

Specification

tk_get_smb Allocate system memory × ×

tk_rel_smb Release system memory × ○

tk_ref_smb Acquires information regarding system

memory

× ×

Different from T-Kernel 1.00 Specification ○:No X:Yes △: Only different in that E_DACV error returns by the access
protection

AMP T-Kernel Specification / Ver. 1.00.00

 236 TEF021-S001-01.00.00/en

System Memory Allocation tk_get_smb

 tk_get_smb:Get System Memory Block

[C Language Interface]

 ER ercd = tk_get_smb(VP *addr, INT nblk, UINT attr) ;

[Parameters]

 VP* addr Address to return the start address of the allocated memory area
 INT nblk Block count of the allocated memory area
 UINT attr Attribute of the allocated memory area

[Return Parameters]

 ER ercd Error code
 VP addr Start address of the allocated memory area

[Error Codes]

 E_OK Normal completion
 E_NOMEM Insufficient memory (memory is not allocated)
 E_RSATR Reservation attribute (attr is invalid or cannot be used)
 E_PAR Parameter error (addr is invalid)

[Description]

Allocates a memory space of a size accommodating the number of contiguous memory blocks specified in nblk, and having
the attributes specified in attr. The start address of the allocated memory space is returned in addr.

 attr := (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3) | [TA_NORESIDENT] | [TA_INTERKERNEL]

 #define TA_NORESIDENT 0x00000010 /* nonresident */
 #desine TA_INTERKERNEL 0x00008000 /* Common between kernels */
 #define TA_RNG0 0x00000000 /* protection level 0 */
 #define TA_RNG1 0x00000100 /* protection level 1 */
 #define TA_RNG2 0x00000200 /* protection level 2 */
 #define TA_RNG3 0x00000300 /* protection level 3 */

When TA_INTERKERNEL is specified for the attribute of a memory area, the memory for system space between kernels is

allocated. The system space between kernels is always resident. TA_INTERKERNEL and TA_NORESIDENT cannot be
specified at the same time.

The acquired memory does not belong to the resource group. When memory is not allocated, E_NOMEM is returned.

[Items Concerning AMP T-Kernel]
TA_INTERKERNEL is added to the attribute of the memory area so that memory for the system space between kernels can

be allocated.

AMP T-Kernel Specification / Ver. 1.00.00

 237 TEF021-S001-01.00.00/en

Release System Memory tk_rel_smb

 tk_rel_smb: Release System Memory Block

[C Language Interface]

 ER ercd = tk_rel_smb(VP addr) ;

[Parameters]

 VP addr Address to return the start address of memory to be released

[Return Parameters]

 ER ercd Error code

[Error Codes]

 E_OK Normal completion
 E_PAR Parameter error (addr is invalid)

[Description]

Releases memory specified by addr. addr must be an address acquired by tk_get_smb().

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 238 TEF021-S001-01.00.00/en

Get System Memory Information tk_ref_smb

 tk_ref_smb: Refer System Memory Block Information

[C Language Interface]

 ER ercd = tk_ref_smb(T_RSMB *pk_rsmb) ;

[Parameters]

 T_RSMB* pk_rsmb Packet address to return system memory information

[Return Parameters]

 ER ercd Error code

 pk_rsmb details
 INT blksz Block size (in bytes)
 INT total Total block count
 INT free Remaining free block count
 INT ik_total Total block count of the common attribute between kernels
 INT ik_free Remaining free block count of the common attribute between kernels
 /* Implementation-dependent information may be added beyond this point. */

[Error Codes]

 E_OK Normal completion
 E_PAR Parameter error (pk_rsmb is invalid)

[Description]

Gets information on system memory.
In ik_total, the block count that can be allocated as the common (TA_INTERKERNEL) attribute between kernels is set

including the allocated block count. The remaining block count that can be allocated as the common attribute between kernels
is set in ik_free.

Whether or not memory on the system space between kernels and other system memory are independently managed or
managed as single system memory, and whether or not the attribute is set during allocation is implementation-dependant. If it is
managed independently, the memory count other than the common attribute between kernels is set in total and free. When it is
managed as single system memory, total and ik_total as well as free and ik_free each have the same value.

When virtual memory is used, there may be cases where the total block and remaining free block counts cannot be decided
unequivocally. In such cases the contents of total and free are implementation-dependent, but preferably they should be values
such that free ÷ total gives a useful estimate of the remaining memory capacity.

[Items Concerning AMP T-Kernel]

ik_total and ik_free were added as information on the memory of system space between kernels.

AMP T-Kernel Specification / Ver. 1.00.00

 239 TEF021-S001-01.00.00/en

5.1.2 Memory Allocation Libraries

Since system memory is allocated in block units, libraries are provided for dividing up those blocks for use.

 void* Vmalloc (size_t size)

 void* Vcalloc (size_t nmemb, size_t size)

 void* Vrealloc (void *ptr, size_t size)

 void Vfree (void *ptr)

 void* Kmalloc (size_t size)

 void* Kcalloc (size_t nmemb, size_t size)

 void* Krealloc (void *ptr, size_t size)

 void Kfree (void *ptr)

 void* Pmalloc (size_t size)

 void* Pcalloc (size_t nmemb, size_t size)

 void* Prealloc (void *ptr, size_t size)

 void Pfree (void *ptr)

The functions are equivalent to the standard C libraries malloc, calloc, realloc, free and so on. V- means the function is for

nonresident memory and K- for resident memory; in both cases the memory is assigned to the TSVCLimit protection level. P~
means the function is for the memory area of system space between kernels, and the protection level is implementation-defined.

These functions cannot be called from a task-independent portion or while dispatching or interrupts are disabled. The
behavior if they are called in those situations is undefined. (System failure is a possibility.)

[Items Concerning AMP T-Kernel]
The P~ function was added for the memory area of the system space between kernels.

AMP T-Kernel Specification / Ver. 1.00.00

 240 TEF021-S001-01.00.00/en

5.2 Address Space Management Functions

The address space management function provides the library function for functions such as the setting and checks of address
spaces, making resident/making non-resident (lock/unlock), memory cache operation, acquisition of physical addresses, and
memory maps.

These functions are functions independent in the processor and cannot be used between processors.
The address space management function is a low standard operation function that operates at a level close to hardware (refer

to "2.10 Low Standard Operation Functions"). Therefore, this function largely depends on the hardware specification. Although
a standard library function is provided in the address space management function, how far this function is realized is
implementation-defined because it depends on the function of the hardware and system memory model.

5.2.1 Address Space Configuration

The address space setting sets the task space of tasks and access privilege information.
The access privilege to the memory of a task is decided according to the protection level. However, since the extended SVC

is executed at protection level 0, if an extended SVC is called from the task, information on access privilege must be stored.
Memory access privilege is held as access privilege information for each task. Essentially access privilege information

indicates the right to access at the protection level immediately before an extended SVC is called. If, for example, a task is
running at protection level 3 when it calls an extended SVC, its access privilege information indicates the right to access at
protection level 3.

In case of nested calling of an extended SVC from another extended SVC, the access privilege information for the nested
calling of the extended SVC shall show the access permission right with protection level 0 because when the extended SVC is
executing, it is protection level 0.

Memory access privilege information is set as follows.
・ Immediately after a task is started, its access privilege is that specified when the task was created.
・ When an extended SVC is called, the access privilege at the protection level at which it was running at the time of the call

is set.
・ Upon return from the extended SVC, the access privilege reverts to that at the time the extended SVC was called.
・ Executing SetTaskSpace() copies the current access privilege of the target task to the invoking task.

 ER SetTaskSpace (ID tskid)

 Assigns to the invoking task the task space and access privilege information of the task specified in tskid. As a result, both
the invoking task and target task have the same task space and access privilege information.

Note that this copying of task space information applies only at the time the function is called; if thereafter the task specified
in tskid switches to a different address space and its access privilege changes, the invoking task is not affected by those changes
(its address space and access privilege do not change accordingly). If the invoking task is calling an extended SVC, on return
from the extended SVC its access privilege reverts to that prior to calling the extended SVC. Its task space, however, does not
revert.

The task ID of the invoking task cannot be specified in tskid. However, if TSK_SELF is used to specify the invoking task,
access privilege is set to the currently running protection level; task space is not switched in this case.

 E_ID tskid is invalid
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invoking task specified by other than TSK_SELF

5.2.2 Address Space Checking

The following functions check whether access is allowed to the specified memory space, based on the current access
privilege information. If access cannot be made (no privilege or the memory does not exist), they return error code E_MACV.

～R Check for read access privilege.
～RW Check for read and write access privilege.
～RE Check for read and execute access privilege.

 ER ChkSpaceR (VP addr, INT len)

AMP T-Kernel Specification / Ver. 1.00.00

 241 TEF021-S001-01.00.00/en

 ER ChkSpaceRW (VP addr, INT len)

 ER ChkSpaceRE (VP addr, INT len)

Checks access privilege to the memory space of len bytes from location addr.

 INT ChkSpaceBstrR (UB *str, INT max)

 INT ChkSpaceBstrRW (UB *str, INT max)

Checks access privilege to the memory space from str up to the string termination (’¥0’) or up to the number of characters
(bytes) specified in max, whichever comes first. If max = 0 is set, max is ignored and privilege is checked up to the string
termination.

If access is allowed, the length of the string (in bytes) is returned. If the string termination occurred up to the string length
indicated in max, the length to the character before ’¥0’ is returned; if max characters occurred before the string termination,
max is returned.

 INT ChkSpaceTstrR (TC *str, INT max)

 INT ChkSpaceTstrRW (TC *str, INT max)

 typedef UH TC; /* TRON character code */
 #define TNULL ((TC)0) /* TRON code string termination */

Checks access privilege to the memory space from str up to the TRON Code string termination (TNULL) or up to the number
of characters (TC count) specified in max, whichever comes first. If max = 0 is set, max is ignored and privilege is checked up
to the string termination.

If access is allowed, the length of the string (TC count) is returned. If the string termination occurred up to the string length
indicated in max, the length to the character before TNULL is returned; if max characters occurred before the string termination,
max is returned.

str must be an even-numbered address.

5.2.3 Lock Address Space

Address space is resident or nonresident memory. Generally memory is made resident or nonresident a page at a time and is
managed in page units. For this reason, in many cases the OS does not check for matching of locked and unlocked spaces. It is
the responsibility of the calling side to make sure the same spaces are specified in lock and unlock operations.

 ER LockSpace (VP addr, INT len)

Locks (makes resident) the memory space of len bytes from location addr.

 E_MACV The memory does not exist

 ER UnlockSpace (VP addr, INT len)

 Unlocks (makes nonresident) the memory space of len bytes from location addr. If the same space was locked more than
once, it is not unlocked until the number of unlock operations equals the number of lock operations.

Note that it is not possible to unlock just part of a locked space.

[Additional Notes]
In systems without virtual memory, address spaces are not locked/unlocked, simply E_OK is returned. As a result, although

the same source code can be used without depending on the existence of virtual memory in the system, actual operations will
differ depending on the system.

5.2.3 Get Address Space information

AMP T-Kernel Specification / Ver. 1.00.00

 242 TEF021-S001-01.00.00/en

Gets various information on the address space

 ER ercd = GetSpaceInfo(VP addr, INT len, T_SPINFO *pk_spinfo)

 addr Local address
 len Memory space size (in bytes)

 typedef struct t_spinfo{
 VP paddr; /* Physical address for addr */
 VP page; /* Physical address for the page to which addr belongs */
 INT pagesz; /* Page size (in bytes) */
 INT cachesz; /* Cache line size (in bytes) */
 INT cont; /* Contiguous area size for the physical address from addr (in bytes) */
 /* Implementation-dependent information may be added beyond this point */
 } T_SPINFO;

 Acquires address space information on the space in len bytes from the logic address addr and returns in the return parameter
pk_spinfo.

 The corresponding physical address to addr is returned in paddr. The start physical address of the page to which addr belongs
is returned in page.

 The page size is returned in pagesz. Page size is the unit size when the cache mode is set by SetCacheMode.
 The cache line size is returned in cachesz. Cache line size is the unit size when cache is controlled by ControlCache.
 The size of the space where the physical address is contiguous from addr is returned in cont. Continuity is examined up to the

len bytes. The len is 1 or more. When 0 or less is specified, the error code E_PAR is returned. The details of the return
parameter pk_spinfo when an error occurs is indeterminate.

When a page out space exists in the specified area, memory space information directly before the area is returned. At this
time, the return code is E_OK and the size of the area that acquired the information is returned in cont. When the start of the
specified area is page out, the return code is E_OK and cont=0. Here, the details of the return parameter pk_spinfo other than
cont is indeterminate.

 E_OK Normal completion
 E_PAR Parameter error
 E_MACV Memory cannot be accessed; memory access privilege error

5.2.4 Cache Mode Setting

Sets the cache mode of the memory area. The setting of the memory cache mode is done in page units.

 INT rlen = SetCacheMode(VP addr, INT len, UINT mode)

 addr Start address
 len Memory space size (in bytes)
 mode Cache mode
 return code Size of the area the cache mode set (in bytes) or error code

 The setting specified by mode is done from addr for the cache of the memory area of len bytes.

mode := (CM_OFF || CM_WB || CM_WT) | [CM_CONT]
 CM_OFF Cache off
 CM_WB Cache on (write-back)
 CM_WT Cache on (Write-through)
 CM_CONT Conducts cache setting only for the area the where physical address is contiguous
 (Implementation-dependent mode may be added)

When CM_OFF is specified in mode, the cache mode is set to OFF after the cache is flushed (write back).
When CM_WT is specified in mode, after the cache is flushed the cache mode is set to write-through.
When CM_WB is specified in mode, the cache mode is set to write-back. At this time, whether or not the cache is flushed is
system-dependent.

AMP T-Kernel Specification / Ver. 1.00.00

 243 TEF021-S001-01.00.00/en

When CM_CONT is specified in mode, the cache mode is set only for the area where the physical address is contiguous from
addr. When the physical address in the specified area is discontinuous or when a page out area exists, processing stops
immediately prior to the address to be discontinued, and the size of the area where processing was completed is returned. When
CM_CONT is not specified, the cache for the entire specified area is processed and the size of the area where processing was
completed is returned.

Part of the cache mode or all settings may be disabled depending on the machine. When a disabled mode is specified, nothing
is processed and E_NOSPT is returned.

The len is 1 or more. When 0 or less is specified, the error code E_PAR is returned.
The cache mode is set in page units. For this reason, since there is the possibility that cache access which is not intended may

occur in the adjacent area, this must be noted for use. Page size is system-dependent and can be acquired by GetSpaceInfo.

 E_PAR Cache mode (mode), Memory space size (len) is invalid
 E_NOSPT Unsupported function

5.2.5 Control of Cache

The cache of the memory area can be controlled (flush/cancel). Generally, memory cache is controlled in cache line size units.

 INT rlen = ControlCache(VP addr, INT len, UINT mode)

 addr Start address
 len Memory space size (in bytes)
 mode Control mode
 return code Size of the area where cache was controlled (in bytes) or error

 The control specified by mode is done from addr to the cache of len bytes memory area.

mode := (CC_FLUSH | CC_INVALIDATE)
 CC_FLUSH Cache flush (Write-back)
 CC_INVALIDATE Cache invalidated
 (Implementation-dependent mode may be added)

CC_FLUSH and CC_INVALIDATE are specifiable at the same time. In this case, after the cache is flushed, it is invalidated.
When processing succeeds, the size of the processed area is returned. When a page out area exists within the specified area,

processing ends immediately prior to the area and the size of the area where processing was completed is returned.
Cache is controlled in cache line size units. For this reason, since there is the possibility that cache access which is not

intended may occur in the adjacent area, this must be noted for use. Cache line size is system-dependent and can be acquired by
GetSpaceInfo.

 E_PAR Parameter error
 E_NOSPT Unsupported function

5.2.6 Get Physical Address

Gets the physical address of the memory for directly accessing memory from outside the CPU such as DMAC transfers. At
the same time, the cache of the area whose physical address was acquired is set to OFF.

 INT CnvPhysicalAddr (VP vaddr, INT len, VP *paddr)

 vaddr Local address
 len Memory space size (in bytes)
 paddr Returns physical address
 return code Returns size (in bytes) of physical address contiguous space, or error

Gets the physical address corresponding to logical address vaddr, returning the result in paddr. This function also passes in
the return code the size of contiguous space included in len bytes from vaddr. Accordingly, only the space of the size passed in

AMP T-Kernel Specification / Ver. 1.00.00

 244 TEF021-S001-01.00.00/en

the return code starting from paddr is valid.
The space for which the physical address is obtained must be locked (made resident).
When the physical address is obtained (the memory space starting from paddr of the size passed in the return code), the

memory cache becomes OFF. When the space is made nonresident (unlocked), caching goes back on. If it is not possible to
make memory cached OFF partly by a hardware limitation, this API flushes the cache memory (write back and disabled).

If this call is successful, the physical address paddr is the start address and directly accessing the memory in which the CPU
such as DMAC transfers is not used is guaranteed in the space of the size passed in the return code.

E_MACV Memory does not exist

[Additional Notes]
In systems that operate by the physical address due to reasons such as not have an MMU, the address is not converted, and the
value is returned as it is passed. However, it must be noted that memory cache is controlled.

5.2.7 Map Memory

Map memory functions secure the continuous memory area of the physical address on logical space.

 ER MapMemory (VP paddr, INT len, UINT attr, VP *laddr)

 Maps len bytes area which starts from paddr in the physical address to logical area returning the logical address in *laddr.
The logical address is not to be specified, automatically allocated.

If paddr = NULL is specified, some continuous memory in physical memory is automatically allocated and mapped to logical
area.

The mapped logical area has attributes specified with attr

 attr := (MM_USER || MM_SYSTEM) | [MM_READ] | [MM_WRITE] | [MM_EXECUTE] | [MM_CDIS]

 MM_USER User level access
 MM_SYSTEM System level access
 MM_READ Read access
 MM_WRITE Write access
 MM_EXECUTE Execution
 MM_CDIS Disable cache

The value for the symbols of these attributes differs depending on the machine. These symbols differ from every machine. It
requires these symbols to use. Some machines need other attributes except for these shows above.

The mapped memory area is made resident. It is not necessary to relock with LockSpace to make the area resident.

E_LIMIT Insufficient logical area for mapping
E_NOMEM Insufficient memory

 ER UnmapMemory (VP laddr)

 Unmaps logical area which allocated by MapMemory(). The logical address allocated by MapMemory() must be set to laddr.
If some memory is allocated by MapMemory(), the memory is also unmapped.

[Additional Notes]
The map memory function is used when continuous physical memory areas are needed by device.
When the area that specifies and secures paddr=NULL is converted into the physical address with

CnvPhysicalAddr(),continuous physical memory area where direct access is possible and where the CPU such as DMAC
transfers memory is not used can be acquired.

AMP T-Kernel Specification / Ver. 1.00.00

 245 TEF021-S001-01.00.00/en

5.3 Device Management Functions

Various hardware are managed as devices. Devices are managed independently in each processor and cannot be directly
operated between processors. Therefore, there are no differences between the AMP T-Kernel as well as the T-Kernel 1.00
Specification.

5.3.1 Basic Concepts

 Applications/Subsystems

↓ Application interface (Extended SVC)

 ↑
 Device Management Functions T-Kernel/SM
 ↓

↓ Device driver interface

 Interface Layer ↑

 Logical Layer Device Driver

 Physical Layer ↓

[Figure 20] Device Management Functions

(1) Device Name (UB* type)
 A device name is a string of up to 8 characters consisting of the following elements.

 #define L_DEVNM 8 /* Device name length */

 Type Name indicating the device type
 Characters a to z and A to Z can be used.
 Unit One letter indicating a physical device
 Each unit is assigned a letter from a to z in order starting from a.
 Subunit One to three digits indicating a logical device
 Each subunit is assigned a number from 0 to 254 in order starting from 0.

 Device names take the format type + unit + subunit. Some devices may not have a unit or subunit, in which case the
corresponding field is omitted.
 A name consisting of type + unit is called a physical device name. A name consisting of type + unit + subunit may be called a
logical device name to distinguish it from a physical device name. If there is no subunit, the physical device name and logical
device name are identical. The term “device name” by itself means the logical device name.
 A subunit generally refers to a partition on a hard disk, but can be used to mean other logical devices as well.

 Examples: hda Hard disk (entire disk)
 hda0 Hard disk (1st partition)
 fda Floppy disk
 rsa Serial port
 kbpd Keyboard/pointing device

(2) Device ID (ID type)
 By registering a device (device driver) with T-Kernel/SM, a device ID (> 0) is assigned to the device (physical device name).
Device IDs are assigned to each physical device. The device ID of a logical device consists of the device ID assigned to the
physical device to which is appended the subunit number + 1 (1 to 255).

AMP T-Kernel Specification / Ver. 1.00.00

 246 TEF021-S001-01.00.00/en

 devid: The device ID assigned at device registration

 devid Physical device
 devid + n+1 The nth subunit (logical device)

 Examples: hda devid Entire hard disk
 hda0 devid + 1 1st partition of hard disk
 hda1 devid + 2 2nd partition of hard disk

(3) Device Attribute (ATR type)
 Device attributes are defined as follows, in order to classify devices by their properties.

IIII IIII IIII IIII PRxx xxxx KKKK KKKK

 The high 16 bits are device-dependent attributes defined for each device. The low 16 bits are standard attributes defined as
follows.

 #define TD_PROTECT 0x8000 /* P: write protection */
 #define TD_REMOVABLE 0x4000 /* R: removable media */

 #define TD_DEVKIND 0x00ff /* K: device/media kind */
 #define TD_DEVTYPE 0x00f0 /* device type */

 /* device type */
 #define TDK_UNDEF 0x0000 /* undefined/unknown */
 #define TDK_DISK 0x0010 /* disk device */

 /* disk kind */
 #define TDK_DISK_UNDEF 0x0010 /* miscellaneous disk */
 #define TDK_DISK_RAM 0x0011 /* RAM disk (used as main memory) */
 #define TDK_DISK_ROM 0x0012 /* ROM disk (used as main memory) */
 #define TDK_DISK_FLA 0x0013 /* Flash ROM or other silicon disk */
 #define TDK_DISK_FD 0x0014 /* floppy disk */
 #define TDK_DISK_HD 0x0015 /* hard disk */
 #define TDK_DISK_CDROM 0x0016 /* CD-ROM */

 Currently no device types other than disks are defined. Other devices are assigned to undefined type (TDK_UNDEF). Note
that device types are defined for the sake of distinguishing devices from the standpoint of the user as necessary, such as when
applications must change their processing based on the type of device or media. Devices for which no such distinctions are
necessary do not have to have a device type assigned.
 See the individual device driver specifications regarding device-dependent attributes.

(4) Device Descriptor (ID type)
 A device descriptor (> 0) is an identifier used for accessing a device, assigned by T-Kernel/SM when a device is opened.
 A device descriptor belongs to a resource group. Operations using a device descriptor can be performed only by tasks
belonging to the same resource group as the device descriptor. Error code (E_OACV) is returned for requests from tasks
belonging to a different resource group.

(5) Request ID (ID type)
 When an IO request is made to a device, a request ID (> 0) is assigned identifying the request. This ID can be used to wait
for IO completion.

(6) Data Number (INT type)
 Device data is specified by a data number. Data is classified into device-specific data and attribute data as follows.

 Device-specific data: Data number >= 0
 As device-specific data, the data numbers are defined separately for each device.
 Examples:
 Disk Data number = physical block number

AMP T-Kernel Specification / Ver. 1.00.00

 247 TEF021-S001-01.00.00/en

 Serial port Data number = 0 only

 Attribute data: Data number < 0
 Attribute data specifies driver or device state acquisition and setting modes, and special functions, etc.
 Data numbers common to devices are defined, but device-dependent attribute data can also be defined. Details are given later.

5.3.2 Application Interface

 The functions below are provided as application interface functions, called as extended SVC. These functions cannot be
called from a task-independent portion or while dispatch or interrupts are disabled (E_CTX).

 ID tk_opn_dev(UB *devnm, UINT omode)
 ER tk_cls_dev(ID dd, UINT option)
 ID tk_rea_dev(ID dd, INT start, VP buf, INT size, TMO tmout)
 ER tk_srea_dev(ID dd, INT start, VP buf, INT size, INT *asize)
 ID tk_wri_dev(ID dd, INT start, VP buf, INT size, TMO tmout)
 ER tk_swri_dev(ID dd, INT start, VP buf, INT size, INT *asize)
 ID tk_wai_dev(ID dd, ID reqid, INT *asize, ER *ioerr, TMO tmout)
 INT tk_sus_dev(UINT mode)
 ID tk_get_dev(ID devid, UB *devnm)
 ID tk_ref_dev(UB *devnm, T_RDEV *rdev)
 ID tk_oref_dev(ID dd, T_RDEV *rdev)
 INT tk_lst_dev(T_LDEV *ldev, INT start, INT ndev)
 INT tk_evt_dev(ID devid, INT evttyp, VP evtinf)

 ID tk_opn_dev (UB *devnm, UINT omode)

 devnm Device name
 omode Open mode
 return codeDevice descriptor or error

 Opens the device specified in devnm in the mode specified in omode, and prepares for device access. The device descriptor
is passed in the return code.

 omode := (TD_READ || TD_WRITE || TD_UPDATE) | [TD_EXCL || TD_WEXCL || TD_REXCL]
 | [TD_NOLOCK]

 #define TD_READ 0x0001 /* read only */
 #define TD_WRITE 0x0002 /* write only */
 #define TD_UPDATE 0x0003 /* read/write */
 #define TD_EXCL 0x0100 /* exclusive */
 #define TD_WEXCL 0x0200 /* exclusive write */
 #define TD_REXCL 0x0400 /* exclusive read */
 #define TD_NOLOCK 0x1000 /* lock (making resident) not necessary */

 TD_READ Read only
 TD_WRITE Write only
 TD_UPDATA Sets read and write access mode.
 When TD_READ is set, tk_wri_dev() cannot be used.
 When TD_WRITE is set, tk_rea_dev() cannot be used.

 TD_EXCL Exclusive
 TD_WEXCL Exclusive write
 TD_REXCL Exclusive read
 Sets the exclusive mode.
 When TD_EXCL is set, all concurrent opening is prohibited.
 When TD_WEXCL is set, concurrent opening in write mode (TD_WRITE or TD_UPDATE) is prohibited.
 When TD_REXCL is set, concurrent opening in read mode (TD_READ or TD_UPDATE) is prohibited.

AMP T-Kernel Specification / Ver. 1.00.00

 248 TEF021-S001-01.00.00/en

[Table 7] Possible or not to open the same device at the same time

Concurrent Open Mode

Present Open Mode No exclusive mode
R W

TD_WEXCL
R W

TD_EXCL
R W

R
No exclusive mode

W

○ ○

○ ○

○ ○

× ×

× ×

× ×

R
TD_WEXCL

W

○ ×

○ ×

○ ×

× ×

× ×

× ×

R
TD_EXCL

W

× ×

× ×

× ×

× ×

× ×

× ×

R = TD_READ W = TD_WRITE or TD_UPDATE
○ = Can be opened × = Cannot be opened (E_BUSY)

TD_NOLOCK Lock (making resident) not necessary

Indicates that a memory space (buf) specified in IO operations (tk_rea_dev and tk_wri_dev) has already been locked (made
resident) on the calling side and does not have to be locked by the device driver. In this case, the device driver does not (must
not) lock the area. This is used e.g. to perform disk access for page in/page out in a virtual memory system. Generally, it does
not need to be specified.
 The device descriptor belongs to the resource group of the task that opened the device.
 When a physical device is opened, the logical devices belonging to it are all treated as having been opened in the same mode,
and are processed as exclusive open.

 E_BUSY Device busy (exclusive open)
 E_NOEXS Device does not exist
 E_LIMIT Open count exceeds the limit
 Other Errors returned by device driver

 ER tk_cls_dev (ID dd, UINT option)

 dd Device descriptor
 option Close option
 return code Error

 Closes device descriptor dd. If a request is being processed, the processing is aborted and the device is closed.

 option := [TD_EJECT]

 #define TD_EJECT 0x0001 /* eject media */

 TD_EJECT Eject media

If the same device has not been opened by another task, the media is ejected. In the case of devices that cannot eject their
media, the request is ignored.

 The subsystem cleanup processing (tk_cln_ssy) closes all the device descriptors belonging to the resource group.
 E_ID dd is invalid or not open
 Other Errors returned by device driver

 ID tk_rea_dev (ID dd, INT start, VP buf, INT size, TMO tmout)

 dd Device descriptor
 start Read start location (>= 0: Device-specific data, < 0: Attribute data)

AMP T-Kernel Specification / Ver. 1.00.00

 249 TEF021-S001-01.00.00/en

 buf Buffer location for putting the read data
 size Read size
 tmout Request acceptance timeout (ms)
 return code Request ID or error

 Starts reading device-specific data or attribute data from the specified device. This function starts reading only, returning to
its caller without waiting for the read operation to finish. The space specified in buf must be retained until the read operation
completes. Read completion is waited for by tk_wai_dev. The time required for read start processing differs with the device;
return of control is not necessarily immediate.
 In the case of device-specific data, the start and size units are decided for each device. With attribute data, start is an attribute
data number and size is in bytes. The attribute data of the data number specified in start is read. Normally size must be at least
as large as the size of the attribute data to be read. Reading of multiple attribute data in one operation is not possible. When size
= 0 is specified, actual reading does not take place but the current size of data that can be read is checked.
 Whether or not a new request can be accepted while a read or write operation is in progress depends on the device driver. If a
new request cannot be accepted, the request is queued. The timeout for request waiting is set in tmout. The TMO_POL or
TMO_FEVR attribute can be specified for tmout. Note that what times out is request acceptance. Once a request has been
accepted, this function does not time out.

 E_ID dd is invalid or not open
 E_OACV Open mode is invalid (read not permitted)
 E_LIMIT Number of requests exceeds the limit
 E_TMOUT Busy processing other requests
 E_ABORT Processing aborted
 Other Errors returned by device driver

 ER tk_srea_dev (ID dd, INT start, VP buf, INT size, INT *asize)
 Synchronous read. This is equivalent to the following.

 ER tk_srea_dev(ID dd, INT start, VP buf, INT size, INT *asize)
 {
 ER er, ioer;

 er = tk_rea_dev(dd, start, buf, size, TMO_FEVR);
 if (er > 0) {
 er = tk_wai_dev(dd, er, asize, &ioer, TMO_FEVR);
 if (er > 0) er = ioerr;

 }
 return er;
 }

 ID tk_wri_dev (ID dd, INT start, VP buf, INT size, TMO tmout)

 dd Device descriptor
 start write start location (>= 0: Device-specific data, < 0: Attribute data)
 buf Bu ffer holding data to be written
 size Size of data to be written
 tmout Request acceptance timeout (ms)
 return code code Request ID or error

 Starts writing device-specific data or attribute data to a device. This function starts writing only, returning to its caller without
waiting for the write operation to finish. The space specified in buf must be retained until the write operation completes. Write
completion is waited for by tk_wai_dev. The time required for write start processing differs with the device; return of control is
not necessarily immediate.
 In the case of device-specific data, the start and size units are decided for each device. With attribute data, start is an attribute
data number and size is in bytes. The attribute data of the data number specified in start is written. Normally, size must be at
least as large as the size of the attribute data to be written. Multiple attribute data cannot be written in one operation. When size
= 0 is specified, actual writing does not take place but the current size of data that can be written is checked.
 Whether or not a new request can be accepted while a read or write operation is in progress depends on the device driver. If a
new request cannot be accepted, the request is queued. The timeout for request waiting is set in tmout. The TMO_POL or
TMO_FEVR attribute can be specified for tmout. Note that what times out is request acceptance. Once a request has been

AMP T-Kernel Specification / Ver. 1.00.00

 250 TEF021-S001-01.00.00/en

accepted, this function does not time out.

 E_ID dd is invalid or not open
 E_OACV Open mode is invalid (write not permitted)
 E_RONLY Read-only device
 E_LIMIT Number of requests exceeds the limit
 E_TMOUT Busy processing other requests
 E_ABORT Processing aborted
 Other Errors returned by device driver

 ER tk_swri_dev (ID dd, INT start, VP buf, INT size, INT *asize)
 Synchronous write. This is equivalent to the following.

 ER tk_swri_dev(ID dd, INT start, VP buf, INT size, INT *asize)
 {
 ER er, ioer;

 er = tk_wri_dev(dd, start, buf, size, TMO_FEVR);
 if (er > 0) {
 er = tk_wai_dev(dd, er, asize, &ioer, TMO_FEVR);
 if (er > 0) er = ioer;
 }

 return er;
 }

 ID tk_wai_dev (ID dd, ID reqid, INT *asize, ER *ioer, TMO tmout)

 dd Device descriptor
 reqid Request ID
 asize Returns the read/write data size
 ioer Returns IO error
 tmout Timeout (ms)
 return code Completed request ID or error

 Waits for completion of request reqid for device dd. If reqid = 0 is set, this function waits for completion of any pending
request to dd. This function waits for completion only of requests currently processing when the function is called. A request
issued after tk_wai_dev was called is not waited for.
 When multiple requests are being processed concurrently, the order of their completion is not necessarily the same as the
order of request but is dependent on the device driver. Processing is, however, guaranteed to be performed in a sequence such
that the result is consistent with the order of requesting. When processing a read operation from a disk, for example, the
sequence might be changed as follows.
Block number request sequence 1 4 3 2 5
Block number processing sequence 1 2 3 4 5
 Disk access can be made more efficient by changing the sequence as above with the aim of reducing seek time and spin wait
time.
 The timeout for waiting for completion is set in tmout. The TMO_POL or TMO_FEVR attribute can be specified for tmout.
If a timeout error is returned (E_TMOUT), tk_wai_dev must be called again to wait for completion, since the request
processing is ongoing. When reqid > 0 and tmout = TMO_FEVR are both set, the processing must be completed without timing
out.
 If the requested processing results in error (IO error, etc.) ioer is stored rather than a return code. The return code is used for
errors when the request wait itself was not handled properly. When error is passed in the return code, ioer has no meaning. Note
also that if error is passed in the return code, tk_wai_dev must be called again to wait for completion, since the request
processing is ongoing.
If a task exception is raised during completion waiting by tk_wai_dev, the request in reqid is aborted and processing is
completed. The result of aborting the requested processing is dependent on the device driver. When reqid = 0 was set, however,
requests are not aborted but are treated as timeout. In this case, E_ABORT rather than E_TMOUT is returned.
 It is not possible for multiple tasks to wait for completion of the same request ID at the same time. If there is a task waiting
for request completion with reqid = 0 set, another task cannot wait for completion for the same device descriptor. Similarly, if
there is a task waiting for request completion with reqid > 0 set, another task cannot wait for completion specifying reqid = 0.

AMP T-Kernel Specification / Ver. 1.00.00

 251 TEF021-S001-01.00.00/en

 E_ID dd is invalid or not open
 reqid is invalid or not a request for dd
 E_OBJ Another task is already waiting for request reqid
 E_NOEXS requests are being processed (only when reqid = 0)
 E_TMOUT Timeout (processing continues)
 E_ABORT Processing aborted
 Other Errors returned by device driver

 INT tk_sus_dev (UINT mode)

 Mode Mode
 return code Suspend disable request count or error

 Performs the processing specified in mode, then passes the resulting suspend disable request count in the return code.

 mode := ((TD_SUSPEND | [TD_FORCE]) || TD_DISSUS || TD_ENASUS || TD_CHECK)

 #define TD_SUSPEND 0x0001 /* suspend */
 #define TD_DISSUS 0x0002 /* disable suspension */
 #define TD_ENASUS 0x0003 /* enable suspension */
 #define TD_CHECK 0x0004 /* get suspend disable request count */
 #define TD_FORCE 0x8000 /* forcibly suspend */

 TD_SUSPEND Suspend
 If suspending is enabled, suspends processing.
 If suspending is disabled, returns E_BUSY.

 TD_SUSPEND|TD_FORCE Forcibly suspend
 Suspends even in suspend disabled state.

 TD_DISSUS Disable suspension
 Disables suspension.

 TD_ENASUS Enable suspension
 Enables suspension.
 If the enable request count is above the disable count for the resource group, no operation is performed.

 TD_CHECK Get suspend disable count
 Gets only the number of times suspend disable has been requested.

Suspension is performed in the following steps.
 1. Processing prior to start of suspension in each subsystem
 tk_evt_ssy(0, TSEVT_SUSPEND_BEGIN,0,0)
 2. Suspension processing in non-disk devices
 3. Suspension processing in disk devices
 4. Processing after completion of suspension in each subsystem
 tk_evt_ssy(0, TSEVT_SUSPEND_DONE,0,0)
 5. SUSPEND state entered
 tk_set_pow(TPW_DOSUSPEND)

Resumption from SUSPEND state is performed in the following steps.
 1. Return from SUSPEND state
 Return from tk_set_pow(TPW_DOSUSPEND)
 2. Processing prior to start of resumption in each subsystem
 tk_evt_ssy(0,TSEVT_RESUME_BEGIN,0,0)
 3. Resumption processing in disk devices
 4. Resumption processing in non-disk devices
 5. Processing after completion of resumption in each subsystem
 tk_evt_ssy(0,TSEVT_RESUME_DONE,0,0)

AMP T-Kernel Specification / Ver. 1.00.00

 252 TEF021-S001-01.00.00/en

 The number of suspend disable requests is counted. Suspension is enabled only if the same number of suspend enable
requests is made. At system boot, the suspend disable count is 0 and suspension is enabled. There is only one suspend disable
request count kept per system, but the system keeps track of the resource group making the request. It is not possible to clear
suspend disable requests made in another resource group. When the cleanup function runs in a resource group, all the suspend
requests made in that group are cleared and the suspend disable request count is reduced accordingly. The maximum suspend
disable request count is implementation-dependent, but must be at least 255. When the upper limit is exceeded, E_QOVR is
returned.

 E_BUSY Suspend already disabled
 E_QOVR Suspend disable request count limit exceeded

 ID tk_get_dev (ID devid, UB *devnm)

 devid Device ID
 devnm Device name storage location
 return code Device ID of physical device or error

 Gets the device name of the device specified in devid and puts the result in devnm.
 devid is the device ID of either a physical device or a logical device.
 If devid is a physical device, the physical device name is put in devnm.
 If devid is a logical device, the logical device name is put in devnm.
 devnm requires a space of L_DEVNM + 1 bytes or larger.

 The device ID of the physical device to which device devid belongs is passed in the return code.

 E_NOEXS The device specified in devid does not exist

 ID tk_ref_dev (UB *devnm, T_RDEV *rdev)

 ID tk_oref_dev (ID dd, T_RDEV *rdev)

 devnm Device name
 dd Device descriptor
 rdev Device information
 return code Device ID or error

 typedef struct t_rdev {
 ATR devatr; /* device attributes */
 INT blksz; /* block size of device-specific data (-1: unknown) */
 INT nsub; /* subunit count */
 INT subno; /* 0: physical device: 1 to nsub: subunit number+1 */
 /* Implementation-dependent information may be added beyond this point */
 } T_RDEV;

 Gets device information about the device specified in devnm or dd and puts the result in rdev. If rdev = NULL is set, the
device information is not stored.

 nsub indicates the number of physical device subunits belonging to the device specified in devnm or dd.

 The device ID of the device specified in devnm is passed in the return code.

E_NOEXS The device specified in devnm does not exist.

 INT tk_lst_dev (T_LDEV *ldev, INT start, INT ndev)

 Ldev Location of registered device information (array)
 start Starting number
 ndev Number to acquire
 return code Remaining device registration count or error

AMP T-Kernel Specification / Ver. 1.00.00

 253 TEF021-S001-01.00.00/en

 typedef struct t_ldev {
 ATR devatr; /* device attributes */
 INT blksz; /* device-specific data block size (-1: unknown) */
 INT nsub; /* subunits */
 UB devnm[L_DEVNM]; /* physical device name */
 /* Implementation-dependent information may be added beyond this point*/
 } T_LDEV;

 Gets information about registered devices. Registered devices are managed per physical device. The registered device
information is therefore also obtained per physical device.

 When the number of registered devices is N, number are assigned serially to devices from 0 to N - 1. Starting from the
number specified in start in accordance with this scheme, the number of registrations specified in ndev is acquired and put in
ldev. The space specified in ldev must be large enough to hold ndev registration information.
 The number of remaining registrations after start (N - start) is passed in the return code. If the number of registrations from
start is fewer than ndev, all remaining registrations are stored. A value passed in return code less than or equal to (<=) ndev
means all remaining registrations were obtained. Note that this numbering changes as devices are registered and deleted. For
this reason, accurate information may not always be obtained if the acquisition is carried out over multiple operations.

E_NOEXS start exceeds the number of registered devices

 INT tk_evt_dev (ID devid, INT evttyp, VP evtinf)

 devid Event destination device ID
 evttyp Driver request event type
 evtinf Information for each event type
 return code Return code from device driver or error

 Sends a driver request event to the device (device driver) specified in devid.

 The following driver request events are defined.

 #define TDV_CARDEVT 1 /* PC Card event (see Card Manager) */
 #define TDV_USBEVT 2 /* USB event (see USB Manager) */

 The functioning of driver request events and the contents of evtinf are defined for each event type.

 E_NOEXS The device specified in devid does not exist
 E_PAR Internal device manager events (evttyp < 0) cannot be specified

5.3.3 Device Registration

 The following device registration information is defined when registering a device. Device registration is performed for each
physical device.

 typedef struct t_ddev {
 VP exinf; /* extended information */
 ATR drvatr; /* driver attributes */
 ATR devatr; /* device attributes */
 INT nsub; /* subunits */
 INT blksz; /* block size of device-specific data (-1: unknown) */
 FP openfn; /* open count */
 FP closefn; /* close count */
 FP execfn; /* processing start function */
 FP waitfn; /* completion wait function */
 FP abortfn; /* abort processing function */
 FP eventfn; /* event function */
 /* Implementation-dependent information may be added beyond this point. */

AMP T-Kernel Specification / Ver. 1.00.00

 254 TEF021-S001-01.00.00/en

 } T_DDEV;

 exinf is used to store any other desired information. The value of exinf is passed to the processing functions. Device
management pays no attention to the contents.

 drvatr sets device driver attribute information. The low bits indicate system attributes and the high bits are used for
implementation-dependent attributes. The implementation-dependent attribute portion is used, for example, to indicate validity
flags when implementation-dependent data is added to T_DDEV.

 drvatr := [TDA_OPENREQ]
 #define TDA_OPENREQ 0x0001 /* open/close each time */

 TDA_OPENREQ

When a device is opened multiple times, normally openfn is called the first time it is opened and closefn the last time it is
closed. If TDA_OPENREQ is specified, then openfn/closefn will be called for all open/close operations even in case of
multiple openings.
 Device attributes are specified in devatr. The details of device attribute settings are as noted above.
 The number of subunits is set in nsub. If there are no subunits, 0 is specified.
 blksz sets the block size of device-specific data in bytes. In the case of a disk device, this is the physical block size. It is set to
1 byte for a serial port, etc. For a device with no device-specific data it is set to 0. For an unformatted disk or other device
whose block size is unknown, -1 is set. If blksz < 0, device-specific data cannot be accessed. When device-specific data is
accessed by tk_rea_dev or tk_wri_dev, size × blksz must be the size of the area being accessed, that is, the size of buf.
 openfn, closefn, execfn, waitfn, abortfn, and eventfn set the entry address of processing functions. Details of the processing
functions are discussed later.

 ID tk_def_dev (UB *devnm, T_DDEV *ddev, T_IDEV *idev)

devnm Physical device name
ddev Device registration information
idev Returns device initialization information
return code Device ID or error

 Registers a device with the device name set in devnm. If a device with device name devnm is already registered, the
registration is updated with new information, in which case the device ID does not change. When ddev = NULL is specified,
device devnm registration is deleted.
 The device initialization information is returned in idev. This includes information set by default when the device driver is
started, and can be used as necessary. When idev = NULL is set, device initialization information is not stored.

 typedef struct t_idev {
 ID evtmbfid; /* event notification message buffer ID */
 /* Implementation-dependent information may be added beyond this point. */
 } T_IDEV;

 evtmbfid specifies the system default message buffer ID for event notification. If there is no system default event notification
message buffer, 0 is set.
 Notification like the following is made to each subsystem when a device is registered or deleted. devid is the device ID of the
physical device registered or deleted.

 Device registration or update: tk_evt_ssy(0, TSEVT_DEVICE_REGIST, 0, devid)
 Device deletion: tk_evt_ssy(0, TSEVT_DEVICE_DELETE, 0, devid)

 E_LIMIT Number of registrations exceeds the system limit
 E_NOEXS The device specified in devnm does not exist (when ddev = NULL)

 ER tk_ref_idv (T_IDEV *idev)

 Idev Returns device initialization information
 return code Error

AMP T-Kernel Specification / Ver. 1.00.00

 255 TEF021-S001-01.00.00/en

Gets device initialization information. The contents are the same as the information obtained by tk_dev_def().

5.3.4 Device Driver Interface

 The device driver interface consists of processing functions specified when registering a device. These functions are called
by device management and run as a quasi-task portion. They must be reentrant. The mutually exclusive calling of these
processing functions is not guaranteed. If, for example, there are simultaneous requests from multiple devices for the same
device, different tasks might call the same processing function at the same time. The device driver must apply mutual exclusion
control in such cases as required.
 IO requests to a device driver are made by means of the following request packet mapped to a request ID.

 typedef struct t_devreq {
 struct t_devreq *next; /* I: Link to request packet (NULL: termination) */
 VP exinf; /* X: Extended information */
 ID devid; /* I: Target device ID */
 INT cmd:4; /* I: Request command */
 BOOL abort:1; /* I: TRUE if abort request */
 BOOL nolock:1; /* I: TRUE if lock (making resident) not needed */
 INT rsv:26; /* I: reserved (always 0) */
 T_TSKSPC tskspc; /* I: Task space of requesting task */
 INT start; /* I: Starting data number */
 INT size; /* I: Request size */
 VP buf; /* I: IO buffer address */
 INT asize; /* O: Size of result */
 ER error; /* O: Error result */
 /* Implementation-dependent information may be added beyond this point. */
 } T_DEVREQ;

 I indicates an input parameter and O an output parameter. Input parameters must not be changed by the device driver.
Parameters other than input parameters (I) are initially cleared to 0 by device management. After that, device management does
not modify them.

 next is used to link the request packet. In addition to being used for keeping track of request packets in device management,
it is used also by the completion wait function (waitfn) and abort function (abortfn).
 exinf can be used freely by the device driver to store any other information. Device management does not pay attention to its
contents.
 The device ID of the device to which the request is issued is specified in devid.
 The request command is specified in cmd as follows.

 cmd := (TDC_READ || TDC_WRITE)

 #define TDC_READ 1 /* read request */
 #define TDC_WRITE 2 /* write request */

 If abort processing is to be carried out, abort is set to TRUE right before calling the abort function (abortfn). abort is a flag
indicating whether abort processing was requested, and does not indicate that processing was aborted. In some cases, abort is
set to TRUE even when the abort function (abortfn) is not called. Abort processing is performed when a request with abort set
to TRUE is actually passed to the device driver.
 nolock indicates that the memory space specified in buf has already been locked (made resident) and does not need to be
locked by the device driver. In this case, the device driver must not lock the memory space. (nolock is specified when there is a
possibility of wrong operation if the device driver performs a lock. Accordingly, when nolock = TRUE, the device driver must
not lock the space.)
 tskspc sets the task space of the requesting task. Since processing functions are called in the context of the requesting task,
tskspc is the same as the task space of the processing function. If, however, the actual IO processing (read/write in the space
specified in buf) is performed by a separate task in the device driver, it is necessary to switch the task space of the task
performing the IO processing to the task space of the requesting task.
 The start and size parameters for the tk_rea_dev or tk_wri_dev calls are copied to start and size in the request packet.
 Similarly, the buf parameter for tk_rea_dev or tk_wri_dev is copied to buf in the request packet. The memory space specified
in buf may be nonresident in some cases or task space in others. Care must therefore be taken regarding the following points.

AMP T-Kernel Specification / Ver. 1.00.00

 256 TEF021-S001-01.00.00/en

 ・Nonresident memory cannot be accessed from a task-independent portion or while dispatching or interrupts are disabled.
 ・Task space memory cannot be accessed from another task space.
 For these reasons, switching of task space or making memory space resident must be performed as necessary. Special
attention is needed when access is made by an interrupt handler. Generally it is best not to access buf directly from an interrupt
handler. Before accessing the buf memory space, the validity of buf must be checked using an address space check function
(ChkSpace., described later below).
 The device driver sets in asize the value returned in asize by tk_wai_dev.
 The device driver sets in error the error code passed by tk_wai_dev in its return code. E_OK indicates a normal result.

 Open Function：ER openfn(ID devid, UINT omode, VP exinf)
 devid Device ID of the device to open
 omode Open mode (same as tk_opn_dev)
 exinf Extended information set at device registration
 return code Error

 The open function openfn is called when tk_opn_dev is invoked.
 The function openfn performs processing to enable the use of a device. Details of the processing are device-dependent; if no
processing is needed, it does nothing. The device driver does not need to remember whether a device is open or not, nor is it
necessary to treat as error the calling of another processing function only because the device was not opened (openfn had not
been called). If another processing function is called for a device that is not open, the necessary processing may be performed
as long as there is no problem in device driver operation.
 When openfn is used to perform operations such as device initialization in principle, no processing that causes a WAIT state
should be performed. The processing and return from openfn must be as prompt as possible. In the case of a device such as a
serial port for which it is necessary to set the communication mode, for example, the device can be initialized when the
communication mode is set by tk_wri_dev. In such cases, there is no need for openfn to initialize the device.
 When the same device is opened multiple times, normally this function is called only by the first time. If, however, the driver
attribute TDA_OPENREQ is specified in device registration, this function is called each time the device is opened.
 Since processing related to the mode of opening and the opening of device multiple times is handled by device management,
processing related to them is not required in the openfn function. Similarly, omode is simply passed as reference information;
no processing related to omode is required.

 Close Function：ER closefn(ID devid, UINT option, VP exinf)
 devid Device ID of the device to close
 option Close option (same as tk_cls_dev)
 exinf Extended information set at device registration
 return code Error

 The close function closefn is called when tk_cls_dev is invoked.
 The closefn function performs processing to end use of a device. Details of the processing are device-dependent; if no
processing is needed, it does nothing.
 If the device is capable of ejecting media and TD_EJECT is set in option, media ejection is performed.
 When closefn is used to perform device shutdown processing or media ejection, in principle no processing should be
performed that causes a WAIT state. The processing and return from closefn must be as prompt as possible. If media ejection
takes time, control may be returned from closefn without waiting for the ejection to complete.
 When the same device is opened multiple times, normally this function is called only the last time it is closed. If, however,
the driver attribute TDA_OPENREQ is specified in device registration, this function is called each time the device is closed. In
this case, TD_EJECT is specified in option only for the last time.
 Since processing related to the mode of opening and the opening of device multiple times is handled by device management,
processing related to them is not required in the closefn function.

 Processing Start Function：ER execfn(T_DEVREQ *devreq, TMO tmout, VP exinf)
 devreq Request packet
 tmout Request acceptance timeout (ms)
 exinf Extended information set at device registration
 return code Error

 The execfn function is called when tk_rea_dev or tk_wri_dev is invoked and starts the processing requested in devreq. This
function only starts the requested processing, returning to its caller without waiting for the processing to complete. The time
required to start processing depends on the device driver; this function does not necessarily complete immediately.

AMP T-Kernel Specification / Ver. 1.00.00

 257 TEF021-S001-01.00.00/en

 When new processing cannot be accepted, this function goes to WAIT state for request acceptance. If the new request cannot
be accepted within the time specified in tmout, the function times out. The attribute TMO_POL or TMO_FEVR can be
specified in tmout. If the function times out, E_TMOUT is passed in the execfn return code. The timeout applies only to request
acceptance and not to the processing after acceptance.
 When error is passed in the execfn return code, the request is considered not to have been accepted and the request packet is
discarded.
 If processing is aborted before the request is accepted (before the requested processing starts), E_ABORT is passed in the
execfn return code and the request packet is discarded. If processing is aborted after the processing has been accepted, E_OK is
returned for this function. The request packet is not discarded until waitfn is executed and processing completes.
 When processing is aborted, the important thing is to return from execfn as quickly as possible. If processing will end soon
anyway without aborting, it is not necessary to abort.

 Completion Wait Function：INT waitfn(T_DEVREQ *devreq, INT nreq, TMO tmout, VP exinf)
 devreq Request packet list
 nreq Request packet count
 tmout Timeout (ms)
 exinf Extended information set at device registration
 return code Completed request packet number or error

 The waitfn function is called when tk_wai_dev is invoked.
 devreq is a list of request packets in a chain linked by devreq->next. This function waits for completion of any of the nreq
request packets starting from devreq. The final next is not necessarily NULL, so the count passed in nreq must always be
observed. The number of the completed request packets (which one after devreq) is passed in the return code. The first one is
numbered 0 and the last one is numbered nreq - 1. Here completion means any of normal completion, abnormal (error)
termination, or abort.
 The time to wait until completion is set in tmout. TMO_POL or TMO_FEVR can be specified as the tmout attribute. If the
wait times out, the requested processing continues. The waitfn return code in case of timeout is E_TMOUT. The error
parameter of the request packet does not change. Note that if return from waitfn occurs while the requested processing
continues, error must be returned in the waitfn return code but the processing must be completed even when error is passed in
the return code, and a value other than error must not be returned if processing is ongoing. As long as error is not passed in the
waitfn return code, the request is considered to be pending and no request packet is discarded. When the number of a request
packet whose processing was completed is passed in the waitfn return code, the processing of that request is considered to be
completed and that request packet is discarded.
 IO error and other device-related errors are stored in the error parameter of the request packet. Error is passed in the waitfn
return code when completion waiting did not take place properly. The waitfn return code is set in the tk_wai_dev return code,
whereas the request packet error value is returned in ioer.
 Abort processing differs depending on whether the wait is for completion of a single request (nreq = 1) or multiple requests
(nreq > 1). When completion of a single request is being waited for, the request currently being processed is aborted. When
waiting for completion of multiple requests, only the wait is aborted (wait release), not the requested processing itself. When a
wait for multiple requests is aborted (wait release), E_ABORT is passed in the waitfn return code.
 During a wait for request completion, an abort request may be set in the abort parameter of a request packet. In such a case, if
it is a single request, the request abort processing must be performed. If the wait is for multiple requests, it is also preferable
that abort processing be executed, but it is also possible to ignore the abort flag.
 When abort occurs, the important thing is to return from waitfn as quickly as possible. If processing will end soon anyway
without aborting, it is not necessary to abort.
 As a rule, E_ABORT is returned in the request packet error parameter when processing is aborted; but a different error code
may be returned as appropriate based on the device properties. Returning E_OK on the basis that the processing right up to the
abort is valid is also allowed. If processing completes normally to the end, E_OK is returned even if there was an abort request.

 Abort Function：ER abortfn(ID tskid, T_DEVREQ *devreq, INT nreq, VP exinf)
 tskid Task ID of the task executing execfn or waitfn
 devreq Request packet list
 nreq Request packet count
 exinf Extended information set at device registration
 return code Error

 The function abortfn causes execfn or waitfn to return promptly when the specified request is being executed. Normally this
means the request being processed is aborted. If, however, the processing can be completed soon without aborting, it may not
have to be aborted. The important thing is to return as quickly as possible from execfn or waitfn.

AMP T-Kernel Specification / Ver. 1.00.00

 258 TEF021-S001-01.00.00/en

 tskid indicates the task executing the request specified in devreq. In other words, it is the task executing execfn or waitfn.
devreq and nreq are the same as the parameters that were passed to execfn or waitfn. In the case of execfn, nreq is always 1.
 abortfn is called by a different task from the one executing execfn or waitfn. Since both tasks run concurrently, mutual
exclusion control must be performed as necessary. It is possible that the abortfn function will be called immediately before
calling execfn or waitfn, or during return from these functions. Measures must be taken to ensure proper operation in such cases.
Before abortfn is called, the abort flag in the request packet whose processing is to be aborted is set to TRUE, enabling execfn
or waitfn to know whether there is going to be an abort request. Note also that abortfn can make use of tk_dis_wai for any
object.
 When waitfn is executing for multiple requests (nreq > 1), this is treated as a special case differing as follows from other
cases.
 ・Only the completion wait is aborted (wait release), not the requested processing.
 ・The abort flag is not set in the request packet (remains as abort = FALSE).
 Aborting a request when execfn and waitfn are not executing is done not by calling abortfn but by setting the abort flag in the
request packet. If execfn is called when the abort flag is set, the request is not accepted. If waitfn is called, abort processing is
the same as that when abortfn is called.
 If a request for which processing was started by execfn is aborted before waitfn was called to wait for its completion, the
completion of the aborted processing is notified when waitfn is called. Even though processing was aborted, the request itself is
not discarded until its completion has been confirmed by waitfn.
 abortfn only starts abort processing, returning promptly without waiting for the abort to complete.
 abortfn is called in the following cases.
 ・When a break function is executing after a task exception and the task that raised the exception requests abort processing,

abortfn is used to abort the request being processed by that task.
 ・When a device is being closed by tk_cls_dev and by subsystem cleanup processing, and a device descriptor was processing

a request, abortfn is used to abort the request being processed by that device descriptor.

 Event Handling Function：INT eventfn(INT evttyp, VP evtinf, VP exinf)

 evttyp Driver request event type
 evtinf Information for each event type
 exinf Extended information set at device registration
 return code Return code defined for each event type or error

 The following driver request event types are defined. Those with positive values are called by tk_evt_dev, and those with
negative values are called inside device management.

 #define TDV_SUSPEND (-1) /* suspend */
 #define TDV_RESUME (-2) /* resume */
 #define TDV_CARDEVT 1 /* PC Card event (see Card Manager) */
 #define TDV_USBEVT 2 /* USB event (see USB Manager) */

 The processing performed by an event function is defined for each event type. Suspend and resume processing are discussed
later below.
 When a device event is called by tk_evt_dev, the eventfn return code is set as the tk_evt_dev return code.
 Requests to event functions must be accepted even if another request is processing and must be processed as quickly as
possible.

5.3.5 Attribute Data

 Attribute data is classified broadly into the following three kinds of data.
・Common attributes

Attributes defined in common for all devices (device drivers).
・Device kind attributes

Attributes defined in common for devices (device drivers) of the same kind.
・Device-specific attributes

Attributes defined independently for each device (device driver).
 For the device kind attributes and device-specific attributes, see the specifications for each device. Only the common
attributes are defined here.

AMP T-Kernel Specification / Ver. 1.00.00

 259 TEF021-S001-01.00.00/en

 Common attributes are assigned attribute data numbers in the range from -1 to -99. While common attribute data numbers are
the same for all devices, not all devices necessarily support all common attributes. If an unsupported data number is specified,
error code E_PAR is returned.

 #define TDN_EVENT (-1) /* RW: e v e n t n o t i f i c a t i o n m e s s a g e b u f f e r I D */
 #define TDN_DISKINFO (-2) /* R-: disk information */
 #define TDN_DISPSPEC (-3) /* R-: display device specification */

 RW: read (tk_rea_dev)/write (tk_wri_dev) enabled
 R-: read (tk_rea_dev) only

 TDN_EVENT : Event Notification Message Buffer ID

Data type ID

 The ID of the message buffer used for device event notification. Since the system default message buffer ID is passed in
device registration, that ID is set as the initial setting when a driver is started.
 If 0 is set, device events are not notified. Device event notification is discussed later below.

 TDN_DISKINFO : Disk Information

Data type DiskInfo

typedef enum {
 DiskFmt_STD = 0, /* standard (HD, etc.) */
 DiskFmt_2DD = 1, /* 2DD 720KB */
 DiskFmt_2HD = 2, /* 2HD 1.44MB */
 DiskFmt_CDROM = 4, /* CD-ROM 640MB */
 } DiskFormat;

 typedef struct {
 DiskFormat format; /* format */
 UW protect:1; /* protected status */
 UW removable:1; /* removable */
 UW rsv:30; /* reserved (always 0) */
 W blocksize; /* block size in bytes */
 W blockcount; /* total block count */
 } DiskInfo;

See the disk driver specification for details.

 TDN_DISPSPEC : Display Device Specification

Data type DEV_SPEC

 typedef struct {
 H attr; /* device attributes */
 H planes; /* number of planes */
 H pixbits; /* pixel bits (boundary/valid) */
 H hpixels; /* horizontal pixels */
 H vpixels; /* vertical pixels */
 H hres; /* horizontal resolution */
 H vres; /* vertical resolution */
 H color[4]; /* color information */
 H resv[6]; /* reserved */
 } DEV_SPEC;

See the screen driver specification for details.

AMP T-Kernel Specification / Ver. 1.00.00

 260 TEF021-S001-01.00.00/en

5.3.6 Device Event Notification

 A device driver sends events occurring in devices to the event notification message buffer (TDN_EVENT) as device event
notification. The system default event notification message buffer is specified at the time of device registration, but can be
changed later. The system default event notification message buffer is defined in TDEvtMbfSz in system configuration
information.
 The following event types are defined.

 typedef enum tdevttyp {
 TDE_unknown = 0, /* undefined */
 TDE_MOUNT = 0x01, /* media mounted */
 TDE_EJECT = 0x02, /* media ejected */
 TDE_ILLMOUNT = 0x03, /* media illegally mounted */
 TDE_ILLEJECT = 0x04, /* media illegally ejected */
 TDE_REMOUNT = 0x05, /* media remounted */
 TDE_CARDBATLOW = 0x06, /* card battery alarm */
 TDE_CARDBATFAIL = 0x07, /* card battery failure */
 TDE_REQEJECT = 0x08, /* media eject request */
 TDE_PDBUT = 0x11, /* PD button state change */
 TDE_PDMOVE = 0x12, /* PD move */
 TDE_PDSTATE = 0x13, /* PD state change */
 TDE_PDEXT = 0x14, /* PD extended event */
 TDE_KEYDOWN = 0x21, /* key down */
 TDE_KEYUP = 0x22, /* key up */
 TDE_KEYMETA = 0x23, /* meta key state change */
 TDE_POWEROFF = 0x31, /* power switch off */
 TDE_POWERLOW = 0x32, /* low power alarm */
 TDE_POWERFAIL = 0x33, /* power failure */
 TDE_POWERSUS = 0x34, /* auto suspend */
 TDE_POWERUPTM = 0x35, /* clock update */
 TDE_CKPWON = 0x41 /* auto power on notification */
 } TDEvtTyp;

 Device events are notified in the following format. The contents of event notification and size differ with each event type.

 typedef struct t_devevt {
 TDEvtTyp evttyp; /* event type */
 /* Information specific to each event type is appended here. */
 } T_DEVEVT;

 The format of device event notification with device ID is as follows.

 typedef struct t_devevt_id {
 TDEvtTyp evttyp; /* event type */
 ID devid; /* device ID */
 /* Information specific to each event type is appended here. */
 } T_DEVEVT_ID;

 See the device driver specifications for event details.
 Measures must be taken so that if event notification cannot be sent because the message buffer is full, the lack of notification
will not adversely affect operation on the receiving end. One option is to hold the notification until space becomes available in
the message buffer, but in that case, other device driver processing should not, as a rule, be allowed to fall behind as a result.
Processing on the receiving end should be designed to the extent possible to avoid message buffer overflow.

5.3.7 Device Suspend/Resume Processing

 Device drivers suspend and resume device operations in response to the issuing of suspend/resume
(TDV_SUSPEND/TDV_RESUME) events to the event handling function (eventfn). Suspend and resume events are issued

AMP T-Kernel Specification / Ver. 1.00.00

 261 TEF021-S001-01.00.00/en

only to physical devices.

 Suspend Device (TDV_SUSPEND)

 evttyp = TDV_SUSPEND
 evtinf = NULL (none)

 Suspension processing takes place in the following steps.

1. If there is a request being processed at the time, the device driver waits for it to complete, pauses it or aborts. Which of these

options to take depends on the device driver implementation. However, since the suspension must be effected as quickly as
possible, pause or abort should be chosen if completion of the request will take time.

 Suspend events can be issued only for physical devices, but the same processing is applied to all logical devices included in
the physical device.

 Pause: Processing is suspended, then continues after the device resumes operation. Abort: Processing is aborted just as
when the abort function (abortfn) is executed, and is not continued after the device resumes operation.

2. New requests other than a resume event are not accepted.
3. The device power is cut and other suspension processing is performed.

 Abort should be avoided, if at all possible, because of its effects on applications. It should be used only in such cases as long
input waits from a serial port, or when interruption would be difficult. Normally it is best to wait for completion of a request or,
if possible, to pause (suspension and resumption).
 Requests arriving at the device driver in suspend state are made to wait until operation resumes, after which acceptance
processing is performed. If the request does not involve access to the device, however, or can otherwise be processed even
during suspension, a request may be accepted without waiting for resumption.

 Resume Device (TDV_RESUME)

 evttyp = TDV_RESUME
 evtinf = NULL (none)

 Resumption processing takes place as follows.
 1. The device power is turned back on, the device states are restored and other device resumption processing is performed.
 2. Paused processing is resumed.
 3. Request acceptance is resumed.

5.3.8 Special Properties of Disk Devices

 A disk device has a special role to play in a virtual memory system. In order to realize virtual memory, the OS must call the
disk driver for transferring data between memory and disk.

 The need for the OS to perform data transfer with a disk arises when access is made to nonresident memory and the memory
contents must be read from the disk (page in). The OS calls the disk driver in this case.
 If nonresident memory is accessed in the disk driver, the OS must likewise call the disk driver. In such a case, if the disk
driver treats the access to nonresident memory as a wait for page in, it is possible that the OS will again request disk access.
Even then, the disk driver must be able to execute the later OS request.
 A similar case may arise in suspension processing. When access is made to nonresident memory during suspension
processing and a disk driver is called, if that disk driver is already suspended, page in will not be possible. To avoid such a
situation, suspension processing should suspend other devices before disk devices. If there are multiple disk devices, however,
the order of their suspension is indeterminate. For this reason, during suspension processing a disk driver must not access
nonresident memory.
 Because of the above limitations, a disk driver must not use (access) nonresident memory. It is possible, however, that the IO
buffer (buf) space specified with tk_rea_dev or tk_wri_dev will be nonresident memory, since this is a memory location
specified by the caller. In the case of IO buffers, therefore, it is necessary to make the memory space resident (see LockSpace)
at the time of IO access.

5.4 Interrupt Management Functions

AMP T-Kernel Specification / Ver. 1.00.00

 262 TEF021-S001-01.00.00/en

Interrupt management functions control the external interrupt flag and the interrupt controller of a CPU.
Interrupt management functions are low standard operation functions that operate the interrupt functions of hardware (refer to

"2.10 Low Standard Operation Functions").Therefore, these functions largely depend on the function of hardware. The
following are stipulated as the standard specification but up to where these functions are realized is implementation-defined
because it is dependent on the function of the hardware. If functions not in the standard specifications are added, however, the
function names must be different from those given here. In any case, DI(), EI(), and isDI() must be implemented in accordance
with the standard specifications.

Interrupt management functions are provided as library functions or C language macros. These can be called from a
task-independent portion and while dispatching and interrupts are disabled.

Interrupt management is an independent function in each processor and cannot be operated between processors. Therefore,
there are no differences between AMP T-Kernel and the T-Kernel 1.00 Specification either. Communication and coordination
between processors generally uses interrupts between processors. It must be noted that communication between processors are
damaged if interrupts between processors are prohibited such as prohibiting all interrupts.

5.4.1 CPU Interrupt Control

 These functions are for CPU external interrupt flag control. Generally they do not perform any operation on the interrupt
controller.
 DI() and EI() are C language macros.

 DI (UINT intsts)

 intsts CPU interrupt status (details are implementation-dependent) * This is not a pointer.
 Disables all external interrupts. The status prior to disabling interrupts is stored in intsts.

 EI (UINT intsts)

 intsts CPU interrupt status (details are implementation-dependent)

Enables all external interrupts. More precisely, this macro restores the status in intsts. That is, the interrupt status reverts to
what it was before interrupts were disabled by DI(). If there were interrupts disabled at the time DI() was executed, those
interrupts are not enabled by EI(). All interrupts can be enabled, however, by specifying 0 in intsts.

intsts must be either the values stored in it by DI() or 0. If any other value is specified, the behavior is not guaranteed.

 BOOL isDI (UINT intsts)

intsts CPU interrupt status (details are implementation-dependent)
Return code: TRUE (not 0): Interrupts disabled FALSE: Interrupts enabled

Gets the status of external interrupt disabling stored in intsts. Interrupts disabled status is the status in which T-Kernel/OS
determines that interrupts are disabled.

intsts must by the value stored by DI(). If any other value is specified, the behavior is not guaranteed.

 (Sample usage)
 void foo()
 {
 UINTintsts;

 DI(intsts);

 if (isDI(intsts)) {
 /* Interrupts were already disabled at the time this function was called */
 } else {
 /* I n t e r r u p t s w e r e e n a b l e d a t t h e t i me t h i s f u n c t i o n w a s c a l l e d . */
 }

 EI(intsts);
 }

AMP T-Kernel Specification / Ver. 1.00.00

 263 TEF021-S001-01.00.00/en

[Items Concerning AMP T-Kernel]

In AMP T-Kernel, communication and coordination between processors generally uses interrupts between processors. When
all external interrupts are prohibited by DI(), these interrupts between processors is prohibited, and the possibility that
communication between processors will be blocked must be noted.

If there is a need to prohibit a specific interrupt, control of the interrupt controller in the next paragraph must be used without
using DI() and only the targeted interrupt must be prohibited.

Moreover, exclusive control between processors is not possible with multiprocessors although DI() may be used in past single
processor programs as the target of exclusive control. If software with high portability including multiprocessor systems is the
aim, the kernel object must be used for exclusive control and the use of DI() must be limited to the absolute minimum low level
operations.

AMP T-Kernel Specification / Ver. 1.00.00

 264 TEF021-S001-01.00.00/en

5.4.2 Control of Interrupt Controller

These functions control the interrupt controller. Generally they do not perform any operation with respect to the CPU
interrupt flag.

typedef UINT INTVEC; /* interrupt vector */

The specific details of the interrupt vectors (INTVEC) are implementation-dependent. Preferably, however, they should be
the same numbers as the interrupt definition numbers specified with tk_def_int, or should allow for simple conversion to and
from those numbers.

 UINT DINTNO(INTVEC intvec)

 Converts an interrupt vector to the corresponding interrupt definition number.

 void EnableInt(INTVEC intvec)

 void EnableInt(INTVEC intvec, INT level)

Enables the interrupt specified in intvec. In a system that allows interrupt priority level to be specified, the level parameter
can be used to specify the interrupt priority level. The precise meaning of level is implementation-dependent.

Both methods with and without level must be provided.

 void DisableInt(INTVEC intvec)

 Disables the interrupt specified in intvec. Generally, interrupts raised while interrupts are disabled are made pending, and are
raised after interrupts are enabled by EnableInt(). ClearInt() must be used if it is desired to clear interrupts occurring in
interrupts disabled state.

 void ClearInt(INTVEC intvec)

Clears any interrupts raised for intvec.

 void EndOfInt (INTVEC intvec)

 Issues EOI (End Of Interrupt) to the interrupt controller intvec must be an interrupt for which EOI can be issued. Generally
this must be executed at the end of an interrupt handler.

 BOOL CheckInt (INTVEC intvec)

 Checks whether interrupt intvec has been raised. If interrupt intvec has been raised, it returns TRUE (value other than 0),
else FALSE.

[Items Concerning AMP T-Kernel]
 There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 265 TEF021-S001-01.00.00/en

5.5 I/O Port Access Support Functions

I/O port access support functions are low standard operation functions to access I/O ports (refer to "2.10 Low Standard
Operation Functions"). I/O port access support functions are provided as library functions or C language macros. These can be
called from a task-independent portion or while dispatching and interrupts are disabled.

I/O port support functions are independent in each processor and cannot be used between processors. Therefore, in AMP
T-Kernel, there is no difference from the T-Kernel 1.00 Specification

5.5.1 I/O Port Access

 In a system with separate I/O space and memory space, an I/O port access function accesses I/O space. In a system with
memory-mapped I/O only, an I/O port access function accesses memory space. Using these functions will improve software
portability and readability even in a memory-mapped I/O system.

 ～_w Word (32-bit) units
 ～_h Half-word (16-bit) units
 ～_b Byte (8-bit) units

 void out_w (INT port, UW data)

 void out_h (INT port, UH data)

 void out_b (INT port, UB data)

 port I/O port address
 data Data to be written

Writes data to an I/O port.

 UW in_w (INT port)

 UH in_h (INT port)

 UB in_b (INT port)

 port I/O port address
 return code Data to be read

 Reads data from an I/O port.

AMP T-Kernel Specification / Ver. 1.00.00

 266 TEF021-S001-01.00.00/en

5.5.2 Micro wait

 void WaitUsec (UINT usec)

 void WaitNsec (UINT nsec)

usec Wait time (microseconds)
nsec Wait time (nanoseconds)

Performs a micro wait for the specified interval.
These waits occur in an ordinary busy loop, and as such are easily influenced by the runtime environment, such as execution

in RAM, execution in ROM, memory cache on or off, etc. These wait times are therefore not very accurate.
These waits are not the same as an OS WAIT state. The system state remains as RUN state.

AMP T-Kernel Specification / Ver. 1.00.00

 267 TEF021-S001-01.00.00/en

5.6 Interprocessor Management Functions

Interprocessor management functions are MP T-Kernel functions that realize synchronization between processors and

exclusive control.
They include the spin lock control and atomic function, and a memory barrier function. These are low standard operation

functions realized by functions provided by hardware (refer to "2.10 Low Standard Operation Functions"). Therefore, although
the following standard specification is provided, details are implementation-defined, and there are also functions for which
implementation is not feasible. If functions not in the standard specifications are added, however, the function names must be
different from those given here.

Interprocessor management functions are provided by the library function or C language macros. These can be called from a
task-independent portion and while dispatching and interrupts are disabled.

[Additional Notes]

It is assumed interprocessor management functions will be used with system software. The control of hardware to enable
sharing between processors and the realization of synchronization and communication between processors, etc. corresponds to
this. Normal applications must use the kernel object for synchronization and communication between processors.

5.6.1 Spinlock Control
Spinlocks are functions for exclusively controlling shared resources between processors.
The spinlock variable is locked prior to the use of shared resources. If the spinlock variable is already locked, it waits in busy

wait until the lock is released.

[Additional Notes]
Spinlocks wait is busy wait and during the time processing such as other tasks cannot be executed. It must be noted that a

decrease in processing efficiency results if busy waits frequently occur. Moreover, the lock period should be as short as
possible.

(1) Spinlock Variables

In the spinlock, a T_SPLOCK spinlock variable and a T_RWSPLOCK read write spinlock variable are defined. The
T_SPLOCK is used for spinlock operations and the T_RWSPLOCK is used for read write spinlock operations. These details are
implementation-defined. Moreover, it is implementation-defined because memory areas in which the spinlock variable can be
placed depend on hardware.

In AMP T-Kernel, the spinlock variables used by the system when it starts can be secured and initialized. The number of
allocated spinlock variables is set by the system configuration information management functions (refer to paragraph 5.9). The
number of required spinlock variables for the user program is set by the system configuration information management
functions and can be used freely. Moreover, the user program can separately create spinlock variables. In this case, the setting
and initialization of the memory area where the spin lock variable is allocated are the responsibility of the user.

Spinlock variables prepared by the system are controlled by the following library functions.

 ER _InitLibsplock(void)
Initializes the spinlock management area. Normally, it is called only once during initialization of the system.
The spinlock management area is shared by all AMP T-Kernels. Therefore, initialization must be limited to once in an entire

AMP system. That is, there must only be one AMP T-Kernel that calls this function. This function must not be called by each
AMP T-Kernel.

 E_NOSPT Unsupported function (Spinlock is not supported)

 ER _FinishLibsplock (void)
Destroys the spinlock management area. Normally it is called only once from the user program when the system ends.

 E_NOSPT Unsupported function (Spinlock is not supported)

 T_SPLOCK* GetSpinLock(INT idx)
Gets the address of the spinlock variable corresponding to idx.
idx includes figures from 0 (maximum number -1 set to system configuration information).

AMP T-Kernel Specification / Ver. 1.00.00

 268 TEF021-S001-01.00.00/en

This function must be used after execution of the _ InitLibsplock() function.

 T_RWSPLOCK* GetRWSpinLock(INT idx)
Gets the address of the read write spinlock variable corresponding to idx.
idx includes figures from 0 (maximum number -1 set to system configuration information).
This function must be used after execution of the _ InitLibsplock() function.

[Additional Notes]
To use spinlock variables prepared by the system, first the _ InitLibsplock() function is called only once for the entire system,

and the GetSpinLock() function or the GetRWSpinLock() function is called in each AMP T-Kernel next, and then the address of
the required spinlock variable is acquired.

This can be realized by using the synchronization of the initialization handler as follows. One AMP T-Kernel is randomly
chosen from AMP T-Kernels which use spinlocks, and the _ InitLibsplock() function is executed in the initialization handler of
the AMP T-Kernel. Other AMP T-Kernels that use spinlocks execute the initialization handler with the synchronous
specification (_ InitLibsplock() function is not executed). In this way, when the task starts executing, the GetSpinLock()
function can be used.

(2) Spinlock Operations

 ER SpinLock(T_SPLOCK *lock)

Locks the spinlock variable lock. If it is already locked it waits in busy wait until the lock is released.

 ER SpinTryLock(T_SPLOCK *lock)

Locks the spinlock variable lock. If it is already locked, it returns an error.

 ER SpinUnlock(T_SPLOCK *lock)
Releases the lock for the spinlock variable lock.

 E_BUSY Already locked
 E_NOSPT Unsupported function (Spinlock is not supported)

(3) Spinlock Operations with Disable Interrupts

 ER ISpinLock(T_SPLOCK *lock, UINT *intsts)
Locks the spinlock variable lock after an external interrupt is prohibited. The state prior to the prohibition of interrupts is

stored in intsts. If it is already locked, it waits in busy wait until the lock is released. The interrupt is prohibited while the lock is
waiting for acquisition.

 ER ISpinTryLock(T_SPLOCK *lock, UINT *intsts)

Locks the spinlock variable lock after external interrupts are prohibited. The state prior to the prohibition of interrupts is
stored in intsts. If it is already locked, it returns to the state prior to the prohibition of the interrupt and returns an error.

 ER ISpinUnlock(T_SPLOCK *lock, UINT intsts)

Releases the lock on the spinlock variable lock to permit external interrupts. Interrupts are permitted by returning to the state
stored in intsts. intsts is the value returned by ISpinLock() or ISpinTryLock().Therefore, if the state is disable interrupt prior to
locking, the interrupt is not permitted even if ISpinUnlock() is executed.

 E_BUSY Already locked
 E_NOSPT Unsupported function (Spinlock is not supported)

[Additional Notes]
The period when the spinlock variable is locked must be shortened as much as possible from the standpoint of processing

efficiency of the overall system. Therefore, it is necessary to avoid entering wait with the acquired lock and dispatching to other

AMP T-Kernel Specification / Ver. 1.00.00

 269 TEF021-S001-01.00.00/en

tasks, etc. In order to do so, there is a disable interrupt during the locked period as a method. Spinlocks involving disable
interrupt locks after disable interrupt and dispatches of tasks while locked is controlled.

ISpinLock() and ISPinUnlock() are equal to the following processing (However, the following codes do not consider errors).

ER ISpinLock(T_SPLOCK *lock, UINT *intsts)
{
 UW imask;

 DI (imask);
 *intsts = imask;
 return SpinLock(lock);
}

ER ISpinUnlock(T_SPLOCK *lock, UINT intsts)
{
 ER rtn;

 rtn = SpinUnlock (lock);
 EI (intsts);
 return rtn;
}

(4) Read Write Spinlock Operations
The read write spinlock only carries out exclusive control when there are multiple write locks (writing lock), and read lock

(reading lock) permits multiple locks.

 ER ReadLock(T_RWSPLOCK *lock)
Read locks the read write spinlock variable lock. The read lock can be locked multiple times. If it is already write locked, it

waits in busy wait until the write lock is released.

 ER ReadTryLock(T_RWSPLOCK *lock)

Read locks the read write spinlock variable lock. The read lock can be locked multiple times. If it is already locked, an error
is returned.

 ER ReadUnlock(T_RWSPLOCK *lock)

Releases the read lock for the read write spinlock variable lock.

 ER WriteLock(T_RWSPLOCK *lock)
Write locks the read write spinlock variable lock. The write lock cannot be locked multiple times. If it is already read locked

or write locked, it waits in busy wait until all the locks are released.

 ER WriteTryLock(T_RWSPLOCK *lock)
Write locks the read write spinlock variable lock. The write lock cannot be locked multiple times. If it is already read locked

or write locked, an error is returned.

 ER WriteUnlock(T_RWSPLOCK *lock)
Releases the write lock for the read write spinlock variable lock.

(5) Read Write Spinlock Operations With Disable Interrupts

 ER IReadLock(T_RWSPLOCK *lock, UINT *intsts)
Read locks the read write spinlock variable lock after external interrupts are prohibited. The state prior to the prohibition of

the interrupt is stored in intsts. The read lock can be locked multiple times. If it is already write locked, it waits in busy wait
until the write lock is released. Interrupts are prohibited while the lock is waiting for acquisition.

 ER IReadTryLock(T_RWSPLOCK *lock, UINT *intsts)
Read locks the read write spinlock variable lock after external interrupts are prohibited. The state prior to the prohibition of

AMP T-Kernel Specification / Ver. 1.00.00

 270 TEF021-S001-01.00.00/en

the interrupt is stored in intsts. The read lock can be locked multiple times. If it is already write locked, it returns to the state
prior to the prohibition of the interrupt, and an error is returned.

 ER IReadUnlock(T_RWSPLOCK *lock, UINT *intsts)

Releases the read lock on the read write spinlock variable lock to permit external interrupts. Interrupts are permitted by
returning to the state stored in intsts. intsts is the value returned by IReadLock() or IReadTryLock().Therefore, if the state is
disable interrupt prior to locking, the interrupt is not permitted even if IReadUnlock() is executed.

 ER IWriteLock(T_RWSPLOCK *lock, UINT *intsts)

Write locks the read write spinlock variable lock after externel interrupts are prohibited. The state prior to the prohibition of
interrupts is stored in intsts. Write lock cannot be locked multiple times. If it is already read locked or write locked, it waits in
busy wait until all locks are released. Interrupts are prohibited while the lock is waiting for acquisition.

 ER IWriteTryLock(T_RWSPLOCK *lock, UINT *intsts)
Write locks the read write spinlock variable lock after externel interrupts are prohibited. The state prior to the prohibition of

interrupts is stored in intsts. Write lock cannot be locked multiple times. If it is already read locked or write locked, it returns to
the state prior to the prohibition of interrupts, and an error is returned.

 ER IWriteUnlock(T_RWSPLOCK *lock, UINT *intsts)

Releases the write lock on the read write spinlock variable lock to permit external interrupts. Interrupts are permitted by
returning to the state stored in intsts. intsts is the value returned by IWriteLock() or IWriteTryLock().Therefore, if the state is
disable interrupt prior to locking, the interrupt is not permitted even if IWriteUnlock() is executed.

5.6.2 Atomic Function

The atomic function is a memory operation function that guarantees inseparability in multiprocessors. Although the
implementation of the function depends on hardware, the functions for the following memory barriers must be satisfied.

・ (On source code) The execution results for memory operations positioned before the atomic function are monitored by all

processors before any memory operations are executed by the atomic function.
・ (On source code) The execution results for memory operations by the atomic function are monitored by all processors

before code located after the atomic function is executed.

 UW atomic_inc(UW *addr)
*addr++ The *addr after execution is the return code.

 UW atomic_dec(UW *addr)
*addr-- The *addr after execution is the return code.

 UW atomic_add(UW *addr, UW val)
*addr += val The *addr after execution is the return code.

 UW atomic_sub(UW *addr, UW val)
*addr -= val The *addr after execution is the return code.

 UW atomic_xchg(UW *addr, UW val)
*addr = vsl The *addr before execution is the return code.

 UW atomic_cmpxchg(UW *addr, UW val, UW cmp)
* If *addr == cmp, then *addr = val. The *addr before execution is the return code.

 UW atomic_bitset(UW *addr, UW setptn)
*addr |= setptn The *addr before execution is the return code.

 UW atomic_bitclr(UW *addr, UW clrptn)
*addr &= clrptn The *addr before execution is the return code.

[Additional Notes]

AMP T-Kernel Specification / Ver. 1.00.00

 271 TEF021-S001-01.00.00/en

The atomic function guarantees that operations on memory shared between processors are done inseparably. At the same time,
the atomic function serves as a memory barrier.

5.6.3 Memory Barriers

Depending on the processor, there may be cases where the order in the program code does not match the order in which

memory is actually accessed such as cases in which instructions are permuted by out of order execution, etc. In operations on
memory shared between processors, etc., there is the possibility of unforeseen operations. The order of the memory access can
be guaranteed by memory barrier functions.

 void mp_memory_barrir(void)

Prior to execution of the code after the memory barrier, it is guaranteed that the execution result of memory operations prior
to memory barrier will be monitored from all processors.

[Additional Notes]
In processors which do not require memory barriers (order of the memory access is always guaranteed), the function of the

memory barrier is ignored from the standpoint of program portability and an error will not be returned.

AMP T-Kernel Specification / Ver. 1.00.00

 272 TEF021-S001-01.00.00/en

5.7 Power Management Functions

Functions called from the T-Kernel/OS to realize power-saving functions (refer to tk_set_pow()).
The manner of calling these functions is implementation-dependent. Simple system calls are possible, as is the use of a trap.
Use of an extended SVC or other means that makes use of OS functions is not possible, however. Providing these functions in

T-Monitor is another option.
The specifications given here for low-pow and off-pow are reference specifications. Since these functions are used only

inside T-Kernel, other specifications may be devised as well. It is even possible to design completely different specifications in
order to realize more advanced power-saving features. If the functionality is similar to that specified here, however, it would be
best to follow these specifications as closely as practical.

This processor independent function is called in T-Kernel, and there are no specification differences between AMP T-Kernel
and the T-Kernel 1.00 Specification.

 void low_pow (void)

 Switches to low-power mode and waits for an interrupt to be raised.
 This function is called from the task dispatcher, and performs the following processing.
1. Goes to low-power mode.
2. Waits for an external interrupt to be raised.
3. When an external interrupt is raised, restores normal power mode and returns to its caller.

 This function is called in interrupts disabled state. Interrupts must not be enabled. The speed of response to an interrupt
affects processing speed, and should be as fast as possible.

 void off_pow (void)

Suspends the system. When a resume factor occurs, it resumes system operation.

 This function is called from tk_set_pow, and performs the following processing.
1. Puts the hardware in suspended state.
2. Waits for a resume factor to occur.
3. When a resume factor occurs, returns from suspended state and returns to its caller.

 This function is called in interrupts disabled state. Interrupts must not be enabled. The device drivers perform the
suspending and resuming of peripherals and other devices.

AMP T-Kernel Specification / Ver. 1.00.00

 273 TEF021-S001-01.00.00/en

5.8 System Configuration Information Management Functions

System configuration information management functions are provided for storing, managing and making available
information about the system configuration (maximum number of tasks, etc.) and any other information. Each information item
is statically set and there is no function for adding/changing information when the system is executing.

These are not functions for adding or modifying information when the system is running. How the system configuration
information is to be stored is not specified here, but it is generally put in memory (ROM/RAM). This functionality is therefore
not intended for storing large amounts of information.

Standard definitions are specified for some system configuration information, but additional information may be defined and
used for applications, subsystems, or device drivers.

The format of system configuration information consists of a name and defined data as a set.

・Name

The name is a string of up to 16 characters.
Characters that can be used (UB) are a to z, A to Z, 0 to 9 and (under bar).

・Defined data
Data consists of numbers (integers) or character strings.
Characters that can be used (UB) are any characters other than 0x00 to 0x1F, 0x7F, or 0xFF (character codes).

 Sample: Name Defined Data
 SysVer 1 0
 SysName T-Kernel Version 1.00

5.8.1 System Configuration Information Acquisition

System configuration information is acquired by using extended SVC. This function is used inside T-Kernel, and can also be
used by applications, subsystems, device drivers and so on. Use inside T-Kernel does not have to go through extended SVC;
this choice is implementation-dependent.

 INT tk_get_cfn (UB *name, INT *val, INT max)

 name Name
 val Array storing numeric strings
 max Number of elements in val array
 return code Defined numeric information count
 or error

Gets numeric string information from system configuration information. This function gets up to max items of numerical
string information defined by the name specified in the name parameter and stores the acquired information in val. The number
of items of defined numeric string information is passed in the return code. If return code > max, this indicates that not all the
information could be stored. By specifying max = 0, the number of numeric strings can be found out without actually storing
them in val.

E_NOEXS is returned if no information is defined with the name specified in the name parameter. The behavior if the
information defined as name is a character string is indeterminate.

This function can be invoked from any protection level, without being limited by the protection level from which
T-Kernel/OS system call can be invoked.

 INT tk_get_cfs (UB *name, UB *buf, INT max)

Name Name
buf Array storing character string
max Maximum size of buf (in bytes)
return code Size of defined character string information (in bytes)

 or error

Gets character string information from system configuration information. This function gets up to max characters of character
string information defined by the name specified in the name parameter and stores the acquired information in buf. If the

AMP T-Kernel Specification / Ver. 1.00.00

 274 TEF021-S001-01.00.00/en

acquired character string is shorter than max characters, it is terminated by ‘¥0’ when stored. The length of the defined character
string information (not including ‘¥0’) is passed in the return code. If return code > max, this indicates that not all the
information could be stored. By specifying max = 0, the character string length can be found out without actually storing
anything in buf.

E_NOEXS is returned if no information is defined with the name specified in the name parameter. The behavior if the
information defined as name is a numeric string is indeterminate.

This function can be invoked from any protection level, without being limited by the protection level from which
T-Kernel/OS system call can be invoked.

5.8.2 Standard System Configuration Information

 The following information is defined as standard system configuration information. A standard information name is prefixed
by T.
 N: Numeric string information
 S: Character string information

・Product information
 S: TSysName System name (product name)

・Processor Information
 N: TSysPrNum Processor count for the entire system
 N: TSelfPrNo Own processor ID number

・Maximum object counts
 N: TMaxTskId Maximum tasks
 N: TMaxSemId Maximum semaphores
 N: TMaxFlgId Maximum event flags
 N: TMaxMbxId Maximum mailboxes
 N: TMaxMtxId Maximum mutexes
 N: TMaxMbfId Maximum message buffers
 N: TMaxPorId Maximum rendezvous ports
 N: TMaxMpfId Maximum fixed-size memory pools
 N: TMaxMplId Maximum variable-size memory pools
 N: TMaxDomId Maximum domain count
 N: TMaxCycId Maximum cyclic handlers
 N: TMaxAlmId Maximum alarm handlers
 N: TMaxResId Maximum resource groups
 N: TMaxSsyId Maximum subsystems
 N: TMaxSsyPri Maximum subsystem priorities

・Other
 N: TsysStkSz Default system stack size (in bytes)
 N: TSVCLimit Lowest protection level for system call invoking
 N: TOAPLimit The lowest protection level in which access protection is invalid
 N: TSLockNum Maximum spinlock count
 N: TRWSLockNum Maximum read write spinlock count
 N: TTimPeriod Timer interrupt interval (ms)

・Device management
 N: TMaxRegDev Maximum device registrations
 N: TMaxOpnDev Maximum device open count
 N: TMaxReqDev Maximum device requests
 N: TDEvtMbfSz Event notification message buffer size (in bytes)
 Maximum event notification message length (in bytes)
 If TDEvtMbfSz is not defined or if the message buffer size is a negative value, an event notification

message buffer is not used.

 When multiple values are defined for any of the above numeric strings, they are stored in the same order as in the

AMP T-Kernel Specification / Ver. 1.00.00

 275 TEF021-S001-01.00.00/en

explanation.

 Examples: tk_get_cfn("TDEvtMbfSz", val, 2)
 val[0] = Event notification message buffer size
 val[1] = Maximum event notification message length

[Items Concerning AMP T-Kernel]

The following system configuration information was added in AMP T-Kernel.

 N: TSysPrNum Overall system processor count
 N: TSelfPrNo Own processor ID number
 N: TMaxDomId Maximum domain count
 N: TOAPLimit Lowest possible protection level valid for access protection
 N: TSLockNum Maximum spinlock count
 N: TRWSLockNum Maximum read write spinlock count

In addition, all processors share the following information values among system configuration information. Other information

values are stipulated by each processor.

 S: TSysName System name
 N: TSysPrNum Processor count for the overall system
 N: TSVCLimit Lowest possible protection level for calling system calls
 N: TOAPLimit Lowest possible protection level valid for access protection

AMP T-Kernel Specification / Ver. 1.00.00

 276 TEF021-S001-01.00.00/en

Chapter 6 Starting AMP T-Kernel
6.1 Initialization Handlers

Initialization handlers are programs executed at the end of the initialization processing of AMP T-Kernel.
The purpose of initial handlers is initialization processing during the startup of kernel object creation and handler registration,

etc., and synchronizing the end of initialization between processors (refer to clause 2.2.3).
Initialization handlers are defined as follows.

 W init_hdr(void);

 Initialization handler return codes：
 #define TINI_SYNC 1 // Synchronization during initialization
 #define TINI_NOSYNC 0 // No synchronization during initialization
 (the above values are reserved and must not be used)

Only one initialization handler can be registered in the kernel of each processor. The method for registering initialization

handlers in a kernel is implementation-defined. Moreover, it is also possible to not register initialization handlers.
Initialization handlers are executed as task-independent portions like interruption handlers, etc. Therefore, executable system

calls can be used in the task-independent portion. However, tasks which are still executing during execution of an initialization
handler do not exist.

When an initialization handler returns TINI_SYNC in the return code, the kernel carries out synchronous processing during
initialization. It waits for the initialization handlers of all other processors end, and regular kernel operation starts at the same
time. Therefore, it is guaranteed that synchronization and communication are possible by use of objects created in all
initialization handlers when a task executes.

When an initialization handler returns TINI_NOSYNC in the return code, the kernel does not carry out synchronous
processing during initialization, and immediately begins regular kernel operation. Therefore, even if the task executes, there is a
possibility that the initialization of kernels belonging to other processors does not end.

When a handler (synchronous initialization handler) that returns TINI_SYNC and a handler (asynchronous initialization
handler) that returns TINI_NOSYNC exist together, the synchronous initialization handler waits for the end of all initialization
handlers including the asynchronous initialization handler. Therefore, when the asynchronous initialization handler ends
processing earlier than the synchronous initialization handler, the task is immediately starts (Figure 21(a)). Conversely, when
the synchronous initialization handler ends processing early, it waits for the end of all asynchronous initialization handlers
(Figure 21(b)).

If it is preferable to not synchronize processors during initialization, do not register an initialization handler. Kernels in which
initialization handlers are not registered are excluded from synchronization during initialization (Figure 21(c)).

Processor 1

Synchronous

initialization handler

Kernel

initialization

Initialization

handler

Task execution

Processor 2

Synchronous initialization

handler

Kernel

initialization

Initialization

handler

Task execution

Processor 3

Asynchronous initialization

handler

Kernel

initialization

Initialization

handler

Task execution

Task execution

AMP T-Kernel Specification / Ver. 1.00.00

 277 TEF021-S001-01.00.00/en

[Figure 21(a)] When an asynchronous initialization handler completes processing first

[Figure 21(b)] When an synchronous initialization handler completes processing first

[Figure 21(c)] In case of an unregistered initialization handler

6.2 Subsystem and Device Driver Starting

Subsystems and device drivers start when each respective AMP T-Kernel for each processor starts. There are no differences in

Processor 1

Synchronous initialization

handler

Kernel

initialization

Initialization

handler

Task execution

Processor 2

Synchronous initialization

handler

Kernel

initialization

Initialization

handler

Task execution

Processor 3

Unregistered initialization

handler

Kernel

initialization

Task execution

Processor 1

Synchronous initialization

handler

Kernel

initialization

Initialization

handler

Task execution

Processor 2

Synchronous initialization

handler

Kernel

initialization

Initialization

handler

Task execution Processor 3

Asynchronous initialization

handler

Kernel

initialization

Initialization

handler

Task execution

AMP T-Kernel Specification / Ver. 1.00.00

 278 TEF021-S001-01.00.00/en

the specification with the T-Kernel 1.00 Specification.
Entry routines like the following are defined for subsystems and device drivers.

 ER main(INT ac, UB *av[])
 {
 if (ac >= 0) {
 /* Subsystem/device driver start processing */
 } else {
 /* Subsystem/device driver termination processing */
 }
 return ercd;
 }

This entry routine simply performs startup processing or termination processing for a subsystem or device driver and does not
provide any actual service. It must return to its caller as soon as the startup processing or termination processing is performed.
An entry routine must perform its processing as quickly as possible and return to its caller.

An entry routine is called by the task which belongs to the system resource group at the time of normal system startup or
shutdown, and runs in the context of the OS start processing task or termination processing task (protection level 0). In some
OS implementations, it may run as a quasi-task portion. In a system that supports dynamic loading of subsystems and device
drivers, it may be called at other times besides system startup and shutdown.

When there are multiple subsystems and device drivers, each of the entry routine is called one at a time at system startup and
shutdown. In no case are multiple entry routines called by different tasks at the same time. Accordingly, if subsystem or device
driver initialization needs to be performed in a certain order, this order can be maintained by completing all necessary
processing before returning from an entry routine.

The entry routine function name is normally main, but any other name may be used if, for example, main cannot be used
because of linking with the OS.

The methods of registering entry routines with the OS, specifying parameters, and specifying the order in which entry
routines are called are all dependent on the OS implementation.

・Startup processing

ac Number of parameters (. 0)
av Parameters (string)
return code Error

A value of ac>=0 indicates startup processing. After performing the subsystem or device driver initialization, it registers the

subsystem or device driver.
Passing of a negative value (error) as the return code means the startup processing failed. Depending on the OS

implementation, the subsystem or device driver may be deleted from memory, so error must not be returned while registering
subsystem or device driver. The registration must first be removed before returning the error. Allocated resources must also be
released. They are not released automatically.

The parameters ac and av are the same as the parameters passed to the standard C language main() function, with ac
indicating the number of parameters and av indicating a parameter string as an array of ac + 1 pointers. The array termination
(av[ac]) is NULL..

av[0] is the name of the subsystem or device driver. Generally this is the file name of the subsystem or device driver, but the
kind of name in which it is stored is implementation-dependent. It is also possible to have no name (blank string "").

Parameters from av[1] onwards are defined separately for each subsystem and device driver.
After exiting from the entry routine, the character string space specified by av is deleted, so parameters must be saved to a

different location if needed.

・Termination processing
 ac -1
 av NULL
 return code Error

A value of ac < 0 indicates termination processing. After deleting the subsystem or device driver registration, the entry
routine releases allocated resources. If an error occurs during termination processing, the processing must not be aborted but
must be completed to the extent possible. If some of the processing could not be completed normally, an error is passed in the
return code.

The behavior if termination processing is called while requests to the subsystem or device driver are being processed is

AMP T-Kernel Specification / Ver. 1.00.00

 279 TEF021-S001-01.00.00/en

dependent on the subsystem or device driver implementation. Generally, termination processing is called at system shutdown
and requests are not issued during processing. For this reason, ordinary behavior is not guaranteed in the case of requests issued
during termination processing.

AMP T-Kernel Specification / Ver. 1.00.00

 280 TEF021-S001-01.00.00/en

Chapter 7 AMP T-Kernel/DS Functions

 This chapter gives detailed explanations of the functions provided by AMP T-Kernel Debugger Support (AMP T-Kernel/DS).
 AMP T-Kernel/DS provides functions enabling a debugger to reference AMP T-Kernel internal states and run a trace. The
functions provided by AMP T-Kernel/DS are only for debugger use and not for use by applications or other programs.

[General cautions and notes]
・Except where otherwise noted, AMP T-kernel/DS service calls (td_-) can be called from a task independent portion and while
dispatching and interrupts are disabled.
 There may be some limitations, however, imposed by specific implementations.

・When AMP T-Kernel/DS service calls (td_-) are invoked in interrupts disabled state, they are processed without enabling

interrupts. Other OS states likewise remain unchanged during this processing.
 Changes in OS states may occur if a service call is invoked while interrupts or dispatching are enabled, since the OS

continues operating.

・AMP T-Kernel/DS service calls (td_-) cannot be invoked from a lower protection level than that at which T-Kernel/OS system

calls can be invoked (lower than TSVCLimit) (E_OACV).

・Service calls (td_-) of AMP T-Kernel/DS are not applied by the access security function for objects. Therefore, they can be

executed for all objects.

・Error codes such as E_PAR, E_MACV, and E_CTX that always have the possibility of occurring are not described here unless

there is some special reason for doing so.

・Detection of error codes E_PAR, E_MACV, and E_CTX is implementation-dependent; these may not always be detected as

error. For this reason, the service calls must not be invoked in such a way that these errors might occur.

AMP T-Kernel Specification / Ver. 1.00.00

 281 TEF021-S001-01.00.00/en

7.1 Kernel Internal State Reference Functions

 These functions enable a debugger to get T-Kernel internal states. They include functions for getting a list of objects, getting
task precedence, getting the order in which tasks are queued, getting the status of objects, system and task registers, and getting
time.

AMP T-Kernel Specification / Ver. 1.00.00

 282 TEF021-S001-01.00.00/en

[C Language Interface]
 INT ct = td_lst_tsk (ID list[], INT nent) ; /* task */
 INT ct = td_lst_sem (ID list[], INT nent) ; /* semaphore */
 INT ct = td_lst_flg (ID list[], INT nent) ; /* event flag */
 INT ct = td_lst_mbx (ID list[], INT nent) ; /* mailbox */
 INT ct = td_lst_mtx (ID list[], INT nent) ; /* mutex */
 INT ct = td_lst_mbf (ID list[], INT nent) ; /* message buffer */
 INT ct = td_lst_por (ID list[], INT nent) ; /* rendezvous port */
 INT ct = td_lst_mpf (ID list[], INT nent) ; /* fixed-size memory pool */
 INT ct = td_lst_mpl (ID list[], INT nent) ; /* variable-size memory pool */
 INT ct = td_lst_cyc (ID list[], INT nent) ; /* cyclic handler */
 INT ct = td_lst_alm (ID list[], INT nent) ; /* alarm handler */
 INT ct = td_lst_dom (ID list[], INT nent) ; /* Domain */
 INT ct = td_lst_ssy (ID list[], INT nent) ; /* subsystem */

[Parameters]
 ID list[] Location of object ID list
 INT nent Maximum number of list entries to retrieve

[Return Parameters]
 INT ct Number of objects used
 or Error Code

[Description]
 Gets a list of IDs of objects currently being used, and puts up to nent IDs into list. The number of objects used is passed in
the return code. If return code > nent, this means that not all IDs could be retrieved in this system call.

[Items Concerning AMP T-Kernel]
 td_lst_dom for acquiring the list of domain ID's was newly added.

The list of acquired ID's is for the objects of the AMP T-Kernel that issued this call. A list of objects for other processors is
not acquired.

td_lst_tsk, td_lst_sem, td_lst_flg, td_lst_mbx,
td_lst_mtx, td_lst_mbf, td_lst_por, td_lst_mpf,

td_lst_mpl, td_lst_cyc, td_lst_alm, td_lst_dom, td_lst_ssy
Reference Object ID List

AMP T-Kernel Specification / Ver. 1.00.00

 283 TEF021-S001-01.00.00/en

[C Language Interface]
 INT ct = td_rdy_que (PRI pri, ID list[], INT nent) ;

[Parameters]
 PRI pri Task priority
 ID list[] Location of task ID list
 INT nent Maximum number of list entries

[Return Parameters]
 INT ct Number of priority pri tasks in a run state
 or Error Code

[Description]
 Gets a list of IDs of the tasks in a run state (READY state or RUN state) whose task priority is pri, arranged in order from
highest to lowest precedence.
 This function stores in the location designated in list up to nent task IDs, arranged in order of precedence starting from the
highest-precedence task ID at the head of the list.
 The number of tasks in a run state with priority pri is passed in the return code. If return code > nent, this means that not all
task IDs could be retrieved in this call.

[Items Concerning AMP T-Kernel]

The list of acquired task ID's is for the objects of the AMP T-Kernel that issued this call. A list of objects for other processors
is not acquired.

 td_rdy_que
Get Task Precedence

AMP T-Kernel Specification / Ver. 1.00.00

 284 TEF021-S001-01.00.00/en

[C Language Interface]
 INT ct = td_sem_que (ID semid, ID list[], INT nent) ; /* semaphore */
 INT ct = td_flg_que (ID flgid, ID list[], INT nent) ; /* event flag */
 INT ct = td_mbx_que (ID mbxid, ID list[], INT nent) ; /* mailbox */
 INT ct = td_mtx_que (ID mtxid, ID list[], INT nent) ; /* mutex */
 INT ct = td_smbf_que (ID mbfid, ID list[], INT nent) ; /* message buffer send */
 INT ct = td_rmbf_que (ID mbfid, ID list[], INT nent) ; /* message buffer receive */
 INT ct = td_cal_que (ID porid, ID list[], INT nent) ; /* rendezvous call */
 INT ct = td_acp_que (ID porid, ID list[], INT nent) ; /* rendezvous accept */
 INT ct = td_mpf_que (ID mpfid, ID list[], INT nent) ; /* fixed-size memory pool */
 INT ct = td_mpl_que (ID mplid, ID list[], INT nent) ; /* variable-size memory pool */

[Parameters]
 ID ～ID Object ID
 ID list[] Location of waiting task IDs
 INT nent Maximum number of list entries

[Return Parameters]
 INT ct Number of waiting tasks
 or Error Code

[Error Codes]
 E_ID Bad identifier
 E_NOEXS Object does not exist

[Description]
 Gets a list of IDs of tasks waiting for the object designated in --id. This function stores in the location designated in list up to
nent task IDs, arranged in the order in which tasks are queued, starting from the first task in the queue. The number of queued
tasks is passed in the return code. If return code > nent, this means that not all task IDs could be retrieved in this system call.

[Items Concerning AMP T-Kernel]

The task ID's of other processors is included in the list of acquired task ID's.

 td_sem_que, td_flg_que, td_mbx_que, td_mtx_que,
 td_smbf_que, td_rmbf_que, td_cal_que, td_acp_que,

 td_mpf_que, td_mpl_que
Reference Que

AMP T-Kernel Specification / Ver. 1.00.00

 285 TEF021-S001-01.00.00/en

Reference Task State td_ref_tsk

[C Language Interface]
 ER ercd = td_ref_tsk (ID tskid, TD_RTSK *rtsk);

[Parameters]
 ID tskid Task ID (TSK_SELF can be specified)
 TD_RTSK rtsk Address of Packet for returning the task state

[Return Parameters]
 ER ercd Error code

[Error Codes]
 E_OK Normal completion
 E_ID Bad identifier
 E_NOEXS Object does not exist

[Description]
 Gets the state of the task designated in tskid. This function is similar to tk_ref_tsk, with the task start address and stack
information added to the state information obtained.

 typedef struct td_rtsk {
 VP exinf; /* extended information */
 PRI tskpri; /* current priority */

PRI tskbpri; /* base priority */
UINT tskstat; /* task state */
UINT tskwait; /* wait factor */
ID wid; /* waiting object ID */
INT wupcnt; /* queued wakeup request count */
INT suscnt; /* SUSPEND request nesting count */
RELTIM slicetime; /* maximum continuous run time (ms) */
UINT waitmask; /* masked wait factors */
UINT texmask; /* allowed task exceptions */
UINT tskevent; /* raised task event */
FP task; /* task start address */
INT stksz; /* user stack size (in bytes) */
INT sstksz; /* system stack size (in bytes) */
VP istack; /* user stack pointer initial value */
VP isstack; /* system stack pointer initial value */

 } TD_RTSK;

 The stack area extends from the stack pointer initial value toward the low addresses for the number of bytes designated as the
stack size.

istack - stksz <= user stack area ＜ istack
isstack - sstksz <= system stack area ＜ isstack

 Note that the stack pointer initial value (istack, isstack) is not the same as its current position. The stack area may be used
even before a task is started. Calling td_get_reg gets the correct value of stack pointer.

[Items Concerning AMP T-Kernel]

This call can be used for the tasks of AMP T-Kernels of other processors. In this case, information on the acquired task start
address and stack is information for other processors.

AMP T-Kernel Specification / Ver. 1.00.00

 286 TEF021-S001-01.00.00/en

[C Language Interface]
 ER ercd = td_ref_sem (ID semid, TD_RSEM *rsem); /* semaphore */
 ER ercd = td_ref_flg (ID flgid, TD_RFLG *rflg); /* event flag */
 ER ercd = td_ref_mbx (ID mbxid, TD_RMBX *rmbx); /* mailbox */
 ER ercd = td_ref_mtx (ID mtxid, TD_RMTX *rmtx); /* mutex */
 ER ercd = td_ref_mbf (ID mbfid, TD_RMBF *rmbf); /* message buffer */
 ER ercd = td_ref_por (ID porid, TD_RPOR *rpor); /* rendezvous port */
 ER ercd = td_ref_mpf (ID mpfid, TD_RMPF *rmpf); /* fixed-size memory */
 ER ercd = td_ref_mpl (ID mplid, TD_RMPL *rmpl); /* variable-size memory */
 ER ercd = td_ref_cyc (ID cycid, TD_RCYC *rcyc); /* cyclic handler */
 ER ercd = td_ref_alm (ID almid, TD_RALM *ralm); /* alarm handler */
 ER ercd = td_ref_dom (ID domid, TD_RDOM *rdom); /* Domain */
 ER ercd = td_ref_ssy (ID ssid, TD_RSSY *rssy); /* subsystem */

[Parameters]
 ID ～id Object ID
 TD_R～ r～ Address of status information packet

[Return Parameters]
 ER ercd Error code

[Error Codes]
 E_OK Normal completion
 E_ID Bad identifier
 E_NOEXS Object does not exist

[Description]
 Gets the status of an object. This is similar to tk_ref_-.
 The return packets are defined as follows.

/*
 * Semaphore status information td_ref_sem
 */
typedef struct td_rsem {
 VP exinf; /* extended information */
 ID wtsk; /* waiting task ID */
 INT semcnt; /* current semaphore count */
} TD_RSEM;

/*
 * Event flag status information td_ref_flg
 */
typedef struct td_rflg {
 VP exinf; /* extended information */
 ID wtsk; /* waiting task ID */
 UINTflgptn; /* current event flag pattern */
} TD_RFLG;

/*
 * Mailbox status information td_ref_mbx
 */
typedef struct td_rmbx {
 VP exinf; /* extended information */

td_ref_sem , td_ref_flg, td_ref_mbx, td_ref_mtx,
td_ref_mbf, td_ref_por, td_ref_mpf, td_ref_mpl,

td_ref_cyc, td_ref_alm, td_ref_ssy
Reference Queue

AMP T-Kernel Specification / Ver. 1.00.00

 287 TEF021-S001-01.00.00/en

 ID wtsk; /* waiting task ID */
 T_MSG *pk_msg; /* next message to be received */
} TD_RMBX;

/*
 * Mutex status information td_ref_mtx
 */
typedef struct td_rmtx {
 VP exinf; /* extended information */
 ID htsk; /* locking task ID */
 ID wtsk; /* ID of task waiting for lock */
} TD_RMTX;

/*
 * Message buffer status information td_ref_mbf
 */
typedef struct td_rmbf {
 VP exinf; /* extended information */
 ID wtsk; /* receive waiting task ID */
 ID stsk; /* send waiting task ID */
 INT msgsz; /* size (in bytes) of next message to be received */
 INT frbufsz; /* free buffer size (in bytes) */
 INT maxmsz; /* maximum message length (in bytes) */
} TD_RMBF;

/*
 * Rendezvous port status information td_ref_por
 */
typedef struct td_rpor {
 VP exinf; /* extended information */
 ID wtsk; /* call waiting task ID */
 ID atsk; /* acceptance waiting task ID */
 INT maxcmsz; /* call message maximum length (in bytes) */
 INT maxrmsz; /* accept message maximum length (in bytes) */
} TD_RPOR;

/*
 * Fixed-size memory pool status information td_ref_mpf
 */
typedef struct td_rmpf {
 VP exinf; /* extended information */
 ID wtsk; /* waiting task ID */
 INT frbcnt; /* free block count */
} TD_RMPF;

/*
 * Variable-size memory pool status information td_ref_mpl
 */
typedef struct td_rmpl {
 VP exinf; /* extended information */
 ID wtsk; /* waiting task ID */
 INT frsz; /* total free space (in bytes) */
 INT maxsz; /* maximum contiguous free space (in bytes) */
} TD_RMPL;

/*
 * Cyclic handler status information td_ref_cyc
 */
typedef struct td_rcyc {
 VP exinf; /* extended information */

AMP T-Kernel Specification / Ver. 1.00.00

 288 TEF021-S001-01.00.00/en

 RELTIM lfttim; /* time remaining until next handler start */
 UINTcycstat;/* cyclic handler status */
} TD_RCYC;

/*
 * Alarm handler status information td_ref_alm
 */
typedef struct td_ralm {
 VP exinf; /* extended information */
 RELTIM lfttim; /* time remaining until next handler start */
 UINTalmstat; /* alarm handler status */
} TD_RALM;

/*
 * Domain status information td_ref_dom
 */
typedef struct td_rdom {

 VP exinf; /* Extended information */
 ID domid; /* Domain ID to which the domain belongs */
 UINT objcnt; /* Object count belonging to the domain */

} TD_RDOM;

/*
 * Subsystem status information td_ref_ssy
 */
typedef struct td_rssy {
 PRI ssypri; /* subsystem priority */
 INT resblksz; /* resource control block size (in bytes) */
} TD_RSSY;

[Items Concerning AMP T-Kernel]
 td_ref_dom that refers to the state of the domain was newly added. This call can be used between processors.

AMP T-Kernel Specification / Ver. 1.00.00

 289 TEF021-S001-01.00.00/en

Reference Task Exception Status td_ref_tex

[C Language Interface]
 ER ercd = td_ref_tex (ID tskid, TD_RTEX *pk_rtex);

[Parameters]
 ID tskid Task ID (TSK_SELF can be designated)
 TD_RTEX* pk_rtex Packet address for returning the task exception status

[Return Parameters]
 ERercd Error code
 pk_rtex detail
 UINT pendtex Raised task exceptions
 UINT texmask Allowed task exceptions

[Error Codes]
 E_OK Normal completion
 E_ID Bad identifier
 E_NOEXS Object does not exist

E_DOMAIN Task for another AMP T-Kernel domain was specified

[Description]
 Gets the task exception status. This is similar to tk_ref_tex.

[Items Concerning AMP T-Kernel]

This call cannot be used between processors.
There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 290 TEF021-S001-01.00.00/en

Reference Task Statistics td_inf_tsk

[C Language Interface]
 ER ercd = td_inf_tsk (ID tskid, TD_ITSK *pk_itsk, BOOL clr);

[Parameters]
 ID tskid Task ID (TSK_SELF can be designated)
 TD_ITSK* pk_itsk Address of packet for returning task statistics
 BOOL clr Task statistics clear flag

[Return Parameters]
 ER ercd Error code

 pk_itsk detail:
 RELTIM stime Cumulative system-level run time (ms)
 RELTIM utime Cumulative user-level run time (ms)

[Error Codes]
 E_OK Normal completion
 E_ID ID number is invalid
 E_NOEXS Object does not exist

[Description]
 Gets task statistics. This is similar to tk_inf_tsk. When clr = TRUE (=? 0), accumulated information is reset (cleared to 0)
after getting the statistics.

[Items Concerning AMP T-Kernel]

This call can be used between processors.
There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 291 TEF021-S001-01.00.00/en

Get Task register td_get_reg

[C Language Interface]
 ER ercd = td_get_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs) ;

[Parameters]
 ID tskid Task ID (TSK_SELF cannot be designated)

[Return Parameters]
 T_REGS pk_regs General registers
 T_EIT pk_eit Registers saved when exception is raised
 T_CREGS pk_cregs Control registers
 ER ercd Error code

 The contents of T_REGS, T_EIT, and T_CREGS are defined for each CPU and implementation.

[Error Codes]
 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invalid object state (issued for current RUN state task)

 E_DOMAIN Task for another AMP T-Kernel domain was specified

[Description]
 Gets the register values of the task designated in tskid. This is similar to tk_get_reg.
 Registers cannot be referenced for the task currently in RUN state. Except when a task-independent portion is executing, the
current RUN state task is the invoking task.
 When NULL is designated for regs, eit, or cregs, the corresponding register is not referenced.
 The contents of T_REGS, T_EIT, and T_CREGS are implementation-dependent.

[Items Concerning AMP T-Kernel]

This call cannot be used between processors.
There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 292 TEF021-S001-01.00.00/en

Set task register td_set_reg

[C Language Interface]
 ER ercd = td_set_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs) ;

[Parameters]

ID tskid Task ID (TSK_SELF cannot be specified)
T_REGS pk_regs General registers
T_EIT pk_eit Registers saved when exception is raised
T_CREGS pk_cregs Control registers
The contents of T_REGS, T_EIT, and T_CREGS are defined for each CPU and implementation.

[Return Parameters]
 ER ercd Error code

[Error Codes]
 E_OK Normal completion
 E_ID Invalid ID number (tskid is invalid or cannot be used)
 E_NOEXS Object does not exist (the task specified in tskid does not exist)
 E_OBJ Invalid object state (issued for current RUN state task)

 E_DOMAIN Task for another AMP T-Kernel domain was specified

[Description]
 Sets registers of the task designated in tskid. This is similar to tk_set_reg.
 Registers cannot be set for the task currently in RUN state. Except when a task-independent portion is executing, the current
RUN state task is the invoking task.
 When NULL is designated for regs, eit, or cregs, the corresponding register is not set.
 The contents of T_REGS, T_EIT, and T_CREGS are implementation-dependent.

[Items Concerning AMP T-Kernel]

This call cannot be used between processors.
There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 293 TEF021-S001-01.00.00/en

Reference System Status td_ref_sys

[C Language Interface]
 ER ercd = td_ref_sys (TD_RSYS *pk_rsys) ;

[Parameters]
 TD_RSYS* pk_rsys Packet to Refer System Address of packet for returning status information

[Return Parameters]
 ER ercd Error code

 pk_rsys detail:
 INT sysstat System status
 ID runtskid ID of current RUN state task
 ID schedtskid ID of task scheduled to go to RUN state

[Error Codes]
 E_OK Normal completion

[Description]
 Gets the system status. This is similar to tk_ref_sys.

[Items Concerning AMP T-Kernel]
 In AMP T-Kernel, a RUN state exists for each respective processor. Therefore, information on the processor that issued this
call is returned. Information on other processors cannot be acquired.

AMP T-Kernel Specification / Ver. 1.00.00

 294 TEF021-S001-01.00.00/en

Get System Time td_get_tim

[C Language Interface]
 ER ercd = td_get_tim (SYSTIM *tim, UNIT *ofs) ;

[Parameters]

SYSTIM* tim Address of packet for returning current time (ms)
UNIT* ofs Location for returning elapsed time from tim (nanoseconds)

[Return Parameters]

ER ercd Error code

tim_detail Current time (ms)
ofs_detail Elapsed time from tim (nanoseconds)

[Error Codes]

E_OK Normal completion

[Description]
 Gets the current time as total elapsed milliseconds since 0:00:00 (GMT), January 1, 1985. The value returned in tim is the
same as that obtained by tk_get_tim. tim is expressed in the resolution of timer interrupt intervals (cycles), but even more
precise time information is obtained in ofs as the time elapsed from tim in nanoseconds. The resolution of ofs is
implementation-dependent, but is generally the timer hardware resolution.

 Since tim is time counted based on timer interrupts, in some cases time is not refreshed, when a timer interrupt cycle arrives
while interrupts are disabled and the timer interrupt handler is not started (is delayed). In such cases, the time as updated by the
previous timer interrupt is returned in tim, and the time elapsed from the previous timer interrupt is returned in ofs. Accordingly,
in some cases, ofs will be a larger value than the timer interrupt cycle. The length of elapsed time that can be measured by ofs
depends on the hardware, but it should preferably be able to measure at least up to twice the timer interrupt cycle (0 <= ofs <
twice the timer interrupt cycle).

 Note that the time returned in tim and ofs is the time at some point between the calling of and return from td_get_tim. It is
neither the time at which td_get_tim was called nor the time of return from td_get_tim. In order to obtain more accurate
information, this function should be called in interrupts disabled state.

[Items Concerning AMP T-Kernel]

There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 295 TEF021-S001-01.00.00/en

Get System Operating Time td_get_otm

[C Language Interface]
 ER ercd = td_get_otm (SYSTIM *tim, UINT *ofs) ;

[Parameters]

SYSTIM* tim Address of packet for returning operating time (ms)
UNIT* ofs Location for returning elapsed time from tim (nanoseconds)

[Return Parameters]

ER ercd Error code
tim_detail:

 Operating time (ms)
ofs_detail

 Elapsed time from tim (nanoseconds)

[Error Codes]

E_OK Normal completion

[Description]
 Gets the system operating time (uptime, as elapsed milliseconds since the system was booted). The value returned in tim is
the same as that obtained by tk_get_otm. tim is expressed in the resolution of timer interrupt intervals (cycles), but even more
precise time information is obtained in ofs as the time elapsed from tim in nanoseconds. The resolution of ofs is
implementation-dependent, but is generally the timer hardware resolution.

 Since tim is time counted based on timer interrupts, in some cases time is not refreshed, when a timer interrupt cycle arrives
while interrupts are disabled and the timer interrupt handler is not started (is delayed). In such cases, the time as updated by the
previous timer interrupt is returned in tim, and the time elapsed from the previous timer interrupt is returned in ofs. Accordingly,
in some cases, ofs will be a larger value than the timer interrupt cycle. The length of elapsed time that can be measured by ofs
depends on the hardware, but it should preferably be able to measure at least up to twice the timer interrupt cycle (0 <= ofs <
twice the timer interrupt cycle).

 Note that the time returned in tim and ofs is the time at some point between the calling of and return from td_get_otm. It is
neither the time at which td_get_otm was called nor the time of return from td_get_otm. In order to obtain more accurate
information, this function should be called in interrupts disabled state.

[Items Concerning AMP T-Kernel]

There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 296 TEF021-S001-01.00.00/en

Refer to DS Object Name td_ref_dsname

[C Language Interface]
 ER ercd = td_ref_dsname(UINT type, ID id, UB *dsname);

[Parameters]

UINT type object type
ID id object ID
UB *dsname address to return an object name

[Return Parameters]

ER ercd Error code
dsname detail: the object name, set at object creation or by td_set_dsname()

[Error Codes]

E_OK Normal completion
E_PAR Invalid object type

 E_NOEXS Object does not exist
 E_OBJ The object name is not used

[Description]
 Refer to object name (dsname) set during object creation. The object that becomes the target is specified by object type (type)
and object ID (id).
 Object types (type) are as follows:

TN_TSK 0x01 /* task */
TN_SEM 0x02 /* semaphore */
TN_FLG 0x03 /* event flag */
TN_MBX 0x04 /* mail box */
TN_MBF 0x05 /* message buffer */
TN_POR 0x06 /* rendezvous port */
TN_MTX 0x07 /* mutex */
TN_MPL 0x08 /* variable-size memory pool */
TN_MPF 0x09 /* fixed-size memory pool */
TN_CYC 0x0a /* cyclic handler */
TN_ALM 0x0b /* alarm handler */
TN_DOM 0x0c /* Domain */

[Items Concerning AMP T-Kernel]
 In the T-Kernel 1.00 Specification, the DS object name is used for debugging but in AMP T-Kernel this was abolished and
the object name is used. Although the DS object name is permitted for use only in debugging, and overlapping of the name is
permitted, the object name is used in functions such as retrieving objects and overlapping of the name is not permitted in the
same type of object within the same domain.
 In this call, the object name is used for the above change instead of the DS object name. It can be said that there is no
difference for this call which acquires the name.

AMP T-Kernel Specification / Ver. 1.00.00

 297 TEF021-S001-01.00.00/en

Set an Object Name td_set_dsname

[C Language Interface]
 ER ercd = td_set_dsname(UINT type, ID id, UB *dsname);

[Parameters]

UINT type object type
ID id object ID
UB *dsname The object name to be set

[Return Parameters]

ERercd Error code

[Error Codes]

E_OK Normal completion
E_PAR Invalid object type

 E_NOEXS Object does not exist
 E_OBJ The object name is not used
 E_ONAME Specified object name has already been used

[Description]
 Update DS object name (dsname), which is set at object creation. The object is specified by object type (type) and object ID
(id).）
 Object types (type) are as same as that of td_ref_dsname().
 The DS object name needs to satisfy the following conditions but character code range is not checked by T-Kernel. DS object
name is valid if TA_ONAME is set as object attribute. td_set_dsname() returns E_OBJ error if TA_ONAME attribute is not
specified.
 The object name is a character string of 8 characters or less. 1 character is 1 byte long and when it is not equal to 8 bytes, 0's
are used to fill the remaining bytes. The characters that can be used are a-z, A-Z, and 0-9 but a check of character codes is not
done in AMP T-Kernel.
 The object name does not allow repetition in the same type of object in the same domain. When there is an overlap,
E_ONAME is returned.

[Items Concerning AMP T-Kernel]
 In the T-Kernel 1.00 Specification, the DS object name is used for debugging but in AMP T-Kernel this is abolished and the
object name is used. Although the DS object name is only permitted for use in debugging and the overlapping of names was
permitted, the object name is used in the functions such as retrieving objects, etc. and the overlapping of names is not permitted
in the same type of object in the same domain.
 In this call, the object name is used for the above change instead of the DS object name. Therefore, the point that the
overlapping of names is checked is different from the T-Kernel 1.00 Specification.
 Moreover, in the T-Kernel 1.00 Specification the DS debugging name was used only for debugging but the object name also
is used in the application. It must be noted that there is an effect on the application due to the change of object names.

AMP T-Kernel Specification / Ver. 1.00.00

 298 TEF021-S001-01.00.00/en

 td_fnd_dom, td_fnd_tsk, td_fnd_sem,td_fnd_flg,
 td_fnd_mbx, td_fnd_mtx, td_fnd_mbf, td_fnd_por,
 td_fnd_mpf, td_fnd_mpl, td_fnd_alm,td_fnd_cyc
Retrieval of Each Object ID

td_fnd_xxx: Find ObjectID

[C Language Interface]

ID domid = td_fnd_dom (ID domid, UB *oname) ; /* Domain */
ID tskid = td_fnd_tsk (ID domid, UB *oname) ; /* Task */
ID semid = td_fnd_sem (ID domid, UB *oname) ; /* Semaphore */
ID flgid = td_fnd_flg (ID domid, UB *oname) ; /* Event flag */
ID mbxid = td_fnd_mbx (ID domid, UB *oname) ; /* Mailbox */
ID mtxid = td_fnd_mtx (ID domid, UB *oname) ; /* Mutex */
ID mbfid = td_fnd_mbf (ID domid, UB *oname) ; /* Message buffer */
ID porid = td_fnd_por (ID domid, UB *oname) ; /* Rendezvous port */
ID mpfid = td_fnd_mpf (ID domid, UB *oname) ; /* Fixed size memory pool */
ID mplid = td_fnd_mpl (ID domid, UB *oname) ; /* Variable-size memory pool */
ID almid = td_fnd_alm (ID domid, UB *oname) ; /* Alarm handler */
ID cycid = td_fnd_cyc (ID domid, UB *oname) ; /* Cyclic handler */

[Parameters]

ID domid Domain ID
UB* oname Object name

[Return Parameters]

ID ～id Specified object ID
 or error code

[Error Codes]

E_ID Invalid ID number (domid is invalid or cannot be used)
E_NOEXS Object does not exist (object of oname does not exist)
E_PAR Parameter error (oname is invalid or cannot be used)

[Description]
Retrieves the object belonging to the domain shown by domid by using the object name, and acquires the object ID. It is the

same as tk_fnd_xxx().
In oname, the object name of the object to be retrieved is specified.
When the object specified by domid and oname is discovered, the ID of that object is returned. When the corresponding

object does not exist, E_NOEXS is returned.
Only accessible objects can be retrieved. The retrieval of objects that cannot be accessed due to access protection does not

succeed, and E_NOEXS is returned.

[Items Concerning AMP T-Kernel]
This call does not exist in the T-Kernel 1.00 Specification.
This call can be used between processors.

AMP T-Kernel Specification / Ver. 1.00.00

 299 TEF021-S001-01.00.00/en

 td_dmi_dom, td_dmi_tsk, td_dmi_sem,td_dmi_flg,
 td_dmi_mbx, td_dmi_mtx, td_dmi_mbf, td_dmi_por,
 td_dmi_mpf, td_dmi_mpl, td_dmi_alm, td_dmi_cyc
Get Domain Information for Each Object

td_dmi_xxx: Get Domain Information

[C Language Interface]

ER ercd = td_dmi_dom (ID domid, TD_DMI *pk_dmi) ; /* Domain */
ER ercd = td_dmi_tsk (ID tskid, TD_DMI *pk_dmi) ; /* Task */
ER ercd = td_dmi_sem (ID semid, TD_DMI *pk_dmi) ; /* Semaphore */
ER ercd = td_dmi_flg (ID flgid, TD_DMI *pk_dmi) ; /* Event flag */
ER ercd = td_dmi_mbx (ID mbxid, TD_DMI *pk_dmi) ; /* Mailbox */
ER ercd = td_dmi_mtx (ID mtxid, TD_DMI *pk_dmi) ; /* Mutex */
ER ercd = td_dmi_mbf (ID mbfid, TD_DMI *pk_dmi) ; /* Message buffer */
ER ercd = td_dmi_por (ID porid, TD_DMI *pk_dmi) ; /* Rendezvous port */
ER ercd = td_dmi_mpf (ID mpfid, TD_DMI *pk_dmi) ; /* Fixed size memory pool */
ER ercd = td_dmi_mpl (ID mplid, TD_DMI *pk_dmi) ; /* Variable-size memory pool */
ER ercd = td_dmi_alm (ID almid, TD_DMI *pk_dmi) ; /* Alarm handler */
ER ercd = td_dmi_cyc (ID cycid, TD_DMI *pk_dmi) ; /* Cyclic handler */

[Parameters]

ID ～id ObjectID Object ID
TD_DMI* pk_dmi Packet to Domain Information Packet address where domain information is returned

[Return Parameters]

ER ercd ErrorCode Error code

 pk_dmi details
 ATR domatr DomainAttribute Domain attribute
 ID domid DomainID ID of the domain to which it belongs
 ID kdmid Kernel Domain ID Kernel domain ID to which it belongs
 UB oname[8] Object name Object name

[Error Codes]

E_ID Invalid ID number (~id is invalid or cannot be used)
E_NOEXS Object does not exist (object of ~id does not exist)
E_PAR Parameter error (Value for which the packet address for the return parameter cannot be used)

[Description]
Gets information related to the domain of the target object displayed by ~id. This is similar to tk_dmi_xxx().
 The attribute related to the domain of the target object is set in domatr. domatr takes the following values.

domatr := [TA_ONAME]|(TA_PRIVATE || TA_PROTECTED || TA_PUBLIC)

 TA_ONAME Object name is specified
 TA_PROTECTED Access protection attribute is protect
 TA_PRIVATE Access protection attribute is private
 TA_PUBLIC Access protection attribute is public

The ID number of the domain to which the target object belongs is set in domid.
The ID number of the kernel domain to which the target object belongs is set in kdmid.
The object name of the target object is set in oname. When the object name is not set to the target object, all contents are 0.
Access protection is applied to this system call.

AMP T-Kernel Specification / Ver. 1.00.00

 300 TEF021-S001-01.00.00/en

[Items Concerning AMP T-Kernel]

This call does not exist in the T-Kernel 1.00 Specification.
This call can be used between processors.

AMP T-Kernel Specification / Ver. 1.00.00

 301 TEF021-S001-01.00.00/en

7.2 Trace Functions

 These functions enable a debugger to trace program execution. Execution trace is performed by setting hook routines.

・Return from a hook routine must be done after states have returned to where they were when the hook routine was called.
Restoring of registers, however, can be done in accordance with the register saving rules of C language functions.

・In a hook routine, limitations on states must not be modified to make them less restrictive than when the routine was called.
For example, if the hook routine was called during interrupts disabled state, interrupts must not be enabled.

・A hook routine was called at protection level 0.

・A hook routine inherits the stack at the time of the hook. Too much stack use may therefore cause a stack overflow. The extent
to which the stack can be used is not definite, since it differs with the situation at the time of the hook. Switching to a separate
stack in the hook routine would be safer.

AMP T-Kernel Specification / Ver. 1.00.00

 302 TEF021-S001-01.00.00/en

Define System Call/Extended SVC Hook Routine td_hoc_svc

[C Language Interface]
 ER ercd = td_hok_svc (TD_HSVC *hsvc) ;

[Parameters]

TD_HSVC hsvc Hook routine definition information

 hsvc_detail:

FP enter Hook routine before calling the service call
FP leave Hook routine after calling the service call

[Return Parameters]

ER ercd Error code

[Description]

 Sets hook routines before and after the issuing of a system call or extended SVC. Setting NULL in hsvc cancels a hook
routine.

 The objects of a trace are T-Kernel/OS system calls (tk_-) and extended SVC. Depending on the implementation, generally
tk_ret_int is not the object of a trace.

 T-Kernel/DS service calls (td_-) are not objects of a trace.

 A hook routine is called in the context from which the system call or extended SVC was called. For example, the invoking
task in a hook routine is the same as the task that invoked the system call or extended SVC.

 Since task dispatching and interrupts can occur inside system call processing, enter() and leave() are not necessarily called in
succession as a pair in every case. If a system call is one that does not return, leave() will not be called.

VP enter(FN fncd, TD_CALINF *calinf, ...)

fncd Function code
< 0 System call
>= 0 Extended SVC
calinf Caller information
 ... Parameters (variable number)
return code Any value to be passed to leave()

typedef struct td_calinf {

As information for determining the address from which a system call or extended SVC was called, it is preferable to
include information for performing a stack back-trace. The contents are implementation-dependent but generally consist of
register values such as stack pointer and program counter.
} TD_CALINF;

 This is called right before a system call or extended SVC.

 The value passed in the return code is passed on to the corresponding leave(). This makes it possible to confirm the pairing of
enter() and leave() calls or to pass any other information.

exinf = enter(fncd, &calinf, ...)
ret = system call or extended SVC execution
leave(fncd , ret, exinf)

・System call:

 The parameters are the same as the system call parameters.

AMP T-Kernel Specification / Ver. 1.00.00

 303 TEF021-S001-01.00.00/en

 Example: For system call tk_wai_sem(ID semid, INT cnt, TMO tmout)
enter(TFN_WAI_SEM, &calinf, semid, cnt, tmout)

・Extended SVC:

 Extended SVC: The parameters are as in the packet passed to the extended SVC handler.
 fncd is the same as that passed to the extended SVC handler.

enter(FN fncd, TD_CALINF *calinf, VP pk_para)

void leave(FN fncd, INT ret, VP exinf)

fncd Function code
ret Return code of the system call or extended SVC
exinf Any value returned by enter()

 This is called right after returning from a system call or extended SVC.

 When a hook routine is set after a system call or extended SVC is called (while the system call or extended SVC is
executing), in some cases, only leave()may be called without calling enter(). In such a case, NULL is passed in exinf.
 If, on the other hand, a hook routine is canceled after a system call or extended SVC is called, there may be cases when
enter() is called but not leave().

[Items Concerning AMP T-Kernel]

There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 304 TEF021-S001-01.00.00/en

Define Task Dispatch Hook Routine td_hoc_dsp

[C Language Interface]
 ER ercd = td_hok_dsp (TD_HDSP *hdsp) ;

[Parameters]

TD_HDSP hdsp Hook routine definition information

 hdsp_detail:

FP exec Hook routine when execution starts
FP stop Hook routine when execution stops

[Return Parameters]

ER ercd Error code

[Description]
 Sets hook routines in the task dispatcher. A hook routine is canceled by setting NULL in hdsp.

 The hook routines are called in dispatch disabled state. The hook routines must not invoke T-Kernel/OS system calls (tk_-) or
extended SVC. T-Kernel/DS service calls (td_-) may be invoked.

void exec(ID tskid, INT lsid)

tskid Task ID of the started or resumed task
lsid Logical ID of the task designated in tskid

 This is called when the designated task starts execution or resumes. At the time exec() is called, the task designated in tskid is
already in RUN state and logical space has been switched. However, execution of the tskid task program code occurs after the
return from exec().

void stop(ID tskid, INT lsid, UINT tskstat)

tskid Task ID of the task stopping execution
lsid Logical ID of the task designated in tskid
tskstat State of the task designated in tskid

 This is called when the designated task stops execution. tskstat indicates the task state after stopping as one of the following
states.

TTS_RDY READY state
TTS_WAI WAIT state
TTS_SUS SUSPEND state
TTS_WAS WAIT-SUSPEND state
TTS_DMT DORMANT state
0 NON-EXISTENT state

 At the time stop() is called, the task designated in tskid has already entered the state indicated in tskstat. The logical space is
indeterminate.

[Items Concerning AMP T-Kernel]

There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 305 TEF021-S001-01.00.00/en

Define Interrupt Handler Hook Routine td_hoc_int

[C Language Interface]
 ER ercd = td_hok_int (TD_HINT *hint) ;

[Parameters]

TD_HINT hint Hook routine definition information

 hint detail:

FP enter Hook routine before calling the handler
FP leave Hook routine after calling the handler

[Return Parameters]

ER ercd Error code

[Description]
 Sets hook routines before and after an interrupt handler is called. Hook routine setting cannot be done independently for
different exception or interrupt factors. One pair of hook routines is set in common for all exception and interrupt factors.

 Setting hint to NULL cancels the hook routines.

 The hook routines are called as task-independent portion (part of the interrupt handler). Accordingly, the hook routines can
call only those system calls that can be invoked from a task-independent portion.

 Note that hook routines can be set only for interrupt handlers defined by tk_def_int with the TA_HLNG attribute. A
TA_ASM attribute interrupt handler cannot be hooked by a hook routine. Hooking of a TA_ASM attribute interrupt handler is
possible only by directly manipulating the exception/interrupt vector table. The actual methods are implementation-dependent.

void enter(UINT dintno)
void leave(UINT dintno)

dintno Interrupt definition number

 The parameters passed to enter() and leave() are the same as those passed to the exception/interrupt handler. Depending on
the implementation, information other than dintno may also be passed.

A hook routine is called as follows from a high-level language support routine.

enter(dintno);
inthdr(dintno); /* exception/interrupt handler */
leave(dintno);

 enter() is called in interrupts disabled state, and interrupts must not be enabled. Since leave() assumes the status on return
from inthdr(), the interrupts disabled or enabled status is indeterminate.
 enter() can obtain only the same information as that obtainable by inthdr(). Information that cannot be obtained by inthdr()
cannot be obtained by enter(). The information that can be obtained by enter() and inthdr() is guaranteed by the specification to
include dintno, but other information is implementation-dependent. Note that since interrupts disabled state and other states
may change while leave() is running, leave() does not necessarily obtain the same information as that obtained by enter() or
inthdr().

[Items Concerning AMP T-Kernel]

There are no differences with the T-Kernel 1.00 Specification.

AMP T-Kernel Specification / Ver. 1.00.00

 306 TEF021-S001-01.00.00/en

Chapter 8 Reference

8.1 List of Error Codes

_____ Normal Completion Error Class (0) ___

E_OK 0 Normal completion

_____ Internal Error Class (5 to 8) __

E_SYS ERCD(-5, 0) System error

An error of unknown cause affecting the system as a whole.

E_NOCOP ERCD(-6, 0) The specified co-processor cannot be used
This error code is returned when the specified co-processor is not installed in the currently running hardware, or abnormal
co-processor operation was detected.

_____ Unsupported Error Class (9 to 16) __

E_NOSPT ERCD(-9, 0) Unsupported function

When some system call functions are not supported and such a function was specified, error code E_RSATR or
E_NOSPTS is returned. If E_RSATR does not apply, error code E_NOSPT is returned.

 E_RSFN ERCD(-10, 0) Reserved function code number

This error code is returned when it is attempted to execute a system call specifying a reserved function code (undefined
function code), and also when it is attempted to execute an undefined extended SVC handler.

E_RSATR ERCD(-11, 0) Reserved attribute

This error code is returned when an undefined or unsupported object attribute is specified.
Checking for this error may be omitted if system-dependent optimization is implemented.

_____ Parameter Error Class (17 to 24) ___

E_PAR ERCD(-17, 0) Parameter error

Checking for this error may be omitted if system-dependent optimization is implemented.

E_ID ERCD（-18, 0） Invalid ID number
E_ID is an error that occurs only for objects having an ID number. Error code E_PAR is returned when a static error is
detected in the parameter, such as reserved number or out of range for parameters such as interrupt definition numbers.

_____ Call Context Error Class (25 to 32) __

E_CTX ERCD(-25, 0) Context error

This error indicates that the specified system call cannot be issued in the current context (task portion/task-independent
portion or handler RUN state).
This error must be issued whenever there is a meaningful context error in issuing a system call, such as calling from a
task-independent portion a system call that may put the invoking task in WAIT state. Due to implementation limitations,
there may be other system calls that when called from a given context (such as an interrupt handler) will cause this error to
be returned.

E_MACV ERCD(-26, 0) Memory cannot be accessed; memory access privilege error

Error detection is implementation-dependent.

E_OACV ERCD(-27, 0) Objet access privilege error
This error code is returned when a user task tries to manipulate a system object.
The definition of system objects and error detection are implementation-dependent.

AMP T-Kernel Specification / Ver. 1.00.00

 307 TEF021-S001-01.00.00/en

E_ILUSE ERCD(-28, 0) System call illegal use

_____ Resource Constraint Error Class (33 to 40) __

E_NOMEM ERCD(-33, 0) Insufficient memory

This error code is returned when there is insufficient memory (no memory) for allocating an object control block space,
user stack space, memory pool space, message buffer space, etc.

E_LIMIT ERCD(-34, 0) System limit exceeded

 This error code is returned when it is attempted to create more of an object than the system allows.

_____ Object State Error Class (41 to 48) ___

E_OBJ ERCD(-41, 0) Invalid object state

E_NOEXS ERCD(-42, 0) Object does not exist

E_QOVR ERCD(-43, 0) Queuing or nesting overflow

_____ Wait Error Class (49 to 56) ___

E_RLWAI ERCD(-49, 0) WAIT state released

E_TMOUT ERCD(-50, 0) Polling failed or timeout

E_DLT ERCD(-51, 0) The object being waited for was deleted

E_DISWAI ERCD(-52, 0) Wait released due to disabled state

_____ Device Error Class (57 to 64) (T-Kernel/SM) __

E_IO ERCD(-57, 0) IO error

*Error information specific to individual devices may be defined in E_IO sub-codes.

E_NOMDA ERCD(-58, 0) No media

_____ Status Error Class (65 to 72) (T-Kernel/SM) ___

E_BUSY ERCD(-65, 0) Busy

E_ABORT ERCD(-66, 0) Processing was aborted

E_RONLY ERCD(-67, 0) Write protected

_____ Domain Error Class (68～70) (MP T-Kernel) __

E_DOMAIN ERCD(-68, 0) Domain error

This error indicates that an operation is not permitted due to a difference in the domain when it attempted to operate an
object that belongs to another domain.
In AMP T-Kernel, this error is returned when a system call that cannot be used between processors is issued for an object
that belongs to the domain of other AMP T-Kernels and in system calls for object creation, when the domains of other
AMP T-Kernels are specified for the domain to which it belongs. However, when ID of the specified domain is invalid and
the domain does not exist, E_ID error or E_NOEXS is returned instead of this error.

E_ONAME ERCD(-69, 0) Object name error

This error indicates that the specified object name has already been used in the domain.

E_DACV ERCD(-70, 0) Access protection error

This error indicates that the operation is not permitted due to access protection when it attempted to operate an object that

AMP T-Kernel Specification / Ver. 1.00.00

 308 TEF021-S001-01.00.00/en

belongs to another domain.

_____ Error Class Between Processors (71～73) (MP T-Kernel) __

E_IPC ERCD(-71, 0) Interprocessor communication error

This error indicates that a failure occurred in some sort of communication between processors during the execution of a
system call, and the execution result of the system call was not understood.
This error results from the answer of another processor not being properly received. When this error is returned, the result
of the system call is not guaranteed. There is also the possibility that the requested operation is executing in another
processor. If the failure of the requested operation can be distinguished, an E_IPCA error or E_IPCS error which is
described in below is returned instead of this error.

E_IPCA ERCD(-72, 0) Absolute interprocessor communication error

This error indicates that a failure occurred in some sort of communication between processors during the execution of a
system call and the requested system call ended unsuccessfully. The difference between the E_IPC error is this error
guarantees the execution result of the system call is a failure.

E_IPCS ERCD(-73, 0) Interprocessor communication status error

This error indicates that communication between processors is not possible due to some reason.
This error is returned when communication between processors cannot be done in normal state such as the other processor
is stopped or is initializing. When communication between processors is not possible in a failed state, error E_IPCA is
returned.

