
December 2012

T-Kernel 2.0 Extension 
Specification

T-Engine Forum
http://www.t-engine.org/

T-Kernel2.0EXtensionT-Kernel2.0EXtension



Copyright (c) 2012 by T-Engine Forum

T-Kernel 2.0 Extension Specification (Ver.2.00.00)
-------------------------------------------
            Copyright (c) 2012 by T-Engine Forum
            You should not transcribe the content, duplicate a part of this specification, etc.
            without the consent of T-Engine Forum.
            For improvement, etc., information in this specification is subject to change without
            notice.
            
            For information about this specification, please contact the following:
              T-Engine Forum Secretariat
                In YRP Ubiquitous Networking Laboratory
                28th Kowa Building, 2-20-1 Nishi-gotanda
                Shinagawa, Tokyo
  Japan 141-0031

                 +81-(0)-3-5437-0572 +81-(0)-3-5437-2399
                office@t-engine.org

Note

In this specification, POSIX means Portable Operating System Interface, specifically the so-called 
UNIX system Operating System Interface defined in the following standards.

 ISO/IEC/IEEE 9945
 Information technology - Portable Operationg System Interface (POSIX)
 Base Specifications, Issue 7

The standard C library referred to in the chapter for the Standard C Compatible Library means the 
above POSIX as well as the library functions defined in the following standard.

 JIS X 3010:2003 (ISO/IEC 9899:1999) Programming Language C

Considering the programming ease and portability at some degree of affinity with POSIX, this 
specification follows the standard C library specifications almost as is so that programs using the 
standard C library may easily be ported.
This specification quotes some descriptions from the above standards with permission from IEC.
This specification is an extension of the underlying T-Kernel 2.0, which is an operating system of a 
totally different nature from POSIX.
This specification does not guarantee the compatibility with POSIX.
In addition, it is not guaranteed that C language programs written as per this specification are 
compliant with the JIS C standard.

 IEC: International Electrotechnical Commission
 ISO: International Organization for Standardization
 JIS: Japanese Industrial Standards

The function declarations, structure definitions, and numerical values in this specification are 
written according to the C language syntax.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. i



Table of Contents

      1. T-Kernel 2.0 Extension Overview   1
        1.1 Overview   1
      1.2 T-Kernel 2.0 Extension Features   1
      1.3 Relationship with T-Kernel   2
       1.4 Relationship with POSIX   3
     1.5 Dependencies between Function Modules   4

        2. Common Rule   5
        2.1 Data Types   5
         2.2 String   6
        2.3 Valid Context   6
      2.4 Usage of T-Kernel 2.0 API   6
        2.5 Error Codes   7
        2.6 Thread-Safe   8

      3. Memory Protection Function   9
        3.1 Overview   9
       3.2 Memory Protection Model   9

      4. File Management Function  13
        4.1 Overview  13
        4.2 Definition  13
       4.3 Unupported Functions  18
         4.4 API  18
      4.5 File System Implementation Part  42

      5. Network Communication Function  54
        5.1 Overview  54
      5.2 Terms Used in This Section  54
       5.3 Unsupported Functions  61
       5.4 Data Type Definitions  61
         5.5 API  65
      5.6 Operation for Routing Socket 101

       6. Calendar Function 107
        6.1 Overview 107
        6.2 Definition 107
         6.3 API 109

       7. Program Load Function 120
        7.1 Overview 120
       7.2 Regular Program Module 120
       7.3 System Program Module 121
       7.4 Data Type Definition 121
         7.5 API 122

      8. Standard C Compatible Library 126
        8.1 Overview 126
        8.2 Compatibility 126
      8.3 arpa/inet.h - BSD Socket 130
      8.4 assert.h - Testing Function 133
      8.5 complex.h - Complex Calculation 134
     8.6 ctype.h - Character Type Classification 145
      8.7 dirent.h - Directory Reading 146
     8.8 errno.h - Error Number Definition 150
     8.9 float.h - Floating Point Limit Value 153

    8.10 inttypes.h - Integer Type Format Conversion 155
      8.11 iso646.h -Alternate Spellings 158
      8.12 limits.h - Various Limit Values 159
      8.13 math.h - Numeric Operation 161
      8.14 netinet/in.h - BSD Socket 193
       8.15 search.h - Search 194
    8.16 stdarg.h - Variable Number Actual Argument 199
    8.17 stdbool.h - Boolean Type and Boolean Value 201
      8.18 stddef.h - Standard Definition 202
       8.19 stdint.h - Integer Type 203
      8.20 stdio.h - Standard Input/Output 206
      8.21 stdlib.h - General Utility 233
      8.22 string.h - String Operation 247
     8.23 strings.h - Byte Sequence Operation 259
       8.24 time.h - Date and Time 262

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. ii



   8.25 wchar.h - Multibyte and Wide Character Extension 267

        Appendix
        A.1 System Setting 268
     A.2 Usage Examples of Break Function 269
   A.3 Usage Example of Regular Program Module Function 270

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. iii



 Chapter 1 T-Kernel 2.0 Extension Overview

1.1. Overview

T-Kernel 2.0 Extension ("T2EX" below) is the T-Kernel 2.0 feature expansion program.
Making the most of light-weight, high-speed, and real-time properties of T-Kernel, a real-time 
operating system, T2EX is designed as a light-weight extension to realize advanced embedded systems.

The functions provided to applications by T2EX consist of extended SVCs (extended system call), 
library functions, and macros.
These functions and application interfaces altogether are called API (Application Programming 
Interface).
The T2EX specification is defined by the T2EX API.
Each one of the individual system calls, library functions, and macros in the API is called an "API 
call".
The whole of the file management function API calls, for example, is called the "file management 
function API".

Figure 1.1 shows the software architecture including T2EX.
This extension is positioned as an extension available as an additional T-Kernel 2.0 function (addon),
allowing you to build application programs using both the T-Kernel 2.0 and T2EX APIs.

   <file:figure1_1.png>

     (Figure1.1: T-Kernel 2.0 Extension configuration and positioning)

To support the advanced embedded system development, T2EX provides the following functions.

- Memory Protection Function
- File Management Function
- Network Communication Function
- Calendar Function
- Program Load Function
- Standard C Compatible Library

Each function is provided as a module by functional unit, allowing you to use some of them and unuse 
(remove) any unnecessary function modules as needed.

The T-Engine forum implements standard T2EX codes on T-Kernel 2.0 on the T-Engine reference board as 
an extension and discloses the source codes together with the specifications.
This implementation is called the "T2EX reference implementation". This specification also describes 
how implementation-dependent items are implemented in the T2EX reference implementation.

1.2. T-Kernel 2.0 Extension Features

Following the existing T-Kernel 2.0 performances and maximizing its light-weight, high-speed, and 
real-time properties, T2EX is designed to meet the requirement for additional functions in embedded 
systems that has become larger and more sophisticated.
The main features of T2EX are described below.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 1



Processless, light-weight extension
 T2EX does not provide the process function to make the entire system light-weight.
 The process function is effective when developing programs for relatively large systems on a 
module-by-module basis. However, it does not go together with light-weight and high-speed properties 
of the entire system, due to large overhead in inter-process communication and resource switching 
resulting from the split resource.
Aiming at lightweight, T2EX assumes the entire system to be built without processes, allowing various 
extended functions, including file management and network communication, to be used by directly 
calling them from the task instead of a process.
This direct availability of extended functions from the T-Kernel 2.0 task allows you to realize 
advanced functions while making the most use of the T-Kernel 2.0 real-time property.

Effective memory protection function independent of virtual memory
 General process-based memory protections are based on multiple logical spaces with large 
overhead in execution when switching the spaces.
T-Kernel 2.0 task-based programs often exchange information among multiple tasks via variables 
(memory). Simply divided logical spaces would increase the inter-process communication overhead.
Aiming at lightweight, T2EX provides an effectively feasible two-level ring protection at the system 
and user levels.
 This ensures necessary and sufficient reliability for a relatively complex case in a 
specific-purpose embedded system, which is a main target of this extension.

Modular
 T2EX provides many functions including file management and network communication. Each of them
is separated on a module-by-module basis, allowing you to use only the selected necessary modules and 
remove the rest.
 This can reduce use of RAM and ROM by unnecessary functions.

More affinity with standard C and POSIX specifications
 Many of the functions targeted by this extension, such as C language standard input/output and
network communication functions, have the de facto standard.
The T2EX API design orients toward the optimum format as a T-Kernel task-based programming API while 
it considers affinity with the standard C library and the POSIX specification in terms of code 
reusability and reduced learning cost.
 Specific elaborations include:

 - Integration of the standard C library and POSIX specification error numbers (errno) into the
error codes (ER type)
   The T-Kernel 2.0 error codes are extended so that the error numbers (errno) can be handled 
as is in the T-Kernel 2.0 error code system.
This eliminates confusions when using the standard C and POSIX specification error numbers (errno_t 
type) together with the error codes (ER type).

 - Provision of Standard C Compatible Library
 Many C language standard library functions are provided as is, including the standard 
input/output, except no error number (errno) output.
This greatly facilitates source codes to be shared with many other platforms.

 - API call names and styles (e.g., arguments) based on the POSIX specification
   This uses the specifications based on the function names and styles of the POSIX 
specification, which is the de facto standard in the file management and network communication 
functions.
This can help code reusability with a different environment and reduce the learning cost.

 - Avoidance of collision in the symbol or macro name of a functions that has a different 
behavior from the original specification
Any function or macro provided in T2EX with the same name as in the C language standard library or the
POSIX specification does not have a different external specification, except no error number (errno) 
output.
This can avoid the misunderstanding of the function behavior and a mistake when the source code is 
reused in a different platform.

Thread-safe guarantee
 The standard C library and the POSIX specification contain thread-unsafe functions, which may 
cause an unexpected bug depending on a race condition if misused.
In T2EX, all the API calls are thread-safe for the users to able to avoid this sort of mistake with no
awareness.

1.3. Relationship with T-Kernel 2.0

T2EX is an additional T-Kernel 2.0 function (addon) and provides the function sets available to 
T-Kernel 2.0 application programs.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 2



This means that T2EX is not an extension that builds up a different API layer (e.g., process 
environment) on top of T-Kernel 2.0 but provides additional functions available in T-Kernel 2.0 
API-based application programs.

For instance, you can define the following function which uses both the T-Kernel 2.0 and T2EX APIs to 
be directly used from a T-Kernel 2.0 program.
In this example, tk_set_flg, tk_wai_flg, and tk_ext_tsk are T-Kernel 2.0 system calls, and so_recv and
fprintf are API calls provided by T2EX.
This feature allows you to build an advanced real-time system that directly uses T-Kernel 2.0's 
synchronization and communication functions even in advanced applications including file input/output 
and network communication.

void socketReaderTask( INT stacd, void* exinf )
{
 ER ercd;
 UINT flgptn;

 for (;;) {
  /* receives data from network */
  ercd = so_recv(sd, data, sizeof(data));
  if (ercd <= 0) {
   fprintf(stderr, "Task terminated\n");
   break;
  }
  len = ercd;

  /* notifies completion of reception from network */
  tk_set_flg(flgid, FLG_DATA_PRODUCED);

  /* waits until the received data are used */
  tk_wai_flg(flgid, FLG_DATA_CONSUMED, (TWF_ANDW|TWF_BITCLR), &flgptn, TMO_FEVR);
 }

 tk_ext_tsk();
}

Use of certain T-Kernel 2.0 functions combined with T2EX is restricted.
See Section 2.4 for details.

1.4. Relationship with POSIX API Specification

Many of the APIs provided by T2EX are designed to have affinity with the POSIX specification wherever 
possible.
Still, there are many differences because T2EX is an extension designed specifically for embedded 
systems with a greatly simplified and lightened POSIX API specification.

Regarding the POSIX API-derived functions in this extension, the differences from the original 
specification are summarized as follows.

 - Process
 T2EX is a system assuming the T-Kernel 2.0 task programming and thus does not provide a 
function equivalent to a process in POSIX.
While original POSIX functions are executed in process contexts, the T2EX system has a single 
execution context which corresponds to processes in POSIX.

 For instance, file descriptors are assigned on a per-process basis in POSIX.
 Even if a file descriptor is closed in a process, one may still be open and held in a 
different process.
 In T2EX, file descriptor information is common to all the tasks, and thus the file descriptor 
status never looks differently among different tasks.

 - Thread
 In T-Kernel 2.0, the task function is used instead of the thread function in POSIX.
 Any POSIX thread-compatible APIs are not provided.

 - Signal
 Any POSIX-compatible signal functions are not provided.
 In T-Kernel 2.0, the task exception handling function is available instead.

 - User and group

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 3



 Any user- and group-related functions for POSIX are not provided.
The user and group access control is not performed as well.
 This means that an operation that might require superuser privilege in POSIX can be executed 
from any task in T2EX.

 - File
 The POSIX specification is designed to abstract the file, socket, device, and synchronization 
object on the disk as a (broad) file to be operable through the file API.
 On the other hand, T2EX does not provide such an abstracted file function. They are clearly 
separated as independent modules by functional unit.

 Let us name the file management function and the network communication function. The 
descriptor is defined independently for each function, and an API set is provided the same way.
 (Example: fs_read, so_read)

 - Error number
 In the POSIX specification, the error number is output to the thread-local variable errno.
 T2EX has obsoleted the error number output to the errno variable for uniformity with T-Kernel 
2.0 APIs and improvement to performance efficiency. Instead, it returns the error code that has 
extended to include the POSIX error number.(For details, see Section 2.5.)

Some API calls include detailed restrictions and changes.
For details, see the API call definitions.

1.5. Dependencies between Function Modules

The functions provided in T2EX are implemented as modules divided into functional units, allowing you 
to select and use some function modules as needed.
Note that there are dependencies between certain modules. When you select modules, they must meet 
these restrictions.
Some functions depend on device drivers and thus need the correspondent device drivers when you use 
them.

The dependencies between modules and between modules and device drivers are described below (outline 
is shown in Figure 1.1).

Dependencies between function modules
 - Among the standard input/output functions, the input/output to the console file requires the
file management function.
 - The program load function requires the file management function.
 - In the Standard C Compatible Library, the network-related function (e.g., inet.h) requires 
the network communication function, and the time-related function (e.g., time.h) requires the calendar
function.

Dependencies between function modules and device drivers
 - The file management function requires the driver (console driver or disk driver) for the 
physical device targeted for input and output.
 - The network communication requires the LAN driver.

For the console driver, disk driver, and LAN driver specifications, see the "T-Engine Standard Device 
Driver Specification."

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 4



 Chapter 2 Common Rules

2.1. Data Types

As T2EX is used as an additional function (add-on) to T-Kernel 2.0, it inherits the data types defined
in the T-Kernel 2.0 specification.
The following data types defined in section 3.1 of the T-Kernel 2.0 Specification are used as basic 
data types in this extension as well.

typedef signed char          B;     /* signed 8-bit integer */
typedef signed short         H;     /* signed 16-bit integer */
typedef signed long          W;     /* signed 32-bit integer */
typedef signed long long     D;     /* signed 64-bit integer */
typedef unsigned char       UB;     /* unsigned 8-bit integer */
typedef unsigned short      UH;     /* unsigned 16-bit integer */
typedef unsigned long       UW;     /* unsigned 32-bit integer */
typedef unsigned long long  UD;     /* unsigned 64-bit integer */

typedef char                VB;     /* 8-bit data without an intended type */
typedef short               VH;     /* 16-bit data without an intended type */
typedef long                VW;     /* 32-bit data without an intended type */
typedef long long           VD;     /* 64-bit data without an intended type */
typedef void                *VP;    /* pointer to data without an intended type */

       Note: In T-Kernel 1.0, the data type of exinf or other was VP. In 
T-Kernel 2.0, VP is not used in principle in consideration of the CONST modifier, and the definition 
of data type "void *" is written directly in the code, instead of using VP.
    The definition of VP is retained in T-Kernel 2.0 and T2EX for 
compatibility, but a new use of VP is not recommended.

typedef volatile B          _B;     /* volatile declaration */
typedef volatile H          _H;
typedef volatile W          _W;
typedef volatile D          _D;
typedef volatile UB         _UB;
typedef volatile UH         _UH;
typedef volatile UW         _UW;
typedef volatile UD         _UD;

typedef signed int          INT;    /* signed integer of processor bit width, 32 bits or more */
typedef unsigned int        UINT;   /* unsigned integer of processor bit width, 32 bits or more */

typedef INT                 ID;     /* general ID */
typedef W                   MSEC;   /* general time (in milliseconds) */

typedef void            (*FP)();    /* general function address */
typedef INT             (*FUNCP)(); /* general function address */

#define LOCAL           static      /* local symbol definition */
#define EXPORT                      /* global symbol definition */
#define IMPORT          extern      /* global symbol reference */

/*
 * Boolean values
 *      TRUE = 1 is defined, but any value other than 0 is logically TRUE.
 *      A decision such as bool == TRUE must be avoided for this reason.
 *      Instead use bool != FALSE.
 */
typedef INT             BOOL;
#define TRUE            1           /* true */
#define FALSE           0           /* false */

/*
 * TRON character codes
 */
typedef UH              TC;         /* TRON character codes */
#define TNULL           ((TC)0)     /* TRON code string termination */

In addition to these basic data types from T-Kernel 2.0, various type definitions are added for use in
the functions provided by T2EX.
Most of them comply with the standard C library and the POSIX specification, which facilitates 
programs or program codes from other environment to be ported or interoperated.
All of the added data types, including the ones specific to T2EX, have POSIX style.(Example: 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 5



pm_entry_t)

Typical basic data types additionally defined in T2EX are as follows:

typedef signed char         int8_t;      /* signed 8-bit integer */
typedef signed short        int16_t;     /* signed 16-bit integer */
typedef signed long         int32_t;     /* signed 32-bit integer */
typedef signed long long    int64_t;     /* signed 64-bit integer */
typedef unsigned char       uint8_t;     /* unsigned 8-bit integer */
typedef unsigned short      uint16_t;    /* unsigned 16-bit integer */
typedef unsigned long       uint32_t;    /* unsigned 32-bit integer */
typedef unsigned long long  uint64_t;    /* unsigned 64-bit integer */

typedef signed long         intptr_t;    /* signed integer of pointer bit width */
typedef unsigned long       uintptr_t;   /* unsigned integer of pointer bit width */

typedef int                 errno_t;     /* integer representing an error number (described later) */

typedef unsigned long       size_t;      /* unsigned integer representing size */
typedef signed long         ssize_t;     /* signed integer representing size */

typedef signed long         time_t;      /* integer type representing time in seconds */

struct timeval {                         /* structure representing time in microseconds */
                long        tv_sec;      /* second */
                long        tv_usec;     /* microsecond */
};

For other types, see the sections in Chapter 4 or latter.

There are definitions of both the basic data types from T-Kernel 2.0 and the ones from the standard C 
library and the POSIX specification. This means that duplicate types with similar meanings are 
defined.
For example, the UB type and the uint8_t type have a nearly identical meaning.
It is recommended that you use them according to the semantics of this specification and the T-Kernel 
2.0 specification as much as possible.
For example, uint32_t is not appropriate for the flag patterns of event flag, and UINT type should be 
used instead.
In contrast, it is recommended that you use off64_t for the second argument (file offset) of the file 
seek (fs_lseek64), in accordance with the function prototype.

2.2. String

The T2EX specification defines that a string represented as a char array must be encoded in UTF-8.
All the API calls defined in this extension work based on this definition.

For example, a file name specified as the argument when opening a file (fs_open) must be a UTF-8 
string.
Even if you specify a string using an incorrect encoding such as ISO-8859-1 and Shift-JIS, the 
specified file name is interpreted as a UTF-8 string.

2.3. Valid Context

All API calls provided by T2EX are defined to be available in task or quasi-task portions.
These API calls cannot be used in task-independent portions.

It is possible that the implementation checks the context at runtime and returns an E_CTX error for 
execution in an illegal context. However, whether or not to perform such check shall be 
implementation-dependent, and an implementation that does not guarantee a behavior (undefined) shall 
be allowed.

Exceptionally, the following API calls can be used from in task-independent portions:

  - fs_break (stop file operation)
  - so_break (stop socket operation)

2.4. Usage of T-Kernel 2.0 API

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 6



As described in section 2.3, T2EX API can be used in a task or quasi-task portion.
However, when performing task management functions and task-dependent synchronization functions for 
tasks using T2EX, there are the following restrictions:

 - tk_ter_tsk
 Unavailable.
 If used, the system behavior is not guaranteed.

 - tk_sus_tsk, tk_rsm_tsk, tk_frsm_tsk
 Unavailable.
 If used, the system behavior is not guaranteed.

 - tk_sig_tev, tk_wai_tev(_u)
 The task event numbers 1 to 4 are reserved for use in the T2EX system and must not be used.
 Applications can use the task event numbers 5 to 8.

 - tk_dis_wai, tk_ena_wai
 Unavailable.
 If used, the system behavior is not guaranteed.

 - tk_ras_tex
 Unavailable.
 If used, the system behavior is not guaranteed.

The other T-Kernel 2.0 API calls are available even when they are used with T2EX API and are 
guaranteed to work according to the specification.
When tk_rel_wai is issued for a task using T2EX API calls, it works as follows:

 - tk_rel_wai
 Available.
 tk_rel_wai works as follows when it is executed during execution of a T2EX API call.

  - The WAITING state of the waiting T2EX API call may be released, but not necessarily.
     If the WAITING state is released, the T2EX API call returns EX_INTR, and tk_rel_wai 
returns E_OK.
     If the WAITING state is not released, tk_rel_wai returns E_OBJ.

In addition to tk_rel_wai, the dedicated wait-release API calls, fs_break and so_break, are provided 
for T2EX's file management and network communication functions, respectively.
These API calls can be used to safely release the WAITING state of the limited functions of T2EX.

2.5. Error Codes

As T2EX provides additional functions such as file management function and network communication 
function, it defines an error code system to extend the error code of T-Kernel 2.0.
In order to achieve a high affinity with the standard C library and the POSIX specification in this 
extension, the error number (errno) is integrated with the T-Kernel error code (ER type) system as 
follows:

  - Defines EC_ERRNO as main error code
  - Defines error codes prefixed with EX_ as the error codes corresponding to errno in the POSIX 
specification, as follows:
      - Uses error number names with the prefix E replaced with EX_, for error code names
      - Has EC_ERRNO as main error code
      - Has the value of errno as sub error code

For example, for the error number EBADF indicating that the file descriptor is illegal, the 
corresponding T2EX error code is defined as follows:

#define EX_BADF           ERCD(EC_ERRNO, EBADF)

In addition, the macros, ERRNO and ERRNOtoER, are defined to mutually convert error codes (ER type) 
added in T2EX and error numbers (errno).

#define ERRNO(er)         (MERCD(er) == EC_ERRNO ? SERCD(er) : 0)
#define ERRNOtoER(eno)    (ERCD(EC_ERRNO, (eno)))

For the list of definitions of added error codes, see Section 8.8.
The error codes prefixed with E_ which are defined in T-Kernel 2.0 can also be used in applications 
using T2EX.

With introduction of the error codes corresponding to the POSIX error numbers, several error codes 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 7



with similar meanings coexist.
For example, two types of error, E_BUSY and EX_BUSY, are defined to indicate that the target resource 
is being used.
One of them should be used depending on the type of the target resource.
The former should be used if the busy object is a synchronized object of T-Kernel 2.0, and the latter 
if a file or network is targeted.
In middleware library or other, it is also recommended that you use the T-Kernel 2.0 error codes and 
the error codes added in T2EX in a uniform manner as much as possible, to prevent confusions.

2.6. Thread-Safety

This specification defines the thread-safety of functions under the multitask environment as follows:

Thread-Safe function
 A function is said to be thread-safe if it is guaranteed that its concurrent execution does 
not cause any problems under the condition that the memory space directly or indirectly specified by 
the passed arguments is not referred or changed from outside during a function call.
 Otherwise, the function is said to be non-thread-safe.
 
The thread-safe nature is also defined for the T2EX API calls in the same manner.

As T2EX is a system assuming the task-based programming on T-Kernel, it is very important that the 
T2EX API calls are thread-safe in terms of reliability of the system.
For this reason, all API calls provided in T2EX are thread-safe.

Though T2EX includes many API calls based on the POSIX specification or the standard C library, 
alternative thread-safe API calls are provided for non-thread-safe API calls.
For example, localtime() in the standard C library is non-thread-safe and not provided in T2EX. T2EX 
provides the alternative thread-safe API calls, localtime_r() and localtime_r_eno().

As described in the definition of the thread-safety of API calls in this specification, a T2EX API 
call does not guarantee the behavior if the memory space directly or indirectly specified by the 
arguments is referred or changed from outside during the API call.
For example, when two tasks A and B execute the following processings concurrently for a char* type 
global variable "a", the behaviors are not defined.
In such case, you have the responsibility to fulfill the thread-safe conditions, for example, by 
preventing overlapped memory space of the arguments or using the exclusion control.

Task A
 strcpy(a + 3, "aaaa");

Task B
 strcpy(a + 2, "bbbbbb");

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 8



 Chapter 3 Memory Protection Function

3.1 Overview

T2EX provides two levels of the memory protection function based on the memory protection model of 
T-Kernel 2.0.

The T2EX system consists of a single logical address space and does not have task-specific spaces.
This means that there is a one-to-one mapping between logical address and physical address, but it is 
not always necessary that they match.

Under this condition, the stability and reliability of the whole system can be improved by protecting 
the memory space used by the OS kernel (T2 and T2EX) and system programs (some device drivers and 
tasks) from user applications.

3.2 Memory Protection Model

3.2.1 Protection Levels

T-Kernel 2.0 has four protection levels from 0 to 3. In T2EX, these levels are divided into two, and 
the two levels of the memory protection, privileged level and user level, are provided.

 - Privileged level
 This level is equivalent to the protection levels 0 to 1 in T-Kernel 2.0, and used when a task
portion is executed at the protection levels 0 to 1, or when a nontask portion (task-independent 
portion, quasi-task portion, and so on) is executed.
 A privileged level program operates in the privileged mode of CPU.

 - User level
 This level is equivalent to the protection levels 2 to 3 in T-Kernel 2.0, and used when a task
portion is executed at the protection levels 2 to 3.
 A user level program operates in the user mode of CPU.

The level at which a T-Kernel 2.0 or T2EX API call can be invoked is specified using the system 
configuration information, independent of the memory protection boundary.
In T2EX, each protection level has the following usages:

----------------------------------------------------------------------------------
   Protection level Usage

----------------------------------------------------------------------------------
    0 Kernel, subsystems, device drivers, etc.
    1 System application tasks
    2 User application tasks (T-Kernel and T2EX API available)
    3 [* Reserved] User application tasks

                               (T-Kernel and T2EX API not available)
----------------------------------------------------------------------------------
  (*) Reserved for use by upper OS functions such as processes, and not used in T2EX

As shown in the table, T-Kernel 2.0 and T2EX API can only be used in protection 
levels between 0 and 2. When they are used from tasks with protection level of 3, 
the correct behavior is not guaranteed. 

3.2.2 Memory Access Privileges

Table 3.1 shows the access privileges to various memory spaces from privileged-level and user-level 
programs.
In this table, "R", "W", and "EX" indicate the read, write, and execute privileges respectively, and 
"-" indicates inaccessible.

Table 3.1 Memory Access Privileges in T-Kernel 2.0 Extension
----------------------------------------------------------------------------------
  Memory space                                Privileged level      User level
==================================================================================
  Privileged-level program area                        R,EX         -
  Privileged-level read/write static data area         R,W          -
  Privileged-level read only static data area          R            -
  User-level program area                              R,EX         R,EX
  User-level read/write static data area               R,W          R,W
  User-level read only static data area                R            R
  Privileged-level dynamically allocated memory block  R,W          -
  User-level dynamically allocated memory block        R,W          R,W

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 9



  Unused (unallocated) memory                          -            -
----------------------------------------------------------------------------------

Note that Table 3.1 shows the standard access privileges to the memory spaces. An implementation are 
allowed to have different access privileges than ones shown in Table 3.1, in order to accommodate the 
hardware limitations or the following cases.

 - Add user-level read access privilege (R) to privileged-level static data area or privileged-level 
dynamically allocated memory block
By allowing a user-level application to directly read privileged-level data area such as device 
drivers, data can be passed without memory copy.

 - Add execution privilege (EX) to data area or dynamically allocated memory block
 To achieve JIT (Just-In-Time) compiling or other technologies, it is necessary to assign the 
execution privilege to data area.

 - Assign write access privilege (W) to program area
 A program which works by self-rewriting needs the write access privilege to the program area.

3.2.3 Static and Dynamic Memory Protections

There are two types of memory protection in T2EX, static memory protection and dynamic memory 
protection.

Static Memory Protection
 This protects the memory spaces shown in Table 3.1, except the dynamically allocated memory 
block, by setting fixed access privileges to the memory space address determined at system generation.
 Usually, the access privilege for each address area (section) is configured by the linker 
script at system generation, and the specific setting method depends on the implementation.

Dynamic Memory Protection
 This protects the memory space dynamically obtained by T-Kernel 2.0 API call by setting access
privileges at the specified protection level.
 This is the dynamically allocated memory block among the memory spaces shown in Table 3.1.

3.2.4 Relationship with Memory-Related Functions of T-Kernel 2.0

Under the T2EX memory protection function, the API calls related to the memory protection in T-Kernel 
2.0 works as follows:

tk_set_tsp
 Does nothing and returns E_OK for a valid parameter.

SetTaskSpace
 Only access privilege information is modified when a valid parameter is given, and task space 
remains unchanged.
 Can be used from privileged protection level at runtime only.

LockSpace, UnlockSpace
 Does nothing and returns E_OK for a valid parameter.

MapMemory
 Works as per the T-Kernel 2.0 Specification if NULL is specified for paddr.
 When a valid physical address is specified in paddr, E_OK is returned after it is 
 converted to a logical address, without setting access privileges for the specified memory 
region.
 (Access privilege settings to physical address regions are meant to be done through
 static memory protection configuration.)

CnvPhysicalAddr
 Works as per the T-Kernel 2.0 Specification.

tk_cre_mpf, tk_cre_mpl, tk_get_smb
 Allocates the memory accessible only from privileged-level programs if TA_RNG0 to 2 are 
specified for attr, and allocates the memory accessible from any level if TA_RNG3 is specified.

ChkSpaceBstrR, ChkSpaceBstrRW, ChkSpaceR, ChkSpaceRE, ChkSpaceRW, ChkSpaceTstrR, ChkSpaceTstrRW
 Works as per the T-Kernel 2.0 Specification.

Kmalloc, Kcalloc, Krealloc, Kfree,
Vmalloc, Vcalloc, Vrealloc, Vfree

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 10



 Allocates the memory at the level specified by the T2EX system configuration information 
(section A.1).
 Can be used from privileged protection level at runtime only.

Smalloc, Scalloc, Srealloc, Sfree
 Allocates the memory at the user level.
 Can be used from both privileged and user protection level.

CreateLock, DeleteLock, Lock, Unlock
 Can be used from privileged protection level at runtime only.
 For the use in user level, following substitute functions are available: 
 CreateLock, DeleteULock, ULock, and UUnlock.

CreateMLock, DeleteMLock, MLock, MLockTmo, MLockTmo_u, MUnlock
 Can be used from privileged protection level at runtime only.
 For the use in user level, following substitute functions are available: 
 CreateMLock, DeleteUMLock, UMLock, UMLockTmo, UMLockTmo_u, and UMUnlock.

DI, EI, isDI, SetIntMode, EnableInt, DisableInt, ClearInt, CheckInt
 Can be used from privileged protection level at runtime only.

StartPhysicalTimer, StopPhysicalTimer, GetPhysicalTimerCount, DefinePhysicalTimerHandler, 
GetPhysicalTimerConfig
 Can be used from privileged protection level at runtime only.

GetSpaceInfo
 Works as per the T-Kernel 2.0 Specification.

SetMemoryAccess
 Works as per the T-Kernel 2.0 Specification.

in_d, in_w, in_h, in_b, out_w, out_d, out_w, out_h, out_b
 Can be used from privileged protection level at runtime only.

WaitUsec, WaitNsec
 Can be used from privileged protection level at runtime only.

3.2.5 Handling of Memory Protection Violation

The "memory protection violation" means a condition that a task or quasi-task portion being executed 
tries to access a memory space inaccessible from that level (privileged level or user level).
If a "memory protection violation" is detected, a memory protection violation exception occurs. This 
exception is managed internally by T2EX.

If a memory protection violation exception has occurred during execution of a task portion of a 
user-level task, the exception is notified to an exception handling task managed internally by T2EX.
This task is called a "system exception handling task".
The system exception handling task has the priority 1 and works at the protection level 0. It calls 
the handling function TaskMemFaultHdr() for a memory protection violation exception in its context.

On the other hand, if a memory protection violation exception has occurred in a task-independent 
portion, a quasi-task portion, or in a task portion of a privileged-level task, that exception is 
handled by the handling function RawMemFaultHdr() which is called in the context of the 
task-independent portion.

You can modify these functions to perform your own exception handling such as file system 
synchronization and system reset, as necessary.

In addition to the standard configuration described above, T2EX supports the simple configuration 
which does not use system exception handling tasks.
In this configuration, a system exception handling task is not generated, and all memory protection 
exceptions are handled by the function RawMemFaultHdr() which is called in the context of 
task-independent portions.
Like with the standard configuration, you can modify this function to perform your own exception 
handling as necessary.

The exception handling functions have the following forms:

- void TaskMemFaultHdr(MemFaultInfo* fault);

  Handles the memory protection violation exception indicated by fault.
  It is called in the context of a system exception handling task.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 11



  The contents of fault are:
    ID tskid ID of the task that caused the exception
    UW vecno Interrupt vector number of the exception
    UW excinfo Information about the protection violation exception 
(implementation-dependent)
    void* excaddr Address that caused the exception (access target)
 ---(Other implementation-dependent parameters may be added beyond this point.)---

- void RawMemFaultHdr(MemFaultInfo* fault);

  Handles the memory protection violation exception indicated by fault.
  It is called in the context of a task-independent portion.

  The contents of fault are the same as those of TaskMemFaultHdr().

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 12



 Chapter 4 File Management Functions

4.1 Overview

Hereafter, a program module which provides file management functions in T2EX will be referred to as 
"file manager".

The file manager provides functions for accessing file systems consisting of tree-structured 
directories and files.
The API name prefix is "fs_" (file system).

The file manager provides an API set similar to the file input/output function of the POSIX 
specification. One large difference is that return codes of the T2EX APIs represent error codes if 
they are negative.

It also supports 64-bit large files which allow a 64-bit file size and a file offset to be directly 
specified. However, the size of data that can be read or written at a time is limited to 32 bits. It 
provides 32-bit and 64-bit APIs separately and they can be used together.

Besides the APIs that support the POSIX specification time data formats to handle time, APIs that 
support the T-Kernel 2.0 time data formats (SYSTIM, SYSTIM_U) are provided.

+---------- File Manager APIs (fs_xxxx) -----------------+
|                                                        |
|                File Management Part                    |
|                                                        |
|  +--- File System Implementation Part Interface ---+   |
|  | (Initialization/Exit/Request Service Functions) |   |
|  |                                                 |   |
|  |        File System Implementation Part          |   |
|  |                                                 |   |
|  +-------------------------------------------------+   |
+--------------------------------------------------------+

 Figure 4.1 File Manager Structure

The file manager is structured as shown in Figure 4.1.

As explained in the sections below, a file manager API is interpreted by the file management part at 
first. The file management part then calls an appropriate function in the file system implementation 
part which handles files in a particular file system such as FAT and NTFS.

A file system implementation part is a set of program codes to manage a certain file system. It uses 
device drivers for storage devices to provide file management functions according to the file systems 
such as FAT, exFAT, NTFS, ext2, and files for flash ROM.

In T2EX, multiple file system implementation parts can be used. In addition to the "Basic FAT file 
system implementation part" which is available as a standard file system implementation part of T2EX, 
user-defined file system implementation parts can be used. 

4.2 Concepts and Terminology

- File system format

In this document, a logical format used to place and manage a file structure on a device, which is 
generally known as FAT, NTFS, or ext2, will be refered to as file system format.

- File system

Generally, this refers to a system of files laid out on a device consisting of tree-structured 
directories and files, or generic name of the function to manage the system of files.

In this document, it refers to a whole directory tree on a device organized in one file system format,
and this is the unit connected to the directory tree of a system.

For example, when the term "file system" is used as in the "size of a file system", "statistics of a 
file system", "synchronization of a file system", and "a read-only file system", it means the unit, 
connected to the system, organized in one file system format.

- File system implementation part (FIMP)

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 13



A set of program codes that handle access to a file system format as access to the data on an actual 
device is called "file system implementation part (FIMP)", and can be written by users and dynamically
registered to the file manager.

T2EX provides "the Basic file system implementation part (Basic FAT FIMP)" to manage the FAT file 
system format. It is registered to the system and becomes usable after the initialization of the file 
manager.

To handle different file system formats, a FIMP to handle such different file system formats can be 
written and registered to the system.

Multiple FIMPs can be registered for the same file system format, and they can be switched per device 
or medium.

A FIMP becomes usable after it is registered to the system (fs_regist) and is attached to an actual 
target device (fs_attach).

These steps import the directory tree on the device into the system and file operations using path 
names become possible such as open (fs_open), read (fs_read), and write (fs_write).

FIMPs do not necessarily have one-to-one relationship with file system formats.
For example, a program in which one FIMP handles multiple file system formats can also be written.

- Basic FAT file system implementation part (Basic FAT FIMP)

A FIMP that supports the FAT file system format. It is provided as a standard built-in .

It can handle the FAT12, FAT16, and FAT32 file system formats and also uses VFAT long file names. It 
can access both devices (media) with and without partition information. It, however, can use only the 
primary partitions, and does not support the extended partitions.

The Basic FAT FIMP is registered after initializing the file manager with fs_main(). Registration by 
fs_regist() is not necessary.

To release a registered FIMP, unregister it (fs_unregist). The Basic FAT FIMP can also be 
unregistered.

- Directory

Special file which includes entries to identify files or other directories.

A directory can contain other directories, making a hierarchical directory structure.

Files and directories on one device form a tree structure as a whole.

- File name

Name to identify a file or directory in the file system.

A file name can contain unicode (UTF-8) characters other than the followings:

 '/', ':', '\', '*', '?', '"', '<', '>', '|', and '\0' (null character)

The maximum length of file name is defined by NAME_MAX.
However, the maximum length of file name may be shorter than this definition in some FIMPs.

There are special file names:
  "." Represents the current position in the tree structure.
  ".." Represents the directory immediately above the current position in the tree structure.

- Root directory

A virtual directory located at the top of all the other directories.

Immediately under the root directory, there is the top-most directory of each of the currently 
connected devices as a virtual subdirectory.

- Current directory

This refers to the directory which is the current reference position of file operations.

It is the start position of the search for a file or directory when a relative path name, which 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 14



described later, is given.

In T2EX, there is only one current directory in the whole system, not per task. That is, all tasks 
share the one current directory.

- Connection point

Subdirectory name used when connecting a file system on a device to the root directory.

When specifying a target device (or medium) by fs_attach(), specify a connection point and the name of
the device (device name) on which files are located to associate them.

One connection point is used to refer to one file system.

A connection point can contain up to 14 characters including 'a'-'z', 'A'-'Z', '0'-'9', and '_', but 
not '/'.

- Path name

String representation of a name indicating the position of a certain file or directory in a file 
system.

A path name is specified as a parameter when opening a file with fs_open(). It is also used as a 
parameter when creating a file (fs_creat()), retrieving file status (fs_stat(), etc.), renaming or 
relocating a file (fs_rename()), and deleting a file (fs_unlink()).

Unicode (UTF-8) is used as the character code of a path name.
The maximum length of a path name is defined by PATH_MAX.

A path name string indicates the directory tree path from the root directory '/' as the starting point
to an appropriate file on the target device, separated with '/' as shown below.

 /connection point/directory name 1/directory name 2/.../directory name n/file name

A path name that indicates an absolute position from the root directory is called an absolute path 
name.
An absolute path name starts with "/".

A path name that indicates a relative position from the current directory is called a relative path 
name.
A relative path name starts with "./", which is optional. A path name that does not start with "/" is 
considered a relative path name.

- Device name

In the file manager, this refers to the name of a device on which files exist.
Generally, it consists of:

    - Type Name which specifies the device type
    - Unit Letter which specifies a physical device
   - Subunit Number which specifies a logical device

Although device name is formatted as Type+Unit+Subunit, Unit and subunit may be omitted on some 
devices.

Unicode (UTF-8) is used for a device name string.

- File system implementation part name (FIMP name)

The name of a FIMP. This name follows the file name convention.

The following names are pre-defined and reserved in the system:

   "FIMP_FAT" Basic FAT FIMP
  "FIMP_AUTODETECT" Reserved for future use (automatically detecting the file system 
format)

- File descriptor

Zero or positive integer newly assigned to each file to identify it after a file is opened.

A file descriptor is used for read, write, or other operations on the file.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 15



The following file descriptors are pre-assigned in the system for special purposes:

     STDIN_FILENO 0 Standard input
     STDOUT_FILENO 1 Standard output
     STDERR_FILENO 2 Standard error output

These file descriptors are assigned to the console device in the system.
These file descriptors cannot be used for other files since they would be automatically reopened 
immediately if they are closed (fs_close).

- Disk cache

To efficiently write to or read from files located on a disk or other device, many implementations 
create a buffer area in the memory to manage files on the device via this buffer. In such 
implementations, the memory area used as a buffer is called a disk cache.

T2EX utilizes a disk cache to write to or read from files efficiently.

A write operation by fs_write() only transfers write data to the disk cache and does not guarantee the
completion of writing data to the acutal disk.

Call fs_close(), fs_fsync(), or fs_fdatasync() to write the file data on the disk cache into the 
actual disk, flushing the data in the disk cache to the physical device.

- Synchronization with the physical device

Referred to as "a state in which the disk cache and the physical device are in sync", that the content
of the disk cache is written to the physical device and the content of both are exactly the same. 

Because the disk cache is placed on the volatile memory, there is a possibility that data is lost due 
to system down unexpectedly. Therefore, it is necessary to synchronize with the physical device at 
appropriately timing.

For synchronization with the physical device, O_SYNC open mode is provided. Also API calls, fs_sync, 
fs_fsync and fs_fdatasync are provided.

- Synchronous write

An operation that also writes to the physical device as well as disk cache at the same time in order 
to synchronize the disk cache and the physical device at write time.

- File metadata

File management information such as the last access time, the last modified time, the last status 
change time, and the file size, except the file's data itself.

- File date and time specification

File metadata includes the last access time, the last modified time, and the last status change time. 
Besides the APIs that support the time_t type to handle these times, APIs that support the SYSTIM and 
SYSTIM_U types are provided.

Note that the exact meaning and the precision of a time about the file status may vary depending on 
the type of the file system.

Example:
  - All of the last access time, the last modified time, and the last status change time may 
not be maintained.
  - The time precision may depend on the file system.

In the case of the FAT file system, the time resolution is two seconds for modified time, and one day 
for access time. The last status change time does not exist. It is considered to be the same as the 
last modified time.

- File mode

This refers to the file type and the access mode, and is represented by mode_t type data.

mode_t
 Data type to show the file type and the access mode. 
 The following bit masks and macros can be used for this type of data:

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 16



     S_IFMT 0170000 Bit mask for the file type field

  The following symbols are defined for these types:

      S_IFBLK 0060000 Block device
      S_IFCHR 0020000 Character device
      S_IFREG 0100000 Regular file
      S_IFDIR 0040000 Directory
     S_IFLINK 0120000 Symbolic link

  Available file types may vary depending on the type of the file system.
  * S_IFLINK is not used in the FAT file system.

  The following macros are provided to determine the file type:
  "m" is a value of st_mode in "stat" or other structure.
  Each macro returns a non-zero value for a result of true, or 0 for false.

     S_ISBLK(m) Block device
     S_ISCHR(m) Character device
     S_ISDIR(m) Directory
     S_ISREG(m) Regular file
     S_ISLNK(m) Symbolic link

 The following mode bits are defined for the access permissions:

      S_IRWXU 0700 Read, write, and execution/search by owner
      S_IRUSR 0400 Read permission by owner
      S_IWUSR 0200 Write permission by owner
      S_IXUSR 0100 Execution/search permission by owner
      S_IRWXG 070 Read, write, and execution/search by group
      S_IRGRP 040 Read permission by group
      S_IWGRP 020 Write permission by group
      S_IXGRP 010 Execution/search permission by group
      S_IRWXO 07 Read, write, and execution/search by others
      S_IROTH 04 Read permission by others
      S_IWOTH 02 Write permission by others
      S_IXOTH 01 Execution/search permission by others
      S_ISUID 04000 Set user ID at runtime
      S_ISGID 02000 Set group ID at runtime
      S_ISVTX 01000 Sticky bit

  *The execution/search attribute is used as the execution permission when the file is a
normal file, or the search permission to search the directory for files when the file is a directory.

 All of these mode settings may not be supported on the type of the connected file system. In 
that case, unsupported settings are simply ignored.

 Note that T2EX has no concept of owner, group, and others. So T2EX does not differentiate 
them. For this reason, when a file operation such as opening of a file or reading/writing of data is 
performed, it is processed as follows:

  - If any of the read permission bits is set, a read operation is allowed.
  - If any of the write permission bits is set, a write operation is allowed.
  - If any of the execution/search permission bits is set, an execution/search operation is 
allowed.

- File creation flag

Flag for creating a file, used in "flag" of fs_open().

    O_CREAT Creates the file if it does not exists
    O_EXCL Opens the file exclusively
    O_TRUNC Truncates the file content

- File status flag

Flag to show the open status of a file used in fs_open() or fs_fcntl().
It is treated as an attribute of the file descriptor.

   O_APPEND Append mode
   O_NONBLOCK Non-blocking mode
    O_SYNC Guarantees a synchronized file I/O at write

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 17



- File access mode

Flag to show the access mode of a file used in fs_open() or fs_fcntl().
It is treated as an attribute of the file descriptor.

   O_RDONLY Opened for read-only
    O_RDWR Opened for read/write
   O_WRONLY Opened for write-only

The file access mode is of the mode_t data type.
The following file access mode mask is used to retrieve the file access mode from the mode_t type 
data:

   O_ACCMODE File access mode mask

- File offset

This refers to the current position (read/write start position) for writing to/reading from a file.
A file offset is represented by the following data types:

    off_t Offset by a 32-bit integer
    off64_t Offset by a 64-bit integer

4.3 Unsupported Functions

The file managerin T2EX supports a subset of the file function in POSIX.
In T2EX, no file owners nor user groups with access right exist since there is not processes and the 
concept of user. Additionally, symbolic links are unsupported.
Therefore, the following functions specified in POSIX are not provided:

File access privilege and owner/group related
 umask()
 chown()
 fchown()
 lchown()
Hard link
 link()
 linkat()
Symbolic link related
 symlink()
 symlinkat()
 readlink()
 lstat()
Replicate file descriptor
 dup()
 dup2()
File lock
 flock()
 lockf()
Other
 chroot()

When a file on a device contains user/group information and their access privilege information, if it 
is accessed and updated by T2EX, the original information of user/group/access privilege may be lost.
If handling the information of users and groups in a file managed by a FIMP is necessary, handle it by
a specially implemented function in the FIMP using fs_ioctl() or others.

4.4 API

If a return code of a file manager API call is negative, it is a T2EX extended error code.

4.4.1 fs_main - Initializes and exits the file manager

C Language Interface

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 18



#include <t2ex/fs.h>

 ER er = fs_main(INT ac, UB* arg[]);

Parameter

     INT ac number of elements in arg[] or a negative value
     UB* arg[] array of argument strings

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion

Description

This function initializes (ac >= 0) or terminates (ac < 0) the file manager.

At the time of initialization, a number of strings can be passed to arg[] as arguments, and the total 
count of strings is ac.
The content of "arg" is implementation-dependent. These argument strings are not used in the T2EX 
reference implementation.

4.4.2 fs_regist - Registers a file system implementation part (FIMP)

C Language Interface

#include <t2ex/fs.h>

ER er = fs_regist(const char *fimpnm, const fs_fimp_t *fimp, void *info);

Parameter

    const char* fimpnm FIMP name
    const fs_fimp_t fimp FIMP definition information

     void* info any parameter

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion
  EX_INVAL Illegal parameter
  EX_EXIST Specified FIMP name is already registered

  EX_ENOBUFS Number of FIMPs exceeds the system limit
   Others Error code returned by registfn() of the FIMP

Description

fs_regist() uses the name specified by "fimpnm" to register the FIMP specified by "fimp" to the 
system.
"fimp" is the pointer to the FIMP structure which holds the request service function of the FIMP.
"info" is a parameter to be passed to the initialization function (fimp->registfn) of the FIMP. It is 
used to pass the initialization information defined for each FIMP.

If fs_regist() successfully registers the FIMP, it returns E_OK.
The Basic FAT FIMP is registered when the file manager is initialized.
The registration using fs_regist()is not necessary to use the Basic FAT FIMP.

To manage a FAT file system using a FIMP other than the Basic FAT FIMP, register the different 
implementation part using fs_regist() with a name other than "FIMP_FAT" in "fimpnm". Then attach it 
with fs_attach(). 

Alternatively, the Basic FAT FIMP can be unregisted with fs_unregist(), then another FIMP with the 
name "FIMP_FAT" can be registered for use.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 19



fs_fimp_t is a structure holding the definition information of the FIMP. For user implementation of a 
FIMP, see Section 4.5 "File System Implementation Part".

See Also

fs_unregist, fs_attach, fs_detach

4.4.3 fs_unregist - Unregisters a file system implementation part (FIMP)

C Language Interface

#include <t2ex/fs.h>

ER er = fs_unregist(const char *fimpnm);

Parameter

    const char* fimpnm FIMP name

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion
  EX_INVAL Illegal parameter
  EX_NOENT Non-registered FIMP is specified

   EX_BUSY Specified FIMP is in use
   Others Error code returned by unregistfn() of the FIMP

Description

fs_unregist() unregisters the FIMP that has been registered with the name specified in "fimpnm".
When the FIMP with the name specified by "fspnm" is attached to a device, use fs_detach() to detach 
the connection before unregistering it.

If fs_unregist() successfully unregisters the FIMP, it returns E_OK.
If the specified FIMP is attached to a device by fs_attach(), fs_unregist() returns EX_BUSY.

See Also

fs_regist, fs_attach, fs_detach

4.4.4 fs_attach - Connects a file system

C Language Interface

#include <t2ex/fs.h>

ER er = fs_attach(const char* devnm, const char* connm, iconst char *fimpnm, int flags, void *info);

Parameter

    const char* devnm device name to connect
    const char* connm connection point
    const char* fimpnm FIMP name

     int flag connect flag
    DEV_FLAG_READONLY read-only device
      0 other device

     void* info any parameter

Return Parameter

     ER er error code

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 20



Error Code

   E_OK Normal completion
  EX_INVAL Illegal parameter
  EX_EXIST Specified connection point is already registered

  EX_ENOBUFS Number of connections exceeded the system limit
  EX_NOENT Non-registered FIMP is specified

  EX_NOTSUP Unsupported FIMP
   EX_BUSY Device is connected

   EX_IO I/O error
   Others Error code returned by attachfn() of the FIMP

Description

fs_attach() attaches the device specified by "devnm" to the FIMP with the name specified by "fimpnm" 
and connects it to the system directory tree using the "connm" connection point.

"devnm" is a name of the device formatted in the format specified by the FIMP.
It can be NULL for a FIMP that does not use a device.

"connm" is a connection point used to connect the FIMP.
Once fs_attach() is executed, a file on the connected device can be identified by using a path name 
"/<connm>/...".
For example, when a string , "usr", is specified for connm, files on the connected device will be 
placed under the directory "/usr".

"fimpnm" is the name of registered FIMP.

"flags" is used for specifying additional attributes for the connection such as read-only.
If DEV_FLAG_READONLY is specified here, the device will be connected as read-only even if it is 
writable ifself.
Set "flags" to 0 if there is no such attribute.

"info" is a parameter to be passed to the initialization function (fimp->attachfn) of the FIMP. 
Applications can use it to pass initialization information specific to the FIMP.
Set it to 0 when connecting the Basic FAT FIMP.

fs_attach() returns E_OK when it is successfully connected.

If "FIMP_AUTODETECT" is specified as "fimpnm", a registered FIMP will be automatically selected to 
handle the data format on the connected device.

At this time, however, this function is not supported. If "FIMP_AUTODETECT" is specified as "fimpnm", 
fs_attach() returns EX_NOTSUP.

See Also

fs_detach

4.4.5 fs_detach - Disconnects a file system

C Language Interface

#include <t2ex/fs.h>

ER er = fs_detach(const char* connm);

Parameter

    const char* connm connection point to disconnect

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion
   EX_BUSY Device is in use

  EX_FAULT Illegal address in argument

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 21



  EX_NOENT Non-registered connection point

Description

fs_detach() detaches the connected device specified in "connm".
If an open file exists on the device to be detached, fs_detach() returns the EX_BUSY error.

See Also

fs_attach

4.4.6 fs_open - Opens or creates a file

C Language Interface

#include <t2ex/fs.h>

int fd = fs_open(const char* path, int oflags, mode_t mode);

Parameter

    const char* path file path name to open
     int oflags open flag of file or directory

     mode_t mode file mode of the file to be created (when O_CREAT)

Return Parameter

     int fd file descriptor
     or error code

Error Code

  EX_ACCES Access privilege error
    - File exists, but the operation specified by "oflag" is not allowed
    - File does not exist, and the parent directory does not have write attribute

  EX_EXIST O_CREAT and O_EXCL are specified, but the file already exists
   EX_INTR Aborted by fs_break()

  EX_INVAL Illegal parameter
   EX_IO I/O error

  EX_ISDIR "path" is a directory for O_WRONLY or O_RDWR
  EX_NAMETOOLONG File name is too long

    - Directory or file name part in "path" is too long (NAME_MAX at maximum)
    - Whole path length is too long (PATH_MAX at maximum).

  EX_NFILE Number of open files exceeds the system limit
  EX_NOENT File does not exist

    - O_CREAT is not specified, and the file does not exist
    - O_CREAT is specified, and the path part in the path name is not found
    - "path" string is empty

  EX_NOSPC Insufficient device space
  EX_NOTDIR Not a directory

    - "path" contains something other than a directory in the prefix part
    - O_DIRECTORY is specified, and "path" is not a directory

   EX_ROFS O_WRONLY, O_RDWR, O_CREAT, or O_TRUNC is specified for a file, and it exists 
in a read-only file system

Description

This function opens the file or directory with the path name specified by "path" and returns its file 
descriptor.
The file descriptor is used to refer to the file in subsequent operations on it.

As a file descriptor, the minimum value that is not currently opened and used is returned.

The file offset, which indicates the current position of the file for reading and/or writing, is set 
to the beginning of the file.

The open flag is specified as follows:

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 22



 oflags := (O_RDONLY|O_RDWR|O_WONLY) 
   | [O_APPEND] | [O_CREAT| [O_EXCL]] | [O_DIRECTORY] | [O_NONBLOCK] 
   | [O_SYNC] | [O_TRUNC] 

The read/write mode is either one of the followings:

  O_RDONLY
  Opens for read-only.
O_RDWR
  Opens for read/write.
O_WRONLY
  Opens for write-only.

The following values can be added with a logical OR:

O_APPEND
  Before each writing (fs_write), the file offset is set to the end of file.

O_CREAT
  Creates a new file if it does not exist.
  If the file exists, this flag has no effect when O_EXCL is not specified.
  The "mode" value is used as the mode for creating a file.

O_DIRECTORY
  If "path" is not a directory, EX_NOTDIR error is returned.

O_EXCL
  This is used with O_CREAT. If the file already exists, an error is returned.
  The file existence check and the creation of a new file when it does not exist are 
atomic against other tasks which execute fs_open() with the same path name.
  If O_CREAT is not specified, the result is undefined.

O_NONBLOCK
  Opens in non-blocking mode if a non-blocking open is supported.
  When a file is opened in non-blocking mode, fs_open() exits without waiting till the 
device becomes ready to use. Subsequent behaviors are device-dependent.

O_SYNC
  Performs synchronous write operations to guarantee the file integrity.
  The synchronous write means that a write operation on this file descriptor is 
performed not only to the disk cache but also to the disk as a physical device, blocking until the 
write operation is completed.

O_TRUNC
  If the file exists, it is a normal file, and it is successfully opened with O_RDWR or 
O_WRONLY. The file size is truncated to 0.
  If the file is a terminal device file such as the console, this has no effect.
  If the file is not a normal file, the effect is implementation-dependent.
  If neither O_RDWR nor O_WRONLY is specified, the behavior is undefined.

See Also

fs_close

4.4.7 fs_close - Closes a file

C Language Interface

#include <t2ex/fs.h>

ER er = fs_close(int fd);

Parameter

     int fd file descriptor to close

Return Parameter

     ER er error code

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 23



Error Code

   E_OK Normal completion
   EX_BADF "fd" is invalid
   EX_INTR Aborted by fs_break()

   EX_IO I/O error

Description

This function closes the opened file or directory specified by the file descriptor "fd".
"fd" is released and can be reused by subsequent fs_open().

If the close operation is aborted by fs_break(), fs_close() returns EX_INTR, and the "fd" remains 
open.
If an I/O error occurs while reading from/writing to the file system during the close operation, 
fs_close() returns EX_IO, and the "fd" remains open.

See Also

fs_open

4.4.8 fs_lseek, fs_lseek64 - Changes the file read/write offset position

C Language Interface

#include <t2ex/fs.h>

off_t offs = fs_lseek(int fd, off_t offset, int whence);
off64_t offs64 = fs_lseek64(int fd, off64_t offset64, int whence);

Parameter

     int fd file descriptor
     off_t offset file offset

    off64_t offset64 file offset (64 bits)
     int whence how to specify offset

      SEEK_SET Absolute position
      SEEK_CUR Relative position from the current position
      SEEK_END Relative position from the end of file

Return Parameter

     off_t offs changed file offset or error code
     off64_t offs64 changed file offset (64 bits)

     or error code

Error Code

   EX_BADF "fd" is invalid
  EX_INVAL Illegal parameter

    - File offset is not defined for the specified file descriptor
    - Changed file offset is a negative value
    - Changed file offset exceeds the end of file

  EX_OVERFLOW Changed file offset cannot be represented by off_t or off64_t

Description

These functions change the file offset of the opened file "fd" by the method specified by "whence".

SEEK_SET
  Changes the offset to the position of "offset" or "offset64".

SEEK_CUR
  Changes the offset to the position of the current position + ("offset" or "offset64").

SEEK_END
  Changes the offset to the position of the file size + ("offset" or "offset64").

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 24



If a file that does not support position change such as the console device is specified, it returns 
the EX_INVAL error.

The file offset cannot exceed the end of file. If such a position is specified, it returns the 
EX_INVAL error.

4.4.9 fs_read - Reads from a file

C Language Interface

#include <t2ex/fs.h>

int nb = fs_read(int fd, void* buf, size_t count);

Parameter

     int fd file descriptor
     void* buf read buffer

     size_t count number of bytes to read

Return Parameter

     int nb zero or more number of bytes that have been read
     or error code

     void* buf data that have been read

Error Code

  EX_AGAIN No data can be read without block (if O_NONBLOCK is set)
   EX_BADF "fd" is invalid
   EX_INTR Aborted by fs_break()

   EX_IO I/O error
  EX_ISDIR "fd" is a directory

  EX_OVERFLOW "fd" is a normal file, "count" is positive, and the start position exceeds the
end of file

  EX_NOBUFS Insufficient system resource
  EX_NOMEM Insufficient memory

Description

This function reads the "count" bytes of data from the file specified by "fd" into the buffer 
specified by "buf".

When "count" is 0, fs_read() checks for errors and returns 0 if no error occurs.

For a file that supports seek such as a file on the disk, fs_read() starts reading from the file 
offset position of "fd".
The file offset is incremented by the number of bytes actually read from the file.

For a file that does not support seek such as the console, fs_read() starts reading from the current 
position.
The file offset is undefined for such a file.

Data is not transferred exceeding the current end of file.
If the start position exceeds the end of file, fs_read() returns 0.

If "count" is larger than SSIZE_MAX, the behavior is implementation-dependent.

When fs_read() reads from a file that supports the non-blocking read but there is currently no 
available data:
 - it returns EX_AGAIN error if O_NONBLOCK in the file status flag is set.
 - it forces the calling task to wait until some data becomes available if O_NONBLOCK in the file 
status flag is cleared.

If the read operation is aborted by fs_break() before data is read, fs_read() returns EX_INTR error.
If the read operation is aborted by fs_break() after even a single byte of data was read, fs_read() 
returns the number of read bytes, and the file offset is also incremented by the number of bytes.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 25



4.4.10 fs_write - Writes to a file

C Language Interface

#include <t2ex/fs.h>

int nb = fs_write(int fd, const void* buf, size_t count);

Parameter

     int fd file descriptor
    const void* buf write buffer

     size_t count number of bytes to write

Return Parameter

     int nb number of bytes that have been written
     or error code

Error Code

  EX_AGAIN No data can be written without block (if O_NONBLOCK is set)
   EX_BADF "fd" is invalid
   EX_FBIG Position exceeds the limit of file size
   EX_INTR Aborted by fs_break()

   EX_IO I/O error
  EX_NOBUFS Insufficient system resource

  EX_NOSPC Insufficient device space

Description

This function writes the "count" bytes of data from the buffer specified by "buf" to the file 
specified by "fd".

If "count" is 0 and the file is a normal file, fs_write() checks for errors and returns 0 if no error 
occurs.
If "count" is 0 and the file is not a normal file, the behavior is undefined.

For a file that supports seek, fs_write() starts writing data from the file offset position of the 
file.
The file offset is incremented by the number of bytes actually written to the file.
For a normal file, when the last position of the written data is equal to or larger than the file 
size, the file size becomes the position + 1.

For a file that does not support seek such as the console, fs_write() always starts writing from the 
current position.
The file offset is not defined for such a device.

If the file status flag O_APPEND is set, fs_write() always starts writing from the end of file by 
setting the file offset to the end of file before writing.

When the complete writing by fs_write() would exceed the limit of file size or the physical space of 
the media, it writes data up to the number of bytes for the available space and exits normally. If it 
attempts to write more data afterward, it cause an error.

If the write operation is aborted by fs_break() before data is written, fs_write() returns EX_INTR 
error.
If the write operation is aborted by fs_break() after even a single byte of data was written, 
fs_write() returns the number of written bytes, and the file offset is also incremented by the number 
of bytes.

If "count" exceeds SSIZE_MAX, the result is implementation-dependent.

When fs_write() writes to a file that supports the non-blocking write but cannot write data 
immediately:

 - it does not force the calling task to wait if O_NONBLOCK in the file status flag is set. If some 
data can be written, fs_write() returns the number of written bytes. Otherwise, it returns EX_AGAIN.
 - it forces the calling task to wait until data is accepted if O_NONBLOCK in the file status flag is 
cleared.

At the normal completion with written data (i.e., positive "count"), the last modified time and last 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 26



status change time of the file have been updated.

4.4.11 fs_stat, fs_fstat_us, fs_stat_ms, fs_fstat, fs_stat_ms, fs_stat_us, fs_stat64, fs_stat64_ms, 
fs_stat64_us, fs_fstat64, fs_stat64_ms, fs_fstat64_us - Retrieves the file status

C Language Interface

#include <t2ex/fs.h>

/* File size is 32 bits */
ER er = fs_stat(const char* path, struct stat* buf);
ER er = fs_stat_ms(const char* path, struct stat_ms* mbuf);
ER er = fs_stat_us(const char* path, struct stat_us* ubuf);

ER er = fs_fstat(int fd, struct stat* buf);
ER er = fs_fstat_us(int fd, struct stat_us* ubuf);
ER er = fs_fstat_ms(int fd, struct stat_ms* mbuf);

/* File size is 64 bits */
ER er = fs_stat64(const char* path, struct stat64* buf64);
ER er = fs_stat64_ms(const char* path, struct stat64_ms* mbuf64);
ER er = fs_stat64_us(const char* path, struct stat64_us* ubuf64);

ER er = fs_fstat64(int fd, struct stat64* buf64);
ER er = fs_fstat64_ms(int fd, struct stat64_ms* mbuf64);
ER er = fs_fstat64_us(int fd, struct stat64_us* ubuf64);

Parameter

    const char* path path name of the file
     int fd file descriptor

    struct stat* buf file information retrieval buffer (time_t format)
    struct stat_ms* mbuf file information retrieval buffer (SYSTIM format)
    struct stat_us* ubuf file information retrieval buffer (SYSTIM_U format)

    struct stat64* buf64 file information retrieval buffer (64-bit size, time_t format)
   struct stat64_ms* mbuf64 file information retrieval buffer (64-bit size, SYSTIM format)
   struct stat64_us* ubuf64 file information retrieval buffer (64-bit size, SYSTIM_U 

format)

Return Parameter

     ER er error code
    struct stat* buf file information (time_t format)

    struct stat_ms* mbuf file information (SYSTIM format)
    struct stat_us* ubuf file information (SYSTIM_U format)

    struct stat64* buf64 file information (64-bit size, time_t format)
   struct stat64_ms* mbuf64 file information (64-bit size, SYSTIM format)
   struct stat64_us* ubuf64 file information (64-bit size, SYSTIM_U format)

Error Code

   E_OK Normal completion
  EX_ACCES Directory included in "path" does not have the search permission attribute

   EX_IO I/O error
  EX_NAMETOOLONG File name is too long

    - Directory or file name part in "path" is too long (NAME_MAX at maximum)
    - Whole path length is too long (PATH_MAX at maximum).

  EX_NOENT File included in "path" does not exist or "path" is empty
  EX_NOTDIR "path" contains something other than a directory in the prefix part

  EX_OVERFLOW Value of st_size, st_ino, or st_blocks cannot be represented by the type of 
the fields in the result.

Description

These functions store the information on the file specified by the path name "path" or the file 
descriptor "fd" to the area specified by "ubuf", "mbuf", "buf", "ubuf64", "mbuf64", or "buf64" 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 27



corresponding to each function.

It does not require the read, write, and execution permissions for the file specified by "path".

The structures stat, stat_us, stat_ms, stat64, stat64_us, and stat64_ms are defined as follows:

   struct stat {
       dev_t st_dev; /* ID of the device where the file exist */
       ino_t st_ino; /* file serial number */
      mode_t st_mode; /* file mode */
      nlink_t st_nlink; /* number of links */
       uid_t st_uid; /* owner ID */
       gid_t st_gid; /* group ID */
      dev_t st_rdev; /* device type */
      off_t st_size; /* file size (bytes) */
      time_t st_atime; /* last access time */
      time_t st_mtime; /* last modified time */
      time_t st_ctime; /* last status change time */
     blksize_t st_blksize; /* I/O block size (bytes) */
     blkcnt_t st_blocks; /* number of allocated blocks */
  /* implementation-dependent additional information */
 };

 For stat_ms, the declarations of st_atime, st_mtime, and st_ctime in "stat" are replaced with 
the followings respectively:
      SYSTIM st_atime; /* last access time (milliseconds) */
      SYSTIM st_mtime; /* last modified time (milliseconds) */
      SYSTIM st_ctime; /* last status change time (milliseconds) */

 For stat_us, the declarations of st_atime, st_mtime, and st_ctime in "stat" are replaced with 
the followings respectively:
     SYSTIM_U st_atime_u; /* last access time (microseconds) */
     SYSTIM_U st_mtime_u; /* last modified time (microseconds) */
     SYSTIM_U st_ctime_u; /* last status change time (microseconds) */

 For stat64, st_size in "stat" is replaced with the following:
      off64_t st_size; /* 64-bit file size (bytes) */

 For stat64_ms, the declarations of st_size, st_atime, st_mtime, and st_ctime in "stat" are 
replaced with the followings respectively:
      off64_t st_size; /* 64-bit file size (bytes) */
      SYSTIM st_atime; /* last access time (milliseconds) */
      SYSTIM st_mtime; /* last modified time (milliseconds) */
      SYSTIM st_ctime; /* last status change time (milliseconds) */

 For stat64_us, the declarations of st_size, st_atime, st_mtime, and st_ctime in "stat" are 
replaced with the followings respectively:
      off64_t st_size; /* 64-bit file size (bytes) */
     SYSTIM_U st_atime_u; /* last access time (microseconds) */
     SYSTIM_U st_mtime_u; /* last modified time (microseconds) */
     SYSTIM_U st_ctime_u; /* last status change time (microseconds) */

      dev_t st_dev device ID
    As device IDs are dynamically assigned when devices are registered, 
they are not fixed values.

      ino_t st_ino; file serial number
    ID to identify the file in the system.
    Its value is dependent on the FIMP.

     mode_t st_mode; file mode
    File type and access mode described in the file attribute.

     nlink_t st_nlink; number of links
    For a file system with hard links, it returns the number of hard 
links.
    For a file system without hard links, it returns 1.

      uid_t st_uid; owner ID
    For a file system with an owner ID, it returns the ID.
    For a file system without an owner ID, it returns 0.

      gid_t st_gid; group ID

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 28



    For a file system with a group ID, it returns the ID.
    For a file system without a group ID, it returns 0.

     dev_t st_rdev; device type
    If the file is a character device or block special device and the FIMP
holds the ID of the device, it returns the ID.
    Otherwise, it returns 0.

     off_t st_size; file size (bytes)
     off64_t st_size; 64-bit file size (bytes)
    For a normal file, it returns the file size in bytes.
    For other file types, this field is undefined.

     time_t st_atime; last access time
     SYSTIM st_atime; last access time (milliseconds)
    SYSTIM_U st_atime; last access time (microseconds)
    They return the last access time of the file in a format suitable for 
each type.
    The resolution of an actually returned value depends on the file 
system.

     time_t st_mtime; last modified time
     SYSTIM st_mtime; last modified time (milliseconds)
    SYSTIM_U st_mtime; last modified time (microseconds)
    They return the last modified time of the file in a format suitable 
for each type.
    The resolution of an actually returned value depends on the file 
system.

     time_t st_ctime; last status change time
     SYSTIM st_ctime; last status change time (milliseconds)
    SYSTIM_U st_ctime; last status change time (microseconds)
    They return the last status change time of the file in a format for 
each type.
    The resolution of an actually returned value depends on the file 
system.

  st_atime, st_mtime, and st_ctime are called "file time stamps", and their strict 
meaning and precision depend on the file system.
  For example, the time resolutions defined in the FAT file system specification are 2 
seconds for modified time, and one day for access time. The last status change time does not exist. It
is considered to be the same as the last modified time.

    blksize_t st_blksize; I/O block size (bytes)
    System-specific preferable I/O block size.
    It may vary depending on files in some file system.

    blkcnt_t st_blocks; number of allocated blocks
    Number of blocks required to allocate this file.

4.4.12 fs_rename - Changes the name and position of a file

C Language Interface

#include <t2ex/fs.h>

ER er = fs_rename(const char* oldpath, const char* newpath);

Parameter

    const char* oldpath file name or directory name before change
    const char* newpath file name or directory name after change

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion
  EX_ACCES Required write permission attribute does not exist

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 29



   EX_BUSY "oldpath" or "newpath" is in use
  EX_EXIST Directory specified by "newpath" is not empty
  EX_INVAL "oldpath" is included in "newpath", or the last element of either argument is 

"." or ".."
   EX_IO I/O error

  EX_ISDIR "newpath" is a directory but "oldpath" is a file
  EX_NAMETOOLONG File name is too long

    - Directory or file name part in "oldpath" or "newpath" is too long (NAME_MAX
at maximum)
    - Whole path length is too long (PATH_MAX at maximum).

  EX_NOENT File does not exist
    - "oldpath" does not exist
    - Path part of "newpath" does not exist
    - Either "oldpath" or "newpath" is an empty string

   E_NOSPC Directory containing "newpath" cannot be expanded
  EX_NOTDIR Not a directory

    - Path contains something other than a directory in the prefix part
    - "oldpath" is a directory but "newpath" is not a directory

   EX_ROFS Read-only file system
   EX_XDEV "oldpath" and "newpath" are on different file systems, and it is unsupported 

to move a file between different file systems

Description

This function renames a file.
This function renames the file specified by "oldpath" to the name specified by "newpath".

If "oldpath" is a file, "newpath" must not be a directory.
If the file specified by "newpath" already exists, it is deleted first.

If "oldpath" is a directory, "newpath" must not be a file.
If the directory specified by "newpath" already exists, it is deleted first.

If the last element of either argument is "." or "..", fs_rename() fails.

"oldpath" must not be included in the path name specified by "newpath".

The write permission is required for the directories containing "oldpath" and "newpath".

If "oldpath" is a directory, the write permission of "oldpath" is required. If "newpath" exists, the 
write permission of "newpath" is also required.

At the normal completion, fs_rename() updates the last modified time and the last status change time 
of the parent directory for each argument.

If fs_rename() fails due to an error other than EX_IO, the file specified by "newpath" is not 
affected.

4.4.13 fs_unlink - Deletes a file

C Language Interface

#include <t2ex/fs.h>

ER er = fs_unlink(const char* path);

Parameter

    const char* path path name of the file to delete

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion
  EX_ACCES Write permission attribute does not exist for the parent directory

   EX_BUSY File is in use

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 30



  EX_ISDIR "path" is a directory
  EX_NAMETOOLONG File name is too long

    - Directory or file name part in "path" is too long (NAME_MAX at maximum)
    - Whole path length is too long (PATH_MAX at maximum).

  EX_NOENT File included in "path" does not exist or "path" is empty
  EX_NOTDIR "path" contains something other than a directory in the prefix part

   EX_ROFS Read-only file system

Description

This function deletes the file with the name specified by "path".
This function cannot delete a directory.

At the normal completion, this function updates the last modified time and the last status change time
of the parent directory.

See Also
fs_rmdir

4.4.14 fs_fsync, fs_fdatasync - Synchronizes a file

C Language Interface

#include <t2ex/fs.h>

ER er = fs_fsync(int fd);
ER er = fs_fdatasync(int fd);

Parameter

     int fd file descriptor

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion
   EX_BADF "fd" is invalid
   EX_INTR Aborted by fs_break() (for fs_fsync())

  EX_INVAL "fd" is not a file descriptor for a device that can be synchronized
   EX_IO I/O error

Other errors defined in fs_read() and fs_write() are returned.

Description

These functions complete all of the currently queued I/O requests of the file specified by "fd", and 
synchronize the disk cache corresponding to that file with the physical device. These functions will 
return after waiting for completion of synchronization.

While fs_fsync() synchronizes all data and metadata of the file, fs_fdatasync() does not synchronize 
metadata which is not directly related to data of the file, such as last modified time.

In some FIMPs, fs_fdatasync() may act exactly the same as the fs_fsync().

4.4.15 fs_chdir, fs_fchdir - Changes the current directory

C Language Interface

#include <t2ex/fs.h>

ER er = fs_chdir(const char* path);
ER er = fs_fchdir(int fd);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 31



Parameter

    const char* path directory pathname
     int fd file descriptor for a directory

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion
  EX_ACCES Search permission attribute does not exist for the directory "fd"

  EX_NAMETOOLONG File name is too long
    - Directory or file name part in "path" is too long (NAME_MAX at maximum)
    - Whole path length is too long (PATH_MAX at maximum).

  EX_NOTDIR "fd" is not a directory
  EX_NOENT Directory for "path" does not exist or "path" is empty

   EX_INTR Aborted by fs_break()
   EX_IO I/O error

Description

fs_chdir() sets the current directory to the directory specified by the path name "path".

fs_fchdir() sets the current directory to the opened directory specified by the file descriptor "fd".
A directory can be opened by fs_open() with setting O_RDONLY in oflags.

In T2EX, there is only one current directory in the whole system.

See Also

fs_getcwd

4.4.16 fs_getcwd - Retrieves the current directory

C Language Interface

#include <t2ex/fs.h>

ER er = fs_getcwd(char* buf, size_t size);

Parameter

     char* buf storage space for the directory name
     size_t size byte size of "buf"

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion
  EX_INVAL "size" is 0
  EX_RANGE "size" is positive, but the size is smaller than the number of bytes of the 

string + 1
  EX_ACCES Search permission attribute does not exist for the current directory or 

read/search permission attribute does not exist for its upper directory
  EX_NOMEM Insufficient memory

Description

This function returns the absolute path name of the current directory to the area specified by "buf".
This path name does not contain the "." or ".." element.

If "buf" is NULL, the behavior is undefined.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 32



See Also

fs_chdir, fs_fchdir

4.4.17 fs_creat - Creates a file

C Language Interface

#include <t2ex/fs.h>

int fd = fs_creat(const char* pathname, mode_t mode);

Parameter

    const char* pathname path name of the file
      mode_t mode file creation mode

Return Parameter

      int fd file descriptor

Error Code

See fs_open()

Description

This function creates a file and opens it.
It is equivalent to fs_open(pathname, O_WRONLY|O_CREAT|O_TRUNC, mode).

For details, see fs_open().

See Also

fs_open

4.4.18 fs_chmod, fs_fchmod - Changes the mode of a file

C Language Interface

#include <t2ex/fs.h>

ER er = fs_chmod(const char *path, mode_t mode);
ER er = fs_fchmod(int fd, mode_t mode);

Parameter

    const char* path path name of a file to change the mode
     int fd file descriptor to change the mode

     mode_t mode file mode

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion
  EX_ACCES Directory included in "path" does not have the search permission attribute

   EX_BADF "fd" is invalid
  EX_NAMETOOLONG File name is too long

    - Directory or file name part in "path" is too long (NAME_MAX at maximum)
    - Whole path length is too long (PATH_MAX at maximum).

  EX_NOENT File included in "path" does not exist or "path" is empty
  EX_NOTDIR "path" contains something other than a directory in the prefix part

   EX_ROFS Read-only file system

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 33



Description

fs_chmod() changes the mode about the access permission of the file specified by the path name "path" 
to another one specified by "mode".
It changes only the bits for the access permission in the file mode.

For the meaning and effect of each bit, see the term "File mode".

In case of the FAT file system, this function sets only the write permission/protection.

fs_fchmod() changes the access permission on the open file specified by the file descriptor "fd".

See Also
fs_open, fs_stat

4.4.19 fs_utimes, fs_utimes_ms, fs_utimes us - Changes the timestamp of a file

C Language Interface

#include <t2ex/fs.h>

ER er = fs_utimes(const char* path, const struct timeval tim[2]);
ER er = fs_utimes_ms(const char* path, const SYSTIM tim_m[2]);
ER er = fs_utimes_us(const char* path, const SYSTIM_U tim_u[2]);

Parameter

    const char* path path name

   const struct timeval tim[2] System time in the POSIX format and in microseconds
   const SYSTIM tim_m[2] System time in milliseconds

   const SYSTIM_U tim_u[2] System time in microseconds

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion
  EX_ACCES Directory included in "path" does not have the search permission attribute
  EX_INVAL Specified time is not supported in the file system

  EX_NAMETOOLONG File name is too long
    - Directory or file name part in "path" is too long (NAME_MAX at maximum)
    - Whole path length is too long (PATH_MAX at maximum).

   EX_ROFS Read-only file system

Description

These functions set the access time and the modified time of the file specified by "path" to the 
specified times.
tim_u[0], tim_m[0], and tim[0] specify a new access time.
tim_u[1], tim_m[1], and tim[1] specify a new modified time.

The structure "timeval" is defined as follows:

 struct timeval {
     long tv_sec; /* second */
    long tv_usec; /* microsecond */
 };

If tim, tim_m, or tim_u is NULL, the file access time and the modified time are set to the maximum 
time value not larger than the current time, supported by the FIMP.

At the time of completion, the last status change time of the file is updated.

See Also

fs_stat, fs_fstat, fs_stat64, fs_fstat64

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 34



4.4.20 fs_ioctl - Controls a device

C Language Interface

#include <t2ex/fs.h>

ER er = fs_ioctl(int fd, int request, ... /* arg */);

Parameter

     int fd file descriptor
     int request requested command

Return Parameter

     ER er result depending on the requested command
     or error code

Error Code

   E_OK Normal completion
   EX_BADF "fd" is invalid

  EX_INVAL "request" or subsequent arguments are invalid
  EX_NOTTY "fd" does not refer to a special device of the character type

In addition to the errors above, the FIMP returns an appropriate error depending on the type of 
"request".

Description

fs_ioctl() controls a file or device specified by "request".
"fd" is an open file descriptor which refers to a device.
"request" and subsequent optional arguments are passed to the FIMP corresponding to "fd" to be 
processed.

"arg" is additional information required to execute "request" on the target device.
"arg" is a pointer to the int type or the device-specific data structure depending on the type of 
"request".

The "arg" type for each "request" is described below.

  FIONBIO const int*
  Sets the blocking or non-blocking mode of I/O operation for the descriptor by the 
value pointed to by the argument int*.
  *arg == 0 sets the blocking mode (the O_NONBLOCK status flag is cleared).
  *arg != 0 sets the non-blocking mode (the O_NONBLOCK status flag is set).

 FIONREAD int*
  Returns the number of bytes ready to immediately read to the area pointed to by the 
argument int*.

 FIONWRITE int*
  Returns the number of bytes of the data stored in the send queue for the descriptor to
the area pointed to by the argument int*.
  Those bytes are data written to the descriptor, waiting to be processed.
  How they are processed is device-dependent.

 FIONSPACE int*
  Returns the available space of the send queue for the descriptor to the area pointed 
to by the argument int*.
  This value is the size of the send queue minus the size of data stored in the queue.

Other values not reserved by the system for "request" are passed to the FIMP together with the 
arguments to be processed.
This provides a communication path between applications and the FIMP.

Some FIMPs may return an error without EC_ERRNO as the main error code.
This can be used to directly return the error code from the device driver.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 35



4.4.21 fs_fcntl - file control

C Language Interface

#include <t2ex/fs.h>

ER er = fs_fcntl(int fd, int cmd, ... /* arg */);

Parameter

     int fd file descriptor
     int cmd operation command

     arg argument list may be required depending on the command 
(variable length)

Return Parameter

     ER er zero or positive result depending on the command
     or error code

Error Code

   EX_BADF "fd" is invalid
  EX_INVAL Value of "cmd" is invalid

Other than above, the FIMP returns an appropriate error code depending on the command.

Description

This function performs one of the following operations specified by "cmd" for the file descriptor 
"fd":

F_GETFL
  Returns the file status flag and the access mode of the file descriptor "fd".
  The file access mode is retrieved by masking the return code with O_ACCMODE.
F_SETFL
  Sets the file status flag of the file descriptor "fd" with the corresponding bits in 
the third argument "arg".
  The third argument "arg" is an int type.
  The bits corresponding to the file access mode and the file creation flag are ignored 
and the file status flag is set.

  Other bits of "arg" can be changed, but the resulting behavior is undefined.

  Because the file status flag and the access mode are associated with each individual 
file descriptor, the setting of F_SETFL has no effect on a different file descriptor which is obtained
by separately opening the same file.

Other commands and their "arg" are passed to the FIMP to be processed.

4.4.22 fs_truncate, fs_ftruncate, fs_truncate64, fs_ftruncate64 - Truncates or enlarges a file

C Language Interface

#include <t2ex/fs.h>

ER er = fs_truncate(const char* path, off_t length);
ER er = fs_ftruncate(int fd, off_t length);
ER er = fs_truncate64(const char* path, off64_t length64);
ER er = fs_ftruncate64(int fd, off64_t length64);

Parameter

    const char* path path name of the file
     int fd file descriptor

     off_t length length of the file
    off64_t length64 length of the file (by 64-bit offset)

Return Parameter

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 36



     ER er error code

Error Code

   E_OK Normal completion
   EX_BADF "fd" is not opened for writing
   EX_INTR Aborted by fs_break()

  EX_INVAL "length" or "length64" is negative, or "fd" is invalid
   EX_BIG "length" or "length64" exceeds the maximum length of a file

   EX_IO I/O error
  EX_ISDIR "path" or "fd" is a directory

  EX_NAMETOOLONG File name is too long
    - Directory or file name part in "path" is too long (NAME_MAX at maximum)
    - Whole "path" length is too long (PATH_MAX at maximum)

  EX_NOENT File included in "path" does not exist or "path" is empty
   EX_ROFS Read-only file system

Description

These function change the length of the file named "path" or referred to by "fd" to the one specified 
by "length" or "length64".

"fd" must be a file descriptor opened for writing.

If the file is longer than "length" or "length64", the data exceeding "length" or "length64" is 
truncated.
If the file is shorter than "length" or "length64", the file size is enlarged up to "length" or 
"length64", filling a new space with zeros.

For an open file, the file offset is not changed.

If the size is changed, the last modified time and the last status change time of the file are 
updated.

fs_truncate64 and fs_ftruncate64 can be sized with a 64-bit offset.

See Also

fs_open

4.4.23 fs_sync - Synchronizes the file system

C Language Interface

#include <t2ex/fs.h>

ER er = fs_sync(void);

Parameter

None

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion
   EX_INTR Aborted by fs_break()

Description

For all file systems connected to the system, this function completes all of the currently queued I/O 
requests, and synchronizes all disk caches with the physical devices, This function will return after 
waiting for completion of synchronization.

At the normal completion of fs_sync(), synchronization of all files systems connected to the system 
with the physical devices is guaranteed.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 37



SEE_ALSO

fs_fsync, fs_fdatasync

4.4.24 fs_statvfs, fs_fstatvfs - Gets the file system statistics

C Language Interface

#include <t2ex/fs.h>

ER er = fs_statvfs(const char* path, struct statvfs* buf);
ER er = fs_fstatvfs(int fd, struct statvfs* buf);

Parameter

    const char* path path name
    struct statvfs* buf file statistics

     int fd file descriptor

Return Parameter

     ER er error code
    struct statvfs* buf file statistics

Error Code

   E_OK Normal completion
   EX_BADF "fd" is invalid (fs_fstatvfs)

   EX_IO I/O error
   EX_INTR Aborted by fs_break()

  EX_OVERFLOW Some values cannot be represented by the structure of "buf"
  EX_NAMETOOLONG File name is too long

    - Directory or file name part in "path" is too long (NAME_MAX at maximum)
    - Whole "path" length is too long (PATH_MAX at maximum)

  EX_NOENT File included in "path" does not exist or "path" is empty
  EX_NOTDIR "path" contains something other than a directory in the prefix part

Description

fs_statvfs() returns information on the file system that contains the file specified by "path", to 
"buf".

fs_fstatvfs() returns information on the file system that contains the file referred to by the file 
descriptor "fd", to "buf".

The structure "statvfs" contains the following elements:

     unsigned long f_bsize block size of the file system
    unsigned long f_frsize block size of the fragment
    fsblkcnt_t f_blocks total number of blocks in the file system in units of 
f_frsize
     fsblkcnt_t f_bfree number of available blocks
    fsblkcnt_t f_bavail equivalent to b_free
     fsfilcnt_t f_files total number of files
     fsfilcnt_t f_ffree number of blank files
    fsfilcnt_t f_favail equivalent to f_ffree
     unsigned long f_fsid file system ID
     unsigned long f_flag bit mask for f_flag values
    unsigned long f_namemax maximum length of the file name
 

f_flag values are as follows:
   ST_RDONLY Read-only file system
   ST_NOSUID Does not support the semantics of ST_ISUID and ST_ISGID file mode bits
    (Normally 1)
   ST_REMOVABLE Removable file system
   ST_MEMORY Memory file system
   ST_NETWORK Network file system

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 38



4.4.25 fs_mkdir - Creates a directory

C Language Interface

#include <t2ex/fs.h>

ER er = fs_mkdir(const char* path, mode_t mode);

Parameter

    const char* path path name of the directory to create
     mode_t mode permission attribute of the directory

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion
  EX_ACCES Write permission attribute does not exist for the parent directory
  EX_EXIST File with the name already exists

  EX_NAMELOOLONG Directory or file name part in "path" is too long (NAME_MAX at maximum)
  EX_NOENT File included in "path" does not exist or "path" is empty
  EX_NOSPC Insufficient device space

  EX_NOTDIR "path" contains something other than a directory in the prefix part
   EX_ROFS Parent directory exists in a read-only file system

Description

This function creates a new directory with the path name specified by "path".

The access permission of the new directory is set by "mode".

Since the concept of owners, groups, and others does not exist in T2EX, the access privilege is 
granted if any of the bits is set.

Whether or not an access privilege is effective for read, write, or execution depends on the file 
system.

See Also

fs_rmdir

4.4.26 fs_rmdir - Removes a directory

C Language Interface

#include <t2ex/fs.h>

ER er = fs_rmdir(const char* path);

Parameter

    const char* path directory pathname

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion
   EX_BUSY Directory is in use(root directory or a connection point)

  EX_NOTEMPTY "path" is not an empty directory
  EX_INVAL "path" is invalid.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 39



   EX_IO I/O error
  EX_NAMELOOLONG Directory or file name part in "path" is too long (NAME_MAX at maximum)

  EX_NOENT "path" does not exist
  EX_NOTDIR "path" contains something other than a directory in the prefix part

   EX_ROFS Read-only file system

Description

This function deletes the directory with the path name specified by "path".
The directory must be empty.

At the normal completion, the last modified time and the last status change time of the parent 
directory of the deleted directory have been updated.

See Also

fs_mkdir, fs_rename

4.4.27 fs_getdents - Reads directory entries

C Language Interface

#include <t2ex/fs.h>

int nb = fs_getdents(int fd, struct dirent* buf, size_t bufsz);

Parameter

    int fd file descriptor for a directory
   struct dirent* buf pointer to the memory area into which the directory entry structure is

read
    size_t bufsz buf size of the memory area specified by "buf" (bytes)

Return Parameter

    int nb size that have been read (bytes) or error code
   struct dirent* buf directory entries that have been read

Error Code

   EX_BADF "fd" is invalid
  EX_FAULT Illegal address in argument
  EX_INVAL "bufsz" is too small, no directory entry is read.
  EX_NOENT Such a directory does not exist

  EX_NOTDIR File descriptor "fd" does not refer to a directory

Description

fs_getdents() reads directory entries from the directory specified by "fd".

"fd" is a file descriptor of a directory opened by fs_open().

"buf" is the pointer to a memory area reserved by the application to read directory entries.

"bufsz" is the size of the memory area specified by "buf" (bytes).

fs_getdents() reads one or more directory entries into the memory area specified by "buf" at a maximum
of "bufsz" and returns the size (bytes) it has read.

If it reaches the end of the directories, it returns 0.

The structure of directory entry (dirent) is defined as follows:

struct dirent {
      ino_t d_ino; /* Internal number of file */
    unsigned short d_reclen; /* Byte size of this entry */
    char d_name[NAME_MAX+1]; /* Name of entry */
};

Directory entry is variable length, the size of which is indicated by "d_reclen".

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 40



The start address of the next entry is obtained by adding "d_reclen" to the start address of this 
entry.
The sum of "d_reclen" of directory entries read is the return value.

* Usually, this function should not be used to read directory entries.
  Use the readdir_r library function in Standard C Compatible Library instead.

4.4.28 fs_break - Breaks a file management operation

C Language Interface

#include <t2ex/fs.h>

int ntsk = fs_break(ID tskid);

Parameter

     ID tskid target task ID

Return Parameter

     int ntsk number of tasks which were released from wait
     or error code

Error Code

   E_ID Task ID is invalid (negative or exceeding TMaxTskId)
   E_NOEXS Task with the task ID does not exist

Description

This function releases the waiting state of the task specified by "tskid" which involves a call of the
file manager.

If the target task is waiting during execution of an API call of the file manager, it is immediately 
released, and the API call in progress returns EX_INTR.

If "tskid" is TSK_ALL(= (-1)), this operation applies to all the tasks.

At the normal completion, fs_break() returns the number of waiting tasks which were released.

If none of the target tasks is waiting during execution of an API call of the file manager, fs_break()
returns 0.

A task wait release request by fs_break() is not queued.
That is, if a task specified by "tskid" is not waiting, the executed fs_break() has no effect on it 
even if it starts waiting subsequently.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 41



4.5 File System Implementation Part

4.5.1 Overview

T2EX lets users to define program codes that manage file systems on a specified device on their own.
Such program codes are called the "File System Implementation Part (FIMP)".
The FIMP defines the file system structure of files which are the target of the file manager APIs, and
processing of these files.

As the pre-registered FIMPs, T2EX has the "Basic FAT FIMP" which handles the FAT file system 
structure, and the "Basic Console FIMP" which handles the standard input/output.

 An FIMP is registered and used to operate the file system and files on a device in the following 
steps:

1. Create functions that execute various operations on the file system structure and the device you 
want to use as FIMP.
These functions are called from the file manager of T2EX.

2. Use fs_regist() to register the pointer set of the FIMP functions as well as the FIMP name in the 
system.
   At this time, the FIMP registration function is called.

 * For the Basic FAT FIMP and the Basic Console FIMP, fs_main() automatically carries out these
steps up to this point.
Therefore, when only the Basic FAT FIMP and the Basic Console FIMP are used, the above steps 1 and 2 
are not necessary.

3. Use fs_attach() to associate the device where the file system is located with the FIMP that handles
the file system. This connects the file system to the specified connection point.
   At this time, the FIMP attach device function is called.

4. Execute various API calls in the file manager to manipulate the file system or files.
   At this time, the internal FIMP request service functions are invoked corresponding to these API 
calls.

A device is disconnected and the FIMP is unregistered in the following steps:

1. Close all the open files on the device.
    To write any still-to-be-written data to the device, execute fs_sync().

2. Use fs_detach() to disconnect the device connected to a specified connection point.
   At this time, the FIMP detach device function is called from the file manager.

3. Repeat the step 2 for all the connected devices using this FIMP.

4. Use fs_unregist() to unregister the FIMP with the specified name from the system.
   At this time, the FIMP unregistration function is called.

4.5.2 FIMP Structure

 An FIMP consists of the following functions.

  - Request service function (reqfn)
  - Registration function (registfn)
  - Unregistration function (unregistfn)
  - Attach device function (attachfn)
  - Detach device function (detachfn)
  - Startup function (startupfn)
  - Cleanup function (cleanupfn)
  - Break function (breakfn)

These functions are called from the file manager. They return E_OK for a successful operation 
indicating the normal completion, and an appropriate T2EX extended error code (EX_xxx) for a failed 
operation, according to the cause or reason of the failure.

The file manager passes path name or other strings in the UTF-8 format character code to these 
functions. If a different character code system is used in the file system on the device, the 
character codes need to be converted in these functions.

Because the file manager is implemented as a subsystem, these functions are executed as a quasi-task 
portion in the context of the application task that executed the API calls of the file manager.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 42



However, fs_break() is executable from a task-independent portion. In this particular case, the break 
function called in fs_break() is executed as the task-independent portion.

Because the FIMP functions are executed as a quasi-task portion in the context of the application 
task, they should not use the following T-Kernel 2.0 APIs which may be used in an application task to 
avoid unexpected behavior.

For example, when an application task calls tk_wup_tsk() to wake up another task which calls file 
manager APIs, tk_slp_tsk() in the file manager APIs would be incorrectly woken up.

 tk_slp_tsk()
 tk_slp_tsk_u()
 tk_wup_tsk()
 tk_can_wup()

Startup function, cleanup function and break function are optional, but all the other functions are 
mandatory.

- Request service function

  ER (*reqfn)(fimp_t *req);

This function is called in any API call of the file manager, except fs_main(), fs_regist(), 
fs_unregist(), fs_attach(), fs_detach(), and fs_break(), to execute a file operation specified by 
"req".
Details about the fimp_t data type and the request service function are described later.

If API calls of the file manager are executed by multiple tasks at the same time, the request service 
function may also be called concurrently from the quasi-task portion in the context of each task. This
means that the mutual exclusion is required in the request service function.

- Registration function

  ER (*registfn)(fimpinf_t *fimpinf, void *info);

This function is called in fs_regist() to initialize the device-independent part of the FIMP itself.

The details of fimpinf_t data type is described later. fimpinf->fimpnm is the FIMP name specified by 
fs_regist().
fimpinf->fimpsd data can be used freely by the FIMP. An appropriate value set by this function can be 
used in a different FIMP function later.
Typically, it is set to the pointer of a space allocated to store specific data required by the FIMP.

A new instance of "fimpinf" is created every time fs_regist() is executed. When fs_regist() is called 
for the same FIMP more than once, the value of "fimpinf" is different.

"info" is the value as specified to fs_regist().

- Unregistration function

  ER (*unregistfn)(fimpinf_t * fimpinf);

This function is called in fs_unregist() to terminate the device-independent part of the FIMP itself.

"fimpinf" has the same value as "fimpinf" passed to the FIMP registration function. If memory space 
for storing specific data is allocated and its address is set to fimpinf->fimpsd, it needs to be 
released.

- Attach device function

  ER (*attachfn)(coninf_t * coninf, void *info);

This function is called in fs_attach() to initialize and connect the device.

The details of coninf_t data type are described later. coninf->fimpinf has the same value as "fimpinf"
passed to the FIMP registration function.

coninf->devnm is the device name "devnm" specified by fs_attach().
The file manager makes no check regarding the device. It is necessary to perform appropriate checks on
the device specified in this function for its existence, file system structure on it, and so on.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 43



coninf->dflags is passed as the value of "flags" specified in fs_attach(). If there is any additional 
information regarding the device type, it needs to be ORed with the original value of dflags in this 
function to be notified to the file manager.

coninf->connm is the connection point, i.e., "connm" specified in fs_attach().

coninf->consd data can be used freely by the FIMP. An appropriate value set by this function can be 
used in a different FIMP function later.
Typically, it is set to the pointer to a memory space allocated to store connection-specific data 
required by the FIMP.
A new instance of "coninf" is created every time fs_attach() is executed. When fs_attach() is called 
for the same device and FIMP more than once, the value of "coninf" is differnt.

"info" is the value as specified in fs_attach().

- Detach device function

  ER (*detachfn)(coninf_t *coninf);

This function is called in fs_detach() to disconnect a connected device.

It writes any data left in the cache that should be written to the device.

"coninf" has the same value as "coninf" passed to the device initialization function. If the storage 
space for a specific data is allocated and its pointer is set in coninf->consd, it needs to be 
released.

- Startup function

  ER (*startupfn)(coninf_t *coninf, ID resid);

This function is called in the startup function of the file manager
invoked by the API call tk_sta_ssy() of T-Kernel 2.0, to initialize the resource management block 
specified by "resid".
The T2EX system does not use a resource management block, and this function is usually omitted.

- Cleanup function

  ER (*cleanupfn)(coninf_t *coninf, ID resid);

This function is called in the cleanup function of the file manager
invoked by the API call tk_cln_ssy() of T-Kernel 2.0, to release the resource management block 
specified by "resid".
The T2EX system does not use a resource management block, and this function is usually omitted.

- Break function

  ER (*breakfn)(coninf_t *coninf, ID tskid, BOOL set);

This function is called during the execution of fs_break().
 
At first, this function is called with "set" as TRUE. In this case, this function aborts and 
immediately terminates the execution of any unfinished FIMP request service function for the task 
specified by "tskid".
Upon return of the aborted request service function, this function is called again with "set" as 
FALSE. In this case, this function initializes the internal aborted state of the task specified by 
"tskid".

If a request service function is waiting during the execution, this function immediately releases the 
wait, and the aborted request service function returns the EX_INTR error code.
However, for a file reading/writing request service function which already has read or written some 
data, such state is regarded as normal operation and the request service function returns E_OK with 
the actually read/written number of bytes.

This function always returns E_OK.

"coninf" has the same value as "coninf" passed to the attach device function.

This function is called both from a quasi-task portion and from a task-independent portion, and thus 
should operate correctly in both contexts.

This function may be omitted if all the FIMP request service functions return in a short time and will
not enter into long or indefinite wait.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 44



4.5.3 Data Types

- FIMP definition (fs_fimp_t)

 This structure defines an FIMP to be used as an argument of fs_regist().

/* FIMP definition */
typedef struct {
       ER (*reqfn)(fimp_t * req); /* Request service function */
    ER (*registfn)(fimpinf_t * fimpinf, void *info); /* Registration function */
     ER (*unregistfn)(fimpinf_t * fimpinf); /* Unregistration function */
    ER (*attachfn)(coninf_t * coninf, void *info); /* Attach device function */
      ER (*detachfn)(coninf_t * coninf); /* Detach device function */
    ER (*startupfn)(coninf_t * coninf, ID resid); /* Startup function */
    ER (*cleanupfn)(coninf_t * coninf, ID resid); /* Cleanup function */
   ER (*breakfn)(coninf_t * coninf, ID tskid, BOOL set); /* Break function */
         int flags; /* Kind of FIMP */
        int priority; /* Priority */
} fs_fimp_t;

- Request service function (reqfn)
- Registration function (registfn)
- Unregistration function (unregistfn)
- Attach device function (attachfn)
- Detach device function (detachfn)
- Startup function (startupfn)
- Cleanup function (cleanupfn)
- Break function (breakfn)

Specify these function pointers in an FIMP.
When the startup, cleanup, or break function is to be omitted, specify NULL.

- Kind of FIMP (flags)

This is set to the FIMP type which is an OR of some of the following bit flags.

 FIMP_FLAG_READONLY Read only file system
 FIMP_FLAG_MEMORY Memory file system

 FIMP_FLAG_NETWORK Network file system
  FIMP_FLAG_64BIT Supports file size of 64 bits

 FIMP_FLAG_USEABORT Supports fs_break()
   0 Others

If FIMP_FLAG_USEABORT is specified, the break function cannot be omitted.

- Priority (priority)

 This is set to the FIMP priority in eight levels (highest: 1 to lowest: 8).
The file managemer calls FIMP startup functions in the order of this priority.
This value is not referenced if the startup function is set to NULL.

- FIMP information (fimpinf_t)

 This structure is used by an FIMP to manage information necessary for operation and passed to every 
FIMP function.

/* FIMP information */
typedef struct {
   char fimpnm[L_FIMPNM+1]; /* Name of FIMP */
     void * fimpsd; /* Specific data for FIMP */
} fimpinf_t;

- Name of FIMP (fimpnm)

FIMP name string specified by fs_regist().
An FIMP must not change this value.

- Specific data for FIMP (fimpsd)

This data can be used freely by an FIMP. The file manager does not use this value.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 45



- Connection information (coninf_t) 

 This structure is used by an FIMP to manage necessary information per connection and passed to every 
function except the FIMP initialization and termination functions.

/* Connection information */
typedef struct {
    fimpinf_t * fimpinf; /* FIMP information */
    UB devnm[L_DEVNM+1]; /* Name of device */
      int dflags; /* Kind of device */
    char connm[L_CONNM+1]; /* Name of connection point */
      void * consd; /* Specific data for connection */
} coninf_t;

- FIMP information(fimpinf)

Pointer to FIMP information created by fs_regist().

- Name of device(devnm)

Device name specified by fs_attach(). An FIMP must not change this value.

- Kind of device(dflags)

Kind of a device which is an OR of some of the following bit flags.

  DEV_FLAG_READONLY Read only device
  DEV_FLAG_REMOVABLE Removable device
   DEV_FLAG_MEMORY Memory device
    0 Others

It is set to the value of "flags" specified by fs_attach(). Additional values may be set in the device
initialization function.

- Name of connection point(connm)

Name of connection point specified by fs_attach().
An FIMP should not change this value.

- Specific data for connection(consd)

coninf->consd data can be used freely by an FIMP. The file manager does not use this value.

- Open file ID (fid_t)

Numerical data type for identifying a file/directory opened by an FIMP.

The value of the open file ID depends on a specific FIMP implementation. If a file/directory is opened
more than once, their open file IDs shall be a same value.

4.5.4 Request Service Function

 The request service function is called in any API call of the file manager, except fs_regist(), 
fs_unregist(), fs_attach(), fs_detach(), and fs_break(), to execute a specified file operation.

  ER (*reqfn)(fimp_t *req);

fimp_t is the following union which indicates details of a request file operation.

/* Union of file request service */
union fimp {
     struct { /* Common structure */
      int r_code; /* Request service code */
     coninf_t * coninf; /* Pointer to connection information */
 } com;
      /* Parameters for each request service code */
     struct fimp_open r_open; /* FIMP_OPEN */
    struct fimp_close r_close; /* FIMP_CLOSE */
    struct fimp_read64 r_read64; /* FIMP_READ64 */
    struct fimp_write64 r_write64; /* FIMP_WRITE64 */

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 46



    struct fimp_ioctl r_ioctl; /* FIMP_IOCTL */
    struct fimp_fsync r_fsync; /* FIMP_FSYNC */
    struct fimp_truncate64 r_truncate64; /* FIMP_TRUNCATE64 */
   struct fimp_ftruncate64 r_ftruncate64; /* FIMP_FTRUNCATE64 */
    struct fimp_unlink r_unlink; /* FIMP_UNLINK */
    struct fimp_rename r_rename; /* FIMP_RENAME */
    struct fimp_chmod r_chmod; /* FIMP_CHMOD */
    struct fimp_fchmod r_fchmod; /* FIMP_FCHMOD */
    struct fimp_mkdir r_mkdir; /* FIMP_MKDIR */
    struct fimp_rmdir r_rmdir; /* FIMP_RMDIR */
    struct fimp_chdir r_chdir; /* FIMP_CHDIR */
    struct fimp_fchdir r_fchdir; /* FIMP_FCHDIR */
    struct fimp_getdents r_getdents; /* FIMP_GETDENTS */
    struct fimp_fstatvfs r_fstatvfs; /* FIMP_FSTATVFS */
    struct fimp_statvfs r_statvfs; /* FIMP_STATVFS */
     struct fimp_sync r_sync; /* FIMP_SYNC */
    struct fimp_utimes_us r_utimes_us; /* FIMP_UTIMES_US */
    struct fimp_fcntl64 r_fcntl64; /* FIMP_FCNTL64 */
    struct fimp_stat64_us r_stat64_us; /* FIMP_STAT64_US */
    struct fimp_fstat64_us r_fstat64_us; /* FIMP_FSTAT64_US */
};
typedef union fimp fimp_t;

The file processing request union may contain members other than the above, depending on the file 
managemer implementation. These members are intended to be used by the file managemer and shall not be
referenced and changed by an FIMP.

The request service function code (r_code) corresponds to an API call of the file manager to 
distinguish it from other file operations. It takes a value from FIMP_OPEN to FIMP_STAT64_US.

The parameters and the operation of a request service function per request service function code are 
described in the following.

 - Any file/directory path name passed to the request service function is an absolute path name which 
starts with "/" and does not include "." nor "..".
 - In the description of a request service function, the content of a space pointed to by a pointer 
"p" is referred to by "*p".
 - The following notations are used in the parameter comment. For a pointer, they refer to the target 
of the pointer.
  (in)  Input: A reference-only parameter which is not changed.
  (out)  Output: A change(set)-only parameter which is not referenced.
 (in/out) Input/output: A parameter that is/can be referenced and changed (set).

- FIMP_OPEN

struct fimp_open {
    int r_code; /* (in) = FIMP_OPEN */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
    const char * path; /* (in) File path name */
    int oflags; /* (in) Open flag */
     mode_t mode; /* (in) File mode */
    fid_t * fid; /* (out) Pointer to open file ID */
};

This function opens a file or directory specified by "path".

If the file specified by "path" does not exist and O_CREAT is specified in "oflags", this function 
creates a new file with the specified path name.

"oflags" receives the value specified by "oflags" of fs_open().
"oflags" contains any one of the file access modes O_RDONLY, O_WRONLY, and O_RDWR, and may contain 
file creation flags O_CREAT, O_EXCL, and O_TRUNC and the file status flag O_APPEND.

"mode" receives the value specified by "mode" of fs_open().
"mode" is valid as the access permission flag for the newly created file only when the specified file 
does not exist and O_CREAT is specified in "oflags".

For a file system with no owner, group, or privilege, the interpretation of each bit of "mode" depends
on an FIMP.
For instance, if there is no owner function and S_IWUSR is specified, whether to give the write 
privilege on the file or to generate an error depends on an FIMP.
Also, for a writable file, which attribute among S_IWUSR, S_IWGRP, and S_IWOTH is set for st_mode 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 47



returned by FIMP_STAT64_US and FIMP_FSTAT64_US depends on an FIMP as well.

If a file is successfully opened, the open file ID which identifies the opened file is stored in 
"*fid".
The open file ID is used by subsequent request service functions as the parameter to specify the 
opened file.

- FIMP_CLOSE

struct fimp_close {
    int r_code; /* (in) = FIMP_CLOSE */
   coninf_t* coninf; /* (in/out) Pointer to connection information */
     fid_t fid; /* (in) Open file ID */
    int oflags; /* (in) Open flag */
};

This function closes an open file or directory specified by "fid".

- FIMP_READ64

struct fimp_read64 {
    int r_code; /* (in) = FIMP_READ64 */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
     fid_t fid; /* (in) Open file ID */
    int oflags; /* (in) Open flag */
     void * buf; /* (out) Pointer to data read buffer */
    size_t * len; /* (in/out) Pointer to number of bytes to read / read */
    off64_t * off; /* (in) Pointer to file offset before read */
   off64_t * retoff; /* (out) Pointer to file offset after read */
};

This function reads data for the number of bytes specified by "*len" into "*buf", from the file offset
specified by "*off" in the open file specified by "fid".

At return, it stores the number of bytes actually read in "*len", and the file offset after reading in
"*retoff".
This should work correctly even if the "off" and "retoff" pointers are the same.

If the end of file is reached, this function stores 0 in "*len" and returns E_OK.
If the end of the file is not reached and no bytes could not be read, it returns an appropriate error 
code.

If the file is a directory, its content is read.
If it is a connection point, the content in the root directory of the connected device is read 
likewise.

If "*off" is set to a value of 4 GB or more in an FIMP that can only
handle a file size up to 4 GB, it returns the EX_OVERFLOW error code.

"oflags" may have been changed from the value when FIMP_OPEN was called. If fs_fcntl() is executed 
with FIONBIO, the O_NONBLOCK bit of "oflags" will be changed. The same applies to other request 
service functions that have "oflags" as a parameter.

- FIMP_WRITE64

struct fimp_write64 {
    int r_code; /* (in) = FIMP_WRITE64 */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
     fid_t fid; /* (in) Open file ID */
    int oflags; /* (in) Open flag */
     void * buf; /* (in) Pointer to data write buffer */
    size_t * len; /* (in/out) Pointer to number of bytes to write / written */
    off64_t * off; /* (in) Pointer to file offset before write */
   off64_t * retoff; /* (out) Pointer to file offset after write */
};

This function writes data for the number of bytes specified by "*len" from "*buf", from the file 
offset specified by "*off" in the open file specified by "id".

At return, it stores the number of bytes actually written in "*len", and the file offset after writing
in "*retoff".

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 48



This should work correctly even if the "off" and "retoff" pointers are the same.

If no bytes could be written in the file, this function returns an appropriate error code.

If "*off" is set to a value of 4 GB or more in an FIMP that can only
handle a file size up to 4 GB, it returns the EX_OVERFLOW error code.

If O_APPEND is specified in "oflags", the "*off" value is ignored and additional data is always 
written to the end of the file.

- FIMP_IOCTL

struct fimp_ioctl {
    int r_code; /* (in) = FIMP_IOCTL */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
     fid_t fid; /* (in) Open file ID */
    int oflags; /* (in) Open flag */
     int dcmd; /* (in) Device control command number */
     void * arg; /* (in/out) Device control command parameter */
    ER * retval; /* (out) Pointer to return value */
};

This function executes the FIMP specific device operation against an open file specified by "fid".

"dcmd" is the second argument of fs_ioctl(), specifying an FIMP-specific device control command 
number.
If the specified command number is not supported, this function returns the EX_NOSYS error.

"arg" is the third argument of fs_ioctl(). Its content is dependent on "dcmd".

"*retval" stores the value returned to fs_ioctl().

- FIMP_FSYNC

struct fimp_fsync {
    int r_code; /* (in) = FIMP_FSYNC */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
     fid_t fid; /* (in) Open file ID */
     int type; /* (in) TYPE_FSYNC or TYPE_FDATASYNC */
    int oflags; /* (in) Open flag */
};

This function flushes the cache data not yet flushed to the device, regarding the open file specified 
by "fid".

If "type" is TYPE_FSYNC, this function flushes all of the file data and the file management 
information to the device.
If "type" is TYPE_FDATASYNC, it does not flush some management information which is not directly 
related to data of the file, such as access time and modified time.

In some instances of the FIMP, the behavior of TYPE_FDATASYNC may be exactly the same as that of 
TYPE_FSYNC.

If the target cache data has been flushed to the device, it simply returns E_OK.

- FIMP_TRUNCATE64

struct fimp_truncate64 {
    int r_code; /* (in) = FIMP_TRUNCATE64 */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
    const char * path; /* (in) File path name */
    off64_t len; /* (in) File byte size */
};

This function truncates or enlarges the file specified by "path" to the size specified by "len".
When the file is enlarged, enlarged space is filled by zero.

If "len" is set to a value of 4 GB or more in an FIMP that can only
handle a file size up to 4 GB, it returns the EX_OVERFLOW error code.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 49



- FIMP_FTRUNCATE64

struct fimp_ftruncate64 {
    int r_code; /* (in) = FIMP_FTRUNCATE64 */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
     fid_t fid; /* (in) Open file ID */
    off64_t len; /* (in) File byte size */
};

This function truncates or enlarges the open file specified by "fid" to the length specified by "len".
When the file is enlarged, enlarged space is filled by zero.

The specified file shall have been be opened for writing.

If "len" is set to a value of 4 GB or more in an FIMP that can only
handle a file size up to 4 GB, it returns the EX_OVERFLOW error code.

- FIMP_UNLINK

struct fimp_unlink {
    int r_code; /* (in) = FIMP_UNLINK */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
    const char * path; /* (in) File path name */
};

This function deletes the link of the file specified by "path".

In an FIMP that does not support links, it deletes the file itself.

- FIMP_RENAME

struct fimp_rename {
    int r_code; /* (in) = FIMP_RENAME */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
   const char * oldpath; /* (in) Old file path name */
   const char * newpath; /* (in) New file path name */
};

This function changes the path name of the file specified by "oldpath" to the path name specified by 
"newpath".
The "oldpath" and the "newpath" shall be in a same file system, i.e., under the same connection point.

- FIMP_CHMOD

struct fimp_chmod {
     int r_code; /* (in) = FIMP_CHMOD */
    coninf_t * coninf; /* (in/out) Pointer to connection information */
    const char * path; /* (in) File path name */
     mode_t mode; /* (in) File mode */
};

This function sets the access permission mode for the file specified by "path" to the value specified 
by "mode".

For the explanation of "mode", see FIMP_OPEN.

- FIMP_FCHMOD

struct fimp_fchmod {
     int r_code; /* (in) = FIMP_FCHMOD */
    coninf_t * coninf; /* (in/out) Pointer to connection information */
     fid_t fid; /* (in) Open file ID */
     mode_t mode; /* (in) File mode */
};

This function sets the access permission mode for the open file specified by "fid" to the value 
specified by "mode".

For the explanation of "mode", see FIMP_OPEN.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 50



- FIMP_MKDIR

struct fimp_mkdir {
    int r_code; /* (in) = FIMP_MKDIR */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
    const char * path; /* (in) Directory path name */
     mode_t mode; /* (in) File mode */
};

This function creates a new directory specified by "path", and sets an access permission mode 
specified by "mode".

Refer to the FIMP_OPEN section for the details of "mode".

- FIMP_RMDIR

struct fimp_rmdir {
    int r_code; /* (in) FIMP_RMDIR */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
    const char * path; /* (in) Directory path name */
};

This function removes a directory specified by "path".

- FIMP_CHDIR

struct fimp_chdir {
    int r_code; /* (in) FIMP_CHDIR */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
    const char * path; /* (in) Directory path name */
};

This function changes the current directory to a directory specified by "path".

The current directory is managed by the file manager. The absolute path is always passed to the FIMP. 
This eliminates the necessity for the FIMP to manage the current directory. However, retaining the 
current directory in the FIMP may accelerate operations.

- FIMP_FCHDIR

struct fimp_chdir {
    int r_code; /* (in) = FIMP_CHDIR */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
     fid_t fid; /* (in) Open file ID */
     char * buf; /* (out) Pointer to directory path name */
     int len; /* (in) Byte size of buf */
};

This function changes the current directory to the open directory specified by "fid", and stores its 
absolute path name in "*buf".
"len" specifies the number of bytes in the "buf" space.
If "len" is too small to store the absolute path name, this function returns an error code 
(EX_NAMETOOLONG).

The absolute path of the current directory stored in "*buf" is retained in the file manager to convert
a relative path to the absolute path.

- FIMP_GETDENTS

struct fimp_getdents {
    int r_code; /* (in) = FIMP_GETDENTS */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
     fid_t fid; /* (in) Open file ID */
    int oflags; /* (in) Open flag */
   struct dirent * buf; /* (out) Pointer to directory entries read buffer */
    size_t * len; /* (in/out) Pointer to byte size of buf / actual read */
    off64_t * off; /* (in) Pointer to directory offset before read */
   off64_t * retoff; /* (out) Pointer to directory offset after read */
};

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 51



This function reads one or more directory entries in the open directory specified by "fid" from the 
file offset specified by "*off" into "*buf".

At return, it stores the number of bytes actually read in "*len", and the directory offset after 
reading in "*retoff".
This should work correctly even if the "off" and "retoff" pointers are the same.

If the end of directory is reached, this function stores 0 in "*len" and returns E_OK.

- FIMP_FSTATVFS

struct fimp_fstatvfs {
    int r_code; /* (in) = FIMP_FSTATVFS */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
     fid_t fid; /* (in) Open file ID */
   struct statvfs * buf; /* (out) Pointer to file system statistics */
};

This function reads the statistics information (struct statvfs) of file system that contains the file 
referred to by "fid" to "*buf".

- FIMP_STATVFS

struct fimp_statvfs {
    int r_code; /* (in) = FIMP_STATVFS */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
    const char * path; /* (in) File path name */
   struct statvfs * buf; /* (out) Pointer to file system statistics */
};

This function reads the statistics information (struct statvfs) of file system that contains the file 
specified by "path" to "*buf".

- FIMP_SYNC

struct fimp_sync {
    int r_code; /* (in) = FIMP_SYNC */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
};

 This function flushes any cache data not yet flushed to the device, for all the connected file 
systems supported by the FIMP.

If all the cache data has been flushed to the device, it simply returns E_OK.

- FIMP_UTIMES_US

struct fimp_utimes_us {
    int r_code; /* (in) = FIMP_UTIMES_US */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
    const char * path; /* (in) File path name */
   SYSTIM_U * times_u; /* (in) times_u[0] Access time, times_u[1] Modified time */
};

This function changes the access and modified times of the file specified by "path" to the ones 
specified by *times_u.

- FIMP_FCNTL64

struct fimp_fcntl64 {
    int r_code; /* (in) = FIMP_FCNTL64 */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
     fid_t fid; /* (in) Open file ID */
     int * oflags; /* (in) Pointer to open flag */
     int fcmd; /* (in) File control command number */
    off64_t * off; /* (in/out) Pointer to file offset */
     void * arg; /* (in/out) File control command parameter */
    ER * retval; /* (out) Pointer to return value */
};

This function executes the FIMP specific file operation against an open file specified by "fid".

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 52



"oflags" is the pointer to the Open flag specified in fs_open() and the flag value can be changed.

"fcmd" is the second argument of fs_fcntl(), specifying an FIMP-specific file control command number.
If the specified command number is not supported, this function returns the EX_NOSYS error.

"arg" is the third argument of fs_fcntl(). Its content is dependent on "cmd".

"*retval" stores the error code value returned by fs_fcntl().

- FIMP_FSTAT64_US

struct fimp_stat64_us {
    int r_code; /* (in) = FIMP_STAT64_US */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
     fid_t fid; /* (in) Open file ID */
   struct stat64_us * buf; /* (out) Pointer to file information */
};

This function reads the file information (struct stat64_us) of an open file specified by "fid" to 
"*buf".

- FIMP_STAT64_US

struct fimp_stat64_us {
     int r_code; /* (in) = FIMP_STAT64_US */
   coninf_t * coninf; /* (in/out) Pointer to connection information */
    const char * path; /* (in) File path name */
   struct stat64_us * buf; /* (out) Pointer to file information */
};

This function reads the file information (struct stat64_us) of a file specified by "path" to "*buf".

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 53



 Chapter 5 Network Communication Functions

5.1 Overview

The network communication functions provide socket interfaces for communication including TCP/IP and 
UDP/IP.
The API name prefix is "so_" (socket).
A program module which provides the network communication functions is referred to as "network 
communication manager".

The network communication manager has API calls similar to the networking service in the POSIX 
specification.
One major difference from POSIX specification is that return codes of the API calls represent error 
codes in the format defined by the T-Kernel specification if they are negative.

In the API calls that require timeout, APIs that can handle the timeout in the T-kernel 2.0 timeout 
format (TMO, TMO_U) have been added in addition to the API calls that handles timeout in the time data
format of the POSIX specification.

5.2 Terms Used in This Section 

5.2.1 Sockets

A socket is an endpoint for communication using the facilities described in this chapter. A socket
is created with a specific socket type, described in 5.2.5 Socket Types, and is associated with a 
specific
protocol, detailed in 5.2.10 Protocols.

5.2.2 Socket Descriptors

0 or positive integer to identify a socket. It is allocated newly when a socket is created.
A socket descriptor is used to operate on a socket.

5.2.3 Stream

A stream is an abstraction used in reading and writing files and network communication, and realizes 
ordered sequential access.

5.2.4 Datagram

A unit of data transferred from one endpoint to another in connectionless mode service.

5.2.5 Socket Types

A socket type represents properties of a socket.
A socket is created with a specific type, which defines the communication semantics and which allows
the selection of an appropriate communication protocol.

Three types are defined in T2EX: SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW.

SOCK_STREAM
 The SOCK_STREAM socket type provides reliable, sequenced, full-duplex octet streams between
 the socket and a peer to which the socket is connected. A socket of type SOCK_STREAM must be
 in a connected state before any data may be sent or received.
  - Record boundaries are not maintained; data sent on a stream socket using output
    operations of one size may be received using input operations of smaller or larger sizes
    without loss of data.
  - Data may be buffered; successful return from an output API call does not imply that the
    data has been delivered to the peer or even transmitted from the local system. If data
    cannot be successfully transmitted within a given time then the connection is considered
    broken, and subsequent operations shall fail.

SOCK_DGRAM

 The SOCK_DGRAM socket type supports connectionless data transfer which is not necessarily
 acknowledged or reliable. Datagrams may be sent to the address specified (possibly multicast
 or broadcast) in each output operation, and incoming datagrams may be received from multiple
 sources. The source address of each datagram is available when receiving the datagram. An
 application may also pre-specify a peer address, in which case calls to output API calls
 that do not specify a peer address shall send to the pre-specified peer. If a peer has been
 specified, only datagrams from that peer shall be received. A datagram must be sent in a
 single output operation, and must be received in a single input operation.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 54



  - The maximum size of a datagram is protocol-specific.
  - Output datagrams may be buffered within the system; thus, a successful return from an
    output API call does not guarantee that a datagram is actually sent or received.

SOCK_RAW
 Sends and receives datagrams with packet headers.
  - If an address family is AF_INET, an application sends/receives packets with IP headers.
    However, if IP_HDRINCL is set to 0 in so_setsockopt(), an IP header is added to the send 
packet automatically.
    At this point, the IP header is set with the destination peer address and a protocol number
being set in the socket.
    If IP_HDRINCL is set to a non-zero value, the IP header is not added to the send packet 
automatically, so an application needs to set the IP header.
  - This provides functions to manipulate the routing table when the address family is 
AF_ROUTE.
  - The other address families do not support SOCK_RAW.

5.2.6 Address Families

All network protocols are associated with a specific address family. An address family provides
basic services to the protocol implementation to allow it to function within a specific network
environment. These services may include packet fragmentation and reassembly, routing, addressing,
and basic transport. An address family is normally comprised of a number of protocols, one per
socket type. Each protocol is characterized by an abstract socket type. It is not required that an
address family support all socket types. An address family may contain multiple protocols supporting
the same socket abstraction.

5.2.7 Network Address

A network-visible identifier used to designate specific endpoints in a network. 
Specifically, for IP addressing, it is an identifier to designate a subnet.

Specific endpoints on host systems have addresses, and host systems may also have addresses.

5.2.8 Socket Address

An address associated with a socket or remote endpoint, including an address family identifier and
addressing information specific to that address family. The address may include multiple parts, such
as a network address associated with a host system and an identifier for a specific endpoint.

5.2.9 Addressing

An address family defines the format of a socket address. All network addresses are described using
a general structure, called a sockaddr. However, each address family imposes finer and more specific
structure, generally defining a structure with fields specific to the address family. The field 
sa_family in the sockaddr structure contains the address family identifier, specifying the format of 
the sa_data area. Example: for IPv4, it is a "sockaddr_in" structure (see chapter 8 netinet/in.h).

5.2.10 Protocols

Protocols are semantic and syntactic rules to exchange information.
Although it is sometimes called as "communication protocol" or "network protocol", this document 
refers it as "protocol" as long as it introduces no ambiguity.

A protocol supports one of the socket abstractions detailed in Socket Types. Selecting a protocol
involves specifying the address family, socket type, and protocol number to the so_socket(). Certain
semantics of the basic socket abstractions are protocol-specific. All protocols are expected to
support the basic model for their particular socket type, but may, in addition, provide non-standard
facilities or extensions to a mechanism.

5.2.11 Routing

Sockets provides packet routing facilities. A routing information database is maintained, which is
used in selecting the appropriate network interface when transmitting packets.

5.2.12 Message

This document uses the word "message" to refer to information transmitted among sockets.

5.2.13 Network Interfaces

Each network interface in a system corresponds to a path through which messages can be sent and
received. A network interface usually has a hardware device associated with it, though certain

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 55



interfaces such as the loopback interface, do not.

5.2.14 Socket I/O Mode

The I/O mode of a socket is described by the O_NONBLOCK status flag which pertains to the open
socket description for the socket. This flag is initially off when a socket is created, but may be
set and cleared by the use of the F_SETFL command of so_fcntl().

Basically, when a task calls a network communication API call, it waits until the processing is 
finished.
When the O_NONBLOCK flag is set, certain functions that would normally block until they are complete 
shall return immediately.

This operation mode is called "non-blocking mode".

Operation when O_NONBLOCK is set

 so_bind() initiates an address assignment and shall return without blocking when O_NONBLOCK
 is set; if the socket address cannot be assigned immediately, so_bind() shall return the
 EX_INPROGRESS error to indicate that the assignment was initiated successfully, but that it
 has not yet completed.

 so_connect() initiates a connection and shall return without blocking when O_NONBLOCK is
 set; it shall return the error EX_INPROGRESS to indicate that the connection was initiated
 successfully, but that it has not yet completed.

 Data transfer operations (so_read(), so_write(), so_send(), and so_recv() API calls) shall
 complete immediately, transfer only as much as is available, and then return without
 blocking, or return the EX_AGAIN error to indicate that no transfer could be made without
 blocking.

5.2.15 Socket Owner

T2EX sockets do not have the concept of owner.

5.2.16 Socket Queue Limits

The transmit and receive queue sizes for a socket are set when the socket is created. The default
sizes used are protocol-specific. The sizes may be changed using so_setsockopt() with SO_SNDBUF or
SO_RCVBUF.

Default buffer sizes for send/receive queue in each protocol are defined as system configuration 
information.

 - SOCK_STREAM socket (AF_INET): TCP/IP
   - SoTcpTxBufSz: Send buffer size
   - SoTcpRxBufSz: Receive buffer size
 - SOCK_DGRAM socket (AF_INET): UDP/IP
   - SoUdpTxBufSz: Send buffer size
   - SoUdpRxBufSz: Receive buffer size
 - SOCK_RAW socket (AF_INET)
   - SoRawIPTxBufSz: Send buffer size
   - SoRawIPRxBufSz: Receive buffer size
 - SOCK_RAW socket (AF_ROUTE)
   - SoRawTxBufSz: Send buffer size
   - SoRawRxBufSz: Receive buffer size

5.2.17 Pending Error

Errors may occur asynchronously, and be reported to the socket in response to input from the network
protocol. The socket stores the pending error to be reported to a user of the socket at the next
opportunity. The error is returned in response to a subsequent so_send(), so_recv(), or
so_getsockopt() operation on the socket, and the pending error is then cleared.

5.2.18 Socket Receive Queue

A socket has a receive queue that buffers data when it is received by the system until it is removed
by a receive call. Depending on the type of the socket and the communication provider, the receive
queue may also contain ancillary data such as the addressing and other protocol data associated with
the normal data in the queue, and may contain out-of-band or expedited data.

5.2.19 Socket Out-of-Band Data State

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 56



Out-of-band data is delivered through a transmission channel which is logically independent from the 
normal data and transmitted to users separately.
There are two ways to handle out-of-band data when receiving it; store it in a receive queue of normal
data or store it in the other queue.

If out-of-band data may be placed in the socket receive queue;
 Out-of-band data may be placed either at the end of the queue or before all normal data in
 the queue. In this case, out-of-band data is returned to an application program by a normal
 receive call.

If out-of-band data may be queued separately rather than being placed in the socket receive queue;
 Out-of-band data shall be returned only in response to a receive call that requests
 out-of-band data. It is protocol-specific whether an out-of-band data mark is placed in the
 receive queue to demarcate data preceding the out-of-band data and following the out-of-band
 data. An out-of-band data mark is logically an empty data segment that cannot be merged with
 other segments in the queue. An out-of-band data mark is never returned in response to an
 input operation. so_sockatmark() can be used to test whether an out-of-band data mark is the
 first element in the queue. If an out-of-band data mark is the first element in the queue
 when an input API call is called without the MSG_PEEK option, the mark is removed from the
 queue and the following data (if any) is processed as if the mark had not been present.

5.2.20 Connection Indication Queue

Sockets that are used to accept incoming connections maintain a queue of outstanding connection
indications. This queue is a list of connections that are awaiting acceptance by the application.

5.2.21 Asynchronous Errors

If any of the following conditions occur asynchronously for a socket, the corresponding value listed
below shall become the pending error for the socket:

  EX_CONNABORTED The connection was aborted locally.
  EX_CONNREFUSED For a connection-mode socket attempting a non-blocking connection, the

   attempt to connect was forcefully rejected. For a connectionless-mode
   socket, an attempt to deliver a datagram was forcefully rejected.

  EX_CONNRESET The peer has aborted the connection.
  EX_HOSTDOWN The destination host has been determined to be down or disconnected.

  EX_HOSTUNREACH The destination host is not reachable.
  EX_MSGSIZE For a connectionless-mode socket, the size of a previously sent datagram

   prevented delivery.
  EX_NETDOWN The local network connection is not operational.

  EX_NETRESET The connection was aborted by the network.
  EX_NETUNREACH The destination network is not reachable.

5.2.22 Socket Options

There are a number of socket options which either specialize the behavior of a socket or provide
useful information. These options may be set at different protocol levels and are always present at
the uppermost "socket" level. Socket options are manipulated by two API calls, so_getsockopt() and
so_setsockopt().

Protocol levels can be defined as follows.

   IPPROTO_IP The IP level
   IPPROTO_TCP The TCP level
   SOL_SOCKET The socket level

R- or RW in the description of the following options means the ability to get (so_getsockopt()) only 
or to both get and set (so_getsockopt() and so_setsockopt()) respectively.

For IP level options given below, the following can be specified.

   IP_OPTIONS RW IP options set in the IP header of each packet to be sent. 
Specify the buffer of size 0 to disable previously specified options.
    For more information about IP options, see RFC-791.
    By default, IP options embedded in the IP header are not specified.

   IP_HDRINCL RW Enables/disables the addition of the IP header to the sent data by an 
application
    Type of the option: int
    Value of the option: 
     - When the value is non-zero, an application adds the IP header to 
the sent data before sending it.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 57



     - When the value is 0, an application does not adds the IP header to 
sent data; the system does instead.
    This option is valid only for SOCK_RAW type sockets.
    By default, the system adds the IP header.

For TCP levels options given below, the following can be specified.

   TCP_NODELAY RW Enables/disables the immediate transmission of data.
    Type of the option: int
    Value of the option:
     - When the value is non-zero, the Nagle's algorithm is not used.
     - When the value is 0, the Nagle's algorithm is used.
    To utilize the network more effectively, TCP uses the Nagle's 
algorithm to buffer packets before sending them in one go instead of frequently sending small packets.
Small packets are sent immediately when the Nagle's algorithm is not used.
    By default, the Nagle's algorithm is used.

   TCP_MAXSEG RW Maximum length of a segment
    Type of the option: int
    By default, it is 536 bytes.

For Socket level options given below, the following can be specified.

   SO_DEBUG RW Debugging in the underlying protocol modules.
    Type of the option: int
    Value of the option: 
     - If the value is non-zero, debugging is on.
     - If the value is 0, debugging is off.
    The default value for SO_DEBUG is for debugging to be turned off.

   SO_REUSEADDR RW Reuse of local addresses.
    Type of the option: int
    Value of the option:
     - If the value is non-zero, reuse of the local address is permitted.
     - If it is 0, reuse of the local address is not permitted.
    The default value for SO_REUSEADDR is off; that is, reuse of local
    addresses is not permitted.

   SO_KEEPALIVE RW Periodic transmission of keepalive messages.
    Type of the option: int
    Value of the option:
     - If the value is non-zero, keep-alive messages are sent 
periodically.
     - If the value is 0, keep-alive messages are not sent periodically.
    The default value for SO_KEEPALIVE is zero, specifying that this
    capability is turned off.

   SO_DONTROUTE RW Bypass of normal routing; route based on destination address only.
    Type of the option: int
    Value of the option:
     - If the value is non-zero, this capability is enabled..
     - If the value is 0, this capability is turned off.
    The destination must be on a directly-connected network, and
    messages are directed to the appropriate network interface according
    to the destination address.
    If invalid, messages are sent by using standard routing functions.
    The default value for SO_DONTROUTE is zero, specifying that this
    capability is turned off.

   SO_BROADCAST RW Permission to transmit broadcast datagrams.
    Type of the option: int
    Value of the option:
     - If the value is non-zero, broadcast messages can be sent.
     - If the value is 0, broadcast messages cannot be sent.
    The default for SO_BROADCAST is that the ability to send broadcast
    datagrams on a socket is disabled. 

   SO_USELOOPBACK RW Enables/disables functions to communicate bypassing the hardware
    Type of the option: int
    Value of the option:
     - If the value is non-zero, communication is performed bypassing the 
hardware when possible.
     - If the value is 0, communication is never performed bypassing the 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 58



hardware.
    By default, communication is never performed bypassing the hardware.

   SO_LINGER RW Actions to be taken for queued, unsent data on so_close()
    Type of the option: struct linger
    Value of the option:
     - If the value of l_onoff is non-zero and l_linger is positive, the 
system shall block the calling thread during so_close() until it can transmit the data or until the 
end of the interval indicated by the l_linger member, whichever comes first.
     - If l_onoff is 0 or l_linger is 0, the system handles so_close() in 
a way that allows the calling thread to continue as quickly as possible.
    The default value for SO_LINGER is zero, or off, for the l_onoff
    element of the option value and zero seconds for the linger time
    specified by the l_linger element.

   SO_OOBINLINE RW Out-of-band data be placed into normal data input queue as received.
    Type of the option: int
    Value of the option: 
     - If the value is non-zero, out-of-band data is then accessible using
API calls such as so_read() and so_recv without the MSG_OOB flag set.
     - If the value is 0, out-of-band data is not placed into the standard
receive queue.
    The default for SO_OOBINLINE is off; that is, for out-of-band data
    not to be placed in the normal data input queue.

   SO_REUSEPORT RW Enables/disables reuse of the local address and the port
    Type of the option: int
    Value of the option:
     - If the value is non-zero, reuse of the local address and the port 
is permitted.
     - If the value is 0, reuse of the local address and the port is not 
permitted.
    By default, reuse of the local address and the port is not permitted.

   SO_TIMESTAMP RW Enables/disables the addition of timestamps to the received datagram
    Type of the option: int
    Value of the option: 
     - If the value is other non-zero, timestamp is added to the received 
datagram.
     - If the value is 0, timestamp is not added to the received datagram.
    If this option is enabled, timestamp is stored in auxiliary data, and 
cmsg_len, cmsg_level, and cmsg_type are the size of "timeval" structure (the number of byte), 
SOL_SOCKET, and SCM_TIMESTAMP, respectively.
    By default, timestamp is not added to the received datagram.

   SO_SNDBUF RW Size of send buffer (in bytes)
    Type of the option: int
    The default value for SO_SNDBUF option value is
    protocol-dependent.
     - TCP/IP: 32768 bytes
     - UDP/IP: 9216 bytes
     - SOCK_RAW socket (AF_INET): 8192 bytes
     - SOCK_RAW socket (AF_ROUTE): 8192 bytes

   SO_RCVBUF RW Size of receive buffer (in bytes)
    Type of the option: int
    The default value for SO_RCVBUF option value is
    protocol-dependent.
     - TCP/IP: 32768 bytes
     - UDP/IP: 41600 bytes
     - SOCK_RAW socket (AF_INET): 8192 bytes
     - SOCK_RAW socket (AF_ROUTE): 8192 bytes

   SO_SNDLOWAT RW Minimum amount of data to send for output operations (in bytes)
    Type of the option: int
    The default value for SO_SNDLOWAT is 2048 bytes.

   SO_RCVLOWAT RW Minimum amount of data to return to application for input operations 
(in bytes).
    Type of the option: int
    The default value for SO_RCVLOWAT is 1 byte.

   SO_SNDTIMEO RW Timeout value for a socket send operation

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 59



    Type of the option: struct timeval
    Value of the option:
     - When the value of optval is non-zero second, the send API call 
waits until the specified time passes.
When the timeout occurs, if no data has been written, error EX_AGAIN is returned. If more than one 
byte of data has been written, the data size (the number of byte(s)) is returned.
     - If the value is 0 second, the timeout already specified in the send
API call is released.
    The default for this option is the value zero, which indicates that
    a send operation will not time out.

   SO_RCVTIMEO RW Timeout value for a socket receive operation
    Type of the option: struct timeval
    Value of the option:
     - When the value of optval is non-zero second, the received API call 
waits until the specified time passes.
When the timeout occurs, if no data has been read, error EX_AGAIN is returned. If more than one byte 
of data has been read, the data size (the number of byte(s)) is returned.
     - If the value of optval is 0 second, the timeout already specified 
in the receive API call is released.
    The default for this option is the value zero, which indicates that
    a receive operation will not time out.

   SO_ERROR R- Pending error information on the socket
    Type of the option: int
    Value of the option:
     - The non-zero value indicates an asynchronous error.
     - If the value is zero, there are no pending errors.

    SO_TYPE R- Socket type
    Type of the option: int

5.2.23 Use of Sockets over Internet Protocols

When a socket is created in the Internet family with a protocol value of zero, the implementation
shall use the protocol listed below for the type of socket created.

   SOCK_STREAM IPPROTO_TCP
   SOCK_DGRAM IPPROTO_UDP
   SOCK_RAW IPPROTO_RAW

The default protocols for type SOCK_STREAM and SOCK_DGRAM are TCP and UDP respectively.

A raw interface to IP is available by creating an Internet socket of type SOCK_RAW. The default
protocol for type SOCK_RAW shall be identified in the IP header with the value
IPPROTO_RAW. Applications should not use the default protocol when creating a socket with type
SOCK_RAW, but should identify a specific protocol by value. The ICMP control protocol is accessible
from a raw socket by specifying a value of IPPROTO_ICMP for protocol.

5.2.24 Host Name Table

A Table in which addresses, host names, and host aliases are defined.
It corresponds to the setting file /etc/hosts of the TCP/IP protocol stack implemented on PC.
Setting in the host name table is shared throughout the system.

An entry of the host name table consists of at least an address and a host name. In addition, multiple
host aliases can be defined in an entry.

5.2.25 Name Resolution

It refers to the translation of a domain name to a network address.

T2EX provides a name resolution function based on the host name table and the name resolution servers.

5.2.26 Routing Table

A routing table is a routing information database which is used to find a route to a destination.
This table consists of routing information, which includes information of the network interface to be 
used for every destination and the gateway to which the host should send first to reach that 
destination.

The destination is a specific host or all hosts belonging to a network.
All hosts belonging to a network can be represented using a network addresses and a net mask.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 60



A special address whose net mask consists of only 0 (zero) is used when the destination is neither a 
specific host nor a network address.
The gateway to be used in this case is called a "default gateway".

5.2.27 Routing Socket

A routing socket is a special socket for the routing table operation.

Manipulation of the routing sockets is described in 5.6.

5.3 Unsupported Functions

Although the T2EX networking function offers subsets of the networking services of the POSIX 
specification, some differences exist as follows.

 (1) Because T2EX does not have a process or a concept of user, "socket owners" or "accessible user 
groups" has no meaning, and features related to those are not provided.

 (2) The T2EX network function is independent from the file management function.
Therefore, unlike the POSIX specification, single T2EX API call does not perform both network 
communication and file management.
The network communication feature are provided by API calls with names like "so_XXXX()", and those of 
the file management feature are provided by API calls with names like "fs_XXXX()". They are provided 
as independent API calls.
 (3) Following features are not provided.
However, these may be supported as part of T2EX in the future.

   - IPv6
   - IPsec
   - Multicast
   - Unix-domain socket
   - Protocols above the transport layer except for DHCP and DNS

5.4 Data Type Definitions

5.4.1 Address Families

    #define AF_UNSPEC 0 /* unspecified */
     #define AF_INET 2 /* IPv4 */
    #define AF_ROUTE 17 /* internal routing protocol */
     #define AF_LINK 18 /* link layer interface */

5.4.2 Protocol Families

    #define PF_UNSPEC 0 /* unspecified */
     #define PF_INET 2 /* IPv4 */
    #define PF_ROUTE 17 /* internal routing protocol */
     #define PF_LINK 18 /* link layer interface */

5.4.3 Socket Type

    #define SOCK_STREAM 1 /* stream socket */
    #define SOCK_DGRAM 2 /* datagram socket */
    #define SOCK_RAW 3 /* raw-protocol interface */

5.4.4 Protocol

    #define IPPROTO_IP 0 /* IP */
    #define IPPROTO_ICMP 1 /* ICMP */
    #define IPPROTO_TCP 6 /* TCP */
    #define IPPROTO_UDP 17 /* UDP */
    #define IPPROTO_RAW 255 /* raw IP packet */

5.4.5 General Structure Describing Network Addresses

Struct "sockaddr" is a general structure representing a socket address.
It is used in the APIs handling socket addresses.

struct sockaddr {
    unsigned char sa_len; /* total length (in bytes) */
   unsigned char sa_family; /* address family */
    char sa_data[14]; /* address value */
};

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 61



sa_family, which represents address family, defines the form of the sa_data field. sa_data field is an
area specific to an address family.

If an application uses addresses belonging to a specific address family, casting a structure 
representing that address. (Example: For IPv4, casts the "sockaddr_in" structure (see 8.14 
netinet/in.h)) to the "sockaddr" structure and the casting in the reverse direction need to be 
performed.

Additionally, note that the size of the sa_data area is 14 bytes when the address is stored in the 
"sockaddr" structure.
Although an address of address families provided in T2EX does not exceed this size, the size may be 
exceeded if any originally extended address is used.
In such cases, use the "sockaddr_storage" structure to store the address of arbitrary size.

5.4.6 Generic Structure to Store an Address of Any Family

Struct "sockaddr_storage" is a structure that has a large enough size to store any address of any 
address family.
It is used to handle an address that is too long to be stored in the "sockaddr" structure.

  #define _SS_MAXSIZE 128
  #define _SS_ALIGNSIZE (sizeof(int64_t))
  #define _SS_PAD1SIZE (_SS_ALIGNSIZE - 2)
  #define _SS_PAD2SIZE (_SS_MAXSIZE - 2 - _SS_PAD1SIZE - _SS_ALIGNSIZE)

struct sockaddr_storage {
       uint8_t ss_len; /* total length (in bytes) */
     sa_family_t ss_family; /* address family */
    char __ss_pad1[_SS_PAD1SIZE]; /* 6 bytes padding
        (to align __ss_align in an 8 byte boundary) 
*/
      int64_t __ss_align; /* force desired structure storage alignment 
*/
    char __ss_pad2[_SS_PAD2SIZE]; /* 112 bytes padding
       (to make the whole structure 128 bytes) */
};

5.4.7 Address Structure of the Data Link Layer

struct sockaddr_dl {
     uint8_t sdl_len; /* total length (in bytes) */
    sa_family_t sdl_family; /* address family (always AF_LINK) */
    uint16_t sdl_index; /* index for interface */
     uint8_t sdl_type; /* interface type */
     uint8_t sdl_nlen; /* interface name length (in bytes) */
     uint8_t sdl_alen; /* link level address length (in bytes) */
     uint8_t sdl_slen; /* link layer selector length (in bytes) */
     char sdl_data[12]; /* minimum work area for both if name and ll address 
*/
};

5.4.8 Structure to Store Statistics and Network Interface Information

struct if_data {
 /* interface information */
    unsigned char ifi_type; /* interface type */
    unsigned char ifi_addrlen; /* media address length (in bytes) */
    unsigned char ifi_hdrlen; /* media header length (in bytes) */
     int ifi_link_state; /* current link state */
    uint64_t ifi_mtu; /* maximum transmission unit */
    uint64_t ifi_metric; /* routing metric */
    uint64_t ifi_baudrate; /* linespeed */
 /* statistical data */
    uint64_t ifi_ipackets; /* packets received on interface */
    uint64_t ifi_ierrors; /* input errors on interface */
    uint64_t ifi_opackets; /* packets sent on interface */
    uint64_t ifi_oerrors; /* output errors on interface */
    uint64_t ifi_collisions; /* collisions on csma interfaces */
    uint64_t ifi_ibytes; /* total number of octets received (in octets) */
    uint64_t ifi_obytes; /* total number of octets sent (in octets) */
    uint64_t ifi_imcasts; /* packets received via multicast */
    uint64_t ifi_omcasts; /* packets sent via multicast */

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 62



    uint64_t ifi_iqdrops; /* dropped on input, this interface */
    uint64_t ifi_noproto; /* destined for unsupported protocol */
    struct timeval ifi_lastchange; /* last operational state change */
};

5.4.9 Scatter/Gather Structure

struct iovec {
    void* iov_base; /* base address */
    size_t iov_len; /* length (in bytes) */
};

5.4.10 Message Header for so_recvmsg() and so_sendmsg()

struct msghdr {
     void* msg_name; /* optional address */
    socklen_t msg_namelen; /* size of address (in bytes) */
    struct iovec* msg_iov; /* scatter/gather array */
     int msg_iovlen; /* the number of elements in msg_iov */
     void* msg_control; /* ancillary data */
    socklen_t msg_controllen; /* ancillary data buffer length (in bytes) */
     int msg_flags; /* flags on received message */
};

5.4.11 Structure for Auxiliary Data of so_recvmsg() and so_sendmsg()

struct cmsghdr {
    socklen_t cmsg_len; /* data byte count, including hdr (in bytes) */
     int cmsg_level; /* originating protocol */
     int cmsg_type; /* protocol-specific type */
};

Auxiliary data is stored in the area following the "cmsghdr" structure.

5.4.12 Structure for SO_LINGER Option

struct linger {
   int l_onoff; /* option on/off */
   int l_linger; /* linger time (in seconds) */
};

5.4.13 Set of Socket Descriptors

  #define FD_SETSIZE 256

typedef struct fd_set {
  int fds_bits[((FD_SETSIZE + (sizeof(int)*8-1)) / sizeof(int)*8)];
} fd_set;

5.4.14 Structure for Address Information of so_getaddrinfo()

struct addrinfo {
      int ai_flags; /* input flag */
      int ai_family; /* address family */
      int ai_socktype; /* Socket type */
      int ai_protocol; /* Protocol */
     socklen_t ai_addrlen; /* size of the socket address (in bytes) */
    struct sockaddr* ai_addr; /* socket address */
      char* ai_canonname; /* standard name for the service location */
    struct addrinfo* ai_next; /* pointer to the next list */
};

5.4.15 Network Interface Operation Structure

struct ifreq {
 #define IFNAMSIZ 16

   char ifr_name[IFNAMSIZ]; /* Device name */
 union {
      struct sockaddr ifru_addr; /* host address */
      struct sockaddr ifru_dstaddr; /* destination address */
      struct sockaddr ifru_broadaddr; /* broadcast address */
       short ifru_flags; /* flag */
       short ifru_metric; /* metric */

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 63



       void* ifru_data; /* area used by the interface */
 } ifr_ifru;

  #define ifr_addr ifr_ifru.ifru_addr
  #define ifr_dstaddr ifr_ifru.ifru_dstaddr

  #define ifr_broadaddr ifr_ifru.ifru_broadaddr
  #define ifr_flags ifr_ifru.ifru_flags

  #define ifr_metric ifr_ifru.ifru_metric
  #define ifr_data ifr_ifru.ifru_data

};

5.4.16 Structure for SIOCAIFADDR and SIOCDIFADDR of so_ioctl()

struct ifaliasreq {
     char ifrac_name[IFNAMSIZ]; /* Device name */
     struct sockaddr ifra_addr; /* host address */
     struct sockaddr ifra_dstaddr; /* destination address */

    #define ifra_broadaddr ifra_dstaddr /* broadcast address */
     struct sockaddr ifra_mask; /* network mask */
};

5.4.17 Network Interface

struct ifaddrs {
     struct ifaddrs* ifa_next; /* Pointer to next struct */
      char* ifa_name; /* interface name */
     unsigned int ifa_flags; /* flag */
    struct sockaddr* ifa_addr; /* Address */
    struct sockaddr* ifa_netmask; /* net mask */
    struct sockaddr* ifa_broadaddr; /* broadcast address */
    struct sockaddr* ifa_dstaddr; /* destination address of the P2P interface */
      void* ifa_data; /* address family specific data */
};

5.4.18 Host Name Table Structure

struct hosttable {
    struct sockaddr* addr; /* Address */
      char* host; /* host name */
     char* aliases; /* aliases of host */
};

5.4.19 Routing Metric Structure

struct rt_metrics {
   unsigned long rmx_locks; /* flag to specify the routing
 metric not changed by the network communication manager */
   unsigned long rmx_mtu; /* route MTU */
   unsigned long rmx_hopcount; /* maximum number of hops */
   unsigned long rmx_expire; /* expiration of route (in seconds) (length of time until an 
ARP entry is deleted) */
   unsigned long rmx_recvpipe; /* size of the receive socket buffer (inbound delay-bandwidth 
product) */
   unsigned long rmx_sendpipe; /* size of the send socket buffer (outbound delay-bandwidth 
product) */
   unsigned long rmx_ssthresh; /* buffer size of the gateway (outbound gateway buffer limit) 
*/
   unsigned long rmx_rtt; /* round trip time (in milliseconds) */
   unsigned long rmx_rttvar; /* distribution of round trip time (in milliseconds) */
   unsigned long rmx_pksent; /* number of packets sent over the route */
};

5.4.20 Routing Message Header Structure

struct rt_msghdr {
   unsigned short rtm_msglen; /* message size (in bytes) */
   unsigned char rtm_version; /* version */
   unsigned char rtm_type; /* message type */
   unsigned short rtm_index; /* interface index */
    int rtm_flags; /* flag */
    int rtm_addrs; /* bit mask representing an address included in the message */
    ID rtm_tid; /* task ID of send task */
    int rtm_seq; /* sequence number */
    int rtm_errno; /* error that occurred while processing messages */

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 64



    int rtm_use; /* transmission counts using the corresponding route */
   unsigned long rtm_inits; /* flag to specify routing metric to be initialized */
  struct rt_metrics rtm_rmx; /* routing metric */
};

5.4.21 Routing Message Header Structure (for RTM_IFINFO)

struct if_msghdr {
   unsigned short ifm_msglen; /* message size (in bytes) */
   unsigned char ifm_version; /* version */
   unsigned char ifm_type; /* message type */
    int ifm_addrs; /* bit mask representing an address in the message */
    int ifm_flags; /* flag */
   unsigned short ifm_index; /* interface index */
   struct if_data ifm_data; /* additional information about statistics and interface */
};

RTM_IFINFO message uses this structure for its header.

5.4.22 Routing Message Header Structure (for RTM_NEWADDR/RTM_DELADDR)

struct ifa_msghdr {
   unsigned short ifam_msglen; /* message size (in bytes) */
   unsigned char ifam_version; /* version */
   unsigned char ifam_type; /* message size */
    int ifam_addrs; /* bit mask representing an address included in the message */
    int ifam_flags; /* flag */
   unsigned short ifam_index; /* interface index */
    int ifam_metric; /* communication cost of the interface */
};

RTM_NEWADDR, RTM_DELADDR message uses this structure for its header.

5.4.23 Routing Message Header Structure (for RTM_IFANNOUNCE)

struct if_announcemsghdr {
    unsigned short ifan_msglen; /* message size (in bytes) */
    unsigned char ifan_version; /* version */
    unsigned char ifan_type; /* message type */
    unsigned short ifan_index; /* interface index */
    char ifan_name[IFNAMSIZ]; /* interface name */
    unsigned short ifan_what; /* type of notification */
};

RTM_IFANNOUNCE message uses this structure for its header.

5.5 API

5.5.1 so_main - Initialize/Terminate the Socket System Service

C Language Interface

#include <t2ex/socket.h>

ER ercd = so_main(INT ac, UB* arg[]);

Parameter

     INT ac Number of elements in arg[] or a negative value
     UB* arg[] Array of argument strings

Return Parameter

     ER ercd Error code

Error Code

   E_OK Normal completion
  EX_INVAL Invalid parameters

Description

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 65



This function initializes (ac >= 0) or terminates (ac < 0) the network communication manager in T2EX.

A number of strings can be passed to arg[] as arguments, and its total count is ac.

Content of argument is implemenatation-dependent.

5.5.2 so_socket - Create an Endpoint for Communication

C Language Interface

#include <t2ex/socket.h>

int sd = so_socket(int domain, int type, int protocol);

Parameter

     int domain Communication domain
     int type Socket type
    int protocol Protocol

Return Parameter

     int sd Socket descriptor
     or Error code

Error Code

  EX_AFNOSUPPORT The implementation does not support the specified address family.
  EX_NFILE No more socket descriptors are available for the system.

 EX_PROTONOSUPPORT The protocol is unsupported.
    - The protocol is unsupported by the address family.
    - The protocol is unsupported by the implementation.

  EX_PROTOTYPE The socket type is unsupported by the protocol.
  EX_NOBUFS Insufficient resources were available in the system to perform the operation.

Description

so_socket() shall create an unbound socket in a communications domain, and return a socket
descriptor that can be used in later API calls that operate on sockets.

protocol specifies a particular protocol to be used with the socket. Specifying a protocol of 0
causes so_socket() to use an unspecified default protocol appropriate for the requested socket type.

domain specifies the address family used in the communications domain. The following address
families are defined;

  AF_INET IPv4 protocol
 AF_ROUTE For the operation of a routing information database

type specifies the socket type, which determines the semantics of communication over the socket. The
following socket types are defined;

SOCK_STREAM
 Provides sequenced, reliable, bidirectional, connection-mode byte streams, and may provide a
 transmission mechanism for out-of-band data.

SOCK_DGRAM 
 Provides datagrams, which are connectionless-mode, unreliable messages of fixed maximum
 length.

SOCK_RAW
 Provides interfaces to manipulate a raw packet including its header directly.

If protocol is non-zero, it shall specify a protocol that is supported by the address family. If
protocol is zero, the default protocol for this address family and type shall be used. 

5.5.3 so_close - Close a Socket Descriptor

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 66



C Language Interface

#include <t2ex/socket.h>

ER ercd = so_close(int sd);

Parameter

     int sd Socket descriptor

Return Parameter

     ER ercd Error code

Error Code

   E_OK Normal completion
   EX_BADF sd is not a valid socket descriptor.

Description

so_close() shall deallocate the socket descriptor pointed to by sd.

To deallocate means to make the socket descriptor available for
return by subsequent calls to so_socket() or other API calls that allocate socket
descriptors. 
This function discards name information allocated to the socket and data in the queue.
so_close() shall cause the socket to be destroyed. 

If the socket is in connection-mode, and the SO_LINGER option is set for the socket with non-zero
linger time, and the socket has untransmitted data, then so_close() shall block for up to the
current linger interval until all data is transmitted.
In this case, the waiting state starts even if the socket descriptor sd is set to the non-blocking 
mode.

If the operation is aborted by so_break(), so_close() completes normally and releases the waiting 
state. The socket is closed with delay.
Additionally, if the linger interval is set, the same processing occurs as when a timeout happens.

See Also

so_accept, so_getsockopt, so_socket, so_socketpair, so_setsockopt

5.5.4 so_accept - Accept a New Connection on a Socket

C Language Interface

#include <t2ex/socket.h>

int rsd = so_accept(int sd, struct sockaddr* addr, socklen_t* addrlen);

Parameter

     int sd Socket descriptor
   struct sockaddr* addr Peer address

    socklen_t* addrlen Size of the peer address (in bytes)

Return Parameter

     int rsd Socket descriptor of the accepted socket,
     or Error code

   struct sockaddr* addr Peer address
    socklen_t* addrlen Actual size of the returned peer address (in bytes)

Error Code

EX_AGAIN or EX_WOULDBLOCK
   O_NONBLOCK is set for sd and no connections are present to be accepted.

   EX_BADF sd is not a valid socket descriptor.
  EX_CONNABORTED A connection has been aborted.

  EX_FAULT addr is not in the writable address space

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 67



   EX_INTR Aborted by so_break()
  EX_INVAL sd is not accepting connections.
  EX_NFILE The maximum number of socket descriptors in the system are already open.

  EX_OPNOTSUPP The socket type of sd does not support accepting connections.
   
Description

so_accept() accepts a new connection on sd.

so_accept() shall extract the first connection on the queue of unfinished connections, create a new
socket with the same socket type protocol and address family as sd, and allocate a new socket
descriptor for that socket.
This API call is available to only SOCK_STREAM type sockets.

sd is a socket that was created with so_socket(), has been bound to an address with so_bind(), and
has issued a successful call to so_listen().

addr is either a null pointer, or a pointer to a sockaddr structure where the address of the
connecting socket shall be returned.

addrlen points to a socklen_t structure which on input specifies the length of the supplied sockaddr
structure, and on output specifies the length of the stored address.

If addr is not a null pointer, the address of the peer for the accepted connection shall be stored
in the sockaddr structure pointed to by addr, and the length of this address shall be stored in the
object pointed to by addrlen.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

If the listen queue is empty of connection requests, the following operations are performed based on 
the sd state flag.

 If O_NONBLOCK is not set on sd;
  so_accept() shall block until a connection becomes present. 

 If O_NONBLOCK is set on sd (non-blocking mode);
  so_accept() shall fail and return the error EX_AGAIN. When a connection is
  available, so_select() indicates that the socket descriptor for the socket is ready
  for reading.

The accepted socket cannot itself accept more connections. The original socket remains open and can
accept more connections.

See Also

so_bind, so_connect, so_listen, so_select, so_socket

5.5.5 so_bind - Bind a Name to a Socket

C Language Interface

#include <t2ex/socket.h>

ER ercd = so_bind(int sd, const struct sockaddr* addr, socklen_t addrlen);

Parameter

     int sd Socket descriptor
   const struct sockaddr* addr Address

    socklen_t addrlen Size of the address (in bytes)

Return Parameter

     ER ercd Error code

Error Code

   E_OK Normal completion
  EX_ADDRINUSE The specified address is already in use.

  EX_ADDRNOTAVAIL The specified address is not available from the local machine.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 68



   EX_BADF sd is not a valid socket descriptor.
  EX_INVAL Invalid parameters

    - sd is already bound to an address, and the protocol does not support
      binding to a new address.
    - sd has been shut down.
    - addrlen is invalid for the address family

  EX_FAULT addr is not in the valid address space

Description

so_bind() shall assign a local socket address address to a socket identified by descriptor sd that
has no local socket address assigned. Sockets created with so_socket() are initially unnamed; they
are identified only by their address family.

sd specifies the socket descriptor of the socket to be bound.

addr points to a sockaddr structure containing the address to be bound to the socket. The length and
format of the address depend on the address family of the socket.

addrlen specifies the length of the sockaddr structure pointed to by addr.

See Also

so_connect, so_getsockname, so_listen, so_socket

5.5.6 so_connect - Connect a Socket

C Language Interface

#include <t2ex/socket.h>

ER ercd = so_connect(int sd, const struct sockaddr* addr, socklen_t addrlen);

Parameter

     int sd Socket descriptor
   const struct sockddr* addr Address

    socklen_t addrlen Size of the address (in bytes)

Return Parameter

     ER ercd Error code

Error Code

   E_OK Normal completion
  EX_ADDRNOTAVAIL The specified address is not available from the local machine.

  EX_AFNOSUPPORT The specified address is not a valid address for the address family of
   the specified socket.

  EX_ALREADY A connection request is already in progress for the specified socket.
   EX_BADF sd is not a valid socket descriptor.

  EX_CONNREFUSED The target address was not listening for connections or refused the
   connection request.

  EX_INPROGRESS O_NONBLOCK is set for the socket descriptor for the socket and the
   connection cannot be immediately established; the connection shall be
   established asynchronously.

   EX_INTR Aborted by so_break() (the connection is established asynchronously)
  EX_ISCONN The specified socket is connection-mode and is already connected.

  EX_NETUNREACH No route to the network is present.
  EX_TIMEDOUT The attempt to connect timed out before a connection was made.

  EX_ADDRINUSE Attempt to establish a connection that uses addresses that are already
   in use.

  EX_FAULT addr is not in the valid address space
  EX_INVAL Invalid parameters

Description

so_connect() shall attempt to make a connection on a connection-mode socket or to set or reset the
peer address of a connectionless-mode socket.

sd specifies the socket descriptor associated with the socket.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 69



addr points to a sockaddr structure containing the peer address. The length and format of the
address depend on the address family of the socket.

addrlen specifies the length of the sockaddr structure pointed to by addr.

If the socket has not already been bound to a local address, so_connect() shall bind it to an
address which is an unused local address.

For SOCK_DGRAM sockets,

 so_connect() shall set the peer address of the socket's, and no connection is made. The peer
 address identifies where all datagrams are sent on subsequent so_send(), and limits the
 remote sender for subsequent so_recv(). The socket's peer address shall be reset if any of
 the following conditions are satisfied:
  - The sa_family member of address is AF_UNSPEC.
  - The address is an invalid address such as null address.

For SOCK_STREAM sockets,

 so_connect() shall attempt to establish a connection to the address specified by addr.
 If the connection cannot be established immediately, the following operations are performed 
according to the setting of the sd state flag.

 If O_NONBLOCK is not set for the socket descriptor for the socket,
  so_connect() shall block for up to an unspecified timeout interval until the
  connection is established. If the timeout interval expires before the connection is
  established, so_connect() shall fail and the connection attempt shall be aborted. If
  so_connect() is interrupted by so_break() that is caught while blocked waiting to
  establish a connection, so_connect() shall fail and return an error EX_INTR, but the
  connection request shall not be aborted, and the connection shall be established
  asynchronously.

 If O_NONBLOCK is set for the socket descriptor for the socket,
  so_connect() shall fail and return an error EX_INPROGRESS, but the connection
  request shall not be aborted, and the connection shall be established
  asynchronously. Subsequent calls to so_connect() for the same socket, before the
  connection is established, shall fail and return an error EX_ALREADY.

When the connection has been established asynchronously, so_select() shall indicate that the socket
descriptor for the socket is ready for writing.

See Also

so_accept, so_bind, so_close, so_getsockname, so_send, so_shutdown, so_socket

5.5.7 so_listen - Listen for Socket Connections

C Language Interface

#include <t2ex/socket.h>

ER ercd = so_listen(int sd, int backlog);

Parameter

     int sd Socket descriptor
     int backlog The maximum length of the connection indication queue

Return Parameter

     ER ercd Error code

Error Code

   E_OK Normal completion
   EX_BADF sd is not a valid socket descriptor.

  EX_OPNOTSUPP The socket protocol does not support so_listen().
  EX_INVAL Invalid parameters

Description

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 70



so_listen() shall mark a connection-mode socket, specified by sd, as accepting connections.

The maximum number of connection requests held in the listening queue as yet-to-be-handled is 
specified by backlog.
The maximum value to be specified in backlog is defined by SOMAXCONN.
If the value more than SOMAXCONN is specified to backlog, this API call assumes that SOMAXCON is 
specified to backlog.
If a connection request arrives when no free space is available in the connection request waiting 
queue, the client receives an error indicating EX_CONNREFUSED, or the request may be ignored so that 
later retrials may succeed if lower protocols support retransmission.

If so_listen() is called with a backlog value that is less than 0, the API call behaves as if it had
been called with a backlog argument value of 0.

See Also

so_accept, so_connect, so_socket

5.5.8 so_select, so_select_ms, so_select_us - Synchronous I/O Multiplexing

C Language Interface

#include <t2ex/socket.h>

int nfd = so_select(int nfds, fd_set* readfds, fd_set* writefds, fd_set* exceptfds, struct timeval* 
tv);
int nfd = so_select_ms(int nfds, fd_set* readfds, fd_set* writefds, fd_set* exceptfds, TMO tmout);
int nfd = so_select_us(int nfds, fd_set* readfds, fd_set* writefds, fd_set* exceptfds, TMO_U tmout_u);

Parameter

     int nfds Range of socket descriptors
     fd_set* readfds Socket descriptors to be checked for being ready to read
    fd_set* writefds Socket descriptors to be checked for being ready to write
    fd_set* exceptfds Socket descriptors to be checked for pending error conditions 

    struct timeval* tv Timeout (timeval format)
     TMO tmout Timeout (in milliseconds)

     TMO_U tmout_u Timeout (in microseconds)

Return Parameter

     int nfd The number of ready descriptors,
     or Error code

Error Code

   EX_BADF One or more of the socket descriptor sets specified a socket descriptor
   that is not a valid open socket descriptor.

   EX_INTR Aborted by so_break()
  EX_INVAL Invalid parameters

    - An invalid timeout interval was specified.
    - nfds is less than 0 or greater than FD_SETSIZE.

  EX_FAULT At least one of readfds, writefds, and exceptfds does not point at the valid 
address space

Description

so_select(), so_select_ms(), and so_select_us() shall examine the socket descriptor sets whose
addresses are passed in readfds, writefds, and errorfds to see whether some of their descriptors are
ready for reading, are ready for writing, or have a pending exceptional condition, respectively.

nfds specifies the range of descriptors to be tested. The first nfds descriptors shall be checked in
each set; that is, the descriptors from zero through nfds-1 in the descriptor sets shall be
examined.

If readfds is not a null pointer, it points to an object of type fd_set that on input specifies the
socket descriptors to be checked for being ready to read, and on output indicates which socket
descriptors are ready to read.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 71



If writefds is not a null pointer, it points to an object of type fd_set that on input specifies the
socket descriptors to be checked for being ready to write, and on output indicates which socket
descriptors are ready to write.

If errorfds is not a null pointer, it points to an object of type fd_set that on input specifies the
socket descriptors to be checked for pending error conditions, and on output indicates which socket
descriptors have pending error conditions.

Upon successful completion, these API calls shall modify the objects pointed to by readfds,
writefds, and errorfds to indicate which socket descriptors are ready for reading, ready for
writing, or have pending error conditions, respectively, and shall return the total number of
ready descriptors in all the output sets. For each socket descriptor less than nfds, the
corresponding bit shall be set upon successful completion if it was set on input and the associated
condition is true for that socket descriptor.

If none of the selected descriptors are ready for the requested operation, these API calls shall
block
 - until at least one of the requested operations becomes ready, 
 - until the timeout occurs, or
 - until interrupted by so_break(). 

The timeout interval until the socket descriptor meets the request is set to tv, tmout, or tmout_u, 
which are then used by so_select(), so_select_ms(), or so_select_us() respectively.
Specify the relative time until the timeout occurs in tv using the "timeout" structure, tmout using 
milliseconds, and tmout_u using microseconds.

If tv, tmout, or tmout_u indicates more than 0 seconds, it specifies a maximum interval to wait for
the selection to complete. If the specified time interval expires without any requested operation
becoming ready, these API calls shall return. If timout or tmout_u is TMO_FEVR or tv is a null
pointer, then the call to these API calls shall block indefinitely until at least one descriptor
meets the specified criteria. To effect a poll, tmout or tmout_u should be TMO_POL, or timeout
should not be a null pointer, and should point to a zero-valued timespec structure.

so_select() does not change the value of tv and the value is reusable in the subsequent API call.
However, the POSIX specification claims that the value of tv can be changed or unchanged (for example,
FreeBSD and NetBSD do not change timeout while Linux does).
Upon considering the application portability, it is recommended that a user program initializes the 
value of "tv" on each call of so_select().

A descriptor shall be considered ready for reading,

 in the case of a socket passed to so_recvmsg
  so_recvmsg() with parameters requesting normal and ancillary data, such that the
  presence of either type shall cause the socket to be marked as readable. The
  presence of out-of-band data shall be checked if the socket option SO_OOBINLINE has
  been enabled, as out-of-band data is enqueued with normal data.

 in the case of a socket passed to so_accept
  If the socket is currently listening, then it shall be marked as readable if an
  incoming connection request has been received, and a call to so_accept() shall
  complete without blocking.

A descriptor shall be considered ready for writing,

 in the case of a socket passed to so_sendmsg
  If so_sendmsg() supplies an amount of normal data equal to the current value of the
  SO_SNDLOWAT option for the socket, the socket shall be marked as writable.

 in the case of a socket passed to so_connect
  If a non-blocking call to so_connect() has been made for a socket, and the
  connection attempt has either succeeded or failed leaving a pending error, the
  socket shall be marked as writable.

A socket shall be considered to have a pending exceptional condition 

 - If a receive operation with O_NONBLOCK clear for the open socket description and with the MSG_OOB
   flag set would return out-of-band data without blocking. (It is protocol-specific whether the
   MSG_OOB flag would be used to read out-of-band data.)
 - If an out-of-band data mark is present in the receive queue.
 - Other circumstances under which a socket may be considered to have a pending exceptional condition
   are protocol-specific.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 72



When NULL is specified in all of readfds, writefds, and exceptfds and a positive value is set in 
"tmout_u" and "tmout", so_select() makes the task wait until the specified time elapses or so_break() 
aborts the operation.

When NULL is specified in all of readfds, writefds, and exceptfds and unlimited waiting is set on 
"tmout_u" and "tmout" (when "tmout_u" and "tmout" are TMO_FEVR and tv is NULL), so_select() makes the 
task wait until so_break() aborts the operation.

On failure, the objects pointed to by the readfds, writefds, and errorfds shall not be modified. If
the timeout interval expires without the specified condition being true for any of the specified
socket descriptors, the objects pointed to by the readfds, writefds, and errorfds shall have all
bits set to 0.

Socket descriptor masks of type fd_set can be initialized and tested with FD_CLR(), FD_ISSET(),
FD_SET(), and FD_ZERO().

FD_CLR(fd, fdsetp)
 FD_CLR shall remove the socket descriptor fd from the set specified by fdsetp. If fd is not
 a member of this set, there shall be no effect on the set, nor will an error be returned.

FD_ISSET(fd, fdsetp)
 FD_ISSET shall evaluate to non-zero if the socket descriptor fd is a member of the set
 specified by fdsetp, and shall evaluate to zero otherwise.

FD_SET(fd, fdsetp)
 FD_SET shall add the socket descriptor fd to the set specified by fdsetp. If the socket
 descriptor fd is already in this set, there shall be no effect on the set, nor will an error
 be returned.

FD_ZERO(fdsetp)
 FD_ZERO shall initialize the descriptor set specified by fdsetp to the null set. No error
 is returned if the set is not empty at the time FD_ZERO is invoked.

The behavior of these macros is undefined,
 - if fd is less than 0 or greater than or equal to FD_SETSIZE,
 - if fd is not a valid socket descriptor, or
 - if any of the arguments are expressions with side-effects.

5.5.9 so_read - Read from a Socket

C Language Interface

#include <t2ex/socket.h>

int nb = so_read(int sd, void* buf, size_t count);

Parameter

     int sd Socket descriptor
     void* buf Receive buffer

     size_t count Size of the receive buffer (in bytes)

Return Parameter

     int nb The number of bytes actually read,
     or Error code

     void* buf Received data.

Error Code

EX_AGAIN, or EX_WOULDBLOCK
   The O_NONBLOCK flag is set for the socket descriptor and no data is waiting
   to be received.

   EX_BADF sd is not a valid socket descriptor.
   EX_INTR Aborted by so_break() (no data has been received)

   EX_IO I/O error while reading from the socket
  EX_FAULT buf is not in the valid address space
  EX_INVAL Invalid parameters

  EX_NOTCONN A read was attempted on a socket that is not connected.

Description

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 73



so_read() shall attempt to read count bytes from the socket associated with sd, into the buffer
pointed to by buf.

If count is 0, no operation is performed.
Completes successfully if there is no parameter error. Returns a corresponding error code if there is 
any error.

If the value of count is greater than SSIZE_MAX, so_read() returns an error EX_INVAL.

If no data is currently available, the following operation is performed based on the sd state flag.

 If O_NONBLOCK is clear,
  so_read() shall block the calling thread until some data becomes available.

 If O_NONBLOCK is set (non-blocking mode),
  so_read() shall return an error EX_AGAIN.

The use of the O_NONBLOCK flag has no effect if there is some data available.

Upon successful completion, where count is greater than 0, so_read() shall return the number of
bytes read. This number shall never be greater than count. The value returned may be less than
count if the socket has fewer than counts bytes immediately available for reading.

If so_read() is interrupted by so_break() before it reads any data, it shall return an error
EX_INTR.
If the operation is aborted after reading one or more bytes of data, the number of bytes read so far 
is returned.

so_read() shall be equivalent to so_recv() with no flags set.

See Also

so_fcntl, so_ioctl, so_recv, so_select, so_socket, so_sockpair

5.5.10 so_recv, so_recvfrom, so_recvmsg - Receive a Message from a Connected Socket

C Language Interface

#include <t2ex/socket.h>

int nb = so_recv(int sd, void* buf, size_t len, int flags);
int nb = so_recvfrom(int sd, void* buf, size_t len, int flags, struct sockaddr* src_addr, socklen_t* 
addrlen);
int nb = so_recvmsg(int sd, struct msghdr* msg, int flags);

Parameter

     int sd Socket descriptor
     void* buf Receive buffer

     size_t len Size of the receive buffer (in bytes)
    struct msghdr* msg Message header

     int flags Flags
  struct sockaddr* src_addr Source address

    socklen_t* addrlen Size of the source address (in bytes)

Return Parameter

     int nb The length of the message (in bytes),
     or Error code

     void* buf Received data

Error Code

EX_AGAIN or EX_WOULDBLOCK
   The socket descriptor of the socket is marked O_NONBLOCK and no data is
   waiting to be received; or MSG_OOB is set and no out-of-band data is
   available and either the socket descriptor of the socket is marked
   O_NONBLOCK or the socket does not support blocking to await out-of-band
   data.

   EX_BADF sd is not a valid socket descriptor.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 74



   EX_INTR Aborted by so_break() (no data has been received)
  EX_INVAL Invalid parameter.

    - The sum of the iov_len values is greater than SSIZE_MAX.
    - The MSG_OOB flag is set and no out-of-band data is available.

  EX_NOTCONN A receive is attempted on a connection-mode socket that is not connected.
  EX_OPNOTSUPP The specified flags are unsupported for this socket type or protocol.

  EX_FAULT Receive buffer is not in a valid address space

For so_recvmsg(),
  EX_MSGSIZE The msg_iovlen member of the msghdr structure pointed to by msg is less

   than or equal to 0, or is greater than IOV_MAX.

Description

so_recv(), so_recvfrom(), and so_recvmsg() shall receive a message from a connection-mode or
connectionless-mode socket.

so_recvfrom() and so_recvmsg() shall receive a message from a connection-mode or connectionless-mode
socket. It is normally used with connectionless-mode sockets because it permits the application to
retrieve the source address of received data.

so_recv() is normally used with connected sockets because it does not permit the application to 
retrieve
the source address of received data.

sd specifies the socket descriptor.

buf points to a buffer where the message should be stored.

len is the length in bytes of the buffer pointed to by buf.

msg points to a msghdr structure, containing both the buffer to store the source address and the
buffers for the incoming message. The length and format of the address depend on the address family
of the socket.

 In the msghdr structure, the msg_name and msg_namelen members specify the source address if
 the socket is unconnected. If the socket is connected, the msg_name and msg_namelen members
 shall be ignored. The msg_name member may be a null pointer if no names are desired or
 required.
 The msg_flags member is ignored on input, but may contain meaningful values on output. Upon
 successful completion, the msg_flags member of the message header shall be the
 bitwise-inclusive OR of all of the following flags that indicate conditions detected for the
 received message:

    MSG_EOR End-of-record was received (if supported by the protocol).
    MSG_OOB Out-of-band data was received.
   MSG_TRUNC Normal data was truncated.
   MSG_CTRUNC Control data was truncated.

 The msg_iov and msg_iovlen fields are used to specify where the received data shall be
 stored. msg_iov points to an array of iovec structures; msg_iovlen shall be set to the
 dimension of this array.

 In each iovec structure, the iov_base field specifies a storage area and the iov_len field
 gives its size in bytes. Each storage area indicated by msg_iov is filled with received data
 in turn until all of the received data is stored or all of the areas have been filled.

 Specify a pointer to the "cmsghdr" structure to write an auxiliary data of the protocol in 
msg_control of the "msghdr" structure, and the size of msg_control in msg_controllen in bytes.

flags specifies the type of message reception. Values of flags are formed by logically OR'ing zero
or more of the following values:

 MSG_PEEK
  Peeks at an incoming message. The data is treated as unread and the next so_recv(),
  so_recvfrom(), so_recvmsg() shall still return this data.

 MSG_OOB
  Requests out-of-band data. The significance and semantics of out-of-band data are
  protocol-specific.

 MSG_WAITALL
  On SOCK_STREAM sockets this requests that the API call block until the full amount

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 75



  of data can be returned. The API call may return the smaller amount of data,
   - if the socket is a message-based socket,
   - if aborted by so_break(),
   - if the connection is terminated, 
   - if MSG_PEEK was specified, or
   - if an error is pending for the socket.

src_addr is a null pointer, or points to a sockaddr structure in which the sending address is to be
stored. The length and format of the address depend on the address family of the socket.

addrlen is the length of the sockaddr structure pointed to by src_addr.

so_recv() and so_recvfrom() shall return the length of the message written to the buffer pointed to
by buf, and so_recvmsg() shall return the length of the message in bytes. For message-based
sockets, such as SOCK_DGRAM, the entire message shall be read in a single operation. If a message is
too long to fit in the supplied buffer, and MSG_PEEK is not set in flags, the excess bytes shall be
discarded. For stream-based sockets, such as SOCK_STREAM, message boundaries shall be ignored. In
this case, data shall be returned to the user as soon as it becomes available, and no data shall be
discarded.

If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first message.

If no messages are available at the socket,

 if O_NONBLOCK is not set on sd, 
  so_recv(), so_recvfrom(), and so_recvmsg() shall block until a message arrives. 

 if O_NONBLOCK is set on sd,
  so_recv(), so_recvfrom(), and so_recvmsg() shall fail and return an error EX_AGAIN.

Not all protocols provide the source address for messages. If src_addr is not a null pointer and the
protocol provides the source address of messages, the source address of the received message shall
be stored in the sockaddr structure pointed to by src_addr, and the length of this address shall be
stored in the object pointed to by addrlen.
If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

If src_addr is not a null pointer and the protocol does not provide the source address of messages,
the value stored in the object pointed to by src_addr is unspecified.

5.5.11 so_write - Write on a Socket

C Language Interface

#include <t2ex/socket.h>

int nb = so_write(int sd, const void* buf, size_t count);

Parameter

     int sd Socket descriptor
    const void* buf Send buffer

     size_t count Size of the send buffer (in bytes)

Return Parameter

     int nb The number of bytes actually written,
     or Error code

Error Code

EX_AGAIN, or EX_WOULDBLOCK
   The O_NONBLOCK flag is set for the socket descriptor and the task would be
   delayed in the so_write() operation.

   EX_BADF sd is not a valid socket descriptor open for writing.
   EX_INTR Aborted by so_break()

  EX_FAULT The area specified in buf is not in the valid address space
  EX_HOSTUNREACH Message cannot reach the destination

  EX_HOSTDOWN The destination is on the local subnet and does not respond to arp
  EX_INVAL Invalid parameters.

  EX_NOTCONN Attempted to send using a connection type socket for which the connection is 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 76



not established

Description

so_write() shall attempt to write count bytes from the buffer pointed to by buf to the socket
associated with sd.

If count is zero, it completes normally without sending any data.

If so_write() is interrupted by so_break() before it writes any data, it shall return an error
EX_INTR.

If so_write() is interrupted by so_break() after it successfully writes some data, it shall return
the number of bytes written.

If the value of count is greater than SSIZE_MAX, so_write() shall return an error EX_INVAL.

When attempting to write to a socket descriptor and cannot accept the data immediately:

 If the O_NONBLOCK flag is clear, 
  so_write() shall block the calling task until the data can be accepted.

 If the O_NONBLOCK flag is set,
  so_write() shall return an error EX_AGAIN.

so_write() shall be equivalent to so_send() with no flags set.

See Also

so_read, so_select

5.5.12 so_send, so_sendto, so_sendmsg - Send a Message on a Socket

C Language Interface

#include <t2ex/socket.h>

int nb = so_send(int sd, const void* buf, size_t len, int flags);
int nb = so_sendto(int sd, const void* buf, size_t len, int flags, const struct sockaddr* dest_addr, 
socklen_t addrlen);
int nb = so_sendmsg(int sd, const struct msghdr* msg, int flags);

Parameter

     int sd Socket descriptor
    const void* buf Send buffer

     size_t len Size of the send buffer (in bytes)
   const struct msghdr* msg Message header

     int flags Flags
  const struct sockaddr* dest_addr Destination address

    socklen_t addrlen Size of the destination address (in bytes)

Return Parameter

     int nb The number of bytes sent,
     or Error code

Error Code

EX_AGAIN, or EX_WOULDBLOCK
   The socket descriptor of the socket is marked O_NONBLOCK and the requested
   operation would block.

   EX_BADF sd is not a valid socket descriptor.
   EX_INTR Aborted by so_break()

  EX_INVAL Invalid parameters
    - The sum of the iov_len values is greater than SSIZE_MAX.

  EX_NOBUFS Insufficient resources were available in the system to perform the
   operation.

  EX_FAULT The area specified in the argument is not in the valid address space
  EX_DESTADDRREQ The socket is not a connection type and a communication address is not set
  EX_HOSTUNREACH Message cannot reach the destination

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 77



  EX_HOSTDOWN The destination is on the local subnet and does not respond to arp
  EX_AFNOSUPPORT Specified address family cannot be used by this socket.

  EX_NOTCONN The socket is not connected.

For so_sendto(),
  EX_ISCONN A destination address was specified and the socket is already connected.

For so_sendmsg(),
  EX_MSGSIZE The msg_iovlen member of the msghdr structure pointed to by msg is 

non-positive
   or is greater than IOV_MAX.

Description

so_send(), so_sendto(), and so_sendmsg() shall initiate transmission of a message from the specified
socket to its peer.

so_send() shall send a message only when the socket is connected. If the socket is a
connectionless-mode socket, the message shall be sent to the pre-specified peer address.

so_sendto() shall send a message through a connection-mode or connectionless-mode socket. If the
socket is a connectionless-mode socket, the message shall be sent to the address specified by
dest_addr if no pre-specified peer address has been set. If a peer address has been pre-specified,
so_sendto() shall return an error EX_ISCONN. If the socket is connection-mode, dest_addr shall be
ignored.

so_sendmsg() shall send a message through a connection-mode or connectionless-mode socket. If the
socket is a connectionless-mode socket, the message shall be sent to the address specified by msghdr
if no pre-specified peer address has been set. If a peer address has been pre-specified, the message
shall be sent to the address specified in msghdr (overriding the pre-specified peer address). If the
socket is connection-mode, the destination address in msghdr shall be ignored.

sd specifies the socket descriptor.

buf points to the buffer containing the message to send.

len specifies the length of the message in bytes.

msg points to a msghdr structure, containing both the destination address and the buffers for the
outgoing message. The length and format of the address depend on the address family of the
socket. The msg_flags member is ignored.

 The msg_iov and msg_iovlen fields of msg specify zero or more buffers containing the data to
 be sent. msg_iov points to an array of iovec structures; msg_iovlen shall be set to the
 dimension of this array. In each iovec structure, the iov_base field specifies a storage
 area and the iov_len field gives its size in bytes. Some of these sizes can be zero. The
 data from each storage area specified by msg_iov is sent in turn.

flags specifies the type of message transmission. Values of flags are formed by logically OR'ing
zero or more of the following flags:

 MSG_EOR
  Terminates a record (if supported by the protocol).
 MSG_OOB
  Sends out-of-band data on sockets that support out-of-band communications. The
  significance and semantics of out-of-band data are protocol-specific.

dest_addr points to a sockaddr structure containing the destination address. The length and format
of the address depend on the address family of the socket.

addrlen is the length of the sockaddr structure pointed to by dest_addr.

The length of the message to be sent is specified by len. If the message is too long to pass
through the underlying protocol, so_send() shall fail and no data shall be transmitted.

Successful completion of a call to so_send(), so_sendto(), or so_sendmsg() does not guarantee
delivery of the message. A return value of a negative value indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted, 

 if the socket descriptor does not have O_NONBLOCK set,
  so_send(), so_sendto(), and so_sendmsg() shall block until space is available. 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 78



 if the socket descriptor does have O_NONBLOCK set,
  so_send(), so_sendto(), and so_sendmsg() shall fail. so_select() can be used to
  determine when it is possible to send more data.

If the socket protocol supports broadcast and the specified address is a broadcast address for the
socket protocol, so_sendmsg() and so_sendto() shall fail if the SO_BROADCAST option is not set for
the socket.

5.5.13 so_getpeername - Get the Name of the Peer Socket

C Language Interface

#include <t2ex/socket.h>

ER ercd = so_getpeername(int sd, struct sockaddr* addr, socklen_t* addrlen);

Parameter

     int sd Socket descriptor
   struct sockaddr* addr Peer address

    socklen_t* addrlen Size of the peer address (in bytes)

Return Parameter

     ER ercd Error code
   struct sockaddr* addr Peer address

    socklen_t* addrlen Actual size of the returned peer address (in bytes)

Error Code

   E_OK Normal completion
   EX_BADF sd is not a valid socket descriptor.

  EX_NOTCONN The socket is not connected or otherwise has not had the peer pre-specified.
  EX_NOBUFS Insufficient resources were available in the system to complete the call.

  EX_FAULT addr is not in the valid address space
  EX_INVAL Invalid parameters

Description

so_getpeername() shall retrieve the peer address of the specified socket, store this address in the
sockaddr structure pointed to by addr, and store the length of this address in the object pointed to
by addrlen.

The socket descriptor of the socket to search the address of the destination is specified in sd.

addr is a NULL pointer or a pointer to the "sockaddr" structure.
If addr is a pointer to the "sockaddr" structure, the connected socket address is written to addr.

addrlen is a pointer to socklen_t data type and used for both calling this API call and returning from
this API call.
When this API call is invoked, the size of the "sockaddr" structure passed to the API call is 
specified in addrlen.
When this API call returns, the written address size is stored in addrlen.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

See Also

so_accept, so_bind, so_getsockname, so_socket

5.5.14 so_getsockname - Get a Socket Name

C Language Interface

#include <t2ex/socket.h>

ER ercd = so_getsockname(int sd, struct sockaddr* addr, socklen_t* addrlen);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 79



Parameter

     int sd Socket descriptor
   struct sockaddr* addr Address

    socklen_t* addrlen Size of the address (in bytes)

Return Parameter

     ER ercd Error code
   struct sockaddr* addr Address

    socklen_t* addrlen Actual size of the returned address (in bytes)

Error Code

   E_OK Normal completion
   EX_BADF sd is not a valid socket descriptor.

  EX_INVAL The socket has been shut down.
  EX_NOBUFS Insufficient resources were available in the system to complete the

   function.
  EX_FAULT addr is not in the valid address space

Description

so_getsockname() shall retrieve the locally-bound name of the specified socket, store this address
in the sockaddr structure pointed to by addr, and store the length of this address in the object
pointed to by addrlen.

The socket descriptor of the socket to search the local name is specified in sd.

addr is a NULL pointer or a pointer to the "sockaddr" structure.
If addr is a pointer to the "sockaddr" structure, the connected socket address is written.

addrlen is a pointer to socklen_t data type and used for both calling this API call and returning from
this API call.
When this API call is invoked, the length of the "sockaddr" structure passed to the API call is 
specified in addrlen.
When this API call returns, the written address size is stored in addrlen.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

If the socket has not been bound to a local name, the value stored in the object pointed to by
address is unspecified.

See Also

so_accept, so_bind, so_getpeername, so_socket

5.5.15 so_getsockopt - Get a Socket Option

C Language Interface

#include <t2ex/socket.h>

ER ercd = so_getsockopt(int sd, int level, int optname, void* optval, socklen_t* optlen);

Parameter

     int sd Socket descriptor
     int level Level
     int optname Option

     void* optval Option value
    socklen_t* optlen Size of the option value (in bytes)

Return Parameter

     ER ercd Error code
     void* optval Returned option value

    socklen_t* optlen Actual size of the returned option value (in bytes)

Error Code

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 80



   E_OK Normal completion
   EX_BADF sd is not a valid socket descriptor.

  EX_INVAL Invalid parameters
    - The specified option is invalid at the specified socket level.
    - The socket has been shut down.

  EX_NOPROTOOPT The option is unsupported by the protocol.
  EX_FAULT optval or optlen are not in the valid address space

Description

so_getsockopt() shall retrieve the value for the option specified by optname for the socket
specified by sd.

If the size of the option value is greater than optlen, the value stored in the object pointed to by
optval shall be silently truncated. Otherwise, the object pointed to by the optlen shall be modified
to indicate the actual length of the value.

level specifies the protocol level at which the option resides. To retrieve options at the socket
level, specify level as SOL_SOCKET. To retrieve options at other levels, supply the appropriate
level identifier for the protocol controlling the option. For example, to indicate that an option
is interpreted by the TCP, set level to IPPROTO_TCP.
The following level identifiers can be used.

 IPPROTO_IP The IP level
 IPPROTO_TCP The TCP level

 SOL_SOCKET The socket level

optname specifies a single option to be retrieved. 

If IPPROTO_IP is specified in level, the following options can be specified in optname.

  IP_OPTIONS IP options embedded in the IP header of each packet to be sent
  IP_HDRINCL Enables/disables addition of the IP header to the sent data by an application

If IPPROTO_TCP is specified in level, the following options can be specified in optname.

  TCP_NODELAY Enables/disables the immediate transmission of data immediately
  TCP_MAXSEG Maximum length of a segment

If SOL_SOCKET is specified in level, the following options can be specified in optname.

  SO_DEBUG Debugging in the underlying protocol modules.
  SO_ACCEPTCONN Waiting state of so_listen().

  SO_REUSEADDR Reuse of local addresses.
  SO_KEEPALIVE Periodic transmission of keepalive messages.
  SO_DONTROUTE Bypass of normal routing; route based on destination address only.
  SO_BROADCAST Permission to transmit broadcast datagrams.

  SO_USELOOPBACK Enables/disables functions to communicate bypassing the hardware
  SO_LINGER Actions to be taken for queued, unsent data on so_close().

  SO_OOBINLINE Out-of-band data be placed into normal data input queue as received.
  SO_REUSEPORT Enables/disables to reuse of the local address and the port
  SO_TIMESTAMP Enables/disables to add timestamps to the received datagram

  SO_SNDBUF Size of send buffer (in bytes)
  SO_RCVBUF Size of receive buffer (in bytes)

  SO_SNDLOWAT Minimum amount of data to send for output operations (in bytes)
  SO_RCVLOWAT Minimum amount of data to return to application for input operations (in 

bytes).
  SO_SNDTIMEO Timeout value for a socket send operation.
  SO_RCVTIMEO Timeout value for a socket receive operation

  SO_ERROR Pending error information on the socket
   SO_TYPE Socket type

See Also

so_ioctl, so_select, so_socket

5.5.16 so_setsockopt - Set a Socket Option

C Language Interface

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 81



#include <t2ex/socket.h>

ER ercd = so_setsockopt(int sd, int level, int optname, const void* optval, socklen_t optlen);

Parameter

     int sd Socket descriptor
     int level Level
     int optname Option

    const void* optval Option value
    socklen_t optlen Size of the option value (in bytes)

Return Parameter

     ER ercd Error code

Error Code

   E_OK Normal completion
   EX_BADF sd is not a valid socket descriptor.

  EX_INVAL Invalid parameters
    - The specified option is invalid at the specified socket level
    - The socket has been shut down.

  EX_NOPROTOOPT The option is unsupported by the protocol.
  EX_FAULT optval or optlen are not in the valid address space

Description

so_setsockopt() shall set the option specified by the optname, at the protocol level specified by
level, to the value pointed to by optval for the socket associated with the socket descriptor
specified by sd.

level specifies the protocol level at which the option resides. To set options at the socket level,
specify level as SOL_SOCKET. To set options at other levels, supply the appropriate level identifier
for the protocol controlling the option. For example, to indicate that an option is interpreted by
the TCP.
The following level identifiers can be used.

 IPPROTO_IP The IP level
 IPPROTO_TCP The TCP level

 SOL_SOCKET The socket level

optname specifies a single option to set.

If IPPROTO_IP is specified in level, the following options can be specified in optname.

  IP_OPTIONS IP options embedded in the IP header of each packet to be sent
  IP_HDRINCL Enables/disables to assign the IP header to the sent data by an application

If IPPROTO_TCP is specified in level, the following options can be specified in optname.

  TCP_NODELAY Enables/disables the immediate transmission of data
  TCP_MAXSEG Maximum length of a segment

If SOL_SOCKET is specified in level, the following options can be specified in optname.

  SO_DEBUG Debugging in the underlying protocol modules.
  SO_REUSEADDR Reuse of local addresses.
  SO_KEEPALIVE Periodic transmission of keepalive messages.
  SO_DONTROUTE Bypass of normal routing; route based on destination address only.
  SO_BROADCAST Permission to transmit broadcast datagrams.

  SO_USELOOPBACK Enables/disables functions to communicate bypassing the hardware
  SO_LINGER Actions to be taken for queued, unsent data on so_close().

  SO_OOBINLINE Out-of-band data be placed into normal data input queue as received.
  SO_REUSEPORT Enables/disables the reuse of the local address and the port
  SO_TIMESTAMP Enables/disables the addition of timestamps to the received datagram

  SO_SNDBUF Size of send buffer (in bytes)
  SO_RCVBUF Size of receive buffer (in bytes)

  SO_SNDLOWAT Minimum amount of data to send for output operations (in bytes)
  SO_RCVLOWAT Minimum amount of data to return to application for input operations (in 

bytes).
  SO_SNDTIMEO Timeout value for a socket send operation.
  SO_RCVTIMEO Timeout value for a socket receive operation

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 82



5.5.17 so_gethostname - Get the Current Host Name

C Language Interface

#include <t2ex/socket.h>

ER ercd = so_gethostname(char* name, size_t len);

Parameter

     char* name Pointer to the area to return the host name
     size_t len Size of the area pointed by name (in bytes)

Return Parameter

     ER ercd Error code
     char* name Host name

Error Code

   E_OK Normal completion
  EX_FAULT The area specified in name is not in the valid address space
  EX_INVAL Invalid parameters

Description

so_gethostname() shall return the standard host name for the current machine.

len is the size of the array pointed to by name. The returned name is 
null-terminated, except that if len is too short hold the host name, then the
returned name shall be truncated and it is unspecified whether the returned name is null-terminated.

Host names are limited to HOST_NAME_MAX bytes.

See Also

so_sethostname

5.5.18 so_sethostname - Set a Host Name

C Language Interface

#include <t2ex/socket.h>

ER ercd = so_sethostname(const char* name, size_t len);

Parameter

    const char* name Name of host
     size_t len Size of the host name (in bytes)

Return Parameter

     ER ercd Error code

Error Code

   E_OK Normal completion
  EX_FAULT The area specified in name is not in the valid address space
  EX_INVAL Illegal parameter

Description

This function sets the host name specified by name to the current machine. 

The size of array represented by name is specified in len.
Usually, this API call is used immediately after startup.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 83



See Also

so_gethostname

5.5.19 so_getaddrinfo, so_getaddrinfo_ms, so_getaddrinfo_us - Get Address Information

C Language Interface

#include <t2ex/socket.h>

int len = so_getaddrinfo(const char* node, const char* service, const struct addrinfo* hints, struct 
addrinfo** res, void* buf, size_t bufsz, struct timeval* timeout);
int len = so_getaddrinfo_ms(const char* node, const char* service, const struct addrinfo* hints, 
struct addrinfo** res, void* buf, size_t bufsz, TMO tmout);
int len = so_getaddrinfo_us(const char* node, const char* service, const struct addrinfo* hints, 
struct addrinfo** res, void* buf, size_t bufsz, TMO_U tmout_u);

Parameter

    const char* node Service location
    const char* service Service

   const struct addrinfo* hints Hints containing input values that directs the operation
   struct addrinfo** res Pointer to the linked list of results

     void* buf Pointer to the area to store results
     size_t bufsz Size of the area pointed by buf (in bytes)

    struct timeval* timeout Timeout (timeval format)
     TMO tmout Timeout (in milliseconds)

     TMO_U tmout_u Timeout (in microseconds)

Return Parameter

     int len Size of the buffer to store results (in bytes),
     or Error code

   struct addrinfo** res Pointer to the linked list of results
     void* buf The linked list of results

Error Code

  EX_TIMEDOUT Timeout occured before completing the operation
   EX_INTR Aborted by so_break()

  EX_INVAL Invalid parameters
  EX_AI_AGAIN The name could not be resolved at this time. Future attempts may succeed.

  EX_AI_BADFLAGS ai_flags had an invalid value.
  EX_AI_FAIL A non-recoverable error occurred when attempting to resolve the name.

  EX_AI_FAMILY The address family was not recognized.
  EX_AI_NONAME The name does not resolve for the supplied parameters.

   (Neither node nor service were supplied. At least one of these shall be
   supplied.)

  EX_AI_SERVICE The service passed was not recognized for the specified socket type.
  EX_AI_SOCKTYPE The intended socket type was not recognized.

Description

so_getaddrinfo() shall translate the name of a service location (for example, a host name) and/or a
service name and shall return a set of socket addresses and associated information to be used in
creating a socket with which to address the specified service.

node and service are either null pointers or pointers to null-terminated strings. One or both of
these two arguments shall be supplied by the application as a non-null pointer.

The format of a valid name depends on the address family or families. If a specific family is not
given and the name could be interpreted as valid within multiple supported families, the
implementation shall attempt to resolve the name in all supported families and, in absence of
errors, one or more results shall be returned.

If node is not null, it can be a descriptive name or can be an address string. If the specified
address family is AF_INET or AF_UNSPEC, valid descriptive names include host names. If the specified
address family is AF_INET or AF_UNSPEC, address strings using Internet standard dot notation as
specified in inet_addr are valid.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 84



If node is not null, the requested service location is named by node; otherwise, the requested
service location is local to the caller.

If service is null, the call shall return network-level addresses for the specified node. If service
is not null, it is a null-terminated character string identifying the requested service. This can be
either a descriptive name or a numeric representation suitable for use with the address family or
families. If the specified address family is AF_INET or AF_UNSPEC, the service can be specified as a
string specifying a decimal port number.

If hints is not null, it refers to a structure containing input values that directs the operation by
providing options and by limiting the returned information to a specific socket type, address
family, and/or protocol, as described below. In this hints structure every member other than
ai_flags, ai_family, ai_socktype, and ai_protocol shall be set to zero or a null pointer. If hints
is a null pointer, the behavior shall be as if it referred to a structure containing the value zero
for the ai_flags, ai_socktype, and ai_protocol fields, and AF_UNSPEC for the ai_family field.

A value of zero for ai_protocol means that the caller shall accept any protocol.

ai_family
 The ai_family field to which argument hints points specifies the address familly for the
 service.

 If the ai_family field to which hints points has the value AF_UNSPEC, addresses shall be
 returned for use with any address family that can be used with the specified node and/or
 service. Otherwise, addresses shall be returned for use only with the specified address
 family. If ai_family is not AF_UNSPEC and ai_protocol is not zero, then addresses shall be
 returned for use only with the specified address family and protocol.

ai_socktype
 The ai_socktype field to which argument hints points specifies the socket type for the
 service, as defined in socket.
 0, SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW can be specified in the field.

 If a specific socket type is not given (for example, a value of zero) and the service name
 could be interpreted as valid with multiple supported socket types, the implementation shall
 attempt to resolve the service name for all supported socket types and, in the absence of
 errors, all possible results shall be returned. A non-zero socket type value shall limit the
 returned information to values with the specified socket type.

ai_protocol
 The protocol required by the service is specified in the ai_protocol field.
 IPPROTO_UDP or IPPROTO_TCP can be specified in the field.

 A value of zero for ai_protocol means that the caller shall accept any protocol.

 If ai_family is not AF_UNSPEC and ai_protocol is not zero, then addresses shall be returned
 for use only with the specified address family and protocol.

ai_flags
 The ai_flags field to which the hints parameter points shall be set to zero or be the
 bitwise-inclusive OR of one or more of the values AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST,
 and AI_NUMERICSERV.

 AI_CANONNAME
  If the AI_CANONNAME flag is specified and node is not null, the API call shall
  attempt to determine the canonical name corresponding to node.

 AI_NUMERICHOST
  If the AI_NUMERICHOST flag is specified, then a non-null node string supplied shall
  be a numeric host address string. Otherwise, an EX_AI_NONAME error is returned. This
  flag shall prevent any type of name resolution service (for example, the DNS) from
  being invoked.

 AI_NUMERICSERV
  If the AI_NUMERICSERV flag is specified, then a non-null service string supplied
  shall be a numeric port string. Otherwise, an EX_AI_NONAME error shall be
  returned. This flag shall prevent any type of name resolution service (for example,
  NIS+) from being invoked.

 AI_PASSIVE
  If the AI_PASSIVE flag is specified, the returned address information shall be
  suitable for use in binding a socket for accepting incoming connections for the

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 85



  specified service. In this case, if node is null, then the IP address portion of the
  socket address structure shall be set to INADDR_ANY for an IPv4 address. The
  AI_PASSIVE flag shall be ignored if node is not null.

  If the AI_PASSIVE flag is not specified, the returned address information shall be
  suitable for a call to so_connect() (for a connection-mode protocol) or for a call
  to so_connect(), so_sendto(), or so_sendmsg() (for a connectionless protocol). In
  this case, if node is null, then the IP address portion of the socket address
  structure shall be set to the loopback address.

buf is a pointer to the buffer area to store the result. Its size is specified in bufsz in bytes.
getaddrinfo() in the POSIX specification allocates a memory space dynamically, store the result there,
and set res as its pointer.
On the other hand, so_getaddrinfo(), so_getaddrinfo_ms(), and so_getaddrinfo_us() store results in the
area allocated by buf to avoid any dynamic allocation of memory through an API call.
They return buffer size required to store all the result entries as return code when the name 
resolution completes normally.

If the memory size required to store the result is larger than "bufsz", entries are stored in buf as 
many as possible.
If no entries can be stored in buf, res is set to NULL.

In addition, because the memory space is not allocated dynamically in API calls as stated above, the 
memory space storing the result of so_getaddrinfo() does not need to be released.
Therefore, unlike the POSIX specification, there is no API call equivalent to freeaddrinfo() to 
release the result memory area.

Timeout interval for completing the name resolution operation is specified in timeout, tmout, or 
tmout_u, which is then used in so_getaddrinfo(), so_getaddrinfo_ms(), or so_getaddrinfo_us() 
respectively.
Specify the relative time until the timeout occurs in timeout using the "timeout" structure, tmout 
using milliseconds, and tmout_u using microseconds.

If timeout, tmout, or tmout_u is positive, and the name resolution does not complete within the 
specified time, the name resolution process is aborted and EX_TIMEDOUT is returned.
To try to resolve the same name again in this case, start from scratch instead of continuing this name
resolution process.
If tmout and tmout_u are set to TMO_FEVR and timeout is set to NULL, the behavior is the same as that 
of the getaddrinfo() in the POSIX specification except for memory space allocation for the result.

Upon successful return of so_getaddrinfo(), the location to which res points shall refer to a linked
list of addrinfo structures, each of which shall specify a socket address and information for use in
creating a socket with which to use that socket address. The list shall include at least one
addrinfo structure. The ai_next field of each structure contains a pointer to the next structure on
the list, or a null pointer if it is the last structure on the list. Each structure on the list
shall include values for use with a call to so_socket(), and a socket address for use with
so_connect() or, if the AI_PASSIVE flag was specified, for use with so_bind(). The fields
ai_family, ai_socktype, and ai_protocol shall be usable as the arguments to so_socket() to create a
socket suitable for use with the returned address. The fields ai_addr and ai_addrlen are usable as
the arguments to so_connect() or so_bind() with such a socket, according to the AI_PASSIVE flag.

If node is not null, and if requested by the AI_CANONNAME flag, the ai_canonname field of the first
returned addrinfo structure shall point to a null-terminated string containing the canonical name
corresponding to the input node; if the canonical name is not available, then ai_canonname shall
refer to node or a string with the same contents. The contents of the ai_flags field of the
returned structures are undefined.

If so_break() is issued for the task waiting for completion of this API call process before the 
so_getaddrinfo() operation completes, this API call aborts the name resolution process and returns 
EX_INTR.
To try to resolve the same name again in this case, start from the scratch instead of continuing this 
name resolution process.

Because gethostbyname and gethostbyaddr defined in the POSIX specification are non-thread-safe, and 
they can be replaced by this function, T2EX does not provide API calls equivalent to these.

See Also

so_bind, so_connect, so_getnameinfo, so_socket

5.5.20 so_getnameinfo, so_getnameinfo_ms, so_getnameinfo_us - Get Name Information

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 86



C Language Interface

#include <t2ex/socket.h>

ER ercd = so_getnameinfo(const struct sockaddr* sa, socklen_t salen, char* host, size_t hostlen, char*
serv, size_t servlen, int flags, struct timeval* timeout);
ER ercd = so_getnameinfo_ms(const struct sockaddr* sa, socklen_t salen, char* host, size_t hostlen, 
char* serv, size_t servlen, int flags, TMO tmout);
ER ercd = so_getnameinfo_us(const struct sockaddr* sa, socklen_t salen, char* host, size_t hostlen, 
char* serv, size_t servlen, int flags, TMO_U tmout_u);

Parameter

   const struct sockaddr* sa Address to be translated
    socklen_t salen Size of the address to be translated (in bytes)

     char* host Pointer to the area to return the host name.
     size_t hostlen Size of the area pointed by host (in bytes)

     char* serv Pointer to the area to return the service name.
     size_t servlen Size of the area pointed by serv (in bytes)

     int flags Flags

    struct timeval* timeout Timeout (timeval format)
     TMO tmout Timeout (in milliseconds)

     TMO_U tmout_u Timeout (in microseconds)

Return Parameter

     ER ercd Error code
     char* host Host name
     char* serv Service name

Error Code

   E_OK Normal completion
  EX_TIMEDOUT Timeout occured before completing the operation

   EX_INTR Aborted by so_break()
  EX_INVAL Invalid parameters

  EX_AI_AGAIN The name could not be resolved at this time. Future attempts may succeed.
  EX_AI_BADFLAGS ai_flags had an invalid value.

  EX_AI_FAIL A non-recoverable error occurred when attempting to resolve the name.
  EX_AI_FAMILY Invalid address family

    - The address family was not recognized
    - The address length was invalid.

  EX_AI_NONAME The name does not resolve for the supplied parameters.
    - NI_NAMEREQD is set and the host's name cannot be located
    - Both nodename and servname were null.

  EX_AI_OVERFLOW An argument buffer overflowed. 
    - The buffer pointed to by node or service was too small.

  EX_AI_SYSTEM An internal error occurred.
                         - Converting an address to a string is failed.

  EX_AI_SOCKTYPE The intended socket type was not recognized.

Description

so_getnameinfo() shall translate a socket address to a node name and service location.

sa points to a socket address structure to be translated.

If host is non-NULL and hostlen is non-zero, then host points to a buffer able to contain up to
hostlen characters that receives the node name as a null-terminated string. If host is NULL or
hostlen is zero, the node name shall not be returned. If the node's name cannot be located, the
numeric form of the address contained in the socket address structure pointed to by sa is returned
instead of its name.

If serv is non-NULL and servlen is non-zero, then serv points to a buffer able to contain up to
servlen bytes that receives the service name as a null-terminated string. If serv is NULL or servlen
is zero, the service name shall not be returned. If the service's name cannot be located, the
numeric form of the service address (for example, its port number) shall be returned instead of its
name.

flags is a flag that changes the default actions of the API call. By default the fully-qualified

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 87



domain name (FQDN) for the host shall be returned, but:

NI_NOFQDN
 If the flag bit NI_NOFQDN is set, only the node name portion of the FQDN shall be returned
 for local hosts.

NI_NUMERICHOST
 If the flag bit NI_NUMERICHOST is set, the numeric form of the address contained in the
 socket address structure pointed to by sa shall be returned instead of its name.

NI_NAMEREQD
 If the flag bit NI_NAMEREQD is set, an error shall be returned if the host's name cannot be
 located.

NI_NUMERICSERV
 If the flag bit NI_NUMERICSERV is set, the numeric form of the service address shall be
 returned (for example, its port number) instead of its name.

NI_DGRAM
 If the flag bit NI_DGRAM is set, this indicates that the service is a datagram service
 (SOCK_DGRAM). The default behavior shall assume that the service is a stream service
 (SOCK_STREAM).

 The NI_DGRAM flag is required for the few AF_INET port numbers (for example, [512,514]) that
 represent different services for UDP and TCP.

Timeout interval for completing the name resolution operation is specified in timeout, tmout, or 
tmout_u, which is then used in so_getnameinfo(), so_getnameinfo_ms(), or so_getnameinfo_us() 
respectively.
Specify the relative time until the timeout occurs in timeout using the "timeout" structure, tmout 
using milliseconds, and tmout_u using microseconds.

If timeout, tmout, or tmout_u is positive, and the name resolution does not complete within the 
specified time, the name resolution process is aborted and EX_TIMEDOUT is returned.
To try to resolve the same name again in this case, start from scratch instead of continuing this name
resolution process.
If tmout or tmout_u is set to TMO_FEVR and timeout is set to NULL, the behavior is the same as that of
getnameinfo() in the POSIX specification except for memory space allocation for the result.

If so_break() is issued for the task waiting for the completion of this API call before 
so_getnameinfo() operation completes, this API call aborts the name resolution processing and returns 
EX_INTR.
To try to resolve the same name again in this case, start from scratch instead of continuing this name
resolution process.

Because getservbyname and getservbyport defined in the POSIX specification are non-thread-safe and 
they can be replaced by this function, T2EX does not provide API calls equivalent to these.

5.5.21 so_resctl - Operation Related to Name Resolution

C Language Interface

#include <t2ex/socket.h>

int len = so_resctl(int cmd, void* buf, size_t bufsz);

Parameter

     int cmd Command
     void* buf Buffer for storing data

     int bufsz Buffer size

Return Parameter

     int len Buffer size (in bytes) to store data or the error code
     void* buf Result of the operation

Error Code

  EX_INVAL Illegal parameter

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 88



Description

Performs the operation related to the name resolution specified in cmd.

Any of the following commands is specified in cmd.

   SO_RES_ADD_TABLE Adds entries to the host table
   SO_RES_DEL_TABLE Deletes entries from the host table
   SO_RES_GET_TABLES Gets the host name table
   SO_RES_FLUSH_TABLES Deletes all entries from the host table
   SO_RES_ADD_SERVER Adds the name resolution server
   SO_RES_DEL_SERVER Deletes the name resolution server
   SO_RES_GET_SERVERS Gets the name server list
   SO_RES_FLUSH_SERVERS Clears the name server list
   SO_RES_ADD_DOMAIN Adds the search domain
   SO_RES_DEL_DOMAIN Deletes the search domain
   SO_RES_GET_DOMAINS Gets the search domain list
   SO_RES_FLUSH_DOMAINS Clears the search domain list

The buffer to store data is specified in buf and its size is specified in bufsz.
buf is used both to pass data from an application to this function and return data from this function 
to the application.
When data is passed from the application to this function, bufsz bytes of data from the start address 
of buf is stored.
When data is returned from this function to the application, the len bytes (where len is a return 
value) of data from the start address of buf is used.
If NULL is specified in buf, the buffer size required to store data can be obtained as the return 
code.

This API call does not provide name resolution itself.
Name resolution is provided by so_getaddrinfo(), and the name resolution is performed using the 
settings of this API call.

SO_RES_ADD_TABLE
 Type of buf: const struct hosttable*

 The content to add to the host name table is specified in buf.
 The size of buf is specified in bufsz.
 The pointer to the "sockaddr" structure is stored in addr of the "hosttable" structure, and 
the null-terminated host name is specified in "host" member.
 The pointer to the null-terminated host aliases delimited by space (" ") is specified in 
"aliases" member.
 Member "aliases" can also be set to NULL.

SO_RES_DEL_TABLE
 Type of buf: const struct hosttable*

 The content to delete from the host name table is specified in buf.
 The size of buf is specified in bufsz.

SO_RES_GET_TABLES
 Type of buf: struct hosttable*

 The buffer to store the host name table is specified in buf.
 The size of buf is specified in bufsz.
 buf is used to store a host name table in the form of an array of "hosttable" structure. The 
required area for the members of addr, host, and aliases is available from buf.
The addr of the last element is set to NULL.
 An address pointed to by buf should be a memory area that is aligned properly to store the 
"hosttable" structure.
 If the memory size required to store the result is larger than "bufsz", maximum possible 
entries of the host name tables are stored in buf.
Because the addr member of the last element of the array is set to NULL, bufsz needs to have a size 
enough to store at least one pointer.
If bufsz is too small to store at least one pointer, error EX_INVAL is returned.

 /* dummy code */
 union {
  struct hosttable top;
  UB c[256];
 } buf;
 struct hosttable *res;
 int len, i;

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 89



 len = so_resctl(SO_RES_GET_TABLES, &buf.top, sizeof(buf));
 res = &buf.top;
 for( i=0; res[i].addr != NULL; i++ ) {
  /*
   * operation to res
   *   struct sockaddr *addr = res[i].addr;
     *   char *host    = res[i].host;
    *   char *alias    = res[i].aliases;
   */
 }

SO_RES_FLUSH_TABLES
 Type of buf: void*

 buf is set to NULL and bufsz is set to 0.
 This function deletes all entries in the host name table.

SO_RES_ADD_SERVER
 Type of buf: const struct sockaddr*

 buf is set to the address of the name resolution server to add.
 The size of buf is specified in bufsz.
 Name resolution servers can be set up to MAXNS as maximum.
 When multiple name resolution servers are specified, queries are sent to the name resolution 
servers in the order of their addition.

 Name resolution algorithm
  - If a query to the first name resolution server times out, the query is sent to the next 
name resolution server.
This operation is performed for all name resolution servers.
  - Above described queries for all name resolution servers are repeated until the maximum 
number of trials is reached.

    #define MAXNS (3) /* The maximum number of name resolution servers that can be 
registered */

SO_RES_DEL_SERVER
 Type of buf: const struct sockaddr*

 buf is set to the address of the name resolution server to delete.
 The size of buf is specified in bufsz.

SO_RES_GET_SERVERS
 Type of buf: struct sockaddr**

 The buffer to store the name resolution server list is specified in buf.
 The size of buf is specified in bufsz.
 buf is used to store the list of name resolution servers in the form of an array of pointers 
to "sockaddr" structures. The required area to store each "sockaddr" structure is taken from buf.
Size of each "sockaddr" structure is indicated by sa_len, which is a member of "sockaddr" structure.
The last element of the array of pointers is set to NULL.
 An address indicated by buf should be a memory area that is aligned properly to store the 
pointer to the "sockaddr" structure.
 If the memory size required to store the result is larger than "bufsz", names of name 
resolution servers as many as possible are stored in buf.
Because the last element of the array is set to NULL, bufsz needs to have a size large enough to store
at least one pointer.
If bufsz is too small to store at least one pointer, error EX_INVAL is returned.

 /* dummy code */
 union {
  struct sockaddr *top;
  UB c[256];
 } buf;
 struct sockaddr **res;
 int len, i;

 len = so_resctl(SO_RES_GET_SERVERS, &buf.top, sizeof(buf));
 res = &buf.top;
 for( i=0; res[i] != NULL; i++ ) {
  /*
   * operation to res

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 90



   *   struct sockaddr *addr = res[i];
   */
 }

SO_RES_FLUSH_SERVERS
 Type of buf: void*

 buf is set to NULL and bufsz is set to 0.
 Deletes all lists of name resolution server.

SO_RES_ADD_DOMAIN
 Type of buf: const char*

 The search domain to add is set in buf.
 The size of buf is specified in bufsz.
 buf is a pointer to a null-terminated string.
To resolve names, an abbreviated name (without the domain part) can be used for hosts belonging to the
search domain.
Such search domains can be registered up to MAXDNSRCH as maximum.
If multiple search domains are registered, each element of the search domain list is tested in the 
order of registration until the matched name is found in resolving name.
Usually, a local domain name is given first in the list of search domains.
 If the name server for the registered domain is not local, large amount of network traffic may
occur due to the query for each server.

 If only one domain is set as a search domain, name searching is performed up to MAXDFLSRCH and
to the hierarchy level of LOCALDOMAINPARTS.
For example, when only domain "www.xxx.yyy.zzz" is set, name searching is performed for 
"www.xxx.yyy.zzz", "xxx.yyy.zzz", and "yyy.zzz".

     #define MAXDNSRCH 6 /* Maximum number of domains that can be registered. 
*/
     #define MAXDFLSRCH 3 /* Maximum number of subdomains to complete the full 
domain name. */
    #define LOCALDOMAINPARTS 2 /* Minimum hierarchy level to regard as a local domain
*/

SO_RES_DEL_DOMAIN
 Type of buf: const char*

 The search domain to delete is set in buf.
 The size of buf is specified in bufsz.

SO_RES_GET_DOMAINS
 Type of buf: char**

 The buffer to store the search domain list is specified in buf.
 The size of buf is specified in bufsz.
 buf is used to store domain names in the form of an array of pointers to null-terminated 
strings. Required area to store each sockaddr structure is taken from buf.
The last element of the array of pointers is set to NULL.
 An address indicated by buf should be a memory area that is aligned properly to store the 
pointer to the null-terminated string.
 If the memory size required to store the result is larger than "bufsz", as many domain names 
as possible are stored in buf.
Because the last element of the array is set to NULL, bufsz needs to have a size large enough to store
at least one pointer.
If bufsz is too small to store at least one pointer, error EX_INVAL is returned.

 /* dummy code */
 union {
  char *top;
  UB c[256];
 } buf;
 char **res;
 int len, i;

 len = so_resctl(SO_RES_GET_SERVERS, &buf.top, sizeof(buf));
 res = &buf.top;
 for( i=0; res[i] != NULL; i++ ) {
  /*
   * operation to res
   *   char *domain = res[i];

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 91



   */
 }

SO_RES_FLUSH_DOMAINS
 Type of buf: void*

 buf is set to NULL and bufsz is set to 0.
 Deletes all entries of search domain list.

See Also

so_getnameinfo

5.5.22 so_rtlist - Get a List of Routing Table Entries

C Language Interface

#include <t2ex/socket.h>

int len = so_rtlist(int af, int cmd, int flags, void* buf, size_t bufsz);

Parameter

     int af Address family
     int cmd Command
     int flags Flag

     void* buf Buffer to store a routing table
     size_t bufsz Buffer size (in bytes)

Return Parameter

     int len Buffer size (in bytes) to store the routing table or the error
code

     void* buf Routing table

Error Code

  EX_AFNOSUPPORT Specified address family is not implemented
  EX_INVAL Illegal parameter

Description

Gets a routing table entries that meets criteria specified by the arguments.

The address family is specified in af to get a route corresponding to the address family specified by 
this argument.
If af is set to AF_UNSPEC, gets a route corresponding any address family.

One of the following values is specified in cmd.

 NET_RT_DUMP Gets all routes corresponding to the specified address family.
 NET_RT_FLAGS Gets all routes having a flag for the specified address family.

 NET_RT_IFLIST Gets all routes corresponding to the address family specified for each network 
interface.

Logical ORs of flags as follows is set to flags.
Routes that has any bits specified in flags are obtained.
flags is valid only when cmd is set to NET_RT_FLAGS. Otherwise, it is invalid.
    RTF_UP Route is available.
   RTF_GATEWAY The destination is a gateway.
   RTF_HOST The destination is a host.
   RTF_REJECT The destination is unreachable.
   RTF_DYNAMIC The route to the destination was generated by the ICMP redirect.
   RTF_MODIFIED The route to the destination was changed by the ICMP redirect.
   RTF_CLONING A new route is generated by duplication.
   RTF_LLINFO Information about valid data link layer exists.
   RTF_STATIC The route has been added manually.
   RTF_BLACKHOLE Destroys packets to the destination.
   RTF_CLONED The route is generated by duplication.
   RTF_PROTO2 A protocol specific flag
   RTF_PROTO1 A protocol specific flag

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 92



buf is set to a pointer to the buffer to store the routing information, and bufsz is set to the size 
of the buffer (in bytes) to which buf points.
If buf is set to NULL, the required buffer size to store the routing table acquired through the 
specified arguments is returned.

buf stores routing messages as many as possible.
rtm_msglen of the header of the last routing message is set to 0.
So, bufsz needs to have the size large enough to store one rtm_msglen.
If bufsz is too small to store at least one rtm_msglen, error EX_INVAL is returned.

The retrieved route can be referred by using following codes.

 /* dummy code */
    size_t needed;
  struct rt_msghdr *rtm;
    char *buf;
 
 needed = so_rtlist(AF_UNSPEC, NET_RT_DUMP, 0, NULL, 0);
 buf = malloc(needed);
 needed = so_rtlist(AF_UNSPEC, NET_RT_DUMP, 0, buf, needed);
 for( rtm = (struct rt_msghdr *)buf;
      rtm->rtm_msglen != 0;
      rtm = (struct rt_msghdr *)((void*)rtm + rtm->rtm_msglen) ) {
  /*
   * operation for rtm
   *  (casts rtm to the appropriate header based on rtm->rtm_type.
   *   See 5.6.1 routing message)
   */
 }
 free(buf);

5.5.23 so_ifattach - Attach a Device Driver

C Language Interface

#include <t2ex/socket.h>

ER ercd = so_ifattach(const char* devnm);

Parameter

    const char* devnm Device name

Return Parameter

     ER ercd Error code

Error Code

   E_OK Normal completion
   EX_BUSY Device Driver is busy

  EX_INVAL Illegal parameter

Description

Attaches the device driver specified in devnm that complies with the
T-Engine Standard Device Driver Specification to the network communication manager.
Set a device name specified in the T-Engine Standard Device Driver Specification (e.g. Neta, Netb) in 
devnm.

After this API call completes successfully, addressing, activation and other operations are possible 
for devnm.

See Also

so_ifdetach, so_ioctl, so_socket

5.5.24 so_ifdetach - Detach a Device Driver

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 93



C Language Interface

#include <t2ex/socket.h>

ER ercd = so_ifdetach(const char* devnm);

Parameter

    const char* devnm Device name

Return Parameter

     ER ercd Error code

Error Code

   E_OK Normal completion
  EX_NOENT Device Driver is not connected

   EX_BUSY Device Driver is busy
  EX_INVAL Illegal parameter

Description

Detaches the device driver specified in devnm that complies with the T-Engine Standard Device Driver 
Specification from the network communication manager.
Set a device name specified in the T-Engine Standard Device Driver Specification (e.g. Neta, Netb) in 
devnm.

See Also

so_ifattach

5.5.25 so_getifaddrs - Get Interface Address Information 

C Language Interface

#include <t2ex/socket.h>

int len = so_getifaddrs(struct ifaddrs** ifap, void* buf, size_t bufsz);

Parameter

   struct ifaddrs** ifap The pointer to the head of the linked list of the address 
information of the interface

     void* buf Buffer to store the address information of the interface
     size_t bufsz The size of the buffer to store address information of 

interface (in bytes)

Return Parameter

     int len Buffer size (in bytes) to store interface address information 
or the error code

   struct ifaddrs** ifap The pointer to the head of the linked list of the address 
information of the interface

     void* buf Linked list of the address information of the interface

Error Code

  EX_INVAL Illegal parameter

Description

Gets the address information of registered network interfaces in the form of a linked list.

ifap is a pointer reference to the "ifaddrs" structure.

    struct ifaddrs   *ifa_next;         /* Pointer to next struct */
    char             *ifa_name;         /* Interface name */
    unsigned int     ifa_flags;         /* Interface flags */
    struct sockaddr  *ifa_addr;         /* Interface address */

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 94



    struct sockaddr  *ifa_netmask;      /* Interface netmask */
    struct sockaddr  *ifa_broadaddr;    /* Interface broadcast address */
    struct sockaddr  *ifa_dstaddr;      /* P2P interface destination */
    void             *ifa_data;         /* Address specific data */

The ifa_next field is a pointer to the next element of linked list.
When it is the last element of the linked list, ifa_next field is NULL.

The name of the interface is stored into ifa_name field.

Logical OR of the following flags is stored into ifa_flags field.

 R- or RW in the following description means the ability to refer something only or to both 
refer and change something respectively.

     IFF_UP RW The interface is running.
    IFF_BROADCAST R- The broadcast address is enabled.
    IFF_DEBUG RW It is in debug mode.
    IFF_LOOPBACK RW It is a loop-back.
    IFF_POINTOPOINT R- It is a point-to-point link.
    IFF_NOTRAILERS RW Does not use a trailer.
    IFF_RUNNING R- Resourses have already been assigned.
    IFF_NOARP RW The address resolution for network is disabled.
    IFF_PROMISC R- Receives all packets.
    IFF_ALLMULTI R- Receives all multicast packet.
    IFF_OACTIVE R- Currently sending.
    IFF_SIMPLEX R- Simplex mode communication.
    IFF_LINK0 RW Control flag of link layer
    IFF_LINK1 RW Control flag of link layer
    IFF_LINK2 RW Control flag of link layer
    IFF_MULTICAST R- Supports multicast.

An address of the interface or an address of the data link layer level is stored in ifa_addr field.
If neither of addresses does not exist, the field is set to NULL.

A net mask associated with ifa_addr is stored in the ifa_network field.
If no net mask exists, the field is set to NULL.

For non P2P interface, a broadcast address associated with ifa_addr is stored in the ifa_broadaddr 
field.
Otherwise, the field is set to NULL.

For the P2P interface, a destination address is stored in the ifa_dstaddr field.
Otherwise, the field is set to NULL.

The address specific information is stored in ifa_data field.
For AF_LINK, the "if_data" structure which includes the interface information and the statistics is 
stored in the field.
For other address families, it is set to NULL.

buf is a pointer to the buffer area to store address information of the network interface, and its 
size is specified in bufsz in bytes.
The return code at normal completion indicates the size of buffer required to store the address 
information.

If the memory size required to store address information is larger than "bufsz", entries are stored in
buf as many as possible.
If no "ifaddrs" structure can be stored in buf, ifap is set to NULL.

See Also

so_ifattach, so_ifdetach, so_ioctl

5.5.26 so_ifindextoname - Convert an Interface Index to Interface Name

C Language Interface

#include <t2ex/socket.h>

ER ercd = so_ifindextoname(unsigned int ifindex, char* ifname);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 95



Parameter

    unsigned int ifindex Interface index
     char* ifname Buffer to store the name of the interface

Return Parameter

     ER ercd Error code
     char* ifname Interface name

Error Code

   E_OK Normal completion
   EX_NXIO No interface exist

Description

Convert an interface index to interface name.

The interface index is specified in ifindex.
An interface index is an integer that is retrieved through so_getifaddrs() and routing messages.

At least IF_NAMESIZE bytes of buffer should be specified for ifname.
If this API call completes normally, the null-terminated interface name is stored in ifname.

  #define IF_NAMESIZE 16 /* the maximum size of the interface name (in bytes, including NULL 
character) */

See Also

so_ifnametoindex

5.5.27 so_ifnametoindex - Convert an Interface Name to Interface Index

C Language Interface

#include <t2ex/socket.h>

int ifindex = so_ifnametoindex(const char* ifname);

Parameter

    const char* ifname Interface name

Return Parameter

     int ifindex The interface index or the error code

Error Code

   EX_NXIO No interface exist

Description

Convert an interface name to interface index.

The null-terminated interface name is specified in ifname.

See Also

so_ifindextoname

5.5.28 so_ioctl - Control a Device

C Language Interface

#include <t2ex/socket.h>

ER ercd = so_ioctl(int sd, int request, ... /* arg */);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 96



Parameter

     int sd Socket descriptor
     int request Request

Return Parameter

     ER ercd Error code

Error Code

   E_OK Normal completion
   EX_BADF sd is not a valid socket descriptor.

  EX_INVAL The request or arg argument is not valid for this device.
  EX_FAULT An argument of the request is not in the valid address space

Description

so_ioctl() shall perform a variety of control functions on socket devices.

sd is an open socket descriptor that refers to a device.

request selects the control function to be performed and shall depend on the device being addressed.

arg represents additional information that is needed by this specific device to perform the
requested function. The type of arg depends upon the particular control request, but it shall be
either an integer or a pointer to a device-specific data structure.

Values that can be specified for request and the description about their arg are as follows.

  FIONBIO const int*
  Sets the blocking or non-blocking mode of I/O operation for the descriptor by the 
value pointed to by the argument int*.
  *arg == 0 sets the blocking mode (the O_NONBLOCK status flag is cleared).
  *arg != 0 sets the non-blocking mode (the O_NONBLOCK status flag is set).

 FIONREAD int*
  SIOCINQ int*

  Returns the number of bytes ready to be immediately read, in the area pointed to by 
the argument int*.

 FIONWRITE int*
 SIOCOUTQ int*

  Returns the number of bytes of the data stored in the send queue for the descriptor, 
in the area pointed to by the argument int*.
  Those bytes are data already written to the descriptor, waiting to be processed.
  How they are processed is device-dependent.

 FIONSPACE int*
  Returns the available free space of the send queue for the descriptor, in the area 
pointed to by the argument int*.
  This value is the size of the send queue minus the size of data stored in the queue.

 SIOCATMARK int*
  Check whether out-of-band data has been received or not, and return the result in the 
area indicated by the argument int*.
  If this value is 1, the socket is marked as having out-of-band data.
In this case, out-of-band data can be read by specifying the MSG_OOB flag on so_recv().
  If this value is 0, the socket is not marked as having out-of-band data.

 SIOCSIFADDR const struct ifreq*
  Sets the specified address to the network interface.

 SIOCAIFADDR const struct ifaliasreq*
  Sets or adds the specified address to the network interface.
  If the specified address has already been set up, updates the information about the 
address.
This command can set a host address, a destination address, a broadcast address, and a net mask at the
same time.

 SIOCDIFADDR const struct ifaliasreq*

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 97



  Deletes the specified address from the network interface.

 SIOCGIFADDR struct ifreq*
  Obtains the address of the specified network interface.

 SIOCSIFNETMASK const struct ifreq*
  Sets the net mask to the specified network interface.

 SIOCGIFNETMASK struct ifreq*
  Obtains the net mask of the specified network interface.

 SIOCSIFFLAGS const struct ifreq*
  Sets the flag to the specified network interface.

 SIOCGIFFLAGS struct ifreq*
  Obtains the flag of the specified network interface.

 SIOCSIFBRDADDR const struct ifreq*
  Sets the broadcast address to the specified network interface.
  If IFF_BROADCAST flag is not set for the network interface, returns error EX_INVAL.

 SIOCGIFBRDADDR struct ifreq*
  Obtains the broadcast address of the specified network interface.
  If IFF_BROADCAST flag is not set for the network interface, returns error EX_INVAL.

 SIOCSIFDSTADDR const struct ifreq*
  Sets the destination address of the specified network interface.
  If IFF_POINTOPOINT flag is not set for the network interface, returns error EX_INVAL.

 SIOCGIFDSTADDR struct ifreq*
  Obtains the destination address of the specified network interface.
  If IFF_POINTOPOINT flag is not set for the network interface, returns error EX_INVAL.

See Also

so_read, so_recv, so_sockatmark, so_write

5.5.29 so_fcntl - Socket Control

C Language Interface

#include <t2ex/socket.h>

ER ercd = so_fcntl(int sd, int cmd, ... /* arg */);

Parameter

     int sd Socket descriptor
     int cmd Command

     arg Required arguments (variable number) depending on the command

Return Parameter

     ER ercd Zero or positive result depending on the command
     or error code

Error Code

   E_OK Normal completion
   EX_BADF sd is not a valid socket descriptor.

  EX_INVAL cmd is invalid.

Description

so_fcntl() shall perform the operations described below on open socket.

F_GETFL
 Get the socket status flags for the socket descriptor associated with sd. so_fcntl() returns
 the socket status flag.

F_SETFL

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 98



 Set the socket status flags for the socket descriptor associated with sd from the
 corresponding bits in the third argument, arg, taken as type int.

Flag available for F_GETFL and F_SETFL commands is O_NONBLOCK.

O_NONBLOCK
 Non-blocking mode. 
 If this flag is set, the socket descriptor is in non-blocking mode.

See Also

so_accept, so_close, so_connect

5.5.30 so_sockatmark - Determine Whether a Socket Is at the Out-of-band Mark

C Language Interface

#include <t2ex/socket.h>

int mark = so_sockatmark(int sd);

Parameter

     int sd Socket descriptor

Return Parameter

     int mark Value indicating whether the socket is at an out-of-band data 
mark
     or Error code

Error Code

   EX_BADF sd is not a valid socket descriptor.
  EX_INVAL Invalid parameters.

Description

so_sockatmark() shall determine whether the socket specified by the descriptor sd is at the
out-of-band data mark.

If the protocol for the socket supports out-of-band data by marking the stream with an out-of-band
data mark, so_sockatmark() shall return 1 when all data preceding the mark has been read and the
out-of-band data mark is the first element in the receive queue. so_sockatmark() shall not remove
the mark from the stream.

See Also

so_ioctl, so_recvmsg

5.5.31 so_shutdown - Shut Down Socket Send and Receive Operations

C Language Interface

#include <t2ex/socket.h>

ER ercd = so_shutdown(int sd, int how);

Parameter

     int sd Socket descriptor
     int how Type of shutdown

Return Parameter

     ER ercd Error code.

Error Code

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 99



   E_OK Normal completion
   EX_BADF sd is not a valid socket descriptor.

  EX_INVAL how is invalid.
  EX_NOTCONN The socket is not connected.

Description

so_shutdown() shall cause all or part of a full-duplex connection on the socket associated with the
socket descriptor sd to be shut down.

sd specifies the socket descriptor of the socket.

how specifies the type of shutdown. The values are as follows:

 SHUT_RD 
  Disables further receive operations.

 SHUT_WR 
  Disables further send operations.

 SHUT_RDWR
  Disables further send and receive operations.

so_shutdown() disables subsequent send and/or receive operations on a socket, depending on the value
of how.

5.5.32 so_break - Stop Socket Operation

C Language Interface

#include <t2ex/socket.h>

int ntsk = so_break(ID tskid);

Parameter

     ID tskid The ID of the task which is to be released from WAIT state

Return Parameter

     int ntsk Number of tasks which were released from the WAIT state
     or error code

Error Code

   E_ID Task ID is invalid (negative or exceeding TMaxTskId)
   E_NOEXS Task with the task ID does not exist

Description

This function forcibly releases the task specified by "tskid" from a waiting
state caused by an API call of the network communication manager.
If tskid is TSK_ALL(= -1), releases the waiting state of the network communication functions for all 
tasks.

Releases the waiting state by the socket operation immediately for the specified task. If the 
interrupted API call is in the wait state, it returns EX_INTR. Otherwise it returns the processing 
result of up to the point when so_break() is issued.

If the task is released from the wait status by so_read(), so_recv(), so_recvmsg(), or so_recvfrom() 
and the API call has not read any data, it returns the error EX_INTR.
If any of them has read at least one byte of data, it returns the number of data read.

If the task is released from the wait status by so_write(), so_send(), so_sendmsg(), or so_sendto() 
and the API call has not written any data, it returns the error EX_INTR.
If any of them has written at least one byte of data, it returns the number of data written.

If the task is released from the wait state by so_accept(), so_connect(), so_select(), so_select_ms(),
or so_select_us(), the API call returns the error EX_INTR.
The processing of these API calls which has been aborted by so_break can be later probed for 
completion by using so_select(), so_select_ms(), and so_select_us().

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 100



If the task in wait state by so_getaddrinfo(), so_getaddrinfo_ms(), so_getaddrinfo_us(), 
so_getnameinfo(), so_getnameinfo_ms(), or so_getnameinfo_us() is released, the API call returns the 
error EX_INTR.
Operations of these API calls aborted by so_break() cannot be resumed.

If the waiting state of the task waiting for so_close() is released, this API call completes 
successfully.
The specified socket is closed with a delay.

At the normal completion, so_break() returns the number of tasks which are released from wait.
If the target task does not call the network communication function, this API call exits without any 
operations and returns the return code E_OK.

A wait release request by so_break() is not queued.

See Also

so_accept, so_close, so_connect, so_getaddrinfo, so_getaddrinfo_ms, so_getaddrinfo_us, so_getnameinfo,
so_getnameinfo_ms, so_getnameinfo_us, so_read, so_recv, so_recvfrom, so_recvmsg, so_select, so_send, 
so_sendmsg, so_sendto, so_write

5.6 Operation for Routing Socket

An application manipulates a routing table by using routing messages to routing sockets.
It can also obtain event notifications related to the routing table from the network communication 
manager by receiving routing messages using routing sockets.

A routing socket is created by passing the following arguments to the API call so_socket().

  s = socket( PF_ROUTE, SOCK_RAW, protocol );

If "protocol" is set to AF_UNSPEC, all routing messages can be sent and received.
If a specific address family is specified in "protocol", routing messages related to the specific 
address family can be sent and received.
For example, if "protocol" is specified as AF_INET, only messages related to IP are received.

Messages sent to the network communication manager through a routing socket are sent to all routing 
sockets.
Therefore, when a message is sent through a routing socket, copy of the sent message is inserted into 
the receive queue of the socket and the socket receives the message sent by itself.
Insertion of the message, sent by itself, into the receive queue can be avoided by using 
so_setsockopt() to disable SO_USELOOPBACK.
Also, so_shutdown() can be used to avoid subsequent routing messages being inserted into the receive 
queue of the socket.

5.6.1 Routing Message

A routing message is used for operations of the routing table such as adding, deleting, and retrieving
routes, and for notification of events from the network communication manager related to the routing 
table such as adding and deleting a route and failing to find a route.

A routing message consists of a header and a series of addresses, which follows it immediately, of 
"sockaddr" structures.
There are following message types of routing messages.

     RTM_ADD RW Adds a route
    RTM_DELETE RW Deletes a route
    RTM_CHANGE RW Changes a route
     RTM_GET RW Retreives a route
    RTM_LOSING R- Failed to reach to the destination
    RTM_REDIRECT R- Notify the ICMP redirect
    RTM_MISS R- Failed to find a route
    RTM_LOCK RW Locks the specified routing metric
    RTM_NEWADDR R- Adds an address to the interface
    RTM_DELADDR R- Deletes an address from the interface
    RTM_IFINFO R- Changes the status of the interface/link
    RTM_IFANNOUNCE R- Notifies of attached or detached interface

RW: Allows setting/reference
R-: Allows reference only

 +-----------------------+

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 101



    | |
  | Message header |
    | |
 +-----------------------+
   | Address 1 |
   | Address 2 |
    |     : |
   | Address n |
 +-----------------------+
Figure: Structure of a routing message

5.6.1.1 Message Header Part

Structure of the header of a routing message depends on the message type.

    RTM_ADD "rt_msghdr" structure
   RTM_DELETE "rt_msghdr" structure
   RTM_CHANGE "rt_msghdr" structure
    RTM_GET "rt_msghdr" structure
   RTM_LOSING "rt_msghdr" structure
   RTM_REDIRECT "rt_msghdr" structure
   RTM_MISS "rt_msghdr" structure
   RTM_LOCK "rt_msghdr" structure
   RTM_NEWADDR "ifa_msghdr" structure
   RTM_DELADDR "ifa_msgdhr" structure
   RTM_IFINFO "if_msghdr" structure
   RTM_IFANNOUNCE "if_announcemsghdr" structure

5.6.1.2 Address Part

An address specified in the header is stored immediate after the header part in the routing message.
The member name of the structure indicating an address in a message is different for each header 
structure: rtm_addrs, ifm_addrs, and ifam_addrs.
These store the value of logical OR of the following flags
"if_announcemsghdr" structure does not have this member.

    RTA_DST destination address
   RTA_GATEWAY gateway address
   RTA_NETMASK net mask
   RTA_GENMASK mask used for duplication
    RTA_IFP data link layer address of the network interface
    RTA_IFA address of network interface
   RTA_AUTHOR node address of the node that sent an ICMP redirect
    RTA_BRD broadcast address

Addresses are stored in the address part in ascending order of the above flags.
For example, in case of a logical OR of RTA_DST, RTA_GATEWAY, and RTA_NETMASK, address are stored 
after the header in the order of the destination address, the gateway address, and the net mask.

An address other than the one for RTA_IFP is stored in the form of the "sockaddr" structure based on 
the address family.
An address for RTA_IFP is stored in a "sockaddr_dl" structure for AF_LINK.
The size of each address is specified by sa_len of the "sockaddr" structure.

5.6.2 Detail of a Routing Message

Each member of the "rt_msghdr", "ifa_msgdhr", "if_msghdr", and "if_announcemsghdr" structures has the 
following meaning.

rtm_msglen, ifm_msglen, ifam_msglen, and ifan_msglen are the whole size of the message including the 
message header and the address that follows.

rtm_version, ifm_version, ifam_version, and ifan_version are used to check binary compatibility.
Their value is RTM_VERSION.

    #define RTM_VERSION 3 /* Version */

rtm_type, ifm_type, ifam_type, and ifan_type are message types.
rtm_index, ifm_index, ifam_index, and ifan_index are indices of interface structures.

rtm_flags, ifm_flags, and ifam_flags are flags of routing messages.
These values are logical ORs of flags.
Flags can be set only by the RTM_ADD messages.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 102



     RTF_UP R- Route is available.
    RTF_GATEWAY RW The destination is a gateway.
    RTF_HOST RW The destination is a host.
    RTF_REJECT RW The destination is unreachable.
    RTF_DYNAMIC R- The route was generated by the ICMP redirect.
    RTF_MODIFIED R- The route was changed by the ICMP redirect.
    RTF_DONE R- Notification of completion from the network communication 
manager
    RTF_CLONING RW Creates a new route by duplication (cloning).
    RTF_LLINFO R- Information about valid data link layer exists.
    RTF_STATIC RW The route has been added manually.
    RTF_BLACKHOLE RW Destroys packets to the destination.
    RTF_CLONED RW A route was generated by duplication.
    RTF_PROTO2 RW A protocol specific flag
    RTF_PROTO1 RW A protocol specific flag

RW: Allows setting/reference
R-: Allows reference only

RTF_UP
 RTF_UP indicates that the route is available.
This is a flag set by the network communication manager.
 Setting this flag on writing is ignored.

RTF_GATEWAY
 RTF_GATEWAY indicates that the destination is a gateway.
If RTF_GATEWAY is not set, messages reach the destination directly.
It is a flag that can be set by an application.

RTF_HOST
 RTF_HOST indicates that the destination is an address of a host.
IF RTF_HOST is not set, the destination is an address of a network.

It is a flag that can be set by an application.

RTF_REJECT
 RTF_REJECT indicates that the destination via the route is unreachable.
 Though this flag is settable from an application, it is assumed to be used by ARP mainly.
 When the destination does not respond to an ARP request, this flag is set to discard packets 
to the destination.
 If the destination to send matches the route for which RTF_REJECT is set, sending APIs such as
so_send() return EX_HOSTUNREACH.

RTF_DYNAMIC
 RTF_DYNAMIC indicates that the route is added by the ICMP redirect.
 This is a flag set by the network communication manager.
Setting this flag on writing is ignored.

RTF_MODIFIED
 RTF_MODIFIED indicates that the gateway of existing route is changed by the ICMP redirect.
 This is a flag set by the network communication manager.
Setting this flag on writing is ignored.

RTF_DONE
 RTF_DONE indicates that the processing of a routing message from an application has completed.
 This is a flag set by the network communication manager.
Setting this flag on writing is ignored.
 This flag is used only in routing messages and not stored as routing information.

RTF_CLONING
 RTF_CLONING indicates that a new route to the destination has been created by cloning.
 For example, when RTF_CLONING is set on the route whose destination is an address of network, 
the route to the host address that matches with this route is cloned and added to the routing table.
 RTF_CLONED is set on the cloned route.
When deleting a route for which RTF_CLONING is set, those routes that have been created by cloning 
that route and RTF_CLONED is set are deleted together.

RTF_LLINFO
 RTF_LLINFO indicates that the route has information about valid data link layer level.
 This is a flag set by the network communication manager.
Specially, ARP in the network communication manager sets this.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 103



RTF_STATIC
 RTF_STATIC indicates that the route is added manually.
This flag can be set by an application, and set when the application adds a route.

RTF_BLACKHOLE
 RTF_BLACKHOLE discards packets to the destination.
Unlike RTF_REJECT, it only discards packets and does not return any error.
It is a flag that can be set by an application.

RTF_CLONED
 RTF_CLONED indicates that the route is created by cloning based on the setting of RTF_CLONING.
 It is a flag that can be set by an application.
Bulk deletion of cloned routes along with the deletion of the original route, for which RTF_CLONING is
set, can be prevented by clearing RTF_CLONED setting.

RTF_PROTO2, RTF_PROTO1
 RTF_PROTO1 and RTF_PROTO2 are flags that any protocol can define the usage and use 
accordingly.

rtm_addrs, ifm_addrs, and ifam_addrs are addresses included in a routing message.
These contain the value of logical ORs of flags constants whose name starts with "RTA_".

rtm_tid and rtm_seq are used to identify a message. They shall be set by a task sending routing 
messages appropriately.

rtm_errno indicates that an error has occurred during processing a routing message.

   EEXIST Attempted to add an existing route
   ESRCH Attempted to delete a route that does not exist
   ENOBUFS Not enough resource to add a new route

There are multiple routing metrics represented by the "rt_metrics" structure. 
rtm_inits specifies routing metrics to be initialized, which contains the value of logical OR of flag 
constants whose name starts with "RTV_".
The initial values for routing metrics of the routing information are specified by values of rtm_rmx 
corresponding to bits of rtm_inits.

rtm_rmx is routing metrics of the routing information.
For rmx_locks of the "rt_metric" structure, specify the routing metric which the network communication
manager is now allowed to change, and set a value of logical OR of the following flags.

    RTV_MTU Flags corresponding to rmx_mtu
   RTV_HOPCOUNT Flags corresponding to rmx_hopcount
   RTV_EXPIRE Flags corresponding to rmx_expire
   RTV_RPIPE Flags corresponding to rmx_recvpipe
   RTV_SPIPE Flags corresponding to rmx_sendpipe
   RTV_SSTHRESH Flags corresponding to rmx_ssthresh
    RTV_RTT Flags corresponding to rmx_rtt
   RTV_RTTVAR Flags corresponding to rmx_rttvar

ifan_name is a device name and stores a device name like Neta.

ifan_what is a type of notification that relates to interfaces.
Its value is either IFAN_ARRIVAL or IFAN_DEPARTURE.

   IFAN_ARRIVAL Registration an interface
   IFAN_DEPARTURE Disconnection of an interface

5.6.2.1 RTM_ADD - Add a Route

The RTM_ADD message adds a route.
This message is sent from an application to the network communication manager.

rtm_msglen, rtm_version, and rtm_type are set to the total size of the routing message, RTM_VERSION, 
RTM_ADD respectively.

For rtm_addrs, at least RTA_DST and RTA_GATEWAY should be set to specify the route to add.
If a network address is specified as the address, RTA_NETMASK needs to be specified also.
Additionally, the network interface can be specified explicitly by setting RTA_IFP or RTA_IFA.
If a network interface is not specified explicitly, the system selects an appropriate network 
interface.

At least RTF_STATIC needs to be specified for rtm_flags.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 104



The task ID and the sequence number shall be set appropriately in rtm_tid and rtm_seq respectively.

For rtm_inits, specify flags corresponding to the routing metrics to be initialized and set values of 
routing metrics to rtm_rmx.
Otherwise, 0 is used for initial values for routing metrics which are not specified by rtm_inits.

For the other members of "rt_msghdr" structure, set zero before transmission.

5.6.2.2 RTM_DELETE - Delete a Route

The RTM_DELETE message deletes a route.
At the same time, routes generated by cloning the specified route (RTF_CLONED is set as the flag) are 
also deleted.
This message is sent from an application to the network communication manager.

rtm_msglen, rtm_version, and rtm_type are set to the total size of the routing messages, RTM_VERSION, 
RTM_DELETE respectively.

For rtm_addrs, set RTA_DST and specify the route to delete.
If a network address is specified as the address, RTA_NETMASK needs to be specified also.

The task ID and the sequence number shall be set appropriately in rtm_tid and rtm_seq respectively.

For the other members of "rt_msghdr" structure, set zero before transmission.

5.6.2.3 RTM_CHANGE - Change a Route

The RTM_CHANGE messages changes the gateway, the network interface, or the flag of the specified 
gateway.
This message is sent from an application to the network communication manager.

rtm_msglen, rtm_version, and rtm_type are set to the total size of the routing messages, RTM_VERSION, 
RTM_CHANGE respectively.

For rtm_addrs, at least RTA_DST should be set to specify the route to change.
If a network address is specified as the address, RTA_NETMASK needs to be specified also.
The gateway and the network interface is set as necessary.

For rtm_inits, specify flags corresponding to the routing metrics to be changed and set values of 
routing metrics to rtm_rmx.

The task ID and the sequence number shall be set appropriately in rtm_tid and rtm_seq respectively.

For the other members of "rt_msghdr" structure, set zero before transmission.

5.6.2.4 RTM_GET - Retrieve a Route

The RTM_GET message retrieves a routing information.
This message is sent from an application to the network communication manager, which then stores the 
specified route information in a message and sends it back to the application.

rtm_msglen, rtm_version, and rtm_type are set to the total size of the routing messages, RTM_VERSION, 
RTM_GET respectively.

For rtm_addrs, at least RTA_DST should be set to specify the route to retreive.
If a network address is specified as the address, RTA_NETMASK needs to be specified also.
To get information about the data link layer, set RTA_IFP and add the address of the "sockaddr_dl" 
structure following the message header.
sdl_len and sdl_family members of the "sockaddr_dl" structure are set to the size of the "sockaddr_dl"
structure and AF_LINK respectively while other members are set to zero.

The task ID and the sequence number shall be set appropriately in rtm_tid and rtm_seq respectively.

For the other members of "rt_msghdr" structure, set zero before transmission.

5.6.2.5 RTM_LOSING - Notify a Failure to Reach the Destination

The RTM_LOSING message notifies that the destination is unreachable.
Specifically, this message is generated when a TCP segment cannot reach the destination after trying 
to resend for the specified times.
This might indicate that a wrong gateway is selected as the route to the destination.
This message is sent to an application from the network communication manager.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 105



The RTM_LOSING message stores route information that failed.

5.6.2.6 RTM_REDIRECT - Notify an ICMP Redirect

The RTM_REDIRECT message notifies that the route was generated or changed by the ICMP redirect 
message.
This message is sent to an application from the network communication manager.

An RTM_REDIRECT message stores a route added by the ICMP redirect message or a route after the change.
RTA_AUTHOR is set to the node address that sent the ICMP redirect message.

5.6.2.7 RTM_MISS - Notify a Failure to Find a Route

The RTM_MISS message notifies the failure of searching a route to the destination.
If no entry in the routing table matches the destination, a search failure occurs.
This message is sent to an application from the network communication manager.

The RTM_MISS message includes a destination address that failed the route search.

5.6.2.8 RTM_LOCK - Lock the Specified Routing Metric

The RTM_LOCK message specifies that a certain routing metric of the specified route is locked and not 
to be changed by the the network communication manager or is unlocked and to be changed.
It does not change other items.
This message is sent from an application to the network communication manager.

rtm_msglen, rtm_version, and rtm_type are set to the total size of the routing messages, RTM_VERSION, 
RTM_LOCK respectively.

Value to change is set in rtm_rmx of rmx_locks.

The task ID and the sequence number shall be set appropriately in rtm_tid and rtm_seq respectively.

For the other members of "rt_msghdr" structure, set zero before transmission.

5.6.2.9 RTM_NEWADDR - Add an Address to the Interface

The RTM_NEWADDR message notifies that an address has been added to the interface.
This message is sent to an application from the network communication manager.

The added route is stored in the message whose header is the "ifa_msghdr" structure.

5.6.2.10 RTM_DELADDR - Delete an Address from the Interface

The RTM_DELETE message notifies that an address has been deleted from the interface.
This message is sent to an application from the network communication manager.

The deleted route is stored in the message whose header is the "ifa_msghdr" structure.

5.6.2.11 RTM_IFINFO - Change the Status of the Interface/Link

The RTM_IFINFO message notifies that the states of the interface or the link has changed.
This message is sent to an application from the network communication manager.

The status of the interface and the link is stored in the message whose header is the "if_msghdr" 
structure.

5.6.2.12 RTM_IFANNOUNCE - Notify a Attachment or Detachment of an Interface

The RTM_IFANNOUNCE message notifies that the interface has been attached or detached.
This message is sent to an application from the network communication manager.

The notification of attachment or detachment of the interface is stored in the message whose header is
the "if_announcemsghdr" structure.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 106



 Chapter 6 Calendar Function

6.1 Overview

The calendar function converts between the system time (SYSTIM and SYSTIM_U) and time_t type (calendar
time) in T-Kernel 2.0 Extension.
The API name prefix is "dt_" (date/time).

In T-Kernel 2.0 Extension, the system time (SYSTIM and SYSTIM_U) is expressed as total milliseconds 
(SYSTIM) and total microseconds (SYSTIM_U) from 0:00:00 UTC, January 1, 1985.

6.2 Definition

time_t

The time_t type is an integer data type representing the time in seconds, used in POSIX, and called 
calendar time.
The time_t type expresses the time as total seconds from 0:00:00 UTC, January 1, 1970.
The start time of this total seconds (0:00:00 UTC, January 1, 1970) is called the "epoch".

For mutual conversion between calendar time and system time, the API calls corresponding to all of the
time_t, SYSTIM, and SYSTIM_U types are provided.

struct tm

The structure struct tm is defined for representing calendar time elements, as shown below.
tm_usec is added as a structure member specific to T-Kernel 2.0 Extension, which allows you to include
the information about the time in millisecond or microsecond level.

#include <t2ex/datetime.h>

struct tm {
    int tm_usec; /* microseconds [0,999999] */
    int tm_sec; /* seconds [0,60] */
    int tm_min; /* minutes [0,59] */
    int tm_hour; /* hour [0,23]*/
    int tm_mday; /* day of the month [1,31] */
    int tm_mon; /* month [0,11] */
    int tm_year; /* years since 1900 */
    int tm_wday; /* day of the week [0,6] (0 is Sunday) */
    int tm_yday; /* days since January 1 [0,365] */
    int tm_isdst; /* daylight saving time (positive: on DST, 0: not DST, 
negative: unknown) */
};

Time Zone

Time zone is the time of a whole region that uses a certain time difference from the Coordinated 
Universal Time (UTC) as the standard time for the region.
The structure struct tzinfo represents the time zone of a region as the difference from the 
Coordinated Universal Time (UTC).

    #define TZNAME_MAX 8 /* maximum number of characters of time zone name */

struct tzinfo {
     char tzname[2][TZNAME_MAX+1]; /* time zone name */
        long offset; /* offset in seconds from UTC 
(positive for west of UTC) */
       int daylight; /* daylight saving time */

 /* The followings are specific to daylight saving time (valid only if daylight > 0) */
       long dst_offset; /* offset in seconds from UTC during 
daylight saving time */
     union dsttimespec dst_start; /* start date/time of daylight saving 
time */
     union dsttimespec dst_end; /* end date/time of daylight saving 
time */
};

  daylight If positive, the daylight saving time is in effect.
   If 0, the daylight saving time is not in effect.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 107



 dst_start, dst_end
   Indicates the time period of daylight saving time.
The dsttimespec union is defined as follows:

union dsttimespec {
   uint32_t v;
 struct julian {
      unsigned int type: 2, /* use total seconds since 0:00, 
January 1, local time (value is 0 or 1) */
       int offset: 30, /* total seconds [0,31622400] */
 } j;
 struct monthweekday {
      unsigned int type: 2, /* use month, week number and day 
number (value is 2) */
       unsigned int m: 4, /* month [1,12] */
       unsigned int n: 4, /* week number [1,5] */
       unsigned int d: 4, /* day number [0,6] */
       int offset: 18, /* seconds [0,86400] */
 } m;
};

   When using the total seconds since 0:00, January 1, local time, type = 0 
indicates the usual total seconds, and type = 1 indicates the total seconds without counting the leap 
day.
In the latter case, February 29 cannot be referred to explicitly.

   When using the month, week number, and day number (type = 2), the local date 
and time when the offset seconds have elapsed since 0:00 on the dth day of the nth week of the mth 
month of the year is specified.

System Time Zone

The only one current time zone of the system is called the "system time zone".
This defines the time difference from the Coordinated Universal Time (UTC) and can be used to 
represent the local time of the currently running system.
Normally, dt_setsystz sets the time zone of the current region as the system time zone, when starting 
up the system.
The initial value of the system time zone depends on the implementation. It is set to UTC (Coordinated
Universal Time) in the T2EX reference implementation.

In an API with the time zone address argument, if NULL is specified for "struct tzinfo *", then the 
system time zone is used.

Local Time

The time of a region that is defined by the time zone is called the "local time" of that time zone, in
contrast to the Coordinated Universal Time (UTC).
When simply saying the "local time", it means the local time of the system time zone.

Time Zone String

The time zone string is a string representation of the time zone information in one of the following 
forms:

1. :characters
 String beginning with ":". "characters" depends on the implementation.
 The T2EX reference implementation does not support this form of time zone string.
 If it is used in the dt_tzset() API call, an error occurs.

2. std offset dst offset, rule

   std Name of standard time
   dst Name of alternative time
 
  offset Value added to the local time to obtain the Coordinated Universal Time (UTC)
   In the form of hh[:mm[:ss]]
   
    hh hour [0,24]
    mm minutes [0,59]
    ss seconds [0,59]

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 108



   offset after std is required.
   offset after dst can be omitted.
If offset after dst is omitted, dst is assumed to be one hour ahead of offset of std.

 If the time zone string begins with "-", it means east of the Greenwich meridian.
 For west of the Greenwich meridian, "+" is optional.

  rule Indicates when to change to and back from the alternative time.
rule has the following form:
   date[/time],date[/time]
 
   The first date indicates when to change from the standard time to the 
alternative time.
   The second date indicates when to back from the alternative time to the 
standard time.
   Each time field indicates when to change to the other time, in local time.
   
   date has the following form:
   Jn
    Julian day n (1 <= n <= 365).
The leap day must not be counted.
    In all years including leap years, n = 59 for February 28 and n = 60 
for March 1.
    February 29 cannot be referred to explicitly.
   n
    Zero-based Julian day (0 <= n <= 365).
The leap day is counted, and February 29 can be referred to.
   Mm.n.d
    dth day of week n of month m of the year (1 <= m <= 12, 1 <= n <= 5, 0
<= d <=6).
    n = 1 indicates the first week in which the dth day occurs.
d = 0 indicates Sunday.

   time has the same form as offset, except that it has no leading sign ("+" or 
"-").
   If time is omitted, it is assumed to be 02:00:00.

 Examples of Time Zone String:
  - For New Zealand where there is an offset from UTC and the daylight saving time is 
applied:
   "NZST-12:00:00NZDT-13:00:00,M10.1.0,M3.3.0"

      Name of standard time NZST (New Zealand standard time)
       Time difference -12 hours (12 hours earlier than UTC)
      Name of alternative time NZDT (New Zealand daylight 
saving time)
       Time difference -13 hours (13 hours earlier than UTC)
     Date to change to the alternative time The first Sunday of October

  Date to back from the alternative time The third Sunday of March

  - For Japan:
   "JST-9"

   There is only the standard name "JST" without alternative name.
   The time is 9 hours earlier than UTC, and the daylight saving time is not 
applied.

System Locale

The locale defines the behavior specific to a country or region, for each category including date and 
time formatting, character collation order, numeric conventions, and currency symbol.
T2EX does not have a function for setting a locale dynamically and freely, and uses a fixed default 
locale.
This locale is called the "system locale".
Normally, the system locale uses the fixed values that are customized when configuring the system, for
each category depending on the destination country or region of T2EX or depending on the purpose of 
use. The T2EX reference implementation uses the ISO C locale ("C").
Therefore, API calls for getting error messages will return ASCII strings in English. When the time is
converted to a string representation, the month and the day of the week are returned in English.

6.3 API

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 109



Only the two functions, dt_setsystz and dt_getsystz, are implemented as system calls, and the other 
functions are implemented as library functions.

6.3.1 dt_main - Initializes and exits the calendar function

C Language Interface

#include <t2ex/datetime.h>

 ER er = dt_main(INT ac, UB* arg[]);

Parameter

     INT ac number of elements in arg[] or a negative value
     UB* arg[] array of argument strings

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion

Description

This function initializes (ac >= 0) or terminates (ac < 0) the calendar function.

At the time of initialization, a number of strings can be passed to arg[] as arguments, and the total 
count of strings is ac.
The content of "arg" is implementation-dependent. These argument strings are not used in the T2EX 
reference implementation.

6.3.2 dt_setsystz - Set System Time Zone

C Language Interface

#include <t2ex/datetime.h>

ER er = dt_setsystz(const struct tzinfo* tz);

Parameter

   const struct tzinfo* tz Time zone to set

Return Parameter

     ER er Error code

Error Code

   E_OK Normal completion
  EX_FAULT Illegal tz address
  EX_INVAL Illegal tz content

Description

Changes the system time zone to the time zone specified by tz.

See Also

dt_getsystz,dt_tzset

6.3.3 dt_getsystz - Get System Time Zone

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 110



C Language Interface

#include <t2ex/datetime.h>

ER er = dt_getsystz(struct tzinfo* tz);

Parameter

    struct tzinfo* tz Time zone to get

Return Parameter

     ER er Error code
    struct tzinfo* tz System Time Zone

Error Code

   E_OK Normal completion
  EX_FAULT Illegal tz address

Description
 
Returns the value of the system time zone to the area specified by tz.

See Also

dt_setsystz,dt_tzset

6.3.4 dt_tzset - Initialize Time Zone Structure

C Language Interface

#include <t2ex/datetime.h>

ER er = dt_tzset(struct tzinfo* tz, const char* spec);

Parameter

    struct tzinfo* tz Address of the time zone to store
    const char* spec Time zone string

Return Parameter

     ER er Error code
    struct tzinfo* tz Time zone

Error Code

   E_OK Normal completion
  EX_INVAL spec is illegal as time zone string

Description

Initializes the time zone structure tz based on the time zone string specified by spec.

See Also

dt_getsystz, dt_setsystz

6.3.5 dt_localtime, dt_localtime_ms, dt_localtime_us - Convert to Local Time

C Language Interface

#include <t2ex/datetime.h>

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 111



ER er = dt_localtime(time_t tims, const struct tzinfo* tz, struct tm* result);

ER er = dt_localtime_ms(const SYSTIM* tim, const struct tzinfo* tz, struct tm* result);

ER er = dt_localtime_us(SYSTIM_U tim_u, const struct tzinfo* tz, struct tm* result);
     
Parameter

     time_t tims System time in seconds
    const SYSTIM* tim Pointer to the system time in milliseconds

    SYSTIM_U tim_u System time in microseconds

    struct tzinfo* tz Pointer to the time zone
    struct tm *result Pointer to the area to store the local time

Return Parameter

     ER er Error code
    struct tm* result Converted local time

Error Code

   E_OK Normal completion
  EX_FAULT Illegal parameter address

  EX_OVERFLOW Result cannot be expressed in tm

Description

Converts the system time indicated by tims, tim, or tim_u to the local time of the time zone specified
by tz, and stores the result to the tm structure indicated by result.

If NULL is specified for tz, the system time zone is used.

See Also

dt_setsystz, dt_getsystz, dt_tzset, dt_strftime, dt_strptime, dt_mktime, dt_gmtime

6.3.6 dt_strftime - Convert Date and Time to String

C Language Interface

#include <t2ex/datetime.h>

int nb = dt_strftime(char *s, size_t max, const char* format, const struct tm* tm, const struct 
tzinfo* tz);
     
Parameter

     char* s Address of the string to store the result
     size_t max Size of s (in bytes)

    const char* format Conversion format specifier string
   const struct tm* tm Time to be converted to a string

   const struct tzinfo tz Time zone

Return Parameter

     int nb Number of bytes of the result not including the null 
character, or error code

     char* s Converted string

Error Code

  EX_INVAL Illegal parameter

Description

dt_strftime() converts the time represented by struct tm to a string according to the format specified

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 112



by format and the time zone specified by tz, and writes the result to the string s of up to max 
characters including the null character.
When converting the time to a string representation, the conversion result varies depending on the 
locale information.
dt_strftime() uses the information from the default locale of the system (system locale).

format is a character string representing the conversion format, consisting of 0 or more conversion 
specification strings (conversion specifiers) and ordinary characters.
Each conversion specifier begins with the character "%", followed by the sequence of the following 
characters in this order:

1. E or O modifier (optional). Details are given later.

2. Conversion specifier character which determines the conversion type

The ordinary characters including the terminating null character are copied to the result.
If copying takes place between overlapping objects, the result is undefined. (For example, s and 
format have the same value)

No more than max bytes are written to the string s.
Each conversion specifier is replaced by an appropriate string described in the list below.
The appropriate string is determined by 0 or more time elements pointed by the system locale and tm.
If specified values are out of the normal ranges, the stored string is undefined.
If tz is NULL, the system time zone is used when interpreting the "%Z" and "%z" specifiers.

The following conversion specifier characters are supported.
 "[ ]" indicate the range of number when the result is a numeric string.
 "{ }" indicate the tm structure member to be referred to.

a
 Abbreviated name of day of the week {tm_wday}
A
 Full name of day of the week {tm_wday}
b
 Abbreviated name of month {tm_mon}
B
 Full name of month {tm_mon}
c
 General date and time in the system locale
C
 The year divided by 100 and truncated to an integer, as a decimal number. [00,99] {tm_year}
d
 Day of the month [01,31] {tm_mday}
D
 Equivalent to %m/%d/%y {tm_mon, tm_mday, tm_year}
e
 Day of the month.
If single digit, a white-space is prepended [1,31] {tm_mday}
F
 Equivalent to %Y-%m-%d.{tm_mon, tm_mday, tm_year}
g
 Last two digits of the week-based year (see below) [00,99] {tm_year, tm_wday, tm_yday}
G
 Week-based year {tm_year, tm_wday, tm_yday}
h
 Equivalent to %b {tm_mon}
H
 Hour (24-hour clock) [00,23] {tm_hour}
I
 Hour (12-hour clock) [01,12] {tm_hour}
j
 days since January 1 [001,366] {tm_yday}
m
 Month [01,12] {tm_mon}
M
 Minutes [00,59] {tm_min}
n
 New line
p
 String equivalent to a.m. or p.m. in the system locale
r
 Time in a.m. and p.m. notation {tm_hour, tm_min, tm_sec}
R

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 113



 Time in 24-hour notation (%H:%M) {tm_hour, tm_min}
S
 Seconds [00,60] {tm_sec}
t
 Tab
T
 Time (%H:%M:%S) {tm_hour, tm_min, tm_sec}
u
 Day of the week where 1 is Monday [1,7] {tm_wday}
U
 Week number of the year [00,53]
 The first Sunday of January is the first day of the week number 1.
 Days before it in the new year have the week number 0 {tm_year, tm_wday, tm_yday}
V
 Week number of the year (Monday as the first day of the week) [01,53]
 If the week containing January 1 has four or more days, it is considered the week number 1.
 Otherwise, the last week of the previous year and the next week is the week number 1.
 January 4 and the first Thursday of January always have the week number 1.
{tm_year, tm_wday, tm_yday}
w
 Day number of the week [0,6].
0 is Sunday.
{tm_wday}
W
 Week number of the year [00,53].
The first Monday of January has the week number 1.
Days before it have the week number 0.
 {tm_year, tm_wday, tm_yday}
x
 Date representation in the system locale
X
 Time representation in the system locale
y
 Last two digits of the year [00,99] {tm_year}
Y
 Year {tm_year}
z
 Offset from UTC in the ISO 8601:2000 standard format
Z
 System time zone name
%
 "%" character

E or O Modifier

Some conversion specifiers can be modified with the E or O modifier.
When modified with this modifier, the result is output using an alternative format, if any.
If the alternative format does not exist for the system locale, the behavior is the same as the 
specifier without modifier.

%Ec
 Locale's alternative date and time
%EC
 Name of the base year (period) in the locale's alternative representation
$Ex
 Locale's alternative date
%Ey
 Locale's alternative time
%EY
 Full alternative representation of year
%Od
 Day of the month using the locale's alternative numeric symbols.
 If there is any alternative symbol for zero, the beginning is filled with zeros as needed; 
otherwise, filled with spaces.
%Oe
 Day of the month using the locale's alternative numeric symbols.
 The beginning is filled with spaces, if necessary.
%OH
 Hour (24-hour clock) using the locale's alternative numeric symbols
%OI
 Hour (12-hour clock) using the locale's alternative numeric symbols
%Om
 Month using the locale's alternative numeric symbols

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 114



%OM
 Minutes using the locale's alternative numeric symbols
%OS
 Seconds using the locale's alternative numeric symbols
%Ou
 Day number of the week (Monday = 1) using the locale's alternative numeric symbols
%OU
 Week number of the year using the locale's alternative numeric symbols
 (Sunday as the first day of the week, similar to %U.)
%OVV
 Week number of the year using the locale's alternative numeric symbols
 (Monday as the first day of the week, similar to %V.)
%Ow
 Day number of the week (Sunday = 0) using the locale's alternative numeric symbols
%OW
 Week number of the year using the locale's alternative numeric symbols (Monday as the first 
day of the week)
%Oy
 Year (offset from %C) using the locale's alternative numeric symbols

%g, %G and %V use the week number since the beginning of the year according to the ISO 8601:2000 
standard.
In this system, a week begins on Monday, and the first week of the year contains January 4 and also 
contains the first Thursday of the year.
In addition, the first week of the year contains at least four days.

If the first Monday of January is the 2nd, 3rd, or 4th day, the first 1 to 3 days are part of the last
week of the previous year.
Therefore, for Saturday, January 2, 1999, %G is replaced with 1998, and %V is replaced with 53.
If December 29, 30, or 31 is Monday, those days are part of the first week of the next year.
Therefore, for Tuesday, December 30, 1997, %G is replaced with 1998, and %V is replaced with 01.

If a conversion specifier is other than the above ones, the behavior is undefined.

See Also

dt_strptime, dt_mktime

6.3.7 dt_strptime - Convert String to Date and Time

#include <t2ex/datetime.h>

int index = dt_strptime(const char *str, const char *format, struct tm *tm, const struct tzinfo* tz);

Parameter

    const char* str String to be converted
    const char* format Conversion format string

    struct tm* tm tm structure to store the result date and time
   const struct tzinfo* tz Time zone

Return Parameter

     int index Index to the first unprocessed character in str, or error code
    struct tm* tm Time converted from string

Error Code

None

Description

dt_strptime() converts the character string indicated by str to the time in tm structure according to 
the format specified by format and the time zone specified by tz, and stores the result into tm.

format consists of 0 or more directives, and each directive is one of the following:
 - One or more white-space characters for which isspace() is true
 - Ordinary character excluding "%" and white-space characters described above
 - Conversion specifier

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 115



Each conversion specifier begins with "%", followed by the following in this order:
1. Flag character (optional)
 "0" or "+", but ignored if exists.
2. Field width (optional)
 Decimal numeric string specifying the maximum number of bytes to convert.
 This takes priority over the number of bytes required by the conversion specifier.
3. E or O modifier (optional)
4. Conversion specifier which determines the conversion type

The system locale is used as the locale information required for conversion.

An application shall ensure that there are white-space or other non-alphanumeric characters between 
any two conversion specifiers, unless all of the adjacent conversion specifiers convert a known fixed 
number of characters.

The maximum number of scanned characters (excluding the one matching the next directive) is determined
as follows:
 - If the field width is specified, then that number.
 - Otherwise, the pattern "{x}" indicates that the maximum is x.
 - Otherwise, the pattern "[x,y]" indicates that the value falls within the specified range (including
both bounds), and the maximum number of scanned characters is the maximum that can represent any value
within the range without leading zeros or a leading plus sign.

The following conversion specifiers are supported.
If a modifier is specified with a flag or a minimum field width, or if the field width is specified 
for any conversion specifier other than C, F, or Y, the result is undefined.

a
 Day of the week using the locale's name of day of the week.
Either the abbreviated or full name may be specified.
A
 Equivalent to %a.
b
 Month using the locale's name of month.
Either the abbreviated or full name may be specified.
B
 Equivalent to %b.
c
 Locale's standard date and time.
C
 The century number [00,99]; leading zeros are permitted but not required.
 Leading zeros are permitted, but not required.
 A leading "+" or "-" is permitted, but not required.
d
 Day of the month [01,31].
Leading zeros are not required.
D
 Same as %m/%d/%y.
e
 Equivalent to %d.
h
 Equivalent to %b.
H
 Hour [00,23].
Leading zeros are not required.
I
 Hour [01,12].
Leading zeros are not required.
j
 Day number of the year [001,366].
Leading zeros are not required.
m
 Month [01,12].
Leading zeros are not required.
M
 Minutes [00,59].
Leading zeros are not required.
n
 White-space character
p
 Locale's representation equivalent to a.m. or p.m.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 116



r
 12-hour clock time in a.m./p.m. notation.
R
 Same as %H:%M.
S
 Seconds [00,60].
Leading zeros are not required.
t
 White-space character.
T
 Same as %H:%M:%S.
U
 Week number of the year (Sunday as the first day of the week) [00,53].
Leading zeros are not required.
w
 Day number of the week [0,6].
0 is Sunday.
W
 Week number of the year (Monday as the first day of the week) [00,53].
Leading zeros are not required.
x
 Date using the locale's date format.
X
 Time using the locale's time format.
y
 Last two digits of the year.
When format contains neither C nor Y, a value [69,99] means a year from 1969 to 1999, and a value 
[00,68] means a year from 2000 to 2068.
Leading zeros are not required.
 A leading "+" or "-" character is permitted, but not required.
Y
 Year represented by four digits.
Leading zeros are not required.
 A leading "+" or "-" character is permitted, but not required.
%
 "%" character.

E or O Modifier

Some conversion specifiers can be modified by the E and O modifier so that an alternative format is 
used.
If the alternative format does not exist in the system locale, the behavior is the same as the 
specifier without modifier.

%Ec
 Locale's alternative date and time
%EC
 Name of the base year (period) in the locale's alternative representation
%Ex
 Locale's alternative date
%EX
 Locale's alternative time
%Ey
 Offset from %EC (year only) using the locale's alternative representation
%EY
 Full alternative representation of year
%Od
 Day of the month using the locale's alternative numeric symbols.
Leading zeros are not required.
%Oe
 Equivalent to %Od
%OH
 Hour (24-hour clock) using the locale's alternative numeric symbols
%OI
 Hour (12-hour clock) using the locale's alternative numeric symbols
%Om
 Month using the locale's alternative numeric symbols
%OM
 Minutes using the locale's alternative numeric symbols
%OS
 Seconds using the locale's alternative numeric symbols
%OU
 Week number of the year (Sunday as the first day of the week) using the locale's alternative 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 117



numeric symbols
%Ow
 Day number of the week (Sunday = 0) using the locale's alternative numeric symbols
%OW
 Week number of the year (Monday as the first day of the week) using the locale's alternative 
numeric symbols
%Oy
 Year (offset from %C) using the locale's alternative numeric symbols

If a directive consists of white-space characters, characters are scanned until the first character 
that is not white-space or the last one.

If a directive is an ordinary character, the next character is scanned from the buffer.
If the scanned character differs from the one for the directive, the directive fails, and that 
character and the subsequent characters remain unscanned.

If a conversion specification consists of %n, %t, white-space characters, or any combination of them, 
characters are scanned until the first character that is not white-space (which remains unscanned) or 
the last one.

For any other directive, characters are scanned until a character matching the next directive or the 
last one.
These characters, except the one matching the next directive, are compared to the locale values 
associated with the conversion specifier.
If a match is found, the value of an appropriate tm structure member is set to the value corresponding
to the locale information.
Case is ignored when matching items in str such as month name or day name of the week.
If no match is found, dt_strptime() fails, and no more characters are scanned.

See Also

dt_strftime

6.3.8 dt_mktime, dt_mktime_ms, dt_mktime_us - Convert to System Time

C Language Interface

#include <t2ex/datetime.h>

ER er = dt_mktime(struct tm* tm, const struct tzinfo* tz, time_t* result);
ER er = dt_mktime_ms(struct tm* tm, const struct tzinfo* tz, SYSTIM* result);
ER er = dt_mktime_us(struct tm* tm, const struct tzinfo* tz, SYSTIM_U* result);

Parameter

    struct tm* tm Time data to be converted
   const struct tzinfo* tz Time zone

     time_t* result Converted system time (in seconds)
     SYSTIM* result Converted system time (in milliseconds)

    SYSTIM_U* result Converted system time (in microseconds)

Return Parameter

     ER er Error code
     struct tm* tm tm_wday and tm_yday are set appropriately

     time_t* result Converted system time (in seconds)
     SYSTIM* result Converted system time (in milliseconds)

    SYSTIM_U* result Converted system time (in microseconds)

Error Code

   E_OK Normal completion
  EX_OVERFLOW The conversion result cannot be represented in the specified format

Description

Converts the local time elements specified by tm to the system time in the format specified by the API
call under the time zone specified by tz.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 118



dt_mktime converts the time to the time_t format in seconds.
dt_mktime_ms converts the time to the SYSTIM format in milliseconds.
dt_mktime_us converts the time to the SYSTIM_U format in microseconds.
If tz is NULL, the system time zone is used.
Among the original values of tm, tm_wday and tm_yday are ignored.

If successful, the tm_wday and tm_yday elements are set appropriately, and other elements are set to 
the values from the start time of the system time (0:00:00 (GMT), January 1, 1985).
NULL can be specified for result.
Even in this case, the elements of tm are set appropriately.

If the result cannot be represented in the result type, the contents of tm are not changed, and the 
EX_OVERFLOW error is returned.
See Also

dt_gmtime

6.3.9 dt_gmtime, dt_gmtime_ms, dt_gmtime_us - Convert to UTC Time

C Language Interface

#include <t2ex/datetime.h>

ER er = dt_gmtime(time_t tim, struct tm* result);
ER er = dt_gmtime_ms(const SYSTIM* tim_m, struct tm* result);
ER er = dt_gmtime_us(SYSTIM_U tim_u, struct tm* result);

Parameter

     time_t tim System time (in seconds)
    const SYSTIM* tim_m System time (in milliseconds)

    SYSTIM_U tim_u System time (in microseconds)

    struct tm* result Result of the conversion to UTC time

Return Parameter

     ER er Error code
    struct tm* tm tm structure representing the UTC time

Error Code

   E_OK Normal completion
  EX_OVERFLOW Conversion result cannot be expressed

Description

Converts the system time to the time elements expressed as Coordinated Universal Time (UTC) and stores
them in result.
dt_gmtime gives the system time in seconds.
dt_gmtime_ms gives the system time in milliseconds.
dt_gmtime_us gives the system time in microseconds.
The resolution of result is the same as for tim_u, tim_m, or tim.

See Also

dt_mktime

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 119



 Chapter 7  Program Load Function

7.1 Overview

The program load function loads and executes the program modules in T2EX.
The API name prefix is "pm_" (program module).

Program modules for this function are classified into the following two types.

Regular Program Module
 This program module runs at the same protection level as for the user side when it is used 
from an application program or a system-level component.
When using the module after loading, it is executed as a function call without an SVC interruption.

System Program Module
 This means the privileged program module located in the system memory space and refers to 
subsystems and device drivers in T-Kernel 2.0.
 This is used assuming that the user-level program provides the system-related, privileged 
level operations to applications in a safe and organized form.
The system program function is used via an SVC interruption using a device driver interface or 
subsystem entry point.

The essential difference between the regular program and system program modules is the protection 
level at which the program module is executed.
The former module function is executed at the caller's protection level, and the latter always at the 
system level regardless of the caller's runtime protection level.
Generally, it is desirable to use the regular program module for the purpose of dividing an 
application program into module units, in terms of performance efficiency and safety.
The system program module should be used only for the purpose of providing a system-level interface 
including device drivers and subsystems.

7.2 Regular Program Module

7.2.1 Regular Program Module Interface

The entry point for a regular program module is named module_main and has the following format.

int module_main(BOOL startup, void* arg)
{
 if ( startup ) {
  /* regular program startup processing */
 }
 else {
    /* regular program termination processing */
 }

 return ercd;
}

If startup is TRUE, it means to execute the startup processing, and thus the module must be 
initialized to be available.
If an error (negative value) is returned, the startup is considered to be failed, and the resources 
reserved by the startup processing must be released.
The argument arg can be used as startup processing parameters.

If startup is FALSE, the termination processing is executed.
The termination processing must release the resources allocated by the module.
If an error occurs during the termination processing, it must not be aborted, and the resources shall 
be released wherever possible.
If some part of the termination processing could not be executed normally, an error is returned as the
return code.
The argument arg can be used as termination processing parameters.

The entry point itself shall only perform the startup and termination processings, and the service 
interfaces of the module shall be provided separately.
This specification does not specifically limit the methodology. A typical one is to set the pointers 
of the module interface functions in the area indicated by the startup argument arg.
For specific module definition examples, see Appendix A.1.2.

7.2.2 Usage of Regular Program Module

To start using a regular program module, follow the procedure below.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 120



1. Load the regular program module 
 Load the target program module onto the memory.
This can be performed using the API call pm_load in this function.

2. Call the startup processing
 Call the entry point obtained by the pm_load API call, setting startup is TRUE.
 This executes the startup processing of the module.

To terminate a regular program module, follow the procedure below.

1. Call the termination processing
 Call the entry point obtained by the pm_load API call, setting startup is FALSE.
 This executes the termination processing of the module to release the resources allocated by 
the module.
2. Unload the regular program module 
 Unload the target program module from the memory.
This can be performed using the API call pm_unload in this function.

For specific module usage examples, see Appendix A.1.2.

7.3 System Program Module

The interface specification of a system program complies with the T-Kernel 2.0 subsystem and device 
driver interfaces.
The entry point format is compliant with it, as follows.
For specification details, see Section 5.11 "Subsystem and Device Driver Starting" in the T-Kernel 2.0
Specification.

ER main(INT ac, UB* av[])
{
 if ( ac >= 0 ) {
  /* system program startup processing */
 }
 else {
  /* system program termination processing */
 }

 return ercd;
}

The loading and startup of a system program module are an indivisible processing. The same goes for 
its termination and unloading. These are executed together with the API calls pm_loadspg and pm_unload
in this function.
For details about them, see Section 7.5.

7.4 Data Type Definition

 - pm_entry_t
 Type of the entry point (module_main) of the regular program module

 typedef int pm_entry_t(BOOL startup, void* arg);

 - struct pm
 Program module to load

 struct pm {
    ATR pmtype;  /* program type (PM_FILE, PM_PTR) */
    void* pmhdr;  /* program to load */

  /* other implementation-dependent information */
 };

 pmtype is specified as follows.
  pmtype := (PM_FILE || PM_PTR)

 When pmtype is PM_FILE, the program module to load is a file, and the pointer to the string 
(char* type) indicating the file path name is specified in pmhdr.
When pmtype is PM_PTR, the target program module is assumed to be located on the memory, and the top 
address of the memory space where the module locates is specified in pmhdr.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 121



 The format of the program module to be loaded is not defined in this specification and shall 
depend on the implementation.

7.5 API

All the API calls in this function are implemented as system calls.
If the return code of an API call provided by this function is negative, the return code shall be 
interpreted as an ER type extended error code.

7.5.1 pm_main - Initializes and exits the program load function

C Language Interface

#include <t2ex/load.h>

 ER er = pm_main(INT ac, UB* arg[]);

Parameter

     INT ac number of elements in arg[] or a negative value
     UB* arg[] array of argument strings

Return Parameter

     ER er error code

Error Code

   E_OK Normal completion

Description

This function initializes (ac >= 0) or terminates (ac < 0) the program load function.

At the time of initialization, a number of strings can be passed to arg[] as arguments, and the total 
count of strings is ac.
The content of "arg" is implementation-dependent. These argument strings are not used in the T2EX 
reference implementation.

7.5.2 pm_load - Load Regular Program Module 

C Language Interface

#include <t2ex/load.h>

ID progid = pm_load(const struct pm* prog, UINT attr, pm_entry_t** entry);
     
Parameter

   const struct pm* prog Program to load
     UINT attr Attribute of the destination memory space

    pm_entry_t** entry Pointer to the area to return the program entry point

Return Parameter

     ID progid Program ID (> 0) for normal completion, or negative error code
    pm_entry_t* entry Program entry point

Error Code

   E_LIMIT The number of loaded programs reached the upper limit
   E_MACV The memory address given as an argument is inaccessible (prog, entry)

  EX_ACCES There is no permission to load the target program
   EX_FBIG The target program file is too big
   EX_INTR Aborted by fs_break()

  EX_INVAL Illegal parameter
    - ac < 0

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 122



    - prog or attr is invalid
   EX_IO I/O error

  EX_ISDIR prog is a directory
  EX_NFILE The number of opened files in the system exceeded the limit
  EX_NODEV The connection name of the file to load does not exist
  EX_NOENT The file to load does not exist

  EX_NOEXEC The format of the program to load is illegal
   EX_PERM There is no permission to load the target program

Description

Loads the regular program module prog onto the memory.
The module startup processing (entry point) is not called.

The attribute of the destination memory space is specified using attr as follows:
 attr := (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3)

For successful loading, the program ID is returned as the return code.
The pointer to the entry point of the loaded regular program module is returned to *entry.
By giving TRUE and FALSE as the first argument of the obtained function pointer, the initialization 
and termination processings can be executed for the module, respectively.

The loaded program module can be executed repeatedly by simple function calls via the function pointer
of the obtained entry point until it is unloaded.

See Also

pm_loadspg, pm_unload

7.5.3 pm_loadspg - Load System Program Module

C Language Interface

#include <t2ex/load.h>

ID progid = pm_loadspg(const struct pm* prog, INT ac, UB* av[]);

Parameter

   const struct pm* prog Program to load
     INT ac Number of arguments passed to the entry point at startup 

processing (>= 0)
     UB* av[] String argument passed to the entry point at startup 

processing

Return Parameter

     ID progid Program ID (> 0) for normal completion, or negative error code

Error Code

   E_LIMIT The number of loaded programs reached the upper limit
   E_MACV The memory address given as an argument is inaccessible (prog, av)

  EX_ACCES There is no permission to load the target program
   EX_FBIG The target program file is too big
   EX_INTR Aborted by fs_break()

  EX_INVAL Illegal parameter
    - ac < 0
    - prog or av is invalid

   EX_IO I/O error
  EX_ISDIR prog is a directory
  EX_NFILE The number of opened files in the system exceeded the limit
  EX_NODEV The connection name of the file to load does not exist
  EX_NOENT The file to load does not exist

  EX_NOEXEC The format of the program to load is illegal
   EX_PERM There is no permission to load the target program

Description

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 123



Loads the system program module prog onto the privileged level memory space, then executes the startup
processing as a quasi-task portion of this API's caller task.

When the entry point returns 0 or a positive value in the startup processing, the startup processing 
is assumed to have been executed normally, and the program ID is returned as the return code.
When the entry point returns a negative value, the system program load is considered to be failed, and
the return code from the entry point is returned as is.

An execution of this API call itself completes at the termination of the startup processing (return 
from the entry point), and the program remains mapped to the memory until it is unloaded.

See Also

pm_load, pm_unload

7.5.4 pm_status - Refer to Program Module Information

C Language Interface

#include <t2ex/load.h>

ER ercd = pm_status(ID progid, struct pm_stat* status);

Parameter

     ID progid Target program ID
    struct pm_stat* status Pointer to the area to return the program status

Return Parameter

     ER ercd Error code
Contents of status:
     BOOL sysprg Program attribute (TRUE: system program, FALSE: regular 
program)
     UINT attr Attribute of the destination memory
     void* entry Program entry point address
     void* start Start address of the program
     void* end End address of the program

Error Code

   E_OK Normal completion
   E_ID The program ID is illegal

   E_MACV The memory address given as an argument is inaccessible (status)

Description

Refers to the information of the program indicated by the program module ID progid and stores the 
information in *status.

See Also

pm_loadspg, pm_load, pm_unload

7.5.5 pm_unload - Unload Program Module 

C Language Interface

#include <t2ex/load.h>

ER ercd = pm_unload(ID progid);

Parameter

     ID progid Target program ID

Return Parameter

     ER ercd Error code

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 124



Error Code

   E_OK Normal completion
   E_ID The program ID is illegal

Description

Unloads the program module indicated by the program module ID progid.

If the unloaded program module is executed or the memory space of the unloaded program is referred to,
the behavior is not guaranteed.

When this API call is executed for the system program module loaded by pm_loadspg(), it works as 
follows:

  - The entry point of the target system program (main function) is called for the termination 
processing.
    At this time, the first argument ac is (-1) to distinguish the call from the initialization 
processing at loading.
    The called main function is executed as a quasi-task portion of the task issuing pm_unload().

  - If the main function returns 0 or a positive value, the termination processing is assumed to be 
successful, and the unloading of the program is executed.
If the main function returns a negative value, the termination processing is assumed to be 
unsuccessful, and the negative return code from the main function is returned as the return code of 
the pm_unload() as is without unloading.

If this API call is executed for a regular program module loaded by pm_load(), only the unloading of 
the program is executed without calling the termination processing.
Therefore, the termination processing (entry point) must always be called before executing the 
unloading using this API call.

See Also

pm_loadspg, pm_load

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 125



 Chapter 8 Standard C Compatible Library

8.1 Overview

The Standard C Compatible Library is a library group highly compatible with the Standard C Library 
(ISO/IEC 9899:1999).
T2EX places importance on thread-safety of the API.
Any thread-unsafe Standard C Library functions are excluded, replaced with different ones with 
equivalent capabilities, or added with arguments to ensure thread safety.
In addition, functions related to capabilities not provided by T2EX such as locale are deleted.
Therefore, this is not fully compatible with the Standard C Library.

T2EX provides the following header files and the functions defined therein.

    arpa/inet.h BSD socket * 1
   assert.h Testing function
   complex.h Complex calculation 
   ctype.h Character type classification
    dirent.h Directory reading * 2
   errno.h Error number definition
   float.h Floating point type properties
   inttypes.h Integer type format conversion
   iso646.h Alternate spellings
   limits.h Various limit values
    math.h Numeric operation
    netinet/in.h BSD socket * 1
    search.h Search * 2
   stdarg.h Variable number actual argument
   stdbool.h Boolean type and boolean value
   stddef.h Common definition
   stdint.h Integer type
   stdio.h Standard input/output
   stdlib.h General utility
   string.h String operation
    time.h Date and time
   wchar.h Multibyte and wide character extension

* 1 The headers defined for the BSD socket are added in order to handle a socket that realizes TCP/IP.

* 2 This is added based on POSIX (IEEE Std 1003.1-2008) as versatile functions.

The following headers defined in the Standard C Library (ISO/IEC 9899:1999) are removed from the 
Standard C Compatible Library.

    fenv.h Floating point environment
     * T2EX does not define floating point exceptions.
   locale.h Locale operation
     * T2EX does not support functions for locale operation and 
uses the system locale only.
   setjmp.h Non-local jump
     * Generally, it has restriction to be used under multitask.
   signal.h Signal operation
     * There is no signal in T2EX.
   tgmath.h Type-generic mathematical function
     * There is no need of it in T2EX.
   wctype.h Wide character type classification and case conversion
     * T2EX does not support the wide character/multibyte character
libraries.

8.2 Compatibility

 T2EX does not support some of the functions defined in each Standard C Library header.
 Some function names are added with a postfix to add arguments.
 Therefore, the T2EX Standard C Compatible Library is not fully compatible with the Standard C 
Library.
 It has the following differences from the Standard C Library.

File and Socket

 In the Standard C Library, files and sockets can be handled in the same way as a stream.
 In the T2EX Standard C Compatible Library, files and sockets cannot be handled with the same 
functions.
 Separate functions exist for handling files and sockets.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 126



 Particularly in the C language standard input/output library defined in stdio.h, the functions
can be used only with files.
 The standard input/output functions cannot be used with sockets.

Error Code and Error Number

 In the T2EX system call group, all the API calls have ER type return codes, which tells the 
error details.
 The Standard C Library functions use -1 or NULL as the return codes to notify the occurrence 
of an error, which do not give detailed error information.
 Usually a POSIX specification-compliant operating system gets error information by reading the
content of the symbol errno.
 An errno value is a positive integer indicating the detailed error information. This positive 
integer is called an "error number" which is distinguished from a negative error code of the ER type 
in T2EX.

 Supplement: T2EX does not introduce static variables equivalent to errno in the POSIX 
specification.
       A possible specification or implementation may define errno using macros and functions 
to provide errno with task-by-task error information, which is not adapted by T2EX due to complication
and runtime overhead.

 In the Standard C Compatible Library functions described in this chapter, their return codes 
notify of an error occurrence but do not tell detailed information of the error.
 In addition, there is no function that returns an ER type error code as for the API calls in 
the system call group.

 With the Standard C Compatible Library functions, the error number equivalent to errno is 
retrieved as follows:
 1. Call the function that returns the error number occurred.
    ferror() function.
 2. Add the function itself with an argument that specifies the area to which the error number 
is returned, then return the error number to the area specified by the argument.
    fopen_eno(), and so on.

 The error number is represented by the following type.
 
   typedef int errno_t;

 The error number is mapped to the T2EX error code system and handled in a unified manner as 
the ER type, as follows:
 An error code is derived for an error number as follows:
  - EC_ERRNO as the main error code.
  - Error number as the sub error code.
  - EX_.... is defined as the error code symbol corresponding to the error number.

 An error code that has EC_ERRNO as the main error code is called an "extended error code".
 The following macro is used to convert an error number value (eno) to a T2EX ER type extended 
error code.

   #define ERRNOtoER(eno) (ERCD(EC_ERRNO, (eno))

 By the following macro, an errno_t type error number value can be obtained from an ER type 
extended error code (er).

   #define ERRNO(er) (MERCD(er) == EC_ERRNO ? SERCD(er) : 0)

 - In T2EX, error numbers are not retrieved by errno defined in the Standard C library. 
Therefore, certain Standard C Library functions are added with an argument that returns the error 
number, with the _eno postfix added to their names.
   They include the following functions.
Their features are equivalent to the original name functions.

  fopen_eno
  fdopen_eno
  freopen_eno
  fclose_eno
  opendir_eno
  closedir_eno
  gmtime_r_eno
  localtime_r_eno
  mktime_eno
  realpath_eno

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 127



  realpath2_eno

 For details about the error number, see the errno.h section.

Thread-Safe

 T2EX does not support the following thread-unsafe functions.
  asctime
  ctime
  gets
  gmtime
  localtime
  rand
  readdir
  srand
  strerror
  strtok

 The following thread-unsafe functions are changed to be thread-safe by adding arguments and 
the _r postfix to the function name.

  lgamma_r
  lgammaf_r
  lgammal_r

  drand48_r
  lrand48_r
  mrand48_r
  srand48_r
  seed48_r
  lcong48_r

Large file

 T2EX supports 64-bit size large files.
The following functions are added to handle 64-bit file offsets, using different names than the 
conventional ones to make available both of them.
  fgetpos64
  fsetpos64
  fseek64
  ftell64

File lock

 T2EX does not support the file lock-related functions.
  flockfile
  ftrylockfile
  funlockfile
  _unlocked

Pipe

 T2EX does not support the pipe handling functions because there is no process.
  popen
  pclose

Locale

 T2EX does not provide locale.h.
Therefore, it does not provide the functions to arbitrarily set a locale and get the locale 
information in the lconv structure.
 However, it refers to the fixed default locale of the system in case it needs the locale 
information for character matching or other purpose.
This default locale is called the "system locale".
 The system locale value is implementation-dependent.
 In the T2EX reference implementation, the system locale is USA (en_US).

Other
 The function that implicitly needs errno is not supported.
  perror

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 128



Function notation

 Unlike in the previous chapters, this chapter describes each function in the following format.

 [Name]
 [Format]
 [Description]
 [Return code]
 [Error]
 [Related item]
 [Additional notes]

 The error number described in the [Error] section is obtained by the following ways when the 
function notifies of an error occurrence by returning a value specific to the function such as -1 and 
NULL.
 - Return code of the ferror() function
 - Error number stored in the errno_t* argument if the function has this type of argument

API call

 The functions and macros provided by the Standard C Compatible Library are part of the T2EX 
API, and each of them corresponds to a T2EX API call.
 In this chapter, they are not referred to as API calls, in terms of compatibility, but as 
"functions" and "macros" according to the general Standard C Library description.

Character and string

 T2EX assumes that UTF-8 is used as the character code.
 In UTF-8, one character is not always one byte. It uses multibyte characters represented by 
multiple bytes.
 To represent every one character, there is the wide character wchar_t type.
 However, the T2EX Standard C Compatible Library does not provide the library functions related
to multibyte and wide characters.
 In this chapter, "character" means one byte.
 "String" means a byte sequence that ends with NULL.

Floating point

 As a rule, the floating point representation and operation shall comply with the IEC 60559 
(IEEE 754).
 Implementations that cannot comply with it for architectural reasons are also allowed.
 However, the floating point exceptions (INVALID, DENORMAL, ZERIDIVIDE, OVERFLOW, UNDERFLOW, 
and INEXACT) defined in this specification do not occur in T2EX.
 For operations that generate such an exception, NAN, INFINITY, HUGE_VAL, or other appropriate 
value is returned.

Other

 [0,1] is used to represent a numerical range.
This is the range between 0 and 1 inclusive.
 [0.0, 1.0) means 0.0 or larger and less than 1.0.
 (0.0, 1.0] means larger than 0.0 and 1.0 or less.
 +/-0 means +0 or -0.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 129



8.3 arpa/inet.h

The header arpa/inet.h defines the following macros, structures, and function prototype declarations.

Types

in_port_t
   The type defined in <netinet/in.h>.

in_addr_t
   The type defined in <netinet/in.h>.

in_addr
   The structure defined in <netinet/in.h>.

Macros

INET_ADDRSTRLEN
   The macro defined in <netinet/in.h>.

Functions or Macros

8.3.1 htonl, htons, ntohl, ntohs - convert values between host and network byte order

C Language Interface

#include <arpa/inet.h>

 uint32_t htonl(uint32_t hostlong);
 uint16_t htons(uint16_t hostshort);
 uint32_t ntohl(uint32_t netlong);
 uint16_t ntohs(uint16_t netshort);

Description

These functions shall convert 16-bit and 32-bit quantities between network byte order and host byte 
order.
Though htonl(), htons(), ntohl(), and ntohs() are implemented as functions in the T2EX reference 
implementation, these can be also implemented as macros.

Return Parameter

The htonl() and htons() functions shall return the argument value converted from host to network byte 
order.
The ntohl() and ntohs() functions shall return the argument value converted from network to host byte 
order.

Error Code

None.

8.3.2 inet_addr - IPv4 address manipulation

C Language Interface

#include <arpa/inet.h>

 in_addr_t inet_addr(const char *cp);

Description

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 130



The inet_addr() function shall convert the string pointed to by cp, in the standard IPv4 dotted 
decimal notation, to an integer value suitable for use as an Internet address.

All Internet addresses shall be returned in network order (bytes ordered from left to right).

Values specified using IPv4 dotted decimal notation take one of the following forms:

a.b.c.d
  When four parts are specified, each shall be interpreted as a byte of data and 
  assigned, from left to right, to the four bytes of an Internet address.
a.b.c
  When a three-part address is specified, the last part shall be interpreted as 
  a 16-bit quantity and placed in the rightmost two bytes of the network address. 
  This makes the three-part address format convenient for specifying Class B network 
  addresses as "128.net.host" .
a.b
  When a two-part address is supplied, the last part shall be interpreted as a 
  24-bit quantity and placed in the rightmost three bytes of the network address. 
  This makes the two-part address format convenient for specifying Class A network 
  addresses as "net.host" .
a
  When only one part is given, the value shall be stored directly in the network 
  address without any byte rearrangement. 

All numbers supplied as parts in IPv4 dotted decimal notation may be decimal, octal, or hexadecimal, 
as specified in the ISO C standard (that is, a leading 0x or 0X implies hexadecimal; otherwise, a 
leading '0' implies octal; otherwise, the number is interpreted as decimal).

Return Parameter

Upon successful completion, inet_addr() shall return the Internet address. Otherwise, it shall return 
(in_addr_t)(-1).

Error Code

None.

Additional Notes

The inet_ntoa() function in the standard C library is non-thread-safe and thus is not provided in 
T2EX.
inet_ntop() function substitutes this function.

8.3.3 inet_ntop, inet_pton - convert IPv4 addresses between binary and text form

C Language Interface

#include <arpa/inet.h>

 const char *inet_ntop(int af, const void *src, char *dst, socklen_t size);
  int inet_pton(int af, const char *src, void *dst);

Description

The inet_ntop() function shall convert a numeric address into a text string suitable for presentation.

The af argument shall specify the family of the address. This can be AF_INET. 
The src argument points to a buffer holding an IPv4 address if the af argument is AF_INET; the address
must be in network byte order. 
The dst argument points to a buffer where the function stores the resulting text string; it shall not 
be NULL. 
The size argument specifies the size of this buffer, which shall be large enough to hold the text 
string (INET_ADDRSTRLEN characters for IPv4).

The inet_pton() function shall convert an address in its standard text presentation form into its 
numeric binary form. 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 131



The af argument shall specify the family of the address. The AF_INET address families shall be 
supported. 
The src argument points to the string being passed in. 
The dst argument points to a buffer into which the function stores the numeric address; this shall be 
large enough to hold the numeric address (32 bits for AF_INET).

If the af argument of inet_pton() is AF_INET, the src string shall be in the standard IPv4 
dotted-decimal form:

 ddd.ddd.ddd.ddd

where "ddd" is a one to three digit decimal number between 0 and 255 (see inet_addr ). The inet_pton()
function does not accept other formats (such as the octal numbers, hexadecimal numbers, and fewer than
four numbers that inet_addr() accepts).

Return Parameter

The inet_ntop() function shall return a pointer to the buffer containing the text string if the 
conversion succeeds, and NULL otherwise.

The inet_pton() function shall return 1 if the conversion succeeds, with the address pointed to by dst
in network byte order. It shall return 0 if the input is not a valid IPv4 dotted-decimal string or -1 
if the af argument is unknown.

Error Code

None.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 132



8.4 assert.h

The header assert.h defines the following test macro.

Macro

assert()
 The <assert.h> header shall define the assert() macro. It refers to the macro NDEBUG 
 which is not defined in the header. 
 If NDEBUG is defined as a macro name before the inclusion of this header, the assert() 
 macro shall be defined simply as:

  #define assert(ignore)((void) 0)

 Otherwise, the macro behaves as described in assert() shown below.

 The assert() macro shall be redefined according to the current state of NDEBUG each time 
 <assert.h> is included.

 The assert() macro shall be implemented as a macro, not as a function. 

8.4.1 assert - insert program diagnostics

C Language Interface

#include <assert.h>

 void assert(scalar expression);

Description

The assert() macro shall insert diagnostics into programs; it shall expand to a void expression. 

When it is executed, if expression (which shall have a scalar type) is false (that is, compares equal 
to 0), assert() shall write information about the particular call that failed on stderr and shall call
abort().

The information written about the call that failed shall include the text of the argument, the name of
the source file, the source file line number, and the name of the enclosing function; the latter are, 
respectively, the values of the preprocessing macros __FILE__ and __LINE__ and of the identifier 
__func__.

Forcing a definition of the name NDEBUG, either from the compiler command line or with the 
preprocessor control statement #define NDEBUG ahead of the #include <assert.h> statement, shall stop 
assertions from being compiled into the program.

Return Parameter

None.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 133



8.5 complex.h

The header complex.h defines the following complex-related macros and function prototype declarations.

Macros

complex
  Expands to _Complex.
  
_Complex_I
  Expands to a constant expression of type const float _Complex, with the value of the 
  imaginary unit (that is, a number i such that i^2 = -1) ('^' represents the power).

imaginary
  Expands to _Imaginary.

_Imaginary_I
  Expands to a constant expression of type const float _Imaginary with the value of the
  imaginary unit.

I
  Expands to either _Imaginary_I or _Complex_I. If _Imaginary_I is not defined, 
  I expands to _Complex_I.

The macros imaginary and _Imaginary_I shall be defined if and only if the implementation supports 
imaginary types.
In the T2EX reference implementation, the imaginary type is not supported and thus these are not 
defined.

Functions

8.5.1 cabs, cabsf, cabsl - return a complex absolute value

C Language Interface

#include <complex.h>

   double cabs(double complex z);
   float cabsf(float complex z);

  long double cabsl(long double complex z);

Description

These functions shall compute the complex absolute value (also called norm, modulus, or magnitude) of 
z.

Return Parameter

These functions shall return the complex absolute value.

Error Code

None.

8.5.2 cacos, cacosf, cacosl - complex arc cosine functions

C Language Interface

#include <complex.h>

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 134



  double complex cacos(double complex z);
  float complex cacosf(float complex z);

 long double complex cacosl(long double complex z);

Description

These functions shall compute the complex arc cosine of z, with branch cuts outside the interval [-1, 
+1] along the real axis.

Return Parameter

These functions shall return the complex arc cosine value, in the range of a strip mathematically 
unbounded along the imaginary axis and in the interval [0,+ π] along the real axis.

Error Code

None.

See Also

ccos

8.5.3 cacosh, cacoshf, cacoshl - complex arc hyperbolic cosine functions

C Language Interface

#include <complex.h>

  double complex cacosh(double complex z);
  float complex cacoshf(float complex z);

 long double complex cacoshl(long double complex z);

Description

These functions shall compute the complex arc hyperbolic cosine of z, with a branch cut at values less
than 1 along the real axis.

Return Parameter

These functions shall return the complex arc hyperbolic cosine value, in the range of a half-strip of 
non-negative values along the real axis and in the interval [-i*π, +i*π] along the imaginary axis.

Error Code

None.

See Also

ccosh

8.5.4 carg, cargf, cargl - complex argument functions

C Language Interface

#include <complex.h>

   double carg(double complex z);
   float cargf(float complex z);

  long double cargl(long double complex z);

Description

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 135



These functions shall compute the argument (also called phase angle) of z, with a branch cut along the
negative real axis.

Return Parameter

These functions shall return the value of the argument in the interval [-π, +π].

Error Code

None.

See Also

cimag, conj, cproj

8.5.5 casin, casinf, casinl - complex arc sine functions

C Language Interface

#include <complex.h>

  double complex casin(double complex z);
  float complex casinf(float complex z);

 long double complex casinl(long double complex z);

Description

These functions shall compute the complex arc sine of z, with branch cuts outside the interval [-1, 
+1] along the real axis.

Return Parameter

These functions shall return the complex arc sine value, in the range of a strip mathematically 
unbounded along the imaginary axis and in the interval [-π/2, +π/2] along the real axis.

Error Code

None.

See Also

csin

8.5.6 casinh, casinhf, casinhl - complex arc hyperbolic sine functions

C Language Interface

#include <complex.h>

  double complex casinh(double complex z);
  float complex casinhf(float complex z);

 long double complex casinhl(long double complex z);

Description

These functions shall compute the complex arc hyperbolic sine of z, with branch cuts outside the 
interval [-i, +i] along the imaginary axis.

Return Parameter

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 136



These functions shall return the complex arc hyperbolic sine value, in the range of a strip 
mathematically unbounded along the real axis and in the interval [-i*π/2, +i*π/2] along the 
imaginary axis.

Error Code

None.

See Also

csinh

8.5.7 catan, catanf, catanl - complex arc tangent functions

C Language Interface

#include <complex.h>

  double complex catan(double complex z);
  float complex catanf(float complex z);

 long double complex catanl(long double complex z);

Description

These functions shall compute the complex arc tangent of z, with branch cuts outside the interval [-i,
+i] along the imaginary axis.

Return Parameter

These functions shall return the complex arc tangent value, in the range of a strip mathematically 
unbounded along the imaginary axis and in the interval [-π/2, +π/2] along the real axis.

Error Code

None.

See Also

ctan

8.5.8 catanh, catanhf, catanhl - complex arc hyperbolic tangent functions

C Language Interface

#include <complex.h>

  double complex catanh(double complex z);
  float complex catanhf(float complex z);

 long double complex catanhl(long double complex z);

Description

These functions shall compute the complex arc hyperbolic tangent of z, with branch cuts outside the 
interval [-1, +1] along the real axis.

Return Parameter

These functions shall return the complex arc hyperbolic tangent value, in the range of a strip 
mathematically unbounded along the real axis and in the interval [-i*π/2, +i*π/2] along the 
imaginary axis.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 137



Error Code

None.

See Also

ctanh

8.5.9 ccos, ccosf, ccosl - complex cosine functions

C Language Interface

#include <complex.h>

  double complex ccos(double complex z);
  float complex ccosf(float complex z);

 long double complex ccosl(long double complex z);

Description

These functions shall compute the complex cosine of z.

Return Parameter

These functions shall return the complex cosine value.

Error Code

None.

See Also

cacos

8.5.10 ccosh, cconshf, cconshl - complex hyperbolic cosine functions

C Language Interface

#include <complex.h>

  double complex ccosh(double complex z);
  float complex ccoshf(float complex z);

 long double complex ccoshl(long double complex z);

Description

These functions shall compute the complex hyperbolic cosine of z.

Return Parameter

hese functions shall return the complex hyperbolic cosine value.

Error Code

None.

See Also

cacosh

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 138



8.5.11 cexp, cexpf, cexpl - complex exponential functions

C Language Interface

#include <complex.h>

  double complex cexp(double complex z);
  float complex cexpf(float complex z);

 long double complex cexpl(long double complex z);

Description

These functions shall compute the complex exponent of z, defined as e^z ('^' represents the power).

Return Parameter

These functions shall return the complex exponential value of z.

Error Code

None.

See Also

clog

8.5.12 cimag, cimagf, cimagl - complex imaginary functions

C Language Interface

#include <complex.h>

   double cimag(double complex z);
   float cimagf(float complex z);

  long double cimagl(long double complex z);

Description

These functions shall compute the imaginary part of z.

Return Parameter

These functions shall return the imaginary part value (as a real).

Error Code

None.

See Also

carg, conj, cproj, creal

8.5.13 clog, clogf, clogl - complex natural logarithm functions

C Language Interface

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 139



#include <complex.h>

  double complex clog(double complex z);
  float complex clogf(float complex z);

 long double complex clogl(long double complex z);

Description

These functions shall compute the complex natural (base-e) logarithm of z, with a branch cut along the
negative real axis.

Return Parameter

These functions shall return the complex natural logarithm value, in the range of a strip 
mathematically unbounded along the real axis and in the interval [-i*π, +i*π] along the imaginary 
axis.

Error Code

None.

See Also

cexp

8.5.14 conj, conjf, conjl - complex conjugate functions

C Language Interface

#include <complex.h>

  double complex conj(double complex z);
  float complex conjf(float complex z);

 long double complex conjl(long double complex z);

Description

These functions shall compute the complex conjugate of z, by reversing the sign of its imaginary part.

Return Parameter

These functions return the complex conjugate value.

Error Code

None.

See Also

carg, cimag, cproj, creal

8.5.15 cpow, cpowf, cpowl - complex power functions

C Language Interface

#include <complex.h>

  double complex cpow(double complex x, double complex y);
  float complex cpowf(float complex x, float complex y);

 long double complex cpowl(long double complex x, long double complex y);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 140



Description

These functions shall compute the complex power function x^y ('^' represents the power), with a branch
cut for the first parameter along the negative real axis.

Return Parameter

These functions shall return the complex power function value.

Error Code

None.

See Also

cabs, csqrt

8.5.16 cproj, cprojf, cprojl - complex projection functions

C Language Interface

#include <complex.h>

  double complex cproj(double complex z);
  float complex cprojf(float complex z);

 long double complex cprojl(long double complex z);

Description

These functions shall compute a projection of z onto the Riemann sphere: z projects to z, except that 
all complex infinities (even those with one infinite part and one NaN part) project to positive 
infinity on the real axis. 
If z has an infinite part, then cproj(z) shall be equivalent to:
 INFINITY + I * copysign(0.0, cimag(z))

Return Parameter

These functions shall return the value of the projection onto the Riemann sphere.

Error Code

None.

See Also

carg, cimag, conj, creal

8.5.17 creal, crealf, creall - complex real functions

C Language Interface

#include <complex.h>

   double creal(double complex z);
   float crealf(float complex z);

  long double creall(long double complex z);

Description

These functions shall compute the real part of z.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 141



Return Parameter

These functions shall return the real part value.

Error Code

None.

See Also

carg, cimag, conj, cproj

8.5.18 csin, csinf, csinl - complex sine functions

C Language Interface

#include <complex.h>

  double complex csin(double complex z);
  float complex csinf(float complex z);

 long double complex csinl(long double complex z);

Description

These functions shall compute the complex sine of z.

Return Parameter

These functions shall return the complex sine value.

Error Code

None.

See Also

casin

8.5.19 csinh, csinhf, csinhl - complex hyperbolic sine functions

C Language Interface

#include <complex.h>

  double complex csinh(double complex z);
  float complex csinhf(float complex z);

 long double complex csinhl(long double complex z);

Description

These functions shall compute the complex hyperbolic sine of z.

Return Parameter

These functions shall return the complex hyperbolic sine value.

Error Code

None.

See Also

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 142



casinh

8.5.20 csqrt, csqrtf, csqrtl - complex square root functions

C Language Interface

#include <complex.h>

  double complex csqrt(double complex z);
  float complex csqrtf(float complex z);

 long double complex csqrtl(long double complex z);

Description

These functions shall compute the complex square root of z, with a branch cut along the negative real 
axis.

Return Parameter

These functions shall return the complex square root value, in the range of the right half-plane 
(including the imaginary axis).

Error Code

None.

See Also

cabs, cpow

8.5.21 ctan, ctanf, ctanl - complex tangent functions

C Language Interface

#include <complex.h>

  double complex ctan(double complex z);
  float complex ctanf(float complex z);

 long double complex ctanl(long double complex z);

Description

These functions shall compute the complex tangent of z.

Return Parameter

These functions shall return the complex tangent value.

Error Code

None.

See Also

catan

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 143



8.5.22 ctanh, ctanhf, ctanhl - complex hyperbolic tangent functions

C Language Interface

#include <complex.h>

   complex ctanh(double complex z);
  float complex ctanhf(float complex z);

 long double complex ctanhl(long double complex z);

Description

These functions shall compute the complex hyperbolic tangent of z.

Return Parameter

These functions shall return the complex hyperbolic tangent value.

Error Code

None.

See Also

catanh

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 144



8.6 ctype.h

The header ctype.h defines the following character type determination functions and macros.

Functions or macros

int   isalnum(int c);
  shall return non-zero if c is an alphanumeric character.

int   isalpha(int c);
  shall return non-zero if c is an alphabetic character.
  
int   isascii(int c);
  shall return non-zero if c is a 7-bit US-ASCII character code between 0 and 
  octal 0177 inclusive.

int   isblank(int c);
  shall return non-zero if c is a blank (space or tab).
  
int   iscntrl(int c);
  shall return non-zero if c is a control character.
  
int   isdigit(int c);
  shall return non-zero if c is a decimal digit.
  
int   isgraph(int c);
  shall return non-zero if c is a character with a visible representation.
  
int   islower(int c);
  shall return non-zero if c is a lowercase letter.
  
int   isprint(int c);
  shall return non-zero if c is a printable character.
  
int   ispunct(int c);
  shall return non-zero if c is a punctuation character.

int   isspace(int c);
  shall return non-zero if c is a white-space character.
  
int   isupper(int c);
  shall return non-zero if c is an uppercase letter.
  
int   isxdigit(int c);
  shall return non-zero if c is a hexadecimal digit.

In the above function or macro, the c argument is an int, the value of which the application shall 
ensure is representable as an unsigned char or equal to the value of the macro EOF. 
If the argument has any other value, the behavior is undefined.

int   toascii(int c);
  shall return the value (c &0x7f).
  
int   tolower(int c);
  shall return the lowercase letter corresponding to the argument passed;
  otherwise, they shall return the argument unchanged.
  
int   toupper(int c);
  shall return the uppercase letter corresponding to the argument passed; 
  otherwise, they shall return the argument unchanged.

The followings are required to be defined as macros.

int   _toupper(int c);
  shall return the uppercase letter corresponding to the argument passed.
  
int   _tolower(int c);
  shall return the lowercase letter corresponding to the argument passed.

The character type is determined based on the system locale.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 145



8.7 dirent.h

The header dirent.h defines the following structure and function prototype declaration to read the 
directory entry in the same way as a stream.

Types

DIR type
 The type that expresses the directory stream.
 In the T2EX reference implementation, the DIR type is a structure including file descriptors.

struct "dirent" structure
 This structure represents a directory entry and includes the following elements.

      ino_t d_ino file serial number
    char d_name[NAME_MAX+1] Entry name

ino_t type
 File serial number or file identification number in the file system.

Functions

The readdir() in the standard C library is non-thread-safe and thus is not provided in T2EX.
The readdir_r() is used instead.

8.7.1 closedir_eno, closedir - Closes the directory stream

C Language Interface

#include <dirent.h>

 int closedir_eno(DIR *dirp, errno_t* enop);
 int closedir(DIR *dirp);

Description

The closedir_eno() closes the directory stream referred to by dirp.
In case of an error, its error number is stored in the area pointed to by enop.
If enop is NULL, the error number is not stored.
At completion, the value of dirp no longer points to the accessible DIR type object.
For a DIR type implementation using a file descriptor, the file descriptor is closed.

The closedir() is equivalent to closedir_eno(dirp, NULL).

Return Parameter

If successful, these functions return 0.
In case of an error, these functions return -1.

Error Code

In case of an error, the followings are stored in the area pointed to by enop.

  EBADF The dirp does not refer to the opened directory stream 
  EINTR Aborted by fs_break()

See Also

opendir, opendir_eno, readdir_r

8.7.2 opendir_eno, opendir - Opens the directory stream

C Language Interface

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 146



#include <dirent.h>

 DIR *opendir_eno(const char *path, errno_t* enop);
 DIR *opendir(const char *path);

Description

The opendir_eno() opens the directory specified by path and returns the DIR type directory stream.
The opened directory stream points the first entry.
If the DIR type is implemented using a file descriptor, directories cannot be opened beyond the number
of file descriptors that can be opened by the system.
The file descriptor used in the DIR type must be obtained by specifying O_DIRECTORY as the flag of 
fs_open().
In case of an error, the error number is stored in the area pointed to by enop.
If enop is NULL, the error number is not stored.

The opendir(path) is equivalent to opendir_eno(path, NULL).

Return Parameter

If successful, opendir() and opendir_eno() return the pointer to the DIR type.
In case of an error, these functions return NULL.

Error Code

In case of an error, the followings are stored in the area pointed to by enop.

  EACCES Read permission attribute does not exist for a directory in "path"
 ENAMETOOLONG File name is too long

   - The directory or file name part in "path" is too long (NAME_MAX at maximum).
   - Whole "path" length is too long (PATH_MAX at maximum).

  ENOENT "path" does not exist
  ENOTDIR "path" is not a directory

  ENFILE The limit of number of file descriptors being opened in the system is exceeded the 
limit

See Also

closedir, closedir_eno, readdir_r

8.7.3 readdir_r - Reads directory entries

C Language Interface

#include <dirent.h>

 errno_t readdir_r(DIR *dirp, struct dirent *entry, struct dirent **result);

Description

The readdir_r() reads the current directory entry of the directory stream specified by dirp.
Then, it initializes the struct dirent type data indicated by entry with the read content, stores the 
pointer to this data in the location pointed to by result, and moves the directory stream to the next 
position.

The area pointed to by entry must be large enough to be able to store the dirent type whose element 
"char d_name[]" size is over NAME_MAX+1 character.

If successful, the value of *result is same as the one of entry.
If the end of the directory stream is reached, *result becomes NULL.

The readdir_r() can buffer several directory entries for a single, actual reading processing.

Return Parameter

If successful, readdir_r() returns 0.
Otherwise, it returns an error number.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 147



Error Code

 EOVERFLOW An unrepresentable value has been generated in one of structures that set the value
  EBADF The dirp does not refer to the opened directory stream 

  ENOENT The current directory stream position is illegal

See Also

opendir_eno, closedir_eno

8.7.4 rewinddir - Resets the directory stream position to the beginning

C Language Interface

#include <dirent.h>

 void rewinddir(DIR *dirp);

Description

The rewindir() resets the position of the directory stream referred to by dirp to the beginning of the
directory.
If dirp does not point to any directory stream, its action shall be undefined.

Return Parameter

The rewindir() does not return a value.

Error Code

None

See Also

seekdir, telldir

8.7.5 seekdir - Move the directory stream position

C Language Interface

#include <dirent.h>

 void seekdir(DIR *dirp, long loc);

Description

Regarding the directory stream specified by dirp, the seekdir() sets the next readdir_r() position to 
the position specified by loc.
The loc value must be the one that was previously returned as a result of calling telldir().
The new position is the one when telldir() was previously executed.

Return Parameter

The seekdir() does not return a value.

Error Code

None

See Also

readdir, rewinddir, telldir

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 148



8.7.6 telldir - The current directory stream position

C Language Interface

#include <dirent.h>

 long telldir(DIR *dirp);

Description

The telldir() returns the current position of the directory stream specified by dirp.
The behavior is undefined if dirp is illegal.

Return Parameter

The telldir() returns the current position of the directory stream specified.

Error Code

None

See Also

seekdir, readdir, rewinddir

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 149



8.8 errno.h

The header errno.h defines the following macros that relate to types for error handling and error 
numbers.
For the error number, see Section 8.2.

Type

typedef int errno_t;
   Error number type

Macros

 #define EC_ERRNO (-73)
   T2EX main error code corresponding to the error number

 #define ERRNOtoER(eno) (ERCD(EC_ERRNO, (eno)))
   Macro for converting an error number into the T2EX extended error code

 #define ERRNO(er) (MERCD(er) == EC_ERRNO ? SERCD(er) : 0)
   Macro for extracting the error number from the T2EX error code

Error Numbers

The following shows the list of error numbers and their meanings.
For details of the meaning of the errors, see the description of each function that returns that error
number.

   EPERM Operation not permitted.
   ENOENT No such file or directory.

   ESRCH No such process.* 1
   EINTR Interrupted function.

   EIO I/O error.
   ENXIO No such device or address.
   E2BIG Argument list too long.

   ENOEXEC Executable file format error.
   EBADF Bad file descriptor.

   ECHILD No child processes.* 1
   EAGAIN Resource unavailable, try again. (may be the same value as EWOULDBLOCK.)

   EDEADLK Resource deadlock would occur.
   ENOMEM Not enough space.
   EACCES Permission denied.
   EFAULT Bad address.

   EBUSY Device or resource busy.
   EEXIST File exists.

   EXDEV Cross-device link.
   ENODEV No such device.

   ENOTDIR Not a directory.
   EISDIR Is a directory.
   EINVAL Invalid argument.
   ENFILE Too many files open in system.
   EMFILE File descriptor value too large.* 1
   ENOTTY Inappropriate I/O control operation.

   EFBIG File too large.
   ENOSPC No space left on device.
   ESPIPE Invalid seek.

   EROFS Read-only file system.
   EMLINK Too many links.* 1

   EPIPE Broken pipe.* 1
   EDOM Mathematics argument out of domain of function.

   ERANGE Result too large.
  EWOULDBLOCK Operation would block. (may be the same value as EAGAIN.)
  EINPROGRESS Operation in progress.

  EALREADY Connection already in progress.
  ENOTSOCK Not a socket.

  EDESTADDRREQ Destination address required.
  EMSGSIZE Message too large.

  EPROTOTYPE Protocol wrong type for socket.
  ENOPROTOOPT Protocol not available.

  EPROTONOSUPPORT Unsupported protocol.
  ESOCKTNOSUPPORT Unsupported socket type.

  EOPNOTSUPP Operation unsupported on socket.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 150



  EPFNOSUPPORT Unsupported protocol family.
  EAFNOSUPPORT Address family unsupported by protocol.

  EADDRINUSE Address in use.
  EADDRNOTAVAIL Address not available.

  ENETDOWN Network is down.
  ENETUNREACH Network unreachable.

  ENETRESET Connection aborted by network.
  ECONNABORTED Connection aborted. (The problem of the local host side.)

  ECONNRESET Connection reset. (Reset by peer.)
   ENOBUFS No buffer space available.
   EISCONN Socket is connected.

  ENOTCONN The socket is not connected.
  ESHUTDOWN Cannot send after transport endpoint shutdown.
  ETIMEDOUT Connection timed out.

  ECONNREFUSED Connection refused. (Rejected by peer.)
   ELOOP Too many levels of symbolic links.* This does not occur.

  ENAMETOOLONG Filename too long.
  EHOSTDOWN Remote host is down.

  EHOSTUNREACH Host is unreachable.
  ENOTEMPTY Directory not empty.

   EDQUOT Disk quota exceeded.* 1
   ENOLCK No locks available.* 1
   ENOSYS Unsupported function.

  EOVERFLOW Value too large to be stored in data type.
   EFTYPE Inappropriate file type or format.
   EILSEQ Illegal byte sequence.

   ENOTSUP Unsupported.

* 1 For the compatibility with POSIX, macro names for error numbers are defined for errors that do not
actually occur in the T2EX reference implementation.
(If a custom file system implementation part is implemented, approrpriate error macro names can be 
selected among them.)

The following error numbers are only used by API calls of the network communication functions.

  EAI_AGAIN The name could not be resolved at this time.
  EAI_BADFLAGS ai_flags had an invalid value.

  EAI_FAIL A non-recoverable error occurred when attempting to resolve the name.
  EAI_FAMILY Invalid address family.
  EAI_MEMORY Memory allocation failure.
  EAI_NODATA No address is associated with the specified host name.
  EAI_NONAME Neither a host name nor a service name are supplied. Or the name cannot be 

resolved.
  EAI_SERVICE The service passed is not recognized for the specified socket type.

  EAI_SOCKTYPE The intended socket type is not recognized.
  EAI_SYSTEM An internal error is occurred.

  EAI_BADHINTS Invalid value for hints
  EAI_OVERFLOW Argument buffer overflow.

The extended error codes (EX_...) corresponding to the POSIX error numbers are defined as follows.

   #define EX_PERM ERCD(EC_ERRNO, EPERM)
  #define EX_NOENT ERCD(EC_ERRNO, ENOENT)

   #define EX_SRCH ERCD(EC_ERRNO, ESRCH)
   #define EX_INTR ERCD(EC_ERRNO, EINTR)

   #define EX_IO ERCD(EC_ERRNO, EIO)
   #define EX_NXIO ERCD(EC_ERRNO, ENXIO)
   #define EX_2BIG ERCD(EC_ERRNO, E2BIG)

  #define EX_NOEXEC ERCD(EC_ERRNO, ENOEXEC)
   #define EX_BADF ERCD(EC_ERRNO, EBADF)

  #define EX_CHILD ERCD(EC_ERRNO, ECHILD)
  #define EX_AGAIN ERCD(EC_ERRNO, EAGAIN)

  #define EX_DEADLK ERCD(EC_ERRNO, EDEADLK)
  #define EX_NOMEM ERCD(EC_ERRNO, ENOMEM)
  #define EX_ACCES ERCD(EC_ERRNO, EACCES)
  #define EX_FAULT ERCD(EC_ERRNO, EFAULT)

   #define EX_BUSY ERCD(EC_ERRNO, EBUSY)
  #define EX_EXIST ERCD(EC_ERRNO, EEXIST)

   #define EX_XDEV ERCD(EC_ERRNO, EXDEV)
  #define EX_NODEV ERCD(EC_ERRNO, ENODEV)

  #define EX_NOTDIR ERCD(EC_ERRNO, ENOTDIR)
  #define EX_ISDIR ERCD(EC_ERRNO, EISDIR)
  #define EX_INVAL ERCD(EC_ERRNO, EINVAL)

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 151



  #define EX_NFILE ERCD(EC_ERRNO, ENFILE)
  #define EX_MFILE ERCD(EC_ERRNO, EMFILE)
  #define EX_NOTTY ERCD(EC_ERRNO, ENOTTY)

   #define EX_FBIG ERCD(EC_ERRNO, EFBIG)
  #define EX_NOSPC ERCD(EC_ERRNO, ENOSPC)
  #define EX_SPIPE ERCD(EC_ERRNO, ESPIPE)

   #define EX_ROFS ERCD(EC_ERRNO, EROFS)
  #define EX_MLINK ERCD(EC_ERRNO, EMLINK)

   #define EX_PIPE ERCD(EC_ERRNO, EPIPE)
   #define EX_DOM ERCD(EC_ERRNO, EDOM)

  #define EX_RANGE ERCD(EC_ERRNO, ERANGE)
  #define EX_WOULDBLOCK ERCD(EC_ERRNO, EWOULDBLOCK)
  #define EX_INPROGRESS ERCD(EC_ERRNO, EINPROGRESS)

  #define EX_ALREADY ERCD(EC_ERRNO, EALREADY)
  #define EX_NOTSOCK ERCD(EC_ERRNO, ENOTSOCK)

  #define EX_DESTADDRREQ ERCD(EC_ERRNO, EDESTADDRREQ)
  #define EX_MSGSIZE ERCD(EC_ERRNO, EMSGSIZE)

  #define EX_PROTOTYPE ERCD(EC_ERRNO, EPROTOTYPE)
  #define EX_NOPROTOOPT ERCD(EC_ERRNO, ENOPROTOOPT)

 #define EX_PROTONOSUPPORT ERCD(EC_ERRNO, EPROTONOSUPPORT)
 #define EX_SOCKTNOSUPPORT ERCD(EC_ERRNO, ESOCKTNOSUPPORT)

  #define EX_OPNOTSUPP ERCD(EC_ERRNO, EOPNOTSUPP)
  #define EX_PFNOSUPPORT ERCD(EC_ERRNO, EPFNOSUPPORT)
  #define EX_AFNOSUPPORT ERCD(EC_ERRNO, EAFNOSUPPORT)

  #define EX_ADDRINUSE ERCD(EC_ERRNO, EADDRINUSE)
  #define EX_ADDRNOTAVAIL ERCD(EC_ERRNO, EADDRNOTAVAIL)

  #define EX_NETDOWN ERCD(EC_ERRNO, ENETDOWN)
  #define EX_NETUNREACH ERCD(EC_ERRNO, ENETUNREACH)

  #define EX_NETRESET ERCD(EC_ERRNO, ENETRESET)
  #define EX_CONNABORTED ERCD(EC_ERRNO, ECONNABORTED)

  #define EX_CONNRESET ERCD(EC_ERRNO, ECONNRESET)
  #define EX_NOBUFS ERCD(EC_ERRNO, ENOBUFS)
  #define EX_ISCONN ERCD(EC_ERRNO, EISCONN)

  #define EX_NOTCONN ERCD(EC_ERRNO, ENOTCONN)
  #define EX_SHUTDOWN ERCD(EC_ERRNO, ESHUTDOWN)
  #define EX_TIMEDOUT ERCD(EC_ERRNO, ETIMEDOUT)

  #define EX_CONNREFUSED ERCD(EC_ERRNO, ECONNREFUSED)
   #define EX_LOOP ERCD(EC_ERRNO, ELOOP)

  #define EX_NAMETOOLONG ERCD(EC_ERRNO, ENAMETOOLONG)
  #define EX_HOSTDOWN ERCD(EC_ERRNO, EHOSTDOWN)

  #define EX_HOSTUNREACH ERCD(EC_ERRNO, EHOSTUNREACH)
  #define EX_NOTEMPTY ERCD(EC_ERRNO, ENOTEMPTY)

  #define EX_DQUOT ERCD(EC_ERRNO, EDQUOT)
  #define EX_NOLCK ERCD(EC_ERRNO, ENOLCK)

  #define EX_OVERFLOW ERCD(EC_ERRNO, EOVERFLOW)
  #define EX_NOSYS ERCD(EC_ERRNO, ENOSYS)
  #define EX_FTYPE ERCD(EC_ERRNO, EFTYPE)
  #define EX_ILSEQ ERCD(EC_ERRNO, EILSEQ)

  #define EX_NOTSUP ERCD(EC_ERRNO, ENOTSUP)
  #define EX_AI_ADDRFAMILY ERCD(EC_ERRNO, EAI_ADDRFAMILY)
   #define EX_AI_AGAIN ERCD(EC_ERRNO, EAI_AGAIN)
   #define EX_AI_BADFLAGS ERCD(EC_ERRNO, EAI_BADFLAGS)
   #define EX_AI_FAIL ERCD(EC_ERRNO, EAI_FAIL)
   #define EX_AI_FAMILY ERCD(EC_ERRNO, EAI_FAMILY)
   #define EX_AI_MEMORY ERCD(EC_ERRNO, EAI_MEMORY)
   #define EX_AI_NODATA ERCD(EC_ERRNO, EAI_NODATA)
   #define EX_AI_NONAME ERCD(EC_ERRNO, EAI_NONAME)
   #define EX_AI_SERVICE ERCD(EC_ERRNO, EAI_SERVICE)
   #define EX_AI_SOCKTYPE ERCD(EC_ERRNO, EAI_SOCKTYPE)
   #define EX_AI_SYSTEM ERCD(EC_ERRNO, EAI_SYSTEM)
   #define EX_AI_BADHINTS ERCD(EC_ERRNO, EAI_BADHINTS)
   #define EX_AI_PROTOCOL ERCD(EC_ERRNO, EAI_PROTOCOL)
   #define EX_AI_OVERFLOW ERCD(EC_ERRNO, EAI_OVERFLOW)

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 152



8.9 float.h

The header float.h defines the following macros for the attributes and limit values relating to the 
floating point number.

Macros

FLT_ROUNDS
  The rounding mode for floating-point addition is characterized by the 
  implementation-defined value of FLT_ROUNDS:
  
    -1 Indeterminable.
    0 Toward zero.
    1 To nearest.
    2 Toward positive infinity.
    3 Toward negative infinity.

  All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.
  FLT_ROUNDS may be a non-constant.
  In the T2EX reference implementation, FLT_ROUNDS is 1.

FLT_EVAL_METHOD
  The values of operations with floating operands and values subject to the usual 
  arithmetic conversions and of floating constants are evaluated to a format whose 
  range and precision may be greater than required by the type. 
  The use of evaluation formats is characterized by the implementation-defined value 
  of FLT_EVAL_METHOD:

    -1 Indeterminable.
    0 Evaluate all operations and constants just to the range and 
    precision of the type.
    1 Evaluate operations and constants of type float and double to the 
    range and precision of the double type; evaluate long double 
    operations and constants to the range and precision of the 
    long double type.
    2 Evaluate all operations and constants to the range and precision 
    of the long double type.

  All other values for FLT_EVAL_METHOD characterize implementation-defined behavior.
  In the T2EX reference implementation, FLT_EVAL_METHOD is 0.
  
The following symbols are constant expressions with implementation-defined values that are greater or 
equal in magnitude (absolute value) to those shown on right, with the same sign, if the value on the 
right is defined.

    FLT_RADIX 2
  Radix of exponent representation.
  In the T2EX reference implementation, FLT_RADIX is 2.

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG
  Number of base-FLT_RADIX digits in the floating-point significand.
  In the T2EX reference implementation, FLT_MANT_DIG is 24 and both DBL_MANT_DIG and 
LDBL_MANT_DIG are 53.

    DECIMAL_DIG 10
  Number of decimal digits, n, such that any floating-point number in the widest 
  supported floating type can be rounded to a floating-point number with n decimal 
  digits and back again without change to the value.
  This is 17 in the T2EX reference implementation.

     FLT_DIG 6
     DBL_DIG 10

    LDBL_DIG 10
  The decimal numbers consisting of these numbers of digits can be rounded to float, 
double, and long double respectively, and will maintain the original value when converted back.
  In the T2EX reference implementation, FLT_DIG is 6 and both DBL_DIG and LDBL_DIG are 
15.

FLT_MIN_EXP
DBL_MIN_EXP

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 153



LDBL_MIN_EXP
  Minimum negative integer such that FLT_RADIX raised to that power minus 1 is 
  a normalized floating-point number.
  In the T2EX reference implementation, FLT_MIN_EXP is -125 and both DBL_MIN_EXP and 
LDBL_MIN_EXP are -1021.

    FLT_MIN_10_EXP -37
    DBL_MIN_10_EXP -37

    LDBL_MIN_10_EXP -37
  Minimum negative integer such that 10 raised to that power is in the range of 
  normalized floating-point numbers.
  In the T2EX reference implementation, FLT_MIN_10_EXP is -37 and both DBL_MIN_10_EXP 
and LDBL_MIN_10_EXP are -307.

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP
  Maximum integer such that FLT_RADIX raised to that power minus 1 is a representable 
  finite floating-point number.
  In the T2EX reference implementation, FLT_MAX_EXP is 128 and both DBL_MAX_EXP and 
LDBL_MAX_EXP are 1024.

    FLT_MAX_10_EXP +37
    DBL_MAX_10_EXP +37

    LDBL_MAX_10_EXP +37
  Maximum integer such that 10 raised to that power is in the range of representable 
  finite floating-point numbers.
  In the T2EX reference implementation, FLT_MAX_10_EXP is 38 and both DBL_MAX_10_EXP and
LDBL_MAX_10_EXP are 308.

The following symbols are constant expressions with implementation-defined values that are greater or 
equal to those shown on right.

     FLT_MAX 1E+37
     DBL_MAX 1E+37

    LDBL_MAX 1E+37
  Maximum representable finite floating-point number.
  These take the following values in the T2EX reference implementation.
      FLT_MAX 3.40282347e+38F
      DBL_MAX 1.7976931348623157e+308 
      LDB_MAX 1.7976931348623157e+308L 

The following symbols are constant expressions with implementation-defined values that are less or 
equal to those shown on right.

     FLT_MIN 1E-37
     DBL_MIN 1E-37

    LDBL_MIN 1E-37
  Minimum normalized positive floating-point number.
  These take the following values in the T2EX reference implementation.
      FLT_MIN 1.17549435e-38F
      DBL_MIN 2.2250738585072014e-308
     LDBL_MIN 2.2250738585072014e-308L 

    FLT_EPSILON 1E-5
    DBL_EPSILON 1E-9

    LDBL_EPSILON 1E-9
  The difference between 1 and the least value greater than 1 that is representable 
  in the given floating-point type.
  These take the following values in the T2EX reference implementation.
     FLT_EPSILON 1.19209290e-7F
     DBL_EPSILON 2.2204460492503131e-16
     LDBL_EPSILON 2.2204460492503131e-16L 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 154



8.10 inttypes.h

The header inttypes.h defines the type, functions, and macros related to the handling of fixed-size 
integers.
The header inttypes.h includes <stdint.h> internally.

Type

imaxdiv_t
  Structure type to store the value returned by imaxdiv()

Macro

The following macros are for use in format (the formatted input/output function) when converting the 
corresponding integer type.
Each of these macros includes a conversion specifier and is expanded to a string literal modified by a
length modifier as needed.

General forms of these macros begin with one of the followings:
 - PRI (string literal for fprintf() series functions)
 - SCN (string literal for fscanf() series functions)

This is followed by a specifier (d, i, o, u, x, X), and then a name corresponding to the type name 
similar to what is defined in stdint.h.

In these names, N represents the width of the type described in stdint.h.
For instance, PRIdFAST32 can be used as the format string for outputting the int_fast32_t type integer
value.

Macros for fprintf() for signed integer:

        PRIdN PRIdLEASTN PRIdFASTN PRIdMAX PRIdPTR
        PRIiN PRIiLEASTN PRIiFASTN PRIiMAX PRIiPTR

Macros for fprintf() for unsigned integer:

        PRIoN PRIoLEASTN PRIoFASTN PRIoMAX PRIoPTR
        PRIuN PRIuLEASTN PRIuFASTN PRIuMAX PRIuPTR
        PRIxN PRIxLEASTN PRIxFASTN PRIxMAX PRIxPTR
        PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR

Macros for fscanf() for signed integer:

        SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdPTR
        SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiPTR

Macros for fscanf() for unsigned integer:

        SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoPTR
        SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuPTR
        SCNxN SCNxLEASTN SCNxFASTN SCNxMAX SCNxPTR

The processor needs to define a corresponding fprintf macro for each type provided by stdint.h.
If the processor has an appropriate length modifier for the type, it also needs to define a 
corresponding fscanf macro.

Functions (can also be defined as macro)

8.10.1 imaxabs - Absolute value of an integer

C Language Interface

#include <inttypes.h>

 intmax_t imaxabs(intmax_t j);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 155



Description

imaxabs() calculates the absolute value of the integer j.
If the result is unrepresentable, the behavior shall be undefined.

Return Parameter

imaxabs() returns an absolute value.

Error Code

None

See Also

imaxdiv

8.10.2 imaxdiv - Quotient and remainder of integers

C Language Interface

#include <inttypes.h>

 imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

Description

The imaxdiv() calculates "numer / denom" and "number % denom" in a single operation.

Return Parameter

The imbxdiv() returns an imaxdiv_t type structure in which the quotient and remainder are stored.
This structure needs to contain the members of intmax_t type quot (quotient) and rem (remainder) 
(order is irrelevant).
If either one in the result is unrepresentable, the behavior shall be undefined.

Error Code

None

See Also

imaxabs

8.10.3 strtoimax, strtoumax - Converts a string to an integer type

C Language Interface

#include <inttypes.h>

 intmax_t strtoimax(const char *nptr, char **endptr, int base);
 uintmax_t strtoumax(const char *nptr, char **endptr, int base);

Description

These functions are equivalent to strtol(), strtoll(), strtoul(), and strtoull() except that the types
of the convertion result are intmax_t and unitmax_t, respectively.

Return Parameter

These functions return a converted value once the conversion takes place.
If conversion is not performed, 0 is returned.
If the result exceeds the range of values representable, INTMAX_MAX, INTMAX_MIN, or UINTMAX_MAX is 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 156



returned according to the sign and type of the value.

Error Code

None

See Also

strtol, strtoul

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 157



8.11 iso646.h

The header iso646.h defines the following macros that provide alternative descriptions regarding 
operators.

Macros

The following macros on the left expand to the corresponding tokens on the right:

  and &&
  and_eq &=
  bitand &

  bitor |
  compl ~

  not !
  not_eq !=

  or ||
  or_eq |=

  xor ^
  xor_eq ^= 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 158



8.12 limits.h

The header limits.h defines macros regarding various limits.

Constants

Numerical Limits:
  If the value on the right is positive, the limit must be this value or less. If it is 
negative, the limit must be this value or more.

  If the values of type char are treated as signed integers when used 
  in an expression, the value of CHAR_MIN is the same as that of SCHAR_MIN and 
  the value of CHAR_MAX is the same as that of SCHAR_MAX. Otherwise, the value of 
  CHAR_MIN is 0 and the value of CHAR_MAX is the same as that of UCHAR_MAX.

  CHAR_BIT 8
  Number of bits in a type char.

  CHAR_MAX UCHAR_MAX or SCHAR_MAX
  Maximum value for an object of type char.

  CHAR_MIN 0 or SCHAR_MIN
  Minimum value for an object of type char.

   INT_MAX +2147483647
  Maximum value for an object of type int.

   INT_MIN -2147483647
  Minimum value for an object of type int.

  LLONG_MAX +9223372036854775807
  Maximum value for an object of type long long.

  LLONG_MIN -9223372036854775807
  Minimum value for an object of type long long.

  LONG_BIT 32
  Number of bits in an object of type long.

  LONG_MAX +2147483647
  Maximum value for an object of type long.

  LONG_MIN -2147483647
  Minimum value for an object of type long.

  MB_LEN_MAX 1
  Maximum number of bytes in a character, for the system locale.

  SCHAR_MAX +127
  Maximum value for an object of type signed char.

  SCHAR_MIN -128
  Minimum value for an object of type signed char.

  SHRT_MAX +32767
  Maximum value for an object of type short.

  SHRT_MIN -32767
  Minimum value for an object of type short.

  SSIZE_MAX 32767
  Maximum value for an object of type ssize_t.

  UCHAR_MAX 255
  Maximum value for an object of type unsigned char.
  

  UINT_MAX 4294967295
  Maximum value for an object of type unsigned int.

  ULLONG_MAX 18446744073709551615
  Maximum value for an object of type unsigned long long.

  ULONG_MAX 4294967295

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 159



  Maximum value for an object of type unsigned long.

  USHRT_MAX 65535
  Maximum value for an object of type unsigned short.

  WORD_BIT 32
  Number of bits in an object of type int.

Limits on filename and pathname:
 The value of the symbol should be greater or equal than the value shown on the right side.

  NAME_MAX 255
  Maximum number of bytes in a filename (not including the terminating null).

  PATH_MAX 1024
  Maximum number of bytes the implementation will store as a pathname in a 
  user-supplied buffer of unspecified size, including the terminating null character.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 160



8.13 math.h

The header math.h defines the following macros and function prototype declarations regarding 
mathematical items.

Macros

int fpclassify(real-floating x);

  The fpclassify() macro shall classify its argument value as NaN, infinite, normal, 
  subnormal, zero, or into another implementation-defined category. 
  The fpclassify() macro shall return the value of the number classification macro 
  (described below) appropriate to the value of its argument.
  No implementation-defined categories are provided in the T2EX reference 
implementation.

int isfinite(real-floating x);

  The isfinite() macro shall determine whether its argument has a finite value 
  (zero, subnormal, or normal, and not infinite or NaN). 
  The isfinite() macro shall return a non-zero value if and only if its argument has 
  a finite value.

int isinf(real-floating x);

  The isinf() macro shall determine whether its argument value is an infinity 
  (positive or negative). 
  The isinf() macro shall return a non-zero value if and only if its argument has an 
  infinite value.

int isnan(real-floating x);

  The isnan() macro shall determine whether its argument value is a NaN.
  The isnan() macro shall return a non-zero value if and only if its argument has a 
  NaN value.

int isnormal(real-floating x);

  The isnormal() macro shall determine whether its argument value is normal 
  (neither zero, subnormal, infinite, nor NaN). 
  The isnormal() macro shall return a non-zero value if and only if its argument has a 
  normal value.

int signbit(real-floating x);

  The signbit() macro shall determine whether the sign of its argument value is 
  negative. NaNs, zeros, and infinities have a sign bit.
  The signbit() macro shall return a non-zero value if and only if the sign of its 
  argument value is negative.

int isgreater(real-floating x, real-floating y);

  The isgreater() macro shall determine whether its first argument is greater than 
  its second argument. The value of isgreater( x, y) shall be equal to (x) > (y); 
  however, unlike (x) > (y), isgreater( x, y) shall not raise the invalid 
  floating-point exception when x and y are unordered.
  Upon successful completion, the isgreater() macro shall return the value of (x) > (y).
  If x or y is NaN, 0 shall be returned.

int isgreaterequal(real-floating x, real-floating y);

  The isgreaterequal() macro shall determine whether its first argument is greater 
  than or equal to its second argument. The value of isgreaterequal( x, y) shall be 
  equal to (x) >= (y); however, unlike (x) >= (y), isgreaterequal( x, y) shall not 
  raise the invalid floating-point exception when x and y are unordered.
  Upon successful completion, the isgreaterequal() macro shall return the value of 
  (x) >= (y).
  If x or y is NaN, 0 shall be returned.

int isless(real-floating x, real-floating y);

  The isless() macro shall determine whether its first argument is less than its second

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 161



  argument. The value of isless( x, y) shall be equal to (x) < (y); however, unlike 
  (x) < (y), isless( x, y) shall not raise the invalid floating-point exception when 
  x and y are unordered.
  Upon successful completion, the isless() macro shall return the value of (x) < (y).
  If x or y is NaN, 0 shall be returned.

int islessequal(real-floating x, real-floating y);

  The islessequal() macro shall determine whether its first argument is less than or 
  equal to its second argument. The value of islessequal( x, y) shall be equal to 
  (x) <= (y); however, unlike (x) <= (y), islessequal( x, y) shall not raise the 
  invalid floating-point exception when x and y are unordered.
  Upon successful completion, the islessequal() macro shall return the value of 
  (x) <= (y).
  If x or y is NaN, 0 shall be returned.

int islessgreater(real-floating x, real-floating y);

  The islessgreater() macro shall determine whether its first argument is less than or 
  greater than its second argument. The islessgreater( x, y) macro is similar to 
  (x) < (y) || (x) > (y); however, islessgreater( x, y) shall not raise the invalid 
  floating-point exception when x and y are unordered (nor shall it evaluate x and y 
  twice).
  Upon successful completion, the islessgreater() macro shall return the value of 
  (x) < (y) || (x) > (y).
  If x or y is NaN, 0 shall be returned.

int isunordered(real-floating x, real-floating y);

  The isunordered() macro shall determine whether its arguments are unordered.
  Upon successful completion, the isunordered() macro shall return 1 if its arguments 
  are unordered, and 0 otherwise.
  If x or y is NaN, 1 shall be returned.

Number classification macro values

  Number classification macro values shall be defined for number classification. They 
expand to 
  integer constant expressions with distinct values.
  The followings are defined in the T2EX reference implementation.
  Additional implementation-defined floating-point classifications, with macro 
  definitions beginning with FP_ and an uppercase letter, may also be specified by 
  the implementation.

    FP_INFINITE Positive or negative infinity.
     (Denoted as +Inf, -Inf, or +/-Inf)
     FP_NAN Not-a-number.
     (Denoted as NaN)
    FP_NORMAL Normal number.
    FP_SUBNORMAL Subnormal number.
     FP_ZERO Zero. (+0 or -0)

Returned value of ilogb(x)
  The following macros shall expand to integer constant expressions whose values are 
  returned by ilogb(x).

    FP_ILOGB0 Returned value if x is zero.
     The value shall be either INT_MIN or -INT_MAX.
    FP_ILOGBNAN Returned value if x is NaN.
     The value shall be either INT_MAX or INT_MIN.

Symbolic constants. 
  The values shall have type double and shall be accurate within the precision of the 
  double type.

     M_E Value of e
     M_LOG2E Value of log2(e)
    M_LOG10E Value of log10(e)
     M_LN2 Value of loge(2)
     M_LN10 Value of loge(10)
     M_PI Value of π
     M_PI_2 Value of π/2
     M_PI_4 Value of π/4

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 162



     M_1_PI Value of 1/π
     M_2_PI Value of 2/π
    M_2_SQRTPI Value of 2/sqrt(π)
     M_SQRT2 Value of sqrt(2)
    M_SQRT1_2 Value of 1/(sqrt(2)
    MAXFLOAT Same value as FLT_MAX in <float.h>.

Special symbolic constants:
  The <math.h> header shall define the following macros:

  HUGE_VAL
     A positive double constant expression, not necessarily 
     representable as a float. Used as an error value returned by 
     the mathematics library.
  HUGE_VALF
     A positive float constant expression. Used as an error value 
     returned by the mathematics library. 
  HUGE_VALL
     A positive long double constant expression. Used as an error 
     value returned by the mathematics library. 
  INFINITY
     A constant expression of type float representing positive or 
     unsigned infinity, if available; else a positive constant of 
     type float that overflows at translation time.
  NAN
     A constant expression of type float representing a quiet NaN.
     This macro is only defined if the implementation supports 
     quiet NaNs for the float type.
     Quiet NaN is outputted as an operation result without raising 
any exception when the operation is performed on itself.
     As a rule, T2EX supports NaN and any NaN shall be a quiet NaN.
     However, implementation that does not support NaN is also 
allowed.

Functions

8.13.1 acos, acosf, acosl - arc cosine functions

C Language Interface

#include <math.h>

  double acos(double x);
  float acosf(float x);

 long double acosl(long double x);

Description

These functions shall compute the principal value of the arc cosine of their argument x. 
The value of x should be in the range [-1,1].

Return Parameter

Upon successful completion, these functions shall return the arc cosine of x, in the range [0,π] 
radians.
For finite values of x not in the range [-1,1], a NaN shall be returned.
If x is NaN, a NaN shall be returned.
If x is +1, +0 shall be returned.
If x is +/-Inf, a NaN shall be returned.

Error Code

None.

See Also

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 163



cos

8.13.2 acosh, acoshf, acoshl - inverse hyperbolic cosine functions

C Language Interface

#include <math.h>

  double acosh(double x);
  float acoshf(float x);

 long double acoshl(long double x);

Description

These functions shall compute the inverse hyperbolic cosine of their argument x.

Return Parameter

Upon successful completion, these functions shall return the inverse hyperbolic cosine of their 
argument.
For finite values of x < 1, a NaN shall be returned.
If x is NaN, a NaN shall be returned.
If x is +1, +0 shall be returned.
If x is +Inf, +Inf shall be returned.
If x is -Inf, a NaN shall be returned.

Error Code

None.

See Also

cosh

8.13.3 asin, asinf, asinl - arc sine function

C Language Interface

#include <math.h>

  double asin(double x);
  float asinf(float x);

 long double asinl(long double x);

Description

These functions shall compute the principal value of the arc sine of their argument x. 
The value of x should be in the range [-1,1].

Return Parameter

Upon successful completion, these functions shall return the arc sine of x, in the range [-π/2,π/2] 
radians.
For finite values of x not in the range [-1,1], a NaN shall be returned.
If x is NaN, a NaN shall be returned.
If x is +/-0, x shall be returned.
If x is +/-Inf, a NaN shall be returned.
If x is subnormal, x should be returned.

Error Code

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 164



None.

See Also

sin

8.13.4 asinh, asinhf, asinhl - inverse hyperbolic sine functions

C Language Interface

#include <math.h>

  double asinh(double x);
  float asinhf(float x);

 long double asinhl(long double x);

Description

These functions shall compute the inverse hyperbolic sine of their argument x.

Return Parameter

Upon successful completion, these functions shall return the inverse hyperbolic sine of their 
argument.
If x is NaN, a NaN shall be returned.
Otherwise, x shall be returned.

Error Code

None.

See Also

sinh

8.13.5 atan, atanf, atanl - arc tangent function

C Language Interface

#include <math.h>

  double atan(double x);
  float atanf(float x);

 long double atanl(long double x);

Description

These functions shall compute the principal value of the arc tangent of their argument x.

Return Parameter

Upon successful completion, these functions shall return the arc tangent of x in the range [-π/2,π
/2] radians.
If x is NaN, a NaN shall be returned.
If x is +/-Inf, +/-π/2 shall be returned.
Otherwise, x shall be returned.

Error Code

None.

See Also

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 165



tan

8.13.6 atan2, ata2f, atan2l - arc tangent functions

C Language Interface

#include <math.h>

  double atan2(double y, double x);
  float atan2f(float y, float x);

 long double atan2l(long double y, long double x);

Description

These functions shall compute the principal value of the arc tangent of y/x, using the signs of both 
arguments to determine the quadrant of the return value.

Return Parameter

Upon successful completion, these functions shall return the arc tangent of y/x in the range [-π,π] 
radians.
If y is +/-0 and x is < 0, +/-π shall be returned.
If y is +/-0 and x is > 0, +/-0 shall be returned.
If y is < 0 and x is +/-0, -π/2 shall be returned.
If y is > 0 and x is +/-0, π/2 shall be returned.
If either x or y is NaN, a NaN shall be returned.
If the result underflows, y/x should be returned.
If y is +/-0 and x is -0, +/-π shall be returned.
If y is +/-0 and x is +0, +/-0 shall be returned.
For finite values of +/- y > 0, if x is -Inf, +/-π shall be returned.
For finite values of +/- y > 0, if x is +Inf, +/-0 shall be returned.
For finite values of x, if y is +/-Inf, +/-π/2 shall be returned.
If y is +/-Inf and x is -Inf, +/-3*π/4 shall be returned.
If y is +/-Inf and x is +Inf, +/-π/4 shall be returned.

Error Code

None.

See Also

tan, atan

8.13.7 atanh, atanhf, atanhl - inverse hyperbolic tangent functions

C Language Interface

#include <math.h>

  double atanh(double x);
  float atanhf(float x);

 long double atanhl(long double x);

Description

These functions shall compute the inverse hyperbolic tangent of their argument x.

Return Parameter

Upon successful completion, these functions shall return the inverse hyperbolic tangent of their 
argument.
If x is +/-1, atanh(), atanhf(), and atanhl() shall return the value of the macro HUGE_VAL, HUGE_VALF,
and HUGE_VALL, respectively, with the same sign as the correct value of the function.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 166



For finite |x|>1, a NaN shall be returned.
If x is NaN, a NaN shall be returned.
If x is +/-0, x shall be returned.
If x is +/-Inf, a NaN shall be returned.
If x is subnormal, x should be returned.

Error Code

None.

See Also

tanh

8.13.8 cbrt, cbrtf, cbrtl - cube root functions

C Language Interface

#include <math.h>

  double cbrt(double x);
  float cbrtf(float x);

 long double cbrtl(long double x);

Description

These functions shall compute the real cube root of their argument x.

Return Parameter

Upon successful completion, these functions shall return the cube root of x.
If x is NaN, a NaN shall be returned.
If x is +/-0 or +/-Inf, x shall be returned. 

Error Code

None.

8.13.9 ceil, ceilf, ceill - ceiling value function

C Language Interface

#include <math.h>

  double ceil(double x);
  float ceilf(float x);

 long double ceill(long double x);

Description

These functions shall compute the smallest integral value not less than x.

Return Parameter

Upon successful completion, ceil(), ceilf(), and ceill() shall return the smallest integral value not 
less than x, expressed as a type double, float, or long double, respectively.
If x is NaN, a NaN shall be returned.
If x is +/-0 or +/-Inf, x shall be returned.
If the correct value would cause overflow, ceil(), ceilf(), and ceill() shall return the value of the 
macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

Error Code

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 167



None.

8.13.10 copysign, copysignf, copysignl - number manipulation function

C Language Interface

#include <math.h>

  double copysign(double x, double y);
  float copysignf(float x, float y);

 long double copysignl(long double x, long double y);

Description

These functions shall produce a value with the magnitude of x and the sign of y. 

Return Parameter

Upon successful completion, these functions shall return a value with the magnitude of x and the sign 
of y.

Error Code

None.

See Also

floor

8.13.11 cos, cosf, cosl - cosine function

C Language Interface

#include <math.h>

  double cos(double x);
  float cosf(float x);

 long double cosl(long double x);

Description

These functions shall compute the cosine of their argument x, measured in radians.

Return Parameter

Upon successful completion, these functions shall return the cosine of x.
If x is NaN, a NaN shall be returned.
If x is +/-0, the value 1.0 shall be returned.
If x is +/-Inf, a NaN shall be returned.

Error Code

None.

See Also

sin, tan

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 168



8.13.12 cosh, coshf, coshl - hyperbolic cosine functions

C Language Interface

#include <math.h>

  double cosh(double x);
  float coshf(float x);

 long double coshl(long double x);

Description

These functions shall compute the hyperbolic cosine of their argument x.

Return Parameter

Upon successful completion, these functions shall return the hyperbolic cosine of x.
If x is NaN, a NaN shall be returned.
If x is +/-0, the value 1.0 shall be returned.
If x is +/-Inf, +Inf shall be returned.

Error Code

None.

See Also

sinh, tanh

8.13.13 erf, erff, erfl - error functions

C Language Interface

#include <math.h>

  double erf(double x);
  float erff(float x);

 long double erfl(long double x);

Description

These functions shall compute the error function of their argument x, defined as:
 erf(x) = 2/sqrt(pi) * integral from 0 to x of exp(-t*t) dt

Return Parameter

Upon successful completion, these functions shall return the value of the error function.
If x is NaN, a NaN shall be returned.
If x is +/-0, +/-0 shall be returned.
If x is +/-Inf, +/-1 shall be returned.
If x is subnormal, 2 * x/ sqrt(π) should be returned.

Error Code

None.

See Also

erfc

8.13.14 erfc, erfcf, erfcl - complementary error functions

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 169



C Language Interface

#include <math.h>

  double erfc(double x);
  float erfcf(float x);

 long double erfcl(long double x);

Description

These functions shall compute the complementary error function 1.0 - erf(x).

Return Parameter

Upon successful completion, these functions shall return the value of the complementary error 
function.
If x is NaN, a NaN shall be returned.
If x is +/-0, +1 shall be returned.
If x is -Inf, +2 shall be returned.
If x is +Inf, +0 shall be returned.

Error Code

None.

See Also

erf

8.13.15 exp, expf, expl - exponential function

C Language Interface

#include <math.h>

  double exp(double x);
  float expf(float x);

 long double expl(long double x);

Description

These functions shall compute the base-e exponential of x.

Return Parameter

Upon successful completion, these functions shall return the exponential value of x.
If the correct value would cause overflow, exp(), expf(), and expl() shall return the value of the 
macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.
If the correct value would cause underflow, and is not representable, 0.0 shall be returned.
If x is NaN, a NaN shall be returned.
If x is +/-0, 1 shall be returned.
If x is -Inf, +0 shall be returned.
If x is +Inf, x shall be returned.

Error Code

None.

See Also

log

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 170



8.13.16 exp2, exp2f, exp2l - exponential base-2 functions

C Language Interface

#include <math.h>

  double exp2(double x);
  float exp2f(float x);

 long double exp2l(long double x);

Description

These functions shall compute the base-2 exponential of x.

Return Parameter

Upon successful completion, these functions shall return 2^x ('^' represents the power).
If the correct value would cause overflow, exp2(), exp2f(), and exp2l() shall return the value of the 
macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.
If the correct value would cause underflow, and is not representable, 0.0 shall be returned.
If x is NaN, a NaN shall be returned.
If x is +/-0, 1 shall be returned.
If x is -Inf, +0 shall be returned.
If x is +Inf, x shall be returned.

Error Code

None.

See Also

exp, log

8.13.17 expm1, expm1f, expm1l - compute exponential functions

C Language Interface

#include <math.h>

  double expm1(double x);
  float expm1f(float x);

 long double expm1l(long double x);

Description

These functions shall compute e^x-1.0 ('^' represents the power).

Return Parameter

Upon successful completion, these functions return e^x-1.0.
If the correct value would cause overflow, expm1(), expm1f(), and expm1l() shall return the value of 
the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.
If x is NaN, a NaN shall be returned.
If x is +/-0, +/-0 shall be returned.
If x is -Inf, -1 shall be returned.
If x is +Inf, x shall be returned.
If x is subnormal, x should be returned.

Error Code

None.

See Also

exp, ilogb, log1p

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 171



8.13.18 fabs, fabsf, fabsl - absolute value function

C Language Interface

#include <math.h>

  double fabs(double x);
  float fabsf(float x);

 long double fabsl(long double x);

Description

These functions shall compute the absolute value of their argument x, |x|.

Return Parameter

Upon successful completion, these functions shall return the absolute value of x.
If x is NaN, a NaN shall be returned.
If x is +/-0, +0 shall be returned.
If x is +/-Inf, +Inf shall be returned. 

Error Code

None.

See Also

isnan

8.13.19 fdim, fdimf, fdiml - compute positive difference between two floating-point numbers

C Language Interface

#include <math.h>

  double fdim(double x, double y);
  float fdimf(float x, float y);

 long double fdiml(long double x, long double y);

Description

These functions shall determine the positive difference between their arguments. If x is greater than 
y, x - y is returned. If x is less than or equal to y, +0 is returned.

Return Parameter

Upon successful completion, these functions shall return the positive difference value.
If x - y is positive and overflows, fdim(), fdimf(), and fdiml() shall return the value of the macro 
HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.
If x - y is positive and underflows, 0.0 shall be returned.
If x or y is NaN, a NaN shall be returned.

Error Code

None.

8.13.20 floor, floorf, floorl - floor function

C Language Interface

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 172



#include <math.h>

  double floor(double x);
  float floorf(float x);

 long double floorl(long double x);

Description

These functions shall compute the largest integral value not greater than x.

Return Parameter

Upon successful completion, these functions shall return the largest integral value not greater than 
x, expressed as a double, float, or long double, as appropriate for the return type of the function.
If x is NaN, a NaN shall be returned.
If x is +/-0 or +/-Inf, x shall be returned.
If the correct value would cause overflow, floor(), floorf(), and floorl() shall return the value of 
the macro -HUGE_VAL, -HUGE_VALF, and -HUGE_VALL, respectively.

Error Code

None.

See Also

fmax, fmin

8.13.21 fma, fmaf, fmal - floating-point multiply-add

C Language Interface

#include <math.h>

  double fma(double x, double y, double z);
  float fmaf(float x, float y, float z);

 long double fmal(long double x, long double y, long double z);

Description

These functions shall compute (x * y) + z, rounded as one ternary operation: they shall compute the 
value (as if) to infinite precision and round once to the result format, according to the rounding 
mode characterized by the value of FLT_ROUNDS.

Return Parameter

Upon successful completion, these functions shall return (x * y) + z, rounded as one ternary 
operation.
If x or y are NaN, a NaN shall be returned.
If x multiplied by y is an exact infinity and z is also an infinity but with the opposite sign, a NaN 
shall be returned.
If one of x and y is infinite, the other is zero, and z is not a NaN, a NaN shall be returned.
If one of x and y is infinite, the other is zero, and z is a NaN, a NaN shall be returned.
If x*y is not 0*Inf nor Inf*0 and z is a NaN, a NaN shall be returned.

Error Code

None.

8.13.22 fmax, fmaxf, fmaxl - determine maximum numeric value of two floating-point numbers

C Language Interface

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 173



#include <math.h>

  double fmax(double x, double y);
  float fmaxf(float x, float y);

 long double fmaxl(long double x, long double y);

Description

These functions shall determine the maximum numeric value of their arguments.

Return Parameter

Upon successful completion, these functions shall return the maximum numeric value of their arguments.
If just one argument is a NaN, the other argument shall be returned.
If x and y are NaN, a NaN shall be returned.

Error Code

None.

See Also

fdim, fmin

8.13.23 fmin, fminl, fminf - determine minimum numeric value of two floating-point numbers

C Language Interface

#include <math.h>

  double fmin(double x, double y);
  float fminf(float x, float y);

 long double fminl(long double x, long double y);

Description

These functions shall determine the minimum numeric value of their arguments.

Return Parameter

Upon successful completion, these functions shall return the minimum numeric value of their arguments.
If just one argument is a NaN, the other argument shall be returned.
If x and y are NaN, a NaN shall be returned. 

Error Code

None.

See Also

fdim, fmax

8.13.24 fmod, fmodf, fmodl - floating-point remainder value function

C Language Interface

#include <math.h>

  double fmod(double x, double y);
  float fmodf(float x, float y);

 long double fmodl(long double x, long double y);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 174



Description

These functions shall return the floating-point remainder of the division of x by y.

Return Parameter

These functions shall return the value x-i*y, for some integer i such that, if y is non-zero, the 
result has the same sign as x and magnitude less than the magnitude of y.
If the correct value would cause underflow, and is not representable, 0.0 shall be returned.
If x or y is NaN, a NaN shall be returned.
If y is zero, a NaN shall be returned.
If x is infinite, a NaN shall be returned.
If x is +/-0 and y is not zero, +/-0 shall be returned.
If x is not infinite and y is +/-Inf, x shall be returned.

Error Code

None.

See Also

isnan

8.13.25 frexp, frexpf, frexpl - extract mantissa and exponent from a double precision number

C Language Interface

#include <math.h>

  double frexp(double num, int *exp);
  float frexpf(float num, int *exp);

 long double frexpl(long double num, int *exp);

Description

These functions shall break a floating-point number num into a normalized fraction and an integral 
power of 2. The integer exponent shall be stored in the int object pointed to by exp.

Return Parameter

For finite arguments, these functions shall return the value x, such that x has a magnitude in the 
interval [1/2,1) or 0, and num equals x times 2 raised to the power *exp.
If num is NaN, a NaN shall be returned, and the value of *exp is unspecified.
If num is +/-0, +/-0 shall be returned, and the value of *exp shall be 0.
If num is +/-Inf, num shall be returned, and the value of *exp is unspecified. 

Error Code

None.

See Also

ldexp, modf

8.13.26 hypot, hypotf, hypotl - Euclidean distance function

C Language Interface

#include <math.h>

  double hypot(double x, double y);
  float hypotf(float x, float y);

 long double hypotl(long double x, long double y);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 175



Description

These functions shall compute the value of the square root of x*x + y*y without undue overflow or 
underflow.

Return Parameter

Upon successful completion, these functions shall return the length of the hypotenuse of a 
right-angled triangle with sides of length x and y.
If the correct value would cause overflow, hypot(), hypotf(), and hypotl() shall return the value of 
the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.
If x or y is +/-Inf, +Inf shall be returned (even if one of x or y is NaN).
If x or y is NaN, and the other is not +/-Inf, a NaN shall be returned.

Error Code

None.

See Also

atan2, sqrt

8.13.27 ilogb, ilogbf, ilogbl - return an unbiased exponent

C Language Interface

#include <math.h>

  int ilogb(double x);
  int ilogbf(float x);
  int ilogbl(long double x);

Description

These functions shall return the exponent part of their argument x as a signed integer value.

Return Parameter

Upon successful completion, these functions shall return the exponent part of x as a signed integer 
value. 
If x is 0, the value FP_ILOGB0 shall be returned.
If x is +/-Inf, the value INT_MAX shall be returned.
If x is a NaN, the value FP_ILOGBNAN shall be returned.
If the correct value is greater than INT_MAX, INT_MAX shall be returned.
If the correct value is less than INT_MIN, INT_MIN shall be returned. 

Error Code

None.

See Also

logb, scalbln

8.13.28 j0, j1, jn - Bessel functions of the first kind

C Language Interface

#include <math.h>

  double j0(double x);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 176



  double j1(double x);
  double jn(int n, double x);

Description

The j0(), j1(), and jn() functions shall compute Bessel functions of x of the first kind of orders 0, 
1, and n, respectively.

Return Parameter

Upon successful completion, these functions shall return the relevant Bessel value of x of the first 
kind.
If the x argument is too large in magnitude, or the correct result would cause underflow, 0 shall be 
returned.
If x is NaN, a NaN shall be returned.

Error Code

None.

See Also

y0

8.13.29 ldexp, ldexpf, ldexpl - load exponent of a floating-point number

C Language Interface

#include <math.h>

  double ldexp(double x, int exp);
  float ldexpf(float x, int exp);

 long double ldexpl(long double x, int exp);

Description

These functions shall compute the quantity x * 2^exp ('^' represents the power).

Return Parameter

Upon successful completion, these functions shall return x multiplied by 2, raised to the power exp.
If these functions would cause overflow, ldexp(), ldexpf(), and ldexpl() shall return +/-HUGE_VAL, 
+/-HUGE_VALF, and +/-HUGE_VALL (according to the sign of x), respectively.
If the correct value would cause underflow, and is not representable, 0.0 shall be returned.
If x is NaN, a NaN shall be returned.
If x is +/-0 or +/-Inf, x shall be returned.
If exp is 0, x shall be returned.

Error Code

None.
frexp(), isnan()

8.13.30 llrint, llrintf, llrintl - round to the nearest integer value using current rounding direction

C Language Interface

#include <math.h>

 long long llrint(double x);
 long long llrintf(float x);
 long long llrintl(long double x);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 177



Description

These functions shall round their argument to the nearest integer value, rounding according to the 
current rounding direction.

Return Parameter

Upon successful completion, these functions shall return the rounded integer value.
If the correct value is positive and too large to represent as a long long value, an unspecified value
shall be returned.
If the correct value is negative and too large to represent as a long long value, an unspecified value
shall be returned.
If x is NaN, an unspecified value is returned.
If x is +Inf, an unspecified value is returned.
If x is -Inf, an unspecified value is returned.

Error Code

None.

See Also

lrint

8.13.31 llround, llroundr, llroundl - round to nearest integer value

C Language Interface

#include <math.h>

 long long llround(double x);
 long long llroundf(float x);
 long long llroundl(long double x);

Description

These functions shall round their argument to the nearest integer value, rounding halfway cases away 
from zero, regardless of the current rounding direction.

Return Parameter

Upon successful completion, these functions shall return the rounded integer value.
If the correct value is positive and too large to represent as a long long value, an unspecified value
shall be returned. 
If the correct value is negative and too large to represent as a long long value, an unspecified value
shall be returned.
If x is NaN, an unspecified value is returned.
If x is +Inf, an unspecified value is returned.
If x is -Inf, an unspecified value is returned.

Error Code

None.

See Also

lround

8.13.32 log, logf, logl - natural logarithm function

C Language Interface

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 178



#include <math.h>

  double log(double x);
  float logf(float x);

 long double logl(long double x);

Description

These functions shall compute the natural logarithm of their argument x, loge(x).

Return Parameter

Upon successful completion, these functions shall return the natural logarithm of x.
If x is +/-0, log(), logf(), and logl() shall return -HUGE_VAL, -HUGE_VALF, and -HUGE_VALL, 
respectively.
For finite values of x that are less than 0, or if x is -Inf, a NaN shall be returned.
If x is NaN, a NaN shall be returned.
If x is 1, +0 shall be returned.
If x is +Inf, x shall be returned.

Error Code

None.

See Also

exp, log10, log1p

8.13.33 log10, log10f, log10l - base-10 logarithm function

C Language Interface

#include <math.h>

  double log10(double x);
  float log10f(float x);

 long double log10l(long double x);

Description

These functions shall compute the base-10 logarithm of their argument x, log10(x).

Return Parameter

Upon successful completion, these functions shall return the base-10 logarithm of x.
If x is +/-0, log10(), log10f(), and log10l() shall return -HUGE_VAL, -HUGE_VALF, and -HUGE_VALL, 
respectively.
For finite values of x that are less than 0, or if x is -Inf, a NaN shall be returned.
If x is NaN, a NaN shall be returned.
If x is 1, +0 shall be returned.
If x is +Inf, +Inf shall be returned.

Error Code

None.

See Also

log, pow

8.13.34 log1p, log1pf, log1pl - compute a natural logarithm

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 179



C Language Interface

#include <math.h>

  double log1p(double x);
  float log1pf(float x);

 long double log1pl(long double x);

Description

These functions shall compute log(1.0 + x).

Return Parameter

Upon successful completion, these functions shall return the natural logarithm of 1.0 + x.
If x is -1, log1p(), log1pf(), and log1pl() shall return -HUGE_VAL, -HUGE_VALF, and -HUGE_VALL, 
respectively.
For finite values of x that are less than -1, or if x is -Inf, a NaN shall be returned.
If x is NaN, a NaN shall be returned.
If x is +/-0, or +Inf, x shall be returned.

Error Code

None.

See Also

log

8.13.35 log2, log2f, log2l - compute base-2 logarithm functions

C Language Interface

#include <math.h>

  double log2(double x);
  float log2f(float x);

 long double log2l(long double x);

Description

These functions shall compute the base-2 logarithm of their argument x, log2(x).

Return Parameter

Upon successful completion, these functions shall return the base-2 logarithm of x.
If x is +/-0, log2(), log2f(), and log2l() shall return -HUGE_VAL, -HUGE_VALF, and -HUGE_VALL, 
respectively.
For finite values of x that are less than 0, or if x is -Inf, a NaN shall be returned.
If x is NaN, a NaN shall be returned.
If x is 1, +0 shall be returned.
If x is +Inf, x shall be returned. 

Error Code

None.

See Also

log

8.13.36 logb, lobf, lobl - radix-independent exponent

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 180



C Language Interface

#include <math.h>

  double logb(double x);
  float logbf(float x);

 long double logbl(long double x);

Description

These functions shall compute the exponent of x, which is the integral part of logr |x|, as a signed 
floating-point value, for non-zero x, where r is the radix of the machine's floating-point arithmetic,
which is the value of FLT_RADIX defined in the <float.h> header.

If x is subnormal it is treated as though it were normalized; thus for finite positive x:

1 <= x * FLT_RADIX-logb(x) < FLT_RADIX

Return Parameter

Upon successful completion, these functions shall return the exponent of x.

If x is +/-0, logb(), logbf(), and logbl() shall return -HUGE_VAL, -HUGE_VALF, and -HUGE_VALL, 
respectively.
If x is NaN, a NaN shall be returned.
If x is +/-Inf, +Inf shall be returned. 

Error Code

None.

See Also

ilogb, scalbln

8.13.37 lrint, lrintf, lrintl - round to nearest integer value using current rounding direction

C Language Interface

#include <math.h>

  long lrint(double x);
  long lrintf(float x);
  long lrintl(long double x);

Description

These functions shall round their argument to the nearest integer value, rounding according to the 
current rounding direction.

Return Parameter

Upon successful completion, these functions shall return the rounded integer value.
If x is NaN, an unspecified value is returned.
If x is +Inf, an unspecified value is returned.
If x is -Inf, an unspecified value is returned.
If the correct value is positive and too large to represent as a long, an unspecified value shall be 
returned.
If the correct value is negative and too large to represent as a long, an unspecified value shall be 
returned.

Error Code

None.

See Also

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 181



llrint

8.13.38 lround, lroundr, lroundl - round to nearest integer value

C Language Interface

#include <math.h>

  long lround(double x);
  long lroundf(float x);
  long lroundl(long double x);

Description

These functions shall round their argument to the nearest integer value, rounding halfway cases away 
from zero, regardless of the current rounding direction.

Return Parameter

Upon successful completion, these functions shall return the rounded integer value.
If x is NaN, an unspecified value is returned.
If x is +Inf, an unspecified value is returned.
If x is -Inf, an unspecified value is returned.
If the correct value is positive and too large to represent as a long, an unspecified value shall be 
returned.
If the correct value is negative and too large to represent as a long, an unspecified value shall be 
returned.

Error Code

None.

8.13.39 modf, modff, modfl - decompose a floating-point number

C Language Interface

#include <math.h>

  double modf(double x, double *iptr);
  float modff(float x, float *iptr);

 long double modfl(long double x, long double *iptr);

Description

These functions shall break the argument x into integral and fractional parts, each of which has the 
same sign as the argument. It stores the integral part as a double (for the modf() function), a float 
(for the modff() function), or a long double (for the modfl() function), in the object pointed to by 
iptr.

Return Parameter

Upon successful completion, these functions shall return the signed fractional part of x.
If x is NaN, a NaN shall be returned, and *iptr shall be set to a NaN.
If x is +/-Inf, +/-0 shall be returned, and *iptr shall be set to +/-Inf. 

Error Code

None.

See Also

llround

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 182



8.13.40 nan, nanf, nanl - return quiet NaN

C Language Interface

#include <math.h>

  double nan(const char *tagp);
  float nanf(const char *tagp);

 long double nanl(const char *tagp);

Description

The function call nan("n-char-sequence") shall be equivalent to:

 strtod("NAN(n-char-sequence)", (char **) NULL);

The function call nan("") shall be equivalent to:

 strtod("NAN()", (char **) NULL)

If tagp does not point to an n- char sequence or an empty string, the function call shall be 
equivalent to:

 strtod("NAN", (char **) NULL)

Function calls to nanf() and nanl() are equivalent to the corresponding function calls to strtof() and
strtold().

The n-char-sequence information is stored in the available area in the binary representation of NaN 
and used to describe the reason why that NaN has been generated.

Return Parameter

These functions shall return a quiet NaN, if available, with content indicated through tagp.

T2EX supports a quiet NaN, but if the implementation does not support quiet NaNs, these functions 
shall return zero.

Error Code

None.

See Also

strtod

8.13.41 nearbyint, nearbyintf, nearbyintl - floating-point rounding functions

C Language Interface

#include <math.h>

  double nearbyint(double x);
  float nearbyintf(float x);

 long double nearbyintl(long double x);

Description

These functions shall round their argument to an integer value in floating-point format, using the 
current rounding direction and without raising the inexact floating-point exception.

Return Parameter

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 183



Upon successful completion, these functions shall return the rounded integer value.
If x is NaN, a NaN shall be returned.
If x is +/-0, +/-0 shall be returned.
If x is +/-Inf, x shall be returned.

Error Code

None.

8.13.42 nextfter, nextafterf, nextafterl, nexttoward, nexttowordf, nexttowordl - next representable 
floating-point number

C Language Interface

#include <math.h>

  double nextafter(double x, double y);
  float nextafterf(float x, float y);

 long double nextafterl(long double x, long double y);
  double nexttoward(double x, long double y);

  float nexttowardf(float x, long double y);
 long double nexttowardl(long double x, long double y);

Description

The nextafter(), nextafterf(), and nextafterl() functions shall compute the next representable 
floating-point value following x in the direction of y. Thus, if y is less than x, nextafter() shall 
return the largest representable floating-point number less than x. The nextafter(), nextafterf(), and
nextafterl() functions shall return y if x equals y.

The nexttoward(), nexttowardf(), and nexttowardl() functions shall be equivalent to the corresponding 
nextafter() functions, except that the second parameter shall have type long double and the functions 
shall return y converted to the type of the function if x equals y.

Return Parameter

Upon successful completion, these functions shall return the next representable floating-point value 
following x in the direction of y.
If x== y, y (of the type x) shall be returned.

If x is finite and the correct function value would overflow, +/-HUGE_VAL, +/-HUGE_VALF, and 
+/-HUGE_VALL (with the same sign as x) shall be returned as appropriate for the return type of the 
function.
If x or y is NaN, a NaN shall be returned.

Error Code

None.

8.13.43 pow, powf, powl - power function

C Language Interface

#include <math.h>

  double pow(double x, double y);
  float powf(float x, float y);

 long double powl(long double x, long double y);

Description

These functions shall compute the value of x raised to the power y. If x is negative, the application 
shall ensure that y is an integer value.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 184



Return Parameter

Upon successful completion, these functions shall return the value of x raised to the power y.

For finite values of x < 0, and finite non-integer values of y, a NaN shall be returned.
If the correct value would cause overflow, pow(), powf(), and powl() shall return +/-HUGE_VAL, 
+/-HUGE_VALF, and +/-HUGE_VALL, respectively, with the same sign as the correct value of the function.
If the correct value would cause underflow, and is not representable, 0.0 shall be returned.

For any value of y (including NaN), if x is +1, 1.0 shall be returned.
For any value of x (including NaN), if y is +/-0, 1.0 shall be returned.
For any odd integer value of y > 0, if x is +/-0, +/-0 shall be returned.
For y > 0 and not an odd integer, if x is +/-0, +0 shall be returned.
If x is -1, and y is +/-Inf, 1.0 shall be returned.
For |x| < 1, if y is -Inf, +Inf shall be returned.
For |x| > 1, if y is -Inf, +0 shall be returned.
For |x| < 1, if y is +Inf, +0 shall be returned.
For |x| > 1, if y is +Inf, +Inf shall be returned.
For y an odd integer < 0, if x is -Inf, -0 shall be returned.
For y < 0 and not an odd integer, if x is -Inf, +0 shall be returned.
For y an odd integer > 0, if x is -Inf, -Inf shall be returned.
For y > 0 and not an odd integer, if x is -Inf, +Inf shall be returned.
For y < 0, if x is +Inf, +0 shall be returned.
For y > 0, if x is +Inf, +Inf shall be returned.

Error Code

None.

See Also

exp, isnan

8.13.44 remainder, remainderf, remainderl - remainder function

C Language Interface

#include <math.h>

  double remainder(double x, double y);
  float remainderf(float x, float y);

 long double remainderl(long double x, long double y);

Description

These functions shall return the floating-point remainder r = x - n * y when y is non-zero.
The value n is the integral value nearest the exact value x / y. When |n - x / y| = 1/2, the value n 
is chosen to be even.

The behavior of remainder() shall be independent of the rounding mode.

Return Parameter

Upon successful completion, these functions shall return the floating-point remainder r = x- n * y 
when y is non-zero.
On systems that do not support the IEC 60559 Floating-Point option, if y is zero, zero is returned.

Error Code

None.

See Also

abs, div, ldiv

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 185



8.13.45 remquo, remquof, remquol - remainder functions

C Language Interface

#include <math.h>

  double remquo(double x, double y, int *quo);
  float remquof(float x, float y, int *quo);

 long double remquol(long double x, long double y, int *quo);

Description

The remquo(), remquof(), and remquol() functions shall compute the same remainder as the remainder(), 
remainderf(), and remainderl() functions, respectively. In the object pointed to by quo, they store a 
value whose sign is the sign of x / y and whose magnitude is congruent modulo 2^n ('^' represents the 
power) to the magnitude of the integral quotient of x / y, where n is an implementation-defined 
integer greater than or equal to 3.
In the T2EX reference implementation, n = 31.
If y is zero, the value stored in the object pointed to by quo is unspecified.

Return Parameter

These functions shall return x REM y.

On systems that do not support the IEC 60559 Floating-Point option, if y is zero, zero is returned.

Error Code

None.

See Also

remainder

8.13.46 rint, rintf, rintl - round-to-nearest integral value

C Language Interface

#include <math.h>

  double rint(double x);
  float rintf(float x);

 long double rintl(long double x);

Description

These functions shall return the integral value (represented as a double) nearest x in the direction 
of the current rounding mode.

If the current rounding mode rounds toward negative infinity, then rint() shall be equivalent to 
floor. 
If the current rounding mode rounds toward positive infinity, then rint() shall be equivalent to 
ceil._RETURNV
Upon successful completion, these functions shall return the integer (represented as a double 
precision number) nearest x in the direction of the current rounding mode.
If x is NaN, a NaN shall be returned.
If x is +/-0 or +/-Inf, x shall be returned.
If the correct value would cause overflow, rint(), rintf(), and rintl() shall return the value of the 
macro +/-HUGE_VAL, +/-HUGE_VALF, and +/-HUGE_VALL (with the same sign as x), respectively.

Error Code

None.

See Also

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 186



abs, ceil, floor, nearbyint

8.13.47 round, roundf, roundl - round to the nearest integer value in a floating-point format

C Language Interface

#include <math.h>

  double round(double x);
  float roundf(float x);

 long double roundl(long double x);

Description

These functions shall round their argument to the nearest integer value in floating-point format, 
rounding halfway cases away from zero, regardless of the current rounding direction.

Return Parameter

Upon successful completion, these functions shall return the rounded integer value.
If x is NaN, a NaN shall be returned.
If x is +/-0 or +/-Inf, x shall be returned.
If the correct value would cause overflow, round(), roundf(), and roundl() shall return the value of 
the macro +/-HUGE_VAL, +/-HUGE_VALF, and +/-HUGE_VALL (with the same sign as x), respectively.

Error Code

None.

8.13.48 scanbln, scanblnf, scanblnl, scanbn, scanbnf, scanbnl - compute exponent using FLT_RADIX

C Language Interface

#include <math.h>

  double scalbln(double x, long n);
  float scalblnf(float x, long n);

 long double scalblnl(long double x, long n);
  double scalbn(double x, int n);

  float scalbnf(float x, int n);
 long double scalbnl(long double x, int n);

Description

These functions shall compute x * FLT_RADIX^n efficiently, not normally by computing FLT_RADIX^n 
explicitly ('^' represents the power).

Return Parameter

Upon successful completion, these functions shall return x * FLT_RADIX^n.

If the result would cause overflow, these functions shall return +/-HUGE_VAL, +/-HUGE_VALF, and 
+/-HUGE_VALL (according to the sign of x) as appropriate for the return type of the function.
If the correct value would cause underflow, and is not representable, 0.0 shall be returned.
If x is NaN, a NaN shall be returned.
If x is +/-0 or +/-Inf, x shall be returned.
If n is 0, x shall be returned.

Error Code

None.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 187



8.13.49 sin, sinf, sinl - sine function

C Language Interface

#include <math.h>

  double sin(double x);
  float sinf(float x);

 long double sinl(long double x);

Description

These functions shall compute the sine of their argument x, measured in radians.

Return Parameter

Upon successful completion, these functions shall return the sine of x.
If x is NaN, a NaN shall be returned.
If x is +/-0, x shall be returned.
If x is subnormal, a range error may occur and x should be returned.
If x is +/-Inf, a NaN shall be returned. 

Error Code

None.

See Also

cos, tan, asin

8.13.50 sinh, sinhf, sinhl - hyperbolic sine functions

C Language Interface

#include <math.h>

  double sinh(double x);
  float sinhf(float x);

 long double sinhl(long double x);

Description

These functions shall compute the hyperbolic sine of their argument x.

Return Parameter

Upon successful completion, these functions shall return the hyperbolic sine of x.
If the result would cause an overflow, +/-HUGE_VAL, +/-HUGE_VALF, and +/-HUGE_VALL (with the same sign
as x) shall be returned as appropriate for the type of the function.
If x is NaN, a NaN shall be returned.
If x is +/-0 or +/-Inf, x shall be returned.
If x is subnormal, a range error may occur and x should be returned. 

Error Code

None.

See Also

asinh, cosh, tanh

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 188



8.13.51 sqrt, sqrtf, sqrtl - square root function

C Language Interface

#include <math.h>

  double sqrt(double x);
  float sqrtf(float x);

 long double sqrtl(long double x);

Description

These functions shall compute the square root of their argument x.

Return Parameter

Upon successful completion, these functions shall return the square root of x.
For finite values of x < -0, a NaN shall be returned.
If x is NaN, a NaN shall be returned.
If x is +/-0 or +Inf, x shall be returned.
If x is -Inf, a NaN shall be returned. 

Error Code

None.

8.13.52 tan, tanf, tanl - tangent function

C Language Interface

#include <math.h>

  double tan(double x);
  float tanf(float x);

 long double tanl(long double x);

Description

These functions shall compute the tangent of their argument x, measured in radians.

Return Parameter

Upon successful completion, these functions shall return the tangent of x.
If the correct value would cause underflow, and is not representable, 0.0 shall be returned.
If x is NaN, a NaN shall be returned.
If x is +/-0, x shall be returned.
If x is subnormal, x should be returned.
If x is +/-Inf, a NaN shall be returned.
If the correct value would cause overflow, tan(), tanf(), and tanl() shall return +/-HUGE_VAL, 
+/-HUGE_VALF, and +/-HUGE_VALL, respectively, with the same sign as the correct value of the function.

Error Code

None.

See Also

atan, sin, cos

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 189



8.13.53 tanh, tanhf, tanhl - hyperbolic tangent functions

C Language Interface

#include <math.h>

  double tanh(double x);
  float tanhf(float x);

 long double tanhl(long double x);

Description

These functions shall compute the hyperbolic tangent of their argument x.

Return Parameter

Upon successful completion, these functions shall return the hyperbolic tangent of x.
If x is NaN, a NaN shall be returned.
If x is +/-0, x shall be returned.
If x is +/-Inf, +/-1 shall be returned.
If x is subnormal, x should be returned.

Error Code

None.

See Also

atanh, tan

8.13.54 tgamma, tgammaf, tgammal - compute gamma() function

C Language Interface

#include <math.h>

  double tgamma(double x);
  float tgammaf(float x);

 long double tgammal(long double x);

Description

These functions shall compute the gamma() function of x.

Return Parameter

Upon successful completion, these functions shall return Gamma(x).
If x is a negative integer, a NaN shall be returned. On systems that support the IEC 60559 
Floating-Point option, a NaN shall be returned.
If x is +/-0, tgamma(), tgammaf(), and tgammal() shall return +/-HUGE_VAL, +/-HUGE_VALF, and 
+/-HUGE_VALL, respectively.
If the correct value would cause overflow, tgamma(), tgammaf(), and tgammal() shall return 
+/-HUGE_VAL, +/-HUGE_VALF, or +/-HUGE_VALL, respectively, with the same sign as the correct value of 
the function.
If x is NaN, a NaN shall be returned.
If x is +Inf, x shall be returned.
If x is -Inf, a NaN shall be returned.

Error Code

None.

See Also

lgamma_r

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 190



8.13.55 trunc, truncf, truncl - round to truncated integer value

C Language Interface

#include <math.h>

  double trunc(double x);
  float truncf(float x);

 long double truncl(long double x);

Description

These functions shall round their argument to the integer value, in floating format, nearest to but no
larger in magnitude than the argument.

Return Parameter

Upon successful completion, these functions shall return the truncated integer value.
If x is NaN, a NaN shall be returned.
If x is +/-0 or +/-Inf, x shall be returned.

Error Code

None.

8.13.56 y0, y1, yn - Bessel functions of the second kind

C Language Interface

#include <math.h>

  double y0(double x);
  double y1(double x);
  double yn(int n, double x);

Description

The y0(), y1(), and yn() functions shall compute Bessel functions of x of the second kind of orders 0,
1, and n, respectively.

Return Parameter

Upon successful completion, these functions shall return the relevant Bessel value of x of the second 
kind.
If x is NaN, NaN shall be returned.
If the x argument to these functions is negative, -HUGE_VAL or NaN shall be returned.
If x is 0.0, -HUGE_VAL shall be returned.
If the correct result would cause underflow, 0.0 shall be returned.
If the correct result would cause overflow, -HUGE_VAL or 0.0 shall be returned.

Error Code

None.

See Also

j0

8.13.57 lgamma_r, lgammaf_r, lgammal_r - log gamma function

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 191



C Language Interface

#include <math.h>

  double lgamma_r(double x, int* signp);
  float lgammaf_r(float x, int* signp);

 long double lgammal_r(long double x, int* signp);

Description

These functions shall compute the log( |gamma(x)| ).
The argument x need not be a non-positive integer ( is defined over the reals, except the non-positive
integers).

Return Parameter

Upon successful completion, these functions shall return the logarithmic gamma of x.
The sign of gamma(x) is stored in the object pointed to by signp.

If x is a non-positive integer, lgamma_r(), lgammaf_r(), and lgammal_r() shall return +HUGE_VAL, 
+HUGE_VALF, and +HUGE_VALL, respectively.
If the correct value would cause overflow, lgamma_r(), lgammaf_r(), and lgammal_r() shall return 
+/-HUGE_VAL, +/-HUGE_VALF, and +/-HUGE_VALL (having the same sign as the correct value), respectively.
If x is NaN, a NaN shall be returned.
If x is 1 or 2, +0 shall be returned.
If x is +/-Inf, +Inf shall be returned. 
ERROR
None.

See Also

exp

Additional Notes

These functions are thread-safe replacement of lgamma, lgammaf, and lgammal in the standard C library.
The static variable "extern int signum" does not exist in T2EX.
The sign obtained for signum is stored in the area specified by signp of each function instead.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 192



8.14 netinet/in.h

The header netinet/in.h defines the following network communication-related macros, structures, and 
function prototype declarations.

Type

in_port_t
  Type used for port numbers of network communication.
  Equivalent to uint16_t defined in stdint.h.

in_addr_t
  Type representing the IPv4 address of network communication.
  Equivalent to uint32_t defined in stdint.h.

struct in_addr
  Structure representing the network communication address at the higher abstraction 
level than in_addr_t.
  This structure needs to include at least the following members.
  
   in_addr_t s_addr

struct sockaddr_in
  Structure representing the socket address for the network communication.
  This structure needs to include at least the following members.
  
     sa_family_t sin_family Address family (AF_INET)
     in_port_t sin_port Port number
     struct in_addr sin_addr IP address

  The sin_port and sin_addr need to be stored in network byte order.

The following symbol constants are defined for use as level values of the getsockopt() and 
setsockopt() functions.

IPPROTO_IP
  Internet protocol

IPPROTO_ICMP
  Control message protocol

IPPROTO_RAW
  Raw IP packet protocol

IPPROTO_TCP
  TCP protocol

IPPROTO_UDP
  UDP protocol

The following symbol constants are defined for use asdestination addresses for the so_connect(), 
so_sendmsg(), and sendto() functions.

INADDR_ANY
  IPv4 local host address

INADDR_BROADCAST
  IPv4 broadcast address

The following symbol constant is defined as the size for storing the IPv4 address as a string.

INET_ADDRSTRLEN
     16 Length of IPv4 address in a string format 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 193



8.15 search.h

The header search.h defines the following types and function prototype declarations for searching 
through various tables.

Types

ENTRY type
  The ENTRY type for structure entry which shall include the following members:

       char *key Search key string ending with a null character
       void *data Data corresponding to key

ACTION type
  This value is for specifying the search operation and is defined as follows.

  enum { 
      FIND, /* Performs searching only */
      ENTER /* Inserted if not found */
  } ACTION;

VISIT type
  This value is for indicating the binary search state and is defined as follows.
  
  enum { 
     preorder, /* First visit to the node */
     postorder, /* Second visit to the node */
     endorder, /* Third visit to the node */
      leaf /* This is not a node but a leaf */
  } VISIT;

hsearch_data
  Structure representing a hash table.
The contents are implementation-dependent.
  This is defined as follows in the T2EX reference implementation.
  
  struct hsearch_data {
    void *htable;
    int htablesize;
  };

Functions

8.15.1 hcreate_r, hdestroy_r, hsearch_r - Hash table management

C Language Interface

#include <search.h>

 int hcreate_r(size_t nel, struct hsearch_data *htab);
 void hdestroy_r(struct hsearch_data* htab);

 int hsearch_r(ENTRY item, ACTION action, ENTRY **result, struct hsearch_data *htab);

Description

These functions manage the hash table.

The hcreate_r() allocates a sufficient area for the table and initializes the data htab for managing 
the hash table.
The contents of htab need to be initialized to 0 before calling hcreate_r() first time.
The application needs to guarantee that hcreate_r() has been called before using hsearch_r().
The nel is the estimated maximum number of entries included in the table.
This value may be modified to a larger value by the algorithm in order to get a specific, 
mathematically-convenient situation.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 194



The hdestroy_r() releases the area which was created by hcreate_r() and allocated to the hash table 
htab.

Regarding the hash table specified by htab, the hsearch_r() searches for an item having the same key 
value as item.key. If the item is found, the hsearch_r() stores the pointer to that item in the area 
pointed to by result.
The item.data is the pointer to the data associated with item.key.
The strcmp() is used to compare keys.

If no item is found, the following behavior specified by ACTION is executed.
 - ENTER instructs to insert a copy of the item into an appropriate location of the table.
 - FIND instructs not to operate any entries.

Return Parameter

If successful, hcreate_r() returns a non-zero value.
Otherwise, it returns 0.

If successful, hsearch_r() returns a non-zero value.
Zero (0) is returned if the action is ENTER and the hash table is full, or the action is FIND and no 
item is found.

The hdestroy_r() does not return a value.

Error Code

None

See Also

bsearch, lsearch, tsearch

8.15.2 insque, remque - insert or remove an element in a queue

C Language Interface

#include <search.h>

 void insque(void *element, void *prev);
 void remque(void *element);

Description

The insque() and remque() functions shall manipulate queues built from doubly-linked lists. The queue 
can be either circular or linear. An application using insque() or remque() shall ensure it defines a 
structure in which the first two members of the structure are pointers to the same type of structure, 
and any further members are application-specific. The first member of the structure is a forward 
pointer to the next entry in the queue. The second member is a backward pointer to the previous entry 
in the queue. If the queue is linear, the queue is terminated with null pointers. The names of the 
structure and of the pointer members are not subject to any special restriction.

The insque() function shall insert the element pointed to by element into a queue immediately after 
the element pointed to by prev.

The remque() function shall remove the element pointed to by element from a queue.

If the queue is to be used as a linear list, invoking insque(&element, NULL), where element is the 
initial element of the queue, shall initialize the forward and backward pointers of element to null 
pointers.

If the queue is to be used as a circular list, the application shall ensure it initializes the forward
pointer and the backward pointer of the initial element of the queue to the element's own address.

Return Parameter

The insque() and remque() functions do not return a value.

Error Code

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 195



None.

8.15.3 lfind, lsearch - linear search and update

C Language Interface

#include <search.h>

 void *lfind(const void *key, const void *base, size_t *nelp, size_t width, int (*compar)(const void
*, const void *));

 void *lsearch(const void *key, void *base, size_t *nelp, size_t width, int (*compar)(const void *, 
const void *));

Description

The lsearch() function shall linearly search the table and return a pointer into the table for the 
matching entry. If the entry does not occur, it shall be added at the end of the table. The key 
argument points to the entry to be sought in the table. The base argument points to the first element 
in the table. The width argument is the size of an element in bytes. The nelp argument points to an 
integer containing the current number of elements in the table. The integer to which nelp points shall
be incremented if the entry is added to the table. 

The compar argument points to a comparison function which the application shall supply (for example, 
strcmp()). It is called with two arguments that point to the elements being compared. The application 
shall ensure that the function returns 0 if the elements are equal, and non-zero otherwise.

The lfind() function shall be equivalent to lsearch(), except that if the entry is not found, it is 
not added to the table. 

Return Parameter

If the searched for entry is found, both lsearch() and lfind() shall return a pointer to it. 
Otherwise, lfind() shall return a null pointer and lsearch() shall return a pointer to the newly added
element.
Both functions shall return a null pointer in case of error.

Error Code

None.

See Also

bsearch, hsearch_r, tsearch

8.15.4 tdelete, tfind, tsearch, twalk - manage a binary search tree

C Language Interface

#include <search.h>

void   *tdelete(const void *key, void **rootp, int(*compar)(const void *, const void *));
void   *tfind(const void *key, void *const *rootp, int(*compar)(const void *, const void *));
void   *tsearch(const void *key, void **rootp, int(*compar)(const void *, const void *));

 void twalk(const void *root, void (*action)(const void *nodep, VISIT which, int depth));

Description

The tdelete(), tfind(), tsearch(), and twalk() functions manipulate binary search trees. Comparisons 
are made with a user-supplied routine, the address of which is passed as the compar argument. This 
routine is called with two arguments, which are the pointers to the elements being compared. The 
application shall ensure that the user-supplied routine returns an integer less than, equal to, or 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 196



greater than 0, according to whether the first argument is to be considered less than, equal to, or 
greater than the second argument.

The tsearch() function shall build and access the tree. The key argument is a pointer to an element to
be accessed or stored. If there is a node in the tree whose element is equal to the value pointed to 
by key, a pointer to this found node shall be returned. 
Otherwise, the value pointed to by key shall be inserted (that is, a new node is created and the value
of key is copied to this node), and a pointer to this node returned. Only pointers are copied, so the 
application shall ensure that the calling routine stores the data. The rootp argument points to a 
variable that points to the root node of the tree. A null pointer value for the variable pointed to by
rootp denotes an empty tree; in this case, the variable shall be set to point to the node which shall 
be at the root of the new tree.

Like tsearch(), tfind() shall search for a node in the tree, returning a pointer to it if found. 
However, if it is not found, tfind() shall return a null pointer. The arguments for tfind() are the 
same as for tsearch().

The tdelete() function shall delete a node from a binary search tree. The arguments are the same as 
for tsearch(). The variable pointed to by rootp shall be changed if the deleted node was the root of 
the tree. The tdelete() function shall return a pointer to the parent of the deleted node, or an 
unspecified non-null pointer if the deleted node was the root node, or a null pointer if the node is 
not found.

If tsearch() adds an element to a tree, or tdelete() successfully deletes an element from a tree, the 
concurrent use of that tree in another thread, or use of pointers produced by a previous call to 
tfind() or tsearch(), produces undefined results.

The twalk() function shall traverse a binary search tree. The root argument is a pointer to the root 
node of the tree to be traversed. (Any node in a tree may be used as the root for a walk below that 
node.)

The argument action is the name of a routine to be invoked at each node. This routine is, in turn, 
called with three arguments. The first argument shall be the address of the node being visited. The 
structure pointed to by this argument is unspecified and shall not be modified by the application, but
it shall be possible to cast a pointer-to-node into a pointer-to-pointer-to-element to access the 
element stored in the node. 

The second argument nodep shall be a value from an enumeration data type:

 typedef enum { preorder, postorder, endorder, leaf } VISIT;

(defined in <search.h>), depending on whether this is the first, second, or third time that the node 
is visited (during a depth-first, left-to-right traversal of the tree), or whether the node is a leaf.

The third argument depth shall be the level of the node in the tree, with the root being level 0.

If the calling function alters the pointer to the root, the result is undefined.

If the functions pointed to by action or compar (for any of these binary search functions) change the 
tree, the results are undefined.

These functions are thread-safe only as long as multiple threads do not access the same tree.

Return Parameter

If the node is found, both tsearch() and tfind() shall return a pointer to it. If not, tfind() shall 
return a null pointer, and tsearch() shall return a pointer to the inserted item.

A null pointer shall be returned by tsearch() if there is not enough space available to create a new 
node.

A null pointer shall be returned by tdelete(), tfind(), and tsearch() if rootp is a null pointer on 
entry.
The tdelete(), tfind(), and tsearch() return NULL if rootp is NULL.

The tdelete() function shall return a pointer to the parent of the deleted node, or an unspecified 
non-null pointer if the deleted node was the root node, or a null pointer if the node is not found.

The twalk() function shall not return a value.

Error Code

None.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 197



See Also

bsearch, hsearch_r, lsearch

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 198



8.16 stdarg.h

The header stdarg.h defines a set of macros that enables programmers to describe portable functions 
which accept variable argument lists.
If a function with variable number of arguments (e.g. printf()) is created without using the macros 
defined here, it may lose portability because the variable argument list may not be correctly 
referenced depending on the argument passing convention used on different systems.

Type

va_list
  The type that represents the argument list for the function with a variable number of 
arguments.

The following macros are defined.

void va_start(va_list ap, argN);
  The va_start() macro initializes ap used in the va_arg() and va_end() macros.
  Therefore, this must be called before va_arg() and va_end().
  The ap is the variable used for processing the argument list.
This is initialized by the va_start() macro.
  The argN is the argument immediately before the list of variable number arguments 
represented by "...".
  The va_start() macro must not be called for reinitializing its ap, without calling the
va_end() macro for ap.

type va_arg(va_list ap, type);
  The va_arg() macro returns a single argument which has a type specified by type from 
ap.
  when va_arg(ap, type) is called for the first time after the va_start(), argument 
following argN is returned.

  Every time the va_arg() macro is called, ap is updated. At the next call, the argument
after that is returned.
  The ap is the variable used for processing the argument list.
This needs to be initialized by the va_start() or va_copy() macro.
  The type specifies the data type of the argument to be taken out.
  The name of the type must show the type of a pointer to the object of that type by 
simply appending "*" at the end of the type name.

  If the next argument does not actually exist or the type is not compatible with the 
type of the next actual argument, the behavior shall be undefined except the following cases.
   - One type is a signed integer, the other is the corresponding unsigned integer, and 
the value can be represented in either of the types.
   - One type is a pointer to void and the other is a pointerto the character type.

void va_copy(va_list dest, va_list src);
  The va_copy() macro initializes dest as a copy of src.
  The va_start macro is applied to dest and then va_arg is applied in the same manner as
va_arg is applied to src until src becomes the current state.
  Do not simply assign dest = src;.

  Both the va_copy() and va_start() macros must not be called for reinitializing its 
dest, without calling the va_end() macro for dest.

void va_end(va_list ap);
  The va_end() macro is used for cleanup.
  This keeps ap illegal until it is reinitialized by calling va_start() or va_copy() 
macro again.
  Each call of the va_start() and va_copy() macros must correspond one-to-one with the 
call of the corresponding va_end() macro in the same function.
  The va_start() ... va_end() can be used in a nested-manner..

Sample usage:

void func1(int narg, ...)
{
  va_list ap;
   int i;

 va_start(ap, narg);
 for (i = 0; i < narg; i++) {

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 199



  xxx = va_arg(ap, type);
  ...
 }
 va_end(ap);
}

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 200



8.17 stdbool.h

The header stdbool.h defines the macro for handling the boolean type (logical type).

Macros

bool
  Expands to _Bool.

true
  Expands to the integer constant 1.

false
  Expands to the integer constant 0.

__bool_true_false_are_defined
  Expands to the integer constant 1.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 201



8.18 stddef.h

The header stddef.h defines the following commonly used constants, macros, and types.

Constants

NULL
  Null pointer constant. The macro shall expand to an integer constant expression 
  with the value 0 cast to type void *.

Macros

offsetof(type, member-designator)
  Integer constant expression of type size_t, the value of which is the offset in 
  bytes to the structure member (member-designator), from the beginning of its 
  structure (type).

Types

ptrdiff_t
  Signed integer type of the result of subtracting two pointers.

wchar_t
  Integer type whose range of values can represent distinct codes for all members of 
  the largest extended character set specified among the system locales.
  For instance, multi-byte characters are used in UTF-8 which represents the Unicode as 
a byte sequence. This type means the integer type capable of representing this maximum number of 
bytes.
  The null character shall have the code value zero.
  This is the type when each element in a character set (which may consist of multiple 
bytes in UTF-8) is used as a one-character integer character constant and is called "wide character 
type".

size_t
  Unsigned integer type of the result of the sizeof operator.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 202



8.19 stdint.h

The header stdint.h defines the types regarding integers with a specific width and macros for their 
limit values.

Integer Types

Exact-width integer types:

int8_t
int16_t
int32_t
int64_t
  The typedef name intN_t designates a signed integer type with width N, no padding 
  bits, and a two's-complement representation. Thus, int8_t denotes a signed integer 
  type with a width of exactly 8 bits.

uint8_t
uint16_t
uint32_t
uint64_t
  The typedef name uintN_t designates an unsigned integer type with width N. 
  Thus, uint32_t denotes an unsigned integer type with a width of exactly 32 bits.

Minimum-width integer types:

int_least8_t
int_least16_t
int_least32_t
int_least64_t
  The typedef name int_leastN_t designates a signed integer type with a width of 
  at least N, such that no signed integer type with lesser size has at least the 
  specified width. 

uint_least8_t
uint_least16_t
uint_least32_t
uint_least64_t
  The typedef name uint_leastN_t designates an unsigned integer type with a width of 
  at least N, such that no unsigned integer type with lesser size has at least the 
  specified width.

Fastest minimum-width integer types:

  Each of the following types designates an integer type that is usually fastest to 
  operate with among all integer types that have at least the specified width.

int_fast8_t
int_fast16_t
int_fast32_t
int_fast64_t
  The typedef name int_fastN_t designates the fastest signed integer type with 
  a width of at least N.

uint_fast8_t
uint_fast16_t
uint_fast32_t
uint_fast64_t
  The typedef name uint_fastN_t designates the fastest unsigned integer type with 
  a width of at least N.

Integer types capable of holding object pointers:

intptr_t
  This type designates a signed integer type with the property that any valid pointer 
  to void can be converted to this type, then converted back to a pointer to void, 
  and the result will compare equal to the original pointer.

uintptr_t
  This type designates an unsigned integer type with the property that any valid 
  pointer to void can be converted to this type, then converted back to a pointer to 
  void, and the result will compare equal to the original pointer.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 203



Greatest-width integer types:

intmax_t
  This type designates a signed integer type capable of representing any value of any 
  signed integer type.

uintmax_t
  This type designates an unsigned integer type capable of representing any value of 
  any unsigned integer type.

Macros

Limits of exact-width integer types:

INT8_MIN
INT16_MIN
INT32_MIN
INT64_MIN
  Minimum values of exact n-bit width signed integer types.
    -(2 ^ (n-1)) for INTn_MIN. ('^' represents the power.)

INT8_MAX
INT16_MAX
INT32_MAX
INT64_MAX
  Maximum values of exact n-bit width signed integer types.
    2 ^ (n-1) - 1 for INTn_MAX. ('^' represents the power.)

UINT8_MAX
UINT16_MAX
UINT32_MAX
UINT64_MAX
  Maximum values of exact n-bit width unsigned integer types.
    (2 ^ n) - 1 for UINTn_MAX. ('^' represents the power.)

Limits of minimum-width integer types:

INT_LEAST8_MIN
INT_LEAST16_MIN
INT_LEAST32_MIN
INT_LEAST64_MIN
  Minimum values of minimum n-bit width signed integer types.
    -(2 ^ (n-1)) for INT_LEASTn_MIN. ('^' represents the power.)

INT_LEAST8_MAX
INT_LEAST16_MAX
INT_LEAST32_MAX
INT_LEAST64_MAX
  Maximum values of minimum n-bit width signed integer types.
    2 ^ (n-1) - 1 for INT_LEASTn_MAX. ('^' represents the power.)

UINT_LEAST8_MAX
UINT_LEAST16_MAX
UINT_LEAST32_MAX
UINT_LEAST64_MAX
  Maximum values of minimum n-bit width unsigned integer types.
    (2 - n) - 1 for UINT_LEASTn_MAX. ('^' represents the power.)

Limits of fastest minimum-width integer types:

INT_FAST8_MIN
INT_FAST16_MIN
INT_FAST32_MIN
INT_FAST64_MIN
  Minimum values of fastest minimum n-bit width signed integer types:
    -(2 ^ (n-1)) for INT_FASTn_MIN. ('^' represents the power.)

INT_FAST8_MAX
INT_FAST16_MAX

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 204



INT_FAST32_MAX
INT_FAST64_MAX
  Maximum values of fastest minimum n-bit width signed integer types.
    (2 ^ (n-1)) - 1 for INT_FASTn_MAX. ('^' represents the power.)

UINT_FAST8_MAX
UINT_FAST16_MAX
UINT_FAST32_MAX
UINT_FAST64_MAX
  Maximum values of fastest minimum n-bit width unsigned integer types.
    (2 ^ n) - 1 for UINT_FASTn_MAX. ('^' represents the power.)

Limits of integer types capable of holding object pointers:

INTPTR_MIN
  Minimum value of pointer-holding signed integer type.
    -(2 ^ 31) ('^' represents the power.)

INTPTR_MAX
  Maximum value of pointer-holding signed integer type.
    (2 ^ 31) - 1 ('^' represents the power.)

UINTPTR_MAX
  Maximum value of pointer-holding unsigned integer type.
    (2 ^ 32) - 1 ('^' represents the power.)

Limits of greatest-width integer types:

INTMAX_MIN
  Minimum value of greatest-width signed integer type.
    -((2 ^ 63) ('^' represents the power.)

INTMAX_MAX
  Maximum value of greatest-width signed integer type.
    (2 ^ 63) - 1 ('^' represents the power.)

UINTMAX_MAX
  Maximum value of greatest-width unsigned integer type.
    (2 ^ 64) - 1 ('^' represents the power.)

Limits of Other Integer Types:

PTRDIFF_MIN
  Minimum limits of ptrdiff_t type.
  INT32_MIN

PTRDIFF_MAX
  Maximum limits of ptrdiff_t type.
  INT32_MAX

SIZE_MAX
  Maximum limits of size_t type.
  UINT32_MAX

WCHAR_MIN
  Minimum limits of wchar_t type.
  0

WCHAR_MAX
  Maximum limits of wchar_t type.
  UINT32_MAX

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 205



8.20 stdio.h

The header stdio.h defines types, macros, and function prototype declarations for the following 
standard input/output:

While the standard C library can handle files and sockets uniformly as I/O stream, the standard I/O of
the T2EX standard C compatible library handles only files as I/O stream and does not handle sockets.

Type

FILE
  The type of structure to manage a file.

  Its elements are implementation-dependent. Usually, it contains a file descriptor, 
pointer to memory area to buffer data for read/write operation, file position to read/write (different
from the file offset), flag to indicate that the end of file is reached (end-of-file flag), area to 
record an error number when errors occur during I/O (error information), and all other information 
required to control the file I/O stream.
  Elements in the structure shall be accessed via functions described in this section 
and not directly be accessed by users.

  typedef struct {
    /* Implementation-dependent */
  } FILE;

  For T2EX reference implementation, the implementation-dependent part is defined as int
opaque[23]; and its elements shall not be directly accessed by users.

  Sequential input and output for a file are called as a stream and specified by 
"FILE*".

errno_t
  An integer type representing an error number.

fpos_t
  A type representing a position in a file.
  With T2EX reference implementation, it is a 32-bit signed integer type, but 
non-integer type implementation is also possible.

fpos64_t
  A type representing a position in a file using 64-bit.
  With T2EX reference implementation, it is a 64-bit signed integer type, but 
non-integer type implementation is also possible.

off_t
  An integer type representing a file size in 32-bit.
 
off64_t
  An integer type representing a file size in 64-bit.

size_t
  An unsigned integer type representing the result of sizeof operator.

ssize_t
  A type representing 0 or more number of bytes or a negative error code.

va_list
  A type representing the argument list for the function with a variable number of 
arguments.

Macro

BUFSIZ
  The size of I/O buffer (in bytes).

Macros indicating the buffering status of the file I/O:

   _IOFBF Indicates that the I/O is completely buffered.
   _IOLBF Indicates that the I/O is buffered line by line.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 206



   _IONBF Indicates that the I/O is not buffered.

Macros indicating a reference position when the current offset of the file is moved:

  SEEK_CUR Indicates that the starting point of the move is the current position of the 
file.
  SEEK_END Indicates that the starting point of the move is the end of the file.
  SEEK_SET Indicates that the starting point of the move is the beginning of the file.

FILENAME_MAX
  The maximum string length of a file name (in bytes).

FOPEN_MAX
  The maximum number of files that can be opened at the same time.

EOF
  The end of a file.

The following three values of FILE* type are defined for the console I/O:

    stdin The standard console input.
    stdout The standard console output.
    stderr The standard console error output.

Function

8.20.1 libc_stdio_init - Initializes standard I/O

C Language Interface

#include <stdio.h>

 ER libc_stdio_init(void)

Description

It initializes the standard input/output library.
After calling fs_main() of the file management function, this API call must explicitly be called.
This API call initializes stdin, stdout, and stderr so that they can immediately be used.
This API call must be called before using other standard input/output library.

Return Parameter

Error Code

Return code is an error code.
   E_OK Normal completion

See Also

libc_stdio_cleanup

Additional Notes

libc_stdio_init() is a T2EX-specific API call.

8.20.2 libc_stdio_cleanup - Terminates standard I/O

C Language Interface

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 207



#include <stdio.h>

 ER libc_stdio_cleanup(void)

Description

It terminates the standard input/output library.
Before terminating the file management function by fs_main(), this API must explicitly be called.

Return Parameter

Error Code

Return code is an error code.
   E_OK Normal completion

See Also

libc_stdio_init

Additional Notes

libc_stdio_cleanup() is a T2EX-specific API call.

8.20.3 clearerr - Clears the error number of stream

C Language Interface

#include <stdio.h>

 void clearerr(FILE* stream);

Description

clearerr() clears the end-of-file indicator and error information pointed by "stream".

Return Parameter

The clearerr() does not return a value.

Error Code

None

See Also

feof, ferror, fileno, fopen

8.20.4 feof - Checks the end of file

C Language Interface

#include <stdio.h>

 int feof(FILE* stream);

Description

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 208



feof() checks whether or not a stream pointed by "stream" has reached the end of file.
If the "stream" has reached the end of file, feof() returns a non-zero value.

Return Parameter

If the "stream" has reached the end of file, feof() returns a non-zero value.

Error Code

None

See Also

clearerr, ferror, fileno, fopen

8.20.5 ferror - Tests error status of stream

C Language Interface

#include <stdio.h>

 errno_t ferror(FILE* stream);

Description

ferror() checks whether or not the stream pointed by "stream" is in the error state.
If an error is recorded in the "stream", ferror() returns its error number.

Return Parameter

If an error is recorded in the "stream", ferror() returns its error number.

Error Code

None

See Also

clearerr, feof, fileno, fopen

8.20.6 fileno - Gets the file descriptor of stream

C Language Interface

#include <stdio.h>

 int fileno(FILE* stream);

Description

fileno() returns the value of the file descriptor corresponding to the stream pointed by "stream".

Return Parameter

If successful, fileno() returns the file descriptor value (non-negative) of "stream".
If an error occurs, it records the error number in the stream and returns -1.

Error Code

If an error occurs, calling ferror() may return the followings:

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 209



  EBADF "stream" is invalid

See Also

clearerr, feof, ferror, fopen

8.20.7 fgetc, getc, getchar - Reads one character from stream

C Language Interface

#include <stdio.h>

 int fgetc(FILE* stream);
 int getc(FILE *stream);
 int getchar(void);

Description

fgetc() gets the next character (1 byte) from the stream pointed by "stream" as unsigned char type and
returns it after converting it to int type.

If the stream has reached the end of file, it returns -1.

getc() is equivalent to fgetc() and is implemented as a macro.
Therefore, "stream" may be evaluated more than once.

getchar() is equivalent to getc(stdin).

Return Parameter

If successful, fgetc(), getc(), or getchar() returns one character read from the current file position
of the stream.
If the stream has reached the end of file, it sets the end-of-file indicator in the stream and returns
EOF.
If an error occurs, it records the error number in the stream and returns EOF.

Error Code

If an error occurs, calling ferror() may return the followings:

  EAGAIN Since O_NONBLOCK flag of the file descriptor for the stream is set and writing will 
have caused a wait, the function returned immediately.

  EBADF The file descriptor of the stream is not a correct file descriptor opened for read
  EINTR Aborted by fs_break()

  EIO I/O error

See Also

feof, ferror, fgets, fread, ungetc, fopen

8.20.8 fgets - Reads one line from stream

C Language Interface

#include <stdio.h>

 char* fgets(char* s, int size, FILE* stream);

Description

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 210



fgets() reads a string from "stream" for "size" -1 bytes or until it detects a new line ('\n') or the 
end of file, and stores the string read in the area pointed by "s" and appends a null character to the
end of the string.

Return Parameter

If successful, fgets() returns s.
If the stream has reached the end of file, it sets the end-of-file indicator in the stream and returns
NULL.
If an error occurs, it records the error number in the stream and returns NULL.

Error Code

See fgetc().

See Also

feof, ferror, fgetc, fread, ungetc, fopen

8.20.9 ungetc - Pushes one character back to input stream

C Language Interface

#include <stdio.h>

 int ungetc(int c, FILE* stream);

Description

ungetc() pushes a character (1 byte) converted from "c" to unsigned char back to the input stream 
pointed to by "stream".

When the pushed back characters are read again, they are read in the reverse order of the push back.

When fseek(), fsetpos(), or rewind() is executed on this stream, the pushed back character is 
discarded.

Even if data is pushed back, data on the disk of the file corresponding to the stream does not change.

While pushing back one character is guaranteed to succeed, whether or not the subsequent push back is 
successful is implementation-dependent.
In the T2EX reference implementation, any number of characters can be pushed back unless the memory is
exhausted.

If the value of "c" is EOF, the state of the stream does not change and ungetc() fails.

If successful, the end-of-file indicator in the stream is cleared.
The file position in the stream is decremented by 1 every time the push back is performed.
If the file position is 0 before calling ungetc(), the resulting file position is undetermined.

Return Parameter

If successful, ungetc() returns the value of "c".
If failed, it returns EOF.

Error Code

None

See Also

fseek, fgetc, fopen, fsetpos, rewind, setbuf

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 211



8.20.10 fputc, putc, putchar - Outputs one character to stream

C Language Interface

#include <stdio.h>

 int fputc(int c, FILE* stream);
 int putc(int c, FILE* stream);
 int putchar(int c);

Description

fputc() writes "c" converted to an unsigned char to the output stream pointed to by "stream".
If the file position is defined on the stream, the writing takes placein that position, 
and the file position is icremented by one.

If a file does not support the positioning or a stream is opened with the append mode, the character 
is written at the end of the stream.

putc() is equivalent to fputc() and is implemented as a macro.
Therefore, "stream" may be evaluated more than once.

putchar() is equivalent to putc(c, stdout).

Return Parameter

If successful, fputc(), putc(), or putchar() returns the value of the written character.
If an error occurs, it records the error number in the stream and returns EOF.

Error Code

If an error occurs, calling ferror() may return the followings:

  EAGAIN Since O_NONBLOCK flag of the file descriptor for the stream is set and writing will 
have caused a wait, the function returned immediately.

  EBADF File descriptor corresponding to the stream is invalid
  EFBIG Position exceeds the limit of the file size
  EINTR Aborted by fs_break()

  EIO I/O error
  ENOSPC Insufficient device space

See Also

ferror, fopen, fputs, setbuf

8.20.11 fputs, puts - Outputs string to stream

C Language Interface

#include <stdio.h>

 int fputs(const char* s, FILE* stream);
 int puts(const char* s);

Description

fputs() writes a string ending with a null character, pointed to by "s", to the output stream pointed 
to by "stream".
The last null character is not written.

puts() is equivalent to fputs(s, stdout).

Return Parameter

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 212



If successful, fputs(), puts() returns 0 or a positive value.
If an error occurs, it records the error number in the stream and returns EOF.

Error Code

See fputc()

See Also

fputc, fopen, ferror

8.20.12 fgetpos, fgetpos64 - Gets the current file position

C Language Interface

#include <stdio.h>

 int fgetpos(FILE* stream, fpos_t* pos);
 int fgetpos64(FILE* stream, fpos64_t* pos);

Description

fgetpos() stores the current file position of the stream pointed to by "stream" in the area pointed to
by "pos".

fgetpos64() uses fpos64_t type for arguments to handle the 64-bit file position.

Return Parameter

If successful, fgetpos(), fgetpos64() returns 0.
If an error occurs, it records the error number in the stream and returns a non-zero value.

Error Code

If an error occurs, calling ferror() may return the followings:

 EOVERFLOW The current position cannot be represented by fpos_t
  EBADF The file descriptor used for the stream is invalid

See Also

fopen, fseek, ftell, rewind, ungetc

8.20.13 fsetpos, fsetpos64 - Sets the current file position

C Language Interface

#include <stdio.h>

 int fsetpos(FILE* stream, const fpos_t* pos);
 int fsetpos64(FILE* stream, const fpos64_t* pos); // Non-standard function

Description

fsetpos() sets the current file position of the stream specified by "stream" to the value pointed to 
by "pos".

"pos" is a value acquired by a previously executed fgetpos().

If successful, it clears the end-of-file indicator in the stream and discards the character pushed 
back by ungetc().

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 213



fsetpos64() uses fpos64_t for its arguments and the value of "pos" is acquired by fgetpos64().

Return Parameter

If successful, fsetpos() or fsetpos64() returns 0.
If an error occurs, it records the error number in the stream and returns a non-zero value.

Error Code

If an error occurs, calling ferror() may return the followings:

  EAGAIN Since O_NONBLOCK flag of the file descriptor for the stream is set and writing will 
have caused a wait, the function returned immediately.

  EBADF File descriptor for the stream is invalid
  EFBIG Position exceeds the limit of file size
  EINTR Aborted by fs_break()

  EIO I/O error
  ENOSPC Insufficient device space

See Also

fopen, fseek, ftell, rewind, ungetc

8.20.14 fseek, fseek64, rewind, ftell, ftell64 - Changes or gets the current file position

C Language Interface

#include <stdio.h>

 int fseek(FILE* stream, long offset, int whence);
 int fseek64(FILE* stream, int64_t offset, int whence);

 void rewind(FILE* stream);
 long ftell(FILE* stream);

 int64_t ftell64(FILE* stream);

Description

fseek() changes the file position of the stream pointed to by "stream".
The new position of the stream in bytes is "offset" added to the position specified by "whence".
whence can have the following values specifying the positions shown on the right:
   SEEK_SET Start position of the file
   SEEK_CUR Current position of the file
   SEEK_END End position of the file

If successful, it clears the end-of-file indicator in the stream and discards the data pushed back by 
ungetc().

Attempting to set a file position exceeding the end position of the file causes an error.
In this case, ferror(stream) returns EINVAL.

For non-seekable file such as console whose file position is not defined, fseek() causes an error. In 
this case, ferror(stream) returns ESPIPE.

fseek64(), whose "offset" to specify a position is an int64_t type, is equivalent to fseek() except 
that it can specify a position using a 64-bit value.

rewind() is equivalent to (void) fseek(stream, 0, SEEK_SET).
Therefore it sets the file position of the stream to the start of the file.
rewind() also clears the error information of the stream.

ftell() returns the current file position of the stream pointed to by "stream".

ftell64() is equivalent to ftell() except that its return code is a 64-bit value.

Return Parameter

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 214



If successful, fseek() or fseek64() returns 0.
If an error occurs, it records the error number in the stream and returns -1.

rewind() does not return a value.

If successful, ftell() or ftell64() returns the current file position.
If an error occurs, it records the error number in the stream and returns -1.

Error Code

If an error occurs, calling ferror() may return the followings:

  EAGAIN Since O_NONBLOCK flag of the file descriptor for the stream isset and writing will 
have caused a wait, the function returned immediately.

  EBADF File descriptor corresponding to the stream is invalid
  EFBIG Position exceeds the limit of file size

  EINVAL Specified position is invalid
   - Resulting file position is negative
   - Position exceeding the end of file

  EINTR Aborted by fs_break()
  EIO I/O error

  ESPIPE Non-seekable file
 EOVERFLOW File position cannot be represented by the resulting data 

ftell() and ftell64() may return only EBADF and EOVERFLOW.

See Also

fgetpos, fsetpos, ftell, rewind, ungetc

8.20.15 fread - Input from binary stream

C Language Interface

#include <stdio.h>

 size_t fread(void* ptr, size_t size, size_t nmemb, FILE* stream);

Description

fread() reads "nmemb" elements of data, size of which is "size" bytes each, from the stream pointed to
by "stream" into the area pointed to by "ptr".
The file position specified by "stream" is advanced by the number of bytes of the data that has been 
read.

Return Parameter

fread() returns the number of elements that have been read successfully.
If an read error occurs or EOF is reached, this value will be smaller than "nmemb".
If "size" or "nmemb" is 0, it returns 0 and the state of "stream" does not change.
If an error occurs, it records the error number in the stream.

Error Code

See fgetc().

See Also

fopen, fscanf, fgetc, feof, ferror

8.20.16 fwrite - Output to binary stream

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 215



C Language Interface

#include <stdio.h>

 size_t fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream);

Description

fwirte() writes "nmemb" elements of data, each size of which is "size" bytes, from the area pointed to
by "ptr" to the stream pointed to by "stream".
The position of the file pointed to by "stream" is advanced by the number of bytes of the data that 
has been written.

Return Parameter

fwrite() returns the number of elements that have been written successfully.
If a write error occurs, this value will be smaller than "nmemb".
If "size" or "nmemb" is 0, it returns 0 and the state of "stream" does not change.
If a write error occurs, it records the error number in the stream.

Error Code

See fputc().

See Also

fopen, fprintf, fputc, ferror

8.20.17 fflush - Flushes stream

C Language Interface

#include <stdio.h>

 int fflush(FILE* stream);

Description

fflush() writes (flushes) unwritten data to a file if any data is not output yet to the output stream 
specified by "stream".
If "stream" is NULL, fflush() flushes all opened output streams.

Return Parameter

If successful, fflush() returns 0.
If an error occurs, it records the error number in the stream and returns EOF.

Error Code

If an error occurs, calling ferror() may return the followings:

  EAGAIN Since O_NONBLOCK flag of the file descriptor for the stream is set and writing will 
have caused a wait, the function returned immediately.

  EBADF File descriptor for the stream is invalid
  EFBIG Position exceeds the limit of file size
  EINTR Aborted by fs_break()

  EIO I/O error
  ENOSPC Insufficient device space

See Also

setbuf, fopen

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 216



8.20.18 fprintf, printf, snprintf, sprintf - Formatted output

C Language Interface

#include <stdio.h>

 int fprintf(FILE* stream, const char* format, ...);
 int printf(const char* format, ...);
 int snprintf(char* str, size_t size, const char* format, ...);
 int sprintf(char* str, const char* format, ...);

Description

fprintf() converts data according to the format pointed to by "format" and writes it to the output 
stream specified by "stream".
In printf(), output stream is fixed to the standard output.
sprintf() writes output as a string ending with a null character to the area pointed to by "str".
Users must guarantee that the area pointed to by "str" has a large enough size.
snprintf() is equivalent to sprintf() and "size" represents the number of bytes of the buffer pointed 
to by "str".
If "size" is 0, output is not performed and "str" can be NULL.
Otherwise, output bytes exceeding "size" - 1 are discarded and a null character is appended at the end
of characters actually written to buffer pointed to by "str".
In the output of sprintf() or snprintf(), the result is undefined when copying of the overlapped area 
occurs.
(For example, when the same area is referenced by both the output destination and argument, etc.,)

fprintf(), printf(), snprintf(), or sprintf() converts subsequent arguments according to the format 
pointed to by "format" and outputs them.

"format" consists of 0 or more directives:
They are normal characters that are simply copied to the output stream, and conversion specifications,
each of which directs the retrieval of 0 or more arguments.

The result is undefined when the number of arguments for "format" is insufficient.
If "format" is used up while any arguments still remain, the extra arguments are only evaluated when 
these API calls are executed and ignored in these API calls.

If the format string contains any conversion specification with % format, each conversion 
specification uses the first unused argument in the argument list.

Each conversion specification begins with '%' character, followed by the following items listed in 1 
to 5 in this order:

Format of conversion specification
  %[flag][minimum field width][.precision][length modifier]conversion specifier

1. Flags (unordered, optional)
  Flag is a character to modify the meaning of 0 or more conversion specifications.

2. Minimum field width (optional)
  The minimum field width is a decimal integer string or <asterisk> ('*') to specify the minimum field
width.
  If the converted value is smaller than the minimum field width, left side is filled with 
<white-space> characters by default.
  If the left-alignment flag ('-') is given to the minimum field width, right side is filled with 
<white-space> characters.
  If the minimum field width is specified as the <asterisk> ('*'), an argument with an int type is 
used to specify the minimum field width.
  If an argument for the minimum field width is negative, positive field width with '-' flag is 
assumed.

3. Precision (optional)
  Precision specifies a <period>('.') followed by a decimal numeric string or an <asterisk> ('*').
  Decimal numeric string is optional and is assumed to be 0 when it is omitted.
  The behavior shall be undefined when precision is used with other conversion specifications.
  If precision is specified as <asterisk> ('*'), an argument of an int type is used to specify the 
precision.
  If an argument for precision is negative, the precision is assumed to be omitted.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 217



4. Length modifier
  Length modifier is a character to specify the length of the type indicated by the conversion 
specifier.

5. Conversion specifier
  Conversion specifier is a character to specify the type of conversion to apply.

When the field width and precision are specified by the <asterisk> ('*'), the arguments corresponding 
to the minimum field width and precision must be provided in the order of the field width and 
precision before the arguments to be converted by the conversion specification.

Flag characters and their meanings:

-
 The conversion result is left-justified in the field.
 If this flag is not specified, the conversion result is right-justified in the field.

+
 The signed conversion result shall always begin with a sign ('+' or '-').
 If this flag is not specified, the conversion result is signed only when it is a negative 
value.

<Space>
 If the first character of the signed conversion is not signed, or the result of the signed 
conversion is empty, a <space> is prefixed to the result.
This means that if both a <space> and '+' flags are specified, the <space> flag shall be ignored.

#
 Specifies that the value is converted to an alternate form.
 For o conversion specifier:
  When the first character of the conversion result is not 0, 0 is added.
  Increase the precision if necessary.
 For x or X conversion specifier:
  If the conversion result is non-zero, 0x or 0X (for X conversion) is prefixed to the 
beginning of the result.
 For a, A, e, E, f, F, g, or G conversion specifier:
  Even if a number does not exist after the decimal point, the decimal point is always 
output.
 For g or G conversion specifier:
  The trailing 0 is not deleted from the conversion result.
 The behavior is undefined for other conversion specifiers.

0
 For d, i, o, u, x ,X, a, A, e, E, f, F, g, or G conversion, except for infinity or NaN 
conversion, leading zeros (following a sign or radix representation) are used instead of spaces to 
fill the field width.
 If both '0' and '-' flags are used, '0' flag is ignored.
 If precision is specified for d, i, o, u, x, or X conversion, '0' flag is ignored.
 The behavior is undefined for other conversion specifications.

Precision and their meanings:

 For d, i, o, u, x, or X conversion specifier:
  Minimum number of digits to output.
  The default is 1.

 For a, A, e, E, f, or F conversion specifier:
  The number of digits in decimal point part.
  The default is 6.

 For g or G conversion specifier:
  Maximum number of significant digits.
  The default is 6.

 For s conversion specifier:
  Maximum number of characters to output (in bytes).

Length modifiers and their meanings:

hh
 If d, i, o, u, x, or X conversion specifier follows, it specifies that the argument to convert

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 218



is a signed char or unsigned char.
 (Though the integer argument has been promoted according to the argument promotion rule, the 
value is converted to signed char or unsigned char type prior to the formatting.)
 If n conversion specification follows, it indicates that the argument to convert is a pointer 
to a signed char.

h
 If d, i, o, u, x, or X conversion specifier follows, it specifies that the argument to convert
is a short or unsigned short.
 (Though the integer argument has been promoted according to the argument promotion rule, the 
value is converted to short or unsigned short type prior to the formatting.)
 If n conversion specification follows, it specifies that the argument to convert is a pointer 
to a short argument.

l
 If d, i, o, u, x, or X conversion specifier follows, it specifies that the argument to convert
is a long or unsigned long.
 If n conversion specification follows, it specifies that the argument to convert is a pointer 
to a long argument.
 If a, A, e, E, f, F, g, or G conversion specification follows, this modifier is ignored.

ll
 If d, i, o, u, x, or X conversion specifier follows, it specifies that the argument to convert
is a long long or unsigned long long.
 If n conversion specification follows, it specifies that the argument to convert is a pointer 
to a long long argument.

j
 If d, i, o, u, x, or X conversion specifier follows, it specifies that the argument to convert
is an intmax_t or uintmax_t.
 If n conversion specification follows, it indicates that the argument to convert is a pointer 
to an intmax_t argument.

z
 If d, i, o, u, x, or X conversion specifier follows, it specifies that the argument to convert
is a size_t or the corresponding signed integer type value.
 If n conversion specification follows, it specifies that the argument to convert is a pointer 
to a size_t or the corresponding signed integer type argument.

t
 If d, i, o, u, x, or X conversion specifier follows, it specifies that the argument to convert
is ptrdiff_t or the corresponding unsigned integer type.
 If n conversion specification follows, it specifies that the argument to convert is a pointer 
to a ptrdiff_t or the corresponding unsigned integer type argument.

L
 If a, A, e, E, f, F, g, or G conversion specifier follows, it indicates that the argument to 
convert is a long double.

The behavior is undefined when the length modifier is specified for conversion specifications other 
than above.

Conversion specifiers and their meanings:

d,i
 Converts an int type argument to a signed decimal number in "[-]dddd" format.
 The precision specifies the minimum number of digits to appear.
 If a value is represented with fewer number of digits, leading space up to the precision 
position is filled with zeros.
 Default precision is 1.
If the precision is 0 and the conversion result is 0, nothing is output.

o
 Converts an unsigned type argument to an unsigned octal number in "dddd" style.
 The precision specifies the minimum number of digits to appear.
 If a value is represented with fewer number of digits, leading space up to the precision 
position is filled with zeros.
 Default precision is 1.
If the precision is 0 and the conversion result is 0, no character is output.

u
 Converts an unsigned type argument to an unsigned decimal number with "dddd" style.
 The precision specifies the minimum number of digits to appear.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 219



 If a value is represented with fewer number of digits, leading space up to the precision 
position is filled with zeros.
 Default precision is 1.
If the precision is 0 and the conversion result is 0, no character is output.

x
 Converts an unsigned type argument to an unsigned hexadecimal number with "dddd" style 
(characters "abcdef" are used to represent 10 to 15). 
 The precision specifies the minimum number of digits to appear.
 If a value is represented with fewer number of digits, leading space up to the precision 
position is filled with zeros.
 Default precision is 1.
If the precision is 0 and the conversion result is 0, no character is output.

X
 It is equivalent to x conversion specifier except that it uses the uppercases "ABCDEF" instead
of the characters "abcdef".

f,F
 Converts a double type argument to a decimal number notation in "[-]ddd.ddd" style.
The number of digits after the decimal point is equal to the precision specification.
If the precision is omitted, 6 is assumed.
 If the precision is 0 and the '#' flag is not specified, the decimal point does not appear.
 When the decimal point appears, a number with at least one digit appears before the decimal 
point.
 Though lower digits are rounded using round half up in the T2EX reference implementation, 
other implementation-defined rounding is allowed.
  
 In the T2EX reference implementation, the infinity double type argument is converted to 
"[-]inf", and depending on the implementation, it can be converted to "[-]infinity".
 The double type argument representing NaN is converted to "[-]nan(n-char-sequence)" or 
"[-]nan".
 For (n-char-sequence), see nan().
 F conversion specifier generates "INF", "INFINITY", and "NAN" instead of "inf", "infinity", 
and "nan", respectively.

e,E
 Converts a double type argument in "[-]d.ddde+/-dd" style.
If the argument is not 0, a single digit number exists before the decimal point and the number of 
digits after the decimal point is equal to the number of digits specified by the precision.
 If the precision is omitted, 6 is assumed.
 If the precision is 0 (zero) and the '#' flag is not specified, the decimal point does not 
appear.
 The lower digits are rounded by the implementation-defined method.
 E conversion specifier uses 'E' instead of 'e' as the first character in the exponent part.
 The exponent part has always two or more digits.
If a value is 0, the exponent becomes "00".

 A double type argument representing infinity and NaN is converted as in the case of f and F 
conversion specifier.

g,G
 Depending on the converted value and precision, the double type argument is converted to f or 
e format (F or E for G conversion specifier).
 
 The number of digits after the decimal point is equal to the number of digits specified by the
precision.
 If 0 is specified as the precision, it assumed to be 1.
 The format results in e or f format depending on the converted value.
 If the exponent part of the conversion result is -4 or less, or equal to or more than the 
precision, e format is used.
 The trailing zeros in the decimal part of the conversion result are removed.
 The decimal point character is output only when at least one digit number exists after the 
decimal point or the # flag is specified.

 A double type argument representing infinity and NaN is converted as in the case of f and F 
conversion specifier.

a,A
 Converts a double type argument in "[-]0xh.hhhhp+/-d" style.
A single digit hexadecimal number exists before the decimal point and the number of digits of 
hexadecimal number after the decimal point is equal to the number of digits specified by the 
precision.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 220



 The number before the decimal point is non-zero for the normalized floating point number, and 
undetermined for the non-normalized.

 If the precision is not specified and FLT_RADIX is the power of 2, the precision becomes a 
value required to precisely represent the value.
 If the precision is not specified and FLT_RADIX is other than the power of 2, the precision 
becomes a value that can precisely represent the double type value.
 When the trailing zeros exist, the consecutive zeros are omitted.

 If the precision is 0 and the '#' flag is not specified, the decimal point does not appear.
 The characters "abcdef" are used for the "a" conversion specifier while the uppercases 
"ABCDEF" are used for the "A" conversion specifier.
 "A" conversion generates a number in the format of 'X' conversions instead of 'x' and 'p'.
 The exponent value is always one or more digits and has the minimum number of digits required 
to represent the binary exponent as a decimal exponent.

 A double type argument representing infinity and NaN is converted as in the case of f and F 
conversion specifier.

c
 It converts an int type argument to an unsigned char and outputs the resulting character (one 
byte).

s
 The argument is assumed to point the char type array.
It outputs characters from the beginning of array to a trailing null character (excluding the null 
character).
 If a precision is specified, no character exceeding the precision is output.
 If the precision is not specified or it is larger than the size of array, application must 
guarantee that the array includes a null character.

p
 The argument must be a pointer to a void type.
 It converts a pointer value to a hexadecimal number as if the pointer value is converted by 
%#x or %#lx.

n
 The argument must be a pointer to an integer.
The number of bytes to have been output so far is stored in the integer by calling this fprintf().
 The argument is not converted.

%
 Outputs a character '%'.
Complete conversion specifier is %%.

The behavior is undefined when the conversion specifier does not match any of the above formats.
The behavior is undefined when the argument is not a correct type corresponding to the conversion 
specification.

Even if the minimum field width is not specified or is small, the field is not truncated.
If the conversion result is larger than the minimum field width, the field is extended until the 
conversion result can be included.
Characters generated by fprintf() and printf() are output as if fputc() and putc() was called 
respectively.
Therefore, an error that can occur in fputc() also may occur in fprintf(), and an error that can occur
in putc() also may occur in printf().

If FLT_RADIX is not a power of 2 for the "a" and "A" conversion specifications and thus disabling the 
result precisely be represented in the given precision, the result must be one of the two adjacent 
numbers in the format of hexadecimal floating point with the given precision.
In that case, the error must have the appropriate sign correctly reflecting the current rounding 
direction.

If the significant digits is DECIMAL_DIG or less, the result must be rounded correctly for e, E, f, F,
g, and G conversion specifier.

Return Parameter

If successful, fprintf() or printf() returns the number of bytes to have been output.

If successful, sprintf() returns the number of bytes of the output which was written to "s" excluding 
the trailing null character.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 221



If successful and "size" is large enough, snprintf() returns the number of bytes of the output that is
supposed to be written to "str" excluding the trailing null character.

If an output error occurs, printf(), fprintf(), snprintf(), or sprintf() returns a negative value.

While snprintf() writes nothing when "size" is 0, it returns the number of bytes of the output that is
supposed to be written to "str" excluding the trailing null character when "size" is large enough.
In this case, "str" is allowed to be NULL.

Error Code

If an error occurs, calling ferror() may return the followings:

Error numbers occurred in fputc()
 EOVERFLOW Overflow

   - In snprintf(), the value of "size" is larger than INT_MAX
   - The number of bytes required to hold the output excluding the trailing null 
character exceeds the INT_MAX

See Also

fputc, fscanf

Additional Notes

Since there is no multibyte character library, there is no conversion specification for wchar_t and 
multibyte.

8.20.19 vfprintf, vprintf, vsnprintf, vsprintf - Formatted output by the list of variable number 
arguments

C Language Interface

#include <stdio.h>

 int vfprintf(FILE *stream, const char *format, va_list ap);
 int vprintf(const char *format, va_list ap);
 int vsnprintf(char *str, size_t size, const char *format, va_list ap);
 int vsprintf(char *str, const char *format, va_list ap);

Description

vfprintf(), vprintf(), vsnprintf(), and vsprintf() are equivalent to fprintf(), printf(), snprintf(), 
and sprintf(), respectively, except that they receive the va_list type argument list as the argument 
instead of the variable number of arguments.

vfprintf(), vprintf(), vsnprintf(), and vsprintf() do not call the va_end macro.
Since vfprintf(), vprintf(), vsnprintf(), and vsprintf() call the va_arg macro, the value of "ap" at 
the time of completion is undetermined.

Return Parameter

See fprintf().

Error Code

See fprintf().

See Also

fprintf

8.20.20 fscanf, scanf, sscanf - Formatted input conversion

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 222



C Language Interface

#include <stdio.h>

 int fscanf(FILE* stream, const char* format, ...);
 int scanf(const char* format, ...);
 int sscanf(const char* str, const char* format, ...);

Description

fscanf() reads from the input stream pointed to by "stream".
scanf() reads from the standard input.
sscanf() reads from the string pointed to by "str".

These functions read one byte at a time from the specified stream, convert them according to the 
format specified by "format", and then store the result in the area pointed to by the argument.

Each function has the variable number of arguments of control strings specified by "format" and the 
pointers indicating the storage area of the converted input.
If the actual number of arguments when the function is called is fewer than the number of arguments 
required by the format specified by "format", the result is undefined.
If "format" is used up while any arguments still remain, the extra arguments are only evaluated when 
these API calls are executed, and ignored in fscanf(), scanf(), or sscanf().

fscanf() inputs from the stream as if fgetc() was called.
Therefore, an error that can occur in fgetc() also may occur in fscanf().

"format" is a string consisting of 0 or more directives.
Each directive corresponds to one of (a), (b), and (c):

(a) One or more white-space characters (<space>, <tab>, <new line>, <vertical tab>, or <page break>)
(b) Ordinary characters (neither '%' nor white-space)
(c) Conversion specification

fscanf() executes the directives in "format" sequentially.
If a directive fails, the function terminates there.
Failures of directives are classified into the input error (no available input) or the matching error 
(improper input).

The directive consisting of one or more white-space characters described in (a) is skipped until the 
input is exhausted or non-white-space character is reached.
At that time, the reached non-white-space character is deemed to be not read yet.

The directive consisting of the ordinary characters described in (b) is executed as follows:
The next character is read from the input and compared with the character consisting the directive.
If matched, the character is skipped.
If unmatched, the directive results in the failure of matching and the subsequent characters including
the current character are left unread.
If the end of file is reached or read error occurs, the directive results in the failure of input 
without reading characters.

The conversion specification described in (c) starts with '%' character and the characters explained 
below in the numerical order given.

 1. Assignment suppression character '*' (optional)
 2. Non-zero decimal integer specifying the maximum field width (optional)
 3. Length modifier specifying the size of object to accept (optional)
 4. Conversion specification character specifying the type of conversion to apply

Format of conversion specification
 %[assignment suppression character][maximum field width][length modifier]conversion specifier

 1. Assignment suppression character (optional)
    Assignment suppression character is an <asterisk> ('*').

 2. Maximum field width (optional)
    The maximum field width is a non-zero decimal integer string to specify the maximum field width.

 3. Length modifier (optional)
    Length modifier is a character to specify the size of type indicated by the conversion specifier.

 4. Conversion specifier

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 223



    Conversion specifier is a character to specify the type of conversion to apply.

The directive consisting of conversion specifications defines a set of strings to be compared to the 
input for each conversion specification character.

The conversion specification is executed in the following steps:

If the conversion specification does not contain any one of '[', 'c', 'C', and 'n', a white-space 
within the input is skipped.

If the conversion specification does not contain "n", one item is read from the input (input item) at 
first.
The input item is defined as the longest input string that matches the string set specified by the 
conversion specification as a result of comparison starting from the beginning of the input to the 
maximum field width.

A byte immediately after the input item, if any, is left unread.
If the length of input item is 0, the execution of the conversion specification fails.
This means a matching error unless any input error including a reaching end of file and a read error 
has occurred.

Except for the %n conversion specification, the input item (the number of input bytes for %n 
conversion specification) is converted to the type specified by the conversion specification.
If the input item is not contained in the set of matching strings indicated by the conversion 
specification, execution of the conversion specification fails.
This means a matching error.

If the assignment suppression by '*' is not specified and the conversion specification starts with %, 
the conversion corresponding to the conversion specification is performed and the conversion result is
stored in the object indicated by the first argument that does not receive the conversion result yet 
after "format" argument.
The behavior is undefined when this object is improper type or the conversion result cannot be 
represented by the area provided by the argument.
If the assignment suppression by '*' is specified, the conversion corresponding to the conversion 
specification is performed, but the pointer argument is not used and the conversion result is 
discarded.

Length modifiers and their meanings:

hh
 If d, i, o, u, x, X, or n conversion specifier follows, it indicates that the argument is a 
pointer type to signed char or unsigned char.

h
 If d, i, o, u, x, X, or n conversion specifier follows, it indicates that the argument is a 
pointer type to short or unsigned short.

l
 If d, i, o, u, x, X, or n conversion specifier follows, it indicates that the argument is a 
pointer type to long or unsigned long.
 If a, A, e, E, f, F, g, or G conversion specifier follows, it indicates that the argument is a
pointer type to double.

ll
 If d, i, o, u, x, X, or n conversion specifier follows, it indicates that the argument is a 
pointer type to long long or unsigned long long.

j
 If d, i, o, u, x, X, or n conversion specifier follows, it indicates that the argument is a 
pointer type to intmax_t or uintmax_t.

z
 If d, i, o, u, x, X, or n conversion specifier follows, it indicates that the argument is a 
pointer type to size_t.

t
 If d, i, o, u, x, X, or n conversion specifier follows, it indicates that the argument is a 
pointer type to ptrdiff_t or the corresponding unsigned type.

L
 If a, A, e, E, f, F, g, or G conversion specifier follows, it indicates that the argument is a

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 224



pointer type to long double.

The behavior is undefined when the length modifier appears in the conversion specifier other than the 
above.

Conversion specifiers and their meanings:

d
 Converts to a signed decimal integer.
 It matches the signed decimal integer with the same format as the conversion target of 
strtol() whose "base" is 10.
 If the length modifier is not specified, the corresponding argument must be a pointer to an 
int type.

i
 Converts to a signed octal, decimal or hexadecimal integer.
 It matches the signed integer with the same format as the conversion target of strtol() whose 
"base" is 0.
 If the length modifier is not specified, the corresponding argument must be a pointer to an 
int type.

o
 Converts to a signed octal integer.
 It matches the signed octal integer with the same format as the conversion target of strtol() 
whose "base" is 8.
 If the length modifier is not specified, the corresponding argument must be a pointer to an 
unsigned integer type.

u
 Converts to an unsigned decimal integer.
 It matches the unsigned decimal integer with the same format as the conversion target of 
strtol() whose "base" is 10.
 If the length modifier is not specified, the corresponding argument must be a pointer to an 
unsigned integer type.

x
 Converts to an unsigned hexadecimal integer.
 It matches the unsigned hexadecimal integer with the same format as the conversion target of 
strtol() whose "base" is 16.
 If the length modifier is not specified, the corresponding argument must be a pointer to an 
unsigned integer type.

a,e,f,g
 Converts to a signed decimal floating point number.
 It matches the floating point constant, infinity, or NaN with the same format as the 
conversion target of strtod().
 If the length modifier is not specified, the corresponding argument must be a pointer to a 
float type.

s
 Converts to a string excluding the white-space character.
 It matches the string other than the white-space character.
 Application must guarantee that the corresponding argument is a pointer to the beginning of 
the array of char, signed char, or unsigned char type, which is large enough to store the string and 
trailing null character.

[scanned character sequence],[^scanned character sequence]
 Converts to a set of expected characters (scanned character set).
 It matches the non-empty string consisting of a set of the expected characters (scanned 
character set).
 In this case, the skip of white-space characters, which usually takes place, is not performed.
 Application must guarantee that the corresponding argument is a pointer to the beginning of 
the array of char, signed char, or unsigned char type, which is large enough to store the string and 
an automatically appended trailing null character.

 Conversion specifier contains all the string so far, including the corresponding ']', in the 
"format" string.
 If the character immediately after '[' is not '^', the string between '[' and ']' (scanned 
character sequence) configures the scanned character set.
 If the character immediately after '[' is '^', the scanned character set consists of 
characters that do not appear in the scanned character sequence between '^' and ']'.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 225



 If the conversion specifier starts with "[]" or "[^]", ']' is included in the scanned 
character sequence and the conversion specifier is up to the next ']'.
Otherwise, the conversion specifier ends with the first ']'.

 For example, "[0-9]" means a set of numbers from '0' to '9'.
 "[^]0-9-]" means a set of all characters except for three patterns: ']', '0' to '9', and '-'.

c
 Converts to a characters including the white-space character.
 It matches with a string of length specified by a number in the maximum field width (1 when 
the maximum field width is not specified).
 The null character is not added.
 In this case, the skip of white-space characters, which usually takes place, is suppressed.
 Application must guarantee that the corresponding argument is a pointer to the array of char, 
signed char, or unsigned char type, which is large enough to accept the string.

p
 Converts to a pointer.
 It matches with the string representation of the pointer value generated by the %p conversion 
specification of the corresponding fprintf(), printf(), snprintf(), or sprintf().
 Application must guarantee that the corresponding argument is a pointer to a pointer to void 
type.
 Interpretation of the input item is implementation-dependent.

 If the input item has a value previously converted during the execution of the same program, 
the resulting pointer must match that value.
Otherwise, the behavior of %p conversion is undefined.
 In the T2EX reference implementation, hexadecimal representation of the pointer (%#x) is 
interpreted.
NULL is represented as 0x0.

n
 Converts to the input number of bytes.
 The input is not consumed.
 The number of characters (in bytes) read from the input before %n arrives is stored in the 
corresponding argument.
 Application must guarantee that the corresponding argument is a pointer to integer.
 Even when executing %n conversion specification, the number of input items, which is the 
return value of this function, does not increase.
 The behavior is undefined when the conversion specification contains an assignment suppression
character or has the maximum field width.

%
 Converts to '%'.
 It matches one '%' character.
 Neither conversion nor assignment is performed.
 Complete conversion specifier is %%.

The behavior is undefined when the conversion specifier is invalid.

The conversion specifiers A, E, F, G, and X are equivalent to a, e, f, g, and x, respectively.

If the end of file is reached during input, the conversion terminates.
If the end of file is reached before the character (excluding the leading white-space characters) 
matching the current conversion specification other than %n is read, execution of the current 
conversion specification terminates as an input error.
If the execution of the current conversion specification does not terminate due to a matching error, 
execution of the subsequent conversion specification terminates as an input error.

When the end of string is reached by sscanf(), it is assumed to be equivalent to when the end of file 
is reached by fscanf().

If the conversion terminates due to an improper input character, the improper input is left unread in 
the input stream.
The subsequent white-space characters (including <new line> character) unmatched in the conversion 
specification is left unread in the input stream.

Return Parameter

When successful, fscanf(), scanf(), or sscanf() returns the number of input items that are assigned by
successful matching.
If the matching fails first, this value is 0.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 226



If the input terminates before the matching or conversion fails, it returns EOF.
If an error occurs in the input stream, it records the error number in the stream and returns EOF.

Error Code

If an error occurs, calling ferror() may return the followings:

Error numbers occurred in fgetc()
  ENOMEM Insufficient memory
  EINVAL Arguments are insufficient

See Also

fgetc, fprintf

Additional Notes

Since there is no multibyte character library, length modifiers cannot be used for c or s conversion 
specifiers.

8.20.21 vfscanf, vscanf, vsscanf - Formatted input by the list of variable number arguments

C Language Interface

#include <stdio.h>

 int vfscanf(FILE* stream, const char* format, va_list ap);
 int vscanf(const char* format, va_list ap);
 int vsscanf(const char* str, const char* format, va_list ap);

Description

vfscanf(), vscanf(), and vsscanf() are equivalent to fscanf(), scanf(), and sscanf() respectively, 
except that they are called with the argument list defined in stdarg.h instead of variable number of 
arguments.
vfscanf(), vscanf(), and vsscanf() do not call the va_end macro.
Since vfscanf(), vscanf(), and vsscanf() call the va_arg macro, the value of "ap" after the completion
of these functions is undeterminated.

Return Parameter

See fscanf().

Error Code

See fscanf().

See Also

fscanf

8.20.22 setbuf, setvbuf - Sets buffer of stream

C Language Interface

#include <stdio.h>

 void setbuf(FILE* stream, char* buf);
 int setvbuf(FILE* stream, char* buf, int mode, size_t size);

Description

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 227



setvbuf() sets the buffering of the stream specified by "stream" to "buf".
setvbuf() must be executed before performing other operations after opening the stream.
Use "mode" to specify the type of buffering.
   _IOFBF In both input and output, complete buffering is performed.
   _IOLBF In both input and output, line buffering is performed.
   _IONBF In both input and output, buffering is not performed.
If "buf" is not NULL, area of "size" bytes starting at "buf" is used for the buffer of the stream.
If "buf" is NULL, setvbuf() allocates the buffer of "size" bytes internally.

If "buf" is not NULL, setbuf() is equivalent to setvbuf(stream, buf, _IOFBF, BUFSIZ).
If "buf" is NULL, it is equivalent to setvbuf(stream, buf, _IONBF, BUFSIZ).

Return Parameter

If successful, setvbuf() returns 0.
If the value of "mode" is invalid or execution fails, it returns a non-zero value.
The setbuf() does not return a value.

Error Code

If an error occurs, calling ferror() may return the followings:

  EBADF File descriptor for the stream is invalid

See Also

fopen

8.20.23 fopen, fopen_eno - Opens stream (of a file)

C Language Interface

#include <stdio.h>

 FILE* fopen(const char* path, const char* mode);
 FILE* fopen_eno(const char* path, const char* mode, errno_t* eno); // Additional function

Description

fopen() or fopen_eno() opens the file and associates a stream with it.
Opens the file whose name pointed to by "path" with the open mode pointed to by "mode", attaches it to
the stream, and returns the stream.

"mode" is a string to indicate the open mode and has one of the following values:
 "r"
  Open with text file read mode.
 "rb"
  Open with binary file read mode.
 "w"
  Opens with the text file write mode.
  A new file will be created when the file does not exist. When it exists, the file size
will be set to 0.
 "wb"
  Opens with the binary file write mode.
  A new file will be created when the file does not exist. When it exists, the file size
will be set to 0.
 "a"
  Opens with the text file write by append mode.
  A new file will be created when the file does not exist. When it exists, the file 
offset will be set to the end of the file.
 "ab"
  Opens with the binary file write by append mode.
  A new file will be created when the file does not exist. When it exists, the file 
offset will be set to the end of the file.
 "r+"
  Opens with the text file update (read/write) mode.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 228



 "rb+", "r+b"
  Opens with the binary file update (read/write) mode.
 "w+"
  Opens with the text file update (read/write) mode.
  A new file will be created when the file does not exist. When it exists, the file size
will be set to 0.
 "wb+", "w+b"
  Opens with the binary file update (read/write) mode.
  A new file will be created when the file does not exist. When it exists, the file size
will be set to 0.
 "a+"
  Open with the text file update by append (read/write) mode.
  A new file will be created when the file does not exist. When it exists, the file 
offset will be set to the end of the file.
 "ab+", "a+b"
  Open with the binary file update by append (read/write) mode.
  A new file will be created when the file does not exist. When it exists, the file 
offset will be set to the end of the file.

 Character 'b' means the binary mode.
 "mode" without 'b' specification means the text mode.
 Although this mode is prepared for a system which treats the read/write in a special way 
during the text mode, difference of the effect due to "b" does not occur since no special treatment is
made to the text mode in this system.

 The behavior is undefined when specifications other than the above are made to "mode".

Write operation for the file opened with append mode (mode starting with 'a') always appends the data 
to the end of file even when fseek() is called.

When opening file with update mode (mode including '+'), input and output can be performed for the 
stream.

 - When performing input after performing output, fflush() or fseek(), fseek64(), fsetpos(), rewind() 
must be called between the two processes.
 - When performing output after performing input, fseek(), fseek64(), fsetpos(), rewid() must be 
called between the two processes.

When the file is opened, the stream is in a mode to perform the complete buffering unless the file is 
an interactive device such as a console.
Error information of the stream and the end-of-file indicator are cleared.

If an error occurs and "eno" is not NULL, fopen_eno() stores the error number in the area pointed to 
by "eno".

fopen() is equivalent to fopen_eno(path, mode, NULL).

Return Parameter

If successful, fopen() or fopen_eno() returns the pointer corresponding to the stream.
If an error occurs, it returns NULL.

Error Code

If an error occurs, the following error numbers are set in "eno":

  EACCES Attempted to open the read-only file with the write or update mode
  EINTR Aborted by fs_break()

  EISDIR "path" is a directory and "mode" is write or update mode
  EMFILE Number of opened streams exceeded FOPEN_MAX

 ENAMETOOLONG File name is too long
   - The directory or file name part in "path" is too long (NAME_MAX at maximum)
   - Whole path length is too long (PATH_MAX at maximum)

  ENFILE Number of open files exceeded the system limit
  ENOENT File does not exist

   - File specified by "path" does not exist
   - "path" is an empty string

  ENOMEM Insufficient memory
  EROFS Attempted to open a file on the read-only file system for write

See Also

fclose, fdopen, freopen

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 229



8.20.24 fdopen, fdopen_eno - Associate a stream with a file descriptor

C Language Interface

#include <stdio.h>

 FILE* fdopen(int fd, const char* mode);
 FILE* fdopen_eno(int fd, const char* mode, errno_t* eno); // Additional function

Description

fdopen() or fdopen_eno() associates a stream with an existing file descriptor.

For the specification of "mode", see fopen(), fopen_eno().
However, if 'w' is used, do not set the file size to 0.

The specification of "mode" must be compatible with the read/write mode of the file descriptor "fd" 
opened by fs_open() or fs_creat().
The file position of the newly created stream is set to the file offset value of the file descriptor 
"fd".
Error information of the stream and the end-of-file indicator are cleared.

If an error occurs and "eno" is not NULL, it stores the error number in the area pointed to by "eno".

fdopen() is equivalent to fdopen_eno(fd, mode, NULL).

Return Parameter

If successful, fdopen() or fdopen_eno() returns the pointer corresponding to the stream.
If an error occurs, it returns NULL.

Error Code

If an error occurs, the following error numbers are set in "eno":

  EMFILE Number of opened streams exceeded FOPEN_MAX
  EBADF File descriptor is invalid

  EINVAL "mode" is invalid
  ENOMEM Insufficient memory

See Also

fopen, fclose, freopen

8.20.25 freopen, freopen_eno - Reopens stream

C Language Interface

#include <stdio.h>

 FILE* freopen(const char* path, const char* mode, FILE* stream);
 FILE* freopen_eno(const char* path, const char* mode, FILE* stream, errno_t* eno); // Additional 

function

Description

freopen_eno() flushes stream specified by "stream" as if fflush(stream) was called first.
Failure in flushing stream is ignored.
If "path" is not NULL, freopen_eno() closes the file descriptor attached to the stream.
Failure in closing file descriptor is ignored.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 230



Error information of the stream and the end-of-file indicator are cleared.

freopen_eno() next opens the file whose name specified by "path" and attaches it to the stream 
specified by "stream".
In this case, "mode" is used exactly in the same manner as fopen().

The first specified stream is closed whether or not the last open is successful.

If "path" is NULL, freopen_eno() attempts to change the mode of the stream to the mode specified by 
"mode" as if the file name attached to the current stream was used.
In this case, if calling freopen_eno() is successful, the file descriptor attached to the stream does 
not need to be closed.
Available mode change in each situation is implementation-dependent.
In the T2EX reference implementation, change of mode is not allowed.

If an error occurs and "eno" is not NULL, freopen_eno() stores the error number in the area pointed to
by "eno".

freopen(path, mode, stream) is equivalent to freopen_eno(path, mode, stream, NULL).

Return Parameter

If successful, freopen(), freopen_eno() returns the stream value.
If an error occurs, it returns NULL.

Error Code

If an error occurs, the following error numbers are set in "eno":

  EACCES Access permission specified by "mode" does not exist for file
  EBADF File descriptor corresponding to the stream is invalid
  EINTR Aborted by fs_break()

  EISDIR Though "path" is a directory, write request is specified as "mode"
  EMFILE Number of opened streams exceeded FOPEN_MAX

 ENAMETOOLONG File name is too long
   - Length of "path" exceeds the PATH_MAX
   - The directory or file name part in "path" is too long (NAME_MAX at maximum)

  ENFILE Number of open files exceeded the system limit
  ENOENT File does not exist

   - File specified by "path" does not exist
   - "path" is an empty string

  ENOTDIR "path" contains something other than a directory in the prefix part
  EROFS Attempted to open a file on the read-only file system for write

See Also

fopen, fdopen, fclose

8.20.26 fclose_eno, fclose - Closes stream

C Language Interface

#include <stdio.h>

 int fclose(FILE* fp);
 int fclose_eno(FILE* fp, errno_t* eno); // Additional function

Description

fclose_eno() flushes the stream specified by "stream" and closes the file attached to the stream.
Unwritten data in the buffer of the stream is written to the file while the unread data within the 
buffer is discarded.
Whether or not the calling is successful, association between the stream and file is released and the 
buffer set by setbuf() or setvbuf() is detached from the stream.
If the buffer has been automatically allocated, it is released.

If an error occurs and "eno" is not NULL, fclose_eno() stores the error number in the area pointed to 

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 231



by "eno".

fclose(fp) is equivalent to fclose_eno(fp, NULL).

Return Parameter

When successful, fclose_eno() or fclose() returns 0. When an error occurs, it returns EOF.

Error Code

If an error occurs, the following error numbers are set in "eno":

  EAGAIN  Since O_NONBLOCK flag of the file descriptor for the stream is set and writing will 
have caused a wait, the function returned immediately

  EBADF File descriptor corresponding to the stream is invalid
  EFBIG Position exceeds the limit of file size
  EINTR Aborted by fs_break()

  EIO I/O error
  ENOSPC Insufficient device space

See Also

fopen

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 232



8.21 stdlib.h

The header stdlib.h defines the following macros and types.

Macros

NULL
  Null pointer constant. The macro shall expand to an integer constant expression 
  with the value 0 cast to type (void *).

RAND_MAX
  Maximum value returned by rand(); at least 32767.
  In the T2EX reference implementation, this shall be 0x7fffffff.

Types

div_t
  Structure type returned by the div() function.
  The structure consists of the quotient and remainder of int type.

ldiv_t
  Structure type returned by the ldiv() function.
  The structure consists of the quotient and remainder of long type.

lldiv_t
  Structure type returned by the lldiv() function.
  The structure consists of the quotient and remainder of long long type.

size_t
  Unsigned integer type of the result of the sizeof operator.

wchar_t
  Integer type whose range of values can represent distinct codes for all members of 
  the largest extended character set specified among the system locales.
  For instance, multi-byte characters are used in UTF-8 which represents the Unicode as 
a byte sequence. This type means the integer type capable of representing this maximum number of 
bytes.
  The null character shall have the code value zero.
  This is the type when each element in a character set (which may be multiple bytes in 
UTF-8) is used as a one-character integer character constant and is called "wide character type".

Functions

8.21.1 abort - Abnormal system termination

C Language Interface

#include <stdlib.h>

 void abort(void);

Description

The abort() terminates the system abnormally.
The standard behavior is that an error message is output and tm_monitor() is executed. However, by 
executing setabort(), the processing in case of system anomaly can be changed.

Return Parameter

None.

Error Code

None.

See Also

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 233



setabort

8.21.2 abs, labs, llabs - return a integer absolute value

C Language Interface

#include <stdlib.h>

  int abs(int i);
  long labs(long i);

 long long llabs(long long i);

Description

The abs(), labs(), and llabs() functions shall compute the absolute value of its integer parameter, i.
If the result cannot be represented, the behavior is undefined.

Return Parameter

The abs(), labs(), and llabs() function shall return the absolute value of its integer parameter.

Error Code

None.

See Also

fabs

8.21.3 atof - convert a string to a double-precision number

C Language Interface

#include <stdlib.h>

 double atof(const char *str);

Description

The atof() function shall convert a string str to a double-precision number
The call atof(str) shall be equivalent to:

 strtod(str,(char **)NULL),

except that the handling of errors may differ. If the value cannot be represented, the behavior is 
undefined.

Return Parameter

The atof() function shall return the converted value if the value can be represented.

Error Code

None.

See Also

strtod

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 234



8.21.4 atoi, atol, atoll - convert a string to an integer

C Language Interface

#include <stdlib.h>

  int atoi(const char *str);
  long atol(const char *str);

 long long atoll(const char *str);

Description

The atoi(), atol(), and atoll() functions shall convert a string str to an integer.
The call atoi(str) and atol(str) shall be equivalent to:

 (int) strtol(str, (char **)NULL, 10)

except that the handling of errors may differ. If the value cannot be represented, the behavior is 
undefined.

The call atoll(str) shall be equivalent to:

 strtoll(str, (char **)NULL, 10)

except that the handling of errors may differ. If the value cannot be represented, the behavior is 
undefined.

Return Parameter

These functions shall return the converted value if the value can be represented.

Error Code

None.

See Also

strtol

8.21.5 bsearch - Binary-tree search

C Language Interface

#include <stdlib.h>

 void *bsearch(const void *key, const void *base, size_t nel, size_t width,
   int (*compare)(const void *, const void *));

Description

The bsearch() function shall search an array of nel objects, the first element of which is pointed to 
by base, for an element that matches the object pointed to by key. The size of each element in the 
array is specified by width. If the nel argument has the value zero, the comparison function pointed 
to by compare shall not be called and no match shall be found.

The comparison function pointed to by compare shall be called with two arguments that point at the key
object and to an array element, in that order.

The application shall ensure that the comparison function pointed to by compare does not alter the 
contents of the array. The bsearch() may reorder elements of the array between calls to the comparison
function, but shall not alter the contents of any individual element.

When the same objects (consisting of width bytes, irrespective of their current positions in the 
array) are passed more than once to the comparison function, the results shall be consistent with one 
another. That is, the same object shall always compare the same way with the key.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 235



The application shall ensure that the comparison function returns an integer less than, equal to, or 
greater than 0 if the key object is considered, respectively, to be less than, to match, or to be 
greater than the array element. The application shall ensure that the array consists of all the 
elements of the array must be sorted according to the ascending order by the comparison function.

Return Parameter

The bsearch() function shall return a pointer to a matching member of the array, or a null pointer if 
no member match. If two or more members match, which member is returned is unspecified.

Error Code

None.

See Also

lsearch, qsort

8.21.6 calloc - Allocates user-level memory

C Language Interface

#include <stdlib.h>

 void *calloc(size_t nelem, size_t elsize);

Description

The calloc() function shall allocate unused memory area for an array of nelem elements each of whose 
size in bytes is elsize. The memory area shall be initialized to all zero bytes.

The protection level of the allocated memory area is user-level.

The pointer returned if the allocation succeeds shall be suitably aligned so that it may be assigned 
to a pointer to any type of object and then used to access such an object or an array of such objects 
in the memory area allocated (until the memory area is explicitly freed or reallocated). Each such 
allocation shall yield a pointer to an object disjoint from any other object. 

The pointer returned shall point to the start (lowest byte address) of the allocated memory area. If 
the memory area cannot be allocated, a null pointer shall be returned. If the size of the memory area 
requested is 0, the behavior is implementation-defined: the value returned shall be either a null 
pointer or a unique pointer.
In the T2EX reference implementation, NULL is returned if the area size is 0.

Return Parameter

Upon successful completion with both nelem and elsize non-zero, calloc() shall return a pointer to the
allocated memory area. If either nelem or elsize is 0, then either a null pointer or a unique pointer 
that can be successfully passed to free() shall be returned. Otherwise, it shall return a null 
pointer.

Error Code

None.

See Also

malloc, realloc, free

8.21.7 div, ldiv, lldiv - compute the quotient and remainder of an integer division

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 236



C Language Interface

#include <stdlib.h>

  div_t div(int n, int d);
  ldiv_t ldiv(long n, long d);

  lldiv_t lldiv(long long n, long long d);

Description

The div(), ldiv(), and lldiv() functions shall compute the quotient and remainder of the division of 
the numerator n by the denominator d. If the division is inexact, the resulting quotient is the 
integer of lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be 
represented, the behavior is undefined; otherwise, (quot * d + rem) shall equal numerator n.

Return Parameter

div(), ldiv(), and lldiv() functions shall return a structure of type div_t, ldiv_t, and lldivt 
respectively, comprising both the quotient and the remainder. 
These structures includes the following members, in any order:
   quot quotient: int, long, and long long types according to the function
   rem remainder: int, long, and long long types according to the function

Error Code

None.

See Also

ldiv

8.21.8 free - free allocated memory

C Language Interface

#include <stdlib.h>

 void free(void *ptr);

Description

The free() function shall cause the memory area pointed to by ptr to be deallocated; that is, made 
available for further allocation. If ptr is a null pointer, no action shall occur. Otherwise, if the 
argument does not match a pointer earlier returned by a function that allocates memory by calloc(), 
malloc(), and realloc(), or if the memory area has been deallocated by a call to free() or realloc(), 
the behavior is undefined.

Any use of a pointer that refers to freed memory area results in undefined behavior.

Return Parameter

The free() function shall not return a value.

Error Code

None.

See Also

calloc, malloc, realloc

8.21.9 malloc - Allocates user-level memory area

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 237



C Language Interface

#include <stdlib.h>

 void *malloc(size_t size);

Description

The malloc() function shall allocate unused memory area for an object whose size in bytes is specified
by size and whose value is unspecified.
The protection level of the allocated memory area is user-level.

The order and contiguity of memory area allocated by successive calls to malloc() is unspecified. 
The pointer returned if the allocation succeeds shall be suitably aligned so that it may be assigned 
to a pointer to any type of object and then used to access such an object in the memory area allocated
(until the memory area is explicitly freed or reallocated). Each such allocation shall yield a pointer
to an object disjoint from any other object. The pointer returned points to the start (lowest byte 
address) of the allocated memory area. 
If the memory area cannot be allocated, a null pointer shall be returned. If the size of the memory 
area requested is 0, the behavior is implementation-defined: the value returned shall be either a null
pointer or a unique pointer.

Return Parameter

Upon successful completion with size not equal to 0, malloc() shall return a pointer to the allocated 
memory area. If size is 0, either a null pointer or a unique pointer that can be successfully passed 
to free() shall be returned. Otherwise, it shall return a null pointer 
In the T2EX reference implementation, NULL is returned if size is 0.

Error Code

None.

See Also

calloc, realloc, free

8.21.10 qsort - sort a table of data

C Language Interface

#include <stdlib.h>

 void qsort(void *base, size_t nel, size_t width, int (*compar)(const void *, const void *));

Description

The qsort() function shall sort an array of nel objects, the first element of which is pointed to by 
base. The size of each object, in bytes, is specified by the width argument. If the nel argument has 
the value zero, the comparison function pointed to by compar shall not be called and no rearrangement 
shall take place.

The application shall ensure that the comparison function pointed to by compar does not alter the 
contents of the array. The qsort() may reorder elements of the array between calls to the comparison 
function, but shall not alter the contents of any individual element.

When the same objects (consisting of width bytes, irrespective of their current positions in the 
array) are passed more than once to the comparison function, the results shall be consistent with one 
another. That is, they shall define a total ordering on the array.

The contents of the array shall be sorted in ascending order according to a comparison function. The 
compar argument is a pointer to the comparison function, which is called with two arguments that point
to the elements being compared. The application shall ensure that the function returns an integer less
than, equal to, or greater than 0, if the first argument is considered respectively less than, equal 
to, or greater than the second. If two members compare as equal, their order in the sorted array is 
unspecified.

Return Parameter

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 238



The qsort() function shall not return a value.

Error Code

None.

8.21.11 rand_r - pseudo-random number generator

C Language Interface

#include <stdlib.h>

 int rand_r(unsigned int *seed);

Description

The rand() function shall compute a sequence of pseudo-random integers in the range [0, RAND_MAX].

If rand_r() is called with the same initial value for the object pointed to by seed and that object is
not modified between successive returns and calls to rand_r(), the same sequence shall be generated. 

Return Parameter

The rand_r() function shall return a pseudo-random integer.

Error Code

None.

See Also

drand48_r

8.21.12 drand48_r, lrand48_r, mrand48_r, srand48_r, seed48_r, lcong48_r - Generates 
uniformly-distributed pseudo random numbers

C Language Interface

#include <stdlib.h>

 double drand48_r(struct rand48_data *buffer);
 long lrand48_r(struct rand48_data *buffer);
 long mrand48_r(struct rand48_data *buffer);
 void srand48_r(long int seedval, struct rand48_data *buffer);
 void seed48_r(unsigned short int seed16v[3], struct rand48_data *buffer, unsigned short oldxi[3]);
 void lcong48_r(unsigned short int param[7], struct rand48_data *buffer);

Description

The drand48_r(), lrand48_r(), mrand48_r(), srand48_r(), seed48_r(), and lcong48_r() generate pseudo 
random numbers by linear congruential method and 48-bit integer calculation.

The drand48_r() returns a non-negative, double-precision floating point value uniformly distributed in
the [0.0, 1.0) range.
The lrand48_r() returns a non-negative integer uniformly distributed in the [0, 2^31) range ('^' 
represents the power).
The mrand48_r() returns a signed integer uniformly distributed in the [-2^31, 2^31) range ('^' 
represents the power).

The srand48_r(), seed48_r() and lcong48_r() are functions to initialize the "rand48_data" structure 
before one of them calls drand48_r(), lrand48_r(), or mrand48_r().

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 239



The drand48_r(), lrand48_r(), mrand48_r(), srand48_r(), seed48_r(), and lcong48_r() operate by 
generating the 48-bit integer column Xi as the following linear congruent expression.
For the nth X, the (n+1)th X is obtained by the following expression.

 Xn+1 = (a * Xn + c) mod m     n>=0

The parameter m is 2^48, and thus 48-bit integer calculation is performed ('^' represents the power).
Unless lcong48_r() is called, the following values are used for the multiplier a and the addend c.

 a = 0x5DEECE66D
 c = 0xB

The value returned by drand48_r(), lrand48_r(), or mrand48_r() is obtained by first generating the 
next 48-bit Xi in the integer column.
Next, a number whose number of bits is appropriate for the type of return code is copied from Xi 
starting from the most significant bit and converted to the return code type.

The structure rand48_data includes the following data.

struct rand48_data {
    unsigned short xi[3]; /* Current Xi value : xi[0] is the least significant 16 bits 
*/
   unsigned short mult[3]; /* Multiplier a : mult[0] is the least significant 16 bits */
    unsigned short add; /* Addend c */
   /* Implementation-dependent element */ /* The T2EX reference implementation does not 
have this element */
};

The calculation of random numbers uses the above rand48_data.
Therefore, the rand48_data structure needs to be initialized first using the srand48_r(), seed48_r(), 
or lcong48_r().

The drand48_r(), lrand48_r(), and mrand48_r() use the Xi, m , and a given by rand48_data to calculate 
Xi+1 = (a * Xi + c ) mod.

The generated last 48-bit value is defined to be the next XI and stored in xi[3] of the buffer.

The initialization function srand48_r() initializes the Xi value of rand48_data as follows.
The higher 32 bits of xi are set to the lower 32 bits of seedval.
The lower 16 bits of xi (i.e., xi[0]) are set to 0x330E.
The "mult" and "add" are set to the above default values.

The initialization function seed48_r() sets the Xi value of rand48_data to the value specified by 
seed16v[3].
The lower 16 bits of Xi (xi[0]) are set to the lower 16 bits of seed16v[0].
The middle 16 bits of Xi (xi[1]) are set to the lower 16 bits of seed16v[1].
The higher 16 bits of Xi (xi[2]) are set to the lower 16 bits of seed16v[2].
In addition, the previous Xi value (before being called) is copied to the area specified by oldxi.
The "mult" and "add" are set to the above default values.

The initialization function lcong48_r() sets the initial number Xi, multiplier a, and addend c of 
rand48_data to the specified value.
 The param[0-2] specifies Xi, the param[3-5] specifies multiplier a, and the param[6] specifies 16-bit
addend c.

Return Parameter

The drand48_r(), lrand48_r(), mrand48_r(), srand48_r(), seed48_r(), and lcong48_r() return the values 
mentioned above.

Error Code

None.

See Also

rand_r

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 240



8.21.13 realloc - Reallocates user-level memory

C Language Interface

#include <stdlib.h>

 void *realloc(void *ptr , size_t size);

Description

The realloc() resizes the memory object of user-level protection pointed to by "ptr" to the size 
specified by "size".
The memory object content is maintained unless it is resized smaller than whichever smaller of the 
previous size or "size".
If the memory object needs to be moved, the area previously allocated to the object is released.
If the size is enlarged, the content of the newly allocated portion of the object is undefined.
If the size is 0 and ptr is not NULL, the area pointed to by ptr is released.
If no area is allocated, the object remains as is without being released.

If ptr is NULL, realloc() is equivalent to malloc(size).

If ptr is not the return code of the previously executed calloc(), malloc(), or realloc(), or if the 
area is released by free() or realloc(), the behavior shall be undefined.

The pointer returned at a successful allocation is properly aligned. This pointer can always access 
the array of objects in the allocated area (until the area is released or reallocated) regardless of 
the type of object pointer it is substituted to.
The pointer by this allocation is a pointer to the object distinguished from any other objects.
The returned pointer is the beginning of the allocated area.
NULL is returned if no area is allocated.
The protection level of the allocated memory area is user-level.

Return Parameter

The realloc() returns a pointer to the allocated area if "size" is not 0 and allocation is successful.
If "size" is 0, NULL or a unique pointer that can be passed to free() is returned.
If memory is insufficient, NULL is returned.
In the T2EX reference implementation, NULL is returned if size is 0.

Error Code

None.

See Also

calloc, malloc, free

8.21.14 realpath_eno - Normalizes path name

C Language Interface

#include <stdlib.h>

 char *realpath_eno(const char *path, char *resolved_path, errno_t* eno);

Description

The realpath_eno() generates an absolute path name that does not contain '.', '..', or extra '/' based
on the string of the path name specified by "path".
The generated path name is stored as a null-terminated string in an area pointed to by resolved_path 
whose maximum size is PATH_MAX bytes.
If resolved_path is NULL, the generated path name is stored as a string ending with a null character 
in the buffer allocated by malloc().

If an error occurs and "eno" is not NULL, realpath_eno() stores the error number in the area pointed 
to by "eno".

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 241



Return Parameter

If successful, realpath_eno() returns the pointer to the buffer containing the generated path name.
If failed, it returns NULL.

If resolved_path is NULL, the pointer returned by realpath_eno() can be passed to free().
If resolved_path is not NULL and realpath_eno() fails, the content of the buffer pointed to by 
resolved_path shall be undefined.

Error Code

The following error numbers may be stored in the area pointed to by eno.

  EINVAL Either path or resolved_path is NULL
  EIO I/O error

 ENAMETOOLONG File name is too long
   - The directory or file name part in "path" is too long (NAME_MAX at maximum).
   - Whole pathname length is too long (PATH_MAX at maximum).

  ENOENT File specified by "path" does not exist
  ENOTDIR "path" contains something other than a directory in the prefix part

See Also

realpath2_eno

8.21.15 realpath2_eno - Normalizes path name

C Language Interface

#include <stdlib.h>

 char *realpath2_eno(const char *path1, const char* path2, char *resolved_path, errno_t *eno);

Description

The realpath2() regards path1 as the current working directory and generates an absolute path name 
that does not contain '.', '..', or extra '/' based on the string of the path name specified by path2.
The generated path name is stored as a null-terminated string in an area pointed to by resolved_path 
whose maximum size is PATH_MAX bytes.
If resolved_path is NULL, the generated path name is stored as a string ending with a null character 
in the buffer allocated by malloc().
If eno is not NULL in case of an error, the error number is stored in the area pointed to by eno.

Return Parameter

If successful, realpath2_eno() returns the pointer to the buffer containing the generated path name.
If failed, it returns NULL.

If resolved_path is NULL, the pointer returned by realpath2_eno() can be passed to free().
If resolved_path is not NULL and realpath2_eno() fails, the content of the buffer pointed to by 
resolved_path shall be undefined.

Error Code

The following error numbers may be stored in the area pointed to by eno.

  EINVAL Either path or resolved_path is NULL
  EIO I/O error

 ENAMETOOLONG File name is too long
   - Directory or file name part in pathname is too long (NAME_MAX at maximum)
   - Whole pathname length is too long (PATH_MAX at maximum)

  ENOENT File specified by "path" does not exist
  ENOTDIR "path" contains something other than a directory in the prefix part

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 242



8.21.16 setabort - Registers the function that processes abnormal system termination

C Language Interface

#include <stdlib.h>

 int setabort(void (*func)(void));

Description

This registers the function func executed at the abnormal system termination generated by abort().
The already registered functions are released making only the last registered function valid.

If func is NULL, it means that the library standard abnormality handling function is to be registered.
The standard abnormality handling function outputs an error message and executes tm_monitor().

Return Parameter

The setabort() is always successful and returns 0.

Error Code

None.

See Also

abort

Additional Notes

This function is a T2EX-specific function.

8.21.17 strtod, strtof, strtold - Converts from string to double, float, and long double type number

C Language Interface

#include <stdlib.h>

  double strtod(const char *nptr, char **endptr);
  float strtof(const char *nptr, char **endptr);

 long double strtold(const char *nptr, char **endptr);

Description

These functions shall convert the initial portion of the string pointed to by nptr to double, float, 
and long double representation, respectively. 

First, they decompose the input string into three parts:
(1) An initial, possibly empty, sequence of white-space characters (as specified by isspace())
(2) A subject sequence interpreted as a floating-point constant or representing infinity or NaN
(3) A final string of one or more unrecognized characters, including the terminating NUL character of 
the input string

Then these API calls shall attempt to convert the subject sequence to a floating-point number, and 
return the result.

The expected form of the subject sequence is an optional '+' or '-' sign, then one of the following:

 - A non-empty sequence of decimal digits optionally containing a radix character; then an optional 
exponent part

 - A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally containing a radix 
character; then an optional binary exponent part

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 243



 - One of INF or INFINITY, ignoring case

 - One of NAN or NAN(n-char-sequence), ignoring case in the NAN part,

An exponent part has the form of one of the following:
 - The decimal exponent part has a following form:
 'e' or 'E', followed by an optional '+' or '-' sign, then a non-empty numeric string that 
represents the exponent value.
 The exponent value means how many power of 10.
 - The binary exponent part has a following form:
 'p' or 'P', followed by an optional '+' or '-' sign, then a non-empty numeric string that 
represents the exponent value.
 The exponent value means how many power of 2.

The subject sequence is defined as the longest initial subsequence of the input string, starting with 
the first non-white-space character, that is of the expected form. The subject sequence contains no 
characters if the input string is not of the expected form.

A character sequence INF or INFINITY shall be interpreted as an infinity, if representable in the 
return type, else as if it were a floating constant that is too large for the range of the return 
type.

A character sequence NAN or NAN(n-char-sequence) shall be interpreted as a quiet NaN, if supported in 
the return type, else as if it were a subject sequence part that does not have the expected form.

A pointer to the final string is stored in the memory area pointed to by endptr, if endptr is not a 
null pointer.

If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the value resulting 
from the conversion is correctly rounded.

If the subject sequence is empty or does not have the expected form, no conversion shall be performed;
the value of nptr is stored in the memory area pointed to by endptr, if endptr is not a null pointer.

Return Parameter

Upon successful completion, these functions shall return the converted value.
If no conversion could be performed, 0 shall be returned.

If the correct value is outside the range of representable values, +/-HUGE_VAL, +/-HUGE_VALF, or 
+/-HUGE_VALL shall be returned (according to the sign of the value).

If the correct value would cause an underflow, a value whose magnitude is no greater than the smallest
normalized positive number in the return type (usually 0) shall be returned.

Error Code

None.

See Also

strtol, fscanf, isspace

8.21.18 strtol, strtoll - convert a string to a long integer

C Language Interface

#include <stdlib.h>

  long strtol(const char *str, char **endptr, int base);
 long long strtoll(const char *str, char **endptr, int base);

Description

These functions shall convert the initial portion of the string pointed to by str to a type long and 
long long representation, respectively. 

First, they decompose the input string into three parts:

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 244



(1) An initial, possibly empty, sequence of white-space characters (as specified by isspace())
(2) A subject sequence interpreted as an integer represented in some radix determined by the value of 
base
(3) A final string of one or more unrecognized characters, including the terminating NUL character of 
the input string.

Then they shall attempt to convert the subject sequence to an integer, and return the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant, 
octal constant, or hexadecimal constant, any of which may be preceded by a '+' or '-' sign. 
 - A decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. 
 - An octal constant consists of the prefix '0' optionally followed by a sequence of the digits '0' to
'7' only. 
 - A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the decimal digits
and letters 'a' (or 'A') to 'f' (or 'F') with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence of 
letters and digits representing an integer with the radix specified by base, optionally preceded by a 
'+' or '-' sign. 
The letters from 'a' (or 'A') to 'z' (or 'Z') inclusive are ascribed the values 10 to 35; only letters
whose ascribed values are less than that of base are permitted. 
If the value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and
digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting with 
the first non-white-space character that is of the expected form. The subject sequence shall contain 
no characters if the input string is empty or consists entirely of white-space characters, or if the 
first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of characters 
starting with the first digit shall be interpreted as an integer constant. 
If the subject sequence has the expected form and the value of base is between 2 and 36, it shall be 
used as the base for conversion, ascribing to each letter its value as given above. 
If the subject sequence begins with a minus-sign, the value resulting from the conversion shall be 
negated. 

A pointer to the final string shall be stored in the object pointed to by endptr, fi endptr is not a 
null pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed; the 
value of str is stored in the object pointed to by endptr, if endptr is not a null pointer.

Return Parameter

Upon successful completion, these functions shall return the converted value, if any. 

If no conversion could be performed, 0 shall be returned.

If the correct value is outside the range of representable values, LONG_MIN, LONG_MAX, LLONG_MIN, or 
LLONG_MAX shall be returned (according to the sign of the value).

Error Code

None.

See Also

strtod, fscanf, isalpha

8.21.19 strtoul, strtoull - convert a string to an unsigned long integer

C Language Interface

#include <stdlib.h>

  unsigned long strtoul(const char *str, char **endptr, int base);
 unsigned long long strtoull(const char *str, char **endptr, int base);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 245



Description

These functions shall convert the initial portion of the string pointed to by str to a type unsigned 
long and unsigned long long representation, respectively. 
First, they decompose the input string into three parts:
(1) An initial, possibly empty, sequence of white-space characters (as specified by isspace())
(2) A subject sequence interpreted as an integer represented in some radix determined by the value of 
base
(3) A final string of one or more unrecognized characters, including the terminating NUL character of 
the input string

Then they shall attempt to convert the subject sequence to an unsigned integer, and return the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant, 
octal constant, or hexadecimal constant, any of which may be preceded by a '+' or '-' sign. 
 - A decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. 
 - An octal constant consists of the prefix '0' optionally followed by a sequence of the digits '0' to
'7' only. 
 - A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the decimal digits
and letters 'a' (or 'A') to 'f' (or 'F') with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence of 
letters and digits representing an integer with the radix specified by base, optionally preceded by a 
'+' or '-' sign. 
The letters from 'a' (or 'A') to 'z' (or 'Z') inclusive are ascribed the values 10 to 35; only letters
whose ascribed values are less than that of base are permitted. 
If the value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and
digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting with 
the first non-white-space character that is of the expected form. The subject sequence shall contain 
no characters if the input string is empty or consists entirely of white-space characters, or if the 
first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of characters 
starting with the first digit shall be interpreted as an integer constant. If the subject sequence has
the expected form and the value of base is between 2 and 36, it shall be used as the base for 
conversion, ascribing to each letter its value as given above. If the subject sequence begins with a 
minus-sign, the value resulting from the conversion shall be negated. 

A pointer to the final string shall be stored in the object pointed to by endptr, if endptr is not a 
null pointer.

If the subject sequence is empty or does not have the expected form, no conversion shall be performed;
the value of str shall be stored in the object pointed to by endptr, if endptr is not a null pointer.

Return Parameter

Upon successful completion, these functions shall return the converted value, if any. 

If no conversion could be performed, 0 shall be returned

If the correct value is outside the range of representable values, ULONG_MAX or ULLONG_MAX shall be 
returned.

Error Code

None.

See Also

strtod, strtol, fscanf, isalpha

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 246



8.22 string.h

The header string.h defines the following functions that manipulate strings.
T2EX excludes the strerror and strtok functions which are non-thread-safe for the standard C library 
string operation function group.

Functions

8.22.1 memccpy - copy bytes in memory

C Language Interface

#include <string.h>

 void *memccpy(void *dst, const void *src, int c, size_t n);

Description

The memccpy() function shall copy bytes from memory area src into dst, stopping after the first 
occurrence of byte c (converted to an unsigned char) is copied, or after n bytes are copied, whichever
comes first. If copying takes place between objects that overlap, the behavior is undefined.

Return Parameter

The memccpy() function shall return a pointer to the byte after the copy of c in dst, or a null 
pointer if c was not found in the first n bytes of src.

Error Code

None.

See Also

bcopy, memmove, memccpy

8.22.2 memchr - find byte in memory

C Language Interface

#include <string.h>

 void *memchr(const void *s, int c, size_t n);

Description

The memchr() function shall locate the first occurrence of c (converted to an unsigned char) in the 
initial n bytes (each interpreted as unsigned char) of the object pointed to by s.

Return Parameter

The memchr() function shall return a pointer to the located byte, or a null pointer if the byte does 
not occur in the object.

Error Code

None.

See Also

strchr, index

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 247



8.22.3 memcmp - compare bytes in memory

C Language Interface

#include <string.h>

 int memcmp(const void *s1, const void *s2, size_t n);

Description

The memcmp() function shall compare the first n bytes (each interpreted as unsigned char) of the 
object pointed to by s1 to the first n bytes of the object pointed to by s2.

Return Parameter

The memcmp() function shall return an integer greater than, equal to, or less than 0, if the object 
pointed to by s1 is greater than, equal to, or less than the object pointed to by s2, respectively.

Error Code

None.

See Also

strcmp

8.22.4 memcpy - copy bytes in memory

C Language Interface

#include <string.h>

 void *memcpy(void *dst, const void *src, size_t n);

Description

The memcpy() function shall copy n bytes from the object pointed to by src into the object pointed to 
by dst. If copying takes place between objects that overlap, the behavior is undefined.

Return Parameter

The memcpy() function shall return dst.

Error Code

None.

See Also

bcopy, memmove

8.22.5 memmove - copy bytes in memory with overlapping areas

C Language Interface

#include <string.h>

 void *memmove(void *dst, const void *src, size_t n);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 248



Description

The memmove() function shall copy n bytes from the object pointed to by src into the object pointed to
by dst. Copying takes place as if the n bytes from the object pointed to by src are first copied into 
a temporary array of n bytes that does not overlap the objects pointed to by dst and src, and then the
n bytes from the temporary array are copied into the object pointed to by dst.

Return Parameter

The memmove() function shall return dst.

Error Code

None.

See Also

bcopy, memcpy

8.22.6 memset - set bytes in memory

C Language Interface

#include <string.h>

 void *memset(void *s, int c, size_t n);

Description

The memset() function shall copy c (converted to an unsigned char) into each of the first n bytes of 
the object pointed to by s.

Return Parameter

The memset() function shall return s.

Error Code

None.

See Also

bzero

8.22.7 strcat - concatenate two strings

C Language Interface

#include <string.h>

 char *strcat(char *dst, const char *src);

Description

The strcat() function shall append a copy of the string pointed to by src (including the terminating 
NUL character) to the end of the string pointed to by dst. The initial byte of src overwrites the NUL 
character at the end of dst. If copying takes place between objects that overlap, the behavior is 
undefined.

Return Parameter

The strcat() function shall return dst.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 249



Error Code

None.

See Also

strncat, strcpy, strncpy

8.22.8 strchr - string scanning operation

C Language Interface

#include <string.h>

 char *strchr(const char *s, int c);

Description

The strchr() function shall locate the first occurrence of c (converted to a char) in the string 
pointed to by s. The terminating NUL character is considered to be part of the string.

Return Parameter

Upon completion, strchr() shall return a pointer to the searched character c, or a null pointer if the
character c was not found.

Error Code

None.

See Also

strrchr, memchr, index

8.22.9 strcmp - compare two strings

C Language Interface

#include <string.h>

 int strcmp(const char *s1, const char *s2);

Description

The strcmp() function shall compare the string pointed to by s1 to the string pointed to by s2.

Return Parameter

Upon completion, strcmp() shall return an integer greater than, equal to, or less than 0, if the 
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2, 
respectively.

Error Code

None.

See Also

bcmp, memcmp, strncmp

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 250



8.22.10 strcoll - string comparison using collating information

C Language Interface

#include <string.h>

 int strcoll(const char *s1, const char *s2);

Description

The strcoll() functions shall compare the string pointed to by s1 to the string pointed to by s2, both
interpreted as appropriate to the collation order of the system locale.

Return Parameter

Upon successful completion, strcoll() shall return an integer greater than, equal to, or less than 0, 
according to whether the string pointed to by s1 is greater than, equal to, or less than the string 
pointed to by s2 when both are interpreted as appropriate to the system locale.

Error Code

None.

See Also

bcmp, memcmp, strcmp

8.22.11 strcpy - copy a string and return a pointer to the end of the result

C Language Interface

#include <string.h>

 char *strcpy(char *dst, const char *src);

Description

The strcpy() function shall copy the string pointed to by src (including the terminating NUL 
character) into the array pointed to by dst.
If copying takes place between objects that overlap, the behavior is undefined.

Return Parameter

The strcpy() function shall return dst.

Error Code

None.

See Also

bcopy, memcpy, memmove, strncpy

8.22.12 strcspn - get the length of a complementary substring

C Language Interface

#include <string.h>

 size_t strcspn(const char *s1, const char *s2);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 251



Description

The strcspn() function shall compute the length (in bytes) of the maximum initial segment of the 
string pointed to by s1 which consists entirely of bytes not from the string pointed to by s2.

Return Parameter

The strcspn() function shall return the length of the computed segment of the string pointed to by s1.

Error Code

None.

See Also

strspn, memchr, index, strchr, strstr

8.22.13 strdup - duplicate a specific number of bytes from a string

C Language Interface

#include <string.h>

 char *strdup(const char *s);

Description

The strdup() function shall return a pointer to a new string, which is a duplicate of the string 
pointed to by s. The returned pointer can be passed to free(). A null pointer is returned if the new 
string cannot be created.

Return Parameter

The strdup() function shall return a pointer to a new string on success. Otherwise, it shall return a 
null pointer.

Error Code

None.

See Also

malloc, calloc, realloc, free

8.22.14 strlen - get length of fixed size string

C Language Interface

#include <string.h>

 size_t strlen(const char *s);

Description

The strlen() function shall compute the number of bytes in the string to which s points, not including
the terminating NUL character.

Return Parameter

The strlen() function shall return the length of s.

Error Code

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 252



None.

8.22.15 strncat - concatenate a string with part of another

C Language Interface

#include <string.h>

 char *strncat(char *dst, const char *src, size_t n);

Description

The strncat() function shall append not more than n bytes (a NUL character and bytes that follow it 
are not appended) from the array pointed to by src to the end of the string pointed to by dst. The 
initial byte of src overwrites the NUL character at the end of dst. A terminating NUL character is 
always appended to the result. If copying takes place between objects that overlap, the behavior is 
undefined.

Return Parameter

The strncat() function shall return dst.

Error Code

None.

See Also

strcat, strcpy, strncpy

8.22.16 strncmp - compare part of two strings

C Language Interface

#include <string.h>

 int strncmp(const char *s1, const char *s2, size_t n);

Description

The strncmp() function shall compare not more than n bytes (bytes that follow a NUL character are not 
compared) from the array pointed to by s1 to the array pointed to by s2.

Return Parameter

Upon successful completion, strncmp() shall return an integer greater than, equal to, or less than 0, 
if the possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the 
possibly null-terminated array pointed to by s2 respectively.

Error Code

None.

See Also

strcmp, memcmp, bcmp

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 253



8.22.17 strncpy - copy fixed length string

C Language Interface

#include <string.h>

 char *strncpy(char *dst, const char *src, size_t n);

Description

The strncpy() function shall copy not more than n bytes (bytes that follow a NUL character are not 
copied) from the array pointed to by src to the array pointed to by dst.

If the length of the string pointed to by src is shorter than n bytes, NULL characters shall be 
appended to tje copy in the array pointed to by dst, until n bytes in all are written.

If copying takes place between objects that overlap, the behavior is undefined.

Return Parameter

The strncpy() function shall return dst.

Error Code

None.

See Also

strcpy, bcopy, memcpy, memmove

8.22.18 strpbrk - scan a string for a byte

C Language Interface

#include <string.h>

 char *strpbrk(const char *s1, const char *s2);

Description

The strpbrk() function shall locate the first occurrence in the string pointed to by s1 of any 
character from the string pointed to by s2.

Return Parameter

Upon successful completion, strpbrk() shall return a pointer to the character or a null pointer if no 
character from s2 occurs in s1.

Error Code

None.

See Also

strchr, strrchr, strspn

8.22.19 strrchr - string scanning operation

C Language Interface

#include <string.h>

 char *strrchr(const char *s, int c);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 254



Description

The strrchr() function shall locate the last occurrence of c (converted to a char) in the string 
pointed to by s. The terminating NUL character is considered to be part of the string.

Return Parameter

Upon successful completion, strrchr() shall return a pointer to the byte or a null pointer if c does 
not occur in the string.

Error Code

None.

See Also

strchr, index, rindex

8.22.20 strspn - get length of a substring

C Language Interface

#include <string.h>

 size_t strspn(const char *s1, const char *s2);

Description

The strspn() function shall compute the length (in bytes) of the maximum initial segment of the string
pointed to by s1 which consists entirely of bytes from the string pointed to by s2.

Return Parameter

The strspn() function shall return the computed length.

Error Code

None.

See Also

strcspn, strchr, strpbrk, strstr

8.22.21 strstr - find a substring

C Language Interface

#include <string.h>

 char *strstr(const char *s1, const char *s2);

Description

The strstr() function shall locate the first occurrence in the string pointed to by s1 of the sequence
of bytes (excluding the terminating NUL character) in the string pointed to by s2.

Return Parameter

Upon successful completion, strstr() shall return a pointer to the located string or a null pointer if
the string is not found.

Error Code

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 255



None.

See Also

strspn, strpbrk

8.22.22 strtok_r - split string into tokens

C Language Interface

#include <string.h>

 char *strtok_r(char *str, const char *sep, char **lasts);

Description

The strtok_r() function considers the null-terminated string str as a sequence of zero or more text 
tokens separated by spans of one or more characters from the separator string sep. The argument lasts 
points to a user-provided pointer which points to stored information necessary for strtok_r() to 
continue scanning the same string.

In the first call to strtok_r(), str points to a null-terminated string, sep to a null-terminated 
string of separator characters, and the value pointed to by lasts is ignored. The strtok_r() function 
shall return a pointer to the first character of the first token, write a null character into str 
immediately following the returned token, and update the pointer to which lasts points.

In subsequent calls, str must be a null pointer and lasts shall be unchanged from the previous call so
that subsequent calls shall move through the string str, returning successive tokens until no tokens 
remain. The separator string sep may be different from call to call. When no token remains in the 
string, a null pointer shall be returned. 

Return Parameter

The strtok_r() function shall return a pointer to the token found, or a null pointer when no token is 
found.

Error Code

None.

8.22.23 strxfrm - string transformation

C Language Interface

#include <string.h>

 size_t strxfrm(char *dst, const char *src, size_t n);

Description

The strxfrm() function shall transform the string pointed to by src and place the resulting string 
into the area pointed to by dst. 

The transformation is such that if strcmp() is applied to the two transformed strings, it shall return
a value greater than, equal to, or less than 0, corresponding to the result of strcoll() respectively,
applied to the two original strings. 

No more than n bytes are placed into the resulting array pointed to by dst, including the terminating 
NUL character. If n is 0, dst is permitted to be a null pointer. 

If copying takes place between objects that overlap, the behavior is undefined.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 256



Return Parameter

Upon successful completion, strxfrm() shall return the length of the transformed string (not including
the terminating NUL character). 
If the value returned is n or more, the contents of the array pointed to by dst are unspecified.

Error Code

None.

See Also

strncpy

8.22.24 strerror_r - get error message string

C Language Interface

#include <string.h>

 int strerror_r(int errnum, char *buf, size_t buflen);

Description

The strerror_r() function shall map the error number in errnum to a error message string in system 
locale and shall return the string in the buffer pointed to by buf, with length buflen.

Return Parameter

Upon successful completion, strerror_r() shall return 0. Otherwise, an error number shall be returned 
to indicate the error.

Error Code

  EINVAL The value of errnum is not a valid error number.
  ERANGE Insufficient storage was supplied via buf and buflen to contain the 

  generated message string.

8.22.25 strercd_r - get error message string for error code

C Language Interface

#include <string.h>

 int strercd_r(ER ercd, char *buf, size_t buflen);

Description

The strercd_r() function shall map the error code in ercd to a error message string in system locale 
and shall return the string in the buffer pointed to by buf, with length buflen.

Return Parameter

Upon successful completion, strercd_r() shall return 0. Otherwise, an error number shall be returned 
to indicate the error.

Error Code

  EINVAL The value of ercd is not a valid error code.
  ERANGE Insufficient storage was supplied via buf and buflen to contain the 

  generated message string.

Additional Notes

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 257



strercd_r() is a T2EX-specific function.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 258



8.23 strings.h

The header strings.h defines the following functions.

Those functions that have been deleted from the latest POSIX (IEEE Std 1003.1-2008) specification but 
are still used generally in UNIX operating systems, are provided without being deleted for 
portability.
These functions are commented as "/* LEGACY */".

Functions

8.23.1 bcmp - compare byte sequences

C Language Interface

#include <strings.h>

 int bcmp(const void *s1, const void *s2, size_t n); /* LEGACY */

Description

The bcmp() function shall compare the first n bytes of the object pointed to by s1 to the first n 
bytes of the object pointed to by s2.
If they are equal, and in particular if n is zero, bcmp() returns 0.

Return Parameter

bcmp() function returns 0 if the n byte sequences are equal, otherwise a nonzero result is returned.

Error Code

None.

See Also

memcmp, strcmp

Additional Notes

This function is removed in POSIX(IEEE Std 1003.1-2008).
It is desirable to use memcmp() instead.

8.23.2 bcopy - copy byte sequence

C Language Interface

#include <strings.h>

 void bcopy(const void *dst, void *src, size_t n); /* LEGACY */

Description

The bcopy() function shall copy n bytes from the object pointed to by src into the object pointed to 
by dst. 
If copying takes place between objects that overlap, the result is correct.

Return Parameter

None.

Error Code

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 259



None.

See Also

memmove, memcpy, strcpy

Additional Notes

This function is removed in POSIX(IEEE Std 1003.1-2008).
It is desirable to use memmove() instead.

8.23.3 bzero - write zero-valued bytes in memory

C Language Interface

#include <strings.h>

 void bzero(void *s, size_t n); /* LEGACY */

Description

The bzero() function shall copy zero into each of the first n bytes of the object pointed to by s.

Return Parameter

None.

Error Code

None.

See Also

memset

Additional Notes

This function is removed in POSIX(IEEE Std 1003.1-2008).
It is desirable to use memset() instead.

8.23.4 ffs - find first set bit

C Language Interface

#include <strings.h>

 int ffs(int i);

Description

The ffs() function shall find the first bit set (beginning with the least significant bit) in i, and 
return the index of that bit. Bits are numbered starting at one (the least significant bit).

Return Parameter

ffs() function shall return the index of the first bit set. If i is 0, then ffs() shall return 0.

Error Code

None.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 260



8.23.5 index, rindex - string scanning operation

C Language Interface

#include <strings.h>

  char *index(const char *s, int c); /* LEGACY */
  char *rindex(const char *s, int c); /* LEGACY */

Description

The index() function shall locate the first occurrence of c (converted to a char) in the string 
pointed to by s. 
The rindex() function shall locate the last occurrence of c (converted to a char) in the string 
pointed to by s. 
The terminating NUL character is considered to be part of the string.

Return Parameter

Upon successful completion, index() and rindex() shall return a pointer to the byte or a null pointer 
if c does not occur in the string.

Error Code

None.

See Also

strchr, strrchr

Additional Notes

These functions are removed in POSIX(IEEE Std 1003.1-2008).
It is desirable to use strchr() or strrchr() instead.

8.23.6 strcasecmp, strncasecmp - case-insensitive string comparisons

C Language Interface

#include <strings.h>

 int strcasecmp(const char *s1, const char *s2);
 int strncasecmp(const char *s1, const char *s2, size_t n);

Description

The strcasecmp() functions shall compare, while ignoring differences in case, the string pointed to by
s1 to the string pointed to by s2.
The strncasecmp() functions shall compare, while ignoring differences in case, not more than n bytes 
from the string pointed to by s1 to the string pointed to by s2.
Comparison is performed case-insensitively and in the character collation order based on the system 
locale.

Return Parameter

Upon completion, strcasecmp() and strncasecmp() shall return an integer greater than, equal to, or 
less than 0, if the string pointed to by s1 is, ignoring case, greater than, equal to, or less than 
the string pointed to by s2, respectively.

Error Code

None.

See Also

strcmp, strncmp

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 261



8.24 time.h

The header time.h defines the following time-related types and functions.

The time zone referred to by the following functions is always the system time zone.
The system time zone will never be set automatically.
Unless the system time zone has been set by executing the calendar function dt_setsystz() in advance, 
the initial value of the system time zone takes the implementation-dependent value.

The following types are defined.

"struct tm" structure
  This structure represents the calendar time by elements.
  See the "struct tm" structure in the calendar function.

time_t
  Integer type representing time in seconds.
  Used to represent the calendar time (total elapsed seconds from 00:00:00 Coordinated 
Universal Time (UTC), January 1, 1970).

Functions

8.24.1 asctime_r - Converts from time to string

C Language Interface

#include <time.h>

 char *asctime_r(const struct tm *tm, char *buf);

Description

The asctime_r() converts the time represented by elements in the structure pointed to by tm to the 
string format.
The string format is "Day of the week Month Day Hour:Minute:Second The dominical year" as below.

 "Thu Dec 16 09:24:58 2011\n"

The string is added '\n' at its end.

The day of the week uses "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", and "Sat".
The month uses "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", and "Dec".

This stores the converted string in the area pointed to by buf (requires 26 bytes or more) and returns
buf.
The behavior shall be undefined if the element-separated day of the week (tm_wday) or month (tm_mon) 
in tm is an out-of-range value, if (tm_year - 1900) exceeds INT_MAX, or if the result length including
the terminating null character exceeds 26.

Return Parameter

If successful, asctime_r() returns buf.
If conversion is not possible, NULL is returned.

Error Code

None

See Also

ctime_r, gmtime_r, localtime_r

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 262



8.24.2 ctime_r - Converts from calendar time to string

C Language Interface

#include <time.h>

 char *ctime_r(const time_t *clock, char *buf);

Description

The ctime_r() converts the calendar time pointed to by "clock" (total elapsed seconds from 00:00:00 
UTC, January 1, 1970) to a string format as the local time in the system time zone and stores it in 
the area pointed to by buf (requires 26 bytes or more).

For string format, see asctime_r().

Return Parameter

If successful, ctime_r() returns buf.
If conversion is not possible, NULL is returned.

Error Code

None

See Also

asctime_r, gmtime_r, localtime_r

8.24.3 gmtime_r_eno, gmtime_r - Converts from calendar time to element-separated UTC time

C Language Interface

#include <time.h>

 struct tm *gmtime_r_eno(const time_t *clock, struct tm *result, errno_t *enop);
 struct tm *gmtime_r(const time_t *clock, struct tm *result);

Description

The gmtime_r_eno() and gmtime_r() convert the calendar time pointed to by clock (total elapsed seconds
from 00:00:00 UTC, January 1, 1970) to the element-separated time in the Coordinated Universal 
Time(UTC) and store it in the struct tm type data pointed to by result.
If conversion is not possible, the error number is stored in the area pointed to by enop.
If enop is NULL, the error number is not stored.

The gmtime_r() is equivalent to gmtime_r_eno(clock, tm, NULL).

Return Parameter

If successful, gmtime_r_eno() and gmtime_r() returns result.
If conversion is not possible, the error number is stored in the area pointed to by enop and NULL is 
returned.

Error Code

Error number returned to the area pointed to by enop:
  EOVERFLOW The result is not in the representable range

See Also

asctime_r, ctime_r, localtime_r

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 263



8.24.4 localtime_r_eno, localtime_r - Converts from calendar time to element-separated local time

C Language Interface

#include <time.h>

 struct tm *localtime_r_eno(const time_t *clock, struct tm *result, errno_t *enop);
 struct tm *localtime_r(const time_t *clock, struct tm *result);

Description

The localtime_r_eno() converts the calendar time pointed to by clock (total elapsed seconds from 
00:00:00 UTC, January 1, 1970) to the element-separated local time in the system time zone, stores it 
in the struct tm type data pointed to by result, and returns the result.
If conversion is not possible, the error number is stored in the area pointed to by enop.
If enop is NULL, the error number is not stored.

The localtime_r() is equivalent to localtime_r_eno(clock, result, NULL).

Return Parameter

If successful, localtime_r_eno() and localtime_r() returns result.
If conversion is not possible, NULL is returned.

Error Code

Error number returned to the area pointed to by enop:
  EOVERFLOW The result is not in the representable range

See Also

asctime_r, ctime_r, gmtime_r

8.24.5 mktime_eno, mktime - Converts from element-separated local time to calendar time

C Language Interface

#include <time.h>

 time_t mktime_eno(struct tm *, errno_t* enop);
 time_t mktime(struct tm *tm);

Description

The mktime_eno() converts the time elements represented as the local time pointed to by tm to the 
calendar time (total elapsed seconds from 00:00:00 UTC, January 1, 1970).
This ignores the initial values of tm_wday and tm_yday in tm.
Other elements also do not need to have their initial values inside the correct range.
When the conversion is successful, tm_wday and tm_yday are set to the appropriate values and other 
elements set to inside the correct range.
The tm_mday is not set until tm_mon and tm_year are decided.

If conversion is not possible, the error number is stored in the area pointed to by enop.
If enop is NULL, the error number is not stored.

mktime() is equivalent to mktime_eno(tm, NULL).

Return Parameter

The mktime_eno() and mktime() return the calendar time (total elapsed seconds from 00:00:00 UTC, 
January 1, 1970).
They return ((time_t) (-1)) if the calendar time (total elapsed seconds from 00:00:00 UTC, January 1, 
1970) is not representable.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 264



Error Code

Error number returned to the area pointed to by enop:
  EOVERFLOW The result is not in the representable range

See Also

ctime_r, gmtime_r, localtime_r

8.24.6 time - Obtains current time

C Language Interface

#include <time.h>

 time_t time(time_t *tloc);

Description

The time() returns the current time as the total elapsed seconds from 00:00:00 UTC, January 1, 1970.
If the argument tloc is not NULL, the return code is stored also in the area pointed to by tloc.

Return Parameter

If successful, time() returns the current time.
If failed, it returns ((time_t) (-1)).

Error Code

None

8.24.7 difftime - Calculates time difference between calendar times

C Language Interface

#include <time.h>

 double difftime(time_t time1, time_t time0);

Description

The difftime() obtains the difference between two calendar times (time1 - time0).

Return Parameter

The difftime() returns the difference between the numbers of seconds in the double type.

Error Code

None

8.24.8 strftime - Converts from date and time to string

C Language Interface

#include <time.h>

 size_t strftime(char *s, size_t max, const char *format, const struct tm *tm);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 265



Description

The strftime() converts the time pointed to by tm to a string according to the format specified by 
format and writes the result to the string s of up to max characters including the null character.

format is a character string representing the conversion format, containing 0 or more conversion 
specification strings (conversion specifiers) and ordinary characters.
The details of format is identical with format for dt_strftime() in Chapter 6 Calendar Functions.

Return Parameter

If successful, strftime() returns the number of bytes of the result which was stored to "s" excluding 
the null character.
Otherwise, it returns 0 and the area pointed to by s becomes undefined.

Error Code

None

See Also

dt_strftime

8.24.9 strptime - Converts from string to date and time

C Language Interface

#include <time.h>

 char *strptime(const char *str, const char *format, struct tm *tm);

Description

The strptime() converts the string pointed to by str to the time in tm structure according to the 
format specified by format and stores it into tm.
The details of format is identical with format for dt_strptime() in Chapter 6 Calendar Functions.

Return Parameter

If successful, strptime() returns the pointer to the character next to the character last analyzed.
Otherwise, it returns NULL.

Error Code

None

See Also

dt_strptime

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 266



8.25 wchar.h

The header wchar.h provides the following wide character-related definition.

Only the following type is defined.
T2EX does not provide wide character-related library functions and thus defines only the wide 
character type.
Many other definitions defined in the standard C library are not defined in T2EX.

wchar_t
  An integer type that has the range of values representing the code capable of 
distinguishing all the members of system locale extended character set.
  This is also defined in stddef.h.

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 267



Appendix

A.1 System Configuration Information

T2EX uses the T-Kernel 2.0 system configuration information management function in order to hold and 
manage the system-related setting information.
This section describes the standard system management information defined by T2EX.

For the system configuration information management function itself, see Section 5.7 in the T-Kernel 
2.0 Specification.

○ T-Kernel 2.0

In the T-Kernel 2.0 specification, TSVCLimit sets both of the callable system call level and the 
protection level of the memory allocated by Kmalloc/Vmalloc.
In T2EX, only the former is set by TSVCLimit, and the latter is set independently by the parameter 
TKMallocLevel.

     N TSVCLimit Lowest protection level for T-Kernel 2.0 and T2EX system calls
   T2EX takes this value as 2 and does not guarantee the behavior if this value 
is changed.

     N TKmallocLvl Protection level of the memory allocated by Kmalloc/Vmalloc
   T2EX takes this value as 1 and does not guarantee the behavior if this value 
is changed.
   The value of TSVCLimit is used if this parameter is not set.

For other T-Kernel 2.0-derived standard system configuration information, see Section 5.7 in the 
T-Kernel 2.0 Specification.

○ File Management Function

System Configuration Information of Entire File Management Function

      N FsMaxFile Number of files that can be opened at the same time (system-wide)
      N FsMaxFIMP Number of file system implementation parts that can be registered at 

the same time
      N FsMaxCON Number of connections that can be connected at the same time
      N FsAccessTime Whether or not to allow updating the last access time

System Configuration Information of FAT File System Implementation Part

      N FiFAT_TskPri Task priority
      N FiFAT_StkSz Task stack size
      N FiFAT_FCacheSz FAT cache size (bytes)
      N FiFAT_FCacheNs Number of FAT cache unit sectors
      N FiFAT_RCacheSz Root directory cache size (bytes)
      N FiFAT_RCacheNs Number of root directory cache unit sectors
      N FiFAT_DCacheSz Data cache size (bytes)
      N FiFAT_DCacheNs Number of data cache unit sectors

○ Network Communication Function

      N SoMaxSocket Maximum number of sockets that can be opened at the same time
      N SoTaskBasePri Maximum priority of tasks created by the network communication 

manager.
    The network communication manager creates tasks whose priorites are 
    ranging from SoTaskBasePri to (SoTaskBasePri + 4).

      N SoDrvRxBufNum Number of buffers registered in the LAN driver.
   

      N SoTcpSendBufSz Default buffer size for TCP/IP send queue (in bytes)
      N SoTcpRecvBufSz Default buffer size for TCP/IP receive queue (in bytes)
      N SoUdpSendBufSz Default buffer size for UDP/IP send queue (in bytes)
      N SoUdpRecvBufSz Default buffer size for UDP/IP receive queue (in bytes)
     N SoRawIPSendBufSz Default buffer size for SOCK_RAW type socket (AF_INET) send queue (in 

bytes)
     N SoRawIPRecvBufSz Default buffer size for SOCK_RAW type socket (AF_INET) receive queue 

(in bytes)
      N SoRawSendBufSz Default buffer size for SOCK_RAW type socket (AF_ROUTE) send queue (in

bytes)
      N SoRawRecvBufSz Default buffer size for SOCK_RAW type socket (AF_ROUTE) receive queue 

(in bytes)

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 268



     N SoTcpDoAutoSendBuf Allow automatic resizing of TCP/IP send buffer size
    Allows automatic resizing if the value is other than 0.

     N SoTcpIncAutoSendBufSz Incremental size of automatic resizing of TCP/IP send buffer size (in 
bytes)

     N SoTcpMaxAutoSendBufSz Maximum size after automatic resizing of TCP/IP send buffer size (in 
bytes)

     N SoTcpDoAutoRecvBuf Allow automatic resizing of TCP/IP receive buffer size
    Allows automatic resizing if the value is other than 0.

     N SoTcpIncAutoRecvBufSz Incremental size of automatic resizing of TCP/IP receive buffer size 
(in bytes)

     N SoTcpMaxAutoRecvBufSz Maximum size after automatic resizing of TCP/IP receive buffer size 
(in bytes)

A.2 Usage Example of Break API Call (fs_break, so_break)

This section shows a usage example of the break API calls (fs_break, so_break) in the file management 
and network communication functions.

The break API calls release a wait for an input/output processing to/from a file or network to safely 
abort the input/output processing.
They are used to safely terminate the input/output processing being executed by a task when the 
processing is cancelled by a user operation or due to a system factor such as low remaining power and 
shutdown.
They are equivalent to the T-Kernel 2.0 API tk_rel_wai, but release only a wait for file and network 
management functions respectively.

As a usage example of the break API calls, this section shows how to abort a reading processing that 
reads cnt bytes from the socket descriptor sd.
Section A.2.1 shows the implementation example of the reading processing itself. Section A.1.2 shows 
the implementation example of the abort processing of it.

A.2.1 Implementation Example of Reading Processing

This example assumes that the socket reading processing is executed by a task that has the priority 
SOCKET_READ_TASK_PRI.
To support external abort, the following implementation example of the startup function defines and 
uses the variables "interrupted" which indicates whether abort occurs or not and "finished" which 
indicates the completion of abort.

LOCAL BOOL finished = FALSE;
LOCAL BOOL interrupted = FALSE;

void socketReadTask( INT stacd, void* exinf )
{
    int sd = (int)stacd;
    int pos;
    ER er;

    for (pos = 0; pos < cnt; !interrupted) {
        /* so_read may begin waiting */
        er = so_read(sd, buf + pos, cnt - pos);
        if (er <= 0)
            break;
        pos += er;
    }

    /* notify the abort processing side that the abort processing was normally executed */
    finished = TRUE;

    /* terminate the task */
    tk_ext_tsk();
}

A.2.2 Implementation Example of Abort Processing

For the implementation in Section A.2.1, an abort processing using the break API call can be 
implemented as follows.

void interruptSocketReadTask(ID tskid)

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 269



{
    ER er;

    /* reduce the priority of the task for which the abort processing is executed
       (execute so_break only when the target task is waiting) */
    tk_chg_pri(TSK_SELF, SOCKET_READ_TASK_PRI + 1);

    /* abort processing of the task */
    while (!finished) {
        interrupted = TRUE;
        so_break(tskid);
    }
}

The basic concept is to use so_break to release so_read from waiting and abort the processing.
Note that a release request by so_break is not queued and does not take effect when the break API call
is invoked before or after executing so_read.

The implementation example in this section repeatedly executes so_break until the variable finished 
becomes true to confirm the processing was normally aborted.
This guarantees the target processing is surely be aborted.

A.3 Usage Example of Regular Program Module Function

As a usage example of the regular program module function, this section shows an example of 
implementing the data structure stack as a regular program module.

A.3.1 Definition Example of Regular Program Module

The following shows an example of defining a regular program module that realizes the push and pop 
operations of the stack for the int type element.
Though the error handling is omitted for simplification, it is recommended to handle errors correctly 
in an actual program module.

○ stack.h

/*
 * Stack module external interface definition (stack.h)
 */
#ifndef DEFINE_H_STACK
#define DEFINE_H_STACK

typedef struct stack_module {
    /* parameter for initializing the module */
    int size;

    /* interface functions of the module */
    void (*push)(int data);
    void (*pop)(int* pdata);
} STACK_MODULE;

#endif

○ stack.c

/*
 * Stack module implementation (stack.c)
 */
#include <tk/tkernel.h>
#include "stack.h"

LOCAL FastLock lock;
LOCAL int*     stack;
LOCAL int      sp;

LOCAL void stack_push(STACK_MODULE* sm, int data)
{
    Lock(&lock);
    stack[sp++] = data;
    Unlock(&lock);
}

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 270



LOCAL void stack_pop(STACK_MODULE* sm, int* pdata)
{
    Lock(&lock);
    *pdata = stack[--sp];
    Unlock(&lock);
}

EXPORT int module_main(BOOL startup, void* arg)
{
    STACK_MODULE* sm = (STACK_MODULE*)arg;

    if (startup) {
        /* initialization */
        CreateLock(&lock, "stkl");
 stack = (int*)malloc(sm->size * sizeof(int));
        sp = 0;
        sm->push = stack_push;
        sm->pop = stack_pop;
    }
    else {
        /* termination */
 free(stack);
        DeleteLock(&lock);
    }

    return 0;
}

A.3.2 Usage Example of Regular Program Module

This section shows a code example of using the stack module defined in Section A.3.1 from an 
application program.

○ sample.c

/*
 * Stack usage (sample.c)
 */
#include <basic.h>
#include <t2ex/load.h>
#include "stack.h"

LOCAL ID smId = E_NOEXS;
LOCAL STACK_MODULE smif;
LOCAL pm_entry_t* sm_main = NULL;

EXPORT void sample()
{
    ER er;
    int data1, data2;
    struct pm target = {
        .pmatr = PM_FILE,
        .pmhdr = "/sysdsk/module/stack.obj",
    };

    /* load the module*/
    er = pm_load(&target, &sm_main);
    if (er < E_OK) {
        fprintf(stderr, "pm_load error: %d\n", er);
        return;
    }
    smId = er;

    /* initialize the module */
    smif.size = 100;
    sm_main(TRUE, &smif);

    /* use the module */
    smif.push(1);
    smif.push(2);
    smif.pop(&data1);

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 271



    smif.push(3);
    smif.pop(&data2);

    /* terminate the module */
    sm_main(FALSE, &smif);

    pm_unload(smId);
    sm_main = NULL;
    smId = E_NOEXS;
}

TEF020-S009-02.00.00/en

Copyright © 2012 by T-Engine Forum. All rights reserved. 272




