
T-Kernel Specification

TEF020–S001–01.00.00/en

Copyright c© 2002–2005 by T-Engine Forum

TEF020-S001-01.00.01/en

yura
テキスト ボックス
TEF020-S001-01.00.01/en

yura
テキスト ボックス
Copyright © 2002–2014 by T-Engine Forum

T-Kernel Specification Version 1.00.00
Copyright c© 2002–2005 by T-Engine Forum
TRON Architecture: Designed by Ken Sakamura

TEF020-S001-01.00.01/en

yura
テキスト ボックス
T-Kernel Speciﬁcation Version 1.00.01
Copyright © 2002–2014 by T-Engine Forum
TRON Architecture: Designed by Ken Sakamura

yura
テキスト ボックス
Notice:
Please note that the year and version number in the copyright notice in
the footer of each page of the document has not been edited.
So please read this document with the understanding that the intended
year and the version number should read as follows:

yura
テキスト ボックス
TEF020-S001-01.00.00/en

yura
テキスト ボックス
Copyright © 2002–2005 by T-Engine Forum

Contents

History of Revisions . viii
System Call Notation . ix
Index of T-Kernel API . xi

1 T-Kernel Overview 1
1.1 Position of T-Kernel . 1
1.2 Scalability . 2

2 Concepts Underlying the T-Kernel Specification 5
2.1 Meaning of Basic Terminology . 5
2.2 Task States and Scheduling Rules . 6

2.2.1 Task States . 6
2.2.2 Task Scheduling Rules . 9

2.3 Interrupt Handling . 11
2.4 Task Exception Handling . 12
2.5 System States . 12

2.5.1 System States While Non-task Portion Is Executing 12
2.5.2 Task-Independent Portion and Quasi-Task Portion 13

2.6 Objects . 14
2.7 Memory . 15

2.7.1 Address Space . 15
2.7.2 Nonresident Memory . 15
2.7.3 Protection Levels . 16

3 Common T-Kernel Specifications 17
3.1 Data Types . 17

3.1.1 General Data Types . 17
3.1.2 Other Defined Data Types . 18

3.2 System Calls . 19
3.2.1 System Call Format . 19
3.2.2 System Calls Possible from Task-Independent Portion 19
3.2.3 Restricting System Call Invocation . 20
3.2.4 Modifying a Parameter Packet . 20
3.2.5 Function Codes . 21
3.2.6 Error Codes . 21
3.2.7 Timeout . 21
3.2.8 Relative Time and System Time . 22

3.3 High-Level Language Support Routines . 23

iii

TEF020-S001-01.00.01/en

iv CONTENTS

4 T-Kernel/OS Functions 25
4.1 Task Management Functions . 26

tk cre tsk (Create Task) . 27
tk del tsk (Delete Task) . 31
tk sta tsk (Start Task) . 32
tk ext tsk (Exit Task) . 33
tk exd tsk (Exit and Delete Task) . 34
tk ter tsk (Terminate Task) . 35
tk chg pri (Change Task Priority) . 37
tk chg slt (Change Task Slice-time) . 39
tk get tsp (Get Task Space) . 41
tk set tsp (Set Task Space) . 42
tk get rid (Get Task Resource ID) . 43
tk set rid (Set Task Resource ID) . 44
tk get reg (Get Task Registers) . 45
tk set reg (Set Task Registers) . 46
tk get cpr (Get Task Co-processor Registers) 47
tk set cpr (Set Task Co-processor Registers) 48
tk inf tsk (Get Task Information) . 49
tk ref tsk (Reference Task Status) . 50

4.2 Task-Dependent Synchronization Functions . 53
tk slp tsk (Sleep Task) . 54
tk wup tsk (Wakeup Task) . 55
tk can wup (Cancel Wakeup Task) . 56
tk rel wai (Release Wait) . 57
tk sus tsk (Suspend Task) . 59
tk rsm tsk (Resume Task) . 61
tk frsm tsk (Force Resume Task) . 61
tk dly tsk (Delay Task) . 63
tk sig tev (Signal Task Event) . 64
tk wai tev (Wait Task Event) . 65
tk dis wai (Disable Task Wait) . 66
tk ena wai (Enable Task Wait) . 68

4.3 Task Exception Handling Functions . 69
tk def tex (Define Task Exception Handler) . 70
tk ena tex (Enable Task Exception) . 72
tk dis tex (Disable Task Exception) . 72
tk ras tex (Raise Task Exception) . 73
tk end tex (End Task Exception Handler) . 74
tk ref tex (Reference Task Exception Status) 76

4.4 Synchronization and Communication Functions . 77
4.4.1 Semaphore . 78

tk cre sem (Create Semaphore) . 79
tk del sem (Delete Semaphore) . 81
tk sig sem (Signal Semaphore) . 82
tk wai sem (Wait on Semaphore) . 83
tk ref sem (Reference Semaphore Status) 85

4.4.2 Event Flag . 86
tk cre flg (Create Event Flag) . 87
tk del flg (Delete Event Flag) . 89

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

CONTENTS v

tk set flg (Set Event Flag) . 90
tk clr flg (Clear Event Flag) . 90
tk wai flg (Wait Event Flag) . 92
tk ref flg (Reference Event Flag Status) 95

4.4.3 Mailbox . 96
tk cre mbx (Create Mailbox) . 98
tk del mbx (Delete Mailbox) . 100
tk snd mbx (Send Message to Mailbox) 101
tk rcv msg (Receive Message from Mailbox) 103
tk ref mbx (Reference Mailbox Status) 105

4.5 Extended Synchronization and Communication Functions 106
4.5.1 Mutex . 107

tk cre mtx (Create Mutex) . 109
tk del mtx (Delete Mutex) . 111
tk loc mtx (Lock Mutex) . 112
tk unl mtx (Unlock Mutex) . 114
tk ref mtx (Refer Mutex Status) . 115

4.5.2 Message Buffer . 116
tk cre mbf (Create Message Buffer) . 118
tk del mbf (Delete Message Buffer) . 121
tk snd mbf (Send Message to Message Buffer) 122
tk rcv mbf (Receive Message from Message Buffer) 124
tk ref mbf (Get Message Buffer Status) 126

4.5.3 Rendezvous Port . 128
tk cre por (Create Port for Rendezvous) 130
tk del por (Delete Port for Rendezvous) 132
tk cal por (Call Port for Rendezvous) 133
tk acp por (Accept Port for Rendezvous) 135
tk fwd por (Forward Rendezvous to Other Port) 139
tk rpl rdv (Reply Rendezvous) . 143
tk ref por (Reference Port Status) . 145

4.6 Memory Pool Management Functions . 147
4.6.1 Fixed-size Memory Pool . 148

tk cre mpf (Create Fixed-size Memory Pool) 149
tk del mpf (Delete Fixed-size Memory Pool) 151
tk get mpf (Get Fixed-size Memory Block) 152
tk rel mpf (Release Fixed-size Memory Block) 154
tk ref mpf (Reference Fixed-size Memory Pool Status) 155

4.6.2 Variable-size Memory Pool . 156
tk cre mpl (Create Variable-size Memory Pool) 157
tk del mpl (Delete Variable-size Memory Pool) 160
tk get mpl (Get Variable-size Memory Block) 161
tk rel mpl (Release Variable-size Memory Block) 163
tk ref mpl (Reference Variable-size Memory Pool Status) 164

4.7 Time Management Functions . 165
4.7.1 System Time Management . 166

tk set tim (Set Time) . 167
tk get tim (Get Time) . 168
tk get otm (Get Operating Time) . 169

4.7.2 Cyclic Handler . 170

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

vi CONTENTS

tk cre cyc (Create Cyclic Handler) . 171
tk del cyc (Delete Cyclic Handler) . 174
tk sta cyc (Start Cyclic Handler) . 175
tk stp cyc (Stop Cyclic Handler) . 176
tk ref cyc (Reference Cyclic Handler Status) 177

4.7.3 Alarm Handler . 178
tk cre alm (Create Alarm Handler) . 179
tk del alm (Delete Alarm Handler) . 181
tk sta alm (Start Alarm Handler) . 182
tk stp alm (Stop Alarm Handler) . 183
tk ref alm (Reference Alarm Handler Status) 184

4.8 Interrupt Management Functions . 186
tk def int (Define Interrupt Handler) . 187
tk ret int (Return from Interrupt Handler) . 190

4.9 System Management Functions . 192
tk rot rdq (Rotate Ready Queue) . 193
tk get tid (Get Task Identifier) . 195
tk dis dsp (Disable Dispatch) . 196
tk ena dsp (Enable Dispatch) . 198
tk ref sys (Reference System Status) . 199
tk set pow (Set Power Mode) . 201
tk ref ver (Reference Version Information) . 203

4.10 Subsystem Management Functions . 206
tk def ssy (Define Subsystem) . 207
tk sta ssy (Call Startup Function of Sub-System) 213
tk cln ssy (Call Cleanup Function of Sub-System) 213
tk evt ssy (Call Event Function of Sub-System) 214
tk ref ssy (Reference Subsystem Status) . 215
tk cre res (Create Resource Group) . 216
tk del res (Delete Resource Group) . 218
tk get res (Get Resource Management Block) 219

5 T-Kernel/SM Functions 221
5.1 System Memory Management Functions . 222

5.1.1 System Memory Allocation . 222
tk get smb (Allocate System Memory Block) 222
tk rel smb (Release System Memory Block) 222
tk ref smb (Reference System Memory Block) 222

5.1.2 Memory Allocation Libraries . 223
Vmalloc (Allocate Nonresident Memory) 223
Vcalloc (Allocate Nonresident Memory Elements) 223
Vrealloc (Reallocate Nonresident Memory) 223
Vfree (Release Nonresident Memory) 223
Kmalloc (Allocate Resident Memory) 223
Kcalloc (Allocate Resident Memory Elements) 223
Krealloc (Reallocate Resident Memory) 223
Kfree (Release Resident Memory) . 223

5.2 Address Space Management Functions . 224
5.2.1 Address Space Configuration . 224

SetTaskSpace (Set Task Space) . 224

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

CONTENTS vii

5.2.2 Address Space Checking . 224
ChkSpaceR (Check Read Access Privilege) 225
ChkSpaceRW (Check Read-Write Access Privilege) 225
ChkSpaceRE (Check Read-Execute Access Privilege) 225
ChkSpaceBstrR (Check Read Access Privilege (String)) 225
ChkSpaceBstrRW (Check Read-Write Access Privilege (String)) 225
ChkSpaceTstrR (Check Read Access Privilege (TRON Code)) 225
ChkSpaceTstrRW (Check Read-Write Access Privilege (TRON Code)) . 225

5.2.3 Lock Address Space . 225
LockSpace (Lock Address Space) . 225
UnlockSpace (Unlock Address Space) 225

5.2.4 Get Physical Address . 226
CnvPhysicalAddr (Get Physical Address) 226

5.2.5 Map Memory . 226
MapMemory (Map Memory) . 226
UnmapMemory (Unmap Memory) . 227

5.3 Device Management Functions . 228
5.3.1 Basic Concepts . 228
5.3.2 Application Interface . 230

tk opn dev (Open Device) . 231
tk cls dev (Close Device) . 232
tk rea dev (Read Device) . 232
tk srea dev (Synchronous Read) . 233
tk wri dev (Write Device) . 233
tk swri dev (Synchronous Write) . 234
tk wai dev (Wait Device) . 234
tk sus dev (Suspend Device) . 235
tk get dev (Get Device Name) . 237
tk ref dev (Reference Device by Device Name) 237
tk oref dev (Reference Device by Device Descriptor) 237
tk lst dev (Get Registered Device Information) 237
tk evt dev (Send Driver Request Event) 238

5.3.3 Device Registration . 238
tk def dev (Register Device) . 239
tk ref idv (Reference Device Initialization Information) 240

5.3.4 Device Driver Interface . 240
5.3.5 Attribute Data . 245
5.3.6 Device Event Notification . 247
5.3.7 Device Suspend/Resume Processing . 248
5.3.8 Special Properties of Disk Devices . 249

5.4 Interrupt Management Functions . 250
5.4.1 CPU Interrupt Control . 250

DI (Disable Interrupts) . 250
EI (Enable Interrupts) . 250
isDI (Get Interrupt Disable Status) . 250

5.4.2 Control of Interrupt Controller . 251
DINTNO (Get Interrupt Definition Number) 251
EnableInt (Enable Interrupt (Level)) 251
DisableInt (Disable Interrupt) . 251
ClearInt (Clear Interrupts) . 251

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

viii CONTENTS

EndOfInt (Issue End of Interrupt) . 251
CheckInt (Check Interrupt) . 252

5.5 IO Port Access Support Functions . 253
5.5.1 IO Port Access . 253

out w (Write Word Data) . 253
out h (Write Half-Word Data) . 253
out b (Write Byte Data) . 253
in w (Read Word Data) . 253
in h (Read Half-Word Data) . 253
in b (Read Byte Data) . 253

5.5.2 Micro wait . 253
WaitUsec (Microwait (Nanoseconds)) 253
WaitNsec (Microwait (Microseconds)) 253

5.6 Power Management Functions . 254
low pow (Enter Low-Power Mode) . 254
off pow (Suspend System) . 254

5.7 System Configuration Information Management Functions 255
5.7.1 System Configuration Information Acquisition 255

tk get cfn (Get Numeric String) . 255
tk get cfs (Get Character String) . 256

5.7.2 Standard System Configuration Information . 256
5.8 Subsystem and Device Driver Starting . 258

6 T-Kernel/DS Functions 261
6.1 Kernel Internal State Reference Functions . 262

td lst tsk (Reference Object ID List) . 263
td lst sem (Reference Object Id List) . 263
td lst flg (Reference Object Id List) . 263
td lst mbx (Reference Object ID List) . 263
td lst mtx (Reference Object Id List) . 263
td lst mbf (Reference Object Id List) . 263
td lst por (Reference Object ID List) . 263
td lst mpf (Reference Object Id List) . 263
td lst mpl (Reference Object Id List) . 263
td lst cyc (Reference Object ID List) . 263
td lst alm (Reference Object Id List) . 263
td lst ssy (Reference Object Id List) . 263
td rdy que (Get Task Precedence) . 264
td sem que (Reference Queue) . 265
td flg que (Reference Queue) . 265
td mbx que (Reference Queue) . 265
td mtx que (Reference Queue) . 265
td smbf que (Reference Queue) . 265
td rmbf que (Reference Queue) . 265
td cal que (Reference Queue) . 265
td acp que (Reference Queue) . 265
td mpf que (Reference Queue) . 265
td mpl que (Reference Queue) . 265
td ref tsk (Reference Task State) . 266
td ref sem (Reference Object Status) . 268

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

CONTENTS ix

td ref flg (Reference Object Status) . 268
td ref mbx (Reference Object Status) . 268
td ref mtx (Reference Object Status) . 268
td ref mbf (Reference Object Status) . 268
td ref por (Reference Object Status) . 268
td ref mpf (Reference Object Status) . 268
td ref mpl (Reference Object Status) . 268
td ref cyc (Reference Object Status) . 268
td ref alm (Reference Object Status) . 268
td ref ssy (Reference Object Status) . 268
td ref tex (Reference Task Exception Status) 271
td inf tsk (Reference Task Statistics) . 272
td get reg (Get Task Register) . 273
td set reg (Set Task Register) . 274
td ref sys (Reference System Status) . 275
td get tim (Get System Time) . 276
td get otm (Get System Operating Time) . 277
td ref dsname (Refer to DS Object Name) . 278
td set dsname (Set DS Object Name) . 280

6.2 Trace Functions . 281
td hoc svc (Define System Call/Extended SVC Hook Routine) 282
td hoc dsp (Define Task Dispatch Hook Routine) 284
td hoc int (Define Interrupt Handler Hook Routine) 286

7 Reference 289
7.1 List of C Language Interface . 289

T-Kernel/OS . 289
T-Kernel/SM . 292
T-Kernel/DS . 293

7.2 List of Error Codes . 294

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

yura
テキスト ボックス
td_hok_svc

yura
テキスト ボックス
td_hok_dsp

yura
テキスト ボックス
td_hok_int

x CONTENTS

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

List of Figures

1.1 Position of T-Kernel . 1

2.1 Task State Transitions . 9
2.2 Precedence in Initial State . 10
2.3 Precedence After Task B Goes To RUN State . 11
2.4 Precedence After Task B Goes To WAIT State . 11
2.5 Precedence After Task B WAIT State Is Released . 11
2.6 Classification of System States . 13
2.7 Interrupt Nesting and Delayed Dispatching . 14
2.8 Address Space . 15

3.1 Behavior of High-Level Language Support Routine . 23

4.1 Multiple Tasks Waiting for One Event Flag . 94
4.2 Format of Messages Using a Mailbox . 96
4.3 Synchronous Communication by Message Buffer . 116
4.4 Synchronous Communication Using Message Buffer of bufsz = 0 120
4.5 Rendezvous Operation . 129
4.6 Sample ADA-like Program Using select Statement . 136
4.7 Using Rendezvous to Implement ADA select Function 137
4.8 Server Task Operation Using tk fwd por . 142
4.9 Precedence Before Issuing tk rot rdq . 194
4.10 Precedence After Issuing tk rot rdq (tskpri = 2) . 194
4.11 maker Field Format . 203
4.12 prid Field Format . 204
4.13 spver Field Format . 204
4.14 T-Kernel Subsystems . 206
4.15 Subsystems and Resource Groups . 216

5.1 Device Management Functions . 228

xi

TEF020-S001-01.00.01/en

xii LIST OF FIGURES

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

List of Tables

2.1 State Transitions Distinguishing Invoking Task and Other Tasks 8

4.1 Target Task State and Execution Result (tk ter tsk) 35
4.2 Values of tskwait and wid . 51
4.3 Task States and Results of tk rel wai Execution . 58

xiii

TEF020-S001-01.00.01/en

xiv HISTORY OF REVISIONS

History of Revisions

Version 1.00.00

• Add functions to reference and set DS object name (td ref dsname() and td set dsname()).
Add TA DSNAME attribute to

tk cre tsk(), tk cre sem(), tk cre flg(), tk cre mbx(), tk cre mbf(), tk cre por(),
tk cre mtx(), tk cre mpl(), tk cre mpf(), tk cre cyc(), tk cre alm().

• Add exclusive read mode (TD REXCL) to device open (tk opn dev()).

Version 1.B0.02

• Enable/disable task exception (tk ena tex / tk dis tex) can be performed also for tasks in
DORMANT state. They do not return E OBJ error.

• Delete description that maker code is assigned by TRON Association in version reference
(tk ref ver).

• Add “Overall notice and supplement” at toe top of the chapter of T-Kernel/SM.

• Describe that in get physical address (CnvPhysicalAddr) if it is not possible to make memory
cached off partly by a hardware limitation, this API flush the cache memory.

• Add functions (MapMemory, UnmapMemory) to map physical address space to logical space.

• Get system configuration information (tk get cfn and tk get cfs) become to be called from
any protection level.

• Describe that an entry routine (main function) for subsystems and device drivers is called
from a task which belongs to the system resource group.

• Correct that protection level violation error of T-Kernel/DS API is E OCAV; not E CTX.

• Correct general mistakes.

Version 1.B0.01

• Add task start address (task) to TD RTSK structure.

• Correct that it is implementation-depended whether tk snd mbf() with tmout=TMO POL is
possible or not in task-independent part or in dispatch disabled state.

• Describe that in td hok svc() if one defined/undefined a hook routine after calling system
call or extended SVC, then enter() or leave() may not be called.

• Describe that the maximum value of subsystem ID is implementation-depended.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

SYSTEM CALL NOTATION xv

System Call Notation

In the parts of this specification that describe system calls, the specification of each system call is
explained in the format illustrated below.

System call name
Summary description

Summary description

[C Language Interface]

Indicates the C language interface for invoking the system call.

[Parameters]

Describes the system call parameters, that is, the information passed to the OS when the system call is
executed.

[Return Parameters]

Describes the system call return parameters, that is, the information returned by the OS when execution
of the system call ends.

[Error Codes]

Describes the errors that can be returned by the system call.

• The following error codes are common to all system calls and are not included in the error code
listings for each system call.

E SYS, E NOSPT, E RSFN, E MACV, E OACV

• Error code E CTX is included in the error code listings for individual system calls only when the
conditions for its occurrence are clear (e.g., system calls that enter WAIT state). Depending on
the implementation, however, the E CTX error code may be returned by other system calls as well.
The implementation-specific occurrences of E CTX are not included in the error code specifications
for individual system calls.

[Description]

Describes the system call functions.
When the values to be passed in a parameter are selected from various choices, the following notation
is used in the parameter descriptions.

(x || y || z) : Set one of x, y, or z.
x | y : Both x and y can be set at the same time (in which case the logical sum of x

and y is taken).
([x]) : x is optional.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

xvi SYSTEM CALL NOTATION

Example:
When wfmode := (TWF ANDW || TWF ORW) | [TWF CLR], wfmode can be specified in any of
the following four ways.

TWF_ANDW
TWF_ORW
(TWF_ANDW | TWF_CLR)
(TWF_ORW | TWF_CLR)

[Additional Notes]

Supplements the description by noting matters that need special attention or caution, etc.

[Rationale for the Specification]

Explains the reason for adopting a particular specification.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

INDEX OF T-KERNEL API xvii

Index of T-Kernel API

The T-Kernel API (system call, extended SVC, library, macro) described in this specification are listed
below in alphabetical order.

CheckInt (Check Interrupt) . 252
ChkSpaceBstrR (Check Read Access Privilege (String)) 225
ChkSpaceBstrRW (Check Read-Write Access Privilege (String)) 225
ChkSpaceR (Check Read Access Privilege) . 225
ChkSpaceRE (Check Read-Execute Access Privilege) . 225
ChkSpaceRW (Check Read-Write Access Privilege) . 225
ChkSpaceTstrR (Check Read Access Privilege (TRON Code)) 225
ChkSpaceTstrRW (Check Read-Write Access Privilege (TRON Code)) 225
ClearInt (Clear Interrupts) . 251
CnvPhysicalAddr (Get Physical Address) . 226
DI (Disable Interrupts) . 250
DINTNO (Get Interrupt Definition Number) . 251
DisableInt (Disable Interrupt) . 251
EI (Enable Interrupts) . 250
EnableInt (Enable Interrupt (Level)) . 251
EndOfInt (Issue End of Interrupt) . 251
in b (Read Byte Data) . 253
in h (Read Half-Word Data) . 253
in w (Read Word Data) . 253
isDI (Get Interrupt Disable Status) . 250
Kcalloc (Allocate Resident Memory Elements) . 223
Kfree (Release Resident Memory) . 223
Kmalloc (Allocate Resident Memory) . 223
Krealloc (Reallocate Resident Memory) . 223
LockSpace (Lock Address Space) . 225
low pow (Enter Low-Power Mode) . 254
MapMemory (Map Memory) . 226
off pow (Suspend System) . 254
out b (Write Byte Data) . 253
out h (Write Half-Word Data) . 253
out w (Write Word Data) . 253
SetTaskSpace (Set Task Space) . 224
td acp que (Reference Queue) . 265
td cal que (Reference Queue) . 265
td flg que (Reference Queue) . 265
td get otm (Get System Operating Time) . 277
td get reg (Get Task Register) . 273
td get tim (Get System Time) . 276
td hoc dsp (Define Task Dispatch Hook Routine) . 284
td hoc int (Define Interrupt Handler Hook Routine) 286
td hoc svc (Define System Call/Extended SVC Hook Routine) 282
td inf tsk (Reference Task Statistics) . 272
td lst alm (Reference Object Id List) . 263
td lst cyc (Reference Object ID List) . 263
td lst flg (Reference Object Id List) . 263

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

yura
テキスト ボックス
td_hok_dsp

yura
テキスト ボックス
td_hok_int

yura
テキスト ボックス
td_hok_svc

xviii INDEX OF T-KERNEL API

td lst mbf (Reference Object Id List) . 263
td lst mbx (Reference Object ID List) . 263
td lst mpf (Reference Object Id List) . 263
td lst mpl (Reference Object Id List) . 263
td lst mtx (Reference Object Id List) . 263
td lst por (Reference Object ID List) . 263
td lst sem (Reference Object Id List) . 263
td lst ssy (Reference Object Id List) . 263
td lst tsk (Reference Object ID List) . 263
td mbx que (Reference Queue) . 265
td mpf que (Reference Queue) . 265
td mpl que (Reference Queue) . 265
td mtx que (Reference Queue) . 265
td rdy que (Get Task Precedence) . 264
td ref alm (Reference Object Status) . 268
td ref cyc (Reference Object Status) . 268
td ref dsname (Refer to DS Object Name) . 278
td ref flg (Reference Object Status) . 268
td ref mbf (Reference Object Status) . 268
td ref mbx (Reference Object Status) . 268
td ref mpf (Reference Object Status) . 268
td ref mpl (Reference Object Status) . 268
td ref mtx (Reference Object Status) . 268
td ref por (Reference Object Status) . 268
td ref sem (Reference Object Status) . 268
td ref ssy (Reference Object Status) . 268
td ref sys (Reference System Status) . 275
td ref tex (Reference Task Exception Status) . 271
td ref tsk (Reference Task State) . 266
td rmbf que (Reference Queue) . 265
td sem que (Reference Queue) . 265
td set dsname (Set DS Object Name) . 280
td set reg (Set Task Register) . 274
td smbf que (Reference Queue) . 265
tk acp por (Accept Port for Rendezvous) . 135
tk cal por (Call Port for Rendezvous) . 133
tk can wup (Cancel Wakeup Task) . 56
tk chg pri (Change Task Priority) . 37
tk chg slt (Change Task Slice-time) . 39
tk cln ssy (Call Cleanup Function of Sub-System) . 213
tk clr flg (Clear Event Flag) . 90
tk cls dev (Close Device) . 232
tk cre alm (Create Alarm Handler) . 179
tk cre cyc (Create Cyclic Handler) . 171
tk cre flg (Create Event Flag) . 87
tk cre mbf (Create Message Buffer) . 118
tk cre mbx (Create Mailbox) . 98
tk cre mpf (Create Fixed-size Memory Pool) . 149
tk cre mpl (Create Variable-size Memory Pool) . 157
tk cre mtx (Create Mutex) . 109

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

INDEX OF T-KERNEL API xix

tk cre por (Create Port for Rendezvous) . 130
tk cre res (Create Resource Group) . 216
tk cre sem (Create Semaphore) . 79
tk cre tsk (Create Task) . 27
tk def dev (Register Device) . 239
tk def int (Define Interrupt Handler) . 187
tk def ssy (Define Subsystem) . 207
tk def tex (Define Task Exception Handler) . 70
tk del alm (Delete Alarm Handler) . 181
tk del cyc (Delete Cyclic Handler) . 174
tk del flg (Delete Event Flag) . 89
tk del mbf (Delete Message Buffer) . 121
tk del mbx (Delete Mailbox) . 100
tk del mpf (Delete Fixed-size Memory Pool) . 151
tk del mpl (Delete Variable-size Memory Pool) . 160
tk del mtx (Delete Mutex) . 111
tk del por (Delete Port for Rendezvous) . 132
tk del res (Delete Resource Group) . 218
tk del sem (Delete Semaphore) . 81
tk del tsk (Delete Task) . 31
tk dis dsp (Disable Dispatch) . 196
tk dis tex (Disable Task Exception) . 72
tk dis wai (Disable Task Wait) . 66
tk dly tsk (Delay Task) . 63
tk ena dsp (Enable Dispatch) . 198
tk ena tex (Enable Task Exception) . 72
tk ena wai (Enable Task Wait) . 68
tk end tex (End Task Exception Handler) . 74
tk evt dev (Send Driver Request Event) . 238
tk evt ssy (Call Event Function of Sub-System) . 214
tk exd tsk (Exit and Delete Task) . 34
tk ext tsk (Exit Task) . 33
tk frsm tsk (Force Resume Task) . 61
tk fwd por (Forward Rendezvous to Other Port) . 139
tk get cfn (Get Numeric String) . 255
tk get cfs (Get Character String) . 256
tk get cpr (Get Task Co-processor Registers) . 47
tk get dev (Get Device Name) . 237
tk get mpf (Get Fixed-size Memory Block) . 152
tk get mpl (Get Variable-size Memory Block) . 161
tk get otm (Get Operating Time) . 169
tk get reg (Get Task Registers) . 45
tk get res (Get Resource Management Block) . 219
tk get rid (Get Task Resource ID) . 43
tk get smb (Allocate System Memory Block) . 222
tk get tid (Get Task Identifier) . 195
tk get tim (Get Time) . 168
tk get tsp (Get Task Space) . 41
tk inf tsk (Get Task Information) . 49
tk loc mtx (Lock Mutex) . 112

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

xx INDEX OF T-KERNEL API

tk lst dev (Get Registered Device Information) . 237
tk opn dev (Open Device) . 231
tk oref dev (Reference Device by Device Descriptor) 237
tk ras tex (Raise Task Exception) . 73
tk rcv mbf (Receive Message from Message Buffer) . 124
tk rcv msg (Receive Message from Mailbox) . 103
tk rea dev (Read Device) . 232
tk ref alm (Reference Alarm Handler Status) . 184
tk ref cyc (Reference Cyclic Handler Status) . 177
tk ref dev (Reference Device by Device Name) . 237
tk ref flg (Reference Event Flag Status) . 95
tk ref idv (Reference Device Initialization Information) 240
tk ref mbf (Get Message Buffer Status) . 126
tk ref mbx (Reference Mailbox Status) . 105
tk ref mpf (Reference Fixed-size Memory Pool Status) 155
tk ref mpl (Reference Variable-size Memory Pool Status) 164
tk ref mtx (Refer Mutex Status) . 115
tk ref por (Reference Port Status) . 145
tk ref sem (Reference Semaphore Status) . 85
tk ref smb (Reference System Memory Block) . 222
tk ref ssy (Reference Subsystem Status) . 215
tk ref sys (Reference System Status) . 199
tk ref tex (Reference Task Exception Status) . 76
tk ref tsk (Reference Task Status) . 50
tk ref ver (Reference Version Information) . 203
tk rel mpf (Release Fixed-size Memory Block) . 154
tk rel mpl (Release Variable-size Memory Block) . 163
tk rel smb (Release System Memory Block) . 222
tk rel wai (Release Wait) . 57
tk ret int (Return from Interrupt Handler) . 190
tk rot rdq (Rotate Ready Queue) . 193
tk rpl rdv (Reply Rendezvous) . 143
tk rsm tsk (Resume Task) . 61
tk set cpr (Set Task Co-processor Registers) . 48
tk set flg (Set Event Flag) . 90
tk set pow (Set Power Mode) . 201
tk set reg (Set Task Registers) . 46
tk set rid (Set Task Resource ID) . 44
tk set tim (Set Time) . 167
tk set tsp (Set Task Space) . 42
tk sig sem (Signal Semaphore) . 82
tk sig tev (Signal Task Event) . 64
tk slp tsk (Sleep Task) . 54
tk snd mbf (Send Message to Message Buffer) . 122
tk snd mbx (Send Message to Mailbox) . 101
tk srea dev (Synchronous Read) . 233
tk sta alm (Start Alarm Handler) . 182
tk sta cyc (Start Cyclic Handler) . 175
tk sta ssy (Call Startup Function of Sub-System) . 213
tk sta tsk (Start Task) . 32

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

INDEX OF T-KERNEL API xxi

tk stp alm (Stop Alarm Handler) . 183
tk stp cyc (Stop Cyclic Handler) . 176
tk sus dev (Suspend Device) . 235
tk sus tsk (Suspend Task) . 59
tk swri dev (Synchronous Write) . 234
tk ter tsk (Terminate Task) . 35
tk unl mtx (Unlock Mutex) . 114
tk wai dev (Wait Device) . 234
tk wai flg (Wait Event Flag) . 92
tk wai sem (Wait on Semaphore) . 83
tk wai tev (Wait Task Event) . 65
tk wri dev (Write Device) . 233
tk wup tsk (Wakeup Task) . 55
UnlockSpace (Unlock Address Space) . 225
UnmapMemory (Unmap Memory) . 227
Vcalloc (Allocate Nonresident Memory Elements) . 223
Vfree (Release Nonresident Memory) . 223
Vmalloc (Allocate Nonresident Memory) . 223
Vrealloc (Reallocate Nonresident Memory) . 223
WaitNsec (Microwait (Microseconds)) . 253
WaitUsec (Microwait (Nanoseconds)) . 253

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

xxii INDEX OF T-KERNEL API

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

Chapter 1

T-Kernel Overview

1.1 Position of T-Kernel

The position of T-Kernel in the overall T-Engine system is shown in Figure 1.1.

T-Monitor

T-Kernel/DS
T-Kernel/OS

T-Kernel/SM

Subsystem #1 #2 . . .
Driver #1

Device

#2
. . .

Application #1 #2 . . .

?

T-Kernel

6
?

Middleware

6

Figure 1.1: Position of T-Kernel

T-Kernel generally refers to all of T-Kernel Operating System (T-Kernel/OS), T-Kernel System Man-
ager (T-Kernel/SM), and T-Kernel Debugger Support (T-Kernel/DS); but in some cases T-Kernel/OS
only (narrow definition) is called T-Kernel.

T-Kernel Operating System (T-Kernel/OS) provides the following kinds of functions.

• Task control functions

• Task communication functions

• Memory management functions

• Exception/interrupt control functions

1

TEF020-S001-01.00.01/en

2 CHAPTER 1. T-KERNEL OVERVIEW

• Time management functions

• Subsystem management functions

T-Kernel System Manager (T-Kernel/SM) provides the following kinds of functions.

• System memory management functions

• Address space management functions

• Device management functions

• Interrupt management functions

• I/O port access support functions

• Power management functions

• System configuration information management functions

T-Kernel Debugger Support (T-Kernel/DS) provides the following kinds of functions exclusively for
debugging use.

• Kernel internal state reference

• Trace

1.2 Scalability

T-Kernel is a real-time kernel for embedded system use, applicable to a wide range of systems large and
small. It is aimed at enhancing portability of software such as device drivers and middleware.

The T-Kernel specification is designed to be applicable even to large-scale systems. The approach of
defining subsets to this end, with functions specified in some subsets but not mandatory in others for
small-scale systems, has the disadvantage of hampering portability of device drivers, middleware and
other software. Functional requirements also vary widely from one target system to another, making it
difficult to settle on workable subset specifications.

The T-Kernel specification does not adopt a level division or other subset approach. In principle, all
operating systems compliant with the T-Kernel specification must implement the specification in it
entirety. A target system, however, that does not need all the OS functions is free to implement a
scaled-down version of the OS. It is also acceptable to offer T-Kernel users the option of leaving out
functions not used in a target system. The important point here is that it is the user, not the OS
provider, who decides which functions to omit.

T-Kernel providers

• The entire specification must be implemented. Scaled-down implementations for specific
target systems are allowed.

• Providing users with the means for removing or skipping unnecessary functions is also allowed.

Middleware providers

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

1.2. SCALABILITY 3

• Middleware must be designed to meet all the T-Kernel requirements. It cannot be limited to
specific target systems but must be applicable to a variety of systems and scales.

• Providing users with the means for removing or skipping unnecessary functions is allowed.

A “scaled-down implementation” means one that does not provide the entire range of specified functions
but does not behave abnormally (return error, etc.) if a non-implemented function is called. It is
important, in other words, that middleware developed for large-scale systems provide an environment
enabling it to run without problem on other systems. For example, a system that does not use an MMU
can implement the T-Kernel/SM LockSpace() as follows.

#define LockSpace(addr, len) (E_OK)

The absence of an MMU does not, however, make it allowable not to implement LockSpace() or to
return the error code E NOSPT.

At the same time, when middleware is created, leaving out LockSpace() from an implementation because
the target system does not use an MMU would prevent the middleware from supporting a system that
does use an MMU.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4 CHAPTER 1. T-KERNEL OVERVIEW

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

Chapter 2

Concepts Underlying the T-Kernel
Specification

2.1 Meaning of Basic Terminology

1. Task, invoking task

The basic logical unit of concurrent program execution is called a “task”. Whereas the programs
assigned to one task are executed in sequence, programs assigned to different tasks can be executed
in parallel. This concurrent processing is a conceptual phenomenon, from the standpoint of ap-
plications; in actual implementation it is accomplished by time-sharing among tasks as controlled
by the kernel.

A task that invokes a system call is called the “invoking task”.

2. Dispatch, dispatcher

The switching of tasks executed by the processor is called “dispatching” (or task dispatching). The
kernel mechanism by which dispatching is realized is called a “dispatcher” (or task dispatcher).

3. Scheduling, scheduler

The processing to determine which task to execute next is called “scheduling” (or task scheduling).
The kernel mechanism by which scheduling is realized is called a “scheduler” (or task scheduler).
Generally a scheduler is implemented inside system call processing or in the dispatcher.

4. Context

The environment in which a program runs is generally called “context”. For a context to be
called identical, at the very least the processor operation mode must be the same and the stack
space must be the same (part of the same contiguous area). Note that context is a conceptual
matter from the standpoint of applications; even when processing must be executed in independent
contexts, in actual implementation both contexts may sometimes use the same processor operation
mode and the same stack space.

5. Precedence

The relationship among different processing requests that determines their order of execution is
called “precedence”. When a higher-precedence process becomes ready for execution while a low-
precedence process is in progress, as a general rule the higher-precedence process is run ahead of
the other process.

5

TEF020-S001-01.00.01/en

6 CHAPTER 2. CONCEPTS UNDERLYING THE T-KERNEL SPECIFICATION

Additional Note

Priority is a parameter assigned by an application to control the order of task or message processing.
Precedence, on the other hand, is a concept used in the specification to make clear the order in which
processing is to be executed. Precedence among tasks is determined based on task priority.

2.2 Task States and Scheduling Rules

2.2.1 Task States

Task states are classified primarily into the five below. Of these, Wait state in the broad sense is further
classified into three states. Saying that a task is in a Run state means it is in either RUN state or
READY state.

(a) RUN state
The task is currently being executed. When a task-independent portion is executing, except when
otherwise specified, the task that was executing prior to the start of task-independent portion
execution is said to be in RUN state.

(b) READY state
The task has completed preparations for running, but cannot run because a task with higher
precedence is running. In this state, the task is able to run whenever it becomes the task with the
highest precedence among the tasks in READY state.

(c) Wait states
The task cannot run because the conditions for running are not in place. In other words, the task
is waiting for the conditions for its execution to be met. While a task is in one of the Wait states,
the program counter and register values, and the other information representing the program
execution state, are saved. When the task resumes running from this state, the program counter,
registers and other values revert to their values immediately prior to going to the Wait state. This
state is subdivided into the following three states.

(c.1) WAIT state
Execution is stopped because a system call was invoked that interrupts execution of the invoking
task until some condition is met.

(c.2) SUSPEND state
Execution was forcibly interrupted by another task.

(c.3) WAIT-SUSPEND state
The task is in both WAIT state and SUSPEND state at the same time. WAIT-SUSPEND state
results when another task requests suspension of a task already in WAIT state

T-Kernel makes a clear distinction between WAIT state and SUSPEND state. A task cannot go
to SUSPEND state on its own.

(d) DORMANT state
The task has not yet been started or has completed execution. While a task is in DORMANT state,
information presenting its execution state is not saved. When a task is started from DORMANT
state, execution starts from the task start address. Except when otherwise specified, the register
values are not saved.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

2.2. TASK STATES AND SCHEDULING RULES 7

(e) NON-EXISTENT state
A virtual state before a task is created, or after it is deleted, and is not registered in the system.

Depending on the implementation, there may also be transient states that do not fall into any of the
above categories (see section 2.5 on page 12).

When a task going to READY state has higher precedence than the currently running task, a dispatch
may occur at the same time as the task goes to READY state and it may make an immediate tran-
sition to RUN state. In such a case the task that was in RUN state up to that time is said to have
been preempted by the task newly going to RUN state. Note also that in explanations of system call
functions, even when a task is said to go to READY state, depending on the task precedence it may go
immediately to RUN state.

Task starting means transferring a state from DORMANT state to READY state. A task is therefore
said to be in “started” state if it is in any state other than DORMANT or NON-EXISTENT. Task exit
means that a task in started state goes to DORMANT state.

Task wait release means that a task in WAIT state goes to READY state, or a task in WAIT-SUSPEND
state goes to SUSPEND state. The resumption of a suspended task means that a task in SUSPEND
state goes to READY state, or a task in WAIT-SUSPEND state goes to WAIT state.

Task state transitions in a typical implementation are shown in Figure 2.1.
Depending on the implementation, there may be other states besides those shown here.
A feature of T-Kernel is the clear distinction made between system calls that perform operations affecting
the invoking task and those whose operations affect other tasks (see Table 2.1). The reason for this is
to clarify task state transitions and facilitate understanding of system calls. This distinction between
system call operations in the invoking task and operations affecting other tasks can also be seen as a
distinction between state transitions from RUN state and those from other states.

Additional Note

WAIT state and SUSPEND state are orthogonally related, in that a request for transition to SUSPEND
state cannot have any effect on the conditions for task wait release. That is, the task wait release
conditions are the same whether the task is in WAIT state or WAIT-SUSPEND state. Thus even
if transition to SUSPEND state is requested for a task that is in a state of waiting to acquire some
resource (semaphore resource, memory block, etc.), and the task goes to WAIT-SUSPEND state, the
conditions for allocation of the resource do not change but remain the same as before the request to go
to SUSPEND state.

Rationale for the Specification

The reason the T-Kernel specification makes a distinction between WAIT state (wait caused by the
invoking task) and SUSPEND state (wait caused by another task) is that these states sometimes overlap.
By distinguishing this overlapped state as WAIT-SUSPEND state, the task state transitions become
clearer and system calls are easier to understand. On the other hand, since a task in WAIT state cannot
invoke a system call, different types of WAIT state (e.g., waiting for wakeup, or waiting to acquire a
semaphore resource) will never overlap. Since there is only one kind of wait state caused by another
task (SUSPEND state), the T-Kernel specification treats overlapping of SUSPEND states as nesting,
thereby achieving clarity of task state transitions.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

8 CHAPTER 2. CONCEPTS UNDERLYING THE T-KERNEL SPECIFICATION

Operations in invoking task
(transitions from RUN state)

Operations on other tasks
(transitions from other states)

Task transition to
a wait state
(including
SUSPEND)

tk slp tsk

RUN
↓

WAIT

tk sus tsk

READY WAIT
↓ ↓

SUSPEND WAIT-SUSPEND

Task exit

tk ext tsk

RUN
↓

DORMANT

tk ter tsk

READY WAIT
↓ ↓

DORMANT

Task deletion

tk exd tsk

RUN
↓

NON-EXISTENT

tk del tsk

DORMANT
↓

NON-EXISTENT

Table 2.1: State Transitions Distinguishing Invoking Task and Other Tasks

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

2.2. TASK STATES AND SCHEDULING RULES 9

state

NON-EXISTENT

state

DORMANT

state

SUSPEND

state

WAIT-SUSPENDED

state

WAIT

state

READY

state

RUNDispatching

Preemption¾

-

¾

6
Release
wait

Wait
condition

?

6
Suspend

(tk sus tsk)
Resume
(tk rsm tsk,
tk frsm tsk)

-

?

6

?

6
Create

(tk cre tsk)
Delete
(tk del tsk)

Terminate
(tk ter tsk)

Terminate
(tk ter tsk)

Release wait

Terminate
(tk ter tsk)

¾Terminate

¾
Exit (tk ext tsk)

¾Exit and delete
(tk exd tsk)

Suspend
(tk sus tsk)

-

6

Resume
(tk rsm tsk,
tk frsm tsk)

6

-

Start
(tk sta tsk)

Terminate
(tk ter tsk)

Figure 2.1: Task State Transitions

2.2.2 Task Scheduling Rules

The T-Kernel specification adopts a preemptive priority-based scheduling method based on priority
levels assigned to each task. Tasks having the same priority are scheduled on a FCFS (First Come First
Served) basis. Specifically, task precedence is used as the task scheduling rule, and precedence among

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

10 CHAPTER 2. CONCEPTS UNDERLYING THE T-KERNEL SPECIFICATION

tasks is determined as follows based on the priority of each task. If there are multiple tasks that can be
run, the one with the highest precedence goes to RUN state and the others go to READY state.
In determining precedence among tasks, of those tasks having different priority levels, that with the
highest priority has the highest precedence. Among tasks having the same priority, the one first going
to a run state (RUN state or READY state) has the highest precedence. It is possible, however, to use
a system call to change the precedence among tasks having the same priority.
When the task with the highest precedence changes from one task to another, a dispatch occurs imme-
diately and the task in RUN state is switched over. If no dispatch occurs, however, the switching of the
task in RUN state is held off until dispatch occurs.

Additional Note

According to the scheduling rules adopted in the T-Kernel specification, so long as there is a high-
precedence task in a run state, a task with lower precedence will simply not run. That is, unless the
highest-precedence goes to WAIT state or for other reason cannot run, other tasks are not run. This is a
fundamental difference from TSS (Time Sharing System) scheduling in which multiple tasks are treated
equally. It is possible, however, to issue a system call changing the precedence among tasks having the
same priority. An application can use such a system call to realize round-robin scheduling, which is a
typical kind of TSS scheduling.

Low 〈Priority 3〉

〈Priority 2〉

〈Priority 1〉Hight

priority

precedence

6

?

Task A

Task B Task C Task D

Task E

- -

- - - -

- -

Figure 2.2: Precedence in Initial State

Figure 2.2 and following illustrate how the task that first goes to a run state (RUN state or READY
state) gains precedence among tasks having the same priority. Figure 2.2 shows the precedence among
tasks after Task A of priority 1, Task E of priority 3, and Tasks B, C and D of priority 2 are started in
that order. The task with the highest precedence, Task A, goes to RUN state.
When Task A exits, Task B with the next-highest precedence goes to RUN state (Figure 2.3). When
Task A is again started, Task B is preempted and reverts to READY state; but since Task B went to
a run state earlier than Task C and Task D, it still has the highest precedence among tasks with the
same priority. In other words, the task precedence reverts to that in Figure 2.2.
Next, consider what happens when Task B goes to WAIT state in the conditions in Figure 2.3. Since
task precedence is defined among tasks that can be run, the precedence among tasks becomes as shown
in Figure 2.4. Thereafter when the Task B wait state is released, Task B went to run state after Task
C and Task D, and thus assumes the lowest precedence among tasks of the same priority (Figure 2.5).
Summarizing the above, immediately after a task that went from READY state to RUN state reverts
to READY state, it has the highest precedence among tasks of the same priority; but after a task goes
from RUN state to WAIT state and then the wait is released, its precedence is the lowest among tasks
of the same priority.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

2.3. INTERRUPT HANDLING 11

Low 〈Priority 3〉

〈Priority 2〉

〈Priority 1〉Hight

priority

precedence

6

?

Task B Task C Task D

Task E

- - - -

- -

Figure 2.3: Precedence After Task B Goes To RUN State

Low 〈Priority 3〉

〈Priority 2〉

〈Priority 1〉Hight

priority

precedence

6

?

Task C Task D

Task E

- - -

- -

Figure 2.4: Precedence After Task B Goes To WAIT State

Note that after a task goes from SUSPEND state to a run state, it has the lowest precedence among
tasks of the same priority. In a virtual memory system, since a task is made to wait for paging by putting
the task in SUSPEND state, in such a system the task precedence changes as a result of a paging wait.

Low 〈Priority 3〉

〈Priority 2〉

〈Priority 1〉Hight

priority

precedence

6

?

Task C Task D Task B

Task E

- - - -

- -

Figure 2.5: Precedence After Task B WAIT State Is Released

2.3 Interrupt Handling

Interrupts in the T-Kernel specification include both external interrupts from devices and interrupts
due to CPU exceptions. One interrupt handler may be defined for each interrupt number. Interrupt

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

12 CHAPTER 2. CONCEPTS UNDERLYING THE T-KERNEL SPECIFICATION

handlers can be designed for direct starting, basically without OS intervention, or for starting via a
high-level language support routine.

2.4 Task Exception Handling

The T-Kernel specification defines task exception handling functions for dealing with exceptions. Note
that exceptions other than those in the CPU are treated as interrupts.
A task exception handling function is one that invokes a system call requesting task exception handling,
interrupts execution by the specified task, and runs a task exception handler. Execution of the task
exception handler takes place in the same context as the interrupted task. Upon return from the task
exception handler, the interrupted processing continues. One task exception handler per task can be
registered with an application.

2.5 System States

2.5.1 System States While Non-task Portion Is Executing

When programming tasks to run on T-Kernel, the changes in task states can be tracked by looking at
a task state transition diagram. In the case of routines such as interrupt handlers or extended SVC
handlers, however, the user must perform programming at a level closer to the kernel than tasks. In this
case consideration must be made also of system states while a nontask portion is executing, otherwise
programming cannot be done properly. An explanation of T-Kernel system states is therefore given
here.
System states are classified as in Figure 2.6. Of these, a “transient state” is equivalent to OS running
state (system call execution). From the standpoint of the user, it is important that each of the system
calls issued by the user be executed indivisibly, and that the internal states while a system call is
executing cannot be seen by the user. For this reason the state while the OS running is considered a
“transient state” and internally it is treated as a blackbox. In the following cases, however, a transient
state is not executed indivisibly.

• When memory is being allocated or freed in the case of a system call that gets or releases memory
(while a T-Kernel/SM system memory management function is called).

• In a virtual memory system, when nonresident memory is accessed in system call processing.

When a task is in a transient state such as these, the behavior of a task termination (tk ter tsk) system
call is not guaranteed. Moreover, task suspension (tk sus tsk) may cause a deadlock or other problem
by stopping without clearing the transient state. Accordingly, as a rule tk ter tsk and tk sus tsk
cannot be used in programs. These system calls should be used only in a subsystem such as a virtual
memory system or debugger that is so close to being an OS that it can be thought of as part of the OS.
A task-independent portion and quasi-task portion are states while a handler is executing. The part of
a handler that runs in a task context is a quasi-task portion, and the part with a context independent
of a task is a task-independent portion. An extended SVC handler, which processes extended system
calls defined by the user, is a quasi-task portion, whereas an interrupt handler or time event handler
triggered by an external interrupt is a task-independent portion. In a quasi-task portion, tasks have the
same kinds of state transitions as ordinary tasks and system calls can be issued even in WAIT state.
A transient state, task-independent portion, and quasi-task portion are together called a nontask portion.
When ordinary task programs are running, outside of these, this is “task portion running” state.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

2.5. SYSTEM STATES 13

System state Nontask portion
running

Task portion running

Task-independent portion running
Interrupt handler, etc.

Transient state
OS running, etc.

Quasi-task portion running
Extended SVC handler
(OS extended part, etc.)

Figure 2.6: Classification of System States

2.5.2 Task-Independent Portion and Quasi-Task Portion

A feature of a task-independent portion (interrupt handlers, time event handlers, etc.) is that it is
meaningless to identify the task that was running immediately prior to entering a task-independent
portion, and the concept of “invoking task” does not exist. Accordingly, a system call that enters
WAIT state, or one that is issued implicitly specifying the invoking task, cannot be called fromth a
task-independent portion. Moreover, since the currently running task cannot be identified in a task-
independent portion, there is no task switching (dispatching). If dispatching is necessary, it is delayed
until processing leaves the task-independent portion. This is called delayed dispatching.
If dispatching were to take place in the interrupt handler, which is a task-independent portion, the rest
of the interrupt handler routine would be left over for execution after the task started by the dispatching,
causing problems in case of interrupt nesting. This is illustrated in Figure 2.7.
In the example shown, Interrupt X is raised during Task A execution, and while its interrupt handler is
running, a higher-priority interrupt Y is raised. In this case, if dispatching were to occur immediately
on return from interrupt Y (1), starting Task B, the processing of parts (2) to (3) of Interrupt A would
be put off until after Task B, with parts (2) to (3) executed only after Task A goes to RUN state. The
danger is that the low-priority Interrupt X handler would be preempted not only by a higher-priority
interrupt but even by Task B started by that interrupt. There would no longer be any guarantee of the
interrupt handler execution maintaining priority over task execution, making it impossible to write an
interrupt handler. This is the reason for introducing the principle of delayed dispatching.
A feature of a quasi-task portion, on the other hand, is that the task executing prior to entering the
quasi-task portion (the requesting task) can be identified, making it possible to define task states just
as in the task portion; moreover, it is possible to enter WAIT state while in a quasi-task portion.
Accordingly, dispatching occurs in a quasi-task portion in the same way as in ordinary task execution.
As a result, even though the OS extended part and other quasi-task portion is a nontask portion, its
execution does not necessarily have priority at all times over the task portion. This is in contrast to
interrupt handlers, which must always be given execution precedence over tasks.
The following two examples illustrate the difference between a task-independent portion and quasi-task
portion.

• An interrupt is raised while Task A (priority 8=low) is running, and in its interrupt handler
(task-independent portion) tk wup tsk is issued for Task B (priority 2=high). In accord with the
principle of delayed dispatching, however, dispatching does not yet occur at this point. Instead,
after tk wup tsk execution, first the remaining parts of the interrupt handler are executed. Only

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

14 CHAPTER 2. CONCEPTS UNDERLYING THE T-KERNEL SPECIFICATION

when tk ret int is executed at the end of the interrupt handler does dispatching occur, causing
Task B to run.

• An extended system call is executed in Task A (priority 8=low), and in its extended SVC handler
(quasi-task portion) tk wup tsk is issued for Task B (priority 2=high). In this case the principle
of delayed dispatching is not applied, so dispatching occurs in tk wup tsk processing. Task A
goes to READY state in a quasi-task portion, and Task B goes to RUN state. Task B is therefore
executed before the rest of the extended SVC handler is completed. The rest of the extended SVC
handler is executed after dispatching occurs again and Task A goes to RUN state.

(4) ¾ tk ret int (3)

tk wup tsk C

(2) ¾ tk ret int (1)

tk wup tsk B

-Interrupt
nesting

-Interrupt

Task A
(low priority)

Task B
(high priority)

Interrupt X
(low priority)

Interrupt Y
(high priority)

: Task portion : Task-independent portion

• If dispatching does not take place at (1), the remainder of the handler routine for Interrupt X ((2)
to (3)) ends up being put off until later.

Figure 2.7: Interrupt Nesting and Delayed Dispatching

2.6 Objects

“Object” is the general term for resources handled by T-Kernel. Besides tasks, objects include memory
pools, semaphores, event flags, mailboxes and other synchronization and communication mechanisms,
as well as time event handlers (cyclic handlers and alarm handlers).
Attributes can generally be specified when an object is created. Attributes determine detailed differences
in object behavior or the object initial state. When TA XXXXX is specified for an object, that object is
called a “TA XXXXX attribute object”. If there is no particular attribute to be defined, TA NULL (= 0) is
specified. Generally there is no interface provided for reading attributes after an object is registered.
In an object or handler attribute value, the lower bits indicate system attributes and the upper bits
indicate implementation-dependent attributes. This specification does not define the bit position at
which the upper and lower distinction is to be made. In principle, however, the system attribute

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

2.7. MEMORY 15

portion is assigned from the least significant bit (LSB) toward the most significant bit (MSB), and
implementation-dependent attributes from the MSB toward the LSB. Bits not defining any attribute
must be cleared to 0.
In some cases an object may contain extended information. Extended information is specified when the
object is registered. Information passed in parameters when an object starts execution has no effect on
T-Kernel behavior. Extended information can be read by calling an object status reference system call.

2.7 Memory

2.7.1 Address Space

Memory addressable space is distinguished as system space (shared space) or task space (user space).
System space can be accessed equally by all tasks, whereas a task space is accessible only by the tasks
belonging to it (see Figure 2.8). Multiple tasks may in some cases belong to the sametask space.
The logical address space of task space and system space depends on the CPU (and MMU) limita-
tions and is therefore implementation-dependent, but in principle task space should be assigned to low
addresses and system space to high addresses.

System space

Task space
#1

Task space
#2

. . . Task space
#n

0x7fffffff

0x40000000

0x3fffffff

0x00000000

Logical addresses (examples)

Figure 2.8: Address Space

Since interrupt handlers and other task-independent software are not tasks, they do not have a task
space of their own. Instead, while in a task-independent portion they belong to the task executing
just before entering the task-independent portion. This is the same as the task space of the currently
running task returned by tk get tid. When there is no task in RUN state, task space is undefined.
T-Kernel does not create or manage address space. Normally T-Kernel is used along with a subsystem
for handling address space management and the like.
In a system with no MMU (or not using an MMU), essentially task space does not exist.

2.7.2 Nonresident Memory

Memory may be resident or nonresident.
When nonresident memory is accessed, data is copied to that memory from a disk or other storage. It
therefore requires complicated processing such as disk access by a device driver.
Accordingly, when nonresident memory is accessed, the device driver, etc., must be in operational state.
Access is not possible during dispatch disabled or interrupts disabled state, or while a task-independent
portion is executing.
Similarly, in OS internal processing, it is necessary to avoid accessing nonresident memory in a critical
section. One such case would be when the memory address passed in a system call parameter points
to nonresident memory. Whether or not system call parameters are allowed to indicate nonresident
memory is an implementation-dependent matter.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

16 CHAPTER 2. CONCEPTS UNDERLYING THE T-KERNEL SPECIFICATION

Data transfer from a disk or the like due to nonresident memory access is not performed by T-Kernel.
Normally T-Kernel is used along with subsystems that handle virtual memory management and other
such processing.
In a system that does not use virtual memory, system call parameters or the like pointing to nonresident
memory can be ignored, treating all memory as resident.

2.7.3 Protection Levels

T-Kernel assumes four levels of memory protection, from 0 to 3.

• Level 0 has the highest privilege and level 3 the lowest.

• Access can be made only to memory at the currently running protection level or lower.

• Changing from one protection level to another is accomplished by invoking a system call or ex-
tended SVC, or by interrupt or CPU exception.

The uses of each protection level are as follows.

Protection level
0 OS, subsystems, device drivers, etc.
1 System application tasks
2 (reserved)
3 User application tasks

A nontask portion (task-independent portion, quasi-task portion, etc.) runs at protection level 0. Only
a task portion can run at protection levels 1 to 3. A task portion can also run at protection level 0.
Some MMUs support only two protection levels, privileged and user level. In such a case protection
levels 0 to 2 are assigned to privileged level, and protection level 3 to the user level, as if there were 4
levels. In a system with no MMU, all protection levels 0 to 3 are treated as identical.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

Chapter 3

Common T-Kernel Specifications

3.1 Data Types

3.1.1 General Data Types

typedef char B; /* signed 8-bit integer */
typedef short H; /* signed 16-bit integer */
typedef int W; /* signed 32-bit integer */
typedef unsigned char UB; /* unsigned 8-bit integer */
typedef unsigned short UH; /* unsigned 16-bit integer */
typedef unsigned int UW; /* unsigned 32-bit integer */

typedef char VB; /* 8-bit data without a fixed type */
typedef short VH; /* 16-bit data without a fixed type */
typedef int VW; /* 32-bit data without a fixed type */
typedef void *VP; /* pointer to data without a fixed type */

typedef volatile B _B; /* volatile declaration */
typedef volatile H _H;
typedef volatile W _W;
typedef volatile UB _UB;
typedef volatile UH _UH;
typedef volatile UW _UW;

typedef int INT; /* signed integer of processor bit width*/
typedef unsigned int UINT; /* unsigned integer of processor bit width*/

typedef INT ID; /* general ID */
typedef INT MSEC; /* general time (milliseconds)*/

typedef void (*FP)(); /* general function address */
typedef INT (*FUNCP)(); /* general function address */

#define LOCAL static /* local symbol definition */
#define EXPORT /* global symbol definition */
#define IMPORT extern /* global symbol reference */

17

TEF020-S001-01.00.01/en

18 CHAPTER 3. COMMON T-KERNEL SPECIFICATIONS

/*
* Boolean values
* TRUE = 1 is defined, but any value other than 0 is TRUE.
* A decision such as bool == TRUE must be avoided for this reason.
* Instead use bool != FALSE.
*/

typedef INT BOOL;
#define TRUE 1 /* True */
#define FALSE 0 /* False */

/*
* TRON character codes
*/

typedef UH TC; /* TRON character code */
#define TNULL ((TC)0) /* TRON code string termination */

• VB, VH, and VW differ from B, H, and W in that the former mean only the bit width is known, not
the contents of the data type, whereas the latter clearly indicate integer type.

• Processor bit width must be 32 bits or above. INT and UINT must therefore always have a width
of 32 bits or more.

• BOOL defines TRUE = 1, but any value other than 0 is also TRUE. For this reason a decision such as
bool == TRUE must be avoided. Instead use bool != FALSE.

[Additional Notes]

Parameters such as stksz, wupcnt, and message size that clearly do not take negative values are also
in principle signed integer (INT) data type. This is in keeping with the overall TRON rule that integers
should be treated as signed numbers to the extent possible. As for the timeout (TMO tmout) parameter,
its being a signed integer enables the use of TMO FEVR(= −1) having special meaning. Parameters with
unsigned data type are those treated as bit patterns (object attribute, event flag, etc.).

3.1.2 Other Defined Data Types

The following names are used for other data types that appear frequently or have special meaning, in
order to make the parameter meaning clear.

typedef INT FN; /* Function code */
typedef INT RNO; /* Rendezvous number */
typedef UINT ATR; /* Object/handler attributes */
typedef INT ER; /* Error code */
typedef INT PRI; /* Priority */
typedef INT TMO; /* Timeout */
typedef UINT RELTIM; /* Relative time */

typedef struct systim { /* System time */
W hi; /* High 32 bits */
UW lo; /* Low 32 bits */

} SYSTIM;

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

3.2. SYSTEM CALLS 19

/*
* Common constants
*/

#define NULL 0 /* Null pointer */
#define TA_NULL 0 /* No special attributes indicated */
#define TMO_POL 0 /* Polling */
#define TMO_FEVR (-1) /* Eternal wait */

• A data type that combines two or more data types is represented by its main data type. For
example, the value returned by tk cre tsk can be a task ID or error code, but since it is mainly
a task ID, the data type is ID.

3.2 System Calls

3.2.1 System Call Format

T-Kernel adopts C as the standard high-level language, and standardizes interfaces for system call
execution from C language routines.
The method for interfacing at the assembly language level is implementation-dependent and not stan-
dardized here. Calling by means of a C language interface is recommended even when an assembly
language program is created. In this way portability is assured for programs written in assembly lan-
guage even if the OS changes, so long as the CPU is the same.
The following common rules are established for system call interfaces.

• All system calls are defined as C functions.

• A function return code of 0 or a positive value indicates normal completion, while negative values
are used for error codes.

All system call interfaces are provided as libraries. C language macros, in-line functions and in-line
assembly code are not used. The reason is that C macros and in-line functions can be used only from
a C program. Moreover, since in-line functions and in-line assembly are not standard C features, their
functioning is in many cases compiler-dependent, diminishing portability.

3.2.2 System Calls Possible from Task-Independent Portion

It must be possible to issue the following system calls from a task-independent portion and in dispatch
disabled state. Whether other system calls can be issued from a task-independent portion or in dispatch
disabled state is implementation-dependent.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

20 CHAPTER 3. COMMON T-KERNEL SPECIFICATIONS

tk sta tsk Start task
tk wup tsk Wakeup task
tk rel wai Release wait
tk sus tsk Suspend task
tk sig sem Signal semaphore
tk set flg Set event flag
tk sig tev Send event to task
tk rot rdq Rotate task queue
tk get tid Get task ID
tk sta cyc Start cyclic handler
tk stp cyc Stop cyclic handler
tk sta alm Start alarm handler
tk stp alm Stop alarm handler
tk ref tsk Reference task status
tk ref cyc Reference cyclic handler status
tk ref alm Reference alarm handler status
tk ref sys Reference system status
tk ret int Return from interrupt handler

3.2.3 Restricting System Call Invocation

The protection levels at which a system call is invokable can be restricted. In this case, if a system call
is issued from a task (task portion) running at lower than the specified protection level, the error code
E OACV is returned.
Extended SVC calling cannot be restricted.
If, for example, system call issuing from a protection level lower than 1 is prohibited, system calls cannot
be made from tasks running at protection levels 2 and 3. Tasks running at those levels will only be able
to make extended SVC calls, and are programmed using subsystem functions only.
This kind of restriction is used when T-Kernel is combined with an upper OS, to prevent tasks based
on the upper OS specification from directly accessing T-Kernel functions. It allows T-Kernel to be used
as a micro-kernel.
The protection level restriction on system call invocation is set using the system configuration informa-
tion management functions (see 5.7 on page 255).

3.2.4 Modifying a Parameter Packet

Some parameters passed to system calls use a packet format. The packet format parameters are of two
kinds, either input parameters passing information to a system call (e.g., T CTSK) or output parameters
returning information from a system call (e.g., T RTSK).
Additional information that is implementation-dependent can be added to a parameter packet. It
is not allowable, however, to change the data types and order of information defined in the standard
specification or to delete any of this information. When implementation-dependent information is added,
it must be positioned after the standard defined information.
When implementation-dependent information is added to a packet of input information passed to a
system call (T CTSK, etc.), if the system call is invoked while this additional information is not yet
initialized (memory contents indeterminate), the system call must still function normally.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

3.2. SYSTEM CALLS 21

Ordinarily a flag indicating that valid values are set in the additional information is defined in the
attribute flag implementation-dependent area included in the standard specification. When that flag
is set (1), the additional information is to be used; and when the flag is not set (0), the additional
information is not initialized (memory contents indeterminate) and the default settings are to be used.
The reason for this specification is to ensure that a program developed within the scope of the standard
specification will be able to run on an OS with implementation-dependent functional extensions, simply
by recompiling.

3.2.5 Function Codes

Function codes are numbers assigned to each system call and used to identify the system call.
The system call function codes are not specified here but are to be defined in implementation.
See at tk def ssy on extended SVC function codes.

3.2.6 Error Codes

System call return codes are in principle to be signed integers. When an error occurs, a negative error
code is returned; and if processing is completed normally, E OK (= 0) or a positive value is returned.
The meaning of returned values in the case of normal completion is specified separately for each system
call. An exception to this principle is that there are some system calls that do not return when called.
A system call that does not return is declared in the C language API as having no return code (that is,
a void type function).
An error code consists of the main error code and sub error code. The low 16 bits of the error code are
the sub error code, and the remaining high bits are the main error code. Main error codes are classified
into error classes based on the necessity of their detection, the circumstances in which they occur and
other factors. Since T-Kernel/OS does not use a sub error code, these bits are always 0.

#define MERCD(er) ((ER)(er) >> 16) /* Main error code */
#define SERCD(er) ((H)(er)) /* Sub error code */
#define ERCD(mer, ser) ((ER)(mer) << 16 | (ER)(UH)(ser))

3.2.7 Timeout

A system call that may enter WAIT state has a timeout function. If processing is not completed by the
time the specified timeout interval has elapsed, the processing is canceled and the system call returns
error code E TMOUT.
In accord with the principle that there should be no side-effects from calling a system call if that system
call returns an error code, the calling of a system call that times out should in principle result in no
change in system state. An exception to this is when the functioning of the system call is such that
it cannot return to its original state if processing is canceled. This is indicated in the system call
description.
If the timeout interval is set to 0, a system call does not enter even when a situation arises in which
it would ordinarily go to WAIT state. In other words, a system call with timeout set to 0 when it is
invoked has no possibility of entering WAIT state. Invoking a system call with timeout set to 0 is called
polling; that is, a system call that performs polling has no chance of entering WAIT state.
The descriptions of individual system calls as a rule describe the behavior when there is no timeout (in
other words, when an endless wait occurs). Even if the system call description says that the system call
“enters WAIT state” or “is put in WAIT state”, if a timeout is set and that time interval elapses before

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

22 CHAPTER 3. COMMON T-KERNEL SPECIFICATIONS

processing is completed, the WAIT state is released and the system call returns error code E TMOUT. In
the case of polling, the system call returns E TMOUT without entering WAIT state.
Timeout (TMO type) is made as a positive integer, or as TMO POL (= 0) for polling, or as TMO FEVR
(= −1) for endless wait. If a timeout interval is set, the timeout processing must be guaranteed to take
place even after the specified interval from the system call issuing has elapsed.

[Additional Notes]

Since a system call that performs polling does not enter WAIT state, there is no change in the precedence
of the task calling it.
In a general implementation, when the timeout is set to 1, timeout processing takes place on the second
time tick after a system call is invoked. Since a timeout of 0 cannot be specified (0 being allocated to
TMO POL), in this kind of implementation timeout does not occur on the initial time tick after the system
call is invoked.

3.2.8 Relative Time and System Time

When the time of an event occurrence is specified relative to another time, such as the time when a
system call was invoked, relative time (RELTIM type) is used. If relative time is used to specify event
occurrence time, it is necessary to guarantee that the event processing will take place after the specified
time has elapsed from the time base. Relative time (RELTIM type) is also used for e.g. event occurrence.
In such cases the method of interpreting the specified relative time is determined for each case.
When time is specified as an absolute value, system time (SYSTIM type) is used. The T-Kernel speci-
fication provides a function for setting system time, but even if the system time is changed using this
function, there is no change in the real world time (actual time) at which an event occurred that was
specified using relative time. What changes is the system time at which an event occurred that was
specified as relative time.

• SYSTIM: System time
Time base 1 millisecond, 64-bit signed integer

typedef struct systim {
W hi; /* high 32 bits */
UW lo; /* low 32 bits */

} SYSTIM;

• RELTIM: Relative time
Time base 1 millisecond, 32-bit or higher unsigned integer (UINT)

typedef UINT RELTIM;

• TMO: Timeout time Time base 1 millisecond, 32-bit or higher signed integer (INT)

typedef INT TMO;

Endless wait can be specified as TMO FEVR = (−1).

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

3.3. HIGH-LEVEL LANGUAGE SUPPORT ROUTINES 23

Additional Note

Timeout or other such processing must be guaranteed to occur after the time specified as RELTIM or
TMO has elapsed. For example, if the timer interrupt cycle is 1 ms and a timeout of 1 ms is specified,
timeout occurs on the second timer interrupt. (The first timer interrupt does not exceed 1 ms.)

3.3 High-Level Language Support Routines

High-level language support routine capability is provided so that even if a task or handler is written in
high-level language, the kernel-related processing can be kept separate from the language environment-
related processing. Whether or not a high-level language support routine is used is specified in TA HLNG,
one of the object attributes and handler attributes.
When TA HLNG is not specified, a task or handler is started directly from the start address passed in a
parameter to tk cre tsk or tk def ???; whereas when TA HLNG is specified, first the high-level language
startup processing routine (high-level language support routine) is started, then from this routine an
indirect jump is made to the task start address or handler address passed in a parameter to tk cre tsk
or tk def ???. Viewed from the OS, the task start address or handler address is a parameter pointing to
the high-level language support routine. Separating the kernel processing from the language environment
processing in this way facilitates support for different language environments.
Use of high-level language support routines has the further advantage that when a task or handler is
written as a C language function, a system call for task exit or return from a handler can be executed
automatically, simply by performing a function return (return or “}”).
In a system that uses an MMU, however, whereas it is relatively easy to realize a high-level language
support routine in the case of an interrupt handler or the like that runs at the same protection level
as the OS, it is more difficult in the case of a task or task exception handler running at a different
protection level than the OS. For this reason, when a high-level language support routine is used for
a task, there is no guarantee that the task will exit by a return from the function. In the case of a
task exception handler, the high-level language support routine is supplied as source code and is to be
embedded in the user program.
The internal working of a high-level language support routine is as illustrated in Figure 3.1.

T-Kernel

T-Kernel

TRAPA[tk ret int]

return()

JSR, etc.

High-level language
support routine

C function representing
handler

Handler as seen from T-Kernel

¾

- -

¾

Figure 3.1: Behavior of High-Level Language Support Routine

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

24 CHAPTER 3. COMMON T-KERNEL SPECIFICATIONS

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

Chapter 4

T-Kernel/OS Functions

This chapter describes in detail the system calls provided by the T-Kernel Operating System (T-
Kernel/OS).

25

TEF020-S001-01.00.01/en

26 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.1 Task Management Functions

Task management functions are functions that directly manipulate or reference task states. Functions
are provided for creating and deleting a task, for task starting and exit, canceling a task start request,
changing task priority, and referencing task state. A task is an object identified by an ID number called
a task ID. Task states and scheduling rules are explained at 2.2.
For control of execution order, a task has a base priority and current priority. When simply “task
priority” is talked about, this means the current priority. The base priority of a task is initialized as
the startup priority when a task is started. If the mutex function is not used, the task current priority
is always identical to its base priority. For this reason, the current priority immediately after a task
is started is the task startup priority. When the mutex function is used, the current priority is set as
discussed at 4.5.1.
The kernel does not perform processing for freeing of resources acquired by a task (semaphore resources,
memory blocks, etc.) upon task exit, other than mutex unlocking. Freeing of task resources is the
responsibility of the application.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.1. TASK MANAGEMENT FUNCTIONS 27

tk cre tsk
Create Task

[C Language Interface]

ID tskid = tk_cre_tsk (T_CTSK *pk_ctsk) ;

[Parameters]

T CTSK* pk ctsk Information about the task to be created

pk ctsk detail:

VP exinf Extended information
ATR tskatr Task attributes
FP task Task start address
PRI itskpri Initial task priority
INT stksz Stack size (bytes)
INT sstksz System stack size (bytes)
VP stkptr User stack pointer
VP uatb Task space page table
INT lsid Logical space ID
ID resid Resource ID
UB dsname[8] DS object name

(Other implementation-dependent parameters may be added beyond this point.)

[Return Parameters]

ID tskid Task ID
or Error Code

[Error Codes]

E NOMEM Insufficient memory (memory for control block or user stack cannot be allocated)
E LIMIT Number of tasks exceeds the system limit
E RSATR Reserved attribute (tskatr is invalid or cannot be used), or the specified co-processor

does not exist
E NOSPT Unsupported function (when TA USERSTACK or TA TASKSPACE is not supported)
E PAR Parameter error
E ID Invalid resource ID (resid)
E NOCOP The specified co-processor cannot be used (not installed, or abnormal operation detected)

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

28 CHAPTER 4. T-KERNEL/OS FUNCTIONS

[Description]

Creates a task, assigning to it a task ID number. This system call allocates a TCB (Task Control Block)
to the created task and initializes it based on itskpri, task, stksz and other parameters.
After the task is created, it is initially in DORMANT state.
itskpri specifies the initial priority at the time the task is started.
Task priority values are specified from 1 to 140, with the smaller numbers indicating higher priority.
exinf can be used freely by the user to insert miscellaneous information about the task. The information
set here is passed to the task as startup parameter information and can be referred to by calling
tk ref tsk. If a larger area is needed for indicating user information, or if the information may need to
be changed after the task is created, this can be done by allocating separate memory for this purpose
and putting the memory packet address in exinf. The OS pays no attention to the contents of exinf.
tskatr indicates system attributes in its low bits and implementation-dependent information in the
high bits. The system attributes part of tskatr is as follows.

tskatr := (TA_ASM || TA_HLNG)
| [TA_SSTKSZ] | [TA_USERSTACK] | [TA_TASKSPACE] | [TA_RESID]
| [TA_DSNAME]
| (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3)
| [TA_COP0] | [TA_COP1] | [TA_COP2] | [TA_COP3] | [TA_FPU]

TA ASM Indicates that the task is written in assembly language
TA HLNG Indicates that the task is written in high-level language
TA SSTKSZ Specifies the system stack size
TA USERSTACK Points to the user stack
TA TASKSPACE Points to the task space
TA RESID Specifies the resource group to which the task belongs
TA DSNAME Specifies DS object name
TA RNGn Indicates that the task runs at protection level n

TA COPn Specifies use of the nth co-processor (including floating point co-processor or
DSP)

TA FPU Specifies use of a floating point co-processor (when a co-processor specified in
TA COPn is a general-purpose FPU particularly for floating point processing
and not dependent on the CPU)

The function for specifying implementation-dependent attributes can be used, for example, to specify
that a task is subject to debugging. One use of the remaining system attribute fields is for indicating
multiprocessor attributes in the future.

#define TA_ASM 0x00000000 /* Assembly program */
#define TA_HLNG 0x00000001 /* High-level language program */
#define TA_SSTKSZ 0x00000002 /* System stack size */
#define TA_USERSTACK 0x00000004 /* User stack pointer */
#define TA_TASKSPACE 0x00000008 /* Task space pointer */
#define TA_RESID 0x00000010 /* Task resource group */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_RNG0 0x00000000 /* Run at protection level 0 */
#define TA_RNG1 0x00000100 /* Run at protection level 1 */

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.1. TASK MANAGEMENT FUNCTIONS 29

#define TA_RNG2 0x00000200 /* Run at protection level 2 */
#define TA_RNG3 0x00000300 /* Run at protection level 3 */
#define TA_COP0 0x00001000 /* Use ID=0 coprocessor */
#define TA_COP1 0x00002000 /* Use ID=1 coprocessor */
#define TA_COP2 0x00004000 /* Use ID=2 coprocessor */
#define TA_COP3 0x00008000 /* Use ID=3 coprocessor */

When TA HLNG is specified, starting the task jumps to the task address not directly but by going through
a high-level language environment configuration program (high-level language support routine). The
task takes the following form in this case.

void task(INT stacd, VP exinf)
{

/*
(processing)

*/
tk_ext_tsk(); or tk_exd_tsk(); /* Exit task */

}

The startup parameters passed to the task include the task startup code stacd specified in tk sta tsk,
and the extended information exinf specified in tk cre tsk.
The task cannot (must not) be terminated by a simple return from the function, otherwise the operation
will be indeterminate (implementation-dependent).
The form of the task when the TA ASM attribute is specified in implementation-dependent, but stacd
and exinf must be passed as startup parameters.
The task runs at the protection level specified in the TA RNGn attribute. When a system call or extended
SVC is called, the protection level goes to 0, then goes back to its original level upon return from the
system call or extended SVC.
Each task has two stack areas, a system stack and user stack. The user stack is used at the protection
level specified in TA RNGn , while the system stack is used at protection level 0. When the calling of a
system call or extended SVC causes the protection level to change, the stack is also switched.
Note that a task running at TA RNG0 does not switch protection levels, so there is no stack switching
either. When TA RNG0 is specified, the combined total of the user stack size and system stack size is the
size of one stack, employed as both a user stack and system stack.
When TA SSTKSZ is specified, sstksz is valid. If TA SSTKSZ is not specified, sstksz is ignored and the
default size applies.
When TA USERSTACK is specified, stkptr is valid. In this case a user stack is not provided by the OS,
but must be allocated by the caller. stksz must be set to 0. If TA USERSTACK is not specified, stkptr
is ignored. Note that if TA RNG0 is set, TA USERSTACK cannot be specified.
When TA TASKSPACE is specified, uatb and lsid are valid and are set as task space. If TA TASKSPACE
is not specified, uatb and lsid are ignored and task space is undefined. During the time task space is
undefined, only system space can be accessed; access to task (user) space is not allowed. Whether or
not TA TASKSPACE was specified, task space can be changed after a task is created. Note that when task
space is changed, in no case does it revert to the task space set at task creation, even when the task
returns to DORMANT state, but the task always uses the most recently set task space.
When TA RESID is specified, resid is valid and specifies the resource group to which the task belongs.
If TA RESID is not specified, resid is ignored and the task belongs to the system resource group. Note
that if the resource group of a task is changed, in no case does it revert to the resource group set at
task creation, even when the task returns to DORMANT state, but the task always retains the most
recently set resource group (see tk cre res).

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

30 CHAPTER 4. T-KERNEL/OS FUNCTIONS

When TA DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is
used to identify objects by debugger, and it is handled only by T-Kernel/DS API, td ref dsname and
td set dsname. For more details refer to td ref dsname and td set dsname. If TA DSNAME is not
specified, dsname is ignored. Then td ref dsname and td set dsname return E OBJ error.

[Additional Notes]

A task runs either at the protection level set in TA RNGn or at protection level 0. For example, a task
for which TA RNG3 is specified in no case runs at protection level 1 or 2.
In a system with separate interrupt stack, interrupt handlers also use the system stack. An interrupt
handler runs at protection level 0.
The system stack default size is decided taking into account the amount taken up by system call execution
and, in a system with separate interrupt stack, the amount used by interrupt handlers.
The system stack is system space resident memory used at protection level 0. If TA USERSTACK is not
specified, the user stack is system space resident memory used at the protection level specified in the
TA RNGn attribute. If TA USERSTACK is specified, the user stack memory attributes are as specified by
the caller of this system call. Task space may be made nonresident memory. The definition of TA COPn
is dependent on the CPU and other hardware and is not portable. TA FPU is provided as a portable
notation method only for the definition in TA COPn of a floating point processor. If, for example, the
floating point processor is TA COP0, then TA FPU = TA COP0. If there is no particular need to specify use
of a co-processor for floating point operations, TA FPU = 0 is set.
Even in a system without an MMU, for the sake of portability all attributes including TA RNGn must
be accepted. It is possible, for example, to handle all TA RNGn as equivalent to TA RNG0, but error must
not be returned. In the case of TA USERSTACK and TA TASKSPACE, however, E NOSPT may be returned,
since there are many cases where these cannot be supported without an MMU.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.1. TASK MANAGEMENT FUNCTIONS 31

tk del tsk
Delete Task

[C Language Interface]

ER ercd = tk_del_tsk (ID tskid) ;

[Parameters]

ID tskid Task ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invalid object state (the task is not in DORMANT state)

[Description]

Deletes the task specified in tskid.
This system call changes the state of the task specified in tskid from DORMANT state to NON-
EXISTENT state (no longer exists in the system), releasing the TCB and stack area that were assigned
to the task. The task ID number is also released. When this system call is issued for a task not in
DORMANT state, error code E OBJ is returned.
This system call cannot specify the invoking task. If the invoking task is specified, error code E OBJ is
returned since the invoking task is not in DORMANT state. The invoking task is deleted not by this
system call but by the tk exd tsk system call.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

32 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk sta tsk
Start Task

[C Language Interface]

ER ercd = tk_sta_tsk (ID tskid, INT stacd) ;

[Parameters]

ID tskid Task ID
INT stacd Task start code

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invalid object state (the task is not in DORMANT state)

[Description]

Starts the task specified in tskid.
This system call changes the state of the specified task from DORMANT state to READY state.
Parameters to be passed to the task when it starts can be set in stacd. These parameters can be
referred to from the started task, enabling use of this feature for simple message passing.
The task priority when it starts is the task startup priority (itskpri) specified when the started task
was created.
Start requests by this system call are not queued. If this system call is issued while the target task is in
a state other than DORMANT state, the system call is ignored and error code E OBJ is returned to the
calling task.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.1. TASK MANAGEMENT FUNCTIONS 33

tk ext tsk
Exit Task

[C Language Interface]

void tk_ext_tsk () ;

[Parameters]

None

[Return Parameters]

Does not return to the context issuing the system call.

[Error Codes]

The following error can be detected; but since this system call does not return to the context issuing
the system call even when error is detected, an error code cannot be passed directly in a system call
return parameter. The behavior in case an error occurs is implementation-dependent.

E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Exits the invoking task normally and changes its state to DORMANT state.

[Additional Notes]

When a task terminates by tk ext tsk, the resources acquired by the task up to that time (memory
blocks, semaphores, etc.) are not automatically freed. The user is responsible for releasing such resources
before the task exits.
tk ext tsk is a system call that does not return to the context from which it was called. Even if an
error code is returned when an error of some kind is detected, normally no error checking is performed
in the context from which the system call was invoked, leaving the possibility that the program will
hang. For this reason these system calls do not return even if error is detected.
As a rule, the task priority and other information included in the TCB is reset when the task returns
to DORMANT state. If, for example, the task priority is changed by tk chg pri and later terminated
by tk ext tsk, the task priority reverts to the startup priority (itskpri) specified when the task was
started. It does not keep the task priority in effect at the time tk ext tsk was executed.
System calls that do not return to the calling context are those named tk ret ??? or tk ext ???
(tk exd ???).

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

34 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk exd tsk
Exit and Delete Task

[C Language Interface]

void tk_exd_tsk () ;

[Parameters]

None.

[Return Parameters]

Does not return to the context issuing the system call.

[Error Codes]

The following error can be detected; but since this system call does not return to the context issuing
the system call even when error is detected, an error code cannot be passed directly in a system call
return parameter. The behavior in case an error occurs is implementation-dependent.

E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Terminates the invoking task normally and also deletes it.
This system call changes the state of the invoking task to NON-EXISTENT state (no longer exists in
the system).

[Additional Notes]

When a task terminates by tk exd tsk, the resources acquired by the task up to that time (memory
blocks, semaphores, etc.) are not automatically freed. The user is responsible for releasing such resources
before the task exits.
tk exd tsk is a system call that does not return to the context from which it was called. Even if an
error code is returned when an error of some kind is detected, normally no error checking is performed
in the context from which the system call was invoked, leaving the possibility that the program will
hang. For this reason these system calls do not return even if error is detected.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.1. TASK MANAGEMENT FUNCTIONS 35

tk ter tsk
Terminate Task

[C Language Interface]

ER ercd = tk_ter_tsk (ID tskid) ;

[Parameters]

ID tskid Task ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invalid object state (the target task is in DORMANT state or is the invoking task)

[Description]

Forcibly terminates the task specified in tskid.
This system call changes the state of the target task specified in tskid to DORMANT state.
Even if the target task was in a wait state (including SUSPEND state), the wait state is released and
the task is terminated. If the target task was in some kind of queue (semaphore wait, etc.), executing
tk ter tsk results in its removal from the queue.
This system call cannot specify the invoking task. If the invoking task is specified, error code E OBJ is
returned
The relationships between target task states and the results of executing tk ter tsk are summarized
in Table 4.1.

Target Task State tk ter tsk ercd Parameter Processing
RUN or READY state Forced termination
(except for invoking task) E OK

RUN state No operation
(invoking task) E OBJ

WAIT state E OK Forced termination
DORMANT state E OBJ No operation
NON-EXISTENT state E NOEXS No operation

Table 4.1: Target Task State and Execution Result (tk ter tsk)

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

36 CHAPTER 4. T-KERNEL/OS FUNCTIONS

[Additional Notes]

When a task is terminated by tk ter tsk, the resources acquired by the task up to that time (memory
blocks, semaphores, etc.) are not automatically freed. The user is responsible for releasing such resources
before the task terminates.
As a rule, the task priority and other information included in the TCB are reset when the task returns
to DORMANT state. If, for example, the task priority is changed by tk chg pri and later terminated
by tk ter tsk, the task priority reverts to the startup priority (itskpri) specified when the task was
started. It does not keep the task priority in effect at the time tk ter tsk was executed.
Forcible termination of another task is intended for use only by a debugger or a few other tasks closely
related to the OS. As a rule, this system call is not to be used by ordinary applications or middleware,
for the following reason.
Forced termination occurs regardless of the running state of the target task.
If, for example, a task were forcibly terminated while the task was calling a middleware function, the
task would terminate right while the middleware was executing. If such a situation were allowed, normal
operation of the middleware could not be guaranteed.
This is an example of how task termination cannot be allowed when the task status (what it is executing)
is unknown. Ordinary applications therefore must not use the forcible termination function.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.1. TASK MANAGEMENT FUNCTIONS 37

tk chg pri
Change Task Priority

[C Language Interface]

ER ercd = tk_chg_pri (ID tskid, PRI tskpri) ;

[Parameters]

ID tskid Task ID
PRI tskpri Task priority

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E PAR Parameter error (tskpri is invalid or cannot be used)
E ILUSE Illegal use (upper priority limit exceeded)

[Description]

Changes the base priority of the task specified in tskid to the value specified in tskpri. The current
priority of the task also changes as a result.
Task priority values are specified from 1 to 140, with the smaller numbers indicating higher priority.
When TSK SELF (= 0) is specified in tskid, the invoking task is the target task. Note, however, that
when tskid = TSK SELF is specified in a system call issued from a task-independent portion, error code
E ID is returned. When TPRI INI (= 0) is specified as tskpri, the target task base priority is changed
to the initial priority when the task was started (itskpri).
A priority changed by this system call remains valid until the task is terminated. When the task reverts
to DORMANT state, the task priority before its exit is discarded, with the task again assigned to the
initial priority when the task was started (itskpri). A priority changed while the task is already in
DORMANT state, however, becomes valid, so that the task has the new priority as its initial priority
the next time it is started.
If as a result of this system call execution the target task current priority matches the base priority (this
condition is always met when the mutex function is not used), processing is as follows.
If the target task is in a run state, the task precedence changes according to its priority. The target
task has the lowest precedence among tasks of the same priority after the change.
If the target task is in some kind of priority-based queue, the order in that queue changes in accord with
the new task priority. Among tasks of the same priority after the change, the target task is queued at
the end.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

38 CHAPTER 4. T-KERNEL/OS FUNCTIONS

If the target task has locked a TA CEILING attribute mutex or is waiting for a lock, and the base priority
specified in tskpri is higher than any of the ceiling priorities, error code E ILUSE is returned.

[Additional Notes]

In some cases when this system call results in a change in the queued order of the target task in a task
priority-based queue, it may be necessary to release the wait state of another task waiting in that queue
(in a message buffer send queue, or in a queue waiting to acquire a variable-size memory pool).
In some cases when this system call results in a base priority change while the target task is waiting for
a TA INHERIT attribute mutex lock, dynamic priority inheritance processing may be necessary.
When a mutex function is not used and the system call is issued specifying the invoking task as the
target task, setting the new priority to the base priority of the invoking task, the order of execution of
the invoking task becomes the lowest among tasks of the same priority. This system call can therefore
be used to relinquish execution privilege.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.1. TASK MANAGEMENT FUNCTIONS 39

tk chg slt
Change Task Slice-time

[C Language Interface]

ER ercd = tk_chg_slt (ID tskid, RELTIM slicetime) ;

[Parameters]

ID tskid Task ID
RELTIM slice-time Time slice (ms)

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E PAR Parameter error (slicetime is invalid)

[Description]

Changes the time slice of the task specified in tskid to the value specified in slicetime.
The time slice function is used for round robin scheduling of tasks. When a task runs continuously for
the length of time specified in slicetime or longer, its precedence is switched to the lowest among tasks
of the same priority, automatically yielding the execution privilege to the next task.
Setting slicetime = 0 indicates unlimited time, and the task does not automatically yield execution
privilege.
When a task is created, by default it is set to slicetime = 0. The invoking task can be specified by
setting tskid = TSK SELF = 0.
Note, however, that when a system call is issued from a task-independent portion and tskid =
TSK SELF = 0 is specified, error code E ID is returned.
The time slice as changed by this system call remains valid until the task is terminated. When the
task reverts to DORMANT state, the time slice before termination is discarded, and the value at the
time of task creation (slicetime = 0) is assigned. A time slice changed while the task is already in
DORMANT state, however, becomes valid, being applied the next time the task is started.

[Additional Notes]

The time while execution privilege is preempted by a higher-priority task does not count in the continu-
ous run time; moreover, even if execution privilege is preempted by a higher-priority task, the run time
is not treated as discontinuous. In other words, the time while execution privilege is preempted by a
higher-priority task is ignored for the purposes of counting run time.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

40 CHAPTER 4. T-KERNEL/OS FUNCTIONS

If the specified task is the only one running at its priority, the time slice is effectively meaningless and
the task runs continuously.
If a task of slicetime = 0 is included in tasks of the same priority, as soon as that task obtains execution
right, round robin scheduling is stopped.
The method of counting run time is implementation-dependent, but does not need to be especially
precise. In fact, applications should not expect very high precision.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.1. TASK MANAGEMENT FUNCTIONS 41

tk get tsp
Get Task Space

[C Language Interface]

ER ercd = tk_get_tsp (ID tskid, T_TSKSPC *pk_tskspc) ;

[Parameters]

ID tskid Task ID

[Return Parameters]

T TSKSPC tskspc Task space information
ER ercd Error code

typedef struct t_tskspc {
VP uatb; Task space page table address
INT lsid; Task space ID (logical space ID)

} T_TSKSPC;

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

Gets the current task space information for the task specified in tskid.
The invoking task can be specified by setting tskid = TSK SELF = 0. Note, however, that when a
system call is issued from a task-independent portion and tskid = TSK SELF = 0 is specified, error code
E ID is returned.

[Additional Notes]

The accuracy of T TSKSPC (uatb, lsid) is implementation-dependent, but the above definitions should
be followed to the extent possible.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

42 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk set tsp
Set Task Space

[C Language Interface]

ER ercd = tk_set_tsp (ID tskid, T_TSKSPC *pk_tskspc) ;

[Parameters]

ID tskid Task ID
T TSKSPC tskspc Task space

typedef struct t_tskspc {
VP uatb; Task space page table address
INT lsid; Task space ID (logical space ID)

} T_TSKSPC;

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E PAR Parameter error (pk tskspc is invalid or cannot be used)

[Description]

Sets the task space of the task specified in tskid.
The invoking task can be specified by setting tskid = TSK SELF = 0. Note, however, that when a
system call is issued from a task-independent portion and tskid = TSK SELF = 0 is specified, error code
E ID is returned.
The OS is not aware of the effects of task space changes. If, for example, a task space is changed
while a task is using it for its execution, the task may hang or encounter other problems. The caller is
responsible for avoiding such problems.

[Additional Notes]

The accuracy of T TSKSPC (uatb, lsid) is implementation-dependent, but the above definitions should
be followed to the extent possible.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.1. TASK MANAGEMENT FUNCTIONS 43

tk get rid
Get Task Resource ID

[C Language Interface]

ID resid = tk_get_rid (ID tskid) ;

[Parameters]

ID tskid Task ID

[Return Parameters]

ID resid Resource ID
or Error Code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Task does not belong to a resource group

[Description]

Returns the resource group to which the task specified in tskid currently belongs.
The invoking task can be specified by setting tskid = TSK SELF = 0. Note, however, that when a
system call is issued from a task-independent portion and tskid = TSK SELF = 0 is specified, error code
E ID is returned.

[Additional Notes]

If a resource group is deleted, this system call may return the resource ID of the deleted resource group.
Whether or not an error code (E OBJ) is returned is implementation-dependent. (See tk cre res,
tk del res.)

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

44 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk set rid
Set Task Resource ID

[C Language Interface]

ID oldid = tk_set_rid (ID tskid, ID resid) ;

[Parameters]

ID tskid Task ID
ID resid New resource ID

[Return Parameters]

ID oldid Old resource ID
or Error Code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid or resid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskidor resid does not exist)

[Description]

Changes the current resource group of the task specified in tskid to the resource group specified in
resid. The resource ID of the old resource group before the change is passed in a return parameter.
The invoking task can be specified by setting tskid = TSK SELF = 0. Note, however, that when a
system call is issued from a task-independent portion and tskid = TSK SELF = 0 is specified, error code
E ID is returned.

[Additional Notes]

In some cases error is not returned even if resid was previously deleted. Whether or not an error code
(E NOEXS) is returned is implementation-dependent. In principle it is the responsibility of the caller not
to specify a deleted resource group.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.1. TASK MANAGEMENT FUNCTIONS 45

tk get reg
Get Task Registers

[C Language Interface]

ER ercd = tk_get_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs) ;

[Parameters]

ID tskid Task ID

[Return Parameters]

T REGS pk regs General registers
T EIT pk eit Registers saved when EIT occurs
T CREGS pk cregs Control registers
ER ercd Error code

The contents of T REGS, T EIT, and T CREGS are defined for each CPU and implementation.

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invalid object state (called for the invoking task)
E CTX Context error (called from task-independent portion)

[Description]

Gets the current register contents of the task specified in tskid.
If NULL is set in pk regs, pk eit, or pk cregs, the corresponding registers are not referenced.
The referenced register values are not necessarily the values at the time the task portion was executing.
If this system call is issued for the invoking task, error code E OBJ is returned.

[Additional Notes]

In principle, all registers in the task context can be referenced. This includes not only physical CPU
registers but also those treated by the OS as virtual registers.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

46 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk set reg
Set Task Registers

[C Language Interface]

ER ercd = tk_set_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs) ;

[Parameters]

ID tskid Task ID
T REGS pk regs General registers
T EIT pk eit Registers saved when EIT occurs
T CREGS pk cregs Control registers

The contents of T REGS, T EIT, and T CREGS are defined for each CPU and implementation.

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invalid object state (called for the invoking task)
E CTX Context error (called from task-independent portion)
E PAR Invalid register value (implementation-dependent)

[Description]

Sets the current register contents of the task specified in tskid.
If NULL is set in pk regs, pk eit, or pk cregs, the corresponding registers are not referenced.
The set register values are not necessarily the values while the task portion is executing. The OS is not
aware of the effects of register value changes. It is possible, however, that some registers or register bits
cannot be changed if the OS does not allow such changes (implementation-dependent).
If this system call is issued for the invoking task, error code E OBJ is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.1. TASK MANAGEMENT FUNCTIONS 47

tk get cpr
Get Task Co-processor Registers

[C Language Interface]

ER ercd = tk_get_cpr (ID tskid, INT copno, T_COPREGS *pk_copregs) ;

[Parameters]

ID tskid Task ID
INT copno Co-processor number (0 to 3)

[Return Parameters]

T COPREGS pk copregs Co-processor registers
ER ercd Error code

typedef union {
T_COP0REG cop0; Co-processor number 0 register
T_COP1REG cop1; Co-processor number 1 register
T_COP2REG cop2; Co-processor number 2 register
T_COP3REG cop3; Co-processor number 3 register

} T_COPREG;

The contents of T COPn REG are defined for each CPU and implementation.

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invalid object state (called for the invoking task)
E CTX Context error (called from task-independent portion)
E PAR Parameter error (copno is invalid or the specified co-processor does not exist)

[Description]

Gets the current contents of the register specified in copno of the task specified in tskid.
The referenced register values are not necessarily the values at the time the task portion was executing.
If this system call is issued for the invoking task, error code E OBJ is returned.

[Additional Notes]

In principle, all registers in the task context can be referenced. This includes not only physical CPU
registers but also those treated by the OS as virtual registers.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

48 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk set cpr
Set Task Co-processor Registers

[C Language Interface]

ER ercd = tk_set_cpr (ID tskid, INT copno, T_COPREGS *pk_copregs) ;

[Parameters]

ID tskid Task ID
INT copno Co-processor number (0 to 3)
T COPREGS pk copregs Co-processor registers

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invalid object state (called for the invoking task)
E CTX Context error (called from task-independent portion)
E PAR Parameter error (copno is invalid or the specified co-processor does not exist), or the set

register value is invalid (implementation-dependent)

[Description]

Sets the contents of the register specified in copno of the task specified in tskid.
The set register values are not necessarily the values while the task portion is executing. The OS is not
aware of the effects of register value changes. It is possible, however, that some registers or register bits
cannot be changed if the OS does not allow such changes (implementation-dependent).
If this system call is issued for the invoking task, error code E OBJ is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.1. TASK MANAGEMENT FUNCTIONS 49

tk inf tsk
Get Task Information

[C Language Interface]

ER ercd = tk_inf_tsk (ID tskid, T_ITSK *pk_itsk, BOOL clr) ;

[Parameters]

ID tskid Task ID
T ITSK* pk itsk Address of packet for returning task information
BOOL clr Clear task information

[Return Parameters]

ER ercd Error code

pk itsk detail:

RELTIM stime Cumulative system-level run time (ms)
RELTIM utime Cumulative user-level run time (ms)

(Other implementation-dependent parameters may be added beyond this point.)

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

Gets statistical information for the task specified in tskid.
If clr = TRUE 6= 0, the cumulative information is reset (cleared to 0) after getting the information.
The invoking task can be specified by setting tskid = TSK SELF = 0. Note, however, that when a
system call is issued from a task-independent portion and tskid = TSK SELF = 0 is specified, error code
E ID is returned.

[Additional Notes]

The system-level run time is that while running at TA RNG0, and the user-level run time is that while
running at protection levels other than TA RNG0. A task created to run at TA RNG0 is therefore counted
entirely as system-level run time.
The method of counting run time is implementation-dependent, but does not need to be especially
precise. In fact, applications should not expect very high precision.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

50 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk ref tsk
Reference Task Status

[C Language Interface]

ER ercd = tk_ref_tsk (ID tskid, T_RTSK *pk_rtsk) ;

[Parameters]

ID tskid Task ID
T RTSK* pk rtsk Address of packet for returning task status

[Return Parameters]

ER ercd Error code

pk rtsk detail:

VP exinf Extended information
PRI tskpri Current task priority
PRI tskbpri Base priority
UINT tskstat Task state
UINT tskwait Wait factor
ID wid Waiting object ID
INT wupcnt Queued wakeup requests
INT suscnt Nested suspend requests
RELTIM slicetime Maximum continuous run time allowed (ms)
UINT waitmask Disabled wait factors
UINT texmask Allowed task exceptions
UINT tskevent Task events

(Other implementation-dependent parameters may be added beyond this point.)

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

Gets the state of the task specified in tskid.
tskstat takes the following values.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.1. TASK MANAGEMENT FUNCTIONS 51

tskstat: TTS RUN 0x0001 RUN
TTS RDY 0x0002 READY
TTS WAI 0x0004 WAIT
TTS SUS 0x0008 SUSPEND
TTS WAS 0x000c WAIT-SUSPEND
TTS DMT 0x0010 DORMANT
TTS NODISWAI 0x0080 Wait state disabled

Task states such as TTS RUN and TTS WAI are expressed by corresponding bits, which is useful when
making a complex state decision (e.g., deciding that the state is one of either RUN or READY state).
Note that of the above states, TTS WAS is a combination of TTS SUS and TTS WAI, but TTS SUS is never
combined with other states (TTS RUN, TTS RDY, TTS DMT). In the case of TTS WAI (including TTS WAS),
if wait states are disabled by tk dis wai, TTS NODISWAI is set. TTS NODISWAI is never combined with
states other than TTS WAI.
When tk ref tsk is executed for an interrupted task from an interrupt handler, RUN (TTS RUN) is
returned as tskstat.
When tskstat is TTS WAI (including TTS WAS), the values of tskwait and wid are as shown in Table 4.2.

tskwait Value Description wid

TTW SLP 0x00000001 Wait caused by tk slp tsk 0

TTW DLY 0x00000002 Wait caused by tk dly tsk 0

TTW SEM 0x00000004 Wait caused by tk wai sem semid

TTW FLG 0x00000008 Wait caused by tk wai flg flgid

TTW MBX 0x00000040 Wait caused by tk rcv mbx mbxid

TTW MTX 0x00000080 Wait caused by tk loc mtx mtxid

TTW SMBF 0x00000100 Wait caused by tk snd mbf mbfid

TTW RMBF 0x00000200 Wait caused by tk rcv mbf mbfid

TTW CAL 0x00000400 Wait on rendezvous call porid

TTW ACP 0x00000800 Wait for rendezvous acceptance porid

TTW RDV 0x00001000 Wait for rendezvous completion 0

(TTW CAL|TTW RDV) 0x00001400 Wait on rendezvous call or wait for rendezvous completion 0

TTW MPF 0x00002000 Wait for tk get mpf mpfi

TTW MPL 0x00004000 Wait for tk get mpl mplid

TTW EV1 0x00010000 Wait for task event #1 0

TTW EV2 0x00020000 Wait for task event #2 0

TTW EV3 0x00040000 Wait for task event #3 0

TTW EV4 0x00080000 Wait for task event #4 0

TTW EV5 0x00100000 Wait for task event #5 0

TTW EV6 0x00200000 Wait for task event #6 0

TTW EV7 0x00400000 Wait for task event #7 0

TTW EV8 0x00800000 Wait for task event #8 0

Table 4.2: Values of tskwait and wid

When tskstat is not TTS WAI (including TTS WAS), both tskwait and wid are 0.
waitmask is the same bit array as tskwait.
For a task in DORMANT state, wupcnt = 0, suscnt = 0, and tskevent = 0.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

52 CHAPTER 4. T-KERNEL/OS FUNCTIONS

The invoking task can be specified by setting tskid = TSK SELF = 0. Note, however, that when a
system call is issued from a task-independent portion and tskid = TSK SELF = 0 is specified, error code
E ID is returned.
When the task specified with tk ref tsk does not exist, error code E NOEXS is returned.

[Additional Notes]

Even when tskid = TSK SELF is specified with this system call, the ID of the invoking task is not known.
Use tk get tid to find out the ID of the invoking task.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.2. TASK-DEPENDENT SYNCHRONIZATION FUNCTIONS 53

4.2 Task-Dependent Synchronization Functions

Task-dependent synchronization functions achieve synchronization among tasks by direct manipulation
of task states. They include functions for task sleep and wakeup, for canceling wakeup requests, for
forcibly releasing task WAIT state, for changing a task state to SUSPEND state, for delaying execution
of the invoking task, and for disabling task WAIT state.
Wakeup requests for a task are queued. That is, when it is attempted to wake up a task that is not
sleeping, the wakeup request is remembered, and the next time the task is to go to a sleep state (waiting
for wakeup), it does not enter that state. The queuing of task wakeup requests is realized by having the
task keep a task wakeup request queuing count. When the task is started, this count is cleared to 0.
Suspend requests for a task are nested. That is, if it is attempted to suspend a task already in SUSPEND
state (including WAIT-SUSPEND state), the request is remembered, and later when it is attempted to
resume the task in SUSPEND state (including WAIT-SUSPEND state), it is not resumed. The nesting
of suspend requests is realized by having the task keep a suspend request nesting count. When the task
is started, this count is cleared to 0.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

54 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk slp tsk
Sleep Task

[C Language Interface]

ER ercd = tk_slp_tsk (TMO tmout) ;

[Parameters]

TMO tmout Timeout

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E PAR Parameter error (tmout ≤ (−2))
E RLWAI Wait state released (tk rel wai received in wait state)
E DISWAI Wait released by wait disabled state
E TMOUT Polling failed or timeout
E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Changes the state of the invoking task from RUN state to sleep state (WAIT for tk wup tsk).
If tk wup tsk is issued for the invoking task before the time specified in tmout has elapsed, this system
call completes normally. If timeout occurs before tk wup tsk is issued, error code E TMOUT is returned.
Specifying tmout = TMO FEVR = (−1) means endless wait. In this case, the task stays in waiting state
until tk wup tsk is issued.

[Additional Notes]

Since tk slp tsk is a system call that puts the invoking task into a wait state, tk slp tsk can never
be nested. It is possible, however, for another task to issue tk sus tsk for a task that was put in a wait
state by tk slp tsk. In this case the task goes to WAIT-SUSPEND state.
For simply delaying a task, tk dly tsk should be used rather than tk slp tsk.
The task sleep function is intended for use by applications and as a rule should not be used by middleware.
The reason is that attempting to achieve synchronization by putting a task to sleep in two or more
places would cause confusion, leading to mis-operation. For example, if sleep were used by both an
application and middleware for synchronization, a wakeup request might arise in the application while
middleware has the task sleeping. In such a situation, normal operation would not be possible in either
the application or middleware. Proper task synchronization is not possible because it is not clear where
the wait for wakeup originated. Task sleep is often used as a simple means of task synchronization.
Applications should be able to use it freely, which means as a rule it should not be used by middleware.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.2. TASK-DEPENDENT SYNCHRONIZATION FUNCTIONS 55

tk wup tsk
Wakeup Task

[C Language Interface]

ER ercd = tk_wup_tsk (ID tskid) ;

[Parameters]

ID tskid Task ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invalid object state (called for the invoking task or for a task in DORMANT state)
E QOVR Queuing or nesting overflow (too many queued wakeup requests in wupcnt)

[Description]

If the task specified in tskid was put in WAIT state by tk slp tsk, this system call releases the WAIT
state.
This system call cannot be called for the invoking task. If the invoking task is specified, error code
E OBJ is returned.
If the target task has not called tk slp tsk and is not in WAIT state, the wakeup request by tk wup tsk
is queued. That is, the calling of tk wup tsk for the target task is recorded, then when tk slp tsk is
called after that, the task does not go to WAIT state. This is what is meant by queuing of wakeup
requests.
The queuing of wakeup requests works as follows. Each task keeps a wakeup request queuing count
(wupcnt) in its TCB.
Its initial value (when tk sta tsk is executed) is 0. When tk wup tsk is issued for a task not sleeping
(not in WAIT state), the count is incremented by 1; but each time tk slp tsk is executed, the count
is decremented by 1. When tk slp tsk is executed for a task whose wakeup queuing count is 0, the
queuing count does not go into negative territory but rather the task goes to WAIT state.
It is always possible to queue tk wup tsk one time (wupcnt = 1), but the maximum queuing count
(wupcnt) is implementation-dependent and may be set to any appropriate value of 1 or above. In other
words, issuing tk wup tsk once for a task not in WAIT state does not return error, but whether error is
returned for the second or subsequent time tk wup tsk is called is an implementation-dependent matter.
When calling tk wup tsk causes wupcnt to exceed the maximum allowed value, error code E QOVR is
returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

56 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk can wup
Cancel Wakeup Task

[C Language Interface]

INT wupcnt = tk_can_wup (ID tskid) ;

[Parameters]

ID tskid Task ID

[Return Parameters]

INT wupcnt Number of queued wakeup requests
or Error Code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invalid object state (called for a task in DORMANT state)

[Description]

Passes in the return parameter the wakeup request queuing count (wupcnt) for the task specified in
tskid, at the same time canceling all wakeup requests. That is, this system call clears the wakeup
request queuing count (wupcnt) to 0 for the specified task.
The invoking task can be specified by setting tskid = TSK SELF = 0. Note, however, that when a
system call is issued from a task-independent portion and tskid = TSK SELF = 0 is specified, error code
E ID is returned.

[Additional Notes]

When processing is performed that involves cyclic wakeup of a task, this system call is used to determine
whether the processing was completed within the allotted time. Before processing of a prior wakeup
request is completed and tk slp tsk is called, the task monitoring this calls tk can wup. If wupcnt in
the return parameter is 1 or above, this means the previous wakeup request was not processed within
the allotted time. A processing delay or other measure can then be taken accordingly.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.2. TASK-DEPENDENT SYNCHRONIZATION FUNCTIONS 57

tk rel wai
Release Wait

[C Language Interface]

ER ercd = tk_rel_wai (ID tskid) ;

[Parameters]

ID tskid Task ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invalid object state (called for a task not in WAIT state (including when called for the

invoking task, or for a task in DORMANT state))

[Description]

If the task specified in tskid is in some kind of wait state (not including SUSPEND state), forcibly
releases that state.
This system call returns error code E RLWAI to the task whose WAIT state was released.
Wait release requests by tk rel wai are not queued. That is, if the task specified in tskid is already in
WAIT state, the WAIT state is cleared; but if it is not in WAIT state when this system call is issued,
error code E OBJ is returned to the caller. Likewise, error code E OBJ is returned when this system call
is issued specifying the invoking task.
The tk rel wai system call does not release a SUSPEND state. If it is issued for a task in WAIT-
SUSPEND state, the task goes to SUSPEND state. If it is necessary to release SUSPEND state, the
separate system call tk frsm tsk is used. The states of the target task when tk rel wai is called and
the results of its execution in each state are shown in Table 4.3.

[Additional Notes]

A function similar to timeout can be realized by using an alarm handler or the like to issue this system
call after a given task has been in WAIT state for a set time.
The main differences between tk rel wai and tk wup tsk are the following.

• Whereas tk wup tsk releases only WAIT state effected by tk slp tsk, tk rel wai releases also
WAIT state caused by other factors (tk wai flg, tk wai sem, tk rcv msg, tk get blk, etc.).

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

58 CHAPTER 4. T-KERNEL/OS FUNCTIONS

Target Task State tk rel tsk ercd Parameter Processing
Run state (RUN, READY) E OBJ No operation
(not for invoking task)
RUN state E OBJ No operation
(for invoking task)
WAIT state E OK Wait released∗

DORMANT state E OBJ No operation
NON-EXISTENT state E NOEXS No operation
∗Error code E RLWAI is returned to the target task. The target task is guaranteed to be

released from its wait state without any resource allocation (without the wait release conditions
being met).

Table 4.3: Task States and Results of tk rel wai Execution

• Seen from the task in WAIT state, release of the WAIT state by tk wup tsk returns a Normal
completion (E OK), whereas release by tk rel wai returns an error code (E RLWAI).

• Wakeup requests by tk wup tsk are queued if tk slp tsk has not yet been executed. If tk rel wai
is issued for a task not in WAIT state, error code E OBJ is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.2. TASK-DEPENDENT SYNCHRONIZATION FUNCTIONS 59

tk sus tsk
Suspend Task

[C Language Interface]

ER ercd = tk_sus_tsk (ID tskid) ;

[Parameters]

ID tskid Task ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invalid object state (called for the invoking task or for a task in DORMANT state)
E CTX A task in RUN state was specified in dispatch disabled state
E QOVR Queuing or nesting overflow (too many nested requests in suscnt)

[Description]

Puts the task specified in tskid in SUSPEND state and interrupts execution by the task.
SUSPEND state is released by issuing system call tk rsm tsk or tk frsm tsk.
If tk sus tsk is called for a task already in WAIT state, the state goes to a combination of WAIT state
and SUSPEND state (WAIT-SUSPEND state). Thereafter when the task wait release conditions are
met, the task goes to SUSPEND state. If tk rsm tsk is issued for the task in WAIT-SUSPEND state,
the task state reverts to WAIT state.
Since SUSPEND state means task interruption by a system call issued by another task, this system call
cannot be issued for the invoking task. If the invoking task is specified, error code E OBJ is returned.
When this system call is issued from a task-independent portion, if a task in RUN state is specified
while dispatching is disabled, error code E CTX is returned.
If tk sus tsk is issued more than once for the same task, the task is put in SUSPEND state multiple
times. This is called nesting of suspend requests. In this case, the task reverts to its original state only
when tk rsm tsk has been issued for the same number of times as tk sus tsk (suscnt). Accordingly,
nesting of the pair tk sus tsk — tk rsm tsk is possible.
The nesting of suspend requests (issuing tk sus tsk two or more times for the same task) and limits
on nesting count are implementation-dependent.
If tk sus tsk is issued multiple times in a system that does not allow suspend request nesting, or if the
nesting count exceeds the allowed limit, error code E QOVR is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

60 CHAPTER 4. T-KERNEL/OS FUNCTIONS

[Additional Notes]

When a task is in WAIT state for resource acquisition (semaphore wait, etc.) and is also in SUSPEND
state, the resource allocation (semaphore allocation, etc.) takes place under the same conditions as
when the task is not in SUSPEND state. Resource allocation is not delayed by the SUSPEND state,
and there is no change whatsoever in the priority of resource allocation or release from WAIT state. In
this way SUSPEND state is in an orthogonal relation with other processing and task states.
In order to delay resource allocation to a task in SUSPEND state (temporarily lower its priority), the
user can employ tk sus tsk and tk rsm tsk in combination with tk chg pri.
Task suspension is intended only for very limited uses closely related to the OS, such as page fault
processing in a virtual memory system or breakpoint processing in a debugger. As a rule it should not
be used in ordinary applications or in middleware.
The reason is that task suspension takes place regardless of the target task running state. If, for example,
a task is put in SUSPEND state while it is calling a middleware function, the task will be stopped in
the course of middleware internal processing. In some cases middleware performs resource management
or other mutual exclusion control. If a task stops inside middleware while it has resources allocated,
other tasks may not be able to use that middleware. This situation can cause a chain reactions, with
other tasks stopping and leading to system-wide deadlock.
For this reason a task must not be stopped without knowing its status (what it is doing at the time),
and ordinary tasks should not use the task suspension function.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.2. TASK-DEPENDENT SYNCHRONIZATION FUNCTIONS 61

tk rsm tsk
tk frsm tsk

Resume Task
Force Resume Task

[C Language Interface]

ER ercd = tk_rsm_tsk (ID tskid) ;
ER ercd = tk_frsm_tsk (ID tskid) ;

[Parameters]

ID tskid Task ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invalid object state (the specified task is not in SUSPEND state (including when this

system call specifies the invoking task or a task in DORMANT state))

[Description]

Releases the SUSPEND state of the task specified in tskid.
If the target task was earlier put in SUSPEND state by the tk sus tsk system call, this system call
releases that SUSPEND state and resumes the task execution.
When the target task is in a combined WAIT state and SUSPEND state (WAIT-SUSPEND state),
executing tk rsm tsk releases only the SUSPEND state, putting the task in WAIT state.
This system call cannot be issued for the invoking task. If the invoking task is specified, error code
E OBJ is returned.
Executing tk rsm tsk one time clears only one nested suspend request (suscnt). If tk sus tsk was
issued more than once for the target task (suscnt ≥ 2), the target task remains in SUSPEND state
even after tk rsm tsk is executed. When tk frsm tsk is issued, on the other hand, all suspend requests
are released (suscnt is cleared to 0) even if tk sus tsk was issued more than once (suscnt ≥ 2). The
SUSPEND state is always cleared, and unless the task was in WAIT-SUSPEND state its execution
resumes.

[Additional Notes]

After a task in RUN state or READY state is put in SUSPEND state by tk sus tsk and then resumed
by tk rsm tsk or tk frsm tsk, the task has the lowest precedence among tasks of the same priority.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

62 CHAPTER 4. T-KERNEL/OS FUNCTIONS

When, for example, the following system calls are executed for tasks A and B of the same priority, the
result is as indicated below.

tk_sta_tsk (tskid=task_A, stacd_A);
tk_sta_tsk (tskid=task_B, stacd_B);

/* By the rule of FCFS, precedence becomes task_A --> task_B. */

tk_sus_tsk (tskid=task_A);
tk_rsm_tsk (tskid=task_A);

/* In this case precedence becomes task_B --> task_A. */

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.2. TASK-DEPENDENT SYNCHRONIZATION FUNCTIONS 63

tk dly tsk
Delay Task

[C Language Interface]

ER ercd = tk_dly_tsk (RELTIM dlytim) ;

[Parameters]

RELTIM dlytim Delay time

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E NOMEM Insufficient memory
E PAR Parameter error (dlytim is invalid)
E CTX Context error (issued from task-independent portion or in dispatch disabled state)
E RLWAI Wait state released (tk rel wai received in wait state)
E DISWAI Wait released by wait disabled state

[Description]

Temporarily stops execution of the invoking task and waits for time dlytim to elapse. The state while
the task waits for the delay time to elapse is a WAIT state and is subject to release by tk rel wai.
If the task issuing this system call goes to SUSPEND state or WAIT-SUSPEND state while it is waiting
for the delay time to elapse, the time continues to be counted in the SUSPEND state.
The time base for dlytim (time unit) is the same as that for system time (= 1 ms).

[Additional Notes]

This system call differs from tk slp tsk in that normal completion, not an error code, is returned when
the delay time elapses and tk dly tsk terminates. Moreover, the wait is not released even if tk wup tsk
is executed during the delay time. The only way to terminate tk dly tsk before the delay time elapses
is by calling tk ter tsk or tk rel wai.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

64 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk sig tev
Signal Task Event

[C Language Interface]

ER ercd = tk_sig_tev (ID tskid, INT tskevt) ;

[Parameters]

ID tskid Task ID
INT tskevt Task event number (1 to 8)

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invalid object state (called for a task in DORMANT state)
E PAR Parameter error (tskevt is invalid)

[Description]

Sends the task event specified in tskevt to the task specified in tskid. There are eight task event types
stored for each task, specified by numbers 1 to 8.
The task event send count is not saved, only whether the event occurs or not.
The invoking task can be specified by setting tskid = TSK SELF = 0. Note, however, that when a
system call is issued from a task-independent portion and tskid = TSK SELF = 0 is specified, error code
E ID is returned.

[Additional Notes]

The task event function is used for synchronization much like tk slp tsk and tk wup tsk, but differs
from the use of those system calls in the following ways.

• The wakeup request (task event) count is not kept.

• Wakeup requests can be classified by the eight event types.

Using the same event type for synchronization in two or more places in the same task would cause
confusion. Event type allocation should be clearly defined. The task event function is intended for
use in middleware, and as a rule should not be used in ordinary applications. Use of tk slp tsk and
tk wup tsk is recommended for applications.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.2. TASK-DEPENDENT SYNCHRONIZATION FUNCTIONS 65

tk wai tev
Wait Task Event

[C Language Interface]

INT tevptn = tk_wai_tev (INT waiptn, TMO tmout) ;

[Parameters]

INT waiptn Task event pattern
TMO tmout Timeout

[Return Parameters]

INT tevptn Task event status when wait released
or Error Code

[Error Codes]

E OK Normal completion
E PAR Parameter error (waiptn or tmout is invalid)
E RLWAI Wait state released (tk rel wai received in wait state)
E DISWAI Wait released by wait disabled state
E TMOUT Polling failed or timeout
E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Waits for the occurrence of one of the task events specified in waiptn.
When the wait is released by a task event, the task events specified in waiptn are cleared (raised task
event &= ~waiptn).
The task event status occurring when the wait was released (the state before clearing) is passed in the
return code (tevptn).
The parameters waiptn and tevptn consist of logical OR values of the bits for each task event in the
form 1 << (task event number− 1).
A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release
condition is met (tk sig tev is not executed), the system call terminates, returning timeout error code
E TMOUT. Only positive values can be set in tmout. The time base for tmout (time unit) is the same as
that for system time (= 1 ms). When TMO POL = 0 is set in tmout, this means 0 was specified as the
timeout value, and E TMOUT is returned without entering WAIT state even if no task event occurs.
When TMO FEVR = (−1) is set in tmout, this means infinity was specified as the timeout value, and the
task continues to wait for a task event without timing out.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

66 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk dis wai
Disable Task Wait

[C Language Interface]

INT tskwait = tk_dis_wai (ID tskid, UINT waitmask) ;

[Parameters]

ID tskid Task ID
UINT waitmask Task wait disabled setting

[Return Parameters]

INT tskwait Task state after task wait disabled
or Error Code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E PAR Parameter error (waitmask is invalid)

[Description]

Disables waits for the wait factors set in waitmask by the task specified in tskid.
If the task is already waiting for a factor specified in waitmask, that wait is released.
waitmask is specified as the logical OR of any combination of the following wait factors.

#define TTW_SLP 0x00000001 /* Wait caused by sleep */
#define TTW_DLY 0x00000002 /* Wait for task delay */
#define TTW_SEM 0x00000004 /* Wait for semaphore */
#define TTW_FLG 0x00000008 /* Wait for event flag */
#define TTW_MBX 0x00000040 /* Wait for mailbox */
#define TTW_MTX 0x00000080 /* Wait for mutex */
#define TTW_SMBF 0x00000100 /* Wait for message buffer sending */
#define TTW_RMBF 0x00000200 /* Wait for message buffer receipt */
#define TTW_CAL 0x00000400 /* Wait on rendezvous call */
#define TTW_ACP 0x00000800 /* Wait for rendezvous acceptance */
#define TTW_RDV 0x00001000 /* Wait for rendezvous completion */
#define TTW_MPF 0x00002000 /* Wait for fixed-size memory pool */
#define TTW_MPL 0x00004000 /* Wait for variable-size memory pool */
#define TTW_EV1 0x00010000 /* Wait for task event #1 */
#define TTW_EV2 0x00020000 /* Wait for task event #2 */
#define TTW_EV3 0x00040000 /* Wait for task event #3 */

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.2. TASK-DEPENDENT SYNCHRONIZATION FUNCTIONS 67

#define TTW_EV4 0x00080000 /* Wait for task event #4 */
#define TTW_EV5 0x00100000 /* Wait for task event #5 */
#define TTW_EV6 0x00200000 /* Wait for task event #6 */
#define TTW_EV7 0x00400000 /* Wait for task event #7 */
#define TTW_EV8 0x00800000 /* Wait for task event #8 */
#define TTX_SVC 0x80000000 /* Extended SVC disabled */

TTX SVC is a special parameter disabling not task wait but the calling of an extended SVC. If TTX SVC
is specified when a task attempts to call an extended SVC, E DISWAI is returned without calling the
extended SVC. This parameter does not have the effect of terminating an already called extended SVC.
A tskwait value of 0 means the task has not entered WAIT state (or the wait was released). If tskwait
is not 0, this means the task is in WAIT state for a cause other than those disabled in waitmask.
When a task wait is cleared by tk dis wai or the task is prevented from entering WAIT state while this
system call is in effect, E DISWAI is returned. When a system call for which there is the possibility of
entering a WAIT state is invoked during wait disabled state, E DISWAI is returned even if the processing
could be performed without waiting.
For example, even if message buffer space is available when tk snd mbf is called and message buffer
sending is possible without entering a WAIT state, E DISWAI is returned and the message is not sent.
A wait disable set while an extended SVC is executing will be cleared automatically upon return from
the extended SVC to its caller. It is automatically cleared also when an extended SVC is called, reverting
to the original setting upon return from the extended SVC. A wait disable setting is cleared also when
the task reverts to DORMANT state. The setting made while a task is in DORMANT state, however,
is valid and the wait disable is applied the next time the task is started.
In the case of semaphores and most other objects, TA NODISWAI can be specified when the object is
created. An object created with TA NODISWAI specified cannot have waits disabled, and rejects any wait
disable attempt by tk dis wai.
The invoking task can be specified by setting tskid = TSK SELF = 0. Note, however, that when a
system call is issued from a task-independent portion and tskid = TSK SELF = 0 is specified, error code
E ID is returned.

[Additional Notes]

The wait disable function is provided for preventing execution of an extended SVC handler and is for
use mainly (though not exclusively) in break functions.
Wait disable in the case of a rendezvous is more complex than other cases. Essentially, wait disabled
state is detected based on a change in the rendezvous wait state, then the wait is released. Some specific
examples are given here.
When waiting by TTW CAL is not disabled but TTW RDV waits are disabled, a task enters into wait on
rendezvous call state; but when the rendezvous is accepted and a wait for rendezvous completion would
normally begin, the wait is released and E DISWAI is returned. At this time a message is sent to the
receiving task, the receiving task declares acceptance of the message and the task goes to rendezvous
established state. Only when the accepting task replies (tk rpl rdv) does it become clear that there
is no other task in the rendezvous, and error code E OBJ is returned. Wait disable applies also when a
rendezvous is forwarded. In that case the attribute of the destination rendezvous port applies. That is,
if the TA NODISWAI attribute is specified for the destination port, wait disable is rejected. If TTW CAL
wait is disabled after going to wait for rendezvous completion state, and a rendezvous is forwarded in
that state, the state goes to WAIT on rendezvous call as a result of the forwarding, so wait is disabled
by TTW CAL. In that case E DISWAI is returned to both the rendezvous calling task (tk cal por) and
forwarding task (tk fwd por).

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

68 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk ena wai
Enable Task Wait

[C Language Interface]

ER ercd = tk_ena_wai (ID tskid) ;

[Parameters]

ID tskid Task ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)

[Description]

Releases all wait disable conditions set by tk dis wai for the task specified in tskid.
The invoking task can be specified by setting tskid = TSK SELF = 0. Note, however, that when a
system call is issued from a task-independent portion and tskid = TSK SELF = 0 is specified, error code
E ID is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.3. TASK EXCEPTION HANDLING FUNCTIONS 69

4.3 Task Exception Handling Functions

Task exception handling functions handle exception events occurring in a task, in the context of that
task, interrupting normal task processing.
A task exception handler is executed as a part of the task where the task exception occurred, in the
context of that task and at the protection level specified when the task was created. The task states in
a task exception handler, except for those states concerning task exceptions, are the same as the states
when running an ordinary task portion; and the same system calls are available.
A task exception handler can be started only when the target task is running a task portion. If the task
is running any other portion when a task exception is raised, the task exception handler is started only
after the task returns to the task portion. If a quasi-task portion (extended SVC) is executing when
a task exception is raised, a break function corresponding to that extended SVC is called. The break
function interrupts the extended SVC processing, and the task returns to the task portion.
Requested task exceptions are cleared when the task exception handler is called (when the task exception
handler starts running).
Task exceptions are specified by task exception codes from 0 to 31, of which 0 is the highest priority
and 31 the lowest. Task exception code 0 is handled differently from the others, as explained below.

Task exception codes 1 to 31 :

• These task exception handlers are not nested. A task exception (other than task exception
code 0) raised while a task exception handler is running will be made pending.

• On return from a task exception handler, the task resumes from the point where processing
was interrupted by the exception.

• It is also possible to use longjmp() or the like to jump to any point in the task without
returning from the task exception handler.

Task exception code 0:

• This exception can be nested even while a task exception handler is executing for an exception
of task exception code 1 to 31. Execution of task exception code 0 handlers is not nested.

• A task exception handler runs after setting the user stack pointer to the initial setting when
the task was started. In a system without a separate user stack and system stack, however,
the stack pointer is not reset to its initial setting.

• A task exception code 0 handler does not return to task processing. The task must be
terminated.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

70 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk def tex
Define Task Exception Handler

[C Language Interface]

ER ercd = tk_def_tex (ID tskid, T_DTEX *pk_dtex) ;

[Parameters]

ID tskid Task ID
T DTEX* pk dtex Task exception handler definition information

pk dtex detail:

ATR texatr Task exception handler attributes
FP texhdr Task exception handler address

(Other implementation-dependent parameters may be added beyond this point.)

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E NOMEM Insufficient memory (memory for control block cannot be allocated)
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invalid object state (the task specified in tskid runs at protection level 0 (TA RNG0))
E RSATR Reserved attribute (texatr is invalid or cannot be used)
E PAR Parameter error (pk dtex is invalid or cannot be used)

[Description]

Defines a task exception handler for the task specified in tskid. Only one task exception handler can be
defined per task; if one is already defined, the last-defined handler is valid. Setting pk dtex = NULL
cancels a definition.
Defining or canceling a task exception handler clears pending task exception requests and disables all
task exceptions.
The parameter texatr indicates system attributes in is low bits and implementation-dependent at-
tributes in its high bits. The texatr system attributes are not assigned in the present version, and
system attributes are not used.
A task exception handler takes the following form.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.3. TASK EXCEPTION HANDLING FUNCTIONS 71

void texhdr(INT texcd)
{

/*
Task exception handling
*/

/* Task exception handler termination */
if (texcd == 0) {
tk_ext_tsk() or tk_exd_tsk();
} else {

tk_end_tex();
return or longjmp();

}
}

A task exception handler behaves only like a TA ASM attribute object and cannot be called via a high-level
language support routine. The entry part of the task exception handler must be written in assembly
language. The OS vendor must provide the assembly language source of the entry routine for calling
the above C language task exception handler. That is, source code equivalent to a high-level language
support routine must be provided.
A task set to protection level TA RNG0 when it is created cannot use task exceptions.

[Additional Notes]

At the time a task is created, no task exception handler is defined and task exceptions are disabled.
When a task reverts to DORMANT state, the task exception handler definition is canceled and task
exceptions are disabled. Pending task exceptions are cleared. It is possible, however, to define a task
exception handler for a task in DORMANT state.
Task exceptions are software interrupts raised by tk ras tex, with no direct relation to CPU exceptions.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

72 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk ena tex
tk dis tex

Enable Task Exception
Disable Task Exception

[C Language Interface]

ER ercd = tk_ena_tex (ID tskid, UINT texptn) ;
ER ercd = tk_dis_tex (ID tskid, UINT texptn) ;

[Parameters]

ID tskid Task ID
UINT texmask Task exception pattern

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist or no task exception

handler is defined)
E PAR Parameter error (texptn is invalid or cannot be used)

[Description]

Enables or disables task exceptions for the task specified in tskid.
The parameter texptn is a logical OR bit array representing task exception codes in the form 1 <<
task exception code.
tk ena tex enables the task exceptions specified in texptn. tk dis tex disables the task exceptions
specified in texptn. If the current exception enabled status is texmask, it changes as follows.

Enable: texmask |= texptn

Disable: texmask &= ~texptn

A disabled task exception is ignored, and is not made pending.
If exceptions are disabled for a task while there are pending task exceptions, the pending task exception
requests are discarded (their pending status is cleared).
Task exceptions cannot be enabled for a task with no task exception handler defined.
These system calls are applicable to tasks in DORMANT state.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.3. TASK EXCEPTION HANDLING FUNCTIONS 73

tk ras tex
Raise Task Exception

[C Language Interface]

ER ercd = tk_ras_tex (ID tskid, INT texcd) ;

[Parameters]

ID tskid Task ID
INT texcd Task exception code (0 to 31)

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist or no task exception

handler is defined)
E OBJ Invalid object state (called for a task in DORMANT state)
E PAR Parameter error (texcd is invalid or cannot be used)
E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Raises the task exception specified in texcd for the task specified in tskid.
If a task exception handler is already running in the task specified in tskid, the newly raised task
exception is made pending. If an exception is pending, a break function is not executed even if the
target task is executing an extended SVC. In the case of texcd = 0, however, exceptions are not made
pending even if the target task is executing an exception handler. If the target task is running a task
exception handler for an exception of task exception codes 1 to 31, the task exception is accepted; and if
an extended SVC is executing, a break function is called. If the target task is running a task exception
handler for an exception of task exception code 0, task exceptions are ignored.
The invoking task can be specified by setting tskid = TSK SELF = 0.
If this system call is issued from a task-independent portion, error code E CTX is returned.

[Additional Notes]

If the target task is executing an extended SVC, the break handler or the extended SVC runs in the
context that called tk ras tex. In such a case tk ras tex does not return control until the break
function processing ends. Task exceptions raised in the task that called tk ras tex while the break
function is running are held until the break function ends.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

74 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk end tex
End Task Exception Handler

[C Language Interface]

INT texcd = tk_end_tex (BOOL enatex) ;

[Parameters]

BOOL enatex Task exception handler calling enabled flag

[Return Parameters]

INT texcd Raised exception code
or Error Code

[Error Codes]

E OK Normal completion
E CTX Context error (called for other than a task exception handler or task exception code 0

(detection is implementation-dependent))

[Description]

Ends a task exception handler and enables the new task exception handler. If there are pending task
exceptions, the highest-priority task exception code among them is passed in the return code. If there
are no pending task exceptions, 0 is returned.
If enatex = FALSE and there are pending task exception, calling the new task exception handler is
not allowed. In this case, the exception handler specified in return code texcd is in running state upon
return from tk end tex. If there are no pending task exceptions, calling the new task exception handler
is allowed.
If enatex = TRUE, calling the new task exception handler is allowed regardless of whether there are
pending task exceptions. Even if there are pending task exceptions, the task exception handler is in
terminated status.
There is no way of ending a task exception handler other than by calling tk end tex. A task exception
handler continues executing from the time it is started until tk end tex is called. Even if return is
made from a task exception handler without calling tk end tex, the task exception handler will still be
running at the point of return. Similarly, even if longjmp is used to get out of a task exception handler
without calling tk end tex, the task exception handler will still be running at the jump destination.
Calling tk end tex while task exceptions are pending results in a new task exception being accepted.
At this time even when tk end tex is called from an extended SVC handler, a break function cannot be
called for that extended SVC handler. If extended SVC calls are nested, then when the extended SVC
nesting goes down one level, the break function corresponding to the extended SVC return destination
can be called. Calling of a task exception handler takes place upon return to the task portion. The
tk end tex system call cannot be issued in the case of task exception code 0, since the task exception
handler cannot be ended. The behavior when tk end tex is called for a handler of task exception code
0 is undefined (implementation-dependent).

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.3. TASK EXCEPTION HANDLING FUNCTIONS 75

This system call cannot be issued from other than a task exception handler. The behavior when it is
called from other than a task exception handler is undefined (implementation-dependent).

[Additional Notes]

When tk end tex (TRUE) is set and there are pending task exceptions, another task exception handler
call is made immediately following tk end tex. Moreover, for that reason a task exception handler is
called without restoring the stack, giving rise to possible stack overflow. Ordinarily tk end tex (FALSE)
can be used, and processing looped as illustrated below while there are task exceptions pending.

void texhdr(INT texcd)
{

if (texcd == 0) tk_exd_tsk();
do {
/*

Task exception handling
*/
} while ((texcd = tk_end_tex(FALSE)) > 0);

}

Strictly speaking, if a task exception were to occur during the interval after 0 is returned by tk ena tex
ending the loop and before exit from texhdr, the possibility exists of reentering texhdr without restoring
the stack. Since task exceptions are software driven, however, ordinarily they do not occur with no
relation to tasks; so in practice this is not a problem.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

76 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk ref tex
Reference Task Exception Status

[C Language Interface]

ER ercd = tk_ref_tex (ID tskid, T_RTEX *pk_rtex) ;

[Parameters]

ID tskid Task ID
T RTEX* pk rtex Address of packet for returning task exception status

[Return Parameters]

ER ercd Error code

pk rtex detail:

UINT pendtex Pending task exceptions
UINT texmask Allowed task exceptions

(Other implementation-dependent parameters may be added beyond this point.)

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task specified in tskid does not exist)
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

Gets the status of task exceptions for the task specified in tskid.
pendtex indicates the currently pending task exceptions. A raised task exception is indicated in pendtex
from the time the task exception is raised until its task exception handler is called.
texmask indicates allowed task exceptions.
Both pendtex and texmask are bit arrays of the form 1 << task exception code.
The invoking task can be specified by setting tskid = TSK SELF = 0. Note, however, that when a
system call is issued from a task-independent portion and tskid = TSK SELF = 0 is specified, error code
E ID is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 77

4.4 Synchronization and Communication Functions

Synchronization and communication functions use objects independent of tasks used to synchronize tasks
and achieve communication between tasks. The objects available for these purposes include semaphores,
event flags, and mailboxes.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

78 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.4.1 Semaphore

A semaphore is an object indicating the availability of a resource and its quantity as a numerical value.
A semaphore is used to realize mutual exclusion control and synchronization when using a resource.
Functions are provided for creating and deleting a semaphore, acquiring and returning resources corre-
sponding to semaphores, and referencing semaphore status. A semaphore is an object identified by an
ID number called a semaphore ID.
A semaphore contains a resource count indicating whether the corresponding resource exists and in
what quantity, and a queue of tasks waiting to acquire the resource. When a task (the task making
event notification) returns m resources, it increments the semaphore resource count by m. When a task
(the task waiting for an event) acquires n resources, it decreases the semaphore resource count by n. If
the number of semaphore resources is insufficient (i.e., further reducing the semaphore resource count
would cause it to go into negative territory), a task attempting to acquire resources goes into WAIT
state until the next time resources are returned. A task waiting for semaphore resources is put in the
semaphore queue.
To prevent too many resources from being returned to a semaphore, a maximum resource count can
be set for each semaphore. Error is reported if it is attempted to return resources to a semaphore that
would cause this maximum count to be exceeded.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 79

tk cre sem
Create Semaphore

[C Language Interface]

ID semid = tk_cre_sem (T_CSEM *pk_csem) ;

[Parameters]

T CSEM* pk csem Information about the semaphore to be created

pk csem detail:

VP exinf Extended information
ATR sematr Semaphore attributes
INT isemcnt Initial semaphore count
INT maxsem Maximum semaphore count
UB dsname[8] DS object name

(Other implementation-dependent parameters may be added beyond this point.)

[Return Parameters]

ID semid Semaphore ID
or Error Code

[Error Codes]

E OK Normal completion
E NOMEM Insufficient memory (memory for control block cannot be allocated)
E LIMIT Semaphore count exceeds the system limit
E RSATR Reserved attribute (sematr is invalid or cannot be used)
E PAR Parameter error (pk csem is invalid; isemcnt or maxsem is negative or invalid)

[Description]

Creates a semaphore, assigning to it a semaphore ID.
This system call allocates a control block to the created semaphore, setting the initial count to isemcnt
and maximum count (upper limit) to maxsem. It must be possible to set maxsem to at least 65535.
Whether values above 65536 can be set is implementation-dependent.
exinf can be used freely by the user to set miscellaneous information about the created semaphore.
The information set in this parameter can be referenced by tk ref sem. If a larger area is needed for
indicating user information, or if the information may need to be changed after the semaphore is created,
this can be done by allocating separate memory for this purpose and putting the memory packet address
in exinf. The OS pays no attention to the contents of exinf.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

80 CHAPTER 4. T-KERNEL/OS FUNCTIONS

sematr indicates system attributes in its low bits and implementation-dependent information in the
high bits. The system attributes part of sematr is as follows.

sematr:= (TA_TFIFO || TA_TPRI) | (TA_FIRST || TA_CNT) | [TA_DSNAME]
| [TA_NODISWAI]

TA TFIFO Tasks are queued in FIFO order
TA TPRI Tasks are queued in priority order
TA FIRST The first task in the queue has precedence
TA CNT Tasks with fewer requests have precedence
TA DSNAME Specifies DS object name
TA NODISWAI Wait disabling by tk dis wai is prohibited

The queuing order of tasks waiting for a semaphore can be specified in TA TFIFO or TA TPRI. If the
attribute is TA TFIFO, tasks are ordered by FIFO, whereas TA TPRI specifies queuing of tasks in order
of their priority setting.
TA FIRST and TA CNT specify precedence of resource acquisition. TA FIRST and TA CNT do not change the
order of the queue, which is determined by TA TFIFO or TA TPRI. When TA FIRST is specified, resources
are allocated starting from the first task in the queue regardless of request count. As long as the first
task in the queue cannot obtain the requested number of resources, tasks behind it in the queue are
prevented from obtaining resources.
TA CNT means resources are assigned based on the order in which tasks are able to obtain the requested
number of resources. The request counts are checked starting from the first task in the queue, and tasks
to which their requested amount can be allocated receive resources. This is not the same as allocating
in order of fewest requests.
When TA DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is
used to identify objects by debugger, and it is handled only by T-Kernel/DS API, td ref dsname and
td set dsname. For more details refer to td ref dsname and td set dsname. If TA DSNAME is not
specified, dsname is ignored. Then td ref dsname and td set dsname return E OBJ error.

#define TA_TFIFO 0x00000000 /* manage queue by FIFO */
#define TA_TPRI 0x00000001 /* manage queue by priority */
#define TA_FIRST 0x00000000 /* first task in queue has precedence */
#define TA_CNT 0x00000002 /* tasks with fewer requests have precedence */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject wait disabling */

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 81

tk del sem
Delete Semaphore

[C Language Interface]

ER ercd = tk_del_sem (ID semid) ;

[Parameters]

ID semid Semaphore ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (semid is invalid or cannot be used)
E NOEXS Object does not exist (the semaphore specified in semid does not exist)

[Description]

Deletes the semaphore specified in semid.
The semaphore ID and control block area are released as a result of this system call.
This system call completes normally even if there is a task waiting for condition fulfillment in the
semaphore, but error code E DLT is returned to the task in WAIT state.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

82 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk sig sem
Signal Semaphore

[C Language Interface]

ER ercd = tk_sig_sem (ID semid, INT cnt) ;

[Parameters]

ID semid Semaphore ID
INT cnt Resource return count

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (semid is invalid or cannot be used)
E NOEXS Object does not exist (the semaphore specified in semid does not exist)
E QOVR Queuing or nesting overflow (semcnt over limit)
E PAR Parameter error (cnt ≤ 0)

[Description]

Returns to the semaphore specified in semid the number of resources indicated in cnt. If there is a
task waiting for the semaphore, its request count is checked and resources allocated if possible. A task
allocated resources goes to READY state. In some conditions more than one task may be allocated
resources and put in READY state.
If the semaphore count increases to the point where the maximum count (maxcnt) would be exceeded
by the return of more resources, error code E QOVR is returned. In this case no resources are returned
and the count (semcnt) does not change.

[Additional Notes]

Error is not returned even if semcnt goes over the semaphore initial count (isemcnt). When semaphores
are used not for mutual exclusion control but for synchronization (like tk wup tsk and tk slp tsk),
the semaphore count (semcnt) will sometimes go over the initial setting (isemcnt). The semaphore
function can be used for mutual exclusion control by setting isemcnt and the maximum semaphore
count (maxsem) to the same value and checking for error occurring when the count increases.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 83

tk wai sem
Wait on Semaphore

[C Language Interface]

ER ercd = tk_wai_sem (ID semid, INT cnt, TMO tmout) ;

[Parameters]

ID semid Semaphore ID
INT cnt Resource request count
TMO tmout timeout

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (semid is invalid or cannot be used)
E NOEXS Object does not exist (the semaphore specified in semid does not exist)
E PAR Parameter error (tmout ≤ (−2), cnt ≤ 0)
E DLT The object being waited for was deleted (the specified semaphore was deleted while

waiting)
E RLWAI Wait state released (tk rel wai received in wait state)
E DISWAI Wait released by wait disabled state
E TMOUT Polling failed or timeout
E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Gets from the semaphore specified in semid the number of resources indicated in cnt. If the requested
resources can be allocated, the task issuing this system call does not enter WAIT state but continues
executing. In this case the semaphore count (semcnt) is decreased by the size of cnt. If the resources
are not available, the task issuing this system call enters WAIT state, and is put in the queue of tasks
waiting for the semaphore. The semaphore count (semcnt) for this semaphore does not change in this
case.
A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release
condition is met (tk sig sem is not executed), the system call terminates, returning timeout error code
E TMOUT.
Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for
system time (= 1 ms).
When TMO POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E TMOUT is
returned without entering WAIT state even if no resources are acquired.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

84 CHAPTER 4. T-KERNEL/OS FUNCTIONS

When TMO FEVR = (−1) is set in tmout, this means infinity was specified as the timeout value, and the
task continues to wait for resource acquisition without timing out.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 85

tk ref sem
Reference Semaphore Status

[C Language Interface]

ER ercd = tk_ref_sem (ID semid, T_RSEM *pk_rsem) ;

[Parameters]

ID semid Semaphore ID
T RSEM* pk rsem Address of packet for returning status information

pk rsem detail:

VP exinf Extended information
ID wtsk Waiting task information
INT semcnt Semaphore count

(Other implementation-dependent parameters may be added beyond this point.)

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (semid is invalid or cannot be used)
E NOEXS Object does not exist (the semaphore specified in semid does not exist)
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

References the status of the semaphore specified in semid, passing in the return parameters the cur-
rent semaphore count (semcnt), information on tasks waiting for the semaphore (wtsk), and extended
information (exinf).
wtsk indicates the ID of a task waiting for the semaphore. If there are two or more such tasks, the ID
of the task at the head of the queue is returned. If there are no waiting tasks, wtsk = 0 is returned.
If the specified semaphore does not exist, error code E NOEXS is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

86 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.4.2 Event Flag

An event flag is an object used for synchronization, consisting of a pattern of bits used as flags to
indicate the existence of the corresponding event. Functions are provided for creating and deleting an
event flag, for event flag setting and clearing, event flag waiting, and event flag status reference. An
event flag is identified by an ID number, called an event flag ID.
In addition to the bit pattern indicating the existence of corresponding events, an event flag has a queue
of tasks waiting for the event flag. The event flag bit pattern is sometimes called simply event flag. The
event notifier sets or clears the specified bits of the event flag. A task can be made to wait for all or
some of the event flag bits to be set. A task waiting for an event flag is put in the queue of that event
flag.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 87

tk cre flg
Create Event Flag

[C Language Interface]

ID flgid = tk_cre_flg (T_CFLG *pk_cflg) ;

[Parameters]

T CFLG* pk cflg Information about the event flag to be created

pk cflg detail:

VP exinf Extended information
ATR flgatr Event flag attributes
UINT iflgptn Initial event flag pattern
UB dsname[8] DS object name

(Other implementation-dependent parameters may be added beyond this point.)

[Return Parameters]

ID flgid Event flag ID
or Error Code

[Error Codes]

E OK Normal completion
E NOMEM Insufficient memory (memory for control block cannot be allocated)
E LIMIT Number of event flags exceeds the system limit
E RSATR Reserved attribute (flgatr is invalid or cannot be used)
E PAR Parameter error (pk cflg is invalid)

[Description]

Creates an event flag, assigning to it an event flag ID.
This system call allocates a control block to the created event flag and sets its initial value to iflgptn.
An event flag handles one word’s worth of bits as a group. All operations are performed in single word
units.
exinf can be used freely by the user to set miscellaneous information about the created event flag.
The information set in this parameter can be referenced by tk ref flg. If a larger area is needed for
indicating user information, or if the information may need to be changed after the event flag is created,
this can be done by allocating separate memory for this purpose and putting the memory packet address
in exinf. The OS pays no attention to the contents of exinf.
flgatr indicates system attributes in its low bits and implementation-dependent information in the
high bits. The system attributes part of flgatr is as follows.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

88 CHAPTER 4. T-KERNEL/OS FUNCTIONS

flgatr:= (TA_TFIFO || TA_TPRI) | (TA_WMUL || TA_WSGL) | [TA_DSNAME]
| [TA_NODISWAI]

TA TFIFO Tasks are queued in FIFO order
TA TPRI Tasks are queued in priority order
TA WSGL Waiting for multiple tasks is not allowed (Wait Single Task)
TA WMUL Waiting for multiple tasks is allowed (Wait Multiple Task)
TA DSNAME Specifies DS object name
TA NODISWAI Wait disabling by tk dis wai is prohibited

When TA WSGL is specified, multiple tasks cannot be in WAIT state at the same time. Specifying TA WMUL
allows waiting by multiple tasks at the same time.
The queuing order of tasks waiting for an event flag can be specified in TA TFIFO or TA TPRI. If the
attribute is TA TFIFO, tasks are ordered by FIFO, whereas TA TPRI specifies queuing of tasks in order
of their priority setting.
When TA WSGL is specified, however, since tasks cannot be queued, TA TFIFO or TA TPRI makes no
difference.
When multiple tasks are waiting for an event flag, tasks are checked in order from the head of the queue,
and the wait is released for tasks meeting the conditions. The first task to have its WAIT state released
is therefore not necessarily the first in the queue. If multiple tasks meet the conditions, wait state is
released for each of them.
When TA DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is
used to identify objects by debugger, and it is handled only by T-Kernel/DS API, td ref dsname and
td set dsname. For more details refer to td ref dsname and td set dsname. If TA DSNAME is not
specified, dsname is ignored. Then td ref dsname and td set dsname return E OBJ error.

#define TA_TFIFO 0x00000000 /* manage queue by FIFO */
#define TA_TPRI 0x00000001 /* manage queue by priority */
#define TA_WSGL 0x00000000 /* prohibit multiple task waiting */
#define TA_WMUL 0x00000008 /* allow multiple task waiting */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* prohibit wait disabling */

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 89

tk del flg
Delete Event Flag

[C Language Interface]

ER ercd = tk_del_flg (ID flgid) ;

[Parameters]

ID flgid Event flag ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (flgid is invalid or cannot be used)
E NOEXS Object does not exist (the event flag specified in flgid does not exist)

[Description]

Deletes the event flag specified in flgid.
Issuing this system call releases the corresponding event flag ID and control block memory space.
This system call is completed normally even if there are tasks waiting for the event flag, but error code
E DLT is returned to each task in WAIT state.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

90 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk set flg
tk clr flg

Set Event Flag
Clear Event Flag

[C Language Interface]

ER ercd = tk_set_flg (ID flgid, UINT setptn) ;
ER ercd = tk_clr_flg (ID flgid, UINT clrptn) ;

[Parameters]

For tk set flg

ID flgid Event flag ID
UINT setptn Bit pattern to be set

For tk clr flg

ID flgid Event flag ID
UINT clrptn Bit pattern to be cleared

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (flgid is invalid or cannot be used)
E NOEXS Object does not exist (the event flag specified in flgid does not exist)

[Description]

tk set flg sets the bits indicated in setptn in a one-word event flag specified in flgid. That is, a
logical sum is taken of the values of the event flag specified in flgid and the values indicated in setptn.
tk clr flg clears the bits of the one-word event flag based on the corresponding zero bits of clrptn.
That is, a logical product is taken of the values of the event flag specified in flgid and the values
indicated in clrptn.
After event flag values are changed by tk set flg, if the condition for releasing the wait state of a
task that called tk wai flg is met, the WAIT state of that task is cleared, putting it in RUN state or
READY state (or SUSPEND state if the waiting task was in WAIT-SUSPEND state).
Issuing tk clr flg never results in wait conditions being released for a task waiting for the specified
event flag; that is, dispatching never occurs with tk clr flg.
Nothing will happen to the event flag if all bits of setptn are cleared to 0 with tk set flg or if all bits
of clrptn are set to 1 with tk clr flg. No error will result in either case.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 91

Multiple tasks can wait for a single event flag if that event flag has the TA WMUL attribute. The event
flag in that case has a queue for the waiting tasks. A single tk set flg call for such an event flag may
result in the release of multiple waiting tasks.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

92 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk wai flg
Wait Event Flag

[C Language Interface]

ER ercd = tk_wai_flg (ID flgid, UINT waiptn, UINT wfmode, UINT *p_flgptn, TMO tmout) ;

[Parameters]

ID flgid Event flag ID
UINT waiptn Wait bit pattern
UINT wfmode Wait release condition
TMO tmout timeout

[Return Parameters]

ER ercd Error code
UINT flgptn Event flag bit pattern

[Error Codes]

E OK Normal completion
E ID Invalid ID number (flgid is invalid or cannot be used)
E NOEXS Object does not exist (the event flag specified in flgid does not exist)
E PAR Parameter error (waiptn = 0, wfmode is invalid, or tmout ≤ (−2))
E OBJ Invalid object state (multiple tasks are waiting for an event flag with TA WSGL attribute)
E DLT The object being waited for was deleted (the specified event flag was deleted while wait-

ing)
E RLWAI Wait state released (tk rel wai received in wait state)
E DISWAI Wait released by wait disabled state
E TMOUT Polling failed or timeout
E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Waits for the event flag specified in flgid to be set, fulfilling the wait release condition specified in
wfmode.
If the event flag specified in flgid already meets the wait release condition set in wfmode, the waiting
task continues executing without going to WAIT state.
wfmode is specified as follows.

wfmode := (TWF_ANDW || TWF_ORW) | [TWF_CLR || TWF_BITCLR]

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 93

TWF ANDW 0x00 AND wait condition
TWF ORW 0x01 OR wait condition
TWF CLR 0x10 Clear all
TWF BITCLR 0x20 Clear condition bit only

If TWF ORW is specified, the issuing task waits for any of the bits specified in waiptn to be set for the
event flag specified in flgid (OR wait). If TWF ANDW is specified, the issuing task will wait for all of the
bits specified in waiptn to be set for the event flag specified in flgid (AND wait).
If TWF CLR specification is not specified, the event flag values will remain unchanged even after the
conditions have been satisfied and the task has been released from WAIT state. If TWF CLR is specified,
all bits of the event flag will be cleared to 0 once wait conditions of the waiting task have been met. If
TWF BITCLR is specified, then when the conditions are met and the task is released from WAIT state, only
the bits matching the event flag wait release conditions are cleared to 0 (event flag values &= ~wait
release conditions).
The return parameter flgptn returns the value of the event flag after the WAIT state of a task has
been released due to this system call. If TWF CLR or TWF BITCLR was specified, the value before event
flag bits were cleared is returned. The value returned by flgptn fulfills the wait release conditions of
this system call. The contents of flgptn are indeterminate if the wait is released due to timeout or the
like.
A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release
condition is met, the system call terminates, returning timeout error code E TMOUT.
Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for
system time (= 1 ms).
When TMO POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E TMOUT is
returned without entering WAIT state even if the condition is not met.
When TMO FEVR = (−1) is set in tmout, this means infinity was specified as the timeout value, and the
task continues to wait for the condition to be met without timing out.
In the case of a timeout, the event flag bits are not cleared even if TWF CLR or TWF BITCLR was specified.
Setting waiptn to 0 results in Parameter error E PAR.
A task cannot execute tk wai flg for an event flag having the TA WSGL attribute while another task
is waiting for it. Error code E OBJ will be returned for the task issuing the subsequent tk wai flg,
regardless of whether that task would have gone to WAIT state; i.e., regardless of whether the wait
release conditions would be met.
If an event flag has the TA WMUL attribute, multiple tasks can wait for it at the same time. Waiting tasks
can be queued, and the WAIT states of multiple tasks can be released by issuing tk set flg just once.
If multiple tasks are queued for an event flag with TA WMUL attribute, the behavior is as follows.

• Tasks are queued in either FIFO or priority order. (Release of wait state does not always start
from the head of the queue, however, depending on factors such as waiptn and wfmode settings.)

• If TWF CLR or TWF BITCLR was specified by a task in the queue, the event flag is cleared when that
task is released from WAIT state.

• Tasks later in the queue than a task specifying TWF CLR or TWF BITCLR will see the event flag after
it has already been cleared.

If multiple tasks having the same priority are released from waiting simultaneously as a result of
tk set flg, the order of tasks in the ready queue (precedence) after release will continue to be the
same as their original order in the event flag queue.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

94 CHAPTER 4. T-KERNEL/OS FUNCTIONS

[Additional Notes]

If a logical sum of all bits is specified as the wait release condition when tk wai flg is called (waiptn=0xfff...
ff, wfmode=TWF ORW), it is possible to transfer messages using one-word bit patterns in combination with
tk set flg. However, it is not possible to send a message containing only 0s for all bits. Moreover, if
the next message is sent before a previous message has been read by tk wai flg, the previous message
will be lost; that is, message queuing is not possible.
Since setting waiptn = 0 will result in an E PAR error, it is guaranteed that the waiptn of tasks waiting
for an event flag will not be 0. The result is that if tk set flg sets all bits of an event flag to 1, the
task at the head of the queue will always be released from waiting no matter what its wait condition is.
The ability to have multiple tasks wait for the same event flag is useful in situations like the following.
Suppose, for example, that Task B and Task C are waiting for tk wai flg calls (2) and (3) until Task
A issues (1) tk set flg. If multiple tasks are allowed to wait for the event flag, the result will be the
same regardless of the order in which system calls (1)(2)(3) are executed (see Figure 4.1). On the other
hand, if multiple task waiting is not allowed and system calls are executed in the order (2), (3), (1), an
E OBJ error will result from the execution of (3) tk wai flg.

[Task A] [Task B] [Task C]

(no clear) (no clear)
(1) tk set flg (2) tk wai flg (3) tk wai flg

Figure 4.1: Multiple Tasks Waiting for One Event Flag

[Rationale for the Specification]

The reason for returning E PAR error for specifying waiptn = 0 is that if waiptn = 0 were allowed, it
would not be possible to get out of WAIT state regardless of the subsequent event flag values.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 95

tk ref flg
Reference Event Flag Status

[C Language Interface]

ER ercd = tk_ref_flg (ID flgid, T_RFLG *pk_rflg) ;

[Parameters]

ID flgid Event flag ID
T RFLG* pk rflg Address of packet for returning status information

[Return Parameters]

ER ercd Error code

pk rflg detail:

VP exinf Extended information
ID wtsk Waiting task information
UINT flgptn Event flag bit pattern

(Other implementation-dependent parameters may be added beyond this point.)

[Error Codes]

E OK Normal completion
E ID Invalid ID number (flgid is invalid or cannot be used)
E NOEXS Object does not exist (the event flag specified in flgid does not exist)
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

References the status of the event flag specified in flgid, passing in the return parameters the current
flag pattern (flgptn), waiting task information (wtsk), and extended information (exinf).
wtsk returns the ID of a task waiting for this event flag. If more than one task is waiting (only when
the TA WMUL was specified), the ID of the first task in the queue is returned. If there are no waiting
tasks, wtsk = 0 is returned. If the specified event flag does not exist, error code E NOEXS is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

96 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.4.3 Mailbox

A mailbox is an object used to achieve synchronization and communication by passing messages in
system (shared) memory space. Functions are provided for creating and deleting a mailbox, sending
and receiving messages in a mailbox, and referencing the mailbox status. A mailbox is an object
identified by an ID number called a mailbox ID.
A mailbox has a message queue for sent messages, and a task queue for tasks waiting to receive messages.
At the message sending end (making event notification), messages to be sent go in the message queue.
On the message receiving end (waiting for event notification), a task fetches one message from the
message queue. If there are no queued messages, the task goes to a state of waiting for receipt from the
mailbox until the next message is sent. Tasks waiting for message receipt from a mailbox are put in the
task queue of that mailbox.
Since the contents of messages using this function are in memory shared by the sending and receiving
sides, only the start address of a message located in this shared space is actually sent and received. The
contents of the messages themselves are not copied. T-Kernel manages messages in the message queue
by means of a link list. An application program must allocate space at the beginning of a message to be
sent, for link list use by T-Kernel. This area is called the message header. The message header and the
message body together are called a message packet. When a system call sends a message to a mailbox,
the start address of the message packet (pk msg) is passed in a parameter. When a system call receives
a message from a mailbox, the start address of the message packet is passed in a return parameter. If
messages are assigned a priority in the message queue, the message priority (msgpri) of each message
must be specified in the message header (see Figure 4.2). The user puts the message contents not at
the beginning of the packet but after the header part (msgcont in the figure).

pk msg →
Message header

∗ May include message priority (msgpri)

Message content (msgcont)

Figure 4.2: Format of Messages Using a Mailbox

T-Kernel overwrites the contents of the header when a message is put in the message queue (except
for the message priority area). An application, on the other hand, must not overwrite the header of a
message in the queue (including the message priority area). The behavior if an application overwrites
the message header is not defined. This restriction applies not only to the direct writing of a message
header by an application program, but also to the passing of a header address to T-Kernel and having
T-Kernel overwrite the message header with the contents. Accordingly, the behavior when a message
already in the message queue is again sent to a mailbox is undefined.

[Additional Notes]

Since the application program allocates the message header space for this mailbox function, there is no
limit on the number of messages that can be queued. A system call sending a message does not enter

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 97

WAIT state.
Memory blocks allocated dynamically from a fixed-size memory pool or variable-size memory pool, or
else a statically allocated area can be used for message packets; but these must not be located in task
space.
Generally, a sending task allocates a memory block from a memory pool, sending that as a message
packet. After a task on the receiving end fetches the message, it returns the memory block directly to
its memory pool.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

98 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk cre mbx
Create Mailbox

[C Language Interface]

ID mbxid = tk_cre_mbx (T_CMBX* pk_cmbx) ;

[Parameters]

T CMBX* pk cmbx Information about the mailbox to be created

pk cmbx detail:

VP exinf Extended information
ATR mbxatr Mailbox attributes
UB dsname[8] DS object name

(Other implementation-dependent parameters may be added beyond this point.)

[Return Parameters]

ID mbxid Mailbox ID
or Error Code

[Error Codes]

E OK Normal completion
E NOMEM Insufficient memory (memory for a control block or buffer cannot be allocated)
E LIMIT Number of mailboxes exceeds the system limit
E RSATR Reserved attribute (mbxatr is invalid or cannot be used)
E PAR Parameter error (pk cmbx is invalid)

[Description]

Creates a mailbox, assigning to it a mailbox ID.
This system call allocates a control block, etc. for the created mailbox.
exinf can be used freely by the user to set miscellaneous information about the created mailbox. The
information set in this parameter can be referenced by tk ref mbx. If a larger area is needed for
indicating user information, or if the information may need to be changed after the mailbox is created,
this can be done by allocating separate memory for this purpose and putting the memory packet address
in exinf. The OS pays no attention to the contents of exinf.
mbxatr indicates system attributes in its low bits and implementation-dependent information in the
high bits. The system attributes part of mbxatr is as follows.

mbxatr:= (TA_TFIFO || TA_TPRI) | (TA_MFIFO || TA_MPRI)
| [TA_DSNAME] | [TA_NODISWAI]

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 99

TA TFIFO Tasks are queued in FIFO order
TA TPRI Tasks are queued in priority order
TA MFIFO Messages are queued in FIFO order
TA MPRI Messages are queued in priority order
TA DSNAME Specifies DS object name
TA NODISWAI Wait disabling by tk dis wai is prohibited

The queuing order of tasks waiting for a mailbox can be specified in TA TFIFO or TA TPRI. If the attribute
is TA TFIFO, tasks are ordered by FIFO, whereas TA TPRI specifies queuing of tasks in order of their
priority setting.
TA MFIFO and TA MPRI are used to specify the order of messages in the message queue (messages waiting
to be received). If the attribute is TA MFIFO, messages are ordered by FIFO; TA MPRI specifies queuing
of messages in priority order. Message priority is set in a special field in the message packet. Message
priority is specified by positive values, with 1 indicating the highest priority and higher numbers indi-
cating successively lower priority. The largest value that can be expressed in the PRI type is the lowest
priority. Messages having the same priority are ordered as FIFO.
When TA DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is
used to identify objects by debugger, and it is handled only by T-Kernel/DS API, td ref dsname and
td set dsname. For more details refer to td ref dsname and td set dsname. If TA DSNAME is not
specified, dsname is ignored. Then td ref dsname and td set dsname return E OBJ error.

#define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
#define TA_TPRI 0x00000001 /* manage task queue by priority */
#define TA_MFIFO 0x00000000 /* manage message queue by FIFO */
#define TA_MPRI 0x00000002 /* manage message queue by priority */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject wait disabling */

[Additional Notes]

The body of a message passed by the mailbox function is located in system (shared) memory; only its
start address is actually sent and received. For this reason a message must not be located in task space.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

100 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk del mbx
Delete Mailbox

[C Language Interface]

ER ercd = tk_del_mbx (ID mbxid) ;

[Parameters]

ID mbxid Mailbox ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mbxid is invalid or cannot be used)
E NOEXS Object does not exist (the mailbox specified in mbxid does not exist)

[Description]

Deletes the mailbox specified in mbxid.
Issuing this system call releases the mailbox ID and control block memory space, etc., associated with
the mailbox.
This system call completes normally even if there are tasks waiting for messages in the deleted mailbox,
but error code E DLT is returned to each of the tasks in WAIT state. Even if there are messages still in
the deleted mailbox, the mailbox is deleted without returning an error code.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 101

tk snd mbx
Send Message to Mailbox

[C Language Interface]

ER ercd = tk_snd_mbx (ID mbxid, T_MSG *pk_msg) ;

[Parameters]

ID mbxid Mailbox ID
T MSG* pk msg Message packet address

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mbxid is invalid or cannot be used)
E NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
E PAR Parameter error (pk msg is a value that cannot be used)

[Description]

Sends the message packet having pk msg as its start address to the mailbox specified in mbxid. The
message packet contents are not copied; only the start address (pk msg) is passed at the time of message
receipt.
If tasks are already waiting for messages in the same mailbox, the WAIT state of the task at the head of
the queue is released, and the pk msg passed to tk snd mbx is sent to that task, becoming a parameter
returned by tk rcv mbx. If there are no tasks waiting for messages in the specified mailbox, the sent
message goes in the message queue of that mailbox. In neither case does the task issuing tk snd mbx
enter WAIT state.
pk msg is the start address of the packet containing the message, including header. The message header
has the following format.

typedef struct t_msg {
? ? /* Implementation-dependent contents (fixed size) */

} T_MSG;

typedef struct t_msg_pri {
T_MSG msgque; /* message queue area */
PRI msgpri; /* message priority */

} T_MSG_PRI;

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

102 CHAPTER 4. T-KERNEL/OS FUNCTIONS

The message header is T MSG (if TA MFIFO attribute is specified) or T MSG PRI (if TA MPRI). In either case
the message header has a fixed size, which can be obtained by sizeof(T MSG) or sizeof(T MSG PRI).
The actual message must be put in the area after the header. There is no limit on message size, which
may be variable-length.

[Additional Notes]

Messages are sent by tk snd mbx regardless of the status of the receiving tasks. In other words, message
sending is asynchronous. What waits in the queue is not the task itself, but the sent message. So while
there are queues of waiting messages and receiving tasks, the sending task does not go to WAIT state.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 103

tk rcv msg
Receive Message from Mailbox

[C Language Interface]

ER ercd = tk_rcv_mbx (ID mbxid, T_MSG **ppk_msg, TMO tmout) ;

[Parameters]

ID mbxid Mailbox ID
TMO tmout timeout

[Return Parameters]

ER ercd Error code
T MSG* pk msg Start address of message packet

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mbxid is invalid or cannot be used)
E NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
E PAR Parameter error (tmout ≤ (−2))
E DLT The object being waited for was deleted (the mailbox was deleted while waiting)
E RLWAI Wait state released (tk rel wai received in wait state)
E DISWAI Wait released by wait disabled state
E TMOUT Polling failed or timeout
E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Receives a message from the mailbox specified in mbxid. If no messages have been sent to the mailbox
(the message queue is empty), the task issuing this system call enters WAIT state and is queued for
message arrival. If there are messages in the mailbox, the task issuing this system call fetches the first
message in the message queue, passing this in the return parameter pk msg.
A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release
condition is met (no message arrives), the system call terminates, returning timeout error code E TMOUT.
Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for
system time (= 1 ms).
When TMO POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E TMOUT is
returned without entering WAIT state even if no message arrives.
When TMO FEVR = (−1) is set in tmout, this means infinity was specified as the timeout value, and the
task continues to wait for message arrival without timing out.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

104 CHAPTER 4. T-KERNEL/OS FUNCTIONS

[Additional Notes]

pk msg is the start address of the packet containing the message, including header. The message header
is T MSG (if TA MFIFO attribute is specified) or T MSG PRI (if TA MPRI).

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.4. SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 105

tk ref mbx
Reference Mailbox Status

[C Language Interface]

ER ercd = tk_ref_mbx (ID mbxid, T_RMBX *pk_rmbx) ;

[Parameters]

ID mbxid Mailbox ID
T RMBX* pk rmbx Address of packet for returning status information

[Return Parameters]

ER ercd Error code

pk rmbx detail:

VP exinf Extended information
ID wtsk Waiting task information
T MSG* pk msg Start address of next message packet to be received

(Other implementation-dependent parameters may be added beyond this point.)

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mbxid is invalid or cannot be used)
E NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

References the status of the mailbox specified in mbxid, passing in the return parameters the next
message to be received (the first message in the message queue), waiting task information (wtsk), and
extended information (exinf).
wtsk indicates the ID of a task waiting for the mailbox. If there are multiple waiting tasks, the ID of
the first task in the queue is returned. If there are no waiting tasks, wtsk = 0 is returned.
If the specified mailbox does not exist, error code E NOEXS is returned.
pk msg indicates the message that will be received the next time tk rcv mbx is issued. If there are no
messages in the message queue, pk msg = NULL is returned. At least one of pk msg = NULL and
wtsk = 0 is always true for this system call.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

106 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.5 Extended Synchronization and Communication Functions

Extended synchronization and communication functions use objects independent of tasks to realize more
sophisticated synchronization and communication between tasks. The functions specified here include
mutex, message buffer, and rendezvous port functions.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 107

4.5.1 Mutex

A mutex is an object for mutual exclusion control among tasks that use shared resources. Priority
inheritance mutexes and priority ceiling mutexes are supported, as tools for managing the problem of
unbounded priority inversion that can occur in mutual exclusion control. Functions are provided for
creating and deleting a mutex, locking and unlocking a mutex, and referencing mutex status. A mutex
is identified by an ID number called a mutex ID.
A mutex has a status (locked or unlocked) and a queue for tasks waiting to lock the mutex. For each
mutex, T-Kernel keeps track of the tasks locking it; and for each task, it keeps track of the mutexes it
has locked. Before a task uses a resource, it locks a mutex corresponding to that resource. If the mutex
is already locked by another task, the task waits for the mutex to become unlocked. Tasks in mutex lock
waiting state are put in the mutex queue. When a task finishes with a resource, it unlocks the mutex.
A mutex with TA INHERIT(= 0x02) specified as mutex attribute supports priority inheritance protocol,
while one with TA CEILING(= 0x03) specified supports priority ceiling protocol. When a priority ceiling
mutex is created, a ceiling priority is assigned to it, indicating the base priority of the task having the
highest base priority among the tasks able to lock that mutex. If a task having a higher base priority
than the ceiling priority of the mutex tries to lock it, error code E ILUSE is returned. If tk chg pri is
issued in an attempt to set the base priority of a task locking a priority ceiling mutex to a value higher
than the ceiling priority of that mutex, E ILUSE is returned by the tk chg pri system call.
When these protocols are used, unbounded priority inversion is prevented by changing the current
priority of a task in a mutex operation. Strict adherence to the priority inheritance protocol and
priority ceiling protocol requires that the task current priority must always be changed to match the
peak value of the following priorities. This is called strict priority control.

• The task base priority.

• When tasks lock priority inheritance mutexes, the current priority of the task having the highest
current priority of the tasks waiting for those mutexes.

• When tasks lock priority ceiling mutexes, the ceiling priority of the mutex having the highest
ceiling priority among those mutexes.

Note that when the current priority of a task waiting for a priority inheritance mutex changes as the
result of a base priority change brought about by mutex operation or tk chg pri, it may be necessary to
change the current priority of the task locking that mutex. This is called dynamic priority inheritance.
Further, if this task is waiting for another priority inheritance mutex, dynamic priority inheritance
processing may be necessary also for the task locking that mutex.
The T-Kernel specification defines, in addition to the above strict priority control, a simplified priority
control limiting the situations in which the current priority is changed. The choice between the two
is an implementation-dependent matter. In the simplified priority control, whereas all changes in the
direction of raising the task current priority are carried out, changes in the direction of lowering that
priority are made only when a task is no longer locking any mutexes. (In this case the task current
priority reverts to the base priority.) More specifically, processing to change the current priority is
needed only in the following circumstances.

• When a task with a higher current priority than that of the task locking a priority inheritance
mutex starts waiting for that mutex.

• When a task waiting for a priority inheritance mutex is changed to a higher current priority than
that of the task locking that mutex.

• When a task locks a priority ceiling mutex having a higher ceiling priority than the task’s current
priority.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

108 CHAPTER 4. T-KERNEL/OS FUNCTIONS

• When a task is no longer locking any mutexes.

When the current priority of a task is changed in connection with a mutex operation, the following
processing is performed. If the task whose priority changed is in a run state, the task precedence is
changed in accord with the new priority. Its precedence among other tasks having the same priority is
implementation-dependent. Likewise, if the task whose priority changed is waiting in a queue of some
kind, its order in that queue is changed based on its new priority. Its order among other tasks having
the same priority is implementation-dependent.
When a task terminates and there are mutexes still locked by that task, all the mutexes are unlocked. The
order in which multiple locked mutexes are unlocked is implementation-dependent. See the description
of tk unl mtx for the specific processing involved.

[Additional Notes]

A TA TFIFO attribute mutex or TA TPRI attribute mutex has functionality equivalent to that of a
semaphore with a maximum of one resource (binary semaphore). The main differences are that a
mutex can be unlocked only by the task that locked it, and a mutex is automatically unlocked when the
task locking it terminates.
The term “priority ceiling protocol” is used here in a broad sense. The protocol described here is not
the same as the algorithm originally proposed. Strictly speaking, it is what is otherwise referred to as
a highest locker protocol or by other names.
When the change in current priority of a task due to a mutex operation results in that task’s order
being changed in a priority-based queue, it may be necessary to release the waiting state of other tasks
waiting for that task or for that queue.

[Rationale for the Specification]

The precedence of tasks having the same priority as the result of a change in task current priority in a
mutex operation is left as implementation-dependent, for the following reason.
Depending on the application, the mutex function may lead to frequent changes in current priority. It
would not be desirable for this to result in constant task switching, which is what would happen if the
precedence were made the lowest each time among tasks of the same priority. Ideally task precedence
rather than priority should be inherited, but that results in large overhead in implementation. This
aspect of the specification is therefore made an implementation-dependent matter.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 109

tk cre mtx
Create Mutex

[C Language Interface]

ID mtxid = tk_cre_mtx (T_CMTX *pk_cmtx) ;

[Parameters]

T CMTX* pk cmtx Information about the mutex to be created

pk cmtx detail:

VP exinf Extended information
ATR mtxatr Mutex attributes
PRI ceilpri Mutex ceiling priority
UB dsname[8] DS object name

(Other implementation-dependent parameters may be added beyond this point.)

[Return Parameters]

ID mtxid Mutex ID
or Error Code

[Error Codes]

E OK Normal completion
E NOMEM Insufficient memory (memory for control block cannot be allocated)
E LIMIT Number of mutexes exceeds the system limit
E RSATR Reserved attribute (mtxatr is invalid or cannot be used)
E PAR Parameter error (pk cmtx or ceilpri is invalid)

[Description]

Creates a mutex, assigning to it a mutex ID.
exinf can be used freely by the user to set miscellaneous information about the created mutex. The
information set in this parameter can be referenced by tk ref mtx. If a larger area is needed for
indicating user information, or if the information may need to be changed after the mutex is created,
this can be done by allocating separate memory for this purpose and putting the memory packet address
in exinf. The OS pays no attention to the contents of exinf.
mtxatr indicates system attributes in its low bits and implementation-dependent information in the
high bits. The system attributes part of mtxatr is as follows.

mtxatr:= (TA_TFIFO || TA_TPRI || TA_INHERIT || TA_CEILING)
| [TA_DSNAME]| [TA_NODISWAI]

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

110 CHAPTER 4. T-KERNEL/OS FUNCTIONS

TA TFIFO Tasks are queued in FIFO order
TA TPRI Tasks are queued in priority order
TA INHERIT Priority inheritance protocol
TA CEILING Priority ceiling protocol
TA DSNAME Specifies DS object name
TA NODISWAI Wait disabling by tk dis wai is prohibited

When the TA TFIFO attribute is specified, the order of the mutex task queue is FIFO. If TA TPRI,
TA INHERIT, or TA CEILING is specified, tasks are ordered by their priority. TA INHERIT indicates that
priority inheritance protocol is used, and TA CEILING specifies priority ceiling protocol.
Only when TA CEILING is specified does ceilpri have validity, setting the mutex ceiling priority.
When TA DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is
used to identify objects by debugger, and it is handled only by T-Kernel/DS API, td ref dsname and
td set dsname. For more details refer to td ref dsname and td set dsname. If TA DSNAME is not
specified, dsname is ignored. Then td ref dsname and td set dsname return E OBJ error.

#define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
#define TA_TPRI 0x00000001 /* manage task queue by priority */
#define TA_INHERIT 0x00000002 /* priority inheritance protocol */
#define TA_CEILING 0x00000003 /* priority ceiling protocol */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject wait disabling */

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 111

tk del mtx
Delete Mutex

[C Language Interface]

ER ercd = tk_del_mtx (ID mtxid) ;

[Parameters]

ID mtxid Mutex ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mtxid is invalid or cannot be used)
E NOEXS Object does not exist (the mutex specified in mtxid does not exist)

[Description]

Deletes the mutex specified in mtxid.
Issuing this system call releases the mutex ID and control block memory space allocated to the mutex.
This system call completes normally even if there are tasks waiting to lock the deleted mutex, but error
code E DLT is returned to each of the tasks in WAIT state.
When a mutex is deleted, a task locking the mutex will have fewer locked mutexes. If the mutex was a
priority inheritance mutex or priority ceiling mutex, it is possible that the priority of the task locking
it will change as a result of its deletion.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

112 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk loc mtx
Lock Mutex

[C Language Interface]

ER ercd = tk_loc_mtx (ID mtxid, TMO tmout) ;

[Parameters]

ID mtxid Mutex ID
TMO tmout timeout

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mtxid is invalid or cannot be used)
E NOEXS Object does not exist (the mutex specified in mtxid does not exist)
E PAR Parameter error (tmout ≤ (−2))
E DLT The object being waited for was deleted (the mutex was deleted while waiting for a lock)
E RLWAI Wait state released (tk rel wai received in wait state)
E DISWAI Wait released by wait disabled state
E TMOUT Polling failed or timeout
E CTX Context error (issued from task-independent portion or in dispatch disabled state)
E ILUSE Illegal use (multiple lock, or upper priority limit exceeded)

[Description]

Locks the mutex specified in mtxid. If the mutex can be locked immediately, the task issuing this system
call continue executing without entering WAIT state, and the mutex goes to locked status. If the mutex
cannot be locked, the task issuing this system call enters WAIT state. That is, the task is put in the
queue of this mutex.
A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release
condition is met, the system call terminates, returning timeout error code E TMOUT. Only positive values
can be set in tmout. The time base for tmout (time unit) is the same as that for system time (= 1 ms).
When TMO POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E TMOUT is
returned without entering WAIT state even if the resource cannot be locked. When TMO FEVR = (−1)
is set in tmout, this means infinity was specified as the timeout value, and the task continues wait to
until the resource is locked.
If the invoking task has already locked the specified mutex, error code E ILUSE (multiple lock) is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 113

If the specified mutex is a priority ceiling mutex and the base priority2 of the invoking task is higher
than the ceiling priority of the mutex, error code E ILUSE (upper priority limit exceeded) is returned.

[Additional Notes]

Priority inheritance mutex (TA INHERIT attribute)
If the invoking task is waiting to lock a mutex and the current priority of the task currently
locking that mutex is lower than that of the invoking task, the priority of the locking task is
raised to the same level as the invoking task. If the wait ends before the waiting task can obtain
a lock (timeout or other reason), the priority of the task locking that mutex can be lowered
(implementation-dependent option) to the highest of the following three priorities.

a. The highest priority among the current priorities of task waiting to lock the mutex.

b. The highest priority among all the other mutexes locked by the task currently locking this
mutex.

c. The base priority of the locking task.

Priority ceiling mutex (TA CEILING attribute)
If the invoking task obtains a lock and its current priority is lower than the mutex ceiling priority,
the priority of the invoking task is raised to the mutex ceiling priority.

2Base priority: The task priority before it is automatically raised by the mutex. This is the priority last set by
tk chg pri (including while the mutex is locked), or if tk chg pri has never been issued, the priority set when the task
was created.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

114 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk unl mtx
Unlock Mutex

[C Language Interface]

ER ercd = tk_unl_mtx (ID mtxid) ;

[Parameters]

ID mtxid Mutex ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mtxid is invalid or cannot be used)
E NOEXS Object does not exist (the mutex specified in mtxid does not exist)
E ILUSE Illegal use (not a mutex locked by the invoking task)

[Description]

Unlocks the mutex specified in mtxid. If there are tasks waiting to lock the mutex, the WAIT state of
the task at the head of the queue for that mutex is released and that task locks the mutex.
If a mutex that was not locked by the invoking task is specified, error code E ILUSE is returned.

[Additional Notes]

If the unlocked mutex is a priority inheritance mutex or priority ceiling mutex, task priority must be
lowered as follows. If as a result of this operation the invoking task no longer has any locked mutexes,
the invoking task priority is lowered to its base priority. If the invoking task continues to have locked
mutexes after this operation, the invoking task priority is lowered to whichever of the following priority
levels is highest.

a. The highest priority of all remaining locked mutexes.

b. The base priority.

Note that the lowering of priority when locked mutexes remain is an implementation-dependent optional
specification.
If a task terminates (goes to DORMANT state or NON-EXISTENT state) without explicitly unlocking
mutexes, all its locked mutexes are automatically unlocked.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 115

tk ref mtx
Refer Mutex Status

[C Language Interface]

ER ercd = tk_ref_mtx (ID mtxid, T_RMTX *pk_rmtx) ;

[Parameters]

ID mtxid Mutex ID
T RMTX* pk rmtx Address of packet for returning status information

[Return Parameters]

ER ercd Error code

pk rmtx detail:

VP exinf Extended information
ID htsk ID of task locking the mutex
ID wtsk ID of tasks waiting to lock the mutex

(Other implementation-dependent parameters may be added beyond this point.)

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mtxid is invalid or cannot be used)
E NOEXS Object does not exist (the mutex specified in mtxid does not exist)
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

References the status of the mutex specified in mtxid, passing in the return parameters the task currently
locking the mutex (htsk), tasks waiting to lock the mutex (wtsk), and extended information (exinf).
htsk returns the ID of the task locking the mutex. If no task is locking it, htsk = 0 is returned.
wtsk indicates the ID of a task waiting to lock the mutex. If there are multiple waiting tasks, the ID of
the task at the head of the queue is returned. If no tasks are waiting, wtsk = 0 is returned.
If the specified mutex does not exist, error code E NOEXS is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

116 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.5.2 Message Buffer

A message buffer is an object for achieving synchronization and communication by the passing of
variable-size messages. Functions are provided for creating and deleting a message buffer, sending
and receiving messages using a message buffer, and referencing message buffer status. A message buffer
is an object identified by an ID number called a message buffer ID.
A message buffer keeps a queue of messages waiting to be sent (send queue) and a queue of tasks waiting
for message receipt (receive queue). It also has a message buffer space for holding sent messages. The
message sender (the side making event notification) copies to the message buffer a message it wants
to send. If there is insufficient space in the message buffer area, the message is queued for sending
until enough space is available. A task waiting to send a message to the message buffer is put in the
send queue. On the message receipt side (waiting for event notification), one message is fetched from
the message buffer. If the message buffer has no messages, the task enters WAIT state until the next
message is sent. A task waiting for receipt from a message buffer is put in the receive queue of that
message buffer.
A synchronous message function can be realized by setting the message buffer space size to 0. In that
case both the sending task and receiving task wait for a system call to be invoked by each other, and
the message is passed when both sides issue system calls.

[Additional Notes]

The message buffer functioning when the size of the message buffer space is set to 0 is explained here
using the example in Figure 4.3. In this example Task A and Task B run asynchronously.

• If Task A calls tk snd mbf first, it goes to WAIT state until Task B calls tk rcv mbf. In this case
Task A is put in the message buffer send queue (a).

• If Task B calls tk rcv mbf first, on the other hand, Task B goes to WAIT state until Task A calls
tk snd mbf. Task B is put in the message buffer receive queue (b).

• At the point where both Task A has called tk snd mbf and Task B has called tk rcv mbf, a
message is passed from Task A to Task B; then both tasks go from WAIT state to a run state.

-

Send waiting state

tk snd mbf

Task A

tk rcv mbf

Task B

(a) tk snd mbf called first

-

Receive waiting state

tk rcv mbf

Task B

tk snd mbf

Task A

(b) tk rcv mbf called first

Figure 4.3: Synchronous Communication by Message Buffer

Tasks waiting to send to a message buffer send messages in their queued order. Suppose Task A wanting
to send a 40-byte message to a message buffer, and Task B wanting to send a 10-byte message, are queued
in that order. If another task receives a message opening 20 bytes of space in the message buffer, Task
B is still required to wait until Task A sends its message.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 117

A message buffer is used to pass variable-size messages by copying them. It is the copying of messages
that makes this function different from the mailbox function.
It is assumed that the message buffer will be implemented as a ring buffer.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

118 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk cre mbf
Create Message Buffer

[C Language Interface]

ID mbfid = tk_cre_mbf (T_CMBF *pk_cmbf) ;

[Parameters]

T CMBF* pk cmbf Information about the message buffer to be created

pk cmbf detail:

VP exinf Extended information
ATR mbfatr Message buffer attributes
INT bufsz Message buffer size (in bytes)
INT maxmsz Maximum message size (in bytes)
UB dsname[8] DS object name

(Other implementation-dependent parameters may be added beyond this point.)

[Return Parameters]

ID mbfid Message buffer ID
or Error Code

[Error Codes]

E OK Normal completion
E NOMEM Insufficient memory (memory for control block or ring buffer area cannot be allocated)
E LIMIT Number of message buffers exceeds the system limit
E RSATR Reserved attribute (mbfatr is invalid or cannot be used)
E PAR Parameter error (pk cmbf is invalid, or bufsz or maxmsz is negative or invalid)

[Description]

Creates a message buffer, assigning to it a message buffer ID.
This system call allocates a control block to the created message buffer. Based on the information
specified in bufsz, it allocates a ring buffer area for message queue use (for messages waiting to be
received).
A message buffer is an object for managing the sending and receiving of variable-size messages. If differs
from a mailbox (mbx) in that the contents of the variable-size messages are copied when the message is
sent and received. It also has a function for putting the sending task in WAIT state when the buffer is
full.
exinf can be used freely by the user to set miscellaneous information about the created message buffer.
The information set in this parameter can be referenced by tk ref mbf. If a larger area is needed for

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 119

indicating user information, or if the information may need to be changed after the message buffer is
created, this can be done by allocating separate memory for this purpose and putting the memory packet
address in exinf. The OS pays no attention to the contents of exinf.
mbfatr indicates system attributes in its low bits and implementation-dependent information in the
high bits. The system attributes part of mbfatr is as follows.

mbfatr:= (TA_TFIFO || TA_TPRI) | [TA_DSNAME] | [TA_NODISWAI]

TA TFIFO Tasks waiting to send are queued in FIFO order
TA TPRI Tasks waiting to send are queued in priority order
TA DSNAME Specifies DS object name
TA NODISWAI Wait disabling by tk dis wai is prohibited

The queuing order of tasks waiting for a message to be sent when the buffer is full can be specified in
TA TFIFO or TA TPRI. If the attribute is TA TFIFO, tasks are ordered by FIFO, whereas TA TPRI specifies
queuing of tasks in order of their priority setting. Messages themselves are queued in FIFO order only.
Tasks waiting for message receipt from a message buffer are likewise queued in FIFO order only.
When TA DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is
used to identify objects by debugger, and it is handled only by T-Kernel/DS API, td ref dsname and
td set dsname. For more details refer to td ref dsname and td set dsname. If TA DSNAME is not
specified, dsname is ignored. Then td ref dsname and td set dsname return E OBJ error.

#define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
#define TA_TPRI 0x00000001 /* manage task queue by priority */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject wait disabling */

[Additional Notes]

When there are multiple tasks waiting to send messages, the order in which their messages are sent
when buffer space becomes available is always in their queued order. If, for example, a Task A wanting
to send a 30-byte message is queued with a Task B wanting to send a 10-byte message, in the order
A-B, even if 20 bytes of message buffer space becomes available, Task B never sends its message before
Task A.
The ring buffer in which messages are queued also contains information for managing each message.
For this reason the total size of queued messages will ordinarily not be identical to the ring buffer size
specified in bufsz. Normally the total message size will be smaller than bufsz. In this sense bufsz
does not strictly represent the total message capacity.
It is possible to create a message buffer with bufsz = 0. In this case communication using the message
buffer is completely synchronous between the sending and receiving tasks. That is, if either tk snd mbf
or tk rcv mbf is executed ahead of the other, the task executing the first system call goes to WAIT
state. When the other system call is executed, the message is passed (copied), then both tasks resume
running.
In the case of a bufsz = 0 message buffer, the specific functioning is as follows.

• In Figure 4.4, Task A and Task B operate asynchronously. If Task A arrives at point (1) first and
executes tk snd mbf(mbfid), Task A goes to send wait state until Task B arrives at point (2).
If tk ref tsk is issued for Task A in this state, tskwait=TTW SMBF is returned. If, on the other

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

120 CHAPTER 4. T-KERNEL/OS FUNCTIONS

hand, Task B gets to point (2) first and calls tk rcv mbf(mbfid), Task B goes to receive wait state
until Task A gets to point (1). If tk ref tsk is issued for Task B in this state, tskwait=TTW RMBF
is returned.

• At the point where both Task A has executed tk snd mbf(mbfid) and Task B has executed
tk rcv mbf(mbfid), a message is passed from Task A to Task B, their wait states are released
and both tasks resume running.

(1)
tk snd mbf(mbfid)

Task A

(2)
tk rcv mbf(mbfid)

Task B

Message send wait (TTW SMBF) if wait entered at (1)
Message receive wait (TTW RMBF) if wait entered at (2)

Figure 4.4: Synchronous Communication Using Message Buffer of bufsz = 0

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 121

tk del mbf
Delete Message Buffer

[C Language Interface]

ER ercd = tk_del_mbf (ID mbfid) ;

[Parameters]

ID mbfid Message buffer ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mbfid is invalid or cannot be used)
E NOEXS Object does not exist (the message buffer specified in mbfid does not exist)

[Description]

Deletes the message buffer specified in mbfid.
Issuing this system call releases the corresponding message buffer and control block memory space, as
well as the message buffer space.
This system call completes normally even if there were tasks queued in the message buffer for message
receipt or message sending, but error code E DLT is returned to the tasks in WAIT state. If there are
messages left in the message buffer when it is deleted, the message buffer is deleted anyway. No error
code is returned and the messages are discarded.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

122 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk snd mbf
Send Message to Message Buffer

[C Language Interface]

ER ercd = tk_snd_mbf (ID mbfid, VP msg, INT msgsz, TMO tmout) ;

[Parameters]

ID mbfid Message buffer ID
INT msgsz Send message size (in bytes)
VP msg Start address of send message packet
TMO tmout timeout

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mbfid is invalid or cannot be used)
E NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
E PAR Parameter error (msgsz ≤ 0, msgsz > maxmsz,value that cannot be used in msg, or

tmout ≤ (−2))
E DLT The object being waited for was deleted (message buffer was deleted while waiting)
E RLWAI Wait state released (tk rel wai received in wait state)
E DISWAI Wait released by wait disabled state
E TMOUT Polling failed or timeout
E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Sends the message at the address specified in msg to the message buffer specified in mbfid. The message
size is indicated in msgsz. This system call copies msgsz bytes starting from msg to the message queue
of message buffer mbfid. The message queue is implemented as a ring buffer.
If msgsz is larger than the maxmsz specified with tk cre mbf, error code E PAR is returned.
If there is not enough available buffer space to accommodate message msg in the message queue, the
task issuing this system call goes to send wait state and is queued waiting for buffer space to become
available (send queue). Waiting tasks are queued in either FIFO or priority order, depending on the
attribute made with tk cre mbf.
A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release
condition is met (before there is sufficient buffer space), the system call terminates, returning timeout
error code E TMOUT.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 123

Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for
system time (= 1 ms).
When TMO POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E TMOUT is
returned without entering WAIT state if there is not enough buffer space.
When TMO FEVR = (−1) is set in tmout, this means infinity was specified as the timeout value, and the
task continues to wait for buffer space to become available, without timing out. A message of size 0
cannot be sent. When msgsz ≤ 0 is specified, error code E PAR is returned.
When this system call is invoked from a task-independent portion or in dispatch disabled state, error
code E CTX is returned; but in the case of tmout = TMO POL, there may be implementations where
execution from a task-independent portion or in dispatch disabled state is possible.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

124 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk rcv mbf
Receive Message from Message Buffer

[C Language Interface]

INT msgsz = tk_rcv_mbf (ID mbfid, VP msg, TMO tmout) ;

[Parameters]

ID mbfid Message buffer ID
VP msg Start address of receive message packet
TMO tmout timeout

[Return Parameters]

INT msgsz Received message size
or Error Code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mbfid is invalid or cannot be used)
E NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
E PAR Parameter error (value that cannot be used in msg, or tmout ≤ (−2))
E DLT The object being waited for was deleted (message buffer was deleted while waiting)
E RLWAI Wait state released (tk rel wai received in wait state)
E DISWAI Wait released by wait disabled state
E TMOUT Polling failed or timeout
E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Receives a message from the message buffer specified in mbfid, putting it in the location specified in
msg.
This system call copies the contents of the first queued message in the message buffer specified in mbfid,
and copies it to an area of msgsz bytes starting at address msg.
If no message has been sent to the message buffer specified in mbfid (the message queue is empty), the
task issuing this system call goes to WAIT state and is put in the receive queue of the message buffer
to wait for message arrival. Tasks in the receive queue are ordered by FIFO only.
A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release
condition is met (before a message arrives), the system call terminates, returning timeout error code
E TMOUT.
Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for
system time (= 1 ms).

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 125

When TMO POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E TMOUT is
returned without entering WAIT state even if there is no message.
When TMO FEVR = (−1) is set in tmout, this means infinity was specified as the timeout value, and the
task continues to wait for message arrival without timing out.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

126 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk ref mbf
Get Message Buffer Status

[C Language Interface]

ER ercd = tk_ref_mbf (ID mbfid, T_RMBF *pk_rmbf) ;

[Parameters]

ID mbfid Message buffer ID
T RMBF* pk rmbf Address of packet for returning status information

[Return Parameters]

ER ercd Error code

pk rmbf detail:

VP exinf Extended information
ID wtsk Waiting task information
ID stsk Send task information
INT msgsz Size of the next message to be received (in bytes)
INT frbufsz Free buffer size (in bytes)
INT maxmsz Maximum message size (in bytes)

(Other implementation-dependent parameters may be added beyond this point.)

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mbfid is invalid or cannot be used)
E NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

References the status of the message buffer specified in mbfid, passing in the return parameters sending
task information (stsk), the size of the next message to be received (msgsz), free buffer size (frbufsz),
maximum message size (maxmsz), waiting task information (wtsk), and extended information (exinf).
wtsk indicates the ID of a task waiting for receipt from the message buffer. The ID of a task waiting
to send to the message buffer is indicated in stsk. If multiple tasks are waiting in the message buffer
queues, the ID of the task at the head of the queue is returned. If no tasks are waiting, 0 is returned.
If the specified message buffer does not exist, error code E NOEXS is returned.
The size of the message at the head of the queue (the next message to be received) is returned in msgsz.
If there are no queued messages, msgsz = 0 is returned. A message of size 0 cannot be sent. At least one
of msgsz = 0 and wtsk = 0 is always true for this system call. frbufsz indicates the free space in the

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 127

ring buffer of which the message queue consists. This value indicates the approximate size of messages
than can be sent. maxmsz returns the maximum message size as specified with tk cre mbf.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

128 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.5.3 Rendezvous Port

Rendezvous is a function for synchronization and communication between tasks, supporting the proce-
dures for making processing requests by one task to another and for returning the processing result to
the requesting task. The object for which both of these tasks wait is called a rendezvous port. The
rendezvous function is typically used to realize task communication in a client/server model, but can
also support more flexible synchronization and communication models.
Functions are provided for creating and deleting a rendezvous port, issuing a processing request to a
rendezvous port (call rendezvous), accepting a processing request from a rendezvous port (accept ren-
dezvous), returning the processing result (reply rendezvous), forwarding an accepted processing request
to another rendezvous port (forward rendezvous to other port), and referencing rendezvous port status
and rendezvous status. A rendezvous port is identified by an ID number called a rendezvous port ID.
A task issuing a processing request to a rendezvous port (the client-side task) calls a rendezvous, spec-
ifying a message (called a call message) with information about the rendezvous port, the rendezvous
conditions, and the processing being requested. The task accepting a processing request on a rendezvous
port (the server-side task) accepts the rendezvous, specifying the rendezvous port and rendezvous con-
ditions.
The rendezvous conditions are indicated in a bit pattern. If the bitwise logical AND of the bit patterns
on both sides (the rendezvous conditions bit pattern of the task calling a rendezvous for a rendezvous
port and the rendezvous conditions bit pattern of the accepting task) is not 0, the rendezvous is estab-
lished. The state of the task calling the rendezvous is WAIT on rendezvous call until the rendezvous is
established. The state of the task accepting a rendezvous is WAIT on rendezvous acceptance until the
rendezvous is established.
When a rendezvous is established, a call message is passed from the task that called the rendezvous to
the accepting task. The state of the task calling the rendezvous goes to WAIT for rendezvous completion
until the requested processing is completed. The task accepting the rendezvous is released from WAIT
state and it performs the requested processing. Upon completion of the requested processing, the task
accepting the rendezvous passes the result of the processing in a reply message to the calling task and
ends the rendezvous. At this point the WAIT state of the task that called the rendezvous is released.
A rendezvous port has separate queues for tasks waiting on rendezvous call (call queue) and tasks waiting
on rendezvous acceptance (accept queue). Note, however, that after a rendezvous is established, both
tasks that formed the rendezvous are detached from the rendezvous port. In other words, a rendezvous
port does not have a queue for tasks waiting for rendezvous completion. Nor does it keep information
about the task performing the requested processing.
T-Kernel assigns an object number to identify each rendezvous when more than one is established at the
same time. The rendezvous object number is called the rendezvous number. The method of assigning
rendezvous numbers is implementation-dependent, but at a minimum information must be included for
specifying the task that called the rendezvous. Numbers must also be uniquely assigned to the extent
possible; for example, even if the same task makes multiple rendezvous calls, the first rendezvous and
second rendezvous must have different rendezvous numbers assigned.

[Additional Notes]

Rendezvous is a synchronization and communication function introduced in the ADA programming
language, based on Communicating Sequential Processes (CSP). In ADA, however, the rendezvous
function is part of the language specification and therefore has a different role than in T-Kernel, which is
a real-time kernel specification. The rendezvous ports provided by the real-time kernel are OS primitives
by which an ADA rendezvous capability is implemented. Since the ADA rendezvous function differs
from that in the T-Kernel specification in a number of ways, the T-Kernel-specification rendezvous
functions cannot necessarily be used to implement the ADA rendezvous.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 129

Rendezvous operation is explained here using the example in Figure 4.5. In this figure Task A and Task
B are running asynchronously.

• If Task A first calls tk cal por, Task A goes to WAIT state until Task B calls tk acp por. The
state of Task A at this time is WAIT on rendezvous call (a).

• If, on the other hand, Task B first calls tk acp por, Task B goes to WAIT state until Task A calls
tk cal por. The stat of Task B at this time is WAIT on rendezvous acceptance (b).

• A rendezvous is established when both Task A has called tk cal por and Task B has called
tk acp por. At this time Task A remains in WAIT state while the WAIT state of Task B is
released. The state of Task A is WAIT for rendezvous completion.

• The Task A WAIT state is released when Task B calls tk rpl rdv. Thereafter both tasks enter a
run state.

wait on completion

wait on call

tk cal por

TASK A

tk rpl rdv¾

tk acp por-

TASK B

(a) tk cal por called first

wait on completion

tk cal por

TASK A

tk rpl rdv¾

-
wait on acceptance

tk acp por

TASK B

(b) tk acp por called first

Figure 4.5: Rendezvous Operation

As an example of a specific method for assigning rendezvous object numbers, the ID number of the task
calling the rendezvous can go in the low bits of the rendezvous number, with the high bits used for a
sequential number.

[Rationale for the Specification]

While it is true that the rendezvous functionality can be achieved through a combination of other
synchronization and communication functions, better efficiency and ease of programming are achieved
by having a dedicated function for cases where the communication involves an acknowledgment. One
advantage of the rendezvous function is that since both tasks wait until message passing is completed,
no memory space needs to be allocated for storing messages.
The reason for assigning unique rendezvous numbers even when the same task does the calling is as
follows. It is possible that a task, after establishing a rendezvous and going to WAIT state for its
completion, will have its WAIT state released due to timeout or forcible release by another task, then
again call a rendezvous and have that rendezvous established. If the same number were assigned to both
the first and second rendezvous, attempting to terminate the first rendezvous would end up terminating
the second rendezvous. If separate numbers are assigned to the two rendezvous and the task in WAIT
state for rendezvous completion is made to remember the number of the rendezvous for which it is
waiting, error will be returned when the attempt is made to terminate the first rendezvous.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

130 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk cre por
Create Port for Rendezvous

[C Language Interface]

ID porid = tk_cre_por (T_CPOR *pk_cpor) ;

[Parameters]

T CPOR* pk cpor Information about the rendezvous port to be created

pk cpor detail:

VP exinf Extended information
ATR poratr Rendezvous port attributes
INT maxcmsz Maximum call message size (in bytes)
INT maxrmsz Maximum reply message size (in bytes)
UB dsname[8] DS object name

(Other implementation-dependent parameters may be added beyond this point.)

[Return Parameters]

ID porid Port ID
or Error Code

[Error Codes]

E OK Normal completion
E NOMEM Insufficient memory (memory for control block cannot be allocated)
E LIMIT Number of rendezvous ports exceeds the system limit
E RSATR Reserved attribute (poratr is invalid or cannot be used)
E PAR Parameter error (pk cpor is invalid; maxcmsz or maxrmsz is negative or invalid)

[Description]

Creates a rendezvous port, assigning to it a rendezvous port ID number.
This specification allocates a control block to the created rendezvous port. A rendezvous port is an
object used as an OS primitive for implementing a rendezvous capability.
exinf can be used freely by the user to set miscellaneous information about the created rendezvous
port. The information set in this parameter can be referenced by tk ref por. If a larger area is needed
for indicating user information, or if the information may need to be changed after the rendezvous port
is created, this can be done by allocating separate memory for this purpose and putting the memory
packet address in exinf. The OS pays no attention to the contents of exinf.
poratr indicates system attributes in its low bits and implementation-dependent information in the high
bits. The system attributes part of poratr is as follows.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 131

poratr:= (TA_TFIFO || TA_TPRI) | [TA_DSNAME] | [TA_NODISWAI]

TA TFIFO Tasks waiting on call are queued in FIFO order
TA TPRI Tasks waiting on call are queued in priority order
TA DSNAME Specifies DS object name
TA NODISWAI Wait disabling by tk dis wai is prohibited

TA TFIFO and TA TPRI attributes specify the queuing order of tasks waiting on a rendezvous call. Tasks
waiting on rendezvous acceptance are queued in FIFO order only.
When TA DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is
used to identify objects by debugger, and it is handled only by T-Kernel/DS API, td ref dsname and
td set dsname. For more details refer to td ref dsname and td set dsname. If TA DSNAME is not
specified, dsname is ignored. Then td ref dsname and td set dsname return E OBJ error.

#define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
#define TA_TPRI 0x00000001 /* manage task queue by priority */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject wait disabling */

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

132 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk del por
Delete Port for Rendezvous

[C Language Interface]

ER ercd = tk_del_por (ID porid) ;

[Parameters]

ID porid Rendezvous port ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (porid is invalid or cannot be used)
E NOEXS Object does not exist (the rendezvous port specified in porid does not exist)

[Description]

Deletes the rendezvous port specified in porid.
Issuing this system call releases the ID number and control block space allocated to the rendezvous port.
This system call completes normally even if there are tasks waiting on rendezvous acceptance (tk acp por)
or rendezvous port call (tk cal por) at the specified rendezvous port, but error code E DLT is returned
to the tasks in WAIT state.
Deletion of a rendezvous port by tk del por does not affect tasks for which rendezvous is already
established. In this case, nothing is reported to the task accepting the rendezvous (not in WAIT state),
and the state of the task calling the rendezvous (WAIT for rendezvous completion) remains unchanged.
When the task accepting the rendezvous issues tk rpl rdv, that system call will execute normally even
if the port on which the rendezvous was established has been deleted.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 133

tk cal por
Call Port for Rendezvous

[C Language Interface]

INT rmsgsz = tk_cal_por (ID porid, UINT calptn, VP msg, INT cmsgsz, TMO tmout) ;

[Parameters]

ID porid Rendezvous port ID
UINT calptn Call bit pattern (indicating conditions of the caller)
VP msg Message packet address
INT cmsgsz Call message size (in bytes)
TMO tmout timeout

[Return Parameters]

INT rmsgsz Reply message size (in bytes)
or Error Code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (porid is invalid or cannot be used)
E NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
E PAR Parameter error (cmsgsz < 0, cmsgsz > maxcmsz, calptn = 0, value that cannot be

used in msg, tmout ≤ (−2))
E DLT The object being waited for was deleted (the rendezvous port was deleted while waiting)
E RLWAI Wait state released (tk rel wai received in wait state)
E DISWAI Wait released by wait disabled state
E TMOUT Polling failed or timeout
E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Issues a rendezvous call for a rendezvous port.
The specific operation of tk cal por is as follows. A rendezvous is established if there is a task waiting
to accept a rendezvous at the port specified in porid and rendezvous conditions between that task
and the task issuing this call overlap. In this case, the task waiting to accept the rendezvous enters
READY state while the state of the task issuing tk cal por is WAIT for rendezvous completion. The
task waiting for rendezvous completion is released from WAIT state when the other (accepting) task
executes tk rpl rdv. The tk cal por system call completes at this time.
If there is no task waiting to accept a rendezvous at the port specified in porid, or if there is a task but
conditions for establishing a rendezvous are not satisfied, the task issuing tk cal por is placed at the

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

134 CHAPTER 4. T-KERNEL/OS FUNCTIONS

end of the call queue of that port and enters WAIT state on rendezvous call. The order of tasks in the
call queue is either FIFO or priority order, depending on the attribute made when calling tk cre por.
The decision on rendezvous establishment is made by checking conditions in the bit patterns acpptn of
the accepting task and calptn of the calling task. A rendezvous is established if the bitwise logical AND
of these two bit patterns is not 0. Parameter error E PAR is returned if calptn is 0, since no rendezvous
can be established in that case.
When a rendezvous is established, the calling task can send a message (a call message) to the accepting
task. The size of the call message is specified in cmsgsz. In this operation cmsgsz bytes starting
at address msg as specified by the calling task when calling tk cal por are copied to address msg as
specified by the accepting task when calling tk acp por.
Similarly, when the rendezvous completes, the accepting task may send a message (reply message) to
the calling task. In this operation, the contents of a reply message specified by the accepting task when
calling tk rpl rdv are copied to address msg as specified by the calling task when calling tk cal por.
The size of the reply message rmsgsz is set in a tk cal por return parameter. The original contents of
the message area passed in msg by tk cal por end up being overwritten by the reply message received
when tk rpl rdv executes.
Note that it is possible message contents will be destroyed when a rendezvous is forwarded, since an area
no larger than maxrmsz starting from the address msg as specified with tk cal por is used as a buffer.
It is therefore necessary to reserve a memory space of at least maxrmsz starting from msg, regardless of
the expected size of the reply message, whenever there is any possibility that a rendezvous requested by
tk cal por might be forwarded (See the description of tk fwd por for details).
Error code E PAR is returned when cmsgsz exceeds the size maxcmsz specified with tk cre por. This
error checking is made before a task enters WAIT state on rendezvous call; and if error is detected, the
task executing tk cal por does not enter WAIT state.
A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release
condition is met (rendezvous is not established), the system call terminates, returning timeout error
code E TMOUT.
Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for
system time (= 1 ms).
When TMO POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E TMOUT is
returned without entering WAIT state if there is no task waiting on a rendezvous at the rendezvous port,
or if the rendezvous conditions are not met. When TMO FEVR = (−1) is set in tmout, this means infinity
was specified as the timeout value, and the task continues to wait for a rendezvous to be established
without timing out. In any case, tmout indicates the time allowed for a rendezvous to be established,
and does not apply to the time from rendezvous establishment to rendezvous completion.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 135

tk acp por
Accept Port for Rendezvous

[C Language Interface]

INT cmsgsz = tk_acp_por (ID porid, UINT acpptn, RNO *p_rdvno, VP msg, TMO tmout) ;

[Parameters]

ID porid Rendezvous port ID
UINT acpptn Accept bit pattern (indicating conditions for acceptance)
VP msg Message packet address
TMO tmout timeout

[Return Parameters]

ER ercd Error code
RNO rdvno Rendezvous number
INT cmsgsz Call message size (in bytes)

[Error Codes]

E OK Normal completion
E ID Invalid ID number (porid is invalid or cannot be used, or porid is a rendezvous port of

another node)
E NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
E PAR Parameter error (acpptn = 0, value that cannot be used in msg, or tmout ≤ (−2))
E DLT The object being waited for was deleted (the rendezvous port was deleted while waiting)
E RLWAI Wait state released (tk rel wai received in wait state)
E DISWAI Wait released by wait disabled state
E TMOUT Polling failed or timeout
E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Accepts a rendezvous on a rendezvous port.
The specific operation of tk acp por is as follows. A rendezvous is established if there is a task queued
for a rendezvous call at the port specified in porid and if rendezvous conditions of that task and the
task issuing this call overlap. In this case, the task queued for a rendezvous call is removed from the
queue, and its state changes from WAIT on rendezvous call to WAIT for rendezvous completion. The
task issuing tk acp por continues executing.
If there is no task waiting to call a rendezvous at the port specified in porid, or if there is a task
but conditions for establishing a rendezvous are not satisfied, the task issuing tk acp por will enter
WAIT state on rendezvous acceptance for that port. No error results if there is already another task
in WAIT state on rendezvous acceptance at this time; the task issuing tk acp por is placed in the

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

136 CHAPTER 4. T-KERNEL/OS FUNCTIONS

accept queue. It is possible to conduct multiple rendezvous operations on the same port at the same
time. Accordingly, no error results even if the next rendezvous is carried out while another task is still
conducting a rendezvous (before tk rpl rdv is called for a previously established rendezvous) at the
port specified in porid.
The decision on rendezvous establishment is made by checking conditions in the bit patterns acpptn of
the accepting task and calptn of the calling task. A rendezvous is established if the bitwise logical AND
of these two bit patterns is not 0. If the first task does not satisfy these conditions, each subsequent
task in the call queue is checked in succession. If calptn and acpptn are assigned the same non-zero
value, rendezvous is established unconditionally. Parameter error E PAR is returned if acpptn is 0, since
no rendezvous can be established in that case. All processing before a rendezvous is established is fully
symmetrical on the calling and accepting ends.
When a rendezvous is established, the calling task can send a message (a call message) to the accepting
task. The contents of the message specified by the calling task are copied to an area starting from msg
specified by the accepting task when tk acp por is called. The call message size cmsgsz is passed in a
return parameter of tk acp por.
A task accepting rendezvous can establish more than one rendezvous at a time. That is, a task that has
accepted one rendezvous using tk acp por may execute tk acp por again before executing tk rpl rdv
on the first rendezvous. The port specified for the second tk acp por call at this time may be the
same port as the first rendezvous or a different one. It is even possible for a task already conducting
a rendezvous on a given port to execute tk acp por again on the same port and conduct multiple
rendezvous on the same port at the same time. Of course, the calling tasks will be different in each case.
The return parameter rdvno passed by tk acp por is information used to distinguish different ren-
dezvous when more than one has been established at a given time. It is used as a return parameter
by tk rpl rdv when a rendezvous completes. It is also passed as a parameter to tk fwd por when
forwarding a rendezvous. Although the exact contents of rdvno are implementation-dependent, it is
expected to include information specifying the calling task on the other end of the rendezvous.
A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release
condition is met (rendezvous is not established), the system call terminates, returning timeout error
code E TMOUT.
Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for
system time (= 1 ms).
When TMO POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E TMOUT is
returned without entering WAIT state if there is no task waiting for a rendezvous call at the rendezvous
port, or if the rendezvous conditions are not met.
When TMO FEVR = (−1) is set in tmout, this means infinity was specified as the timeout value, and the
task continues to wait for a rendezvous to be established without timing out.

select
when condition_A

accept entry_A do ... end;
or

when condition_B
accept entry_B do ... end;

or
when condition_C

accept entry_C do ... end;
end select;

Figure 4.6: Sample ADA-like Program Using select Statement

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 137

[Additional Notes]

The ability to queue tasks accepting rendezvous is useful when multiple servers perform the same
processing concurrently. This capability also takes advantage of the task-independent nature of ports.
If a task accepting a rendezvous terminates abnormally for some reason before completing its rendezvous
(before issuing tk rpl rdv), the task calling for the rendezvous by issuing tk cal por will continue
waiting indefinitely for rendezvous completion without being released. To avoid such a situation, tasks
accepting rendezvous should execute a tk rpl rdv or tk rel wai call when they terminate abnormally,
as well as notifying the task calling for the rendezvous that the rendezvous ended in error.
rdvno contains information specifying the calling task in the rendezvous, but unique numbers should
be assigned to the extent possible. Even if different rendezvous are conducted between the same tasks,
a different rdvno value should be assigned to the first and second rendezvous to avoid problems like the
following.

• Rather than entry A, entry B, and entry C each corresponding to one rendezvous port, the entire select
statement corresponds to one rendezvous port.

• entry A, entry B, and entry C correspond to calptn and acpptn bits 2^0, 2^1, and 2^2.

• A select statement in a typical ADA program looks like the following.

ptn := 0;

if condition_A then ptn := ptn + 2^0 endif;

if condition_B then ptn := ptn + 2^1 endif;

if condition_C then ptn := ptn + 2^2 endif;

tk_acp_por(acpptn := ptn);

• If the program contains in addition to the select statement a simple entry A accept with no select,

tk_acp_por(acpptn := 2^0);

can be executed. If it is desired to have entry A, entry B, and entry C wait unconditionally by OR logic,

tk_acp_por(acpptn := 2^2+2^1+2^0);

can be executed.

• If the call on the rendezvous calling side is for entry A,

tk_cal_por(calptn := 2^0);

can be executed; and if the call is for entry C,

tk_cal_por(calptn := 2^2);

can be executed.

Figure 4.7: Using Rendezvous to Implement ADA select Function

If a task that called tk cal por and is waiting for rendezvous completion has its WAIT state released
by tk rel wai or by tk ter tsk + tk sta tsk or the like, conceivably it may execute tk cal por a
second time, resulting in establishment of a rendezvous. If the same rdvno value is assigned to the first
rendezvous and the subsequent one, then if tk rpl rdv is executed for the first rendezvous it will end up
terminating the second one. By assigning rdvno numbers uniquely and having the task in WAIT state
for rendezvous completion remember the number of the expected rdvno, it will be possible to detect the
error when tk rpl rdv is called for the first rendezvous.
One possible method of assigning rdvno numbers is to put the ID number of the task calling the
rendezvous in the low bits of rdvno, using the high bits for a sequential number.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

138 CHAPTER 4. T-KERNEL/OS FUNCTIONS

The capability of setting rendezvous conditions in calptn and acpptn can be applied to implement a
rendezvous selective acceptance function like the ADA select function. A specific processing approach
equivalent to an ADA select statement (Figure 4.6) is shown in Figure 4.7.
The ADA select function is provided only on the accepting end, but it is also possible to implement a
select function on the calling end by specifying multiple bits in calptn.

[Rationale for the Specification]

The reason for specifying separate system calls tk cal por and tk acp por even though the conditions
for establishing a rendezvous mirror each other on the calling and accepting sides is because processing
required after a rendezvous is established differs for the tasks on each side. That is, whereas the calling
task enters WAIT state after the rendezvous is established, the accepting task enters READY state.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 139

tk fwd por
Forward Rendezvous to Other Port

[C Language Interface]

ER ercd = tk_fwd_por (ID porid, UINT calptn, RNO rdvno, VP msg, INT cmsgsz) ;

[Parameters]

ID porid Rendezvous port ID
UINT calptn Call bit pattern (indicating conditions of the caller)
RNO rdvno Rendezvous number before forwarding
VP msg Message packet address
INT cmsgsz Call message size (in bytes)

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (porid is invalid or cannot be used, or porid is a rendezvous port of

another node)
E NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
E PAR Parameter error (cmsgsz < 0, cmsgsz > maxcmsz after forwarding, cmsgsz > maxrmsz

before forwarding, calptn = 0, or value that cannot be used in msg)
E OBJ Invalid object state (rdvno is invalid, or maxrmsz (after forwarding) > maxrmsz (before

forwarding))
E CTX Context error (issued from task-independent portion (implementation-dependent error))
E DISWAI Wait released by wait disabled state

[Description]

Forward an accepted rendezvous to another rendezvous port.
The task issuing this system call (here “Task X”) must have accepted the rendezvous specified in porid;
i.e., this system call can be issued only after executing tk acp por. In the discussion that follows,
the rendezvous calling task is “Task Y”, and the rendezvous number passed in a return parameter by
tk acp por is rdvno. After tk fwd por is issued in this situation, the rendezvous between Task X and
Task Y is released, and all processing thereafter is the same as if Task Y had called for a rendezvous on
another port (rendezvous port B) passed to this system call in porid.
The specific operations of tk fwd por are as follows.

1. The rendezvous specified in rdvno is released.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

140 CHAPTER 4. T-KERNEL/OS FUNCTIONS

2. Task Y goes to WAIT state on rendezvous call for the rendezvous port specified in porid. The
bit conditions representing the call select conditions in this case are not those given in the calptn
specified by Task Y when it called tk cal por, but those in the calptn specified by Task X when
it called tk fwd por. The state of Task Y goes from WAIT for rendezvous completion back to
WAIT on rendezvous call.

3. Then if a rendezvous for the rendezvous port specified in porid is accepted, a rendezvous is
established between the accepting task and Task Y. Naturally, if there is a task already waiting
to accept a rendezvous on the rendezvous port specified in porid and the rendezvous conditions
are met, executing tk fwd por will immediately cause a rendezvous to be established.
Here too, as with calptn, the message sent to the accepting task when the rendezvous is established
is that specified in tk fwd por by Task X, not that specified in tk cal por by Task Y.

4. After the new rendezvous has completed, the reply message returned to the calling task by
tk rpl rdv is copied to the area specified in the msg parameter passed to tk cal por by Task Y,
not to the area specified in the msg parameter passed to tk fwd por by Task X.

Essentially the following situation:

Executing tk fwd por (porid=portB, calptn=ptnB, msg=mesB)
after tk cal por (porid=portA, calptn=ptnA, msg=mesA)

is the same as the following:

Executing tk cal por (porid=portB, calptn=ptnB, msg=mesB).

Note that it is not necessary to log the history of rendezvous forwarding.
If tk ref tsk is executed for a task that has returned to WAIT on rendezvous call due to tk fwd por
execution, the value returned in tskwait is TTW CAL. Here wid is the ID of the rendezvous port to which
the rendezvous was forwarded.
tk fwd por execution completes immediately; in no case does this system call go to a WAIT state. A task
issuing tk fwd por loses any relationship to the rendezvous port on which the forwarded rendezvous
was established, the forwarding destination (the port specified in porid), and the tasks conducting
rendezvous on these ports.
Error code E PAR is returned if cmsgsz is larger than maxcmsz of the rendezvous port after forwarding.
This error is checked before the rendezvous is forwarded. If this error occurs, the rendezvous is not
forwarded and the rendezvous specified in rdvno is not released.
The send message specified with tk fwd por is copied to another memory space (such as the message
area specified with tk cal por) when tk fwd por is executed. Accordingly, even if the contents of the
message area specified in the msg parameter passed to tk fwd por are changed before the forwarded
rendezvous is established, the forwarded rendezvous will not be affected.
When a rendezvous is forwarded by tk fwd por, maxrmsz of the rendezvous port after forwarding (spec-
ified in porid) must be no larger than maxrmsz of the rendezvous port on which the rendezvous was
established before forwarding. If maxrmsz of the rendezvous port after forwarding is larger than maxrmsz
of the rendezvous port before forwarding, this means the destination rendezvous port was not suitable,
and error code E OBJ is returned. The task calling the rendezvous readies a reply message receiving
area based on the maxrmsz of the rendezvous port before forwarding. If the maximum size for the reply
message increases when the rendezvous is forwarded, this may indicate that an unexpectedly large reply
message is being returned to the calling rendezvous port, which would cause problems. For this reason
a rendezvous cannot be forwarded to a rendezvous port having a larger maxrmsz.
Similarly, cmsgsz indicating the size of the message sent by tk fwd por must be no larger than maxrmsz
of the rendezvous port on which the rendezvous was established before forwarding. This is because it

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 141

is assumed that the message area specified with tk cal por will be used as a buffer in implementing
tk fwd por. If cmsgsz is larger than maxrmsz of the rendezvous port before forwarding, error code
E PAR is returned(See Additional Note for details).
It is not necessary to issue tk fwd por and tk rpl rdv from a task-independent portion, but it is possible
to issue these system calls from dispatch disabled or interrupts disabled state. This capability can be
used to perform processing that is inseparable from tk fwd por or tk rpl rdv. Whether or not error
checking is made for issuing of these system calls from a task-independent portion is implementation-
dependent.
When as a result of tk fwd por Task Y that was in WAIT state for rendezvous completion reverts to
WAIT on rendezvous call, the timeout until rendezvous establishment is always treated as Wait forever
(TMO FEVR).
The rendezvous port being forwarded to may be the same port used for the previous rendezvous (the
rendezvous port on which the rendezvous specified in rdvno was established). In this case, tk fwd por
cancels the previously accepted rendezvous. Even in this case, however, the call message and calptn
parameters are changed to those passed to tk fwd por by the accepting task, not those passed to
tk cal por by the calling task.
It is possible to forward a rendezvous that has already been forwarded.

[Additional Notes]

A server task operation using tk fwd por is illustrated in Figure 4.8.
Generally tk fwd por is executed by server distribution tasks (tasks for distributing server-accepted
processing to other tasks) as shown in Figure 4.8. Accordingly, a server distribution task that has
executed tk fwd por must go on to processing for acceptance of the next request regardless of whether
the forwarded rendezvous is established or not. The tk fwd por message area in this case is used for
processing the next request, making it necessary to ensure that changes to the contents of this message
area will not affect the previously forwarded rendezvous. For this reason, after tk fwd por is executed,
it must be possible to modify the contents of the message area indicated in msg passed to tk fwd por
even before the forwarded rendezvous is established.
In order to fulfill this requirement, in implementation it is allowed to use the message area specified with
tk cal por as a buffer. That is, in the tk fwd por processing, it is permissible to copy the call messages
specified with tk fwd por to the message area indicated in msg when tk cal por was called, and for the
task calling tk fwd por to change the contents of the message area. When a rendezvous is established,
the message placed in the tk cal por message area is passed to the accepting task, regardless of whether
the rendezvous is one that was forwarded from another port.
The following specifications are made to allow this sort of implementation to be used.

• If there is a possibility that a rendezvous requested by tk cal por may be forwarded, a memory
space of at least maxrmsz bytes must be allocated starting from msg (passed to tk cal por),
regardless of the expected reply message size.

• The send message size cmsgsz passed to tk fwd por must be no larger than maxrmsz of the
rendezvous port before forwarding.

• If a rendezvous is forwarded using tk fwd por, maxrmsz of the destination port rendezvous must
not be larger than maxrmsz of the port before forwarding.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

142 CHAPTER 4. T-KERNEL/OS FUNCTIONS

SVC
accept
port

?

?

¾

-? ? ?
tk fwd por tk fwd por tk fwd por

tk acp por tk acp por tk acp por

tk rpl rdv tk rpl rdv tk rpl rdv

¾

6 6 6? ? ?

? ? ?

Process A
Server
Task

Process B
Server
Task

Process C
Server
Task

Requesting Task X

??? ???

Extended SVC

tk cal por

WAIT on
rendezvous
call or for
completion

tk acp por Server distribution tasks

Preprocessing

Process
A server

port

Process
B server

port

Process
C server

port

• Bold outlines indicate rendezvous ports (rendezvous entries)

• While it is possible to use tk cal por in place of tk fwd por, this results in rendezvous nesting. Assuming
it is acceptable for requesting Task X to resume execution after the processing of server tasks A to C is
completed, use of tk fwd por does away with the need for rendezvous nesting and results in more efficient
operations.

Figure 4.8: Server Task Operation Using tk fwd por

[Rationale for the Specification]

The tk fwd por specification is designed not to require logging a history of rendezvous forwarding, so
as to reduce the number of states that must be kept track of in the system as a whole. Applications
that require such a log to be kept can use nested pairs of tk cal por and tk acp por rather than using
tk fwd por.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 143

tk rpl rdv
Reply Rendezvous

[C Language Interface]

ER ercd = tk_rpl_rdv (RNO rdvno, VP msg, INT rmsgsz) ;

[Parameters]

RNO rdvno Rendezvous number
VP msg Reply message packet address
INT rmsgsz Reply message size (in bytes)

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E PAR Parameter error (rmsgsz < 0, rmsgsz > maxrmsz, or value that cannot be used in msg)
E OBJ Invalid object state (rdvno is invalid)
E CTX Context error (issued from task-independent portion (implementation-dependent error))

[Description]

Returns a reply to the calling task in the rendezvous, ending the rendezvous.
The task issuing this system call (here “Task X”) must be engaged in a rendezvous; that is, this system
call can be issued only after executing tk acp por. In the discussion that follows, the rendezvous calling
task is “Task Y”, and the rendezvous number passed in a return parameter by tk acp por is rdvno.
When tk rpl rdv is executed in this situation, the rendezvous state between Task X and Task Y is
released, and the Task Y state goes from WAIT for rendezvous completion back to READY state.
When a rendezvous is ended by tk rpl rdv, accepting Task X can send a reply message to calling Task
Y. The contents of the message specified by the accepting task are copied to the memory space specified
in msg passed by Task Y to tk cal por. The size of the reply message rmsgsz is passed as a tk cal por
return parameter.
Error code E PAR is returned if rmsgsz is larger than maxrmsz specified with tk cre por. When this
error is detected, the rendezvous is not ended and the task that called tk cal por remains in WAIT
state for rendezvous completion.
It is not necessary to issue tk fwd por and tk rpl rdv from a task-independent portion, but it is possible
to issue these system calls from dispatch disabled or interrupts disabled state. This capability can be
used to perform processing that is inseparable from tk fwd por or tk rpl rdv. Whether or not error
checking is made for issuing of these system calls from a task-independent portion is implementation-
dependent.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

144 CHAPTER 4. T-KERNEL/OS FUNCTIONS

[Additional Notes]

If a task calling a rendezvous aborts for some reason before completion of the rendezvous (before
tk rpl rdv is executed), the accepting task has no direct way of knowing of the abort. In such a
case, error code E OBJ is returned to the rendezvous accepting task when it executes tk rpl rdv.
After a rendezvous is established, tasks are in principle detached from the rendezvous port and have
no need to reference information about each other. However, since the value of maxrmsz, used when
checking the length of the reply message sent using tk rpl rdv, is dependent on the rendezvous port,
the task in rendezvous must record this information somewhere. One possible implementation would be
to put this information in the TCB of the calling task after it goes to WAIT state, or in another area
that can be referenced from the TCB, such as a stack area.

[Rationale for the Specification]

The parameter rdvno is passed to tk rpl rdv and tk fwd por as information for distinguishing one
established rendezvous from another, but the rendezvous port ID (porid) used when establishing a
rendezvous is not specified. This is based on the design principle that tasks are no longer related to
rendezvous ports after a rendezvous has been established.
Error code E OBJ rather than E PAR is returned for an invalid rdvno. This is because rdvno itself is an
object indicating the task that called the rendezvous.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.5. EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 145

tk ref por
Reference Port Status

[C Language Interface]

ER ercd = tk_ref_por (ID porid, T_RPOR *pk_rpor) ;

[Parameters]

ID porid Rendezvous port ID
T RPOR* pk rpor Start address of packet for returning status information

[Return Parameters]

ER ercd Error code

pk rpor detail:

VP exinf Extended information
ID wtsk Waiting task information
ID atsk Accept task information
INT maxcmsz Maximum call message size (in bytes)
INT maxrmsz Maximum reply message size (in bytes)

(Other implementation-dependent parameters may be added beyond this point.)

[Error Codes]

E OK Normal completion
E ID Invalid ID number (porid is invalid or cannot be used)
E NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

References the status of the rendezvous port specified in porid, passing in return parameters information
about the accepting task (atsk), information about a task waiting on a rendezvous call (wtsk), maximum
message sizes (maxcmsz, maxrmsz), and extended information (exinf).
wtsk indicates the ID of a task in WAIT state on rendezvous call at the rendezvous port. If there is no
task waiting on rendezvous call, wtsk = 0 is returned. atsk indicates the ID of a task in WAIT state
on rendezvous acceptance at the rendezvous port. If there is no task waiting for rendezvous acceptance,
atsk = 0 is returned. If there are multiple tasks waiting on rendezvous call or acceptance at this
rendezvous port, the ID of the task at the head of the call queue and accept queue is returned.
If the specified rendezvous port does not exist, error code E NOEXS is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

146 CHAPTER 4. T-KERNEL/OS FUNCTIONS

[Additional Notes]

This system call cannot be used to get information about tasks involved in a currently established
rendezvous.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.6. MEMORY POOL MANAGEMENT FUNCTIONS 147

4.6 Memory Pool Management Functions

Memory pool management functions provide software-based management of memory pools and memory
block allocation.
There are fixed-size memory pools and variable-size memory pools, which are considered separate objects
and require separate sets of system calls for their operation. Memory blocks allocated from a fixed-size
memory pool are all of one fixed size, whereas memory blocks from a variable-size memory pool can be
of various sizes.
The memory managed by the memory pool management functions is all in system space; there is no
T-Kernel function for managing task space memory.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

148 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.6.1 Fixed-size Memory Pool

A fixed-size memory pool is an object used for dynamic management of fixed-size memory blocks.
Functions are provided for creating and deleting a fixed-size memory pool, getting and returning memory
blocks in a fixed-size memory pool, and referencing the status of a fixed-size memory pool. A fixed-size
memory pool is an object identified by an ID number called a fixed-size memory pool ID.
A fixed-size memory pool has a memory space used as the fixed-size memory pool (called a fixed-
size memory pool area or simply memory pool area), and a queue for tasks waiting for memory block
allocation. A task wanting to allocate a memory block from a fixed-size memory pool that lacks sufficient
available memory space goes to WAIT state for fixed-size memory block until memory blocks are returned
to the pool. A task in this state is put in the task queue of the fixed-size memory pool.

[Additional Notes]

When memory blocks of various sizes are needed from fixed-size memory pools, it is necessary to provide
multiple memory pools of different sizes.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.6. MEMORY POOL MANAGEMENT FUNCTIONS 149

tk cre mpf
Create Fixed-size Memory Pool

[C Language Interface]

ID mpfid = tk_cre_mpf (T_CMPF *pk_cmpf) ;

[Parameters]

T CMPF* pk cmpf Information about the memory pool to be created

pk cmpf detail:

VP exinf Extended information
ATR mpfatr Memory pool attributes
INT mpfcnt Memory pool block count
INT blfsz Memory block size (in bytes)
UB dsname[8] DS object name

(Other implementation-dependent parameters may be added beyond this point.)

[Return Parameters]

ID mpfid Fixed-size memory pool ID
or Error Code

[Error Codes]

E OK Normal completion
E NOMEM Insufficient memory (memory for control block or memory pool area cannot be allocated)
E LIMIT Number of fixed-size memory pools exceeds the system limit
E RSATR Reserved attribute (mpfatr is invalid or cannot be used)
E PAR Parameter error (pk cmpf is invalid; mpfsz or blfsz is negative or invalid)

[Description]

Creates a fixed-size memory pool, assigning to it a fixed-size memory pool ID.
This system call allocates a memory space for use as a memory pool based on the information specified
in parameters mpfcnt and blfsz, and assigns a control block to the memory pool. A memory block of
size blfsz can be allocated from the created memory pool by calling the tk get mpf system call.
exinf can be used freely by the user to set miscellaneous information about the created memory pool.
The information set in this parameter can be referenced by tk ref mpf. If a larger area is needed
for indicating user information, or if the information may need to be changed after the memory pool
is created, this can be done by allocating separate memory for this purpose and putting the memory
packet address in exinf. The OS pays no attention to the contents of exinf.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

150 CHAPTER 4. T-KERNEL/OS FUNCTIONS

mpfatr indicates system attributes in its low bits and implementation-dependent information in the
high bits. The system attributes part of mpfatr is as follows.

mpfatr:= (TA_TFIFO || TA_TPRI) | [TA_DSNAME] | [TA_NODISWAI]
| (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3)

TA TFIFO Tasks waiting for memory allocation are queued in FIFO order
TA TPRI Tasks waiting for memory allocation are queued in priority order
TA RNGn Memory access privilege is set to protection level n

TA DSNAME Specifies DS object name
TA NODISWAI Wait disabling by tk dis wai is prohibited

#define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
#define TA_TPRI 0x00000001 /* manage task queue by priority */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject wait disabling */
#define TA_RNG0 0x00000000 /* protection level 0 */
#define TA_RNG1 0x00000100 /* protection level 1 */
#define TA_RNG2 0x00000200 /* protection level 2 */
#define TA_RNG3 0x00000300 /* protection level 3 */

The queuing order of tasks waiting for memory block allocation from a memory pool can be specified in
TA TFIFO or TA TPRI. If the attribute is TA TFIFO, tasks are ordered by FIFO, whereas TA TPRI specifies
queuing of tasks in order of their priority setting.
TA RNGn is specified to limit the protection levels at which memory can be accessed. Only tasks running
at the same or higher protection level than the one specified can access the allocated memory. If a task
running at a lower protection level attempts access, a CPU protection fault exception is raised. For
example, memory allocated from a memory pool specified as TA RNG1 can be accessed by tasks running
at levels TA RNG0 or TA RNG1, but not by tasks running at levels TA RNG2 or TA RNG3.
The created memory pool is in resident memory in system space. There is no T-Kernel function for
creating a memory pool in task space.
When TA DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is
used to identify objects by debugger, and it is handled only by T-Kernel/DS API, td ref dsname and
td set dsname. For more details refer to td ref dsname and td set dsname. If TA DSNAME is not
specified, dsname is ignored. Then td ref dsname and td set dsname return E OBJ error.

[Additional Notes]

In the case of a fixed-size memory pool, separate memory pools must be provided for different block
sizes. That is, if various memory block sizes are required, memory pools must be created for each block
size.
For the sake of portability, the TA RNGn attribute must be accepted even by a system without an MMU.
It is possible, for example, to treat all TA RNGn as equivalent to TA RNG0; but error must not be returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.6. MEMORY POOL MANAGEMENT FUNCTIONS 151

tk del mpf
Delete Fixed-size Memory Pool

[C Language Interface]

ER ercd = tk_del_mpf (ID mpfid) ;

[Parameters]

ID mpfid Fixed-size memory pool ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mpfid is invalid or cannot be used)
E NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)

[Description]

Deletes the fixed-size memory pool specified in mpfid.
No check or notification is made as to whether there are tasks using memory allocated from this memory
pool. The system call completes normally even if not all blocks have been returned to the pool.
Issuing this system call releases the memory pool ID number, the control block memory space and the
memory pool space itself.
This system call completes normally even if there are tasks waiting for memory block allocation from
the deleted memory pool, but error code E DLT is returned to the tasks in WAIT state.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

152 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk get mpf
Get Fixed-size Memory Block

[C Language Interface]

ER ercd = tk_get_mpf (ID mpfid, VP *p_blf, TMO tmout) ;

[Parameters]

ID mpfid Fixed-size memory pool ID
TMO tmout timeout

[Return Parameters]

ER ercd Error code
VP blf Memory block start address

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mpfid is invalid or cannot be used)
E NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
E PAR Parameter error (tmout ≤ (−2))
E DLT The object being waited for was deleted (the memory pool was deleted while waiting)
E RLWAI Wait state released (tk rel wai received in wait state)
E DISWAI Wait released by wait disabled state
E TMOUT Polling failed or timeout
E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Gets a memory block from the fixed-size memory pool specified in mpfid. The start address of the
allocated memory block is returned in blf. The size of the allocated memory block is the value specified
in the blfsz parameter when the fixed-size memory pool was created.
The allocated memory is not cleared to zero, and the memory block contents are indeterminate.
If a block cannot be allocated from the specified memory pool, the task that issued tk get blf is put
in the queue of tasks waiting for memory allocation from that memory pool, and waits until memory
can be allocated.
A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release
condition is met (memory space does not become available), the system call terminates, returning
timeout error code E TMOUT.
Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for
system time (= 1 ms).
When TMO POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E TMOUT is
returned without entering WAIT state even if memory cannot be allocated.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.6. MEMORY POOL MANAGEMENT FUNCTIONS 153

When TMO FEVR = (−1) is set in tmout, this means infinity was specified as the timeout value, and the
task continues to wait for memory allocation without timing out.
The queuing order of tasks waiting for memory block allocation is either FIFO or task priority order,
depending on the memory pool attribute.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

154 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk rel mpf
Release Fixed-size Memory Block

[C Language Interface]

ER ercd = tk_rel_mpf (ID mpfid, VP blf) ;

[Parameters]

ID mpfid Fixed-size memory pool ID
VP blf Memory block start address

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mpfid is invalid or cannot be used)
E NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
E PAR Parameter error (blf is invalid, or block returned to wrong memory pool)

[Description]

Returns the memory block specified in blf to the fixed-size memory pool specified in mpfid.
Executing tk rel mpf may enable memory block acquisition by another task waiting to allocate memory
from the memory pool specified in mpfid, releasing the WAIT state of that task.
When a memory block is returned to a fixed-size memory pool, it must be the same fixed-size memory
pool from which the block was allocated. If an attempt to return a memory block to a different
memory pool is detected, error code E PAR is returned. Whether this error detection is made or not is
implementation-dependent.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.6. MEMORY POOL MANAGEMENT FUNCTIONS 155

tk ref mpf
Reference Fixed-size Memory Pool Status

[C Language Interface]

ER ercd = tk_ref_mpf (ID mpfid, T_RMPF *pk_rmpf) ;

[Parameters]

ID mpfid Fixed-size memory pool ID
T RMPF* pk rmpf Address of packet for returning status information

[Return Parameters]

ER ercd Error code

pk rmpf detail:

VP exinf Extended information
ID wtsk Waiting task information
INT frbcnt Free block count

(Other implementation-dependent parameters may be added beyond this point.)

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mpfid is invalid or cannot be used)
E NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

References the status of the fixed-size memory pool specified in mpfid, passing in return parameters the
current free block count frbcnt, waiting task information (wtsk), and extended information (exinf).
wtsk indicates the ID of a task waiting for memory block allocation from this fixed-size memory pool.
If multiple tasks are waiting for the fixed-size memory pool, the ID of the task at the head of the queue
is returned. If there are no waiting tasks, wtsk = 0 is returned.
If the fixed-size memory pool specified with tk ref mpf does not exist, error code E NOEXS is returned.
At least one of frbcnt = 0 and wtsk = 0 is always true for this system call.

[Additional Notes]

Whereas frsz returned by tk ref mpl gives the total free memory size in bytes, frbcnt returns the
number of unused memory blocks.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

156 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.6.2 Variable-size Memory Pool

A variable-size memory pool is an object for dynamically managing memory blocks of any size. Functions
are provided for creating and deleting a variable-size memory pool, allocating and returning memory
blocks in a variable-size memory pool, and referencing the status of a variable-size memory pool. A
variable-size memory pool is an object identified by an ID number called a variable-size memory pool
ID.
A variable-size memory pool has a memory space used as the variable-size memory pool (called a
variable-size memory pool area or simply memory pool area), and a queue for tasks waiting for memory
block allocation. A task wanting to allocate a memory block from a variable-size memory pool that
lacks sufficient available memory space goes to WAIT state for variable-size memory block until memory
blocks are returned to the pool. A task in this state is put in the task queue of the variable-size memory
pool.

[Additional Notes]

When tasks are waiting for memory block allocation from a variable-size memory pool, they are served in
queued order. If, for example, Task A requesting a 400-byte memory block from a variable-size memory
pool is queued along with Task B requesting a 100-byte block, in A-B order, then even if 200 bytes of
space are free, Task B is made to wait until Task A has acquired the requested memory block.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.6. MEMORY POOL MANAGEMENT FUNCTIONS 157

tk cre mpl
Create Variable-size Memory Pool

[C Language Interface]

ID mplid = tk_cre_mpl (T_CMPL *pk_cmpl) ;

[Parameters]

T CMPL* pk cmpl Information about the variable-size memory pool to be created

pk cmpf detail:

VP exinf Extended information
ATR mplatr Memory pool attributes
INT mplsz Memory pool size (in bytes)
UB dsname[8] DS object name

(Other implementation-dependent parameters may be added beyond this point.)

[Return Parameters]

ID mplid Variable-size memory pool ID
or Error Code

[Error Codes]

E OK Normal completion
E NOMEM Insufficient memory (memory for control block or memory pool area cannot be allocated)
E LIMIT Number of variable-size memory pools exceeds the system limit
E RSATR Reserved attribute (mplatr is invalid or cannot be used)
E PAR Parameter error (pk cmpl is invalid, or mplsz is negative or invalid)

[Description]

Creates a variable-size memory pool, assigning to it a variable-size memory pool ID.
This system call allocates a memory space for use as a memory pool, based on the information in
parameter mplsz, and allocates a control block to the created memory pool.
exinf can be used freely by the user to set miscellaneous information about the created memory pool.
The information set in this parameter can be referenced by tk ref mpl. If a larger area is needed
for indicating user information, or if the information may need to be changed after the memory pool
is created, this can be done by allocating separate memory for this purpose and putting the memory
packet address in exinf. The OS pays no attention to the contents of exinf.
mplatr indicates system attributes in its low bits and implementation-dependent information in the
high bits. The system attributes part of mplatr is as follows.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

158 CHAPTER 4. T-KERNEL/OS FUNCTIONS

mplatr:= (TA_TFIFO || TA_TPRI) | [TA_DSNAME] | [TA_NODISWAI]
| (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3)

TA TFIFO Tasks waiting for memory allocation are queued in FIFO order
TA TPRI Tasks waiting for memory allocation are queued in priority order
TA RNGn Memory access privilege is set to protection level n

TA DSNAME Specifies DS object name
TA NODISWAI Wait disabling by tk dis wai is prohibited

#define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
#define TA_TPRI 0x00000001 /* manage task queue by priority */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject wait disabling */
#define TA_RNG0 0x00000000 /* protection level 0 */
#define TA_RNG1 0x00000100 /* protection level 1 */
#define TA_RNG2 0x00000200 /* protection level 2 */
#define TA_RNG3 0x00000300 /* protection level 3 */

The queuing order of tasks waiting to acquire memory from a memory pool can be specified in TA TFIFO
or TA TPRI. If the attribute is TA TFIFO, tasks are ordered by FIFO, whereas TA TPRI specifies queuing
of tasks in order of their priority setting.
When tasks are queued waiting for memory allocation, memory is allocated in the order of queuing.
Even if other tasks in the queue are requesting smaller amounts of memory than the task at the head of
the queue, they do not acquire memory blocks before the first task. If, for example, Task A requesting
a 400-byte memory block from a variable-size memory pool is queued along with Task B requesting a
100-byte block, in A-B order, then even if 200 bytes of space are free, Task B is made to wait until Task
A has acquired the requested memory block.
TA RNGn is specified to limit the protection levels at which memory can be accessed. Only tasks running
at the same or higher protection level than the one specified can access the allocated memory. If a task
running at a lower protection level attempts access, a CPU protection fault exception is raised. For
example, memory allocated from a memory pool specified as TA RNG1 can be accessed by tasks running
at levels TA RNG0 or TA RNG1, but not by tasks running at levels TA RNG2 or TA RNG3.
The created memory pool is in resident memory in system space. There is no T-Kernel function for
creating a memory pool in task space.
When TA DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is
used to identify objects by debugger, and it is handled only by T-Kernel/DS API, td ref dsname and
td set dsname. For more details refer to td ref dsname and td set dsname. If TA DSNAME is not
specified, dsname is ignored. Then td ref dsname and td set dsname return E OBJ error.

[Additional Notes]

If the task at the head of the queue waiting for memory allocation has its WAIT state forcibly released,
or if a different task becomes the first in the queue as a result of a change in task priority, memory
allocation is attempted to that task. If memory can be allocated, the WAIT state of that task is released.
In this way it is possible under some circumstances for memory allocation to take place and task WAIT
state to be released even when memory is not released by tk rel mpl.
For the sake of portability, the TA RNGn attribute must be accepted even by a system without an MMU.
It is possible, for example, to treat all TA RNGn as equivalent to TA RNG0; but error must not be returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.6. MEMORY POOL MANAGEMENT FUNCTIONS 159

[Rationale for the Specification]

The capability of creating multiple memory pools can be used for memory allocation as needed for error
handling or in emergencies, etc.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

160 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk del mpl
Delete Variable-size Memory Pool

[C Language Interface]

ER ercd = tk_del_mpl (ID mplid) ;

[Parameters]

ID mplid Variable-size memory pool ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mplid is invalid or cannot be used)
E NOEXS Object does not exist (the variable-size memory pool specified in mplid does not exist)

[Description]

Deletes the variable-size memory pool specified in mplid.
No check or notification is made as to whether there are tasks using memory allocated from this memory
pool. The system call completes normally even if not all blocks have been returned to the pool.
Issuing this system call releases the memory pool ID number, the control block memory space and the
memory pool space itself.
This system call completes normally even if there are tasks waiting for memory block allocation from
the deleted memory pool, but error code E DLT is returned to the tasks in WAIT state.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.6. MEMORY POOL MANAGEMENT FUNCTIONS 161

tk get mpl
Get Variable-size Memory Block

[C Language Interface]

ER ercd = tk_get_mpl (ID mplid, INT blksz, VP *p_blk, TMO tmout) ;

[Parameters]

ID mplid Variable-size memory pool ID
INT blksz Memory block size (in bytes)
TMO tmout Timeout

[Return Parameters]

ER ercd Error code
VP blk Block start address

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mplid is invalid or cannot be used)
E NOEXS Object does not exist (the variable-size memory pool specified in mplid does not exist)
E PAR Parameter error (tmout ≤ (−2))
E DLT The object being waited for was deleted (the memory pool was deleted while waiting)
E RLWAI Wait state released (tk rel wai received in wait state)
E DISWAI Wait released by wait disabled state
E TMOUT Polling failed or timeout
E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Gets a memory block of size blksz (bytes) from the variable-size memory pool specified in mplid. The
start address of the allocated memory block is returned in blk.
The allocated memory is not cleared to zero, and the memory block contents are indeterminate.
If memory cannot be allocated, the task issuing this system call enters WAIT state.
A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release
condition is met (memory space does not become available), the system call terminates, returning
timeout error code E TMOUT.
Only positive values can be set in tmout. The time base for tmout (time unit) is the same as that for
system time (= 1 ms).
When TMO POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E TMOUT is
returned without entering WAIT state even if memory cannot be allocated.
When TMO FEVR = (−1) is set in tmout, this means infinity was specified as the timeout value, and the
task continues to wait for memory allocation without timing out.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

162 CHAPTER 4. T-KERNEL/OS FUNCTIONS

The queuing order of tasks waiting for memory block allocation is either FIFO or task priority order,
depending on the memory pool attribute.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.6. MEMORY POOL MANAGEMENT FUNCTIONS 163

tk rel mpl
Release Variable-size Memory Block

[C Language Interface]

ER ercd = tk_rel_mpl (ID mplid, VP blk) ;

[Parameters]

ID mplid Variable-size memory pool ID
VP blf Memory block start address

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mplid is invalid or cannot be used)
E NOEXS Object does not exist (the variable-size memory pool specified in mplid does not exist)
E PAR Parameter error (blk is invalid, or block returned to wrong memory pool)

[Description]

Returns the memory block specified in blk to the variable-size memory pool specified in mplid.
Executing tk rel mpl may enable memory block acquisition by another task waiting to allocate memory
from the memory pool specified in mplid, releasing the WAIT state of that task.
When a memory block is returned to a variable-size memory pool, it must be the same variable-size
memory pool from which the block was allocated. If an attempt to return a memory block to a different
memory pool is detected, error code E PAR is returned. Whether this error detection is made or not is
implementation-dependent.

[Additional Notes]

When memory is returned to a variable-size memory pool in which multiple tasks are queued, multiple
tasks may be released at the same time depending on the amount of memory returned and their requested
memory size. The task precedence among tasks of the same priority after their WAIT state is released
in such a case is the order in which they were queued.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

164 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk ref mpl
Reference Variable-size Memory Pool Status

[C Language Interface]

ER ercd = tk_ref_mpl (ID mplid, T_RMPL *pk_rmpl) ;

[Parameters]

ID mplid Variable-size memory pool ID
T RMPL* pk rmpl Address of packet for returning status information

[Return Parameters]

ER ercd Error code

pk rmpl detail:

VP exinf Extended information
ID wtsk Waiting task information
INT frsz Free memory size (in bytes)
INT maxsz Maximum memory space size (in bytes)

(Other implementation-dependent parameters may be added beyond this point.)

[Error Codes]

E OK Normal completion
E ID Invalid ID number (mplid is invalid or cannot be used)
E NOEXS Object does not exist (the variable-size memory pool specified in mplid does not exist)
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

References the status of the variable-size memory pool specified in mplid, passing in return parameters
the total size of free space frsz, the maximum size of memory immediately available maxsz, waiting
task information (wtsk), and extended information (exinf).
wtsk indicates the ID of a task waiting for memory block allocation from this variable-size memory
pool. If multiple tasks are waiting for the variable-size memory pool, the ID of the task at the head of
the queue is returned. If there are no waiting tasks, wtsk = 0 is returned.
If the variable-size memory pool specified with tk ref mpl does not exist, error code E NOEXS is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.7. TIME MANAGEMENT FUNCTIONS 165

4.7 Time Management Functions

Time management functions are for performing time-dependent processing. They include functions for
system time management, cyclic handlers, and alarm handlers.
The general name used here for cyclic handlers and alarm handlers is time event handlers.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

166 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.7.1 System Time Management

System time management functions are for manipulating system time. Functions are provided for system
clock setting and reference, and for referencing system operating time.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.7. TIME MANAGEMENT FUNCTIONS 167

tk set tim
Set Time

[C Language Interface]

ER ercd = tk_set_tim (SYSTIM *pk_tim) ;

[Parameters]

SYSTIM* pk tim Address of current time packet

pk tim detail:

SYSTIM systim Current system time

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E PAR Parameter error (pk tim is invalid, or time setting is invalid)

[Description]

Sets the system clock to the value specified in systim.
System time is expressed as cumulative milliseconds from 0:00:00 (GMT), January 1, 1985.

[Additional Notes]

The relative time specified in RELTIM or TMO does not change even if the system clock is changed by
calling tk set tim during system operation. For example, if a timeout is set to elapse in 60 seconds and
the system clock is advanced by 60 seconds by tk set tim while waiting for the timeout, the timeout
occurs not immediately but 60 seconds after it was set. Instead, tk set tim changes the system time
at which the timeout occurs.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

168 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk get tim
Get Time

[C Language Interface]

ER ercd = tk_get_tim (SYSTIM *pk_tim) ;

[Parameters]

SYSTIM* pk tim Address of current time packet

[Return Parameters]

ER ercd Error code

pk tim detail:

SYSTIM systim Current system time

[Error Codes]

E OK Normal completion
E PAR Parameter error (pk tim is invalid)

[Description]

Reads the current value of the system clock and returns in it systim.
System time is expressed as cumulative milliseconds from 0:00:00 (GMT), January 1, 1985.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.7. TIME MANAGEMENT FUNCTIONS 169

tk get otm
Get Operating Time

[C Language Interface]

ER ercd = tk_get_otm (SYSTIM *pk_tim) ;

[Parameters]

SYSTIM* pk tim Address of packet returning operating time

pk tim detail:

SYSTIM opetim System operating time

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E PAR Parameter error (pk tim is invalid)

[Description]

Gets the system operating time (up time).
System operating time, unlike system time, indicates the length of time elapsed linearly since the system
was started. It is not affected by clock settings made by tk set tim.
System operating time must have the same precision as system time.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

170 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.7.2 Cyclic Handler

A cyclic handler is a time event handler started at regular intervals. Cyclic handler functions are provided
for creating and deleting a cyclic handler, activating and deactivating a cyclic handler operation, and
referencing cyclic handler status. A cyclic handler is an object identified by an ID number called a cyclic
handler ID.
The time interval at which a cyclic handler is started (cycle time) and the cycle phase are specified
for each cyclic handler when it is created. When a cyclic handler operation is requested, T-Kernel
determines the time at which the cyclic handler should next be started based on the cycle time and
cycle phase set for it. When a cyclic handler is created, the time when it is to be started next is the time
of its creation plus the cycle phase. When the time comes to start a cyclic handler, exinf, containing
extended information about the cyclic handler, is passed to it as a starting parameter. The time when
the cyclic handler is started plus its cycle time becomes the next start time. Sometimes when a cyclic
handler is activated, the next start time will be newly set.
In principle the cycle phase of a cyclic handler is no longer than its cycle time. The behavior if the cycle
phase is made longer than the cycle time is implementation-dependent.
A cyclic handler has two activation states, active and inactive. While a cyclic handler is inactive, it
is not started even when its start time arrives, although calculation of the next start time does take
place. When a system call for activating a cyclic handler is called (tk sta cyc), the cyclic handler goes
to active state, and the next start time is decided if necessary. When a system call for deactivating a
cyclic handler is called (tk stp cyc), the cyclic handler goes to inactive state. Whether a cyclic handler
upon creation is active or inactive is decided by a cyclic handler attribute.
The cycle phase of a cyclic handler is a relative time specifying the first time the cyclic handler is to be
started, in relation to the time when the system call creating it was invoked. The cycle time of a cyclic
handler is likewise a relative time, specifying the next time the cyclic handler is to be started in relation
to the time it should have started (not the time it started). For this reason, the intervals between times
the cyclic handler is started will individually be shorter than the cycle time in some cases, but their
average over a longer time span will match the cycle time.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.7. TIME MANAGEMENT FUNCTIONS 171

tk cre cyc
Create Cyclic Handler

[C Language Interface]

ID cycid = tk_cre_cyc (T_CCYC *pk_ccyc) ;

[Parameters]

T CCYC* pk ccyc Address of cyclic handler definition packet

pk ccyc detail:

VP exinf Extended information
ATR cycatr Cyclic handler attributes
FP cychdr Cyclic handler address
RELTIM cyctim Cycle time
RELTIM cycphs Cycle phase
UB dsname[8] DS object name

(Other implementation-dependent parameters may be added beyond this point.)

[Return Parameters]

ID cycid Cyclic handler ID
or Error Code

[Error Codes]

E OK Normal completion
E NOMEM Insufficient memory (memory for control block cannot be allocated)
E LIMIT Number of cyclic handlers exceeds the system limit
E RSATR Reserved attribute (cycatr is invalid or cannot be used)
E PAR Parameter error (pk ccyc, cychdr, cyctim, or cycphs is invalid or cannot be used)

[Description]

Creates a cyclic handler, assigning to it a cyclic handler ID. A cyclic handler is a handler running at
specified intervals as a task-independent portion.
exinf can be used freely by the user to set miscellaneous information about the created cyclic handler.
The information set in this parameter can be referenced by tk ref cyc. If a larger area is needed for
indicating user information, or if the information may need to be changed after the cyclic handler is
created, this can be done by allocating separate memory for this purpose and putting the memory packet
address in exinf. The OS pays no attention to the contents of exinf.
cycatr indicates system attributes in its low bits and implementation-dependent information in the
high bits. The system attributes part of cycatr is as follows.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

172 CHAPTER 4. T-KERNEL/OS FUNCTIONS

cycatr := (TA_ASM || TA_HLNG) | [TA_STA] | [TA_PHS] | [TA_DSNAME]

TA ASM The handler is written in assembly language
TA HLNG The handler is written in high-level language
TA STA Activate immediately upon cyclic handler creation
TA PHS Save the cycle phase
TA DSNAME Specifies DS object name

#define TA_ASM 0x00000000 /* assembly program */
#define TA_HLNG 0x00000001 /* high-level language program */
#define TA_STA 0x00000002 /* activate cyclic handler */
#define TA_PHS 0x00000004 /* save cyclic handler cycle phase */
#define TA_DSNAME 0x00000040 /* DS object name */

cychdr specifies the cyclic handler start address, cyctim the cycle time, and cycphs the cycle phase.
When the TA HLNG attribute is specified, the cyclic handler is started via a high-level language support
routine. The high-level language support routine takes care of saving and restoring register values. The
cyclic handler terminates by a simple return from a function. The cyclic handler takes the following
format when the TA HLNG attribute is specified.

void cychdr(VP exinf)
{

/*
Processing
*/

return; /* Exit cyclic handler*/

}

The cyclic handler format when the TA ASM attribute is specified is implementation-dependent, but
exinf must be passed in a starting parameter.
cycphs indicates the length of time until the cyclic hander is initially started after being created by
tk cre cyc. Thereafter it is started periodically at the interval set in cyctim. If zero is specified for
cycphs, the cyclic handler starts immediately after it is created. Zero cannot be specified for cyctim.
The starting of the cyclic handler for the nth time occurs after at least chcphs+ chctim× (n− 1) time
has elapsed from the cyclic handler creation.
When TA STA is specified, the cyclic handler goes to active state immediately on creation, and starts at
the intervals noted above. If TA STA is not specified, the cycle time is calculated but the cyclic handler
is not actually started.
When TA PHS is specified, then even if tk sta cyc is called activating the cyclic handler, the cycle time
is not reset, and the cycle time calculated as above from the time of cyclic handler creation continues
to apply. If TA PHS is not specified, calling tk sta cyc resets the cycle time and the cyclic handler is
started at cyctim intervals measured from the time tk sta cyc was called. Note that the resetting of
cycle time by tk sta cyc does not affect cycphs. In this case the starting of the cyclic handler for the
nth time occurs after at least cyctim× n has elapsed from the calling of tk sta cyc.
Even if a system call is invoked from a cyclic handler and this causes the task in RUN state up to
that time to go to another state, with a different task going to RUN state, dispatching (task switching)
does not occur while the cyclic handler is running. Completion of execution by the cyclic handler has
precedence even if dispatching is necessary; only when the cyclic handler terminates does the dispatch

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.7. TIME MANAGEMENT FUNCTIONS 173

take place. In other words, a dispatch request occurring while a cyclic handler is running is not processed
immediately, but is delayed until the cyclic handler terminates. This is called delayed dispatching.
A cyclic handler runs as a task-independent portion. As such, it is not possible to call in a cyclic handler
a system call that can enter WAIT state, or one that is intended for the invoking task.
When TA DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is
used to identify objects by debugger, and it is handled only by T-Kernel/DS API, td ref dsname and
td set dsname. For more details refer to td ref dsname and td set dsname. If TA DSNAME is not
specified, dsname is ignored. Then td ref dsname and td set dsname return E OBJ error.

[Additional Notes]

Once a cyclic handler is defined, it continues to run at the specified cycles either until tk stp cyc is
called to deactivate it or until it is deleted. There is no parameter to specify the number of cycles in
tk cre cyc.
When multiple time event handlers or interrupt handlers operate at the same time, it is an implementation-
dependent matter whether to have them run serially (after one handler exits, another starts) or nested
(one handler operation is suspended, another runs, and when that one finishes the previous one resumes).
In either case, since time event handlers and interrupt handlers run as task-independent portion, the
principle of delayed dispatching applies.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

174 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk del cyc
Delete Cyclic Handler

[C Language Interface]

ER ercd = tk_del_cyc (ID cycid) ;

[Parameters]

ID cycid Cyclic handler ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (cycid is invalid or cannot be used)
E NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)

[Description]

Deletes a cyclic handler.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.7. TIME MANAGEMENT FUNCTIONS 175

tk sta cyc
Start Cyclic Handler

[C Language Interface]

ER ercd = tk_sta_cyc (ID cycid) ;

[Parameters]

ID cycid Cyclic handler ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (cycid is invalid or cannot be used)
E NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)

[Description]

Activates a cyclic handler, putting it in active state.
If the TA PHS attribute was specified, the cycle time of the cyclic handler is not reset when the cyclic
handler goes to active state. If it was already in active state when this system call was executed, it
continues unchanged in active state.
If the TA PHS attribute was not specified, the cycle time is reset when the cyclic handler goes to active
state. If it was already in active state, it continues in active state but its cycle time is reset. In this
case, the next time the cyclic handler starts is after cyctim has elapsed.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

176 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk stp cyc
Stop Cyclic Handler

[C Language Interface]

ER ercd = tk_stp_cyc (ID cycid) ;

[Parameters]

ID cycid Cyclic handler ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (cycid is invalid or cannot be used)
E NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)

[Description]

Deactivates a cyclic handler, putting it in inactive state. It the cyclic handler was already in inactive
state, this system call has no effect (no operation).

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.7. TIME MANAGEMENT FUNCTIONS 177

tk ref cyc
Reference Cyclic Handler Status

[C Language Interface]

ER ercd = tk_ref_cyc (ID cycid, T_RCYC *pk_rcyc) ;

[Parameters]

ID cycid Cyclic handler ID
T RCYC* pk rcyc Address of packet for returning status information

[Return Parameters]

ER ercd Error code

pk rcyc detail:

VP exinf Extended information
RELTIM lfttim Time remaining until the next start time
UINT cycstat Cyclic handler activation state

(Other implementation-dependent parameters may be added beyond this point.)

[Error Codes]

E OK Normal completion
E ID Invalid ID number (cycid is invalid or cannot be used)
E NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

References the status of the cyclic handler specified in cycid, passing in return parameters the cyclic
handler activation state cycstat, the time remaining until the next start lfttim, and extended infor-
mation exinf.
The following information is returned in cycstat.

cycstat:= (TCYC_STP | TCYC_STA)

TCYC STP The cyclic handler is inactive
TCYC STA The cyclic handler is active

#define TCYC_STP 0x00 /* cyclic handler is inactive */
#define TCYC_STA 0x01 /* cyclic handler is active */

If the cyclic handler specified in cycid does not exist, error code E NOEXS is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

178 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.7.3 Alarm Handler

An alarm handler is a time event handler that starts at a specified time. Functions are provided for
creating and deleting an alarm handler, activating and deactivating the alarm handler, and referencing
the alarm handler status. An alarm handler is an object identified by an ID number called an alarm
handler ID.
The time at which an alarm handler starts (called the alarm time) can be set independently for each
alarm handler. When the alarm time arrives, exinf, containing extended information about the alarm
handler, is passed to it as a starting parameter.
After an alarm handler is created, initially it has no alarm time set and is in inactive state. The alarm
time is set when the alarm handler is activated by calling tk sta alm, as relative time from the time
that system call is executed. When tk stp alm is called deactivating the alarm handler, the alarm time
setting is canceled. Likewise, when an alarm time arrives and the alarm handler runs, the alarm time
is canceled and the alarm handler becomes inactive.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.7. TIME MANAGEMENT FUNCTIONS 179

tk cre alm
Create Alarm Handler

[C Language Interface]

ID almid = tk_cre_alm (T_CALM *pk_calm) ;

[Parameters]

T CALM* pk calm Address of alarm handler definition packet

pk calm detail:

VP exinf Extended information
ATR almatr Alarm handler attributes
FP almhdr Alarm handler address
UB dsname[8] DS object name

[Return Parameters]

ID almid Alarm handler ID
or Error Code

[Error Codes]

E OK Normal completion
E NOMEM Insufficient memory (memory for control block cannot be allocated)
E LIMIT Number of alarm handlers exceeds the system limit
E RSATR Reserved attribute (almatr is invalid or cannot be used)
E PAR Parameter error (almno, pk calm, or almhdr is invalid or cannot be used)

[Description]

Creates an alarm handler, assigning to it an alarm handler ID. An alarm handler is a handler running
at the specified time as a task-independent portion.
exinf can be used freely by the user to set miscellaneous information about the created alarm handler.
The information set in this parameter can be referenced by tk ref alm. If a larger area is needed for
indicating user information, or if the information may need to be changed after the alarm handler is
created, this can be done by allocating separate memory for this purpose and putting the memory packet
address in exinf. The OS pays no attention to the contents of exinf.
almatr indicates system attributes in its low bits and implementation-dependent information in the
high bits. The system attributes part of almatr is as follows.

almatr := (TA_ASM || TA_HLNG) | [TA_DSNAME]

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

180 CHAPTER 4. T-KERNEL/OS FUNCTIONS

TA ASM The handler is written in assembly language
TA HLNG The handler is written in high-level language
TA DSNAME Specifies DS object name

#define TA_ASM 0x00000000 /* assembly program */
#define TA_HLNG 0x00000001 /* high-level language program */
#define TA_DSNAME 0x00000040 /* DS object name */

almhdr specifies the alarm handler start address.
When the TA HLNG attribute is specified, the alarm handler is started via a high-level language support
routine. The high-level language support routine takes care of saving and restoring register values. The
alarm handler terminates by a simple return from a function. The alarm handler takes the following
format when the TA HLNG attribute is specified.

void almhdr(VP exinf)
{

/*
Processing
*/

return; /* exit alarm handler */
}

The alarm handler format when the TA ASM attribute is specified is implementation-dependent, but exinf
must be passed in a starting parameter.
Even if a system call is invoked from an alarm handler and this causes the task in RUN state up to
that time to go to another state, with a different task going to RUN state, dispatching (task switching)
does not occur while the alarm handler is running. Completion of execution by the alarm handler
has precedence even if dispatching is necessary; only when the alarm handler terminates does the
dispatch take place. In other words, a dispatch request occurring while an alarm handler is running is
not processed immediately, but is delayed until the alarm handler terminates. This is called delayed
dispatching.
An alarm handler runs as a task-independent portion. As such, it is not possible to call in an alarm
handler a system call that can enter WAIT state, or one that is intended for the invoking task.
When TA DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is
used to identify objects by debugger, and it is handled only by T-Kernel/DS API, td ref dsname and
td set dsname. For more details refer to td ref dsname and td set dsname. If TA DSNAME is not
specified, dsname is ignored. Then td ref dsname and td set dsname return E OBJ error.

[Additional Notes]

When multiple time event handlers or interrupt handlers operate at the same time, it is an implementation-
dependent matter whether to have them run serially (after one handler exits, another starts) or nested
(one handler operation is suspended, another runs, and when that one finishes the previous one resumes).
In either case, since time event handlers and interrupt handlers run as task-independent portion, the
principle of delayed dispatching applies.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.7. TIME MANAGEMENT FUNCTIONS 181

tk del alm
Delete Alarm Handler

[C Language Interface]

ER ercd = tk_del_alm (ID almid) ;

[Parameters]

ID almid Alarm handler ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (almid is invalid or cannot be used)
E NOEXS Object does not exist (the alarm handler specified in almid does not exist)

[Description]

Deletes an alarm handler.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

182 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk sta alm
Start Alarm Handler

[C Language Interface]

ER ercd = tk_sta_alm (ID almid, RELTIM almtim) ;

[Parameters]

ID almid Alarm handler ID
RELTIM almtim Alarm handler start time (alarm time)

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (almid is invalid or cannot be used)
E NOEXS Object does not exist (the alarm handler specified in almid does not exist)

[Description]

Sets the alarm time of the alarm handler specified in almid to the time given in almtim, putting the
alarm handler in active state. almtim is specified as relative time from the time of calling tk sta alm.
After the time specified in almtim has elapsed, the alarm handler starts. If the alarm handler is already
active when this system call is invoked, the existing almtim setting is canceled and the alarm handler is
activated anew with the alarm time specified here.
If almtim = 0 is set, the alarm handler starts as soon as it is activated.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.7. TIME MANAGEMENT FUNCTIONS 183

tk stp alm
Stop Alarm Handler

[C Language Interface]

ER ercd = tk_stp_alm (ID almid) ;

[Parameters]

ID almid Alarm handler ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (almid is invalid or cannot be used)
E NOEXS Object does not exist (the alarm handler specified in almid does not exist)

[Description]

Cancels the alarm time of the alarm handler specified in almid, putting it in inactive state. If it was
already in inactive state, this system call has no effect (no operation).

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

184 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk ref alm
Reference Alarm Handler Status

[C Language Interface]

ER ercd = tk_ref_alm (ID almid, T_RALM *pk_ralm) ;

[Parameters]

ID almid Alarm handler ID
T RALM* pk ralm Address of packet for returning status information

[Return Parameters]

ER ercd Error code

pk ralm detail:

VP exinf Extended information
RELTIM lfttim Time remaining until the handler starts
UINT almstat Alarm handler activation state

(Other implementation-dependent parameters may be added beyond this point.)

[Error Codes]

E OK Normal completion
E ID Invalid ID number (almid is invalid or cannot be used)
E NOEXS Object does not exist (the alarm handler specified in almid does not exist)
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

References the status of the alarm handler specified in almno, passing in return parameters the time
remaining until the handler starts lfttim, and extended information exinf.
The following information is returned in almstat.

almstat:= (TALM_STP | TALM_STA)

TALM STP Thg alarm handler is inactive
TALM STA The alarm handler is active

#define TALM_STP 0x00 /* alarm handler is inactive */
#define TALM_STA 0x01 /* alarm handler is active */

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.7. TIME MANAGEMENT FUNCTIONS 185

If the alarm handler is active (TALM STA), lfttim returns the relative time until the alarm handler is
scheduled to start. This value is within the range almtim ≥ lfttim ≥ 0 specified with tk sta alm.
Since lfttim is decremented with each timer interrupt, lfttim = 0 means the alarm handler will start
at the next timer interrupt. If the alarm handler is inactive (TALM STP), lfttim is indeterminate.
If the alarm handler specified with tk ref alm in almid does not exist, error code E NOEXS is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

186 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.8 Interrupt Management Functions

Interrupt management functions are for defining and manipulating handlers for external interrupts and
CPU exceptions.
An interrupt handler runs as a task-independent portion. System calls can be invoked in a task-
independent portion in the same way as in a task portion, but the following restriction applies to system
call issuing in a task-independent portion.

• A system call that implicitly specifies the invoking task, or one that may put the invoking task in
WAIT state cannot be issued. Error code E CTX is returned in such cases.

During task-independent portion execution, task switching (dispatching) does not occur. If system
call processing results in a dispatch request, the dispatch is delayed until processing leaves the task-
independent portion. This is called delayed dispatching.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.8. INTERRUPT MANAGEMENT FUNCTIONS 187

tk def int
Define Interrupt Handler

[C Language Interface]

ER ercd = tk_def_int (UINT dintno, T_DINT *pk_dint) ;

[Parameters]

UINT dintno Interrupt definition number
T DINT* pk dint Packet of interrupt handler definition information

pk dint detail:

ATR intatr Interrupt handler attributes
FP inthdr Interrupt handler address

(Other implementation-dependent parameters may be added beyond this point.)

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E NOMEM Insufficient memory (memory for control block cannot be allocated)
E RSATR Reserved attribute (intatr is invalid or cannot be used)
E PAR Parameter error (dintno, pk dint, or inthdr is invalid or cannot be used)

[Description]

Defines an interrupt handler for interrupt definition number dintno, and enables use of the interrupt
handler. Here “interrupts” include both external interrupts from a device and CPU exceptions.
This system call maps the interrupt definition number indicated in dintno to the interrupt handler
address and attributes.
The specific significance of dintno is defined separately for each implementation, but generally it means
an interrupt vector number.
intatr indicates system attributes in its low bits, with the high bits used for implementation-dependent
attributes. The system attributes part of intatr is specified in the following format.

intatr := (TA_ASM || TA_HLNG)

TA ASM The handler is written in assembly language
TA HLNG The handler is written in high-level language

#define TA_ASM 0x00000000 /* assembly program */
#define TA_HLNG 0x00000001 /* high-level language program */

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

188 CHAPTER 4. T-KERNEL/OS FUNCTIONS

When the TA ASM attribute is specified, in principle the OS is not involved in interrupt handler starting.
When an interrupt is raised, the interrupt handling function in the CPU hardware (depending on
the implementation, processing by T-Monitor may be included) directly starts the interrupt handler
defined by this system call. Accordingly, processing for saving and restoring registers used by the
interrupt handler is necessary at the beginning and end of the interrupt handler. An interrupt handler
is terminated by execution of the tk ret int system call or by the CPU interrupt return instruction
(or equivalent means).
Provision of a means for return from an interrupt handler without using tk ret int and without OS
intervention is mandatory. Note that if tk ret int is not used, delayed dispatching is not necessary.
Support for return from an interrupt handler using tk ret int is mandatory, and in this case delayed
dispatching is necessary.
When the TA HLNG attribute is specified, the interrupt handler is started via a high-level language
support routine. The high-level language support routine takes care of saving and restoring register
values. The interrupt handler terminates by a simple return from a function. The interrupt handler
takes the following format when the TA HLNG attribute is specified.

void inthdr(UINT dintno)
{

/*
Processing
*/
return; /* exit interrupt handler */

}

The parameter dintno passed to an interrupt handler is a number identifying the interrupt that was
raised, and is the same as that specified with tk def int. Depending on the implementation, other
information about the interrupt may be passed in addition to dintno. If such information is used, it
must be defined for each implementation in a second parameter or subsequent parameters passed to the
interrupt handler.
If the TA HLNG attribute is specified, it is assumed that the CPU interrupt flag will be set to interrupts
disabled state from the time the interrupt is raised until the interrupt handler is called. In other words,
as soon as an interrupt is raised, the state goes to multiple interrupts disabled, and this state remains
when the interrupt handler is called. If multiple interrupts are enabled, the interrupt handler must
include processing that enables interrupts by manipulating the CPU interrupt flag.
Also in the case of the TA HLNG attribute, upon entry into the interrupt handler, system call issuing
must be possible. Note, however, that assuming standard provision of the functionality described above,
extensions are allowable such as adding a function for entering an interrupt handler with multiple
interrupts enabled.
When the TA ASM attribute is specified, the state upon entry into the interrupt handler is defined for each
implementation. Such matters as the stack and register status upon interrupt handler entry, whether
system calls can be made, the method of invoking system calls, and the method of returning from the
interrupt handler without OS intervention must all be defined explicitly.
In the case of the TA ASM attribute, depending on the implementation there may be cases where interrupt
handler execution is not considered to be a task-independent portion. In such a case the following points
need to be noted carefully.

• If interrupts are enabled, there is a possibility that task dispatching will occur.

• When a system call is invoked, it will be processed as having been called from a task portion or
quasi-task portion.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.8. INTERRUPT MANAGEMENT FUNCTIONS 189

If a method is provided for performing some kind of operation in an interrupt handler to have it detected
as task-independent portion, that method must be indicated for each implementation.
Whether the TA HLNG or TA ASM attribute is specified, upon entry into an interrupt handler, the logical
space at the time the interrupt occurred is retained. No processing takes place upon return from
the interrupt handler for restoring the logical space to its state at the time the interrupt was raised.
Switching logical spaces inside the interrupt handler is not prohibited, but the OS is not aware of the
effects of logical space switching.
Even if a system call is invoked from an interrupt handler and this causes the task in RUN state up to
that time to go to another state, with a different task going to RUN state, dispatching (task switching)
does not occur while the interrupt handler is running. Completion of execution by the interrupt handler
has precedence even if dispatching is necessary; only when the interrupt handler terminates does the
dispatch take place. In other words, a dispatch request occurring while an interrupt handler is running is
not processed immediately, but is delayed until the interrupt handler terminates. This is called delayed
dispatching.
An interrupt handler runs as a task-independent portion. As such, it is not possible to call in an
interrupt handler a system call that can enter WAIT state, or one that is intended for the invoking task.
When pk dint = NULL is set, a previously defined interrupt handler is canceled. When the handler for
an interrupt is canceled, the default handler defined by T-Monitor is used.
It is possible to redefine an interrupt handler for an interrupt number already having a defined handler.
It is not necessary first to cancel the definition for that number. Defining a new handler for a dintno
already having an interrupt handler defined does not return error.

[Additional Notes]

The various specifications governing the TA ASM attribute are mainly concerned with achieving an in-
terrupt hook. For example, when an exception is raised due to illegal address access, ordinarily an
interrupt handler defined in a higher-level program detects this and performs the error processing; but
in the case of debugging, in place of error processing by a higher-level program, a T-Monitor interrupt
handler does the processing and starts a debugger. In this case the interrupt handler defined by the
higher-level program hooks the T-Monitor interrupt handler. After that, depending on the situation,
either interrupt handling is passed off to T-Monitor or the other program does the processing on its
own.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

190 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk ret int
Return from Interrupt Handler

[C Language Interface]

void tk_ret_int () ;

• Although this system call is defined in the form of a C language interface, it will not be called in
this format if a high-level language support routine is used.

[Parameters]

None.

[Return Parameters]

• Does not return to the context issuing the system call.

[Error Codes]

• The following kind of error may be detected, but no return is made to the context issuing the
system call even if the error is detected. For this reason the error code cannot be passed directly
as a system call return parameter. The behavior if error is detected is implementation-dependent.

E CTX Context error (issued from other than an interrupt handler (implementation-dependent
error))

[Description]

Exits an interrupt handler.
System calls invoked from an interrupt handler do not result in dispatching while the handler is running;
instead, the dispatching is delayed until tk ret int is called ending the interrupt handler processing
(delayed dispatching). Accordingly, tk ret int results in the processing of all dispatch requests made
while the interrupt handler was running.
tk ret int is invoked only if the interrupt handler was defined specifying the TA ASM attribute. In the
case of a TA HLNG attribute interrupt handler, the functionality equivalent to tk ret int is executed
implicitly in the high-level language support routine, so tk ret int is not (must not be) called explicitly.
As a rule, the OS is not involved in the starting of a TA ASM attribute interrupt handler. When an
interrupt is raised, the defined interrupt handler is started directly by the CPU hardware interrupt
processing function. The saving and restoring of registers used by the interrupt handler must therefore
be taken care of in the interrupt handler.
For the same reason, the stack and register states at the time tk ret int is issued must be the same
as those at the time of entry into the interrupt handler. Because of this, in some cases function codes
cannot be used in tk ret int, in which case tk ret int can be implemented using a trap instruction
of another vector separate from that used for other system calls.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.8. INTERRUPT MANAGEMENT FUNCTIONS 191

[Additional Notes]

tk ret int is a system call that does not return to the context from which it was called. Even if an
error code is returned when an error of some kind is detected, normally no error checking is performed
in the context from which the system call was invoked, leaving the possibility that the program will
hang. For this reason these system calls do not return even if error is detected.
Using an assembly-language return (REIT) instruction instead of tk ret int to exit the interrupt handler
is possible if it is clear no dispatching will take place on return from the handler (the same task is
guaranteed to continue executing), or if there is no need for dispatching to take place.
Depending on the CPU architecture and method of configuring the OS, it may be possible to perform
delayed dispatching even when an interrupt handler exits using an assembly-language REIT instruction.
In such cases it is allowable for the assembly-language REIT instruction to be interpreted as if it were a
tk ret int system call.
Performing of E CTX error checking when tk ret int is called from a time event handler is implementation-
dependent. Depending on the implementation, control may return from a different type of handler.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

192 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.9 System Management Functions

System management functions are functions for changing and referencing system states. Functions are
provided for rotating task precedence in a queue, getting the ID of the task in RUN state, disabling
and enabling task dispatching, referencing context and system states, setting low-power mode, and
referencing the T-Kernel version.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.9. SYSTEM MANAGEMENT FUNCTIONS 193

tk rot rdq
Rotate Ready Queue

[C Language Interface]

ER ercd = tk_rot_rdq (PRI tskpri) ;

[Parameters]

PRI tskpri Task priority

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E PAR Parameter error (tskpri is invalid)

[Description]

Rotates the precedence among tasks having the priority specified in tskpri.
This system call changes the precedence of tasks in RUN or READY state having the specified priority,
so that the task with the highest precedence among those tasks is given the lowest precedence.
By setting tskpri = TPRI RUN = 0, this system call rotates the precedence of tasks having the priority
level of the task currently in RUN state. When tk rot rdq is called from an ordinary task, it rotates the
precedence of tasks having the same priority as the invoking task. When calling from a cyclic handler
or other task-independent portion, it is also possible to call tk rot rdq (tskpri = TPRI RUN).

[Additional Notes]

If there are no tasks in a run state having the specified priority, or only one such task, the system call
completes normally with no operation (no error code is returned).
When this system call is issued in dispatch enabled state, specifying as the priority either TPRI RUN or
the current priority of the invoking task, the precedence of the invoking task will be the lowest among
tasks of the same priority. In this way the system call can be used to relinquish execution privilege.
In dispatch disabled state, the task with highest precedence among tasks of the same priority is not
always the currently executing task. The precedence of the invoking task will therefore not always
become the lowest among tasks having the same priority when the above method is used in dispatch
disabled state.
Examples of tk rot rdq execution are given in Figure 4.9 and Figure 4.10. When this system call is
issued in the state shown in Figure 4.9 specifying tskpri = 2, the new precedence order becomes that
in Figure 4.10, and Task C becomes the executing task.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

194 CHAPTER 4. T-KERNEL/OS FUNCTIONS

-

-
?
6

3

2

1

Low

High

priority

[Task E]

[Task B] [Task C] [Task D]- -

Figure 4.9: Precedence Before Issuing tk rot rdq

-

-
?
6

3

2

1

Low

High

priority

[Task E]

[Task C] [Task D] [Task B]- -

• Task C executes next.

Figure 4.10: Precedence After Issuing tk rot rdq (tskpri = 2)

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.9. SYSTEM MANAGEMENT FUNCTIONS 195

tk get tid
Get Task Identifier

[C Language Interface]

ID tskid = tk_get_tid () ;

[Parameters]

None

[Return Parameters]

ID tskid ID of the task in RUN state

[Error Codes]

None

[Description]

Gets the ID number of the task currently in RUN state. Unless the task-independent portion is executing,
the current RUN state task will be the invoking task.
If there is no task currently in RUN state, 0 is returned.

[Additional Notes]

The task ID returned by tk get tid is identical to runtskid returned by tk ref sys.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

196 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk dis dsp
Disable Dispatch

[C Language Interface]

ER ercd = tk_dis_dsp () ;

[Parameters]

None

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E CTX Context error (issued from task-independent portion)

[Description]

Disables task dispatching. Dispatch disabled state remains in effect until tk ena dsp is called enabling
task dispatching. While dispatching is disabled, the invoking task does not change from RUN state to
READY state or to WAIT state. External interrupts, however, are still enabled, so even in dispatch
disabled state an interrupt handler can be started. In dispatch disabled state, the running task can be
preempted by an interrupt handler, but not by another task.
The specific operations during dispatch disabled state are as follows.

• Even if a system call issued from an interrupt handler or by the task that called tk dis dsp results
in a task going to READY state with a higher priority than the task that called tk dis dsp, that
task will not be dispatched. Dispatching of the higher-priority task is delayed until dispatch
disabled state ends.

• If the task that called tk dis dsp issues a system call that may cause the invoking task to be put
in WAIT state (e.g., tk slp tsk or tk wai sem), error code E CTX is returned.

• When system status is referenced by tk ref sys, TSS DDSP is returned in sysstat.

If tk dis dsp is called for a task already in dispatch disabled state, that state continues with no error
code returned. No matter how many times tk dis dsp is called, calling tk ena dsp just one time
is enough to enable dispatching again. The operation when the pair of system calls tk dis dsp and
tk ena dsp are nested must therefore be managed by the user as necessary.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.9. SYSTEM MANAGEMENT FUNCTIONS 197

[Additional Notes]

A task in RUN state cannot go to DORMANT state or NON-EXISTENT state while dispatching is
disabled. If tk ext tsk or tk exd tsk is called for a task in RUN state while interrupts or dispatching
is disabled, error code E CTX is detected. Since, however, tk ext tsk and tk exd tsk are system calls
that do not return to their original context, such errors are not passed in return parameters by these
system calls.
Use of dispatch disabled state for mutual exclusion control among tasks is possible only if the system
does not have a multiprocessor configuration.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

198 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk ena dsp
Enable Dispatch

[C Language Interface]

ER ercd = tk_ena_dsp () ;

[Parameters]

None

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E CTX Context error (issued from task-independent portion)

[Description]

Enables task dispatching.
This system call cancels the disabling of dispatching by the tk dis dsp system call.
If tk ena dsp is called for a task not in dispatch disabled state, the dispatch enabled state continues
and no error code is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.9. SYSTEM MANAGEMENT FUNCTIONS 199

tk ref sys
Reference System Status

[C Language Interface]

ER ercd = tk_ref_sys (T_RSYS *pk_rsys) ;

[Parameters]

T RSYS* pk rsys Address of packet for returning status information

[Return Parameters]

ER ercd Error code

pk rsys detail:

INT sysstat System status
ID runtskid ID of task currently in RUN state
ID schedtskid ID of task scheduled to run next

(Other implementation-dependent parameters may be added beyond this point.)

[Error Codes]

E OK Normal completion
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

Gets the current system execution status, passing in return parameters such information as the dispatch
disabled state and whether a task-independent portion is executing.
The following values are returned in sysstat.

sysstat := (TSS_TSK | [TSS_DDSP] | [TSS_DINT])
|| (TSS_QTSK | [TSS_DDSP] | [TSS_DINT])
|| (TSS_INDP)

TSS TSK Task portion executing
TSS DDSP Dispatch disabled
TSS DINT Interrupts disabled
TSS INDP Task-independent portion executing
TSS QTSK Quasi-task portion executing

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

200 CHAPTER 4. T-KERNEL/OS FUNCTIONS

#define TSS_TSK 0 /* Task portion executing */
#define TSS_DDSP 1 /* Dispatch disabled */
#define TSS_DINT 2 /* Interrupts disabled */
#define TSS_INDP 4 /* Task-independent portion executing */
#define TSS_QTSK 8 /* Quasi-task portion executing */

The ID of the task currently in RUN state is returned in runtskid, while schedtskid indicates the
ID of the next task scheduled to go to RUN state. Normally runtskid = schedtskid, but this is not
necessarily true if, for example, a higher-priority task was wakened during dispatch disabled state. If
there is no such task, 0 is returned.
It must be possible to invoke this system call from an interrupt handler or time event handler.

[Additional Notes]

Depending on the OS implementation, the information returned by tk ref sys is not necessarily guar-
anteed to be accurate at all times.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.9. SYSTEM MANAGEMENT FUNCTIONS 201

tk set pow
Set Power Mode

[C Language Interface]

ER ercd = tk_set_pow (UINT powmode) ;

[Parameters]

UINT powmod Low-power mode

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E PAR Parameter error (value that cannot be used in powmode)
E QOVR Low-power mode disable count overflow
E OBJ TPW ENALOWPOW was requested with low-power mode disable count at 0

[Description]

The following two power-saving functions are supported.

• Switching to low-power mode when the system is idle
When there are no tasks to be executed, the system switches to a low-power mode provided in
hardware. Low-power mode is a function for reducing power use during very short intervals, such
as from one timer interrupt to the next. This is accomplished, for example, by lowering the CPU
clock frequency. It does not require complicated mode-switching in software but is implemented
mainly using hardware functionality.

• Automatic power-off
When the operator performs no operations for a certain length of time, the system automatically
cuts the power and goes to suspended state. If there is a start request (interrupt, etc.) from a
peripheral device or if the operator turns on the power, the system resumes from the state when
the power was cut. In the case of a power supply problem such as low battery, the system likewise
cuts the power and goes to suspended state.

In suspended state, the power is cut to peripheral devices and circuits as well as to the CPU, but
the main memory contents are retained.

tk set pow sets the low-power mode.

powmode:= (TPW_DOSUSPEND || TPW_DISLOWPOW || TPW_ENALOWPOW)

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

202 CHAPTER 4. T-KERNEL/OS FUNCTIONS

TPW DOSUSPEND Suspended state
TPW DISLOWPOW Switching to low-power mode disabled
TPW ENALOWPOW Switching to low-power mode enabled (default)

#define TPW_DOSUSPEND 1 Suspended state
#define TPW_DISLOWPOW 2 Switching to low-power mode disabled
#define TPW_ENALOWPOW 3 Switching to low-power mode enabled (default)

• TPW DOSUSPEND
Execution of all tasks and handlers is stopped, peripheral circuits (timers, interrupt controllers,
etc.) are stopped, and the power is cut (suspended). (off pow is called.)

When power is turned back on, peripheral circuits are restarted, execution of all tasks and handlers
is resumed, operations resume from the point before power was cut, and the system call returns.

If for some reason the resume processing fails, normal startup processing (for reset) is performed
and the system boots fresh.

• TPW DISLOWPOW
Switching to low-power mode in the dispatcher is disabled. (low pow is not called.)

• TPW ENALOWPOW
Switching to low-power mode in the dispatcher is enabled. (low pow is called). The default at
system startup is low-power mode enabled (TPW ENALOWPOW).

Each time TPW DISLOWPOW is specified, the request count is taken. Low-power mode is enabled only
when TPW ENALOWPOW is requested for as many times as TPW DISLOWPOW was requested. The maximum
request count is implementation-dependent, but a count of at least 255 times must be possible.

[Additional Notes]

off pow and low pow are T-Kernel/SM functions. See 5.6 for details.
T-Kernel does not detect power supply problems or other factors for suspending the system. Actual
suspension requires suspend processing in each of the peripheral devices (device drivers). The system is
suspended not by calling tk set pow directly but by use of the T-Kernel/SM suspend function.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.9. SYSTEM MANAGEMENT FUNCTIONS 203

tk ref ver
Reference Version Information

[C Language Interface]

ER ercd = tk_ref_ver (T_RVER *pk_rver) ;

[Parameters]

T RVER* pk rver Start address of version information packet

[Return Parameters]

ER ercd Error code

pk rver detail:

UH maker T-Kernel maker code
UH prid T-Kernel ID
UH spver Specification version
UH prver T-Kernel version
UH prno[4] T-Kernel products management information

[Error Codes]

E OK Normal completion
E PAR Parameter error (the return parameter packet address cannot be used)

[Description]

Gets information about the T-Kernel version in use, returning that information in the packet specified
in pk rver. The following information can be obtained.
maker is the maker code of the T-Kernel implementing vendor. The maker field has the format shown
in Figure 4.11.

maker

[maker]

Figure 4.11: maker Field Format

prid is a number indicating the T-Kernel type. The prid format is shown in Figure 4.12.
Assignment of values to prid is left up to the vendor implementing T-Kernel. Note, however, that this
is the only number distinguishing product types, and that vendors should give careful thought to how

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

204 CHAPTER 4. T-KERNEL/OS FUNCTIONS

they assign these numbers, doing so in a systematic way. In that way the combination of maker code
and prid becomes a unique identifier of the T-Kernel type.

prid

[prid]

Figure 4.12: prid Field Format

The upper 4 bits of spver give the TRON specification series. The low 12 bits indicate the T-Kernel
specification version implemented. The format of spver is shown in Figure 4.13.
If, for example, a product conforms to the T-Kernel specification Ver 1.02.xx, spver is as follows.

MAGIC = 0x7 (T-Kernel)
SpecVerS = 0x102 (Ver 1.02)
spver = 0x7102

If a product implements the T-Kernel specification draft version Ver 1.B0.xx, spver is as follows.

MAGIC = 0x7 (T-Kernel)
SpecVerS = 0x1B0 (Ver 1.B0)
spver = 0x71B0

MAGIC SpecVer

[spver]

MAGIC: A number identifying the TRON specification series

0x0 TRON common (TAD, etc.)

0x1 ITRON1, ITRON2

0x2 BTRON

0x3 CTRON

0x4 reserved

0x5 µITRON

0x6 µBTRON

0x7 T-Kernel

SpecVer: The version of the TRON specification on which the product is based. This is given as a
three-digit packed-format BCD code. In the case of a draft version, the letter A, B, or C may
appear in the second digit. In this case the corresponding hexadecimal form of A, B, or C is
inserted.

Figure 4.13: spver Field Format

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.9. SYSTEM MANAGEMENT FUNCTIONS 205

prver is the version number of the T-Kernel implementation. The specific values assigned to prver are
left to the T-Kernel implementing vendor to decide.
prno is a return parameter for use in indicating T-Kernel product management information, product
number or the like. The specific meaning of values set in prno is left to the T-Kernel implementing
vendor to decide.

[Additional Notes]

The format of the packet and structure members for getting version information is mostly uniform across
the various TRON specifications, but the CPU information and variation descriptors are not specified.
The value obtained by tk ref ver in SpecVer is the first three digits of the specification version number.
The numbers after that indicate minor revisions such as those issued to correct misprints and the like,
and are not obtained by tk ref ver. For the purpose of matching to the specification contents, the first
three numbers of the specification version are sufficient.
An OS implementing a draft version may have A, B, or C as the second number of SpecVer. It must
be noted that in such cases the specification order of release may not correspond exactly to higher and
lower SpecVer values. For example, specifications may be released in the following order:

Ver 1.A1 → Ver 1.A2 → Ver 1.B1 → Ver 1.C1 → Ver 1.00 → Ver 1.01 → · · ·

In this example, when going from Ver 1.Cx to Ver 1.00, SpecVer goes from a higher to a lower value.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

206 CHAPTER 4. T-KERNEL/OS FUNCTIONS

4.10 Subsystem Management Functions

Subsystems consist of extended SVC handlers, break functions, startup functions, cleanup functions,
event functions, and resource control blocks. SVC handlers (Figure4.14).
An extended SVC handler accepts requests from applications and other programs as an application
programming interface (API) for a subsystem.
A break function, a startup function, a cleanup function, and an event function accept requests from
OS.

T-Kernel

Subsystem

Extended SVC

Startup Cleanup Break Event

↑ ↑ ↑ ↑

Resource
control

block #1

Resource
control

block #2
· · ·

↓
Applications/Subsystems/Device Drivers/Other

Figure 4.14: T-Kernel Subsystems

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.10. SUBSYSTEM MANAGEMENT FUNCTIONS 207

tk def ssy
Define Subsystem

[C Language Interface]

ER ercd = tk_def_ssy (ID ssid, T_DSSY *pk_dssy) ;

[Parameters]

ID ssid Subsystem ID
T DSSY* pk dssy Subsystem definition information

pk dssy detail:

ATR ssyatr Subsystem attributes
PRI ssypri Subsystem priority
FP svchdr Extended SVC handler address
FP breakfn Break function address
FP startupfn Startup function address
FP cleanupfn Cleanup function address
FP eventfn Event handling function address
INT resblksz Resource control block size (in bytes)

(Other implementation-dependent parameters may be added beyond this point.)

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (ssid is invalid or cannot be used)
E NOMEM Insufficient memory (memory for control block cannot be allocated)
E RSATR Reserved attribute (svcatr is invalid or cannot be used)
E PAR Parameter error (pk dssy is invalid or cannot be used)
E OBJ ssid is already defined (when pk dssy 6= NULL)
E NOEXS ssid is not defined(when pk dssy = NULL)

[Description]

Defines subsystem ssid.
One subsystem ID must be assigned to one subsystem without overlapping with other subsystems. The
OS does not have a function for assigning these automatically.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

208 CHAPTER 4. T-KERNEL/OS FUNCTIONS

Subsystem IDs 1 to 9 are reserved for T-Kernel use. 10 to 255 are numbers used by middleware, etc.
The maximum usable subsystem ID value is implementation-dependent and may be lower than 255 in
some implementations.
ssyatr indicates system attributes in its low bits and implementation-dependent attributes in the high
bits. The system attributes in ssyatr are not assigned in this version, and no system attributes are
used.
ssypri indicates the subsystem priority. The startup function, cleanup function, and event handling
function are called in order of priority. The order of calling when priority is the same is undefined.
Subsystem priority 1 is the highest priority, with larger numbers indicating lower priorities. The range
of priorities that can be specified is implementation-dependent, but it must be possible to assign at least
priorities 1 to 16.
NULL can be specified in breakfn, startupfn, cleanupfn, and eventfn, in which case the correspond-
ing function will not be called.
Specifying pk dssy = NULL deletes a subsystem definition. The ssid subsystem resource control block
will also be deleted.

• Resource control block

The resource control block defines groups of resources and manages them by their attributes and
other factors. Each resource group is allocated its own memory space of the size specified in
resblksz. If resblksz = 0 is specified, no resource control block is allocated; but a resource ID
(see tk cre res) is assigned even in this case.

Each task belongs to one resource group or another. When a task makes a request to a subsystem
and resources are allocated to that task in the subsystem, the allocation information is stored
in the resource control block. The subsystem decides what kinds of resources to register in the
resource control block and how they are to be registered.

The OS is not involved in the contents of the resource control block; it can be used freely by the
subsystem. The size specified in resblksz should, however, be as small as possible. If a larger
memory block is needed, the subsystem must allocate that memory on its own and register its
address in the resource control block.

A resource control block is resident memory located in shared (system) space.

• Extended SVC handler

An extended SVC handler accepts requests from applications and other programs as an application
programming interface (API) for a subsystem. It can be called in the same way as an ordinary
system call, and is normally invoked using a trap instruction or the like.

The format of an extended SVC handler is as follows.

INT svchdr(VP pk_para, FN fncd)
{

/*
Branching by fncd
*/

return retcode; /* exit extended SVC handler */
}

fncd is a function code. The low 8 bits of the instruction code are the subsystem ID. The remaining
high bits can be used in any way by the subsystem. Ordinarily they are used as a function code

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.10. SUBSYSTEM MANAGEMENT FUNCTIONS 209

inside the subsystem. A function code must be a positive value, so the most significant bit is
always 0.

pk para points to a packet of parameters passed to this system call. The packet format can be
decided by the subsystem. Generally a format like the stack passed to a C language function is
used, which in many cases is the same format as a C language structure.

The return code passed by an extended SVC handler is passed to the caller transparently as the
function return code. As a rule, negative values are error codes and 0 or positive values are the
return code for normal completion. If an extended SVC call fails for some reason, OS error code
(negative value) is returned to the caller without invoking the extended SVC handler, so it is best
to avoid confusion with these values.

The format by which an extended SVC is called is dependent on the OS implementation. As a
subsystem API, however, it must be specified in a C language function format independent of the
OS implementation. The subsystem must provide an interface library for converting from the C
language function format to the OS-dependent extended SVC calling format.

An extended SVC handler runs as a quasi-task portion. It can be called from a task-independent
portion, and in this case the extended SVC handler also runs as a task-independent portion.

• Break function

A break function is a function called when a task exception is raised for a task while an extended
SVC handler is executing.

When a break function is called, the processing by the extended SVC handler running at the time
the task exception was raised must be stopped promptly and control must be returned from the
extended SVC handler to its caller. The processing for stopping the processing by the currently
running extended SVC handler is called a break function.

The format of a break function is as follows.

void breakfn(ID tskid)
{

/*
Stop the running extended SVC handler

*/
}

tskid is the ID of the task where the task exception was raised.

A break function is called when a task exception is raised by tk ras tex. If extended SVC handler
calls are nested, then when return is made from an extended SVC handler and the nesting level
drops by 1, the extended SVC handler corresponding to the return destination is the one called.

A break function is called one time only for one extended SVC handler per one task exception.

If another nested extended SVC call is made while a task exception is raised, no break function is
called for the called extended SVC handler.

A break function runs as a quasi-task portion. Its task context is either that of the task that
called tk ras tex or that of the task where the task exception was raised (the task running an
extended SVC handler). In the former case, the break function runs when tk ras tex is called,
while in the latter case the break function runs when extended SVC nesting is reduced by one
level. This means it is possible that the task executing the break function will be different from the
task executing the extended SVC handler. In such a case the break function and extended SVC
handler run concurrently as controlled by task scheduling. It is thus conceivable that the extended

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

210 CHAPTER 4. T-KERNEL/OS FUNCTIONS

SVC handler will return to its caller before the break function finished executing, but in that
case the extended SVC handler waits at the point right before returning, until the break function
completes. How this wait state maps to the task state transitions is implementation-dependent,
but preferably it should remain in READY state (a READY state that does not go to RUN state).
The precedence of a task may change while it is waiting for a break function to complete, but
how task precedence is treated is implementation-dependent. Similarly, an extended SVC handler
cannot call an extended SVC until break function execution completes. In other words, during
the time from the raising of a task interrupt until the break function completes, the affected task
must stay in the extended SVC handler that was executing at the time of the task exception.

If a break function and extended SVC handler run in different task contexts and the break function
task priority is lower than the extended SVC handler task priority, the task priority of the break
function is raised to the same priority as the extended SVC handler task only during the time
while the break handler is executing. On the other hand, if the break function task priority is
the same as or higher than that of the extended SVC handler, the priority does not change. The
priority that gets changed is the current priority; the base priority stays the same. The change
in priority occurs only right before entry into the break function; any changes after that in the
extended SVC handler task priority are not followed up by further changes in priority of the break
function task. In no case does a change in the break function priority while a break function is
running result in a priority change in the extended SVC handler task. At the same time there is
no restriction on priority changes because a break function is running. When the break function
completes, the current priority of its task reverts to base priority. If a mutex was locked, however,
the priority reverts to that as adjusted by the mutex. (In other words, the ability is provided to
adjust the current priority at the entry and exit of the break function only; other than that, the
priority is the same as when an ordinary task is running.)

• Startup function

A startup function is called by issuing the tk sta ssy system call. It performs resource control
block initialization processing.

The format of a startup function is as follows.

void startupfn(ID resid, INT info)
{

/*
Resource control block initialization processing

*/
}

resid is the ID of the resource group to be initialized, and info is a parameter that can be used
in any way. Both are passed to tk sta ssy.

Even if initialization of the resource control block fails for some reason, the startup function must
be terminated normally. If the resource control block could not be initialized, then when an API
(extended SVC) that cannot be executed normally as a result is called, error is passed in the return
code of that API.

A startup function runs as a quasi-task portion in the context of the task that called tk sta ssy.

• Cleanup function

A cleanup function is called by issuing the tk cln ssy system call, and performs resource release
processing.

The format of a cleanup function is as follows.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.10. SUBSYSTEM MANAGEMENT FUNCTIONS 211

void cleanupfn(ID resid, INT info)
{

/*
Resource release processing

*/
}

resid is the ID of the resource group subject to resource release, while info is a parameter that
can be used freely. Both are parameters passed to tk cln ssy.

Even if resource release fails for some reason, the cleanup function must be terminated normally.
The error handling, such as logging of errors, can be decided for each subsystem.

After the cleanup function completes its processing, the resource control block is automatically
cleared to 0. If no cleanup function was defined (cleanupfn = NULL), the tk cln ssy system call
clears the resource control block to 0.

A cleanup function runs as a quasi-task portion in the context of the task that called tk cln ssy.

• Event handling function

An event handling function is called by issuing the tk evt ssy system call. It processes various
requests made to a subsystem. Note that it does not carry the obligation to process all requests
for all subsystems. If processing is not required, it can simply return E OK without performing any
operation.

The format of an event handling function is as follows.

ER eventfn(INT evttyp, ID resid, INT info)
{

/*
Event processing

*/
return ercd;

}

evttyp indicates the request type, resid gives the ID of the resource group, and info is a parameter
that can be used freely. All these parameters are passed to tk evt ssy. If the system call is not
invoked for any particular resource group, resid can be set to 0.

If processing completes normally, E OK is passed in the return code; otherwise an error code
(negative value) is returned.

The following event types evttyp are defined. See 5.3 for details.

#define TSEVT_SUSPEND_BEGIN 1 /* before suspending device */
#define TSEVT_SUSPEND_DONE 2 /* after suspending device */
#define TSEVT_RESUME_BEGIN 3 /* before resuming device */
#define TSEVT_RESUME_DONE 4 /* after resuming device */
#define TSEVT_DEVICE_REGIST 5 /* device registration notice */
#define TSEVT_DEVICE_DELETE 6 /* device deletion notice */

An event handling function runs as a quasi-task portion in the context of the task that called
tk evt ssy.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

212 CHAPTER 4. T-KERNEL/OS FUNCTIONS

[Additional Notes]

Extended SVC handlers as well as break functions, startup functions, cleanup functions and event
handling functions all have the equivalent of the TA HLNG attribute only. There is no means of specifying
the TA ASM attribute.
Prior to initialization of a resource control block by a startup function, and after resource release by a
cleanup function, the behavior if an extended SVC is called by a task belonging to that resource group
is dependent on the subsystem implementation. The OS does not make any attempt to prevent this
kind of call. Basically it is necessary to avoid calling an extended SVC before calling a startup function
and after calling a cleanup function.
There may be cases where, for some reason or other, a break function, cleanup function or event handling
function is called without first calling a startup function. These functions must execute normally even in
such a case. A resource control block is cleared to 0 when it is first created and when cleanup processing
is executed by tk cln ssy. Accordingly, even if it was not initialized properly by a startup function,
the resource control block can still be assumed to have been cleared to 0.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.10. SUBSYSTEM MANAGEMENT FUNCTIONS 213

tk sta ssy
tk cln ssy

Call Startup Function of Sub-System
Call Cleanup Function of Sub-System

[C Language Interface]

ER ercd = tk_sta_ssy (ID ssid, ID resid, INT info) ;
ER ercd = tk_cln_ssy (ID ssid, ID resid, INT info) ;

[Parameters]

ID ssid Subsystem ID
ID resid Resource ID
INT info Any parameter

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (ssid or resid is invalid or cannot be used)
E NOEXS Object does not exist (the subsystem specified in ssid is not defined)
E CTX Context error (issued from task-independent portion or in dispatch disabled state)

[Description]

Calls the startup function/cleanup function of the subsystem specified in ssid.
Specifying ssid = 0 makes the system call applicable to all currently defined subsystems. In this case
the startup/cleanup functions of each subsystem are called in sequence.

tk sta ssy: Calls in order starting from the highest subsystem priority.

tk cln ssy: Calls in order starting from the lowest subsystem priority.

The order among subsystems having the same priority is not defined.
If there are dependency relationships among different subsystems, the subsystem priority must therefore
be set with those relationships in mind. If, for example, subsystem B uses functions in subsystem A,
then the priority of subsystem A must be set higher than that of subsystem B.
Even if these system calls are issued for a subsystem with no startup function or cleanup function
defined, those functions are simply not called; no error results.
If during startup/cleanup function execution a task exception is raised for the task that called tk sta ssy
or tk cln ssy, the task exception is held until the startup/cleanup function completes its processing.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

214 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk evt ssy
Call Event Function of Sub-System

[C Language Interface]

ER ercd = tk_evt_ssy (ID ssid, INT evttyp, ID resid, INT info) ;

[Parameters]

ID ssid Subsystem ID
INT evttyp Event request type
ID resid Resource ID
INT info Any parameter

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (ssid, resid is invalid or cannot be used)
E NOEXS Object does not exist (the subsystem specified in ssid is not defined)
E CTX Context error (issued from task-independent portion or in dispatch disabled state)
Other Error code returned by the event handling function

[Description]

Calls the event handling function of the subsystem specified in ssid.
Specifying ssid = 0 makes the system call applicable to all currently defined subsystems. In this case
the event handling function of each subsystem is called in sequence.

When evttyp is an odd number: Calls in order starting from the highest subsystem priority.

When evttyp is an even number: Calls in order starting from the lowest subsystem priority.

The order among subsystems having the same priority is not defined.
If this system call is issued for a subsystem with no event handling function defined, the function is
simply not called; no error results.
If this system call is not invoked for any particular resource group, resid = 0 is specified.
If the event handling function returns an error, the error code is passed transparently in the system
call return code. When ssid = 0 and an event handler returns an error, the event handling functions
of all other subsystems continue to be called. In the system call return code, only one error code is
returned even if more than one event handling function returned an error. It is not possible to know
which subsystem’s event handling function returned the error.
If during event handling function execution a task exception is raised for the task that called tk evt ssy,
the task exception is held until the event handling function completes its processing.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.10. SUBSYSTEM MANAGEMENT FUNCTIONS 215

tk ref ssy
Reference Subsystem Status

[C Language Interface]

ER ercd = tk_ref_ssy (ID ssid, T_RSSY *pk_rssy) ;

[Parameters]

ID ssid Subsystem ID
T RSSY* pk rssy Subsystem definition information

[Return Parameters]

ER ercd Error code

pk rssy detail:

PRI ssypri Subsystem priority
INT resblksz Resource control block size (in bytes)

(Other implementation-dependent parameters may be added beyond this point.)

[Error Codes]

E OK Normal completion
E ID Invalid ID number (ssid is invalid or cannot be used)
E NOEXS Object does not exist (the subsystem specified in ssid is not defined)
E PAR Parameter error (pk rssy is invalid or cannot be used)

[Description]

References information about the status of the subsystem specified in ssid. resblksz returns the size
of the resource control block specified with tk def ssy. If the subsystem specified in ssid does not exist,
E NOEXS is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

216 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk cre res
Create Resource Group

[C Language Interface]

ID resid = tk_cre_res () ;

[Parameters]

None

[Return Parameters]

ID resid Resource ID
or Error Code

[Error Codes]

E OK Normal completion
E LIMIT Number of resource groups exceeds the system limit
E NOMEM Insufficient memory (memory for control block cannot be allocated)

[Description]

Creates a new resource group, assigning to it a resource control block and resource ID.
Resource IDs are assigned in common for the entire system. A separate resource control block is created
for each subsystem (see Figure 4.15).

ResBlk ResBlk ResBlk

ResBlk ResBlk ResBlk

ResBlk ResBlk ResBlk

Subsystem C

Subsystem B

Subsystem A

#1 #2 #3

Resource ID

Figure 4.15: Subsystems and Resource Groups

In some cases a new subsystem will be defined when a resource group is already created. Even in such
a case, it is necessary to create a resource control block of an already existing resource group for the
newly registered subsystem. In other words, there may be cases where resource control block creation
must be performed by tk def ssy. For example, if a new subsystem ID is defined in a situation like that

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.10. SUBSYSTEM MANAGEMENT FUNCTIONS 217

shown in Figure 4.15, resource control blocks with resource IDs #1, #2, and #3 must automatically be
created for the subsystem.

[Additional Notes]

A resource ID is in some cases used also as a logical space ID (lsid). Resource IDs should therefore be
assigned values that can be used directly as logical space IDs or that can easily be converted for use as
logical space IDs.
A system resource group always exists as a special resource group. One system resource group always
exists, moreover, from the time the system boots, without waiting for creation by tk cre res. The
system resource group cannot be deleted. Other than the requirement that it must always exist, a
system resource group is no different from other resource groups.
Resource control block creation might be implemented in either of the following ways.

(A) At the time of subsystem definition (tk def ssy), create as many resource control blocks as the
maximum number of resource groups, and use tk cre res simply to assign them.

(B) Use tk cre res to create as many resource control blocks as there are subsystems and assign
them.

Since the specification requires clearing a resource control block to 0 when it is initially created, the
timing of this clearing to 0 differs between methods (A) and (B). This difference should not have much of
an effect; but since method (A) will have fewer cases of clearing to 0, subsystems must be implemented
assuming (A). Method (A) is also recommended for the OS implementation.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

218 CHAPTER 4. T-KERNEL/OS FUNCTIONS

tk del res
Delete Resource Group

[C Language Interface]

ER ercd = tk_del_res (ID resid) ;

[Parameters]

ID resid Resource ID

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (resid is invalid or cannot be used)
E NOEXS Object does not exist (the resource specified in resid does not exist)

[Description]

Deletes the resource control blocks of the resource group specified in resid, and releases the resource
ID.
The resource control blocks of all subsystems are deleted.

[Additional Notes]

Resources are deleted even if there are still tasks belonging to a resource to be deleted. In principle,
resource deletion must be performed after exit and deletion of all tasks belonging to the resources. The
behavior is not guaranteed if a resource is deleted while a task belonging to that resource remains and
is calling a subsystem (extended SVC). Likewise, the behavior is not guaranteed if a task belonging to
a deleted resource calls a subsystem (extended SVC).
The timing for actual resource control block deletion is implementation-dependent. (See tk cre res.)
The system resource group cannot be deleted (error code E ID is returned).

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

4.10. SUBSYSTEM MANAGEMENT FUNCTIONS 219

tk get res
Get Resource Management Block

[C Language Interface]

ER ercd = tk_get_res (ID resid, ID ssid, VP *p_resblk) ;

[Parameters]

ID resid Resource ID
ID ssid Subsystem ID

[Return Parameters]

VP resblk Resource control block
ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (resid or ssid is invalid or cannot be used)
E NOEXS Object does not exist (the resource specified in resid or ssid does not exist)
E PAR Parameter error (value that cannot be used in p resblk)

[Description]

Gets the address of the resource control block of resource group resid for subsystem ssid.

[Additional Notes]

E OK might be returned even if this system call is issued for a deleted resource ID. Whether or not error
(E NOEXS) is returned in this case is implementation-dependent.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

220 CHAPTER 4. T-KERNEL/OS FUNCTIONS

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

Chapter 5

T-Kernel/SM Functions

Details of the functions provided by T-Kernel System Manager (T-Kernel/SM) are described in this
chapter.

Overall notice and supplement

• In principle, functions whose name are tk — is extended SVC, others are library functions (in-
cluding in-line functions) or macros of the C language.

• Some libraries and macros call some extended SVC or system calls indirectly.

• Error codes such as E PAR, E MACV, and E NOMEM that always have the possibility of occurring are
not described here unless there is some special reason for doing so.

• Except where otherwise noted, extended SVC and libraries of T-Kernel/SM can not be called from
a task-independent portion and while dispatching and interrupts are disabled. There may be some
limitations, however, imposed by particular implementations (E CTX) .

• Extended SVC and libraries of T-Kernel/SM can not be invoked from a lower protection level
than that at which T-Kernel/OS system calls can be invoked (lower than TSVCLimit)(E OACV).

• Extended SVC and libraries of T-Kernel/SM are reentrant except that the special explanation is
given. But some functions make exclusive control internally.

• Detection of error codes E PAR, E MACV, and E CTX is implementation-dependent; these may not
always be detected as error. For this reason, the service calls must not be invoked in such a way
that these errors might occur.

221

TEF020-S001-01.00.01/en

222 CHAPTER 5. T-KERNEL/SM FUNCTIONS

5.1 System Memory Management Functions

System memory management functions manage all the memory allocated dynamically by T-Kernel
(system memory). This includes memory used internally by T-Kernel as well as task stacks, message
buffers, and memory pools.
System memory is managed in memory block units. The block size is normally the page size defined for
the MMU. A system that does not use an MMU can set any desired block size, but a size in the range
of around 1 KB to 4 KB is recommended. Block size can be learned by calling tk ref smb.
System memory is allocated in the system space. T-Kernel does not manage task space memory.
System memory management functions are called as extended SVC. They are for use not only in T-
Kernel but also in applications, subsystems and device drivers. In the case of T-Kernel internal use, the
calling of these functions without going through extended SVC calls is an implementation-dependent
option.

5.1.1 System Memory Allocation

• ER tk_get_smb(VP *addr, INT nblk, UINT attr)

Allocates a memory space of a size accommodating the number of contiguous memory blocks
specified in nblk, and having the attributes specified in attr. The start address of the allocated
memory space is returned in addr.

attr := (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3) | [TA_NORESIDENT]

#define TA_NORESIDENT 0x00000010 /* nonresident */
#define TA_RNG0 0x00000000 /* protection level 0 */
#define TA_RNG1 0x00000100 /* protection level 1 */
#define TA_RNG2 0x00000200 /* protection level 2 */
#define TA_RNG3 0x00000300 /* protection level 3 */

The acquired memory does not belong to a resource group. If memory could not be allocated,
E NOMEM is returned.

• ER tk_rel_smb(VP addr)

Releases the memory specified by the start address addr. addr must be the address obtained by
tk get smb.

• ER tk_ref_smb(T_RSMB *pk_rsmb)

Gets information about system memory.

typedef struct t_rsmb {
INT blksz; /* block size (in bytes) */
INT total; /* total block count */
INT free; /* remaining free block count */
/* Implementation-dependent information may be added beyond this point.*/

} T_RSMB;

When virtual memory is used, there may be cases where the total block and remaining free
block counts cannot be decided unequivocally. In such cases the contents of total and free are
implementation-dependent, but preferably they should be values such that free ÷ total gives a
useful estimate of the remaining memory capacity.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.1. SYSTEM MEMORY MANAGEMENT FUNCTIONS 223

5.1.2 Memory Allocation Libraries

Since system memory is allocated in block units, libraries are provided for dividing up those blocks for
use.

• void* Vmalloc(size_t size)

• void* Vcalloc(size_t nmemb, size_t size)

• void* Vrealloc(void *ptr, size_t size)

• void Vfree(void *ptr)

• void* Kmalloc(size_t size)

• void* Kcalloc(size_t nmemb, size_t size)

• void* Krealloc(void *ptr, size_t size)

• void Kfree(void *ptr)

The functions are equivalent to the standard C libraries malloc, calloc, realloc, free and so
on. V— means the function is for nonresident memory and K— for resident memory; in both cases
the memory is assigned to the TSVCLimit protection level.

These functions cannot be called from a task-independent portion or while dispatching or interrupts
are disabled. The behavior if they are called in those situations is undefined. (System failure is a
possibility.)

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

224 CHAPTER 5. T-KERNEL/SM FUNCTIONS

5.2 Address Space Management Functions

Memory access privilege is held as access privilege information for each task. Essentially access privilege
information indicates the right to access at the protection level immediately before an extended SVC is
called. If, for example, a task is running at protection level 3 when it calls an extended SVC, its access
privilege information indicates the right to access at protection level 3. Since the protection level when
an extended SVC is executing is protection level 0, in the case of nested calling of an extended SVC
from another extended SVC, access privilege information in the extended SVC for which a nested call
was made indicates the right to access at protection level 0.
Memory access privilege information is set as follows.

• Immediately after a task is started, its access privilege is that specified when the task was created.

• When an extended SVC is called, the access privilege at the protection level at which it was
running at the time of the call is set.

• Upon return from the extended SVC, the access privilege reverts to that at the time the extended
SVC was called.

• Executing SetTaskSpace() copies the current access privilege of the target task to the invoking
task.

5.2.1 Address Space Configuration

• ER SetTaskSpace(ID tskid)

Assigns to the invoking task the task space and access privilege information of the task specified
in tskid. As a result, both the invoking task and target task have the same task space and access
privilege information.

Note that this copying of task space information applies only at the time the function is called; if
thereafter the task specified in tskid switches to a different address space and its access privilege
changes, the invoking task is not affected by those changes (its address space and access privilege
do not change accordingly). If the invoking task is calling an extended SVC, on return from the
extended SVC its access privilege reverts to that prior to calling the extended SVC. Its task space,
however, does not revert.

The task ID of the invoking task cannot be specified in tskid. However, if TSK SELF is used to
specify the invoking task, access privilege is set to the currently running protection level; task
space is not switched in this case.

E ID tskid is invalid
E NOEXS Object does not exist (the task specified in tskid does not exist)
E OBJ Invoking task specified by other than TSK SELF

5.2.2 Address Space Checking

The following functions check whether access is allowed to the specified memory space, based on the
current access privilege information. If access cannot be made (no privilege or the memory does not
exist), they return error code E MACV.

—R Check for read access privilege.
—RW Check for read and write access privilege.
—RE Check for read and execute access privilege.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.2. ADDRESS SPACE MANAGEMENT FUNCTIONS 225

• ER ChkSpaceR(VP addr, INT len)

• ER ChkSpaceRW(VP addr, INT len)

• ER ChkSpaceRE(VP addr, INT len)

Checks access privilege to the memory space of len bytes from location addr.

• INT ChkSpaceBstrR(UB *str, INT max)

• INT ChkSpaceBstrRW(UB *str, INT max)

Checks access privilege to the memory space from str up to the string termination (’\0’) or up
to the number of characters (bytes) specified in max, whichever comes first. If max = 0 is set, max
is ignored and privilege is checked up to the string termination.

If access is allowed, the length of the string (in bytes) is returned. If the string termination occurred
up to the string length indicated in max, the length to the character before ’\0’ is returned; if max
characters occurred before the string termination, max is returned.

• INT ChkSpaceTstrR(TC *str, INT max)

• INT ChkSpaceTstrRW(TC *str, INT max)

typedef UH TC; /* TRON character code */

#define TNULL((TC)0) /* TRON code string termination */

Checks access privilege to the memory space from str up to the TRON Code string termination
(TNULL) or up to the number of characters (TC count) specified in max, whichever comes first. If
max = 0 is set, max is ignored and privilege is checked up to the string termination.

If access is allowed, the length of the string (TC count) is returned. If the string termination
occurred up to the string length indicated in max, the length to the character before TNULL is
returned; if max characters occurred before the string termination, max is returned.

str must be an even-numbered address.

5.2.3 Lock Address Space

Generally memory is made resident or nonresident a page at a time and is managed in page units. For
this reason, in many cases the OS does not check for matching of locked and unlocked spaces. It is the
responsibility of the calling side to make sure the same spaces are specified in lock and unlock operations.

• ER LockSpace(VP addr, INT len)

Locks (makes resident) the memory space of len bytes from location addr.

E MACV The memory does not exist

• ER UnlockSpace(VP addr, INT len)

Unlocks (makes nonresident) the memory space of len bytes from location addr. If the same space
was locked more than once, it is not unlocked until the number of unlock operations equals the
number of lock operations.

Note that it is not possible to unlock just part of a locked space.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

226 CHAPTER 5. T-KERNEL/SM FUNCTIONS

5.2.4 Get Physical Address

• INT CnvPhysicalAddr(VP vaddr, INT len, VP *paddr)

vaddr Local address
len Memory space size (in bytes)
paddr Returns physical address
return code Returns size (in bytes) of physical address contiguous space, or error

Gets the physical address corresponding to logical address vaddr, returning the result in paddr.
This function also passes in the return code the size of contiguous space included in len bytes
from vaddr. Accordingly, only the space of the size passed in the return code starting from paddr
is valid.

The space for which the physical address is obtained must be locked (made resident).

On the assumption of DMA transfer, memory caching is turned off for the space whose physical
address is obtained (the memory space starting from paddr of the size passed in the return code).
When the space is made nonresident (unlocked), caching goes back on.

If it is not possible to make memory cached off partly by a hardware limitation, this API flush
the cache memory (that is, write back it and make it disable).

E MACV The memory does not exist

5.2.5 Map Memory

• ER MapMemory(VP paddr, INT len, UINT attr, VP *laddr)

Maps len bytes area which starts from paddr in the physical address to logical area returning the
logical address in *laddr.

The logical address is not to be specified, automatically allocated.

If paddr = NULL is specified, some continuous memory in physical memory is automatically
allocated and mapped to logical area.

The mapped logical area has attributes specified with attr

attr := (MM_USER || MM_SYTEM) | [MM_READ] | [MM_WRITE] | [MM_EXECUTE] | [MM_CDIS]

MM USER User level access
MM SYSTEM System level access
MM READ Read access
MM WRITE Write access
MM EXECUTE Execution
MM CDIS Disable cache

These symbols differ from every machines. It requires these symbols to use. Some machines need
other attributes except for these show above.

E LIMIT Insufficient logical area for mapping
E NOMEM Insufficient memory

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.2. ADDRESS SPACE MANAGEMENT FUNCTIONS 227

• ER UnmapMemory(VP laddr)

Unmaps logical area which allocated by MapMemory().

The logical address allocated by MapMemory() must be set to laddr. If some memory is allocated
by MapMemory(), the memory is also unmapped.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

228 CHAPTER 5. T-KERNEL/SM FUNCTIONS

5.3 Device Management Functions

5.3.1 Basic Concepts

Logical Layer

Physical Layer

Interface Layer

Device Management Functions

Applications/Subsystems

↓ Device driver interface

↓ Application interface (Extended SVC)

↓

↑

↓

↑

Device Driver

T-Kernel/SM

Figure 5.1: Device Management Functions

(1) Device Name (UB* type)

A device name is a string of up to 8 characters consisting of the following elements.

#define L_DEVNM 8 /* Device name length */

Type Name indicating the device type
Characters a to z and A to Z can be used.

Unit One letter indicating a physical device
Each unit is assigned a letter from a to z in order starting from a.

Subunit One to three digits indicating a logical device
Each subunit is assigned a number from 0 to 254 in order starting from 0.

Device names take the format type + unit + subunit. Some devices may not have a unit or subunit, in
which case the corresponding field is omitted.
A name consisting of type + unit is called a physical device name. A name consisting of type + unit +
subunit may be called a logical device name to distinguish it from a physical device name. If there is
no subunit, the physical device name and logical device name are identical. The term “device name”
by itself means the logical device name.
A subunit generally refers to a partition on a hard disk, but can be used to mean other logical devices
as well.

Examples:

hda Hard disk (entire disk)
hda0 Hard disk (1st partition)
fda Floppy disk
rsa Serial port
kbpd Keyboard/pointing device

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.3. DEVICE MANAGEMENT FUNCTIONS 229

(2) Device ID (ID type)

By registering a device (device driver) with T-Kernel/SM, a device ID (> 0) is assigned to the device
(physical device name). Device IDs are assigned to each physical device. The device ID of a logical device
consists of the device ID assigned to the physical device to which is appended the subunit number + 1
(1 to 255).
devid: The device ID assigned at device registration

devid Physical device
devid + n + 1 The nth subunit (logical device)

Examples:

had devid Entire hard disk
hda0 devid + 1 1st partition of hard disk
hda1 devid + 2 2nd partition of hard disk

(3) Device Attribute (ATR type)

Device attributes are defined as follows, in order to classify devices by their properties.

IIII IIII IIII IIII PRxx xxxx KKKK KKKK

The high 16 bits are device-dependent attributes defined for each device.
The low 16 bits are standard attributes defined as follows.

#define TD_PROTECT 0x8000 /* P: write protection */
#define TD_REMOVABLE 0x4000 /* R: removable media */

#define TD_DEVKIND 0x00ff /* K: device/media kind */
#define TD_DEVTYPE 0x00f0 /* device type */

/* device type */
#define TDK_UNDEF 0x0000 /* undefined/unknown */
#define TDK_DISK 0x0010 /* disk device */

/* disk kind */
#define TDK_DISK_UNDEF 0x0010 /* miscellaneous disk */
#define TDK_DISK_RAM 0x0011 /* RAM disk (used as main memory) */
#define TDK_DISK_ROM 0x0012 /* ROM disk (used as main memory) */
#define TDK_DISK_FLA 0x0013 /* Flash ROM or other silicon disk */
#define TDK_DISK_FD 0x0014 /* floppy disk */
#define TDK_DISK_HD 0x0015 /* hard disk */
#define TDK_DISK_CDROM 0x0016 /* CD-ROM */

Currently no device types other than disks are defined. Other devices are assigned to undefined type
(TDK UNDEF). Note that device types are defined for the sake of distinguishing devices from the standpoint
of the user as necessary, such as when applications must change their processing based on the type of
device or media. Devices for which no such distinctions are necessary do not have to have a device type
assigned.
See the individual device driver specifications regarding device-dependent attributes.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

230 CHAPTER 5. T-KERNEL/SM FUNCTIONS

(4) Device Descriptor (ID type)

A device descriptor (> 0) is an identifier used for accessing a device, assigned by T-Kernel/SM when a
device is opened.
A device descriptor belongs to a resource group. Operations using a device descriptor can be performed
only by tasks belonging to the same resource group as the device descriptor. Error code (E OACV) is
returned for requests from tasks belonging to a different resource group.

(5) Request ID (ID type)

When an IO request is made to a device, a request ID (> 0) is assigned identifying the request. This
ID can be used to wait for IO completion.

(6) Data Number (INT type)

Device data is specified by a data number. Data is classified into device-specific data and attribute data
as follows.

Device-specific data: Data number ≥ 0

As device-specific data, the data numbers are defined separately for each device.

Examples

Disk Data number = physical block number
Serial port Data number = 0 only

Attribute data: Data number < 0

Attribute data specifies driver or device state acquisition and setting modes, and special functions,
etc.

Data numbers common to devices are defined, but device-dependent attribute data can also be
defined. Details are given later.

5.3.2 Application Interface

The functions below are provided as application interface functions, called as extended SVC. These
functions cannot be called from a task-independent portion or while dispatch or interrupts are disabled
(E CTX).

ID tk_opn_dev(UB *devnm, UINT omode)
ER tk_cls_dev(ID dd, UINT option)
ID tk_rea_dev(ID dd, INT start, VP buf, INT size, TMO tmout)
ER tk_srea_dev(ID dd, INT start, VP buf, INT size, INT *asize)
ID tk_wri_dev(ID dd, INT start, VP buf, INT size, TMO tmout)
ER tk_swri_dev(ID dd, INT start, VP buf, INT size, INT *asize)
ID tk_wai_dev(ID dd, ID reqid, INT *asize, ER *ioerr, TMO tmout)
INT tk_sus_dev(UINT mode)
INT tk_get_dev(ID devid, UB *devnm)
ID tk_ref_dev(UB *devnm, T_RDEV *rdev)
ID tk_oref_dev(ID dd, T_RDEV *rdev)
INT tk_lst_dev(T_LDEV *ldev, INT start, INT ndev)
INT tk_evt_dev(ID devid, INT evttyp, VP evtinf)

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.3. DEVICE MANAGEMENT FUNCTIONS 231

• ID tk_opn_dev(UB *devnm, UINT omode)

devnm Device name
omode Open mode
return code Device descriptor or error

Opens the device specified in devnm in the mode specified in omode, and prepares for device access.

The device descriptor is passed in the return code.

omode := (TD_READ || TD_WRITE || TD_UPDATE) | [TD_EXCL || TD_WEXCL]
| [TD_NOLOCK]

#define TD_READ 0x0001 /* read only */
#define TD_WRITE 0x0002 /* write only */
#define TD_UPDATE 0x0003 /* read/write */
#define TD_EXCL 0x0100 /* exclusive */
#define TD_WEXCL 0x0200 /* exclusive write */
#define TD_REXCL 0x0400 /* exclusive read */
#define TD_NOLOCK 0x1000 /* lock (making resident) not necessary */

TD READ Read only
TD WRITE Write only
TD UPDATE Sets read and write access mode.

When TD READ is set, tk wri dev() cannot be used.
When TD WRITE is set, tk rea dev() cannot be used.

TD EXCL Exclusive

TD WEXCL Exclusive write

TD REXCL Exclusive read
Sets the exclusive mode.
When TD EXCL is set, all concurrent opening is prohibited.
When TD WEXCL is set, concurrent opening in write mode (TD WRITE or TD UPDATE) is prohib-
ited.
When TD REXCL is set, concurrent opening in read mode (TD READ or TD UPDATE) is prohibited.

Concurrent Open Mode
Present Open Mode No exclusive mode TD WEXCL TD EXCL

R W R W R W

No exclusive mode R Yes Yes Yes Yes No No
W Yes Yes No No No No

TD WEXCL R Yes No Yes No No No
W Yes No No No No No

TD REXCL R No Yes No Yes No No
W No Yes No No No No

TD EXCL R No No No No No No
W No No No No No No

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

232 CHAPTER 5. T-KERNEL/SM FUNCTIONS

R = TD READ W = TD WRITE or TD UPDATE

Yes = Can be opened No = Cannot be opened (E BUSY)

TD NOLOCK Lock (making resident) not necessary
Indicates that a memory space (buf) specified in IO operations (tk rea dev and tk wri dev)
has already been locked (made resident) on the calling side and does not have to be locked
by the device driver. In this case the device driver does not (must not) lock the area. This is
used e.g. to perform disk access for page in/page out in a virtual memory system. Generally
it does not need to be specified.

The device descriptor belongs to the resource group of the task that opened the device.

When a physical device is opened, the logical devices belonging to it are all treated as having been
opened in the same mode, and are processed as exclusive open.

E BUSY Device busy (exclusive open)
E NOEXS Device does not exist
E LIMIT Open count exceeds the limit
Other Errors returned by device driver

• ER tk_cls_dev(ID dd, UINT option)

dd Device descriptor
option Close option
return code Error

Closes device descriptor dd.

If a request is being processed, the processing is aborted and the device is closed.

option := [TD_EJECT]

#define TD_EJECT 0x0001 /* eject media */

TD EJECT Eject media
If the same device has not been opened by another task, the media is ejected. In the case of
devices that cannot eject their media, the request is ignored.

The subsystem cleanup processing (tk cln ssy) closes all the device descriptors belonging to the
resource group.

E ID dd is invalid or not open
Other Errors returned by device driver

• ID tk_rea_dev(ID dd, INT start, VP buf, INT size, TMO tmout)

dd Device descriptor
start Read start location (≥ 0: Device-specific data, < 0: Attribute data)
buf Buffer location for putting the read data
size Read size
tmout Request acceptance timeout (ms)
return code Request ID or error

Starts reading device-specific data or attribute data from the specified device. This function starts
reading only, returning to its caller without waiting for the read operation to finish. The space

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.3. DEVICE MANAGEMENT FUNCTIONS 233

specified in buf must be retained until the read operation completes. Read completion is waited
for by tk wai dev.

The time required for read start processing differs with the device; return of control is not neces-
sarily immediate.

In the case of device-specific data, the start and size units are decided for each device. With
attribute data, start is an attribute data number and size is in bytes. The attribute data of the
data number specified in start is read. Normally size must be at least as large as the size of the
attribute data to be read. Reading of multiple attribute data in one operation is not possible.
When size = 0 is specified, actual reading does not take place but the current size of data that
can be read is checked.

Whether or not a new request can be accepted while a read or write operation is in progress
depends on the device driver. If a new request cannot be accepted, the request is queued. The
timeout for request waiting is set in tmout. The TMO POL or TMO FEVR attribute can be specified
for tmout. Note that what times out is request acceptance. Once a request has been accepted,
this function does not time out.

E ID dd is invalid or not open
E OACV Open mode is invalid (read not permitted)
E LIMIT Number of requests exceeds the limit
E TMOUT Busy processing other requests
E ABORT Processing aborted
Other Errors returned by device driver

• ER tk_srea_dev(ID dd, INT start, VP buf, INT size, INT *asize)

Synchronous read. This is equivalent to the following.

ER tk_srea_dev(ID dd, INT start, VP buf, INT size, INT *asize)
{

ER er, ioer;
er = tk_rea_dev(dd, start, buf, size, TMO_FEVR);
if (er > 0) {

er = tk_wai_dev(dd, er, asize, &ioer, TMO_FEVR);
if (er > 0) er = ioerr;

}
return er;

}

• ID tk_wri_dev(ID dd, INT start, VP buf, INT size, TMO tmout)

dd Device descriptor
start write start location (≥ 0: Device-specific data, < 0: Attribute data)
buf Buffer holding data to be written
size Size of data to be written
tmout Request acceptance timeout (ms)
return code Request ID or error

Starts writing device-specific data or attribute data to a device. This function starts writing
only, returning to its caller without waiting for the write operation to finish. The space specified

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

234 CHAPTER 5. T-KERNEL/SM FUNCTIONS

in buf must be retained until the write operation completes. Write completion is waited for by
tk wai dev.
The time required for write start processing differs with the device; return of control is not neces-
sarily immediate.

In the case of device-specific data, the start and size units are decided for each device. With
attribute data, start is an attribute data number and size is in bytes. The attribute data of the
data number specified in start is written. Normally size must be at least as large as the size
of the attribute data to be written. Multiple attribute data cannot be written in one operation.
When size = 0 is specified, actual writing does not take place but the current size of data that
can be written is checked.

Whether or not a new request can be accepted while a read or write operation is in progress
depends on the device driver. If a new request cannot be accepted, the request is queued. The
timeout for request waiting is set in tmout. The TMO POL or TMO FEVR attribute can be specified
for tmout. Note that what times out is request acceptance. Once a request has been accepted,
this function does not time out.

E ID dd is invalid or not open
E OACV Open mode is invalid (write not permitted)
E RONLY Read-only device
E LIMIT Number of requests exceeds the limit
E TMOUT Busy processing other requests
E ABORT Processing aborted
Other Errors returned by device driver

• ER tk_swri_dev(ID dd, INT start, VP buf, INT size, INT *asize)

Synchronous write. This is equivalent to the following.

ER tk_swri_dev(ID dd, INT start, VP buf, INT size, INT *asize)
{

ER er, ioer;
er = tk_wri_dev(dd, start, buf, size, TMO_FEVR);
if (er > 0) {

er = tk_wai_dev(dd, er, asize, &ioer, TMO_FEVR);
if (er > 0) er = ioer;

}
return er;

}

• ID tk_wai_dev(ID dd, ID reqid, INT *asize, ER *ioer, TMO tmout)

dd Device descriptor
reqid Request ID
asize Returns the read/write data size
ioer Returns IO error
tmout Timeout (ms)
return code Completed request ID or error

Waits for completion of request reqid for device dd.

If reqid = 0 is set, this function waits for completion of any pending request to dd.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.3. DEVICE MANAGEMENT FUNCTIONS 235

This function waits for completion only of requests currently processing when the function is called.
A request issued after tk wai dev was called is not waited for.

When multiple requests are being processed concurrently, the order of their completion is not
necessarily the same as the order of request but is dependent on the device driver. Processing
is, however, guaranteed to be performed in a sequence such that the result is consistent with the
order of requesting. When processing a read operation from a disk, for example, the sequence
might be changed as follows.

Block number request sequence 1 4 3 2 5
Block number processing sequence 1 2 3 4 5

Disk access can be made more efficient by changing the sequence as above with the aim of reducing
seek time and spin wait time.

The timeout for waiting for completion is set in tmout. The TMO POL or TMO FEVR attribute can
be specified for tmout. If a timeout error is returned (E TMOUT), tk wai dev must be called again
to wait for completion, since the request processing is ongoing.

When reqid > 0 and tmout = TMO FEVR are both set, the processing must be completed without
timing out.

If the requested processing results in error (IO error, etc.) ioer is stored rather than a return
code. The return code is used for errors when the request wait itself was not handled properly.
When error is passed in the return code, ioer has no meaning. Note also that if error is passed
in the return code, tk wai dev must be called again to wait for completion, since the request
processing is ongoing.

If a task exception is raised during completion waiting by tk wai dev, the request in reqid is
aborted and processing is completed. The result of aborting the requested processing is dependent
on the device driver. When reqid = 0 was set, however, requests are not aborted but are treated
as timeout. In this case E ABORT rather than E TMOUT is returned.

It is not possible for multiple tasks to wait for completion of the same request ID at the same
time. If there is a task waiting for request completion with reqid = 0 set, another task cannot
wait for completion for the same device descriptor. Similarly, if there is a task waiting for request
completion with reqid > 0 set, another task cannot wait for completion specifying reqid = 0.

E ID dd is invalid or not open
reqid is invalid or not a request for dd

E OBJ Another task is already waiting for request reqid
E NOEXS No requests are being processed (only when reqid = 0)
E TMOUT Timeout (processing continues)
E ABORT Processing aborted
Other Errors returned by device driver

• INT tk_sus_dev(UINT mode)

mode Mode
return code Suspend disable request count or error

Performs the processing specified in mode, then passes the resulting suspend disable request count
in the return code.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

236 CHAPTER 5. T-KERNEL/SM FUNCTIONS

mode := ((TD_SUSPEND | [TD_FORCE]) || TD_DISSUS || TD_ENASUS || TD_CHECK)

#define TD_SUSPEND 0x0001 /* suspend */
#define TD_DISSUS 0x0002 /* disable suspension */
#define TD_ENASUS 0x0003 /* enable suspension */
#define TD_CHECK 0x0004 /* get suspend disable request count */
#define TD_FORCE 0x8000 /* forcibly suspend */

TD SUSPEND Suspend
If suspending is enabled, suspends processing. If suspending is disabled, returns E BUSY.

TD SUSPEND|TD FORCE Forcibly suspend
Suspends even in suspend disabled state.

TD DISSUS Disable suspension
Disables suspension.

TD ENASUS Enable suspension
Enables suspension.
If the enable request count is above the disable count for the resource group, no operation is
performed.

TD CHECK Get suspend disable count
Gets only the number of times suspend disable has been requested.

Suspension is performed in the following steps.
1. Processing prior to start of suspension in each subsystem

tk_evt_ssy(0, TSEVT_SUSPEND_BEGIN, 0, 0)

2. Suspension processing in non-disk devices
3. Suspension processing in disk devices
4. Processing after completion of suspension in each subsystem

tk_evt_ssy(0, TSEVT_SUSPEND_DONE, 0, 0)

5. SUSPEND state entered
tk_set_pow(TPW_DOSUSPEND)

Resumption from SUSPEND state is performed in the following steps.
1. Return from SUSPEND state Return from tk_set_pow(TPW_DOSUSPEND)

2. Processing prior to start of resumption in each subsystem
tk_evt_ssy(0, TSEVT_RESUME_BEGIN, 0, 0)

3. Resumption processing in disk devices
4. Resumption processing in non-disk devices
5. Processing after completion of resumption in each subsystem

tk_evt_ssy(0, TSEVT_RESUME_DONE, 0, 0)

The number of suspend disable requests is counted. Suspension is enabled only if the same
number of suspend enable requests is made. At system boot, the suspend disable count is 0
and suspension is enabled. There is only one suspend disable request count kept per system,
but the system keeps track of the resource group making the request. It is not possible to clear
suspend disable requests made in another resource group. When the cleanup function runs
in a resource group, all the suspend requests made in that group are cleared and the suspend
disable request count is reduced accordingly. The maximum suspend disable request count
is implementation-dependent, but must be at least 255. When the upper limit is exceeded,
E QOVR is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.3. DEVICE MANAGEMENT FUNCTIONS 237

E BUSY Suspend already disabled

E QOVR Suspend disable request count limit exceeded

• ID tk_get_dev(ID devid, UB *devnm)

devid Device ID
devnm Device name storage location
return code Device ID of physical device or error

Gets the device name of the device specified in devid and puts the result in devnm.

devid is the device ID of either a physical device or a logical device. If devid is a physical device,
the physical device name is put in devnm. If devid is a logical device, the logical device name is
put in devnm. devnm requires a space of L DEVNM + 1 bytes or larger.

The device ID of the physical device to which device devid belongs is passed in the return code.

E NOEXS The device specified in devid does not exist

• ID tk_ref_dev(UB *devnm, T_RDEV *rdev)

• ID tk_oref_dev(ID dd, T_RDEV *rdev)

devnm Device name
dd Device descriptor
rdev Device information
return code Device ID or error

typedef struct t_rdev {
ATR devatr; /* device attributes */
INT blksz; /* block size of device-specific data (-1: unknown) */
INT nsub; /* subunit count */
INT subno; /* 0: physical device: 1 to nsub: subunit number+1 */
/* Implementation-dependent information may be added beyond this point.*/

} T_RDEV;

Gets device information about the device specified in devnm or dd and puts the result in rdev.

If rdev = NULL is set, the device information is not stored. nsub indicates the number of physical
device subunits belonging to the device specified in devnm or dd.

The device ID of the device specified in devnm is passed in the return code. E NOEXS The device
specified in devnm does not exist.

• INT tk_lst_dev(T_LDEV *ldev, INT start, INT ndev)

ldev Location of registered device information (array)
start Starting number
ndev Number to acquire
return code Remaining device registration count or error

typedef struct t_ldev {
ATR devatr; /* device attributes */
INT blksz; /* device-specific data block size (-1: unknown) */
INT nsub; /* subunits */
UB devnm[L_DEVNM]; /* physical device name */

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

238 CHAPTER 5. T-KERNEL/SM FUNCTIONS

/* Implementation-dependent information may be added beyond this point.*/
} T_LDEV;

Gets information about registered devices.

Registered devices are managed per physical device. The registered device information is therefore
also obtained per physical device.

When the number of registered devices is N , number are assigned serially to devices from 0 to
N − 1. Starting from the number specified in start in accord with this scheme, the number of
registrations specified in ndev is acquired and put in ldev. The space specified in ldev must be
large enough to hold ndev registration information. The number of remaining registrations after
start (N − start) is passed in the return code. If the number of registrations from start is
fewer than ndev, all remaining registrations are stored. A value passed in return code less than or
equal to ndev means all remaining registrations were obtained. Note that this numbering changes
as devices are registered and deleted. For this reason, accurate information may not always be
obtained if the acquisition is carried out over multiple operations.

E NOEXS start exceeds the number of registered devices

• INT tk_evt_dev(ID devid, INT evttyp, VP evtinf)

devid Event destination device ID
evttyp Driver request event type
evtinf Information for each event type
return code Return code from device driver or error

Sends a driver request event to the device (device driver) specified in devid.

The following driver request events are defined.

#define TDV_CARDEVT 1 /* PC Card event (see Card Manager) */
#define TDV_USBEVT 2 /* USB event (see USB Manager) */

The functioning of driver request events and the contents of evtinf are defined for each event
type.

E NOEXS The device specified in devid does not exist
E PAR Internal device manager events (evttyp < 0) cannot be specified

5.3.3 Device Registration

The following device registration information is defined in registering a device.
Device registration is performed for each physical device.

typedef struct t_ddev {
VP exinf; /* extended information */
ATR drvatr; /* driver attributes */
ATR devatr; /* device attributes */
INT nsub; /* subunits */
INT blksz; /* block size of device-specific data (-1: unknown) */
FP openfn; /* open count */
FP closefn; /* close count */
FP execfn; /* processing start function */
FP waitfn; /* completion wait function */

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.3. DEVICE MANAGEMENT FUNCTIONS 239

FP abortfn; /* abort processing function */
FP eventfn; /* event function */
/* Implementation-dependent information may be added beyond this point. */

} T_DDEV;

exinf is used to store any desired information. The value is passed to the processing functions. Device
management pays no attention to the contents.
drvatr sets device driver attribute information. The low bits indicate system attributes, and the high
bits are used for implementation-dependent attributes. The implementation-dependent attribute portion
is used, for example, to indicate validity flags when implementation-dependent data is added to T DDEV.

drvatr := [TDA_OPENREQ]

#define TDA_OPENREQ 0x0001 /* open/close each time */

TDA OPENREQ
When a device is opened multiple times, normally openfn is called the first time it is opened and
closefn the last time it is closed.

If TDA OPENREQ is specified, then openfn/closefn will be called for all open/close operations even
in case of multiple openings.

Device attributes are specified in devatr. The details of device attribute setting are as noted above.
The number of subunits is set in nsub. If there are no subunits, 0 is specified.
blksz sets the block size of device-specific data in bytes. In the case of a disk device, this is the physical
block size. It is set to 1 byte for a serial port, etc. For a device with no device-specific data it is set to
0. For an unformatted disk or other device whose block size is unknown, −1 is set.
If blksz ≤ 0, device-specific data cannot be accessed. When device-specific data is accessed by
tk rea dev or tk wri dev, size × blksz must be the size of the area being accessed, that is, the
size of buf.
openfn, closefn, execfn, waitfn, abortfn, and eventfn set the entry address of processing functions.
Details of the processing functions are discussed later.

• ID tk_def_dev(UB *devnm, T_DDEV *ddev, T_IDEV *idev)

devnm Physical device name
ddev Device registration information
idev Returns device initialization information
return code Device ID or error

Registers a device with the device name set in devnm.

If a device with device name devnm is already registered, the registration is updated with new
information, in which case the device ID does not change.

When ddev = NULL is specified, device devnm registration is deleted.

The device initialization information is returned in idev.

This includes information set by default when the device driver is started, and can be used as
necessary.

When idev = NULL is set, device initialization information is not stored.

typedef struct t_idev {
ID evtmbfid; /* event notification message buffer ID */
/* Implementation-dependent information may be added beyond this point.*/

} T_IDEV;

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

240 CHAPTER 5. T-KERNEL/SM FUNCTIONS

evtmbfid specifies the system default message buffer ID for event notification. If there is no
system default event notification message buffer, 0 is set.

Notification like the following is made to each subsystem when a device is registered or deleted.
devid is the device ID of the physical device registered or deleted.

Device registration or update: tk_evt_ssy(0, TSEVT_DEVICE_REGIST, 0, devid)

Device deletion: tk_evt_ssy(0, TSEVT_DEVICE_DELETE, 0, devid)

E LIMIT Number of registrations exceeds the system limit
E NOEXS The device specified in devnm does not exist (when ddev = NULL)

• ER tk_ref_idv(T_IDEV *idev)

idev Returns device initialization information
return code Error

Gets device initialization information.

The contents are the same as the information obtained by tk dev def().

5.3.4 Device Driver Interface

The device driver interface consists of processing functions specified when registering a device. These
functions are called by device management and run as a quasi-task portion. They must be reentrant.
The mutually exclusive calling of these processing functions is not guaranteed. If, for example, there
are simultaneous requests from multiple devices for the same device, different tasks might call the same
processing function at the same time. The device driver must apply mutual exclusion control in such
cases as necessary.
IO requests to a device driver are made by means of the following request packet mapped to a request
ID.

typedef struct t_devreq {
struct t_devreq *next; /* I: Link to request packet (NULL: termination) */
VP exinf; /* X: Extended information */
ID devid; /* I: Target device ID */
INT cmd:4; /* I: Request command */
BOOL abort:1; /* I: TRUE if abort request */
BOOL nolock:1; /* I: TRUE if lock (making resident) not needed */
INT rsv:26; /* I: reserved (always 0) */
T_TSKSPC tskspc; /* I: Task space of requesting task */
INT start; /* I: Starting data number */
INT size; /* I: Request size */
VP buf; /* I: IO buffer address */
INT asize; /* O: Size of result */
ER error; /* O: Error result */
/* Implementation-dependent information may be added beyond this point. */

} T_DEVREQ;

I indicates an input parameter and O an output parameter. Input parameters must not be changed
by the device driver. Parameters other than input parameters (I) are initially cleared to 0 by device
management. After that, device management does not modify them.
next is used to link the request packet. In addition to use for keeping track of request packets in device
management, it is used also by the completion wait function (waitfn) and abort function (abortfn).

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.3. DEVICE MANAGEMENT FUNCTIONS 241

exinf can be used freely by the device driver. Device management does not pay attention to the
contents.
The device ID of the device to which the request is issued is specified in devid.
The request command is specified in cmd as follows.

cmd := (TDC_READ || TDC_WRITE)

#define TDC_READ 1 /* read request */
#define TDC_WRITE 2 /* write request */

If abort processing is to be carried out, abort is set to TRUE right before calling the abort function
(abortfn). abort is a flag indicating whether abort processing was requested, and does not indicate
that processing was aborted.
In some cases abort is set to TRUE even when the abort function (abortfn) is not called. Abort
processing is performed when a request with abort set to TRUE is actually passed to the device driver.
nolock indicates that the memory space specified in buf has already been locked (made resident) and
does not need to be locked by the device driver. In this case the device driver must not lock the memory
space. (nolock is specified when there is a possibility of wrong operation if the device driver performs
a lock. Accordingly, when nolock = TRUE, the device driver must not lock the space.)
tskspc sets the task space of the requesting task. Since processing functions are called in the context
of the requesting task, tskspc is the same as the task space of the processing function. If, however, the
actual IO processing (read/write in the space specified in buf) is performed by a separate task in the
device driver, it is necessary to switch the task space of the task performing the IO processing to the
task space of the requesting task.
The start and size parameters specified with tk rea dev or tk wri dev are set transparently in start
and size here.
The buf parameter specified with tk rea dev or tk wri dev is set in buf here.
The memory space specified in buf may be nonresident in some cases or task space in others. Care must
therefore be taken regarding the following points.

• Nonresident memory cannot be accessed from a task-independent portion or while dispatching or
interrupts are disabled.

• Task space memory cannot be accessed from another task space.

For these reasons, switching of task space or making memory space resident must be performed as
necessary. Special attention is needed when access is made by an interrupt handler. Generally it is best
not to access buf directly from an interrupt handler.
Before accessing the buf memory space, the validity of buf must be checked using an address space check
function (ChkSpace—, described later below).
The device driver sets in asize the value returned in asize by tk wai dev.
The device driver sets in error the error code passed by tk wai dev in its return code. E OK indicates a
normal result.

• Open Function: ER openfn(ID devid, UINT omode, VP exinf)

devid Device ID of the device to open
omode Open mode (same as tk opn dev)
exinf Extended information set at device registration
return code Error

The open function openfn is called when tk opn dev is invoked.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

242 CHAPTER 5. T-KERNEL/SM FUNCTIONS

The function openfn performs processing to enable use of a device. Details of the processing are
device-dependent; if no processing is needed, it does nothing. The device driver does not need to
remember whether a device is open or not, nor is it necessary to treat as error the calling of another
processing function simply because the device was not opened (openfn had not been called). If
another processing function is called for a device that is not open, the necessary processing can
be performed so long as there is no problem in device driver operation.

When openfn is used to perform device initialization or the like, in principle no processing should
be performed that causes a WAIT state. The processing and return from openfn must be as
prompt as possible. In the case of a device such as a serial port for which it is necessary to set the
communication mode, for example, the device can be initialized when the communication mode is
set by tk wri dev. There is no need for openfn to initialize the device.

When the same device is opened multiple times, normally this function is called only for the first
time. If, however, the driver attribute TDA OPENREQ is specified in device registration, this function
is called each time the device is opened.

The openfn function does not need to perform any processing with regard to multiple opening
or open mode, which are handled by device management. Likewise, omode is simply passed as
reference information; no processing relating to omode is required.

• Close Function: ER closefn(ID devid, UINT option, VP exinf)

devid Device ID of the device to close
option Close option (same as tk cls dev)
exinf Extended information set at device registration
return code Error

The close function closefn is called when tk cls dev is invoked.

The closefn function performs processing to end use of a device. Details of the processing are
device-dependent; if no processing is needed, it does nothing.

If the device is capable of ejecting media and TD EJECT is set in option, media ejection is performed.

When closefn is used to perform device shutdown processing or media ejection, in principle
no processing should be performed that causes a WAIT state. The processing and return from
closefn must be as prompt as possible. If media ejection takes time, it is permissible to return
from closefn without waiting for the ejection to complete.

When the same device is opened multiple times, normally this function is called only the last time
it is closed. If, however, the driver attribute TDA OPENREQ is specified in device registration, this
function is called each time the device is closed. In this case TDA EJECT is specified in option only
for the last time.

The closefn function does not need to perform any processing with regard to multiple opening
or open mode, which are handled by device management.

• Processing Start Function: ER execfn(T_DEVREQ *devreq, TMO tmout, VP exinf)

devreq Request packet
tmout Request acceptance timeout (ms)
exinf Extended information set at device registration
return code Error

The execfn function is called when tk rea dev or tk wri dev is invoked, and starts the processing
requested in devreq. This function starts the requested processing only, returning to its caller

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.3. DEVICE MANAGEMENT FUNCTIONS 243

without waiting for the processing to complete. The time required to start processing depends on
the device driver; this function does not necessarily complete immediately.

When new processing cannot be accepted, this function goes to WAIT state for request acceptance.
If the new request cannot be accepted within the time specified in tmout, the function times out.
The attribute TMO POL or TMO FEVR can be specified in tmout. If the function times out, E TMOUT is
passed in the execfn return code. Timeout applies to the request acceptance, not to the processing
after acceptance.

When error is passed in the execfn return code, the request is considered not to have been accepted
and the request packet is discarded.

If processing is aborted before the request is accepted (before the requested processing starts),
E ABORT is passed in the execfn return code and the request packet is discarded. If the abort
occurs after the processing has been accepted, E OK is returned for this function. The request
packet is not discarded until waitfn is executed and processing completes.

When abort occurs, the important thing is to return from execfn as quickly as possible. If
processing will end soon anyway without aborting, it is not necessary to abort.

• Completion Wait Function: INT waitfn(T_DEVREQ *devreq, INT nreq, TMO tmout, VP exinf)

devreq Request packet list
nreq Request packet count
tmout Timeout (ms)
exinf Extended information set at device registration
return code Completed request packet number or error

The waitfn function is called when tk wai dev is invoked.

devreq is a list of request packets in a chain linked by devreq->next. This function waits for
completion of any of the nreq request packets starting from devreq. The final next is not neces-
sarily NULL, so the nreq must always be followed. The number of the completed request packet
(which one after devreq) is passed in the return code. The first one is numbered 0 and the last
one is numbered nreq − 1. Here completion means any of normal completion, abnormal (error)
termination, or abort.

The time to wait until completion is set in tmout. TMO POL or TMO FEVR can be specified as the
tmout attribute. If the wait times out, the requested processing continues. The waitfn return
code in case of timeout is E TMOUT. The request packet error parameter does not change. Note
that if return from waitfn occurs while the requested processing continues, error must be returned
in the waitfn return code; but the processing must be completed even when error is passed in
the return code, and a value other than error must not be returned if processing is ongoing. As
long as error is not passed in the waitfn return code, the request is considered to be pending
and no request packet is discarded. When the number of a request packet whose processing was
completed is passed in the waitfn return code, the processing of that request is considered to be
completed and that request packet is discarded.

IO error and other device-related errors are stored in the request packet error parameter. Error
is passed in the waitfn return code when completion waiting did not take place properly. The
waitfn return code is set in the tk wai dev return code, whereas the request packet error value
is returned in ioer.

Abort processing differs depending on whether the wait is for completion of a single request
(nreq = 1) or multiple requests (nreq > 1). When completion of a single request is being waited
for, the request currently processing is aborted. When waiting for completion of multiple requests,

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

244 CHAPTER 5. T-KERNEL/SM FUNCTIONS

only the wait is aborted (wait release), not the requested processing itself. When a wait for
multiple requests is aborted (wait release), E ABORT is passed in the waitfn return code.

During a wait for request completion, an abort request may be set in the abort parameter of
a request packet. In such a case, if it is a single request, the request abort processing must
be performed. If the wait is for multiple requests it is also preferable that abort processing be
executed, but it is also possible to ignore the abort flag.

When abort occurs, the important thing is to return from waitfn as quickly as possible. If
processing will end soon anyway without aborting, it is not necessary to abort.

As a rule, E ABORT is returned in the request packet error parameter when processing is aborted;
but a different error code may be returned as appropriate based on the device properties. It is
also permissible to return E OK on the basis that the processing right up to the abort is valid. If
processing completes normally to the end, E OK is returned even if there was an abort request.

• Abort Function: ER abortfn(ID tskid, T_DEVREQ *devreq, INT nreq, VP exinf)

tskid Task ID of the task executing execfn or waitfn
devreq Request packet list
nreq Request packet count
exinf Extended information set at device registration
return code Error

The function abortfn causes execfn or waitfn to return promptly when the specified request
is being executed. Normally this means the request being processed is aborted. If, however, the
processing can be completed soon without aborting, it may not have to be aborted. The important
thing is to return as quickly as possible from execfn or waitfn.

tskid indicates the task executing the request specified in devreq. In other words, it is the task
executing execfn or waitfn. devreq and nreq are the same as the parameters that were passed
to execfn or waitfn. In the case of execfn, nreq is always 1.

abortfn is called by a different task from the one executing execfn or waitfn. Since both tasks
run concurrently, mutual exclusion control must be performed as necessary. It is possible that
the abortfn function will be called immediately before calling execfn or waitfn, or during return
from these functions. Measures must be taken to ensure proper operation in such cases. Before
abortfn is called, the abort flag in the request packet whose processing is to be aborted is set to
TRUE, enabling execfn or waitfn to know whether there is going to be an abort request. Note
also that abortfn can make use of tk dis wai for any object.

When waitfn is executing for multiple requests (nreq > 1), this is treated as a special case
differing as follows from other cases.

– Only the completion wait is aborted (wait release), not the requested processing.

– The abort flag is not set in the request packet (remains as abort = FALSE).

Aborting a request when execfn and waitfn are not executing is done not by calling abortfn but
by setting the request packet abort flag. If execfn is called when the abort flag is set, the request
is not accepted. If waitfn is called, abort processing is the same as that when abortfn is called.

If a request for which processing was started by execfn is aborted before waitfn was called to
wait for its completion, the completion of the aborted processing is notified when waitfn is called.
Even though processing was aborted, the request itself is not discarded until its completion has
been confirmed by waitfn.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.3. DEVICE MANAGEMENT FUNCTIONS 245

abortfn starts abort processing only, returning promptly without waiting for the abort to com-
plete.

abortfn is called in the following cases.

– When a break function is executing after a task exception and the task that raised the
exception requests abort processing, abortfn is used to abort the request being processed by
that task.

– When a device is being closed by tk cls dev and by subsystem cleanup processing, and
a device descriptor was processing a request, abortfn is used to abort the request being
processed by that device descriptor.

• Event Handling Function: INT eventfn(INT evttyp, VP evtinf, VP exinf)

evttyp Driver request event type
evtinf Information for each event type
exinf Extended information set at device registration
return code Return code defined for each event type or error

The following driver request event types are defined. Those with positive values are called by
tk evt dev, and those with negative values are called inside device management.

#define TDV_SUSPEND (-1) /* suspend */
#define TDV_RESUME (-2) /* resume */
#define TDV_CARDEVT 1 /* PC Card event (see Card Manager */
#define TDV_USBEVT 2 /* USB event (see USB Manager) */
p

The processing performed by an event function is defined for each event type. Suspend and resume
processing are discussed later below.

When a device event is called by tk evt dev, the eventfn return code is set transparently as the
tk evt dev return code.

Requests to event functions must be accepted even if another request is processing and must be
processed as quickly as possible.

5.3.5 Attribute Data

Attribute data is classified broadly into the following three kinds of data.

• Common attributes
Attributes defined in common for all devices (device drivers).

• Device kind attributes
Attributes defined in common for devices (device drivers) of the same kind.

• Device-specific attributes
Attributes defined independently for each device (device driver).

For the device kind attributes and device-specific attributes, see the specifications for each device. Only
the common attributes are defined here.
Common attributes are assigned attribute data numbers in the range from −1 to −99. While common
attribute data numbers are the same for all devices, not all devices necessarily support all common
attributes. If an unsupported data number is specified, error code E PAR is returned.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

246 CHAPTER 5. T-KERNEL/SM FUNCTIONS

#define TDN_EVENT (-1) /* RW: event notification message buffer ID */
#define TDN_DISKINFO (-2) /* R: disk information */
#define TDN_DISPSPEC (-3) /* R: display device specification */

RW: read (tk rea dev)/write (tk wri dev) enabled

R: read (tk rea dev) only

TDN EVENT: Event Notification Message Buffer ID

Data type: ID

The ID of the message buffer used for device event notification. Since the system default message
buffer ID is passed in device registration, that ID is set as the initial setting when a driver is
started.

If 0 is set, device events are not notified.

Device event notification is discussed later below.

TDN DISKINFO: Disk Information

Data type: DiskInfo

typedef enum {
DiskFmt_STD = 0, /* standard (HD, etc.) */
DiskFmt_2DD = 1, /* 2DD 720KB */
DiskFmt_2HD = 2, /* 2HD 1.44MB */
DiskFmt_CDROM = 4, /* CD-ROM 640MB */

} DiskFormat;

typedef struct {
DiskFormat format; /* format */
UW protect:1; /* protected status */
UW removable:1; /* removable */
UW rsv:30; /* reserved (always 0) */
W blocksize; /* block size in bytes */
W blockcount; /* total block count */

} DiskInfo;

See the disk driver specification for details.

TDN DISPSPEC: Display Device Specification

Data type: DEV SPEC

typedef struct {
H attr; /* device attributes */
H planes; /* number of planes */
H pixbits; /* pixel bits (boundary/valid) */
H hpixels; /* horizontal pixels */
H vpixels; /* vertical pixels */
H hres; /* horizontal resolution */
H vres; /* vertical resolution */
H color[4]; /* color information */
H resv[6]; /* reserved */
} DEV_SPEC;

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.3. DEVICE MANAGEMENT FUNCTIONS 247

See the screen driver specification for details.

5.3.6 Device Event Notification

A device driver sends events occurring in devices to the event notification message buffer (TDN EVENT) as
device event notification. The system default event notification message buffer is specified at the time
of device registration, but can be changed later. The system default event notification message buffer
is defined in TDEvtMbfSz in system configuration information.
The following event types are defined.

typedef enum tdevttyp {
TDE_unknown = 0, /* undefined */
TDE_MOUNT = 0x01, /* media mounted */
TDE_EJECT = 0x02, /* media ejected */
TDE_ILLMOUNT = 0x03, /* media illegally mounted */
TDE_ILLEJECT = 0x04, /* media illegally ejected */
TDE_REMOUNT = 0x05, /* media remounted */
TDE_CARDBATLOW = 0x06, /* card battery alarm */
TDE_CARDBATFAIL = 0x07, /* card battery failure */
TDE_REQEJECT = 0x08, /* media eject request */
TDE_PDBUT = 0x11, /* PD button state change */
TDE_PDMOVE = 0x12, /* PD move */
TDE_PDSTATE = 0x13, /* PD state change */
TDE_PDEXT = 0x14, /* PD extended event */
TDE_KEYDOWN = 0x21, /* key down */
TDE_KEYUP = 0x22, /* key up */
TDE_KEYMETA = 0x23, /* meta key state change */
TDE_POWEROFF = 0x31, /* power switch off */
TDE_POWERLOW = 0x32, /* low power alarm */
TDE_POWERFAIL = 0x33, /* power failure */
TDE_POWERSUS = 0x34, /* auto suspend */
TDE_POWERUPTM = 0x35, /* clock update */
TDE_CKPWON = 0x41 /* auto power on notification */

} TDEvtTyp;

Device events are notified in the following format. The contents of event notification and size differ with
each event type.

typedef struct t_devevt {
TDEvtTyp evttyp; /* event type */
/* Information specific to each event type is appended here. */

} T_DEVEVT;

The format of device event notification with device ID is as follows.

typedef struct t_devevt_id {
TDEvtTyp evttyp; /* event type */
ID devid; /* device ID */
/* Information specific to each event type is appended here. */

} T_DEVEVT_ID;

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

248 CHAPTER 5. T-KERNEL/SM FUNCTIONS

See the device driver specifications for event details.
Measures must be taken so that if event notification cannot be sent because the message buffer is full,
the lack of notification will not adversely affect operation on the receiving end. One option is to hold
the notification until space becomes available in the message buffer, but in that case other device driver
processing should not, as a rule, be allowed to fall behind as a result. Processing on the receiving end
should be designed to the extent possible to avoid message buffer overflow.

5.3.7 Device Suspend/Resume Processing

Device drivers suspend and resume device operations in response to the issuing of suspend/resume
(TDV SUSPEND/TDV RESUME) events to the event handling function (eventfn). Suspend and resume
events are issued only to physical devices.

TDV SUSPEND: Suspend Device

evttyp = TDV SUSPEND
evtinf = NULL (none)

Suspension processing takes place in the following steps.

(A) If there is a request being processed at the time, the device driver waits for it to complete,
pauses it or aborts. Which of these options to take depends on the device driver implemen-
tation. Since the suspension must be effected as quickly as possible, however, pause or abort
should be chosen if completion of the request will take time. Suspend events can be issued
only for physical devices, but the same processing is applied to all logical devices included in
the physical device.

Pause: Processing is suspended, then continues after the device resumes operation.
Abort: Processing is aborted just as when the abort function (abortfn) is executed, and is

not continued after the device resumes operation.

(B) New requests other than a resume event are not accepted.

(C) The device power is cut and other suspension processing is performed.

Abort should be avoided if at all possible because of its effects on applications. It should be used
only in such cases as long input waits from a serial port, or when interruption would be difficult.
Normally it is best to wait for completion of a request or, if possible, choose pause (suspension
and resumption).

Requests arriving at the device driver in suspend state are made to wait until operation resumes,
after which acceptance processing is performed. If the request does not involve access to the
device, however, or otherwise can be processed even during suspension, a request may be accepted
without waiting for resumption.

TDV RESUME: Resume Device

evttyp = TDV RESUME
evtinf = NULL (none)

Resumption processing takes place as follows.

(A) The device power is turned back on, the device states are restored and other device resumption
processing is performed.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.3. DEVICE MANAGEMENT FUNCTIONS 249

(B) Paused processing is resumed.

(C) Request acceptance is resumed.

5.3.8 Special Properties of Disk Devices

A disk device has a special role to play in a virtual memory system. In order to realize virtual memory,
the OS must call the disk driver for transferring data between memory and disk.
The need for the OS to perform data transfer with a disk arises when access is made to nonresident
memory and the memory contents must be read from the disk (page in). The OS calls the disk driver
in this case.
If nonresident memory is accessed in the disk driver, the OS must likewise call the disk driver. In such
a case, if the disk driver treats the access to nonresident memory as a wait for page in, it is possible
that the OS will again request disk access. Even then, the disk driver must be able to execute the later
OS request.
A similar case may arise in suspension processing. When access is made to nonresident memory during
suspension processing and a disk driver is called, if that disk driver is already suspended, page in will
not be possible. To avoid such a situation, suspension processing should suspend other devices before
disk devices. If there are multiple disk devices, however, the order of their suspension is indeterminate.
For this reason, during suspension processing a disk driver must not access nonresident memory.
Because of the above limitations, a disk driver must not use (access) nonresident memory. It is possible,
however, that the IO buffer (buf) space specified with tk rea dev or tk wri dev will be nonresident
memory, since this is a memory location specified by the caller. In the case of IO buffers, therefore, it
is necessary to make the memory space resident (see LockSpace) at the time of IO access.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

250 CHAPTER 5. T-KERNEL/SM FUNCTIONS

5.4 Interrupt Management Functions

Interrupt handling is largely hardware-dependent, differing with each system, and therefore difficult to
standardize. The following are given as standard specifications, but it may not be possible to follow
these exactly on all systems. Implementors should strive to comply with these specifications to the
extent possible; but where implementation is not feasible, full compliance is not mandatory. If functions
not in the standard specifications are added, however, the function names must be different from those
given here. In any case, DI(), EI(), and isDI() must be implemented in accord with the standard
specifications.
Interrupt management functions are provided as library functions or C language macros. These can be
called from a task-independent portion and while dispatching and interrupts are disabled.

5.4.1 CPU Interrupt Control

These functions are for CPU external interrupt flag control.
Generally they do not perform any operation on the interrupt controller.
DI() and EI() are C language macros.

• DI(UINT intsts)

intsts CPU interrupt status (details are implementation-dependent)
This is not a pointer.

Disables all external interrupts.

The status prior to disabling interrupts is stored in intsts.

• EI(UINT intsts)

intsts CPU interrupt status (details are implementation-dependent)
Enables all external interrupts.

More precisely, this macro restores the status in intsts. That is, the interrupt status reverts
to what it was before interrupts were disabled by DI(). If there were interrupts disabled at the
time DI() was executed, those interrupts are not enabled by EI(). All interrupts can be enabled,
however, by specifying 0 in intsts.

intsts must be either the values stored in it by DI() or 0. If any other value is specified, the
behavior is not guaranteed.

• BOOL isDI(UINT intsts)

intsts CPU interrupt status (details are implementation-dependent)
Return code:

TRUE (not 0): Interrupts disabled
FALSE: Interrupts enabled

Gets the status of external interrupt disabling stored in intsts.

Interrupts disabled status is the status in which T-Kernel/OS determines that interrupts are
disabled.

intsts must by the value stored by DI(). If any other value is specified, the behavior is not
guaranteed.

Sample usage:

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.4. INTERRUPT MANAGEMENT FUNCTIONS 251

void foo()
{

UINT intsts;

DI(intsts);

if (isDI(intsts)) {
/* Interrupts were already disabled at the time this function was called.*/

} else {
/* Interrupts were enabled at the time this function was called. */

}

EI(intsts);

}

5.4.2 Control of Interrupt Controller

These functions control the interrupt controller.
Generally they do not perform any operation with respect to the CPU interrupt flag.

typedef UINT INTVEC; /* interrupt vector */

The specific details of the interrupt vectors (INTVEC) are implementation-dependent. Preferably, how-
ever, they should be the same numbers as the interrupt definition numbers specified with tk def int,
or should allow for simple conversion to and from those numbers.

• UINT DINTNO(INTVEC intvec)

Converts an interrupt vector to the corresponding interrupt definition number.

• void EnableInt(INTVEC intvec)

• void EnableInt(INTVEC intvec, INT level)

Enables the interrupt specified in intvec.

In a system that allows interrupt priority level to be specified, the level parameter can be used to
specify the interrupt priority level. The precise meaning of level is implementation-dependent.

Both methods with and without level must be provided.

• void DisableInt(INTVEC intvec)

Disables the interrupt specified in intvec.

Generally, interrupts raised while interrupts are disabled are made pending, and are raised after
interrupts are enabled by EnableInt(). ClearInt() must be used if it is desired to clear interrupts
occurring in interrupts disabled state.

• void ClearInt(INTVEC intvec)

Clears any interrupts raised for intvec.

• void EndOfInt(INTVEC intvec)

Issues EOI (End Of Interrupt) to the interrupt controller intvec must be an interrupt for which
EOI can be issued. Generally this must be executed at the end of an interrupt handler.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

252 CHAPTER 5. T-KERNEL/SM FUNCTIONS

• BOOL CheckInt(INTVEC intvec)

Checks whether interrupt intvec has been raised.

If interrupt intvec has been raised, it returns TRUE (value other than 0), else FALSE.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.5. IO PORT ACCESS SUPPORT FUNCTIONS 253

5.5 IO Port Access Support Functions

IO port access support functions are provided as library functions or C language macros. These can be
called from a task-independent portion or while dispatching and interrupts are disabled.

5.5.1 IO Port Access

In a system with separate IO space and memory space, an IO port access function accesses IO space.
In a system with memory-mapped IO only, an IO port access function accesses memory space. Using
these functions will improve software portability and readability even in a memory-mapped IO system.

—_w Word (32-bit) units
—_h Half-word (16-bit) units
—_b Byte (8-bit) units

• void out_w(INT port, UW data)

• void out_h(INT port, UH data)

• void out_b(INT port, UB data)

port IO port address data Data to be written
Writes data to an IO port.

• UW in_w(INT port)

• UH in_h(INT port)

• UB in_b(INT port) port IO port address return code Data to be read
Reads data from an IO port.

5.5.2 Micro wait

• void WaitUsec(UINT usec)

• void WaitNsec(UINT nsec)

usec Wait time (microseconds)
nsec Wait time (nanoseconds)

Performs a micro wait for the specified interval.

These waits occur in an ordinary busy loop, and as such are easily influenced by the runtime
environment, such as execution in RAM, execution in ROM, memory cache on or off, etc. These
wait times are therefore not very accurate.

These waits are not the same as an OS WAIT state. The system state remains as RUN state.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

254 CHAPTER 5. T-KERNEL/SM FUNCTIONS

5.6 Power Management Functions

Power management functions are called from T-Kernel/OS. See tk set pow.
The manner of calling these functions is implementation-dependent. Simple system calls are possible,
as is the use of a trap. Use of an extended SVC or other means that makes use of OS functions is not
possible, however. Providing these functions in T-Monitor is another option.
The specifications given here for low pow and off pow are reference specifications. Since these functions
are used only inside T-Kernel, other specifications may be devised as well. It is even possible to
design completely different specifications in order to realize more advanced power-saving features. If the
functionality is similar to that specified here, however, it would be best to follow these specifications as
closely as practical.

• void low_pow(void)

Switches to low-power mode and waits for an interrupt to be raised. This function is called from
the task dispatcher, and performs the following processing.

(A) Goes to low-power mode.

(B) Waits for an external interrupt to be raised.

(C) When an external interrupt is raised, restores normal power mode and returns to its caller.

This function is called in interrupts disabled state. Interrupts must not be enabled. The speed of
response to an interrupt affects processing speed, and should be as fast as possible.

• void off_pow(void)

Suspends the system. When a resume factor occurs, it resumes system operation.

This function is called from tk set pow, and performs the following processing.

(A) Puts the hardware in suspended state.

(B) Waits for a resume factor to occur.

(C) When a resume factor occurs, returns from suspended state and returns to its caller.

This function is called in interrupts disabled state. Interrupts must not be enabled. The device
drivers perform the suspending and resuming of peripherals and other devices.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.7. SYSTEM CONFIGURATION INFORMATION MANAGEMENT FUNCTIONS 255

5.7 System Configuration Information Management Functions

System configuration information management functions are provided for storing, managing and making
available information about the system configuration (maximum number of tasks, etc.) and any other
information. These are not functions for adding or modifying information when the system is running.
How the system configuration information is to be stored is not specified here, but it is generally put
in memory (ROM/RAM). This functionality is therefore not intended for storing large amounts of
information.
Standard definitions are specified for some system configuration information, but additional information
may be defined and used for applications, subsystems, or device drivers.
The format of system configuration information consists of a name and defined data as a set.

• Name
The name is a string of up to 16 characters.
Characters that can be used (UB) are a to z, A to Z, 0 to 9 and (under bar).

• Defined data
Data consists of numbers (integers) or character strings.
Characters that can be used (UB) are any characters other than 0x00 to 0x1F, 0x7F, or 0xFF
(character codes).

Sample:

Name Defined Data
SysVer 1 0
SysName T-Kernel Version 1.00

5.7.1 System Configuration Information Acquisition

System configuration information is acquired by using extended SVC. This function is used inside T-
Kernel, and can also be used by applications, subsystems, device drivers and so on. Use inside T-Kernel
does not have to go through extended SVC; this choice is implementation-dependent.

• INT tk_get_cfn(UB *name, INT *val, INT max)

name Name
val Array storing numeric strings
max Number of elements in val array
return code Defined numeric information count or error

Gets numeric string information from system configuration information. This function gets up to
max items of numerical string information defined by the name specified in the name parameter and
stores the acquired information in val. The number of items of defined numeric string information
is passed in the return code. If return code > max, this indicates that not all the information could
be stored. By specifying max = 0, the number of numeric strings can be found out without actually
storing them in val.

E NOEXS is returned if no information is defined with the name specified in the name parameter.
The behavior if the information defined as name is a character string is indeterminate.

This function can be invoked from any protection level, without being limited by the protection
level from which T-Kernel/OS system call can be invoked.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

256 CHAPTER 5. T-KERNEL/SM FUNCTIONS

• INT tk_get_cfs(UB *name, UB *buf, INT max)

name Name
buf Array storing character string
max Maximum size of buf (in bytes)
return code Size of defined character string information (in bytes) or error

Gets character string information from system configuration information. This function gets up to
max characters of character string information defined by the name specified in the name parameter
and stores the acquired information in buf. If the acquired character string is shorter than max
characters, it is terminated by ‘\0’ when stored. The length of the defined character string
information (not including ‘\0’) is passed in the return code. If return code > max, this indicates
that not all the information could be stored. By specifying max = 0, the character string length
can be found out without actually storing anything in buf.

E NOEXS is returned if no information is defined with the name specified in the name parameter.
The behavior if the information defined as name is a numeric string is indeterminate.

This function can be invoked from any protection level, without being limited by the protection
level from which T-Kernel/OS system call can be invoked.

5.7.2 Standard System Configuration Information

The following information is defined as standard system configuration information. A standard infor-
mation name is prefixed by T.

N: Numeric string information
S: Character string information

• Product information

S: TSysName System name (product name)

• Maximum object counts

N: TMaxTskId Maximum tasks
N: TMaxSemId Maximum semaphores
N: TMaxFlgId Maximum event flags
N: TMaxMbxId Maximum mailboxes
N: TMaxMtxId Maximum mutexes
N: TMaxMbfId Maximum message buffers
N: TMaxPorId Maximum rendezvous ports
N: TMaxMpfId Maximum fixed-size memory pools
N: TMaxMplId Maximum variable-size memory pools
N: TMaxCycId Maximum cyclic handlers
N: TMaxAlmId Maximum alarm handlers
N: TMaxResId Maximum resource groups
N: TMaxSsyId Maximum subsystems
N: TMaxSsyPri Maximum subsystem priorities

• Other

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.7. SYSTEM CONFIGURATION INFORMATION MANAGEMENT FUNCTIONS 257

N: TSysStkSz Default system stack size (in bytes)
N: TSVCLimit Lowest protection level for system call invoking
N: TTimPeriod Timer interrupt interval (ms)

• Device management

N: TMaxRegDev Maximum device registrations
N: TMaxOpnDev Maximum device open count
N: TMaxReqDev Maximum device requests
N: TDEvtMbfSz Event notification message buffer size (in bytes)

Maximum event notification message length (in bytes)

If TDEvtMbfSz is not defined or if the message buffer size is a negative value, an event notification
message buffer is not used.

When multiple values are defined for any of the above numeric strings, they are stored in the same order
as in the explanation.

Examples:

tk_get_cfn("TDEvtMbfSz", val, 2)

val[0] = Event notification message buffer size
val[1] = Maximum event notification message length

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

258 CHAPTER 5. T-KERNEL/SM FUNCTIONS

5.8 Subsystem and Device Driver Starting

Entry routines like the following are defined for subsystems and device drivers.

ER main(INT ac, UB *av[])
{

if (ac >= 0) {
/* Subsystem/device driver start processing */

} else {
/* Subsystem/device driver termination processing */

}
return ercd;

}

This entry routine simply performs startup processing or termination processing for a subsystem or
device driver and does not provide any actual service. It must return to its caller as soon as the startup
processing or termination processing is performed. An entry routine must perform its processing as
quickly as possible and return to its caller.
An entry routine is called by the task which belongs to the system resource group at the time of normal
system startup or shutdown, and runs in the context of the OS start processing task or termination
processing task (protection level 0). In some OS implementations, it may run as a quasi-task portion.
In a system that supports dynamic loading of subsystems and device drivers, it may be called at other
times besides system startup and shutdown.
When there are multiple subsystems and device drivers, entry routines are called one at a time for each,
at system startup and shutdown. In no case are multiple entry routines called by different tasks at the
same time. Accordingly, if subsystem or device driver initialization needs to be performed in a certain
order, this order can be maintained by completing all necessary processing before returning from an
entry routine.
The entry routine function name is normally main, but any other name may be used if, for example,
main cannot be used because of linking with the OS.
The methods of registering entry routines with the OS, specifying parameters, and specifying the order
in which entry routines are called are all dependent on the OS implementation.

• Startup processing

ac Number of parameters (≥ 0)
av Parameters (string)
return code Error

A value of ac ≥ 0 indicates startup processing. After performing the subsystem or device driver
initialization, it registers the subsystem or device driver.
Passing of a negative value (error) as the return code means the startup processing failed. De-
pending on the OS implementation, the subsystem or device driver may be deleted from memory,
so error must not be returned while the subsystem or device driver is in registered state. The
registration must first be erased before returning error. Allocated resources must also be released.
They are not released automatically.
The parameters ac and av are the same as the parameters passed to the standard C language
main() function, with ac indicating the number of parameters and av indicating a parameter
string as an array of ac + 1 pointers. The array termination (av[ac]) is NULL.
av[0] is the name of the subsystem or device driver. Generally this is the file name of the subsystem
or device driver, but the kind of name in which it is stored is implementation-dependent. It is also
possible to have no name (blank string "").

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

5.8. SUBSYSTEM AND DEVICE DRIVER STARTING 259

Parameters after av[1] are defined separately for each subsystem and device driver.

After exit from the entry routine, the character string space specified by av is deleted, so parameters
must be saved to a different location as needed.

• Termination processing

ac −1
av NULL
return code Error

A value of ac < 0 indicates termination processing. After deleting the subsystem or device driver
registration, the entry routine releases allocated resources. If an error occurs during termination
processing, the processing must not be aborted but must be completed to the extent possible. If
some of the processing could not be completed normally, error is passed in the return code.

The behavior if termination processing is called while requests to the subsystem or device driver
are being processed is dependent on the subsystem or device driver implementation. Generally
termination processing is called at system shutdown and requests are not issued during process-
ing. For this reason, ordinarily behavior is not guaranteed in the case of requests issued during
termination processing.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

260 CHAPTER 5. T-KERNEL/SM FUNCTIONS

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

Chapter 6

T-Kernel/DS Functions

This chapter gives detailed explanations of the functions provided by T-Kernel Debugger Support (T-
Kernel/DS).
T-Kernel/DS provides functions enabling a debugger to reference T-Kernel internal states and run a
trace. The functions provided by T-Kernel/DS are only for debugger use and not for use by applications
or other programs.

[General cautions and notes]

• Except where otherwise noted, T-kernel/DS service calls (td_—) can be called from a task-
independent portion and while dispatching and interrupts are disabled. There may be some
limitations, however, imposed by particular implementations.

• When T-Kernel/DS service calls (td_—) are invoked in interrupts disabled state, they are pro-
cessed without enabling interrupts. Other OS states likewise remain unchanged during this pro-
cessing. Changes in OS states may occur if a service call is invoked while interrupts or dispatching
are enabled, since the OS continues operating.

• T-Kernel/DS service calls (td_—) cannot be invoked from a lower protection level than that at
which T-Kernel/OS system calls can be invoked (lower than TSVCLimit)(E OACV).

• Error codes such as E PAR, E MACV, and E CTX that always have the possibility of occurring are not
described here unless there is some special reason for doing so.

• Detection of error codes E PAR, E MACV, and E CTX is implementation-dependent; these may not
always be detected as error. For this reason, the service calls must not be invoked in such a way
that these errors might occur.

261

TEF020-S001-01.00.01/en

262 CHAPTER 6. T-KERNEL/DS FUNCTIONS

6.1 Kernel Internal State Reference Functions

These functions enable a debugger to get T-Kernel internal states. They include functions for getting a
list of objects, getting task precedence, getting the order in which tasks are queued, getting the status
of objects, system, and task registers, and getting time.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

6.1. KERNEL INTERNAL STATE REFERENCE FUNCTIONS 263

td lst tsk, td lst sem, td lst flg, td lst mbx
td lst mtx, td lst mbf, td lst por, td lst mpf
td lst mpl, td lst cyc, td lst alm, td lst ssy

Reference Object ID List

[C Language Interface]

INT ct = td_lst_tsk (ID list[], INT nent) ; /* task */
INT ct = td_lst_sem (ID list[], INT nent) ; /* semaphore */
INT ct = td_lst_flg (ID list[], INT nent) ; /* event flag */
INT ct = td_lst_mbx (ID list[], INT nent) ; /* mailbox */
INT ct = td_lst_mtx (ID list[], INT nent) ; /* mutex */
INT ct = td_lst_mbf (ID list[], INT nent) ; /* message buffer */
INT ct = td_lst_por (ID list[], INT nent) ; /* rendezvous port */
INT ct = td_lst_mpf (ID list[], INT nent) ; /* fixed-size memory pool */
INT ct = td_lst_mpl (ID list[], INT nent) ; /* variable-size memory pool */
INT ct = td_lst_cyc (ID list[], INT nent) ; /* cyclic handler */
INT ct = td_lst_alm (ID list[], INT nent) ; /* alarm handler */
INT ct = td_lst_ssy (ID list[], INT nent) ; /* subsystem */

[Parameters]

ID list[] Location of object ID list
INT nent Maximum number of list entries

[Return Parameters]

INT ct Number of objects used
or Error Code

[Description]

Gets a list of IDs of objects currently being used, and puts in list up to nent IDs. The number of objects
used is passed in the return code. If return code > nent, this means not all IDs could be got.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

264 CHAPTER 6. T-KERNEL/DS FUNCTIONS

td rdy que
Get Task Precedence

[C Language Interface]

INT ct = td_rdy_que (PRI pri, ID list[], INT nent) ;

[Parameters]

PRI pri Task priority
ID list[] Location of task ID list
INT nent Maximum number of list entries

[Return Parameters]

INT ct Number of priority pri tasks in a run state
or Error Code

[Description]

Gets a list of IDs of the tasks in a run state (READY state or RUN state) whose task priority is pri,
arranged in order from highest to lowest precedence.
This function stores in the location designated in list up to nent task IDs, arranged in order of
precedence starting from the highest-precedence task ID at the head of the list.
The number of tasks in a run state with priority pri is passed in the return code. If return code > nent,
this means not all task IDs could be stored.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

6.1. KERNEL INTERNAL STATE REFERENCE FUNCTIONS 265

td sem que, td flg que, td mbx que, td mtx que
td smbf que, td rmbf que, td cal que, td acp que
td mpf que, td mpl que

Reference Queue

[C Language Interface]

INT ct = td_sem_que (ID semid, ID list[], INT nent) ; /* semaphore */
INT ct = td_flg_que (ID flgid, ID list[], INT nent) ; /* event flag */
INT ct = td_mbx_que (ID mbxid, ID list[], INT nent) ; /* mailbox */
INT ct = td_mtx_que (ID mtxid, ID list[], INT nent) ; /* mutex */
INT ct = td_smbf_que (ID mbfid, ID list[], INT nent) ; /* message buffer send */
INT ct = td_rmbf_que (ID mbfid, ID list[], INT nent) ; /* message buffer receive */
INT ct = td_cal_que (ID porid, ID list[], INT nent) ; /* rendezvous call */
INT ct = td_acp_que (ID porid, ID list[], INT nent) ; /* rendezvous accept */
INT ct = td_mpf_que (ID mpfid, ID list[], INT nent) ; /* fixed-size memory pool */
INT ct = td_mpl_que (ID mplid, ID list[], INT nent) ; /* variable-size memory pool */

[Parameters]

ID —id Object ID
ID list[] Location of waiting task IDs
INT nent Maximum number of list entries

[Return Parameters]

INT ct Number of waiting tasks
or Error Code

[Error Codes]

E ID Bad identifier
E NOEXS Object does not exist

[Description]

Gets a list of IDs of tasks waiting for the object designated in —id.
This function stores in the location designated in list up to nent task IDs, arranged in the order in which
tasks are queued, starting from the first task in the queue. The number of queued tasks is passed in the
return code. If return code > nent, this means not all task IDs could be stored.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

266 CHAPTER 6. T-KERNEL/DS FUNCTIONS

td ref tsk
Reference Task State

[C Language Interface]

ER ercd = td_ref_tsk (ID tskid, TD_RTSK *rtsk);

[Parameters]

ID tskid Task ID (TSK SELF can be designated)
TD RTSK rtsk Packet address for returning the task state

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Bad identifier
E NOEXS Object does not exist

[Description]

Gets the state of the task designated in tskid. This function is similar to tk ref tsk, with the task
start address and stack information added to the state information obtained.

typedef struct td_rtsk {
VP exinf; /* extended information */
PRI tskpri; /* current priority */
PRI tskbpri; /* base priority */
UINT tskstat; /* task state */
UINT tskwait; /* wait factor */
ID wid; /* waiting object ID */
INT wupcnt; /* queued wakeup request count */
INT suscnt; /* SUSPEND request nesting count */
RELTIM slicetime; /* maximum continuous run time (ms) */
UINT waitmask; /* masked wait factors */
UINT texmask; /* allowed task exceptions */
UINT tskevent; /* raised task event */
FP task; /* task start address */
INT stksz; /* user stack size (in bytes) */
INT sstksz; /* system stack size (in bytes) */
VP istack; /* user stack pointer initial value */
VP isstack; /* system stack pointer initial value */

} TD_RTSK;

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

6.1. KERNEL INTERNAL STATE REFERENCE FUNCTIONS 267

The stack area extends from the stack pointer initial value toward the low addresses for the number of
bytes designated as the stack size.

istack− stksz ≤ user stack area < istack

isstack− sstksz ≤ system stack area < isstack

Note that the stack pointer initial value (istack, isstack) is not the same as its current position. The
stack area may be used even before a task is started. Calling td get reg gets the stack pointer current
position.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

268 CHAPTER 6. T-KERNEL/DS FUNCTIONS

td ref sem, td ref flg, td ref mbx, td ref mtx
td ref mbf, td ref por, td ref mpf, td ref mpl
td ref cyc, td ref alm, td ref ssy

Reference Queue

[C Language Interface]

ER ercd = td_ref_sem (ID semid, TD_RSEM *rsem); /* semaphore */
ER ercd = td_ref_flg (ID flgid, TD_RFLG *rflg); /* event flag */
ER ercd = td_ref_mbx (ID mbxid, TD_RMBX *rmbx); /* mailbox */
ER ercd = td_ref_mtx (ID mtxid, TD_RMTX *rmtx); /* mutex */
ER ercd = td_ref_mbf (ID mbfid, TD_RMBF *rmbf); /* message buffer */
ER ercd = td_ref_por (ID porid, TD_RPOR *rpor); /* rendezvous port */
ER ercd = td_ref_mpf (ID mpfid, TD_RMPF *rmpf); /* fixed-size memory pool */
ER ercd = td_ref_mpl (ID mplid, TD_RMPL *rmpl); /* variable-size memory pool */
ER ercd = td_ref_cyc (ID cycid, TD_RCYC *rcyc); /* cyclic handler */
ER ercd = td_ref_alm (ID almid, TD_RALM *ralm); /* alarm handler */
ER ercd = td_ref_ssy (ID ssid, TD_RSSY *rssy); /* subsystem */

[Parameters]

ID —id Object ID
TD R— r— Address of status information packet

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Bad identifier
E NOEXS Object does not exist

[Description]

Gets the status of an object. This is similar to tk ref —. The return packets are defined as follows.

/*
*Semaphore status information td_ref_sem
*/

typedef struct td_rsem {
VP exinf; /* extended information */
ID wtsk; /* waiting task ID */
INT semcnt; /* current semaphore count */

} TD_RSEM;

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

6.1. KERNEL INTERNAL STATE REFERENCE FUNCTIONS 269

/*
*Event flag status information td_ref_flg
*/

typedef struct td_rflg {
VP exinf; /* extended information */
ID wtsk; /* waiting task ID */
UINT flgptn; /* current event flag pattern */

} TD_RFLG;

/*
*Mailbox status information td_ref_mbx
*/

typedef struct td_rmbx {
VP exinf; /* extended information */

ID wtsk; /* waiting task ID */
T_MSG *pk_msg; /* next message to be received */

} TD_RMBX;

/*
*Mutex status information td_ref_mtx
*/

typedef struct td_rmtx {
VP exinf; /* extended information */
ID bhtsk; /* locking task ID */
ID wtsk; /* ID of task waiting for lock */

} TD_RMTX;

/*
* Message buffer status information td_ref_mbf
*/

typedef struct td_rmbf {
VP exinf; /* extended information */
ID wtsk; /* receive waiting task ID */
ID stsk; /* send waiting task ID */
INT msgsz; /* size (in bytes) of next message to be received */
INT frbufsz; /* free buffer size (in bytes) */
INT maxmsz; /* maximum message length (in bytes) */

} TD_RMBF;

/*
*Rendezvous port status information td_ref_por
*/

typedef struct td_rpor {
VP exinf; /* extended information */
ID wtsk; /* call waiting task ID */
ID atsk; /* acceptance waiting task ID */
INT maxcmsz; /* call message maximum length (in bytes) */
INT maxrmsz; /* accept message maximum length (in bytes) */

} TD_RPOR;

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

270 CHAPTER 6. T-KERNEL/DS FUNCTIONS

/*
*Fixed-size memory pool status information td_ref_mpf
*/

typedef struct td_rmpf {
VP exinf; /* extended information */
ID wtsk; /* waiting task ID */
INT frbcnt; /* free block count */

} TD_RMPF;

/*
*Variable-size memory pool status information td_ref_mpl
*/

typedef struct td_rmpl {
VP exinf; /* extended information */
ID wtsk; /* waiting task ID */
INT frsz; /* total free space (in bytes) */
INT maxsz; /* maximum contiguous free space (in bytes) */

} TD_RMPL;

/*
*Cyclic handler status information td_ref_cyc
*/

typedef struct td_rcyc {
VP exinf; /* extended information */
RELTIM lfttim; /* time remaining until next handler start */
UINT cycstat; /* cyclic handler status */

} TD_RCYC;
]
/*
*Alarm handler status information td_ref_alm
*/

typedef struct td_ralm {
VP exinf; /* extended information */
RELTIM lfttim; /* time remaining until next handler start */
UINT almstat; /* alarm handler status */

} TD_RALM;

/*
*Subsystem status information td_ref_ssy
*/

typedef struct td_rssy {
PRI ssypri; /* subsystem priority */
INT resblksz; /* resource control block size (in bytes) */

} TD_RSSY;

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

6.1. KERNEL INTERNAL STATE REFERENCE FUNCTIONS 271

td ref tex
Reference Task Exception Status

[C Language Interface]

ER ercd = td_ref_tex (ID tskid, TD_RTEX *pk_rtex);

[Parameters]

ID tskid Task ID (TSK SELF can be designated)
TD RTEX* pk rtex Packet address for returning the task exception status

[Return Parameters]

ER ercd Error code

pk rtex detail:

UINT pendtex Raised task exceptions
UINT texmask Allowed task exceptions

[Error Codes]

E OK Normal completion
E ID Bad identifier
E NOEXS Object does not exist

[Description]

Gets the task exception status. This is similar to tk ref tex.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

272 CHAPTER 6. T-KERNEL/DS FUNCTIONS

td inf tsk
Reference Task Statistics

[C Language Interface]

ER ercd = td_inf_tsk (ID tskid, TD_ITSK *pk_itsk, BOOL clr);

[Parameters]

ID tskid Task ID (TSK SELF can be designated)
TD ITSK* pk itsk Packet address for returning task statistics
BOOL clr Task statistics clear flag

[Return Parameters]

ER ercd Error code

pk itsk detail:

RELTIM stime Cumulative system-level run time (ms)
RELTIM utime Cumulative user-level run time (ms)

[Error Codes]

E OK Normal completion
E ID ID number is invalid
E NOEXS Object does not exist

[Description]

Gets task statistics. This is similar to tk inf tsk. When clr = TRUE (6= 0), accumulated information
is reset (cleared to 0) after getting the statistics.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

6.1. KERNEL INTERNAL STATE REFERENCE FUNCTIONS 273

td get reg
Get Task Register

[C Language Interface]

ER ercd = td_get_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs) ;

[Parameters]

ID tskid Task ID (TSK SELF cannot be designated)

[Return Parameters]

T REGS pk regs General register
T EIT pk eit Registers saved when exception is raised
T CREGS pk cregs Control register
ER ercd Error code

The contents of T REGS, T EIT, and T CREGS are defined for each CPU and implementation.

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task designated in tskid does not exist)
E OBJ Invalid object state (issued for current RUN state task)

[Description]

Gets the register values of the task designated in tskid. This is similar to tk get reg.
Registers cannot be referenced for the task currently in RUN state. Except when a task-independent
portion is executing, the current RUN state task is the invoking task.
When NULL is designated for regs, eit, or cregs, the corresponding register is not referenced.
The contents of T REGS, T EIT, and T CREGS are implementation-dependent.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

274 CHAPTER 6. T-KERNEL/DS FUNCTIONS

td set reg
Set Task Register

[C Language Interface]

ER ercd = td_set_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs) ;

[Parameters]

ID tskid Task ID (TSK SELF cannot be designated)
T REGS pk regs General registers
T EIT pk eit Registers saved when exception is raised
T CREGS pk cregs Control registers

The contents of T REGS, T EIT, and T CREGS are defined for each CPU and implementation.

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E ID Invalid ID number (tskid is invalid or cannot be used)
E NOEXS Object does not exist (the task designated in tskid does not exist)
E OBJ Invalid object state (issued for current RUN state task)

[Description]

Sets registers of the task designated in tskid. This is similar to tk set reg.
Registers cannot be set for the task currently in RUN state. Except when a task-independent portion
is executing, the current RUN state task is the invoking task.
When NULL is designated for regs, eit, or cregs, the corresponding register is not set.
The contents of T REGS, T EIT, and T CREGS are implementation-dependent.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

6.1. KERNEL INTERNAL STATE REFERENCE FUNCTIONS 275

td ref sys
Reference System Status

[C Language Interface]

ER ercd = td_ref_sys (TD_RSYS *pk_rsys) ;

[Parameters]

TD RSYS* pk rsys Packet address for returning status information

[Return Parameters]

ER ercd Error code

pk rsys detail:

INT sysstat System status
ID runtskid ID of current RUN state task
ID schedtskid ID of task scheduled to go to RUN state

[Error Codes]

E OK Normal completion

[Description]

Gets the system status. This is similar to tk ref sys.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

276 CHAPTER 6. T-KERNEL/DS FUNCTIONS

td get tim
Get System Time

[C Language Interface]

ER ercd = td_get_tim (SYSTIM *tim, UNIT *ofs) ;

[Parameters]

SYSTIM* tim Packet address for returning current time (ms)
UNIT* ofs Location for returning elapsed time from tim (nanoseconds)

[Return Parameters]

ER & ercd & Error code

tim detail:

Current time (ms)

ofs detail:

Elapsed time from tim (nanoseconds)

[Error Codes]

E OK Normal completion

[Description]

Gets the current time as total elapsed milliseconds since 0:00:00 (GMT), January 1, 1985. The value
returned in tim is the same as that obtained by tk get tim. tim is the resolution of time interrupt
intervals (cycles), but even more precise time information is obtained in ofs as the elapsed time from
tim in nanoseconds. The resolution of ofs is implementation-dependent, but generally is the timer
hardware resolution.
Since tim is time counted based on timer interrupts, in some cases time is not refreshed, when a timer
interrupt cycle arrives while interrupts are disabled and the timer interrupt handler is not started (is
delayed). In such cases, the time as updated by the previous timer interrupt is returned in tim, and
the elapsed time from the previous timer interrupt is returned in ofs. Accordingly, in some cases ofs
will be a longer time than the timer interrupt cycle. The length of elapsed time that can be measured
by ofs depends on the hardware, but preferably it should be able to measure at least up to twice the
timer interrupt cycle (0 ≤ ofs < twice the timer interrupt cycle).
Note that the time returned in tim and ofs is the time at some point between the calling of and return
from td get tim. It is neither the time at which td get tim was called nor the time of return from
td get tim. In order to obtain more accurate information, this function should be called in interrupts
disabled state.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

6.1. KERNEL INTERNAL STATE REFERENCE FUNCTIONS 277

td get otm
Get System Operating Time

[C Language Interface]

ER ercd = td_get_otm (SYSTIM *tim, UINT *ofs) ;

[Parameters]

SYSTIM* tim Packet address for returning operating time (ms)
UNIT* ofs Location for returning elapsed time from tim (nanoseconds)

[Return Parameters]

ER ercd Error code

tim detail:

Operating time (ms)

ofs detail:

Elapsed time from tim (nanoseconds)

[Error Codes]

E OK Normal completion

[Description]

Gets the system operating time (uptime, as elapsed milliseconds since the system was booted). The
value returned in tim is the same as that obtained by tk get otm. tim is the resolution of time interrupt
intervals (cycles), but even more precise time information is obtained in ofs as the elapsed time from
tim in nanoseconds. The resolution of ofs is implementation-dependent, but generally is the timer
hardware resolution.
Since tim is time counted based on timer interrupts, in some cases time is not refreshed, when a timer
interrupt cycle arrives while interrupts are disabled and the timer interrupt handler is not started (is
delayed). In such cases, the time as updated by the previous timer interrupt is returned in tim, and the
elapsed time from the previous timer interrupt is returned in ofs. Accordingly, in some cases ofs will
be a longer time than the timer interrupt cycle. The length of elapsed time that can be measured by
ofs depends on the hardware, but preferably it should be able to measure at least up to twice the timer
interrupt cycle (0 ≤ ofs < twice the timer interrupt cycle).
Note that the time returned in tim and ofs is the time at some point between the calling of and return
from td get otm. It is neither the time at which td get otm was called nor the time of return from
td get otm. In order to obtain more accurate information, this function should be called in interrupts
disabled state.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

278 CHAPTER 6. T-KERNEL/DS FUNCTIONS

td ref dsname
Refer to DS Object Name

[C Language Interface]

ER ercd = td_ref_dsname (UINT type, ID id, UB *dsname) ;

[Parameters]

UINT type object type
ID id object ID
UB *dsname address to return DS object name

[Return Parameters]

ER ercd Error code
dsname DS object name, set at object creation or by td set dsname()

[Error Codes]

E OK Normal completion
E PAR Invalid object type
E NOEXS Object does not exist
E OBJ DS object name is not used

[Description]

Get DS object name (dsname), which is set at object creation. The object is specified by object type
(type) and object ID (id). Object types (type) are as follows:

TN TSK 0x01 /* task */
TN SEM 0x02 /* semaphore */
TN FLG 0x03 /* event flag */
TN MBX 0x04 /* mail box */
TN MBF 0x05 /* message buffer */
TN POR 0x06 /* rendezvous port */
TN MTX 0x07 /* mutex */
TN MPL 0x08 /* variable-size memory pool */
TN MPF 0x09 /* fixed-size memory pool */
TN CYC 0x0a /* cyclic handler */
TN ALM 0x0b /* alarm handler */

DS object name is valid if TA DSNAME is set as object attribute. If DS object name is changed by
td set dsname(), then td ref dsname() refers to the new name. DS object name needs to satisfy the
following conditions, but character code range is not checked by T-Kernel.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

6.1. KERNEL INTERNAL STATE REFERENCE FUNCTIONS 279

character (UB) range: a – z, A – Z, 0 – 9

name length: 8 byte (NULL is filled if name length is less than 8 byte)

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

280 CHAPTER 6. T-KERNEL/DS FUNCTIONS

td set dsname
Set DS Object Name

[C Language Interface]

ER ercd = td_set_dsname (UINT type, ID id, UB *dsname) ;

[Parameters]

UINT type object type
ID id object ID
UB *dsname DS object name to be set

[Return Parameters]

ER ercd Error code

[Error Codes]

E OK Normal completion
E PAR Invalid object type
E NOEXS Object does not exist
E OBJ DS object name is not used

[Description]

Update DS object name (dsname), which is set at object creation. The object is specified by object type
(type) and object ID (id). Object types (type) are as same as that of td ref dsname(). DS object
name needs to satisfy the following conditions, but character code range is not checked by T-Kernel.

character (UB) range: a – z, A – Z, 0 – 9

name length: 8 byte (NULL is filled if name length is less than 8 byte)

DS object name is valid if TA DSNAME is set as object attribute. td set dsname() returns E OBJ error if
TA DSNAME attribute is not specified.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

6.2. TRACE FUNCTIONS 281

6.2 Trace Functions

These functions enable a debugger to trace program execution. Execution trace is performed by setting
hook routines.

• Return from a hook routine must be made after states have returned to where they were when
the hook routine was called. Restoring of registers, however, can be done in accord with the C
language function saving rules.

• In a hook routine, limitations on states must not be modified to make them less restrictive than
when the routine was called. For example, if the hook routine was called during interrupts disabled
state, interrupts must not be enabled.

• A hook routine was called at protection level 0.

• A hook routine inherits the stack at the time of the hook. Too much stack use may therefore cause
a stack overflow. The extent to which the stack can be used is not definite, since it differs with
the situation at the time of the hook. Switching to a separate stack in the hook routine would be
safer.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

282 CHAPTER 6. T-KERNEL/DS FUNCTIONS

td hoc svc
Define System Call/Extended SVC Hook Routine

[C Language Interface]

ER ercd = td_hok_svc (TD_HSVC *hsvc) ;

[Parameters]

TD HSVC hsvc Hook routine definition information

hsvc detail:

FP enter Hook routine before calling
FP leave Hook routine after calling

[Return Parameters]

ER ercd Error code

[Description]

Sets hook routines before and after the issuing of a system call or extended SVC. Setting NULL in hsvc
cancels a hook routine.
The objects of a trace are T-Kernel/OS system calls (tk_—) and extended SVC. Depending on the
implementation, generally tk ret int is not an object of a trace.
T-Kernel/DS service calls (td_—) are not objects of a trace.
A hook routine is called in the context from which the system call or extended SVC was called. For
example, the invoking task in a hook routine is the same as the task that invoked the system call or
extended SVC.
Since task dispatching and interrupts can occur inside system call processing, enter() and leave() are
not necessarily called in succession as a pair in every case. If a system call is one that does not return,
leave() will not be called.

VP enter(FN fncd, TD_CALINF *calinf, ...)

fncd Function code
< 0 System call
≥ 0 Extended SVC

calinf Caller information
... Parameters (variable number)
return code Any value passed to leave()

typedef struct td_calinf {

As information for determining the address from which a system call or extended SVC was called, it is

preferable to include information for performing a stack back-trace. The contents are implementation-

dependent, but generally consist of register values such as stack pointer and program counter.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

yura
テキスト ボックス
td_hok_svc

6.2. TRACE FUNCTIONS 283

} TD_CALINF;

This is called right before a system call or extended SVC. The value passed in the return code is passed
transparently to the corresponding leave(). This makes it possible to confirm the pairing of enter()
and leave() calls or to pass any other information.

exinf = enter(fncd, &calinf, ...)
ret = system call or extended SVC execution
leave(fncd , ret, exinf)

• System call The parameters are the same as the system call parameters.

Example:

For system call tk wai sem(ID semid, INT cnt, TMO tmout)

enter(TFN_WAI_SEM, &calinf, semid, cnt, tmout)

• Extended SVC The parameters are as in the packet passed to the extended SVC handler. fncd is
likewise the same as that passed to the extended SVC handler.

enter(FN fncd, TD_CALINF *calinf, VP pk_para)

void leave(FN fncd, INT ret, VP exinf)

fncd Function code
ret Return code of the system call or extended SVC
exinf Any value returned by enter()

This is called right after returning from a system call or extended SVC.

When a hook routine is set after a system call or extended SVC is called (while the system call or
extended SVC is executing), in some cases leave() only may be called without calling enter().
In such a case NULL is passed in exinf. If, on the other hand, a hook routine is canceled after a
system call or extended SVC is called, there may be cases when enter() is called but not leave().

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

284 CHAPTER 6. T-KERNEL/DS FUNCTIONS

td hoc dsp
Define Task Dispatch Hook Routine

[C Language Interface]

ER ercd = td_hok_dsp (TD_HDSP *hdsp) ;

[Parameters]

TD HDSP hdsp Hook routine definition information

hdsp detail:
FP exec Hook routine when execution starts
FP stop Hook routine when execution stops

[Return Parameters]

ER ercd Error code

[Description]

Sets hook routines in the task dispatcher. A hook routine is canceled by setting NULL in hdsp.
The hook routines are called in dispatch disabled state. The hook routines must not invoke T-Kernel/OS
system calls (tk_—) or extended SVC. T-Kernel/DS service calls (td_—) may be invoked.

void exec(ID tskid, INT lsid)

tskid Task ID of the started or resumed task
lsid Logical ID of the task designated in tskid

This is called when the designated task starts execution or resumes. At the time exec() is called,
the task designated in tskid is already in RUN state and logical space has been switched. However,
execution of the tskid task program code occurs after the return from exec().

void stop(ID tskid, INT lsid, UINT tskstat)

tskid Task ID of the executed or stopped task
lsid Logical ID of the task designated in tskid

tskstat State of the task designated in tskid
This is called when the designated task executes or stops. tskstat indicates the task state after stopping,
as one of the following states.

TTS RDY READY state
TTS WAI WAIT state
TTS SUS SUSPEND state
TTS WAS WAIT-SUSPEND state
TTS DM DORMANT state
0 NON-EXISTENT state

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

yura
テキスト ボックス
td_hok_dsp

6.2. TRACE FUNCTIONS 285

At the time stop() is called, the task designated in tskid has already entered the state indicated in
tskstat. The logical space is indeterminate.

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

286 CHAPTER 6. T-KERNEL/DS FUNCTIONS

td hoc int
Define Interrupt Handler Hook Routine

[C Language Interface]

ER ercd = td_hok_int (TD_HINT *hint) ;

[Parameters]

TD HINT hint Hook routine definition information

hint detail:

FP enter Hook routine before calling handler
FP leave Hook routine after calling handler

[Return Parameters]

ER ercd Error code

[Description]

Sets hook routines before and after an interrupt handler is called. Hook routine setting cannot be done
independently for different exception or interrupt factors. One pair of hook routines is set in common
for all exception and interrupt factors.
Setting hint to NULL cancels the hook routines.
The hook routines are called as task-independent portion (part of the interrupt handler). Accordingly,
the hook routines can call only those system calls that can be invoked from a task-independent portion.
Note that hook routines can be set only for interrupt handlers defined by tk def int with the TA HLNG
attribute. A TA ASM attribute interrupt handler cannot be hooked by a hook routine. Hooking of a
TA ASM attribute interrupt handler is possible only by directly manipulating the exception/interrupt
vector table. The actual methods are implementation-dependent.

void enter(UINT dintno)
void leave(UINT dintno)

dintno Interrupt definition number
The parameters passed to enter() and leave() are the same as those passed to the exception/interrupt
handler. Depending on the implementation, information other than dintno may also be passed. A hook
routine is called as follows from a high-level language support routine.

enter(dintno);
inthdr(dintno); /* exception/interrupt handler */
leave(dintno);

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

yura
テキスト ボックス
td_hok_int

6.2. TRACE FUNCTIONS 287

enter() is called in interrupts disabled state, and interrupts must not be enabled. Since leave()
assumes the status on return from inthdr(), the interrupts disabled or enabled status is indeterminate.
enter() can obtain only the same information as that obtainable by inthdr(). Information that cannot
be obtained by inthdr() cannot be obtained by enter(). The information that can be obtained by
enter() and inthdr() is guaranteed by the specification to include dintno, but other information is
implementation-dependent. Note that since interrupts disabled state and other states may change while
leave() is running, leave() does not necessarily obtain the same information as that obtained by
enter() or inthdr().

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

288 CHAPTER 6. T-KERNEL/DS FUNCTIONS

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

Chapter 7

Reference

7.1 List of C Language Interface

T-Kernel/OS

Task Management Functions

ID tskid = tk_cre_tsk (T_CTSK *pk_ctsk);
ER ercd = tk_del_tsk (ID tskid);
ER ercd = tk_sta_tsk (ID tskid, INT stacd);
void tk_ext_tsk ();
void tk_exd_tsk ();
ER ercd = tk_ter_tsk (ID tskid);
ER ercd = tk_chg_pri (ID tskid, PRI tskpri);
ER ercd = tk_chg_slt (ID tskid, RELTIM slicetime);
ER ercd = tk_get_tsp (ID tskid, T_TSKSPC *pk_tskspc);
ER ercd = tk_set_tsp (ID tskid, T_TSKSPC *pk_tskspc);
ID resid = tk_get_rid (ID tskid);
ID oldid = tk_set_rid (ID tskid, ID resid);
ER ercd = tk_get_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs);
ER ercd = tk_set_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs);
ER ercd = tk_get_cpr (ID tskid, INT copno, T_COPREGS *pk_copregs);
ER ercd = tk_set_cpr (ID tskid, INT copno, T_COPREGS *pk_copregs);
ER ercd = tk_inf_tsk (ID tskid, T_ITSK *pk_itsk, BOOL clr);
ER ercd = tk_ref_tsk (ID tskid, T_RTSK *pk_rtsk);

Task-Dependent Synchronization Functions

ER ercd = tk_slp_tsk (TMO tmout);
ER ercd = tk_wup_tsk (ID tskid);
INT wupcnt = tk_can_wup (ID tskid);
ER ercd = tk_rel_wai (ID tskid);
ER ercd = tk_sus_tsk (ID tskid);
ER ercd = tk_rsm_tsk (ID tskid);
ER ercd = tk_frsm_tsk (ID tskid);
ER ercd = tk_dly_tsk (RELTIM dlytim);
ER ercd = tk_sig_tev (ID tskid, INT tskevt);

289

TEF020-S001-01.00.01/en

290 CHAPTER 7. REFERENCE

INT tevptn = tk_wai_tev (INT waiptn, TMO tmout);
INT tskwait = tk_dis_wai (ID tskid, UINT waitmask);
ER ercd = tk_ena_wai (ID tskid);

Task Exception Handling Functions

ER ercd = tk_def_tex (ID tskid, T_DTEX *pk_dtex);
ER ercd = tk_ena_tex (ID tskid, UINT texptn);
ER ercd = tk_dis_tex (ID tskid, UINT texptn);
ER ercd = tk_ras_tex (ID tskid, INT texcd);
INT texcd = tk_end_tex (BOOL enatex);
ER ercd = tk_ref_tex (ID tskid, T_RTEX *pk_rtex);

Synchronization and Management Functions

ID semid = tk_cre_sem (T_CSEM *pk_csem);
ER ercd = tk_del_sem (ID semid);
ER ercd = tk_sig_sem (ID semid, INT cnt);
ER ercd = tk_wai_sem (ID semid, INT cnt, TMO tmout);
ER ercd = tk_ref_sem (ID semid, T_RSEM *pk_rsem);
ID flgid = tk_cre_flg (T_CFLG *pk_cflg);
ER ercd = tk_del_flg (ID flgid);
ER ercd = tk_set_flg (ID flgid, UINT setptn);
ER ercd = tk_clr_flg (ID flgid, UINT clrptn);
ER ercd = tk_wai_flg (ID flgid, UINT waiptn, UINT wfmode, UINT *p_flgptn, TMO tmout);
ER ercd = tk_ref_flg (ID flgid, T_RFLG *pk_rflg);
ID mbxid = tk_cre_mbx (T_CMBX* pk_cmbx);
ER ercd = tk_del_mbx (ID mbxid);
ER ercd = tk_snd_mbx (ID mbxid, T_MSG *pk_msg);
ER ercd = tk_rcv_mbx (ID mbxid, T_MSG **ppk_msg, TMO tmout);
ER ercd = tk_ref_mbx (ID mbxid, T_RMBX *pk_rmbx);

Extended Synchronization and Communication Functions

ID mtxid = tk_cre_mtx (T_CMTX *pk_cmtx);
ER ercd = tk_del_mtx (ID mtxid);
ER ercd = tk_loc_mtx (ID mtxid, TMO tmout);
ER ercd = tk_unl_mtx (ID mtxid);
ER ercd = tk_ref_mtx (ID mtxid, T_RMTX *pk_rmtx);
ID mbfid = tk_cre_mbf (T_CMBF *pk_cmbf);
ER ercd = tk_del_mbf (ID mbfid);
ER ercd = tk_snd_mbf (ID mbfid, VP msg, INT msgsz, TMO tmout);
INT msgsz = tk_rcv_mbf (ID mbfid, VP msg, TMO tmout);
ER ercd = tk_ref_mbf (ID mbfid, T_RMBF *pk_rmbf);
ID porid = tk_cre_por (T_CPOR *pk_cpor);
ER ercd = tk_del_por (ID porid);
INT rmsgsz = tk_cal_por (ID porid, UINT calptn, VP msg, INT cmsgsz, TMO tmout);
INT cmsgsz = tk_acp_por (ID porid, UINT acpptn, RNO *p_rdvno, VP msg, TMO tmout);
ER ercd = tk_fwd_por (ID porid, UINT calptn, RNO rdvno, VP msg, INT cmsgsz);
ER ercd = tk_rpl_rdv (RNO rdvno, VP msg, INT rmsgsz);
ER ercd = tk_ref_por (ID porid, T_RPOR *pk_rpor);

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

7.1. LIST OF C LANGUAGE INTERFACE 291

Memory Pool Management Functions

ID mpfid = tk_cre_mpf (T_CMPF *pk_cmpf);
ER ercd = tk_del_mpf (ID mpfid);
ER ercd = tk_get_mpf (ID mpfid, VP *p_blf, TMO tmout);
ER ercd = tk_rel_mpf (ID mpfid, VP blf);
ER ercd = tk_ref_mpf (ID mpfid, T_RMPF *pk_rmpf);
ID mplid = tk_cre_mpl (T_CMPL *pk_cmpl);
ER ercd = tk_del_mpl (ID mplid);
ER ercd = tk_get_mpl (ID mplid, W blksz, VP *p_blk, TMO tmout);
ER ercd = tk_rel_mpl (ID mplid, VP blk);
ER ercd = tk_ref_mpl (ID mplid, T_RMPL *pk_rmpl);

Time Management Functions

ER ercd = tk_set_tim (SYSTIM *pk_tim);
ER ercd = tk_get_tim (SYSTIM *pk_tim);
ER ercd = tk_get_otm (SYSTIM *pk_tim);
ID cycid = tk_cre_cyc (T_CCYC *pk_ccyc);
ER ercd = tk_del_cyc (ID cycid);
ER ercd = tk_sta_cyc (ID cycid);
ER ercd = tk_stp_cyc (ID cycid);
ER ercd = tk_ref_cyc (ID cycid, T_RCYC *pk_rcyc);
ID almid = tk_cre_alm (T_CALM *pk_calm);
ER ercd = tk_del_alm (ID almid);
ER ercd = tk_sta_alm (ID almid, RELTIM almtim);
ER ercd = tk_stp_alm (ID almid);
ER ercd = tk_ref_alm (ID almid, T_RALM *pk_ralm);

Interrupt Management Functions

ER ercd = tk_def_int (UINT dintno, T_DINT *pk_dint);
void tk_ret_int ();

System Management Functions

ER ercd = tk_rot_rdq (PRI tskpri);
ID tskid = tk_get_tid ();
ER ercd = tk_dis_dsp ();
ER ercd = tk_ena_dsp ();
ER ercd = tk_ref_sys (T_RSYS *pk_rsys);
ER ercd = tk_set_pow (UINT powmode);
ER ercd = tk_ref_ver (T_RVER *pk_rver);

Subsystem Management Functions

ER ercd = tk_def_ssy (ID ssid, T_DSSY *pk_dssy);
ER ercd = tk_sta_ssy (ID ssid, ID resid, INT info);
ER ercd = tk_cln_ssy (ID ssid, ID resid, INT info);
ER ercd = tk_evt_ssy (ID ssid, INT evttyp, ID resid, INT info);

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

292 CHAPTER 7. REFERENCE

ER ercd = tk_ref_ssy (ID ssid, T_RSSY *pk_rssy);
ID resid = tk_cre_res ();
ER ercd = tk_del_res (ID resid);
ER ercd = tk_get_res (ID resid, ID ssid, VP *p_resblk);

T-Kernel/SM

System Memory Management Functions

ER tk_get_smb (VP *addr, INT nblk, UINT attr);
ER tk_rel_smb (VP addr);
void* Vmalloc (size_t size);
void* Vcalloc (size_t nmemb, size_t size);
void* Vrealloc (void *ptr, size_t size);
void Vfree (void *ptr);
void* Kmalloc (size_t size);
void* Kcalloc (size_t nmemb, size_t size);
void* Krealloc (void *ptr, size_t size);
void Kfree (void *ptr);

Address Space Management Functions

ER SetTaskSpace (ID tskid);
ER ChkSpaceR (VP addr, INT len);
ER ChkSpaceRW (VP addr, INT len);
ER ChkSpaceRE (VP addr, INT len);
INT ChkSpaceBstrR (UB *str, INT max);
INT ChkSpaceBstrRW (UB *str, INT max);
INT ChkSpaceTstrR (TC *str, INT max);
INT ChkSpaceTstrRW (TC *str, INT max);
ER LockSpace (VP addr, INT len);
ER UnlockSpace (VP addr, INT len);
INT CnvPhysicalAddr (VP vaddr, INT len, VP *paddr);
ER MapMemory (VP paddr, INT len, UINT attr, VP *laddr);
ER UnmapMemory (VP laddr);

Device Management Functions

ID tk_opn_dev (UB *devnm, UINT omode);
ER tk_cls_dev (ID dd, UINT option);
ID tk_rea_dev (ID dd, INT start, VP buf, INT size, TMO tmout);
ER tk_srea_dev (ID dd, INT start, VP buf, INT size, INT *asize);
ID tk_wri_dev (ID dd, INT start, VP buf, INT size, TMO tmout);
ER tk_swri_dev (ID dd, INT start, VP buf, INT size, INT *asize);
ID tk_wai_dev (ID dd, ID reqid, INT *asize, ER *ioer, TMO tmout);
INT tk_sus_dev (UINT mode);
ID tk_get_dev (ID devid, UB *devnm);
ID tk_ref_dev (UB *devnm, T_RDEV *rdev);
ID tk_oref_dev (ID dd, T_RDEV *rdev);
INT tk_lst_dev (T_LDEV *ldev, INT start, INT ndev);
INT tk_evt_dev (ID devid, INT evttyp, VP evtinf);

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

7.1. LIST OF C LANGUAGE INTERFACE 293

ID tk_def_dev (UB *devnm, T_DDEV *ddev, T_IDEV *idev);
ER tk_ref_idv (T_IDEV *idev);

Interrupt Management Functions

DI (UINT intsts);
EI (UINT intsts);

BOOL isDI (UINT intsts);
UINT DINTNO (INTVEC intvec);
void EnableInt (INTVEC intvec [, INT level]);
void DisableInt (INTVEC intvec);
void ClearInt (INTVEC intvec);
void EndOfInt (INTVEC intvec);
BOOL CheckInt (INTVEC intvec);

IO Port Access Support Functions

void out_w (INT port, UW data);
void out_h (INT port, UH data);
void out_b (INT port, UB data);
UW in_w (INT port);
UH in_h (INT port);
UB in_b (INT port);
void WaitUsec (UINT usec);
void WaitNsec (UINT nsec);

Power Management Functions

void low_pow (void);
void off_pow (void);

System Configuration Information Management Functions

INT tk_get_cfn (UB *name, INT *val, INT max);
INT tk_get_cfs (UB *name, UB *buf, INT max);

T-Kernel/DS

Kernel Internal State Acquisition Functions

INT ct = td_lst_tsk (ID list[], INT nent);
INT ct = td_lst_sem (ID list[], INT nent);
INT ct = td_lst_flg (ID list[], INT nent);
INT ct = td_lst_mbx (ID list[], INT nent);
INT ct = td_lst_mtx (ID list[], INT nent);
INT ct = td_lst_mbf (ID list[], INT nent);
INT ct = td_lst_por (ID list[], INT nent);
INT ct = td_lst_mpf (ID list[], INT nent);
INT ct = td_lst_mpl (ID list[], INT nent);
INT ct = td_lst_cyc (ID list[], INT nent);
INT ct = td_lst_alm (ID list[], INT nent);

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

294 CHAPTER 7. REFERENCE

INT ct = td_lst_ssy (ID list[], INT nent);
INT ct = td_rdy_que (PRI pri, ID list[], INT nent);
INT ct = td_sem_que (ID semid, ID list[], INT nent);
INT ct = td_flg_que (ID flgid, ID list[], INT nent);
INT ct = td_mbx_que (ID mbxid, ID list[], INT nent);
INT ct = td_mtx_que (ID mtxid, ID list[], INT nent);
INT ct = td_smbf_que (ID mbfid, ID list[], INT nent);
INT ct = td_rmbf_que (ID mbfid, ID list[], INT nent);
INT ct = td_cal_que (ID porid, ID list[], INT nent);
INT ct = td_acp_que (ID porid, ID list[], INT nent);
INT ct = td_mpf_que (ID mpfid, ID list[], INT nent);
INT ct = td_mpl_que (ID mplid, ID list[], INT nent);
ER ercd = td_ref_tsk (ID tskid, TD_RTSK *rtsk);
ER ercd = td_ref_sem (ID semid, TD_RSEM *rsem);
ER ercd = td_ref_flg (ID flgid, TD_RFLG *rflg);
ER ercd = td_ref_mbx (ID mbxid, TD_RMBX *rmbx);
ER ercd = td_ref_mtx (ID mtxid, TD_RMTX *rmtx);
ER ercd = td_ref_mbf (ID mbfid, TD_RMBF *rmbf);
ER ercd = td_ref_por (ID porid, TD_RPOR *rpor);
ER ercd = td_ref_mpf (ID mpfid, TD_RMPF *rmpf);
ER ercd = td_ref_mpl (ID mplid, TD_RMPL *rmpl);
ER ercd = td_ref_cyc (ID cycid, TD_RCYC *rcyc);
ER ercd = td_ref_alm (ID almid, TD_RALM *ralm);
ER ercd = td_ref_ssy (ID ssid, TD_RSSY *rssy);
ER ercd = td_ref_tex (ID tskid, TD_RTEX *pk_rtex);
ER ercd = td_inf_tsk (ID tskid, TD_ITSK *pk_itsk, BOOL clr);
ER ercd = td_get_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs);
ER ercd = td_set_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs);
ER ercd = td_ref_sys (TD_RSYS *pk_rsys);
ER ercd = td_get_tim (SYSTIM *tim, UNIT *ofs);
ER ercd = td_get_otm (SYSTIM *tim, UINT *ofs);
ER ercd = td_ref_dsname (UINT type, ID id, UB *dsname);
ER ercd = td_set_dsname (UINT type, ID id, UB *dsname);

Trace Functions

ER ercd = td_hok_svc (TD_HSVC *hsvc);
ER ercd = td_hok_dsp (TD_HDSP *hdsp);
ER ercd = td_hok_int (TD_HINT *hint);

7.2 List of Error Codes

Normal Completion Error Class (0)

E OK 0 Normal completion

Internal Error Class (5 to 8)

E SYS ERCD(-5, 0) System error

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

7.2. LIST OF ERROR CODES 295

An error of unknown cause affecting the system as a whole.

E NOCOP ERCD(-6, 0) The specified co-processor cannot be used (not installed, or abnormal operation
detected)

This error code is returned when the specified co-processor is not installed in the currently
running hardware, or abnormal co-processor operation was detected.

Unsupported Error Class (9 to 16)

E NOSPT ERCD(-9, 0) Unsupported function

When some system call functions are not supported and such a function was specified, error
code E RSATR or E NOSPTS is returned. If E RSATR does not apply, error code E NOSPT is
returned.

E RSFN ERCD(-10, 0) Reserved function code number

This error code is returned when it is attempted to execute a system call specifying a
reserved function code (undefined function code), and also when it is attempted to execute
an undefined extended SVC handler.

E RSATR ERCD(-11, 0) Reserved attribute

This error code is returned when an undefined or unsupported object attribute is specified.
Checking for this error may be omitted if system-dependent optimization is implemented.

Parameter Error Class (17 to 24)

E PAR ERCD(-17, 0) Parameter error

Checking for this error may be omitted if system-dependent optimization is implemented.

E ID ERCD(-18, 0) Invalid ID number

E ID is an error that occurs only for objects having an ID number. Error code E PAR is
returned when a static error is detected for such as reserved number or out of range of such
as interrupt definition number.

Call Context Error Class (25 to 32)

E CTX ERCD(-25, 0) Context error

This error indicates that the specified system call cannot be issued in the current context
(task portion/task-independent portion or handler RUN state).

This error must be issued whenever there is a meaningful context error in issuing a system
call, such as calling from a task-independent portion a system call that may put the invoking
task in WAIT state. Due to implementation limitations, there may be other system calls
that when called from a given context (such as an interrupt handler) will cause this error to
be returned.

E MACV ERCD(-26, 0) Memory cannot be accessed; memory access privilege error

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

296 CHAPTER 7. REFERENCE

Error detection is implementation-dependent.

E OACV ERCD(-27, 0) Object access privilege error

This error code is returned when a user task tries to manipulate a system object. The
definition of system objects and error detection are implementation-dependent.

E ILUSE ERCD(-28, 0) System call illegal use

Resource Constraint Error Class (33 to 40)

E NOMEM ERCD(-33, 0) Insufficient memory

This error code is returned when there is insufficient memory (no memory) for allocating an
object control block space, user stack space, memory pool space, message buffer space or the
like.

E LIMIT ERCD(-34, 0) System limit exceeded

This error code is returned when it is attempted to create more of an object than the system
allows.

Object State Error Class (41 to 48)

E OBJ ERCD(-41, 0) Invalid object state
E NOEXS ERCD(-42, 0) Object does not exist
E QOVR ERCD(-43, 0) Queuing or nesting overflow

Wait Error Class (49 to 56)

E RLWAI ERCD(-49, 0) WAIT state released
E TMOUT ERCD(-50, 0) Polling failed or timeout
E DLT ERCD(-51, 0) The object being waited for was deleted
E DISWAI ERCD(-52, 0) Wait released by wait disabled state

Device Error Class (57 to 64) (T-Kernel/SM)

E IO ERCD(-57, 0) IO error

• Error information specific to individual devices may be defined in E IO sub-codes.

E NOMDA ERCD(-58, 0) No media

Status Error Class (65 to 72) (T-Kernel/SM)

E BUSY ERCD(-65, 0) Busy
E ABORT ERCD(-66, 0) Processing was aborted
E RONLY ERCD(-67, 0) Write protected

Copyright c© 2002–2005 by T-Engine Forum TEF020–S001–01.00.00/en

TEF020-S001-01.00.01/en

TEF020-S001-01.00.01/en

TEF020-S001-01.00.01/en

	 History of Revisions
	 System Call Notation
	 Index of T-Kernel API
	1 T-Kernel Overview
	1.1 Position of T-Kernel
	1.2 Scalability

	2 Concepts Underlying the T-Kernel Specification
	2.1 Meaning of Basic Terminology
	2.2 Task States and Scheduling Rules
	2.2.1 Task States
	2.2.2 Task Scheduling Rules

	2.3 Interrupt Handling
	2.4 Task Exception Handling
	2.5 System States
	2.5.1 System States While Non-task Portion Is Executing
	2.5.2 Task-Independent Portion and Quasi-Task Portion

	2.6 Objects
	2.7 Memory
	2.7.1 Address Space
	2.7.2 Nonresident Memory
	2.7.3 Protection Levels

	3 Common T-Kernel Specifications
	3.1 Data Types
	3.1.1 General Data Types
	3.1.2 Other Defined Data Types

	3.2 System Calls
	3.2.1 System Call Format
	3.2.2 System Calls Possible from Task-Independent Portion
	3.2.3 Restricting System Call Invocation
	3.2.4 Modifying a Parameter Packet
	3.2.5 Function Codes
	3.2.6 Error Codes
	3.2.7 Timeout
	3.2.8 Relative Time and System Time

	3.3 High-Level Language Support Routines

	4 T-Kernel/OS Functions
	4.1 Task Management Functions
	 tk_cre_tsk (Create Task)
	 tk_del_tsk (Delete Task)
	 tk_sta_tsk (Start Task)
	 tk_ext_tsk (Exit Task)
	 tk_exd_tsk (Exit and Delete Task)
	 tk_ter_tsk (Terminate Task)
	 tk_chg_pri (Change Task Priority)
	 tk_chg_slt (Change Task Slice-time)
	 tk_get_tsp (Get Task Space)
	 tk_set_tsp (Set Task Space)
	 tk_get_rid (Get Task Resource ID)
	 tk_set_rid (Set Task Resource ID)
	 tk_get_reg (Get Task Registers)
	 tk_set_reg (Set Task Registers)
	 tk_get_cpr (Get Task Co-processor Registers)
	 tk_set_cpr (Set Task Co-processor Registers)
	 tk_inf_tsk (Get Task Information)
	 tk_ref_tsk (Reference Task Status)

	4.2 Task-Dependent Synchronization Functions
	 tk_slp_tsk (Sleep Task)
	 tk_wup_tsk (Wakeup Task)
	 tk_can_wup (Cancel Wakeup Task)
	 tk_rel_wai (Release Wait)
	 tk_sus_tsk (Suspend Task)
	 tk_rsm_tsk (Resume Task)
	 tk_frsm_tsk (Force Resume Task)
	 tk_dly_tsk (Delay Task)
	 tk_sig_tev (Signal Task Event)
	 tk_wai_tev (Wait Task Event)
	 tk_dis_wai (Disable Task Wait)
	 tk_ena_wai (Enable Task Wait)

	4.3 Task Exception Handling Functions
	 tk_def_tex (Define Task Exception Handler)
	 tk_ena_tex (Enable Task Exception)
	 tk_dis_tex (Disable Task Exception)
	 tk_ras_tex (Raise Task Exception)
	 tk_end_tex (End Task Exception Handler)
	 tk_ref_tex (Reference Task Exception Status)

	4.4 Synchronization and Communication Functions
	4.4.1 Semaphore
	 tk_cre_sem (Create Semaphore)
	 tk_del_sem (Delete Semaphore)
	 tk_sig_sem (Signal Semaphore)
	 tk_wai_sem (Wait on Semaphore)
	 tk_ref_sem (Reference Semaphore Status)

	4.4.2 Event Flag
	 tk_cre_flg (Create Event Flag)
	 tk_del_flg (Delete Event Flag)
	 tk_set_flg (Set Event Flag)
	 tk_clr_flg (Clear Event Flag)
	 tk_wai_flg (Wait Event Flag)
	 tk_ref_flg (Reference Event Flag Status)

	4.4.3 Mailbox
	 tk_cre_mbx (Create Mailbox)
	 tk_del_mbx (Delete Mailbox)
	 tk_snd_mbx (Send Message to Mailbox)
	 tk_rcv_msg (Receive Message from Mailbox)
	 tk_ref_mbx (Reference Mailbox Status)

	4.5 Extended Synchronization and Communication Functions
	4.5.1 Mutex
	 tk_cre_mtx (Create Mutex)
	 tk_del_mtx (Delete Mutex)
	 tk_loc_mtx (Lock Mutex)
	 tk_unl_mtx (Unlock Mutex)
	 tk_ref_mtx (Refer Mutex Status)

	4.5.2 Message Buffer
	 tk_cre_mbf (Create Message Buffer)
	 tk_del_mbf (Delete Message Buffer)
	 tk_snd_mbf (Send Message to Message Buffer)
	 tk_rcv_mbf (Receive Message from Message Buffer)
	 tk_ref_mbf (Get Message Buffer Status)

	4.5.3 Rendezvous Port
	 tk_cre_por (Create Port for Rendezvous)
	 tk_del_por (Delete Port for Rendezvous)
	 tk_cal_por (Call Port for Rendezvous)
	 tk_acp_por (Accept Port for Rendezvous)
	 tk_fwd_por (Forward Rendezvous to Other Port)
	 tk_rpl_rdv (Reply Rendezvous)
	 tk_ref_por (Reference Port Status)

	4.6 Memory Pool Management Functions
	4.6.1 Fixed-size Memory Pool
	 tk_cre_mpf (Create Fixed-size Memory Pool)
	 tk_del_mpf (Delete Fixed-size Memory Pool)
	 tk_get_mpf (Get Fixed-size Memory Block)
	 tk_rel_mpf (Release Fixed-size Memory Block)
	 tk_ref_mpf (Reference Fixed-size Memory Pool Status)

	4.6.2 Variable-size Memory Pool
	 tk_cre_mpl (Create Variable-size Memory Pool)
	 tk_del_mpl (Delete Variable-size Memory Pool)
	 tk_get_mpl (Get Variable-size Memory Block)
	 tk_rel_mpl (Release Variable-size Memory Block)
	 tk_ref_mpl (Reference Variable-size Memory Pool Status)

	4.7 Time Management Functions
	4.7.1 System Time Management
	 tk_set_tim (Set Time)
	 tk_get_tim (Get Time)
	 tk_get_otm (Get Operating Time)

	4.7.2 Cyclic Handler
	 tk_cre_cyc (Create Cyclic Handler)
	 tk_del_cyc (Delete Cyclic Handler)
	 tk_sta_cyc (Start Cyclic Handler)
	 tk_stp_cyc (Stop Cyclic Handler)
	 tk_ref_cyc (Reference Cyclic Handler Status)

	4.7.3 Alarm Handler
	 tk_cre_alm (Create Alarm Handler)
	 tk_del_alm (Delete Alarm Handler)
	 tk_sta_alm (Start Alarm Handler)
	 tk_stp_alm (Stop Alarm Handler)
	 tk_ref_alm (Reference Alarm Handler Status)

	4.8 Interrupt Management Functions
	 tk_def_int (Define Interrupt Handler)
	 tk_ret_int (Return from Interrupt Handler)

	4.9 System Management Functions
	 tk_rot_rdq (Rotate Ready Queue)
	 tk_get_tid (Get Task Identifier)
	 tk_dis_dsp (Disable Dispatch)
	 tk_ena_dsp (Enable Dispatch)
	 tk_ref_sys (Reference System Status)
	 tk_set_pow (Set Power Mode)
	 tk_ref_ver (Reference Version Information)

	4.10 Subsystem Management Functions
	 tk_def_ssy (Define Subsystem)
	 tk_sta_ssy (Call Startup Function of Sub-System)
	 tk_cln_ssy (Call Cleanup Function of Sub-System)
	 tk_evt_ssy (Call Event Function of Sub-System)
	 tk_ref_ssy (Reference Subsystem Status)
	 tk_cre_res (Create Resource Group)
	 tk_del_res (Delete Resource Group)
	 tk_get_res (Get Resource Management Block)

	5 T-Kernel/SM Functions
	5.1 System Memory Management Functions
	5.1.1 System Memory Allocation
	 tk_get_smb (Allocate System Memory Block)
	 tk_rel_smb (Release System Memory Block)
	 tk_ref_smb (Reference System Memory Block)

	5.1.2 Memory Allocation Libraries
	 Vmalloc (Allocate Nonresident Memory)
	 Vcalloc (Allocate Nonresident Memory Elements)
	 Vrealloc (Reallocate Nonresident Memory)
	 Vfree (Release Nonresident Memory)
	 Kmalloc (Allocate Resident Memory)
	 Kcalloc (Allocate Resident Memory Elements)
	 Krealloc (Reallocate Resident Memory)
	 Kfree (Release Resident Memory)

	5.2 Address Space Management Functions
	5.2.1 Address Space Configuration
	 SetTaskSpace (Set Task Space)

	5.2.2 Address Space Checking
	 ChkSpaceR (Check Read Access Privilege)
	 ChkSpaceRW (Check Read-Write Access Privilege)
	 ChkSpaceRE (Check Read-Execute Access Privilege)
	 ChkSpaceBstrR (Check Read Access Privilege (String))
	 ChkSpaceBstrRW (Check Read-Write Access Privilege (String))
	 ChkSpaceTstrR (Check Read Access Privilege (TRON Code))
	 ChkSpaceTstrRW (Check Read-Write Access Privilege (TRON Code))

	5.2.3 Lock Address Space
	 LockSpace (Lock Address Space)
	 UnlockSpace (Unlock Address Space)

	5.2.4 Get Physical Address
	 CnvPhysicalAddr (Get Physical Address)

	5.2.5 Map Memory
	 MapMemory (Map Memory)
	 UnmapMemory (Unmap Memory)

	5.3 Device Management Functions
	5.3.1 Basic Concepts
	5.3.2 Application Interface
	 tk_opn_dev (Open Device)
	 tk_cls_dev (Close Device)
	 tk_rea_dev (Read Device)
	 tk_srea_dev (Synchronous Read)
	 tk_wri_dev (Write Device)
	 tk_swri_dev (Synchronous Write)
	 tk_wai_dev (Wait Device)
	 tk_sus_dev (Suspend Device)
	 tk_get_dev (Get Device Name)
	 tk_ref_dev (Reference Device by Device Name)
	 tk_oref_dev (Reference Device by Device Descriptor)
	 tk_lst_dev (Get Registered Device Information)
	 tk_evt_dev (Send Driver Request Event)

	5.3.3 Device Registration
	 tk_def_dev (Register Device)
	 tk_ref_idv (Reference Device Initialization Information)

	5.3.4 Device Driver Interface
	5.3.5 Attribute Data
	5.3.6 Device Event Notification
	5.3.7 Device Suspend/Resume Processing
	5.3.8 Special Properties of Disk Devices

	5.4 Interrupt Management Functions
	5.4.1 CPU Interrupt Control
	 DI (Disable Interrupts)
	 EI (Enable Interrupts)
	 isDI (Get Interrupt Disable Status)

	5.4.2 Control of Interrupt Controller
	 DINTNO (Get Interrupt Definition Number)
	 EnableInt (Enable Interrupt (Level))
	 DisableInt (Disable Interrupt)
	 ClearInt (Clear Interrupts)
	 EndOfInt (Issue End of Interrupt)
	 CheckInt (Check Interrupt)

	5.5 IO Port Access Support Functions
	5.5.1 IO Port Access
	 out_w (Write Word Data)
	 out_h (Write Half-Word Data)
	 out_b (Write Byte Data)
	 in_w (Read Word Data)
	 in_h (Read Half-Word Data)
	 in_b (Read Byte Data)

	5.5.2 Micro wait
	 WaitUsec (Microwait (Nanoseconds))
	 WaitNsec (Microwait (Microseconds))

	5.6 Power Management Functions
	 low_pow (Enter Low-Power Mode)
	 off_pow (Suspend System)

	5.7 System Configuration Information Management Functions
	5.7.1 System Configuration Information Acquisition
	 tk_get_cfn (Get Numeric String)
	 tk_get_cfs (Get Character String)

	5.7.2 Standard System Configuration Information

	5.8 Subsystem and Device Driver Starting

	6 T-Kernel/DS Functions
	6.1 Kernel Internal State Reference Functions
	 td_lst_tsk (Reference Object ID List)
	 td_lst_sem (Reference Object Id List)
	 td_lst_flg (Reference Object Id List)
	 td_lst_mbx (Reference Object ID List)
	 td_lst_mtx (Reference Object Id List)
	 td_lst_mbf (Reference Object Id List)
	 td_lst_por (Reference Object ID List)
	 td_lst_mpf (Reference Object Id List)
	 td_lst_mpl (Reference Object Id List)
	 td_lst_cyc (Reference Object ID List)
	 td_lst_alm (Reference Object Id List)
	 td_lst_ssy (Reference Object Id List)
	 td_rdy_que (Get Task Precedence)
	 td_sem_que (Reference Queue)
	 td_flg_que (Reference Queue)
	 td_mbx_que (Reference Queue)
	 td_mtx_que (Reference Queue)
	 td_smbf_que (Reference Queue)
	 td_rmbf_que (Reference Queue)
	 td_cal_que (Reference Queue)
	 td_acp_que (Reference Queue)
	 td_mpf_que (Reference Queue)
	 td_mpl_que (Reference Queue)
	 td_ref_tsk (Reference Task State)
	 td_ref_sem (Reference Object Status)
	 td_ref_flg (Reference Object Status)
	 td_ref_mbx (Reference Object Status)
	 td_ref_mtx (Reference Object Status)
	 td_ref_mbf (Reference Object Status)
	 td_ref_por (Reference Object Status)
	 td_ref_mpf (Reference Object Status)
	 td_ref_mpl (Reference Object Status)
	 td_ref_cyc (Reference Object Status)
	 td_ref_alm (Reference Object Status)
	 td_ref_ssy (Reference Object Status)
	 td_ref_tex (Reference Task Exception Status)
	 td_inf_tsk (Reference Task Statistics)
	 td_get_reg (Get Task Register)
	 td_set_reg (Set Task Register)
	 td_ref_sys (Reference System Status)
	 td_get_tim (Get System Time)
	 td_get_otm (Get System Operating Time)
	 td_ref_dsname (Refer to DS Object Name)
	 td_set_dsname (Set DS Object Name)

	6.2 Trace Functions
	 td_hoc_svc (Define System Call/Extended SVC Hook Routine)
	 td_hoc_dsp (Define Task Dispatch Hook Routine)
	 td_hoc_int (Define Interrupt Handler Hook Routine)

	7 Reference
	7.1 List of C Language Interface
	T-Kernel/OS
	T-Kernel/SM
	T-Kernel/DS

	7.2 List of Error Codes

