
T-Kernel 2.0 Specification

December 2014

T-Engine Forum
http://www.t-engine.org/

T-Kernel 2.0 Specification ii

Copyright © 2011-2014 T-Engine Forum

T-Kernel Specification Version 2.01.00

Copyright © 2011-2014 by T-Engine Forum

You should not transcribe the content, duplicate a part of this specification, etc. without the consent of T-
Engine Forum.

For improvement, etc., information in this specification is subject to change without notice.

For information about this specification, please contact the following:

T-Engine Forum Secretariat
In YRP Ubiquitous Networking Laboratory
28th Kowa Building, 2-20-1 Nishi-gotanda
Shinagawa, Tokyo
Japan 141-0031
TEL: +81-(0)-3-5437-0572
FAX: +81-(0)-3-5437-2399
E-mail: office@t-engine.org

T-Kernel 2.0 Specification iii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

2.00.00 2011-04-01 Initial release. T-Engine Forum

2.00.01 2012-11-21 • Fixed specification of ChkSpaceBstrR
and CheckSpaceBstrRW to return the
length of the accessible string in bytes,
not in TRON code characters.

• Replaced the terms 'access privilege
information' and 'access privilege' with
'caller access privilege information', to
clarify their meanings to avoid
misunderstandings.

• Corrected SetTaskSpace description to
be more accurate, and clarified its
ambiguous portions.

• Fixed a few typographical errors.

T-Engine Forum

2.00.02 2013-02-01
• Removed descriptions on function for

canceling wakeup requests, which is
non-existent.

• Moved some descriptions on tk_rel_wai
from footnote to the main body of the
document, in order to clarify that the
behavior is defined as a part of this
specification.

T-Engine Forum

2.00.03 2013-12-18
• Fixed a typo: ac[0] -> av[0]

T-Engine Forum

T-Kernel 2.0 Specification iv

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

2.01.00 2014-11-20
• Clarification and clean up of the use of

the following names: T-Kernel/OS,
T-Kernel/SM, T-Kernel/DS

• Cleaning up explanations of error codes
that can be generated in
implementation-dependent manner.

• BOOL is now typedef of unsigned int.

• Additional explanation is provided for
relative time and system time.

• E_NOMEM is removed from the list of
the errors returned by tk_dly_tsk.

• Spurious explanation is removed from
the explanation of tk_clr_flg.

• CONST modifier is added to the
argument msg of tk_fwd_por and
tk_rpl_rdv.

• Display position of the note to
tk_rot_rdq is changed.

• CONST modifier is added to the
argument addr of ChkSpaceR,
ChkSpaceRW, and ChkSpaceRE.

• Explanation is enhanced for the return
error codes for ChkSpaceBstrR,
ChkSpaceBstrRW, ChkSpaceTstrR, and
ChkSpaceTstrR.

• Explanations for parameters are
modified:

– wtsk: Wait Task Information ->
Waiting Task ID

– stsk: Send Task Information -> Send
Waiting Task ID

– atsk: Accept Task Information ->
Accept Waiting Task ID

– nblk: Number of Block -> Number of
Blocks

– nmemb: Number of Memory Block ->
Number of Memory Blocks

– nreq: Number of Request -> Number
of Requests

T-Engine Forum

T-Kernel 2.0 Specification v

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

2.01.00 2014-11-20
• Fixed typos:

– MAKER -> maker

– unable to write to attr -> unable to
write to addr

– blockcount -> blockcont

– pk_calm, almatr, or almhdr is invalid
-> pk_calm or almhdr is invalid

– 5.11.1.1 Parameter -> Parameter

– 5.11.2.1 Parameter -> Parameter

T-Engine Forum

T-Kernel 2.0 Specification vi

Contents

API Notation 1

Index of T-Kernel/OS System Calls 3

Index of T-Kernel/SM Extended SVC and Libraries 7

Index of T-Kernel/DS System Calls 10

1 T-Kernel Overview 12

1.1 Position of T-Kernel . 13

1.2 Scalability . 15

1.3 T-Kernel 2.0 Overview . 16

1.3.1 Positioning and Basic Policy of T-Kernel 2.0 . 16

1.3.2 Additional Functions to T-Kernel 2.0 . 16

2 T-Kernel Concepts 18

2.1 Meaning of Basic Terminology . 19

2.2 Task States and Scheduling Rules . 21

2.2.1 Task States . 21

2.2.2 Task Scheduling Rules . 24

2.3 Interrupt Handling . 27

2.4 Task Exception Handling . 28

2.5 System States . 29

2.5.1 System States While Non-task Portion Is Executing . 29

2.5.2 Task-Independent Portion and Quasi-Task Portion . 30

2.6 Objects . 32

2.7 Memory . 33

2.7.1 Address Space . 33

2.7.2 Nonresident Memory . 33

2.7.3 Protection Levels . 34

T-Kernel 2.0 Specification vii

3 Common Rules of T-Kernel 35

3.1 Data Types . 36

3.1.1 General Data Types . 36

3.1.2 Other Defined Data Types . 37

3.2 System Calls . 39

3.2.1 System Call Format . 39

3.2.2 System Calls Possible from Task-Independent Portion . 40

3.2.3 Restricting System Call Invocation . 40

3.2.4 Modifying a Parameter Packet Format . 41

3.2.5 Function Codes . 41

3.2.6 Error Codes . 41

3.2.7 Timeout . 41

3.2.8 Relative Time and System Time . 42

3.2.9 Timer Interrupt Interval . 43

3.3 High-Level Language Support Routines . 44

4 T-Kernel/OS Functions 46

4.1 Task Management Functions . 47

4.1.1 tk_cre_tsk - Create Task . 48

4.1.2 tk_del_tsk - Delete Task . 52

4.1.3 tk_sta_tsk - Start Task . 53

4.1.4 tk_ext_tsk - Exit Task . 54

4.1.5 tk_exd_tsk - Exit and Delete Task . 55

4.1.6 tk_ter_tsk - Terminate Task . 56

4.1.7 tk_chg_pri - Change Task Priority . 58

4.1.8 tk_chg_slt - Change Task Slice Time . 60

4.1.9 tk_chg_slt_u - Change Task Slice Time (in microseconds) . 62

4.1.10 tk_get_tsp - Get Task Space . 63

4.1.11 tk_set_tsp - Set Task Space . 64

4.1.12 tk_get_rid - Refers to resource group to which task belongs 65

4.1.13 tk_set_rid - Set Task Resource ID . 66

4.1.14 tk_get_reg - Get Task Registers . 67

4.1.15 tk_set_reg - Set Task Registers . 69

4.1.16 tk_get_cpr - Get Task Coprocessor Registers . 70

4.1.17 tk_set_cpr - Set Task Coprocessor Registers . 72

4.1.18 tk_inf_tsk - Reference Task Statistics . 74

4.1.19 tk_inf_tsk_u - Reference Task Statistics (Microseconds) . 76

4.1.20 tk_ref_tsk - Reference Task Status . 77

4.1.21 tk_ref_tsk_u - Reference Task Status (Microseconds) . 80

T-Kernel 2.0 Specification viii

4.2 Task Synchronization Functions . 82

4.2.1 tk_slp_tsk - Sleep Task . 83

4.2.2 tk_slp_tsk_u - Sleep Task (in microseconds) . 85

4.2.3 tk_wup_tsk - Wakeup Task . 86

4.2.4 tk_can_wup - Cancel Wakeup Task . 87

4.2.5 tk_rel_wai - Release Wait . 88

4.2.6 tk_sus_tsk - Suspend Task . 90

4.2.7 tk_rsm_tsk - Resumes a task in a SUSPENDED state . 92

4.2.8 tk_frsm_tsk - Force Resume Task . 94

4.2.9 tk_dly_tsk - Delay Task . 96

4.2.10 tk_dly_tsk_u - Delay Task (in microseconds) . 97

4.2.11 tk_sig_tev - Signal Task Event . 98

4.2.12 tk_wai_tev - Wait Task Event . 100

4.2.13 tk_wai_tev_u - Wait Task Event (in microseconds) . 101

4.2.14 tk_dis_wai - Disable Task Wait . 102

4.2.15 tk_ena_wai - Enable Task Wait . 104

4.3 Task Exception Handling Functions . 105

4.3.1 tk_def_tex - Define Task Exception Handler . 106

4.3.2 tk_ena_tex - Enable Task Exception . 108

4.3.3 tk_dis_tex - Disable Task Exception . 109

4.3.4 tk_ras_tex - Raise Task Exception . 110

4.3.5 tk_end_tex - end task exception handler . 112

4.3.6 tk_ref_tex - Reference Task Exception Status . 114

4.4 Synchronization and Communication Functions . 115

4.4.1 Semaphore . 116

4.4.1.1 tk_cre_sem - Create Semaphore . 117

4.4.1.2 tk_del_sem - Delete Semaphore . 119

4.4.1.3 tk_sig_sem - Signal Semaphore . 120

4.4.1.4 tk_wai_sem - Wait on Semaphore . 121

4.4.1.5 tk_wai_sem_u - Wait on Semaphore (in microseconds) 122

4.4.1.6 tk_ref_sem - Reference Semaphore Status . 123

4.4.2 Event Flag . 124

4.4.2.1 tk_cre_flg - Create Event Flag . 125

4.4.2.2 tk_del_flg - Delete Event Flag . 127

4.4.2.3 tk_set_flg - Set Event Flag . 128

4.4.2.4 tk_clr_flg - Clear Event Flag . 129

4.4.2.5 tk_wai_flg - Wait Event Flag . 130

4.4.2.6 tk_wai_flg_u - Wait Event Flag (in microseconds) . 133

4.4.2.7 tk_ref_flg - Reference Event Flag Status . 134

T-Kernel 2.0 Specification ix

4.4.3 Mailbox . 135

4.4.3.1 tk_cre_mbx - Create Mailbox . 137

4.4.3.2 tk_del_mbx - Delete Mailbox . 139

4.4.3.3 tk_snd_mbx - Send Message to Mailbox . 140

4.4.3.4 tk_rcv_mbx - Receive Message from Mailbox . 142

4.4.3.5 tk_rcv_mbx_u - Receive Message from Mailbox (in microseconds) 144

4.4.3.6 tk_ref_mbx - Reference Mailbox Status . 145

4.5 Extended Synchronization and Communication Functions . 146

4.5.1 Mutex . 147

4.5.1.1 tk_cre_mtx - Create Mutex . 149

4.5.1.2 tk_del_mtx - Delete Mutex . 151

4.5.1.3 tk_loc_mtx - Lock Mutex . 152

4.5.1.4 tk_loc_mtx_u - Lock Mutex (in microseconds) . 154

4.5.1.5 tk_unl_mtx - Unlock Mutex . 155

4.5.1.6 tk_ref_mtx - Refer Mutex Status . 157

4.5.2 Message Buffer . 158

4.5.2.1 tk_cre_mbf - Create Message Buffer . 160

4.5.2.2 tk_del_mbf - Delete Message Buffer . 163

4.5.2.3 tk_snd_mbf - Send Message to Message Buffer . 164

4.5.2.4 tk_snd_mbf_u - Send Message to Message Buffer (in microseconds) 166

4.5.2.5 tk_rcv_mbf - Receive Message from Message Buffer 167

4.5.2.6 tk_rcv_mbf_u - Receive Message from Message Buffer (in microseconds) 168

4.5.2.7 tk_ref_mbf - Reference Message Buffer Status . 169

4.5.3 Rendezvous . 171

4.5.3.1 tk_cre_por - Create Port for Rendezvous . 174

4.5.3.2 tk_del_por - Delete Port for Rendezvous . 176

4.5.3.3 tk_cal_por - Call Port for Rendezvous . 177

4.5.3.4 tk_cal_por_u - Call Port for Rendezvous (in microseconds) 179

4.5.3.5 tk_acp_por - Accept Port for Rendezvous . 180

4.5.3.6 tk_acp_por_u - Accept Port for Rendezvous (in microseconds) 184

4.5.3.7 tk_fwd_por - Forwards rendezvous to other port . 185

4.5.3.8 tk_rpl_rdv - Reply Rendezvous . 190

4.5.3.9 tk_ref_por - Reference Port Status . 192

4.6 Memory Pool Management Functions . 194

4.6.1 Fixed-size Memory Pool . 195

4.6.1.1 tk_cre_mpf - Create Fixed-size Memory Pool . 196

4.6.1.2 tk_del_mpf - Delete Fixed-size Memory Pool . 198

4.6.1.3 tk_get_mpf - Get Fixed-size Memory Block . 199

4.6.1.4 tk_get_mpf_u - Get Fixed-size Memory Block (Microseconds) 201

T-Kernel 2.0 Specification x

4.6.1.5 tk_rel_mpf - Release Fixed-size Memory Block . 202

4.6.1.6 tk_ref_mpf - Reference Fixed-size Memory Pool Status 203

4.6.2 Variable-size Memory Pool . 205

4.6.2.1 tk_cre_mpl - Create Variable-size Memory Pool . 206

4.6.2.2 tk_del_mpl - Delete Variable-size Memory Pool . 209

4.6.2.3 tk_get_mpl - Get Variable-size Memory Block . 210

4.6.2.4 tk_get_mpl_u - Get Variable-size Memory Block (Microseconds) 212

4.6.2.5 tk_rel_mpl - Release Variable-size Memory Block . 213

4.6.2.6 tk_ref_mpl - Reference Variable-size Memory Pool Status 214

4.7 Time Management Functions . 215

4.7.1 System Time Management . 216

4.7.1.1 tk_set_tim - Set Time . 217

4.7.1.2 tk_set_tim_u - Set Time (in microseconds) . 219

4.7.1.3 tk_get_tim - Get System Time . 220

4.7.1.4 tk_get_tim_u - Get System Time (Microseconds) . 221

4.7.1.5 tk_get_otm - Get Operating Time . 222

4.7.1.6 tk_get_otm_u - Get Operating Time (Microseconds) 223

4.7.2 Cyclic Handler . 224

4.7.2.1 tk_cre_cyc - Create Cyclic Handler . 225

4.7.2.2 tk_cre_cyc_u - Create Cyclic Handler (in microseconds) 228

4.7.2.3 tk_del_cyc - Delete Cyclic Handler . 230

4.7.2.4 tk_sta_cyc - Start Cyclic Handler . 231

4.7.2.5 tk_stp_cyc - Stop Cyclic Handler . 232

4.7.2.6 tk_ref_cyc - Reference Cyclic Handler Status . 233

4.7.2.7 tk_ref_cyc_u - Reference Cyclic Handler Status (Microseconds) 235

4.7.3 Alarm Handler . 236

4.7.3.1 tk_cre_alm - Create Alarm Handler . 237

4.7.3.2 tk_del_alm - Delete Alarm Handler . 239

4.7.3.3 tk_sta_alm - Start Alarm Handler . 240

4.7.3.4 tk_sta_alm_u - Start Alarm Handler (in microseconds) 241

4.7.3.5 tk_stp_alm - Stop Alarm Handler . 242

4.7.3.6 tk_ref_alm - Reference Alarm Handler Status . 243

4.7.3.7 tk_ref_alm_u - Reference Alarm Handler Status (Microseconds) 245

4.8 Interrupt Management Functions . 246

4.8.1 tk_def_int - Define Interrupt Handler . 247

4.8.2 tk_ret_int - Return from Interrupt Handler . 250

4.9 System Management Functions . 252

4.9.1 tk_rot_rdq - Rotate Ready Queue . 253

4.9.2 tk_get_tid - Get Task Identifier . 255

T-Kernel 2.0 Specification xi

4.9.3 tk_dis_dsp - Disable Dispatch . 256

4.9.4 tk_ena_dsp - Enable Dispatch . 258

4.9.5 tk_ref_sys - Reference System Status . 259

4.9.6 tk_set_pow - Set Power Mode . 261

4.9.7 tk_ref_ver - Reference Version Information . 263

4.10 Subsystem Management Functions . 266

4.10.1 tk_def_ssy - Define Subsystem . 268

4.10.2 tk_sta_ssy - Call Startup Function . 274

4.10.3 tk_cln_ssy - Call Cleanup Function . 276

4.10.4 tk_evt_ssy - Call Event Function . 277

4.10.5 tk_ref_ssy - Reference Subsystem Status . 279

4.10.6 tk_cre_res - Create Resource Group . 280

4.10.7 tk_del_res - Delete Resource Group . 283

4.10.8 tk_get_res - Get Resource Management Block . 284

5 T-Kernel/SM Functions 285

5.1 System Memory Management Functions . 286

5.1.1 System Memory Allocation . 287

5.1.1.1 tk_get_smb - Allocate System Memory . 288

5.1.1.2 tk_rel_smb - Release System Memory . 290

5.1.1.3 tk_ref_smb - Reference System Memory Block . 291

5.1.2 Memory Allocation Library Functions . 292

5.1.2.1 Vmalloc - Allocate Nonresident Memory . 293

5.1.2.2 Vcalloc - Allocate Nonresident Memory . 294

5.1.2.3 Vrealloc - Reallocate Nonresident Memory . 295

5.1.2.4 Vfree - Release Nonresident Memory . 297

5.1.2.5 Kmalloc - Allocate Resident Memory . 298

5.1.2.6 Kcalloc - Allocate Resident Memory . 299

5.1.2.7 Krealloc - Reallocate Resident Memory . 300

5.1.2.8 Kfree - Release Resident Memory . 302

5.2 Address Space Management Functions . 303

5.2.1 Address Space Configuration . 304

5.2.1.1 SetTaskSpace - Set Task Space . 305

5.2.2 Address Space Checking . 307

5.2.2.1 ChkSpaceR - Check Read Access Privilege . 308

5.2.2.2 ChkSpaceRW - Check Read-Write Access Privilege 309

5.2.2.3 ChkSpaceRE - Check Read-Execute Access Privilege 310

5.2.2.4 ChkSpaceBstrR - Check Read Access Privilege (String) 311

5.2.2.5 ChkSpaceBstrRW - Check Read-Write Access Privilege (String) 312

T-Kernel 2.0 Specification xii

5.2.2.6 ChkSpaceTstrR - Check Read Access Privilege (TRON Code) 313

5.2.2.7 ChkSpaceTstrRW - Check Read-Write Access Privilege (TRON Code) 314

5.2.3 Logical Address Space Management . 315

5.2.3.1 LockSpace - Lock Memory Space . 316

5.2.3.2 UnlockSpace - Unlock Memory Space . 318

5.2.3.3 CnvPhysicalAddr - Get Physical Address . 320

5.2.3.4 MapMemory - Map Memory . 322

5.2.3.5 UnmapMemory - Unmap Memory . 324

5.2.3.6 GetSpaceInfo - Get Various Information about Address Space 325

5.2.3.7 SetMemoryAccess - Set Memory Access Privilege . 327

5.3 Device Management Functions . 329

5.3.1 Common Notes Related to Device Drivers . 331

5.3.1.1 Basic Concepts . 331

5.3.1.1.1 Device Name (UB* type) . 331

5.3.1.1.2 Device ID (ID type) . 332

5.3.1.1.3 Device Attribute (ATR type) . 332

5.3.1.1.4 Device Descriptor (ID type) . 333

5.3.1.1.5 Request ID (ID type) . 333

5.3.1.1.6 Data Number (W type, D type) . 333

5.3.1.2 Attribute Data . 334

5.3.2 Device Input/Output Operations . 336

5.3.2.1 tk_opn_dev - Open Device . 337

5.3.2.2 tk_cls_dev - Close Device . 339

5.3.2.3 tk_rea_dev - Start Read Device . 340

5.3.2.4 tk_rea_dev_du - Read Device (in 64-bit microseconds) 342

5.3.2.5 tk_srea_dev - Synchronous Read . 344

5.3.2.6 tk_srea_dev_d - Synchronous Read (64 bit) . 346

5.3.2.7 tk_wri_dev - Start Write Device . 348

5.3.2.8 tk_wri_dev_du - Write Device (in 64-bit microseconds) 350

5.3.2.9 tk_swri_dev - Synchronous Write . 352

5.3.2.10 tk_swri_dev_d - Synchronous Write (64 bit) . 354

5.3.2.11 tk_wai_dev - Wait for Request Completion for Device 356

5.3.2.12 tk_wai_dev_u - Wait Device (in microseconds) . 358

5.3.2.13 tk_sus_dev - Suspends Device . 360

5.3.2.14 tk_get_dev - Get Device Name . 362

5.3.2.15 tk_ref_dev - Get Device Information . 363

5.3.2.16 tk_oref_dev - Get Device Information . 364

5.3.2.17 tk_lst_dev - Get Registered Device Information . 365

5.3.2.18 tk_evt_dev - Send Driver Request Event to Device . 366

T-Kernel 2.0 Specification xiii

5.3.3 Registration of Device Driver . 367

5.3.3.1 Registration Method of Device Driver . 367

5.3.3.1.1 tk_def_dev - Register Device . 368

5.3.3.1.2 tk_ref_idv - Reference Device Initialization Information 371

5.3.3.2 Device Driver Interface . 372

5.3.3.2.1 openfn - Open function . 375

5.3.3.2.2 closefn - Close function . 376

5.3.3.2.3 execfn - Execute function . 377

5.3.3.2.4 waitfn - Wait-for-completion function . 379

5.3.3.2.5 abortfn - Abort function . 381

5.3.3.2.6 eventfn - Event function . 383

5.3.3.3 Device Event Notification . 385

5.3.3.4 Device Suspend/Resume Processing . 387

5.3.3.5 Special Properties of Disk Devices . 388

5.4 Interrupt Management Functions . 389

5.4.1 CPU Interrupt Control . 390

5.4.1.1 DI - Disable External Interrupts . 391

5.4.1.2 EI - Enable External Interrupt . 392

5.4.1.3 isDI - Get Interrupt Disable Status . 393

5.4.2 Control of Interrupt Controller . 394

5.4.2.1 DINTNO - Convert Interrupt Vector to Interrupt Handler Number 395

5.4.2.2 EnableInt - Enable Interrupts . 396

5.4.2.3 DisableInt - Disable Interrupts . 397

5.4.2.4 ClearInt - Clear Interrupt . 398

5.4.2.5 EndOfInt - Issue EOI to Interrupt Controller . 399

5.4.2.6 CheckInt - Check Interrupt . 400

5.4.2.7 SetIntMode - Set Interrupt Mode . 401

5.5 I/O Port Access Support Functions . 402

5.5.1 I/O Port Access . 402

5.5.1.1 out_b - Write to I/O Port (In Unit of Byte) . 403

5.5.1.2 out_h - Write to I/O Port (In Unit of Half-word) . 404

5.5.1.3 out_w - Write to I/O Port (In Unit of Word) . 405

5.5.1.4 out_d - Write to I/O Port (In Unit of Double-word) . 406

5.5.1.5 in_b - Read from I/O Port (In Unit of Byte) . 407

5.5.1.6 in_h - Read from I/O Port (In Unit of Half-word) . 408

5.5.1.7 in_w - Read from I/O Port (In Unit of Word) . 409

5.5.1.8 in_d - Read from I/O Port (In Unit of Double-word) 410

5.5.2 Micro Wait . 411

5.5.2.1 WaitUsec - Micro Wait (in Microseconds) . 411

T-Kernel 2.0 Specification xiv

5.5.2.2 WaitNsec - Micro Wait (in Nanoseconds) . 412

5.6 Power Management Functions . 413

5.6.1 low_pow - Move System to Low-power Mode . 414

5.6.2 off_pow - Move System to Suspend State . 415

5.7 System Configuration Information Management Functions . 416

5.7.1 System Configuration Information Acquisition . 417

5.7.1.1 tk_get_cfn - Get Numbers . 418

5.7.1.2 tk_get_cfs - Get Character String . 419

5.7.2 Standard System Configuration Information . 420

5.8 Memory Cache Control Functions . 422

5.8.1 SetCacheMode - Set Cache Mode . 423

5.8.2 ControlCache - Control Cache . 425

5.9 Physical Timer Functions . 427

5.9.1 Use Case of Physical Timer . 428

5.9.2 StartPhysicalTimer - Start Physical Timer . 430

5.9.3 StopPhysicalTimer - Stop Physical Timer . 432

5.9.4 GetPhysicalTimerCount - Get Physical Timer Count . 433

5.9.5 DefinePhysicalTimerHandler - Define Physical Timer Handler 434

5.9.6 GetPhysicalTimerConfig - Get Physical Timer Configuration Information 436

5.10 Utility Functions . 438

5.10.1 Set Object Name . 439

5.10.1.1 SetOBJNAME - Set Object Name . 440

5.10.2 Fast Lock and Multi-lock Libraries . 441

5.10.2.1 CreateLock - Create Fast Lock . 442

5.10.2.2 DeleteLock - Delete Fast Lock . 443

5.10.2.3 Lock - Lock Fast Lock . 444

5.10.2.4 Unlock - Unlock Fast Lock . 445

5.10.2.5 CreateMLock - Create Fast Multi-lock . 446

5.10.2.6 DeleteMLock - Delete Fast Multi-lock . 447

5.10.2.7 MLock - Lock Fast Multi-lock . 448

5.10.2.8 MLockTmo - Lock Fast Multi-lock (with Timeout) . 449

5.10.2.9 MLockTmo_u - Lock Fast Multi-lock (with Timeout, in Microseconds) 450

5.10.2.10MUnlock - Unlock Fast Multi-lock . 451

5.11 Subsystem and Device Driver Starting . 452

5.11.1 Startup Processing . 452

5.11.2 Termination Processing . 453

T-Kernel 2.0 Specification xv

6 T-Kernel/DS Functions 454

6.1 Kernel Internal State Acquisition Functions . 455

6.1.1 td_lst_tsk - Reference Task ID List . 456

6.1.2 td_lst_sem - Reference Semaphore ID List . 457

6.1.3 td_lst_flg - Reference Event Flag ID List . 458

6.1.4 td_lst_mbx - Reference Mailbox ID List . 459

6.1.5 td_lst_mtx - Reference Mutex ID List . 460

6.1.6 td_lst_mbf - Reference Message Buffer ID List . 461

6.1.7 td_lst_por - Reference Rendezvous Port ID List . 462

6.1.8 td_lst_mpf - Reference Fixed-size Memory Pool ID List . 463

6.1.9 td_lst_mpl - Reference Variable-size Memory Pool ID List . 464

6.1.10 td_lst_cyc - Reference Cyclic Handler ID List . 465

6.1.11 td_lst_alm - Reference Alarm Handler ID List . 466

6.1.12 td_lst_ssy - Reference Subsystem ID List . 467

6.1.13 td_rdy_que - Reference Task Precedence . 468

6.1.14 td_sem_que - Reference Semaphore Queue . 469

6.1.15 td_flg_que - Reference Event Flag Queue . 470

6.1.16 td_mbx_que - Reference Mailbox Queue . 471

6.1.17 td_mtx_que - Reference Mutex Queue . 472

6.1.18 td_smbf_que - Reference Message Buffer Send Queue . 473

6.1.19 td_rmbf_que - Reference Message Buffer Receive Queue . 474

6.1.20 td_cal_que - Reference Call Queue . 475

6.1.21 td_acp_que - Reference Accept Queue . 476

6.1.22 td_mpf_que - Reference Fixed-size Memory Pool Queue . 477

6.1.23 td_mpl_que - Reference Variable-size Memory Pool Queue . 478

6.1.24 td_ref_tsk - Reference Task Status . 479

6.1.25 td_ref_tsk_u - Reference Task Status (Microseconds) . 481

6.1.26 td_ref_tex - Reference Task Exception Status . 483

6.1.27 td_ref_sem - Reference Semaphore Status . 484

6.1.28 td_ref_flg - Reference Event Flag Status . 485

6.1.29 td_ref_mbx - Reference Mailbox Status . 486

6.1.30 td_ref_mtx - Refer Mutex Status . 487

6.1.31 td_ref_mbf - Reference Message Buffer Status . 488

6.1.32 td_ref_por - Reference Port Status . 489

6.1.33 td_ref_mpf - Reference Fixed-size Memory Pool Status . 490

6.1.34 td_ref_mpl - Reference Variable-size Memory Pool Status . 491

6.1.35 td_ref_cyc - Reference Cyclic Handler Status . 492

6.1.36 td_ref_cyc_u - Reference Cyclic Handler Status (Microseconds) 493

6.1.37 td_ref_alm - Reference Alarm Handler Status . 494

T-Kernel 2.0 Specification xvi

6.1.38 td_ref_alm_u - Reference Alarm Handler Status (Microseconds) 495

6.1.39 td_ref_sys - Reference System Status . 496

6.1.40 td_ref_ssy - Reference Subsystem Status . 497

6.1.41 td_inf_tsk - Reference Task Statistics . 498

6.1.42 td_inf_tsk_u - Reference Task Statistics (Microseconds) . 499

6.1.43 td_get_reg - Get Task Register . 500

6.1.44 td_set_reg - Set Task Registers . 501

6.1.45 td_get_tim - Get System Time . 502

6.1.46 td_get_tim_u - Get System Time (Microseconds) . 504

6.1.47 td_get_otm - Get Operating Time . 505

6.1.48 td_get_otm_u - Get Operating Time (Microseconds) . 507

6.1.49 td_ref_dsname - Refer to DS Object Name . 508

6.1.50 td_set_dsname - Set DS Object Name . 510

6.2 Trace Functions . 511

6.2.1 td_hok_svc - Define System Call/Extended SVC Hook Routine 512

6.2.2 td_hok_dsp - Define Task Dispatch Hook Routine . 514

6.2.3 td_hok_int - Define Interrupt Handler Hook Routine . 516

7 Appendix 518

7.1 Specification Related to Device Drivers to be Used as Reference . 519

7.1.1 Disk Kind for Device Attributes . 519

7.1.2 Device Attribute Data . 519

7.1.3 Event Type of the Device Event Notification . 520

8 Reference 521

8.1 List of C Language Interface . 522

8.1.1 T-Kernel/OS . 522

8.1.1.1 Task Management Functions . 522

8.1.1.2 Task Synchronization Functions . 522

8.1.1.3 Task Exception Handling Functions . 523

8.1.1.4 Synchronization and Communication Functions . 523

8.1.1.5 Extended Synchronization and Communication Functions 524

8.1.1.6 Memory Pool Management Functions . 524

8.1.1.7 Time Management Functions . 525

8.1.1.8 Interrupt Management Functions . 525

8.1.1.9 System Management Functions . 525

8.1.1.10 Subsystem Management Functions . 526

8.1.2 T-Kernel/SM . 526

8.1.2.1 System Memory Management Functions . 526

T-Kernel 2.0 Specification xvii

8.1.2.2 Address Space Management Functions . 526

8.1.2.3 Device Management Functions . 527

8.1.2.4 Interrupt Management Functions . 528

8.1.2.5 I/O Port Access Support Functions . 529

8.1.2.6 Power Management Functions . 529

8.1.2.7 System Configuration Information Management Functions 529

8.1.2.8 Memory Cache Control Functions . 529

8.1.2.9 Physical Timer Functions . 529

8.1.2.10 Utility Functions . 530

8.1.3 T-Kernel/DS . 530

8.1.3.1 Kernel Internal State Acquisition Functions . 530

8.1.3.2 Trace Functions . 531

8.2 List of Error Codes . 532

8.2.1 Normal Completion Error Class (0) . 532

8.2.2 Normal completion Internal Error Class (5 to 8) . 532

8.2.3 Unsupported Error Class (9 to 16) . 532

8.2.4 Parameter Error Class (17 to 24) . 532

8.2.5 Call Context Error Class (25 to 32) . 533

8.2.6 Resource Constraint Error Class (33 to 40) . 533

8.2.7 Object State Error Class (41 to 48) . 534

8.2.8 Wait Error Class (49 to 56) . 534

8.2.9 Device Error Class (57 to 64) (T-Kernel/SM) . 534

8.2.10 Status Error Class (65 to 72) (T-Kernel/SM) . 534

T-Kernel 2.0 Specification xviii

List of Figures

1.1 Positioning for T-Kernel . 13

2.1 Task State Transition Diagram . 23

2.2 Precedence in Initial State . 25

2.3 Precedence After Task B Goes To RUNNING State . 26

2.4 Precedence After Task B Goes To WAITING State . 26

2.5 Precedence After Task B WAITING State Is Released . 26

2.6 Classification of System States . 30

2.7 Interrupt Nesting and Delayed Dispatching . 31

2.8 Address Space . 33

3.1 Behavior of High-Level Language Support Routine . 45

4.1 Multiple Tasks Waiting for One Event Flag . 132

4.2 Format of Messages Using a Mailbox . 135

4.3 Synchronous Communication by Message Buffer . 159

4.4 Synchronous Communication Using Message Buffer of bufsz = 0 . 162

4.5 Rendezvous operation between a client task and server task . 171

4.6 Rendezvous Operation . 172

4.7 Sample Ada-like Program Using select Statement . 182

4.8 Using Rendezvous to Implement Ada select Function . 183

4.9 Server Task Operation Using tk_fwd_por . 188

4.10 Precedence Before Issuing tk_rot_rdq . 254

4.11 Precedence After Issuing tk_rot_rdq (tskpri = 2) . 254

4.12 maker Format . 264

4.13 prid Format . 264

4.14 spver Format . 264

4.15 T-Kernel Subsystems . 266

4.16 Dependency and Priority of Subsystems . 275

4.17 Subsystems and Resource Groups . 281

5.1 Device Management Functions . 330

T-Kernel 2.0 Specification xix

List of Tables

2.1 State Transitions Distinguishing Invoking Task and Other Tasks . 24

4.1 Target Task State and Execution Result (tk_ter_tsk) . 57

4.2 Values of tskwait and wid . 78

4.3 Target Task State and Execution Result (tk_rel_wai) . 89

5.1 Whether Concurrent Open of Same Device is Allowed or NOT . 338

T-Kernel 2.0 Specification 1 / 534

API Notation

In the parts of this specification that describe APIs, the specification of each API (Application Program Inter-
face) is explained in the format illustrated below. In addition to system calls that directly call kernel functions,
APIs include functions implemented as extended SVCs (extended system calls), macros, and libraries.

API Name - Description

This is an API name and its description.

C Language Interface

This is an API's C language interface and header file(s) to include.

Parameter

Describes an API's parameter(s), i.e. information passed to the T-Kernel when the API is issued.

Return Parameter

Describes an API's return parameter(s), i.e. information returned by the T-Kernel when the execution of the
API ends.

A return parameter that is returned as an API's function value may be called "return code." A return parameter
can include, besides return code, a value stored at a pointer that points at memory location where some
information can be stored.

Error Code

Describes errors that can occur in an API.

The following error codes are common to all APIs and are not included in the error code listings for each API:

E_SYS , E_NOSPT , E_RSFN , E_MACV , E_OACV.

The detection of the error conditions that may result in the following error codes is implementation-
dependent; such conditions may not always be detected as errors:

E_PAR , E_MACV , E_CTX.

Error code E_CTX is included in the error code section of individual API only when API can encounter an
error due to a semantically wrong caller context: e.g., the case of task-independent portion's calling an API that
can block. If an API's constraints in the caller's context are implementation-dependent, and such semantic
errors are not universal across all implementations, the explanation of E_CTX is not included in the error
section of the API under discussion.

Implementations may generate errors that are not explained in the explanation section of error codes.

T-Kernel 2.0 Specification 2 / 534

Valid Context

Indicates the context (task portion, quasi-task portion, and task-independent portion) that can issue the API
under consideration.

Description

Describes the API functions.

When the values to be passed in a parameter are selected from various choices, the following notation is used
in the parameter descriptions:

(x || y || z)
Set one of x, y, or z.

x | y
Both x and y can be set at the same time (in which case the logical sum of x and y is taken).

[x]
x is optional.

Example of Using Parameters Notation

wfmode := (TWF_ANDW || TWF_ORW) | [TWF_CLR]

The above description means that wfmode can be specified in any of the following four ways:
TWF_ANDW
TWF_ORW

(TWF_ANDW | TWF_CLR)
(TWF_ORW | TWF_CLR)

Additional Notes

Supplements the description by noting matters that need special attention or caution, etc.

Rationale for the Specification

Explains the reason for adopting a particular approach and specification.

Difference from T-Kernel 1.0

Explains the difference(s) between T-Kernel 1.0.

T-Kernel 2.0 Specification 3 / 534

Index of T-Kernel/OS System Calls

The T-Kernel/OS system calls described in this specification are listed below in alphabetical order.

• tk_acp_por - Accept Port for Rendezvous

• tk_acp_por_u - Accept Port for Rendezvous (in Microseconds)

• tk_cal_por - Call Port for Rendezvous

• tk_cal_por_u - Call Port for Rendezvous (in Microseconds)

• tk_can_wup - Cancel Wakeup Task

• tk_chg_pri - Change Task Priority

• tk_chg_slt - Change Task Slice Time

• tk_chg_slt_u - Change Task Slice Time (in Microseconds)

• tk_cln_ssy - Call Cleanup Function

• tk_clr_flg - Clear Event Flag

• tk_cre_alm - Create Alarm Handler

• tk_cre_cyc - Create Cyclic Handler

• tk_cre_cyc_u - Create Cyclic Handler (in Microseconds)

• tk_cre_flg - Create Event Flag

• tk_cre_mbf - Create Message Buffer

• tk_cre_mbx - Create Mailbox

• tk_cre_mpf - Create Fixed-size Memory Pool

• tk_cre_mpl - Create Variable-size Memory Pool

• tk_cre_mtx - Create Mutex

• tk_cre_por - Create Port for Rendezvous

• tk_cre_res - Create Resource Group

• tk_cre_sem - Create Semaphore

• tk_cre_tsk - Create Task

• tk_def_int - Define Interrupt Handler

• tk_def_ssy - Define Subsystem

• tk_def_tex - Define Task Exception Handler

T-Kernel 2.0 Specification 4 / 534

• tk_del_alm - Delete Alarm Handler

• tk_del_cyc - Delete Cyclic Handler

• tk_del_flg - Delete Event Flag

• tk_del_mbf - Delete Message Buffer

• tk_del_mbx - Delete Mailbox

• tk_del_mpf - Delete Fixed-size Memory Pool

• tk_del_mpl - Delete Variable-size Memory Pool

• tk_del_mtx - Delete Mutex

• tk_del_por - Delete Port for Rendezvous

• tk_del_res - Delete Resource Group

• tk_del_sem - Delete Semaphore

• tk_del_tsk - Delete Task

• tk_dis_dsp - Disable Dispatch

• tk_dis_tex - Disable Task Exception

• tk_dis_wai - Disable Task Wait

• tk_dly_tsk - Delay Task

• tk_dly_tsk_u - Delay Task (in Microseconds)

• tk_ena_dsp - Enable Dispatch

• tk_ena_tex - Enable Task Exception

• tk_ena_wai - Enable Task Wait

• tk_end_tex - End Task Exception Handler

• tk_evt_ssy - Call Event Function

• tk_exd_tsk - Exit and Delete Task

• tk_ext_tsk - Exit Task

• tk_frsm_tsk - Force Resume Task

• tk_fwd_por - Forwards Rendezvous to Other Port

• tk_get_cpr - Get Task Coprocessor Registers

• tk_get_mpf - Get Fixed-size Memory Block

• tk_get_mpf_u - Get Fixed-size Memory Block (in Microseconds)

• tk_get_mpl - Get Variable-size Memory Block

• tk_get_mpl_u - Get Variable-size Memory Block (in Microseconds)

• tk_get_otm - Get Operating Time

• tk_get_otm_u - Get Operating Time (in Microseconds)

• tk_get_reg - Get Task Registers

• tk_get_res - Get Resource Management Block

T-Kernel 2.0 Specification 5 / 534

• tk_get_rid - Get Task Resource ID

• tk_get_tid - Get Task Identifier

• tk_get_tim - Get Time

• tk_get_tim_u - Get Time (in Microseconds)

• tk_get_tsp - Get Task Space

• tk_inf_tsk - Reference Task Statistics

• tk_inf_tsk_u - Reference Task Statistics (Microseconds)

• tk_loc_mtx - Lock Mutex

• tk_loc_mtx_u - Lock Mutex (in Microseconds)

• tk_ras_tex - Raise Task Exception

• tk_rcv_mbf - Receive Message from Message Buffer

• tk_rcv_mbf_u - Receive Message from Message Buffer (in Microseconds)

• tk_rcv_mbx - Receive Message from Mailbox

• tk_rcv_mbx_u - Receive Message from Mailbox (in Microseconds)

• tk_ref_alm - Reference Alarm Handler Status

• tk_ref_alm_u - Reference Alarm Handler Status (Microseconds)

• tk_ref_cyc - Reference Cyclic Handler Status

• tk_ref_cyc_u - Reference Cyclic Handler Status (Microseconds)

• tk_ref_flg - Reference Event Flag Status

• tk_ref_mbf - Reference Message Buffer Status

• tk_ref_mbx - Reference Mailbox Status

• tk_ref_mpf - Reference Fixed-size Memory Pool Status

• tk_ref_mpl - Reference Variable-size Memory Pool Status

• tk_ref_mtx - Refer Mutex Status

• tk_ref_por - Reference Port Status

• tk_ref_sem - Reference Semaphore Status

• tk_ref_ssy - Reference Subsystem Status

• tk_ref_sys - Reference System Status

• tk_ref_tex - Reference Task Exception Status

• tk_ref_tsk - Reference Task Status

• tk_ref_tsk_u - Reference Task Status (Microseconds)

• tk_ref_ver - Reference Version Information

• tk_rel_mpf - Release Fixed-size Memory Block

• tk_rel_mpl - Release Variable-size Memory Block

• tk_rel_wai - Release Wait

T-Kernel 2.0 Specification 6 / 534

• tk_ret_int - Return from Interrupt Handler

• tk_rot_rdq - Rotate Ready Queue

• tk_rpl_rdv - Reply Rendezvous

• tk_rsm_tsk - Resume Task

• tk_set_cpr - Set Task Coprocessor Registers

• tk_set_flg - Set Event Flag

• tk_set_pow - Set Power Mode

• tk_set_reg - Set Task Registers

• tk_set_rid - Set Task Resource ID

• tk_set_tim - Set Time

• tk_set_tim_u - Set Time (in Microseconds)

• tk_set_tsp - Set Task Space

• tk_sig_sem - Signal Semaphore

• tk_sig_tev - Signal Task Event

• tk_slp_tsk - Sleep Task

• tk_slp_tsk_u - Sleep Task (in Microseconds)

• tk_snd_mbf - Send Message to Message Buffer

• tk_snd_mbf_u - Send Message to Message Buffer (in Microseconds)

• tk_snd_mbx - Send Message to Mailbox

• tk_sta_alm - Start Alarm Handler

• tk_sta_alm_u - Start Alarm Handler (in Microseconds)

• tk_sta_cyc - Start Cyclic Handler

• tk_sta_ssy - Call Startup Function

• tk_sta_tsk - Start Task

• tk_stp_alm - Stop Alarm Handler

• tk_stp_cyc - Stop Cyclic Handler

• tk_sus_tsk - Suspend Task

• tk_ter_tsk - Terminate Task

• tk_unl_mtx - Unlock Mutex

• tk_wai_flg - Wait Event Flag

• tk_wai_flg_u - Wait Event Flag (in Microseconds)

• tk_wai_sem - Wait on Semaphore

• tk_wai_sem_u - Wait on Semaphore (in Microseconds)

• tk_wai_tev - Wait Task Event

• tk_wai_tev_u - Wait Task Event (in Microseconds)

• tk_wup_tsk - Wakeup Task

T-Kernel 2.0 Specification 7 / 534

Index of T-Kernel/SM Extended SVC and Li-
braries

The T-Kernel/SM extended SVC and libraries described in this specification are listed below in alphabetical
order.

• abortfn - Abort function

• CheckInt - Check Interrupt

• ChkSpaceBstrR - Check Read Access Privilege (String)

• ChkSpaceBstrRW - Check Read-Write Access Privilege (String)

• ChkSpaceR - Check Read Access Privilege

• ChkSpaceRE - Check Read-Execute Access Privilege

• ChkSpaceRW - Check Read-Write Access Privilege

• ChkSpaceTstrR - Check Read Access Privilege (TRON Code)

• ChkSpaceTstrRW - Check Read-Write Access Privilege (TRON Code)

• ClearInt - Clear Interrupt

• closefn - Close function

• CnvPhysicalAddr - Get Physical Address

• ControlCache - Control Cache

• CreateLock - Create Fast Lock

• CreateMLock - Create Fast Multi-lock

• DefinePhysicalTimerHandler - Define Physical Timer Handler

• DeleteLock - Delete Fast Lock

• DeleteMLock - Delete Fast Multi-lock

• DI - Disable External Interrupts

• DINTNO - Convert Interrupt Vector to Interrupt Handler Number

• DisableInt - Disable Interrupts

• EI - Enable External Interrupts

• EnableInt - Enable Interrupts

• EndOfInt - Issue EOI to Interrupt Controller

T-Kernel 2.0 Specification 8 / 534

• eventfn - Event function

• execfn - Execute function

• GetPhysicalTimerConfig - Get Physical Timer Configuration Information

• GetPhysicalTimerCount - Get Physical Timer Count

• GetSpaceInfo - Get Various Information about Address Space

• in_b - Read from I/O Port (in Bytes)

• in_d - Read from I/O Port (in Double-words)

• in_h - Read from I/O Port (in Half-words)

• in_w - Read from I/O Port (in Words)

• isDI - Get Interrupt Disable Status

• Kcalloc - Allocate Resident Memory

• Kfree - Release Resident Memory

• Kmalloc - Allocate Resident Memory

• Krealloc - Reallocate Resident Memory

• Lock - Lock Fast Lock

• LockSpace - Lock Memory Space

• low_pow - Move System to Low-power Mode

• MapMemory -Map Memory

• MLock - Lock Fast Multi-lock

• MLockTmo - Lock Fast Multi-lock (with Timeout)

• MLockTmo_u - Lock Fast Multi-lock (with Timeout, in Microseconds)

• MUnlock - Unlock Fast Multi-lock

• off_pow - Move System to Suspend State

• openfn - Open function

• out_b - Write to I/O Port (in Bytes)

• out_d - Write to I/O Port (in Double-words)

• out_h - Write to I/O Port (in Half-words)

• out_w - Write to I/O Port (in Words)

• SetCacheMode - Set Cache Mode

• SetIntMode - Set Interrupt Mode

• SetMemoryAccess - Set Memory Access Privilege

• SetOBJNAME - Set Object Name

• SetTaskSpace - Set Task Space

• StartPhysicalTimer - Start Physical Timer

• StopPhysicalTimer - Stop Physical Timer

T-Kernel 2.0 Specification 9 / 534

• tk_cls_dev - Close Device

• tk_def_dev - Register Device

• tk_evt_dev - Send Driver Request Event to Device

• tk_get_cfn - Get Numbers

• tk_get_cfs - Get Character String

• tk_get_dev - Get Device Name

• tk_get_smb - Allocate System Memory

• tk_lst_dev - Get Registered Device Information

• tk_opn_dev - Open Device

• tk_oref_dev - Get Device Information

• tk_rea_dev - Start Read Device

• tk_rea_dev_du - Read Device (in 64-bit Microseconds)

• tk_ref_dev - Get Device Information

• tk_ref_idv - Reference Device Initialization Information

• tk_ref_smb - Reference System Memory Block

• tk_rel_smb - Release System Memory

• tk_srea_dev - Synchronous Read

• tk_srea_dev_d - Synchronous Read (64 bits)

• tk_sus_dev - Suspends Device

• tk_swri_dev - Synchronous Write

• tk_swri_dev_d - Synchronous Write (64 bits)

• tk_wai_dev - Wait for Request Completion for Device

• tk_wai_dev_u - Wait Device (in Microseconds)

• tk_wri_dev - Start Write Device

• tk_wri_dev_du - Write Device (in 64-bit Microseconds)

• Unlock - Unlock Fast Lock

• UnlockSpace - Unlock Memory Space

• UnmapMemory - Unmap Memory

• Vcalloc - Allocate Nonresident Memory

• Vfree - Release Nonresident Memory

• Vmalloc - Allocate Nonresident Memory

• Vrealloc - Reallocate Nonresident Memory

• waitfn - Wait function

• WaitNsec - Micro Wait (in Nanoseconds)

• WaitUsec - Micro Wait (in Microseconds)

T-Kernel 2.0 Specification 10 / 534

Index of T-Kernel/DS System Calls

The T-Kernel/DS system calls described in this specification are listed below in alphabetical order.

• td_acp_que - Reference Accept Queue

• td_cal_que - Reference Call Queue

• td_flg_que - Reference Event Flag Queue

• td_get_otm - Get Operating Time

• td_get_otm_u - Get Operating Time (Microseconds)

• td_get_reg - Get Task Register

• td_get_tim - Get System Time

• td_get_tim_u - Get System Time (Microseconds)

• td_hok_dsp - Define Task Dispatch Hook Routine

• td_hok_int - Define Interrupt Handler Hook Routine

• td_hok_svc - Define System Call/Extended SVC Hook Routine

• td_inf_tsk - Reference Task Statistics

• tk_inf_tsk_u - Reference Task Statistics (Microseconds)

• td_lst_alm - Reference Alarm Handler ID List

• td_lst_cyc - Reference Cyclic Handler ID List

• td_lst_flg - Reference Event Flag ID List

• td_lst_mbf - Reference Message Buffer ID List

• td_lst_mbx - Reference Mailbox ID List

• td_lst_mpf - Reference Fixed-size Memory Pool ID List

• td_lst_mpl - Reference Variable-size Memory Pool ID List

• td_lst_mtx - Reference Mutex ID List

• td_lst_por - Reference Rendezvous Port ID List

• td_lst_sem - Reference Semaphore ID List

• td_lst_ssy - Reference Subsystem ID List

• td_lst_tsk - Reference Task ID List

• td_mbx_que - Reference Mailbox Queue

T-Kernel 2.0 Specification 11 / 534

• td_mpf_que - Reference Fixed-size Memory Pool Queue

• td_mpl_que - Reference Variable-size Memory Pool Queue

• td_mtx_que - Reference Mutex Queue

• td_rdy_que - Reference Task Precedence

• td_ref_alm - Reference Alarm Handler Status

• td_ref_alm_u - Reference Alarm Handler Status (Microseconds)

• td_ref_cyc - Reference Cyclic Handler Status

• td_ref_cyc_u - Reference Cyclic Handler Status (Microseconds)

• td_ref_dsname - Refer to DS Object Name

• td_ref_flg - Reference Event Flag Status

• td_ref_mbf - Reference Message Buffer Status

• tk_ref_mbx - Reference Mailbox Status

• td_ref_mpf - Reference Fixed-size Memory Pool Status

• tk_ref_mpl - Reference Variable-size Memory Pool Status

• tk_ref_mtx - Refer Mutex Status

• td_ref_por - Reference Port Status

• td_ref_sem - Reference Semaphore Status

• td_ref_ssy - Reference Subsystem Status

• td_ref_sys - Reference System Status

• td_ref_tex - Reference Task Exception Status

• td_ref_tsk - Get Task Status

• td_ref_tsk_u - Reference Task Status (Microseconds)

• td_rmbf_que - Reference Message Buffer Receive Queue

• td_sem_que - Reference Semaphore Queue

• td_set_dsname - Set DS Object Name

• td_set_reg - Set Task Registers

• td_smbf_que - Reference Message Buffer Send Queue

T-Kernel 2.0 Specification 12 / 534

Chapter 1

T-Kernel Overview

T-Kernel 2.0 Specification 13 / 534

1.1 Position of T-Kernel

The position of T-Kernel in the overall T-Engine system is shown in Figure 1.1, “Positioning for T-Kernel”.

Figure 1.1: Positioning for T-Kernel

T-Kernel generally refers to all of T-Kernel/OS (Operating System), T-Kernel/SM (System Manager), and T-
Kernel/DS); but in some cases T-Kernel/OS only (narrow definition) is called T-Kernel.

T-Kernel/OS provides the following functions:

• Task Management Functions

• Task Synchronization Functions

• Task Exception Handling Functions

• Synchronization and Communication Functions

• Extended Synchronization and Communication Functions

• Memory Pool Management Functions

• Time Management Functions

• Interrupt Management Functions

• System Management Functions

T-Kernel 2.0 Specification 14 / 534

• Subsystem Management Functions

T-Kernel/SM provides the following kinds of functions:

• System Memory Management Functions

• Address Space Management Functions

• Device Management Functions

• Interrupt Management Functions

• I/O Port Access Support Functions

• Power Management Functions

• System Configuration Information Management Functions

• Memory Cache Control Functions

• Physical Timer Functions

• Utility Functions

T-Kernel/DS provides the following kinds of functions exclusively for debugging use:

• Kernel Internal State Acquisition Functions

• Trace Functions

Difference from T-Kernel 1.0
Memory cache control functions, physical timer functions, and utility functions are functions that were added
in T-Kernel 2.0.

T-Kernel 2.0 Specification 15 / 534

1.2 Scalability

T-Kernel is a real-time operating system for embedded system use, applicable to a wide range of systems large
and small. It is aimed at enhancing portability of software such as device drivers and middleware.

The T-Kernel specification is designed to be applicable even to large-scale systems. So there are features un-
necessary for small systems. The approach of defining subsets has the disadvantage of hampering portability
of device drivers, middleware and other software. Functional requirements also vary widely from one target
system to another, making it difficult to settle on workable subset specifications.

The T-Kernel specification does not adopt a layer division or other subset approach. In principle, all the
T-Kernel implementations must implement the specification in their entirety. However, the simple dummy
implementation can be applied to those functions that are not required in the target systems.

A “Simple dummy implementation” means one that does not provide the entire range of specified functions
but does not behave abnormally (return error, etc.) if a non-implemented function is called. It is important
to provide an environment on which a middleware developed for a large system can run without modifi-
cation. For example, a system that does not use an MMU (Memory Management Unit) can implement the
T-Kernel/SM LockSpace() as follows:

#define LockSpace(addr , len) (E_OK)

The absence of an MMU does not, however, permits the implementor not to implement LockSpace() or to
return the error code E_NOSPT.

At the same time, when middleware is designed or developed, leaving out LockSpace() from an implementa-
tion because the target system does not use an MMU would prevent the middleware from supporting a system
that does use an MMU.

Providing users with the means for removing or skipping unnecessary functions is also allowed. However,
the resulting T-Kernel is judged as modified T-Kernel.

Middleware vendors must note the following points:

• Middleware must be designed to meet all the T-Kernel requirements. It is important, in other words, that
middleware developed for large-scale systems can run without problem on other systems.

• Providing users with the means for removing or skipping unnecessary functions is allowed.

T-Kernel 2.0 Specification 16 / 534

1.3 T-Kernel 2.0 Overview

1.3.1 Positioning and Basic Policy of T-Kernel 2.0

As the T-Kernel (T-Kernel 1.0), which was published when T-Engine Forum was established, is showing proved
achievement and steady increase of products adopting it, there are requests for additional functions to take
advantage of the hardware with higher performance and more functionalities. To meet these requests, T-
Kernel 2.0 specification for the real-time operating system was developed as a step to the new and wider
deployment.

T-Kernel 2.0 specification is compatible with T-Kernel 1.0 specification to take advantage of the past T-Kernel
achievements and forsters smooth migration of users to the enhanced kernel. T-Kernel 2.0 specification is
not only source compatible but also binary compatible with T-Kernel 1.0 specification. For example, after
T-Kernel 1.0 is upgraded to T-Kernel 2.0, existing device drivers, middleware, applications, etc. that were
running on T-Kernel 1.0 will run on T-Kernel 2.0 without recompilation.

Additionally, for T-Kernel 2.0, readability and searchability of this specification are significantly improved by
using XML-based document source, besides improving the expression and explanation through the review of
the complicated or immature description.

1.3.2 Additional Functions to T-Kernel 2.0

1. Time management functions in microseconds

While T-Kernel 1.0 used milliseconds for the time management functions such as the cyclic handler and
alarm handler, and the time-related function such as the timeout, T-Kernel 2.0 adds APIs that handle
them in microseconds.

Since data with 32-bit width can handle only very short period of time when expressed in microseconds,
data with 64-bit width is introduced as time-related parameters (see Introduction of 64-bit integer data
type).

For a name of API with 64-bit parameter in microseconds, "_u" is appended to the end of the correspond-
ing API name in T-Kernel 1.0. u means μ. For 64-bit parameter in microseconds, "_u" is appended to
the end of the parameter name also.

Example 1.1 Example of API for 64-bit microseconds

/* API of T-Kernel 1.0 for 32-bit milliseconds */
tk_sta_alm(ID almid , RELTIM almtim)

/* API of T-Kernel 2.0 for 64-bit microseconds */
tk_sta_alm_u(ID almid , RELTIM_U almtim_u)

However, time handling APIs are not unified to use only microseconds in T-Kernel 2.0. According to the
basic policy of keeping upward compatibility, APIs for milliseconds of T-Kernel 1.0 can still be used in
T-Kernel 2.0 making both time units co-exist.

Actual time resolution in T-Kernel time management functions uses one that is specified by the "timer in-
terrupt interval" (TTimPeriod) in Section 5.7.2, “Standard System Configuration Information”. Therefore,
the "timer interrupt interval" (TTimPeriod) must be set to an enough short period of time to precisely spec-
ify parameters for the time management functions in microseconds. For more details, see Section 5.7.2,
“Standard System Configuration Information”.

For comparison, while the maximum time length handled by 32-bit signed integer is approximately 24
days in milliseconds, it is approximately 35 minutes in microseconds. When using data with 64-bit width,
virtually unlimited time length can be handled.

T-Kernel 2.0 Specification 17 / 534

2. Support for large mass-storage device

Some parameters of device management functions also can handle data with 64-bit width to support
large mass-storage device such as a hard disk.

For a name of API with 64-bit parameter, "_d" is appended to the end of the corresponding API name
in T-Kernel 1.0. "_d" means double integer. For 64-bit parameter, "_d" is appended to the end of the
parameter name also.

Example 1.2 Example of API with 64-bit Parameters

/* API of T-Kernel 1.0 */
tk_swri_dev(ID dd , W start , VP buf , W size , W *asize)

/* API of T-Kernel 2.0 with 64-bit Parameters */
tk_swri_dev_d(ID dd , D start_d , void *buf , W size , W *asize)

For example, the maximum storage size that can be handled by T-Kernel 1.0 with 32-bit data width was
approximately 1 TB (= 512-byte x MATH: 2�31) for a general hard disk with 512-byte block size. In
T-Kernel 2.0, this limit is increased by the addition of API with 64-bit data width.

3. Introduction of 64-bit integer data type

64-bit integer data type is introduced for API parameters to realize the features in preceding two sections.
For this reason, T-Kernel specification adopts a long long data type that is formally specified as a part of
C language standard.

The name of data type that represents 64-bit integer is D for signed integer and UD for unsigned integer.
'D' means Double integer.

4. Other additional functions

Cache-related function, physical timer function, utility function, etc. are added.

T-Kernel 2.0 Specification 18 / 534

Chapter 2

T-Kernel Concepts

T-Kernel 2.0 Specification 19 / 534

2.1 Meaning of Basic Terminology

Task, invoking task

The basic logical unit of concurrent program execution is called a "task." Whereas the code in one task
is executed in sequence, codes in different tasks can be executed in parallel. This concurrent process-
ing is a conceptual phenomenon, from the standpoint of applications; in actual implementation it is
accomplished by time-sharing among tasks as controlled by the kernel.

A task that invokes a system call is called the "invoking task."

Dispatch, dispatcher

The switching of tasks executed by the processor is called "dispatching" (or task dispatching). The kernel
mechanism by which dispatching is realized is called a "dispatcher" (or task dispatcher).

Scheduling, scheduler

The processing to determine which task to execute next is called "scheduling" (or task scheduling). The
kernel mechanism by which scheduling is realized is called a "scheduler" (or task scheduler). Generally
a scheduler is implemented inside system call processing or in the dispatcher.

Context

The environment in which a program runs is generally called "context." For a context to be called iden-
tical, at the very least the processor operation mode must be the same and the stack space must be the
same (part of the same contiguous area). Note that context is a conceptual entity from the standpoint of
applications; even when processing must be executed in independent contexts, in actual implementation
both contexts may sometimes use the same processor operation mode and the same stack space.

Precedence

The relationship among different processing requests that determines their order of execution is called
"precedence." When a higher-precedence process becomes ready for execution while a low-precedence
process is in progress, as a general rule the higher-precedence process is run ahead of the other process.

Additional Notes
Priority is a parameter assigned by an application to control the order of task or message processing.
Precedence, on the other hand, is a concept used in the specification to make clear the order in which
processing is to be executed.
Precedence among tasks is determined based on task priority.

API and system call

The standard interfaces for calling functions provided by T-Kernel from applications or middleware are
collectively called API (Application Program Interface). In addition to system calls that directly call
kernel functions, APIs include functions implemented as extended SVCs, macros, and libraries.

An API that calls T-Kernel/OS or T-Kernel/DS is a system call while an API that calls T-Kernel/SM is
extended SVC, macro, or library.

Kernel

Kernel refers to a combination of T-Kernel/OS and T-Kernel/DS by narrow definition. It refers to entire
T-Kernel by wide definition.

T-Kernel/SM is not a kernel in a strict meaning because it is an extended function of T-Kernel/OS that
uses subsystem functions of T-Kernel/OS.

T-Kernel or T-Kernel itself refers to a combination of T-Kernel/OS, T-Kernel/SM, and T-Kernel/DS.

T-Kernel 2.0 Specification 20 / 534

Implementation-defined

That something is implementation-defined means that something is not standardized in the T-Kernel
specification and should be defined for each implementation. The specifics of the implementation should
be described clearly in the implementation specifications. In application programs, the portability for
the portion dependent on implementation-defined items is not assured.

Implementation-dependent

That something is implementation-dependent means that in the T-Kernel specification, the behavior of
something varies according to the target systems or system operating conditions. The behavior should
be defined for each implementation. The specifics of the implementation should be described clearly in
the implementation specifications. In application programs, the portion dependent on implementation-
dependent items needs to be modified when porting in principle.

T-Kernel 2.0 Specification 21 / 534

2.2 Task States and Scheduling Rules

2.2.1 Task States

Task states are classified primarily into the five below. Of these, Waiting state in the broad sense is further
classified into three states. Saying that a task is in a RUN state means it is in either RUNNING state or READY
state.

RUNNING state
The task is currently being executed. When a task-independent portion is executing, except when oth-
erwise specified, the task that was executing prior to the start of task-independent portion execution is
said to be in RUNNING state.

READY state
The task has completed preparations for running, but cannot run because a task with higher precedence
is running. In this state, the task is able to run whenever it becomes the task with the highest precedence
among the tasks in READY state.

Waiting states
The task cannot run because the conditions for running are not in place. In other words, the task is
waiting for the conditions for its execution to be met. While a task is in one of the Waiting states, the
program counter and register values, and the other information representing the program execution
state, are saved. When the task resumes running from this state, the program counter, registers and other
values revert to their values immediately prior to going to the Waiting state. This state is subdivided into
the following three states.

WAITING state
Execution is stopped because a system call was invoked that interrupts execution of the invoking
task until some condition is met.

SUSPENDED state
Execution was forcibly interrupted by another task.

WAITING-SUSPENDED state
The task is in both WAITING state and SUSPENDED state at the same time. WAITING-SUSPENDED
state results when another task requests suspension of a task already in WAITING state.
T-Kernel makes a clear distinction between WAITING state and SUSPENDED state. A task cannot
go to SUSPENDED state on its own.

DORMANT state
The task has not yet been started or has completed execution. While a task is in DORMANT state,
information presenting its execution state is not saved. When a task is started from DORMANT state,
execution starts from the task start address. Except when otherwise specified, the register values are
not saved.

NON-EXISTENT state
A virtual state before a task is created, or after it is deleted, and is not registered in the system.

Depending on the implementation, there may also be transient states that do not fall into any of the above
categories (see Section 2.5, “System States”).

When a task going to READY state has higher precedence than the currently running task, a dispatch may
occur at the same time as the task goes to READY state and it may make an immediate transition to RUNNING
state. In such a case the task that was in RUNNING state up to that time is said to have been preempted by
the task that goes to RUNNING state anew. Note also that in explanations of system call functions, even when
a task is said to go to READY state, depending on the task precedence it may go immediately to RUNNING
state.

Task starting means transferring a state from DORMANT state to READY state. A task is therefore said to be
in "started" state if it is in any state other than DORMANT or NON-EXISTENT. Task exit means that a task in
started state goes to DORMANT state.

T-Kernel 2.0 Specification 22 / 534

Task wait release means that a task in WAITING state goes to READY state, or a task in WAITING-
SUSPENDED state goes to SUSPENDED state. The resumption of a suspended task means that a task in
SUSPENDED state goes to READY state, or a task in WAITING-SUSPENDED state goes to WAITING state.

Task state transitions in a typical implementation are shown in Figure 2.1, “Task State Transition Diagram”.
Depending on the implementation, there may be other states besides those shown here.

T-Kernel 2.0 Specification 23 / 534

Figure 2.1: Task State Transition Diagram

T-Kernel 2.0 Specification 24 / 534

A feature of T-Kernel is the clear distinction made between system calls that perform operations affecting the
invoking task and those whose operations affect other tasks (see Table 2.1, “State Transitions Distinguishing
Invoking Task and Other Tasks”). The reason for this is to clarify task state transitions and facilitate under-
standing of system calls. This distinction between system call operations in the invoking task and operations
affecting other tasks can also be seen as a distinction between state transitions from RUNNING state and
those from other states.

Operations in invoking tasks
(Transition from RUNNING

state)

Operations on other tasks
(Transitions from other states)

Task transition to a waiting state
(including SUSPENDED) tk_slp_tsk

RUNNING state → WAITING
state

tk_sus_tsk
READY state, WAITING state →

SUSPENDED state,
WAITING-SUSPENDED state

Task exit tk_ext_tsk
RUNNING state → DORMANT

state

tk_ter_tsk
READY state, WAITING state →

DORMANT state
Task deletion tk_exd_tsk

RUNNING state →
NON-EXISTENT state

tk_del_tsk
DORMANT state →

NON-EXISTENT state

Table 2.1: State Transitions Distinguishing Invoking Task and Other Tasks

Additional Notes
WAITING state and SUSPENDED state are orthogonally related, in that a request for transition to SUSPENDED
state cannot have any effect on the conditions for task wait release. That is, the task wait release conditions
are the same whether the task is in WAITING state or WAITING-SUSPENDED state. Thus even if transition to
SUSPENDED state is requested for a task that is in a state of waiting to acquire some resource (semaphore
resource, memory block, etc.), and the task goes to WAITING-SUSPENDED state, the conditions for allocation
of the resource do not change but remain the same as before the request to go to SUSPENDED state.

Rationale for the Specification
The reason the T-Kernel makes a distinction between WAITING state (wait caused by the invoking task) and
SUSPENDED state (wait caused by another task) is that these states sometimes overlap. By recognising these
overlapped states as WAITING-SUSPENDED states, the task state transitions become clearer and system calls
are easier to understand. On the other hand, since a task in WAITING state cannot invoke a system call,
different types of WAITING state (e.g., waiting for wakeup, or waiting to acquire a semaphore resource) will
never overlap. Since there is only one kind of waiting state caused by another task (SUSPENDED state),
the T-Kernel treats repeated entries to SUSPENDED state as nesting, thereby achieving clarity of task state
transitions.

2.2.2 Task Scheduling Rules

The T-Kernel adopts a preemptive priority-based scheduling method based on priority levels assigned to each
task. Tasks having the same priority are scheduled on a FCFS (First Come First Served) basis. Specifically,
task precedence is used as the task scheduling rule, and precedence among tasks is determined as follows
based on the priority of each task. If there are multiple tasks that can be run, the one with the highest
precedence goes to RUNNING state and the others go to READY state. In determining precedence among
tasks, of those tasks having different priority levels, that with the highest priority has the highest precedence.
Among tasks having the same priority, the one that entered a run state (RUNNING state or READY state) first

T-Kernel 2.0 Specification 25 / 534

has the highest precedence. It is possible, however, to use a system call to change the precedence among
tasks having the same priority.

When the task with the highest precedence changes from one task to another, a dispatch occurs immediately
and the task in RUNNING state is switched. If no dispatch occurs (during execution of a handler, during
dispatch disabled state, etc.), however, the switching of the task in RUNNING state is held off until the next
dispatch occurs.

Additional Notes
According to the scheduling rules adopted in the T-Kernel, so long as there is a higher precedence task in a
run state, a task with lower precedence will simply not run. That is, unless the highest-precedence task goes
to WAITING state or for other reason cannot run, other tasks are not run. This is a fundamental difference
from TSS (Time Sharing System) scheduling in which multiple tasks are treated equally.
It is possible, however, to issue a system call changing the precedence among tasks having the same priority.
An application can use such a system call to realize round-robin scheduling, which is a typical kind of TSS
scheduling.
Examples in figures below illustrate how the task that first goes to a run state (RUNNING state or READY state)
gains precedence among tasks having the same priority. Figure 2.2, “Precedence in Initial State” shows the
precedence among tasks after Task A of priority 1, Task E of priority 3, and Tasks B, C and D of priority 2 are
started in that order. The task with the highest precedence, Task A, goes to RUNNING state.
When Task A exits, Task B with the next-highest precedence goes to RUNNING state (Figure 2.3, “Precedence
After Task B Goes To RUNNING State”). When Task A is again started, Task B is preempted and reverts to
READY state; but since Task B went to a run state earlier than Task C and Task D, it still has the highest prece-
dence among tasks with the same priority. In other words, the task precedence reverts to that in Figure 2.2,
“Precedence in Initial State”.
Next, consider what happens when Task B goes to WAITING state in the conditions in Figure 2.3, “Precedence
After Task B Goes To RUNNING State”. Since task precedence is defined among tasks that can be run,
the precedence among tasks becomes as shown in Figure 2.4, “Precedence After Task B Goes To WAITING
State”. Thereafter when the Task B waiting state is released, Task B goes to run state after Task C and Task
D, and thus assumes the lowest precedence among tasks of the same priority (Figure 2.5, “Precedence After
Task B WAITING State Is Released”).
Summarizing the above, immediately after a task that goes from READY state to RUNNING state reverts to
READY state, it has the highest precedence among tasks of the same priority; but after a task goes from
RUNNING state to WAITING state and then the wait is released, its precedence is the lowest among tasks of
the same priority.
Note that after a task goes from SUSPENDED state to a run state, it has the lowest precedence among tasks
of the same priority. In a virtual memory system, if a task is made to wait for paging by putting the task in
SUSPENDED state, in such a system the task precedence changes as a result of a paging wait.

Figure 2.2: Precedence in Initial State

T-Kernel 2.0 Specification 26 / 534

Figure 2.3: Precedence After Task B Goes To RUNNING State

Figure 2.4: Precedence After Task B Goes To WAITING State

Figure 2.5: Precedence After Task B WAITING State Is Released

T-Kernel 2.0 Specification 27 / 534

2.3 Interrupt Handling

Interrupts in the T-Kernel include both external interrupts from devices and interrupts due to CPU exceptions.
One interrupt handler may be defined for each interrupt handler number. Interrupt handlers can be started
in two ways: one is to start it without the kernel intervention, the other is to start it via a high-level language
support routine.

For more details, see Section 4.8, “Interrupt Management Functions”.

T-Kernel 2.0 Specification 28 / 534

2.4 Task Exception Handling

The T-Kernel defines task exception handling functions for dealing with exceptions. Note that CPU exceptions
are treated as interrupts.

A task exception handling function invokes a system call requesting task exception handling by a designated
task, interrupts execution by the specified task, and runs a task exception handler. Execution of the task
exception handler takes place in the same context as the interrupted task. Upon return from the task exception
handler, the interrupted processing continues.

One task exception handler per task can be registered from an application.

For more details, see Section 4.3, “Task Exception Handling Functions”.

T-Kernel 2.0 Specification 29 / 534

2.5 System States

2.5.1 System States While Non-task Portion Is Executing

When programming tasks to run on T-Kernel, one can keep track of the changes in task states by using a task
state transition diagram. In the case of routines such as interrupt handlers or extended SVC handlers, how-
ever, the user must perform programming at a level closer to the kernel than tasks. In this case consideration
must be made also of system states while a non-task portion is executing, otherwise programming cannot be
done properly. An explanation of T-Kernel system states is therefore given here.

System states are classified as in Figure 2.6, “Classification of System States”.

Of these shown in Figure 2.6, “Classification of System States”, a "transient state" is equivalent to the kernel
running state (system call execution). From the standpoint of the user, it is important that each of the system
calls issued by the user application program be executed indivisibly, and that the internal states while a system
call is executing cannot be seen by the user. For this reason the state while the kernel running is considered
a "transient state" and internally it is treated as a black box.

In the following cases, however, a transient state is not executed indivisibly.

• When memory is being allocated or freed in the case of a system call that gets or releases memory (while a
T-Kernel/SM system memory management function is called).

• In a virtual memory system, when nonresident memory is accessed in system call processing.

When a task is in a transient state such as these, the behavior of a task termination (tk_ter_tsk) system call is
not guaranteed. Moreover, task suspension (tk_sus_tsk) may cause a deadlock or other problem by stopping
without clearing the transient state.

Accordingly, as a rule tk_ter_tsk and tk_sus_tsk cannot be used in programs. These system calls should be
used only in a subsystem such as a virtual memory system or debugger that can be considered to be part of
OS.

While being a "non-task portion," the portion that is considered to be running a processing requested from a
specific task (called a "requesting task") is called "quasi-task portion." For example, an extended SVC handler
in the user-defined subsystem is executed as a "quasi-task portion." The invoking task can be identified in a
"quasi-task portion" and the requesting task becomes the invoking task. Similar to the task portion, in the quasi-
task portion, the task state transitions can be defined and system calls can be issued to enter into WAITING
state from the quasi-task portion. In this way, the quasi-task portion behaves similarly to a subroutine called
from a requesting task. "Quasi-task portion" is, however, positioned as an extended part of OS and its processor
operation mode and stack space are different from those of the task portion. It means that when a state enters
into a quasi-task portion from a task portion, its processor operation mode and stack space are switched. This
behavior is different from when a function or subroutine is called in a task portion.

Among the "non-task portion," a "task-independent portion" is activated due to a factor that completely ignore
the progress of the task portion or quasi-task portion processing. Specifically, an interrupt handler that is
triggered by an external interrupt or a time event handler (cyclic handler and alarm handler) that is triggered
due to the specified elapsed time is executed as a "task-independent portion." Note that both the external
interrupt and the specified elapsed time are the factors that is independent from a task that is incidentally
running at that moment.

Finally, "non-task portion" is separated into three classes: "transient state," "quasi-task portion," and "task-
independent portion." The states other than these represent a state where a program for the task is running,
this is, the state where "task portion is running."

T-Kernel 2.0 Specification 30 / 534

Figure 2.6: Classification of System States

2.5.2 Task-Independent Portion and Quasi-Task Portion

A feature of a task-independent portion (interrupt handlers, time event handlers, etc.) is that it is meaningless
to identify the task that was running immediately prior to entering a task-independent portion, and the concept
of "invoking task" does not exist. Accordingly, a system call that enters WAITING state, or one that is issued
implicitly specifying the invoking task, cannot be called from a task-independent portion. Moreover, since
the currently running task cannot be identified in a task-independent portion, there is no task switching
(dispatching). If dispatching is necessary, it is delayed until processing leaves the task-independent portion.
This is called delayed dispatching.

If dispatching were to take place in the interrupt handler, which is a task-independent portion, the rest of
the interrupt handler routine would be delayed for execution after the task started by the dispatching, caus-
ing problems in case of interrupt nesting. This is illustrated in Figure 2.7, “Interrupt Nesting and Delayed
Dispatching”.

In Figure 2.7, “Interrupt Nesting and Delayed Dispatching”, Interrupt X is raised during Task A execution,
and while its interrupt handler is running, a higher-priority interrupt Y is raised. In this case, if dispatching
were to occur immediately on return from interrupt Y at (1),1 starting Task B, the processing of parts (2) to (3)
of Interrupt X would be put off until after Task B relinquishes CPU, with parts (2) to (3) executed only after Task
A goes to RUNNING state. The danger is that the low-priority Interrupt X handler would be preempted not
only by a higher-priority interrupt but even by Task B started by that interrupt. There would no longer be any
guarantee of the interrupt handler execution maintaining priority over task execution, making it impossible
to write an interrupt handler. This is the reason for introducing the principle of delayed dispatching.

A feature of a quasi-task portion, on the other hand, is that the task executing prior to entering the quasi-
task portion (the requesting task) can be identified, making it possible to define task states just as in the task
portion; moreover, it is possible to enter WAITING state while in a quasi-task portion. Accordingly, dispatching
occurs in a quasi-task portion in the same way as in ordinary task execution. As a result, even though the
OS extended part and other quasi-task portion is a non-task portion, its execution does not necessarily have
priority at all times over the task portion. This is in contrast to interrupt handlers, which must always be given
execution precedence over tasks.

The following two examples illustrate the difference between a task-independent portion and quasi-task por-
tion.

1 If dispatching takes place at (1), the remainder of the handler routine for Interrupt X ((2) to (3)) ends up being put off until later.

T-Kernel 2.0 Specification 31 / 534

• An interrupt is raised while Task A (priority 8 = low) is running, and in its interrupt handler (task-independent
portion) tk_wup_tsk is issued for Task B (priority 2 = high). In accordance with the principle of delayed
dispatching, however, dispatching does not yet occur at this point. Instead, after tk_wup_tsk execution, first
the remaining part of the interrupt handler are executed. Only when tk_ret_int is executed at the end of the
interrupt handler does dispatching occur, causing Task B to run.

• An extended SVC is executed in Task A (priority 8 = low), and in its extended SVC handler (quasi-task
portion), tk_wup_tsk is issued for Task B (priority 2 = high). In this case the principle of delayed dispatching
is not applied, so dispatching occurs in tk_wup_tsk processing. Task A goes to READY state in a quasi-task
portion, and Task B goes to RUNNING state. Task B is therefore executed before the rest of the extended
SVC handler is completed. The rest of the extended SVC handler is executed after dispatching occurs again
and Task A goes to RUNNING state.

Figure 2.7: Interrupt Nesting and Delayed Dispatching

T-Kernel 2.0 Specification 32 / 534

2.6 Objects

"Object" is the general term for resources handled by T-Kernel. Besides tasks, objects include memory pools,
semaphores, event flags, mailboxes and other synchronization and communication mechanisms, as well as
time event handlers (cyclic handlers and alarm handlers).

Attributes can generally be specified when an object is created. Attributes determine detailed differences in
object behavior or the object initial state. When TA_XXXXX is specified for an object, that object is called
a "TA_XXXXX attribute object." If there is no particular attribute to be defined, TA_NULL (= 0) is specified.
Generally there is no interface provided for reading attributes after an object is registered.

In an object attribute value, the lower bits indicate system attributes and the upper bits indicate
implementation-dependent attributes. This specification does not define the bit position at which the upper
and lower distinction is to be made. Basically, bits that are not defined in the standard specification can be
used as implementation-dependent attributes. In principle, however, the system attribute portion is assigned
from the least significant bit (LSB) toward the most significant bit (MSB), and implementation-dependent
attributes from the MSB toward the LSB. Bits not defining any attribute must be cleared to 0.

In some cases an object may contain extended information. Extended information is specified when the object
is registered. Information passed in parameters when an object starts execution has no effect on T-Kernel
behavior. Extended information can be read by calling an object status reference system call.

An object is identified by an ID number. In T-Kernel, an ID number is automatically assigned when an object
is created. Users cannot specify ID numbers. This makes identifying an object during debugging difficult.
We can specify an object name for debugging upon creating each object. This name is used temporarily for
debugging and can be referred to only from T-Kernel/DS functions. No check is performed on the naming by
T-Kernel.

T-Kernel 2.0 Specification 33 / 534

2.7 Memory

2.7.1 Address Space

Memory address space is divided into system space (shared space) or task space (user space). The system
space can be accessed from any task in the same way, and the task space can be accessed only from tasks
that belong to that task space [Figure 2.8, “Address Space”]. Multiple tasks may in some cases belong to the
same task space.

The logical address space of task space and system space depends on the CPU (and MMU) limitations and
is therefore implementation-dependent, but in principle task space should be assigned to low addresses and
system space to high addresses.

Figure 2.8: Address Space

Since interrupt handlers and other task-independent software are not tasks, they do not have a task space of
their own. Instead, while in a task-independent portion they belong to the task executing just before entering
the task-independent portion. This is the same as the task space of the currently running task returned by
tk_get_tid . When there is no task in RUNNING state, task space is undefined.

As for the system space and task space, other related explanations are available in tk_cre_tsk, Memory Pool
Management Functions, and System Memory Management Functions.

In a system with no MMU (or not using an MMU), essentially task space does not exist.

2.7.2 Nonresident Memory

Memory may be resident or nonresident.

When nonresident memory is accessed, data is copied to that memory from a disk or other storage. It therefore
requires complicated processing such as disk access by a device driver. Accordingly, when nonresident
memory is accessed, the device driver, etc., must be in operational state. Access is not possible during dispatch
disabled or interrupts disabled state, or while a task-independent portion is executing.

Similarly, in OS internal processing, it is necessary to avoid accessing nonresident memory in a critical sec-
tion. One such case would be when the memory address passed in a system call parameter points to non-
resident memory. Whether or not system call parameters are allowed to reference nonresident memory is an
implementation-dependent matter.

Data transfer from a disk or the like due to nonresident memory access is not performed by T-Kernel. Normally
T-Kernel is used along with subsystems that handle virtual memory management and other such processing.

In a system that does not use virtual memory, system call parameters or the like pointing to nonresident
memory can be ignored, treating all memory as resident.

T-Kernel 2.0 Specification 34 / 534

2.7.3 Protection Levels

T-Kernel assumes four levels of memory protection, from 0 to 3.

• Level 0 has the highest privilege and level 3 the lowest.

• Access can be made only to memory at the currently running protection level or to levels with lower privilege.

• Changing from one protection level to another is accomplished by invoking a system call or extended SVC,
or by interrupt or CPU exception.

• When a protection privilege level of the currently running task is lower than that of the memory being
accessed, it is typically the MMU that detects the violation of memory access privilege and raises CPU
exception.

The uses of each protection level are as follows.

Protection Levels Usage
0 Kernel, subsystems, device drivers, etc.
1 System application tasks
2 (reserved)
3 User application tasks

A non-task portion (task-independent portion, quasi-task portion, etc.) runs at protection level 0. Only a task
portion can run at protection levels 1 to 3. A task portion can also run at protection level 0.

Some MMUs support only two protection levels, privileged and user level. In such a case protection levels
0 to 2 are assigned to privileged level, and protection level 3 to the user level, as if there were 4 levels. In a
system with no MMU, all protection levels 0 to 3 are treated as identical.

T-Kernel 2.0 Specification 35 / 534

Chapter 3

Common Rules of T-Kernel

T-Kernel 2.0 Specification 36 / 534

3.1 Data Types

3.1.1 General Data Types

typedef signed char B; /* signed 8-bit integer */
typedef signed short H; /* signed 16-bit integer */
typedef signed long W; /* signed 32-bit integer */
typedef signed long long D; /* signed 64-bit integer */
typedef unsigned char UB; /* unsigned 8-bit integer */
typedef unsigned short UH; /* unsigned 16-bit integer */
typedef unsigned long UW; /* unsigned 32-bit integer */
typedef unsigned long long UD; /* unsigned 64-bit integer */

typedef char VB; /* 8-bit data without an intended type */
typedef short VH; /* 16-bit data without an intended type */
typedef long VW; /* 32-bit data without an intended type */
typedef long long VD; /* 64-bit data without an intended type */
typedef void *VP; /* pointer to data without an intended type */

typedef volatile B _B; /* volatile declaration */
typedef volatile H _H;
typedef volatile W _W;
typedef volatile D _D;
typedef volatile UB _UB;
typedef volatile UH _UH;
typedef volatile UW _UW;
typedef volatile UD _UD;

typedef signed int INT; /* signed integer of processor bit width , 32 bits or ←↩
more */

typedef unsigned int UINT; /* unsigned integer of processor bit width , 32 bits or ←↩
more */

typedef INT ID; /* general ID */
typedef W MSEC; /* general time (in milliseconds) */

typedef void (*FP)(); /* general function address */
typedef INT (* FUNCP)(); /* general function address */

#define LOCAL static /* local symbol definition */
#define EXPORT /* global symbol definition */
#define IMPORT extern /* global symbol reference */

/*
* Boolean values
* TRUE = 1 is defined , but any value other than 0 is logically TRUE.
* A decision such as bool == TRUE must be avoided for this reason.
* Instead use bool != FALSE.
*/
typedef UINT BOOL;
#define TRUE 1 /* true */
#define FALSE 0 /* false */

/*
* TRON character codes
*/
typedef UH TC; /* TRON character codes */
#define TNULL ((TC)0) /* TRON code string termination */

T-Kernel 2.0 Specification 37 / 534

Note

• VB, VH, VW, and VD differ from B, H, W, and D in that the former mean only the bit width is known, not the
contents of the data type, whereas the latter clearly indicate integer type.

• Processor bit width must be 32 bits or more. INT and UINT must therefore always have a width of 32 bits
or more.

• BOOL defines TRUE = 1, but any value other than 0 is also TRUE. For this reason a decision such as bool ==
TRUE must be avoided. Instead use bool != FALSE.

Additional Notes
Parameters such as stksz, wupcnt, and message size that clearly do not take negative values are also in prin-
ciple signed integer (INT) data type. This is in keeping with the overall TRON rule that integers should be
treated as signed numbers as much as possible. As for the timeout (TMO tmout) parameter, its being a signed
integer enables the use of TMO_FEVR(= -1) having special meaning. Parameters with unsigned data type are
those treated as bit patterns (object attribute, event flag, etc.).

Difference from T-Kernel 1.0

• 64-bit D and UD are added. 'D' means Double integer. "signed" is added to the declaration of a signed
integer. int is changed to long to clearly indicate that W and UW are 32-bit.

• Though MSEC in T-Kernel 1.0 was INT (integer with processor bit width), MSEC in T-Kernel 2.0 has been
changed to W (integer with 32-bit fixed width). This is a feedback from μT-Kernel specification. That
specification was negatively affected when INT is 16-bit was changed to W (integer with 32-bit fixed width).

3.1.2 Other Defined Data Types

The following names are used for other data types that appear frequently or have special meaning, in order
to make The parameter meaning clear.

typedef INT FN; /* Function Codes */
typedef INT RNO; /* rendezvous number */
typedef UW ATR; /* Object/handler attributes */
typedef INT ER; /* Error Code */
typedef INT PRI; /* Priority */
typedef W TMO; /* Timeout specification in milliseconds */
typedef D TMO_U; /* Timeout specification in microseconds with 64- ←↩

bit integer */
typedef UW RELTIM; /* Relative time in milliseconds */
typedef UD RELTIM_U; /* Relative time in microseconds with 64-bit ←↩

integer */

typedef struct systim { /* System time in milliseconds */
W hi; /* High 32 bits */
UW lo; /* Low 32 bits */

} SYSTIM;

typedef D SYSTIM_U; /* System time in microseconds with 64-bit integer ←↩
*/

/*
* Common constants

T-Kernel 2.0 Specification 38 / 534

*/
#define NULL 0 /* Null pointer */
#define TA_NULL 0 /* No special attributes indicated */
#define TMO_POL 0 /* Polling */
#define TMO_FEVR (-1) /* Eternal wait */

Note

• A data type that combines two or more data types is represented by its main data type. For example, the
value returned by tk_cre_tsk can be a task ID or error code, but since it is mainly a task ID, the data type is
ID.

Difference from T-Kernel 1.0
TMO_U that represents timeout specification in microseconds with 64-bit integer, RELTIM_U that represents
relative time in microseconds with 64-bit integer, and SYSTIM_U that represents system time in microseconds
with 64-bit integer are added. RELTIM_U is unsigned corresponding to RELTIM, and SYSTIM_U is signed
corresponding to SYSTIM. Though SYSTIM is a structure comprising two 32-bit members, SYSTIM_U is a
plain 64-bit integer rather than a structure to directly take advantage of the convenience of a 64-bit data.
Though TMO that represents timeout specification in milliseconds was INT in T-Kernel 1.0, it has been
changed to W in T-Kernel 2.0. Additionally, though ATR that represents an object attribute and others and
RELTIM that represents a relative time in milliseconds were UINT in T-Kernel 1.0, they have been changed to
UW in T-Kernel 2.0.

Additional Notes
The policy is to append "_u" (u means μ) or "_U" at the end for parameters and data types representing
microsecond (μsec), or append "_d" (d means double integer) or "_D" at the end for other parameters and
data types representing 64-bit integer. TMO_U, RELTIM_U, and SYSTIM_U are data type names complying
to this policy.

T-Kernel 2.0 Specification 39 / 534

3.2 System Calls

3.2.1 System Call Format

T-Kernel adopts C as the standard high-level language, and standardizes interfaces for system call execution
from C language routines.

The method for interfacing with the assembly language shall be implementation-dependent. Calling by means
of a C language interface is recommended even when an assembly language is used. In this way, portability
is assured for programs written in assembly language even if the OS changes, so long as the CPU is the same.

The following common rules are established for system call interfaces.

• All system calls are defined as C language functions.

• A function return code of 0 or a positive value indicates normal completion, while negative values are used
for error codes.

The processing part (a part in which T-Kernel functions are actually called from within a function that rep-
resents a system call) of the system call interface is implemented as a library written in assembly language.
This is called an interface library. In consideration of portability, C language macros, in-line functions, in-line
assembly codes, etc. are not used for implementation of the interface library.

Among C language interfaces for system calls, those which pass parameters using a packet or pointer have
CONST modifier attached to explicitly indicate that T-Kernel does not overwrite a parameter referred to by
the pointer.

CONST is intended to be the C language const modifier equivalent. This alias for const is used so that the
compiler check can be disabled by using #define macro function when any program that does not support
const modifier mixes in.

Specific usage of CONST is as follows: Details, however, depend on the development environment.

1. Include the following descriptions in the common include file:

/* If TKERNEL_CHECK_CONST definition exists , enable the check for const */
#ifdef TKERNEL_CHECK_CONST
#define CONST const
#else
#define CONST
#endif

2. Describe a function definition or system call definition in the program by using CONST.

Example 3.1 Description Example of CONST

tk_cre_tsk(CONST T_CTSK *pk_ctsk);
foo_bar(CONST void *buf);

3. Enable const by the specification in Makefile. (Recommended)

Example 3.2 Example of Enabling const

CFLAGS += -DTKERNEL_CHECK_CONST

※ If the above specification does not exist, the check for const is being disabled.

In T-Kernel 2.0 or later, it is strongly recommended that CONST is used explicit by in a program and the check
for const is enabled in development.

T-Kernel 2.0 Specification 40 / 534

Difference from T-Kernel 1.0
CONST is added to the C language interface of system calls, and the check using const modifier is recom-
mended. However, at the same time, the workaround for programs that do not support constmodifier is also
established.

3.2.2 System Calls Possible from Task-Independent Portion

The following system calls can be issued from a task-independent portion and in dispatch disabled state:

System call name Summary description
tk_sta_tsk Start Task
tk_wup_tsk Wakeup Task
tk_rel_wai Release Wait
tk_sus_tsk Suspend Task
tk_sig_sem Signal Semaphore
tk_set_flg Set Event Flag
tk_sig_tev Signal Task Event
tk_rot_rdq Rotate Ready Queue
tk_get_tid Get Task Identifier
tk_sta_cyc Start Cyclic Handler
tk_stp_cyc Stop Cyclic Handler
tk_sta_alm Start Alarm Handler
tk_sta_alm_u Start Alarm Handler (in microseconds)
tk_stp_alm Stop Alarm Handler
tk_ref_tsk Reference Task Status
tk_ref_tsk_u Reference Task Status (Microseconds)
tk_ref_cyc Reference Cyclic Handler Status
tk_ref_cyc_u Reference Cyclic Handler Status (Microseconds)
tk_ref_alm Reference Alarm Handler Status
tk_ref_alm_u Reference Alarm Handler Status (Microseconds)
tk_ref_sys Reference System Status
tk_ret_int Return from Interrupt Handler (can be issued only

from an interrupt handler written in an assembly
language)

Whether system calls other than those above can be issued from a task-independent portion or in dispatch
disabled state is implementation-dependent.

3.2.3 Restricting System Call Invocation

The protection levels at which a system call is invokable can be restricted. In this case, if a system call is
issued from a task (task portion) running at lower privilege than the specified protection level, the error code
E_OACV is returned.

Extended SVC calling cannot be restricted.

If, for example,issuing a system call from a level with lower privilege than level 1 is prohibited, system calls
cannot be made from tasks running at protection levels 2 and 3. Tasks running at those levels will only be
able to make extended SVC calls, and are programmed using subsystem functions only.

This kind of restriction is used when T-Kernel is combined with T-Kernel Extension, to prevent tasks that use
the functions of T-Kernel extension from directly accessing T-Kernel functions. It allows T-Kernel to be used
as a micro-kernel.

The protection level restriction on system call invocation is set using the system configuration information
management functions. (see Section 5.7, “System Configuration Information Management Functions”).

T-Kernel 2.0 Specification 41 / 534

3.2.4 Modifying a Parameter Packet Format

Some parameters passed to system calls use packet format. The packet format parameters are of two kinds,
either input parameters passing information to a system call (e.g., T_CTSK) or output parameters returning
information from a system call (e.g., T_RTSK).

Additional information that is implementation-dependent can be added to a parameter packet. It is not allow-
able, however, to change the data types and order of information defined in the standard specification or to
delete any of this information. When implementation-dependent information is added, it must be positioned
after the standard defined information.

When implementation-dependent information is added to a packet of input information passed to a system
call (T_CTSK, etc.), if the system call is invoked while this additional information is not yet initialized (memory
content is indeterminate), the system call must still function normally.

Ordinarily a flag indicating that valid values are set in the additional information is defined in the
implementation-dependent area of attribute flag included in the standard specification. When that flag is
set (1), the additional information is to be used; and when the flag is not set (0), the additional information is
not initialized (memory content is indeterminate) and the default values are to be used instead.

The reason for this specification is to ensure that a program developed within the scope of the standard
specification will be able to run on an OS with implementation-dependent functional extensions, simply by
recompiling.

3.2.5 Function Codes

Function codes are numbers assigned to each system call and used to identify the system call.

The system call function codes are not specified here but are to be defined in implementation.

See tk_def_ssy on extended SVC function codes.

3.2.6 Error Codes

System call return codes are in principle to be signed integers. When an error occurs, a negative error code is
returned; and if processing is completed normally, E_OK (= 0) or a positive value is returned. The meaning of
returned values in the case of normal completion is specified individually for each system call. An exception
to this principle is that there are some system calls that do not return when called. A system call that does
not return is declared in the C language interface as having no return code (i.e., a void type function).

An error code consists of the main error code and sub error code. The low 16 bits of the error code are the
sub error code, and the remaining high bits are the main error code. Main error codes are classified into error
classes based on the necessity of their detection, the circumstances in which they occur and other factors.
Since T-Kernel/OS does not use a sub error code, these bits are always 0.

#define MERCD(er) ((ER)(er) >> 16) /* Main error code */
#define SERCD(er) ((H)(er)) /* sub error codes */
#define ERCD(mer , ser) ((ER)(mer) << 16 | (ER)(UH)(ser))

3.2.7 Timeout

A system call that may enter WAITING state has a timeout function. If processing is not completed by the
time the specified timeout interval has elapsed, the processing is canceled and the system call returns error
code E_TMOUT.

In accordance with the principle that there should be no side-effects from calling a system call if that system
call returns an error code, the calling of a system call that times out should in principle result in no change

T-Kernel 2.0 Specification 42 / 534

in system state. An exception to this is when the functioning of the system call is such that it cannot return
to its original state if processing is canceled. This is indicated in the system call description.

If the timeout interval is set to 0, a system call does not enter even when a situation arises in which it would
ordinarily go to WAITING state. In other words, a system call with timeout set to 0 when it is invoked has
no possibility of entering WAITING state. Invoking a system call with timeout set to 0 is called polling; i.e., a
system call that performs polling has no chance of entering WAITING state.

The descriptions of individual system calls as a rule describe the behavior when there is no timeout (in other
words, when an eternal wait occurs). Even if the system call description states that the system call "enters
WAITING state" or "is put in WAITING state," if a timeout is set and that time interval elapses before processing
is completed, the WAITING state is released and the system call returns error code E_TMOUT. In the case of
polling, the system call returns E_TMOUT without entering WAITING state.

Timeout (TMO and TMO_U types) is given as a positive integer, or as TMO_POL (= 0) for polling, or as TMO_FEVR
(= -1) for eternal wait. If a timeout interval is set, the timeout processing must be guaranteed to take place
after the specified interval from the system call issuing has elapsed.

Additional Notes
Since a system call that performs polling does not enter WAITING state, there is no change in the precedence
of the task calling it.
In a general implementation, when the timeout is set to 1, timeout processing takes place on the second
timer interrupt (sometimes called "time tick") after a system call is invoked. Since a timeout of 0 cannot be
specified (0 being allocated to TMO_POL), in this kind of implementation timeout does not occur on the initial
timer interrupt after the system call is invoked.

3.2.8 Relative Time and System Time

When the time of an event occurrence is specified relative to another time, such as the time when a system
call was invoked, relative time (RELTIM or RELTIM_U type) is used. If relative time is used to specify event
occurrence time, it is necessary to guarantee that the event processing will take place after the specified
time has elapsed from the time base. Relative time (RELTIM or RELTIM_U type) is also used for e.g. event
occurrence. In such cases the method of interpreting the specified relative time is determined for each case.
When time is specified as an absolute value, system time (SYSTIM or SYSTIM_U type) is used. The T-Kernel
provides a function for setting system time, but even if the system time is changed using this function, there
is no change in the real world time (actual time) at which an event occurs that was specified using relative
time. What changes is the system time at which an event occurs that was specified as relative time.

SYSTIM: System time
Time base 1 millisecond, 64-bit signed integer

typedef struct systim {
W hi; /* High 32 bits */
UW lo; /* Low 32 bits */

} SYSTIM;

SYSTIM_U: System time
Time base 1 microsecond, 64-bit signed integer

typedef D SYSTIM_U; /* 64-bit */

RELTIM: Relative time
Time base 1 millisecond, 32-bit unsigned integer (UW)

typedef UW RELTIM;

T-Kernel 2.0 Specification 43 / 534

RELTIM_U: Relative time
Time base 1 microsecond, 64-bit unsigned (UD) integer

typedef UD RELTIM_U; /* Relative time in microseconds with 64-bit integer */

TMO: Timeout time
Time base 1 millisecond, 32-bit signed integer (W)

typedef W TMO;

Eternal wait can be specified as TMO_FEVR (= -1).

TMO_U timeout period
Time base 1 microsecond, 64-bit signed (D) integer

typedef D TMO_U; /* Timeout in microseconds with 64-bit integer */

Eternal wait can be specified as TMO_FEVR (= -1).

Additional Notes
Timeout or other such processing must be guaranteed to occur after the time specified as RELTIM, RELTIM_U,
TMO, or TMO_U has elapsed. For example, if the timer interrupt interval is 1 ms and a timeout of 1 ms is
specified, timeout occurs on the second timer interrupt after system call invocation. (The first timer interrupt
does not exceed 1 ms.)
When a system time (SYSTIM_U) value that may overflow internally in kernel is specified as an argument, the
system call behavior is undefined.

3.2.9 Timer Interrupt Interval

Actual time resolution in T-Kernel time management functions uses one that is specified by the "timer interrupt
interval" (TTimPeriod) in Section 5.7.2, “Standard System Configuration Information”. By default, the "timer
interrupt interval" (TTimPeriod) is set to 10 milliseconds. Actually settable range and operable range are
implementation-dependent.

As the "timer interrupt interval" decreases, system overhead by the timer interrupt increases and a clock error
may increase due to the constraints on the clock or hardware provided for the timer.

T-Kernel 2.0 Specification 44 / 534

3.3 High-Level Language Support Routines

High-level language support routine capability is provided so that even if a task or handler is written in high-
level language, the kernel-related processing can be kept separate from the language environment-related
processing. Whether or not a high-level language support routine is used is specified in TA_HLNG, one of the
object attributes and handler attributes.

When TA_HLNG is not specified, a task or handler is started directly from the start address passed in a parameter
to tk_cre_tsk or tk_def_???; whereas when TA_HLNG is specified, first the high-level language startup processing
routine (high-level language support routine) is started, then from this routine an indirect jump is made to
the task start address or handler address passed in a parameter to tk_cre_tsk or tk_def_???. Viewed from
the kernel, the task start address or handler address is a parameter given to the high-level language support
routine. Separating the kernel processing from the language environment processing in this way facilitates
support for different language environments.

Use of high-level language support routines has the further advantage that when a task or handler is written
as a C language function, a system call for task exit or return from a handler can be executed automatically,
simply by performing a function return (explicit return or "}").

In a system that uses an MMU, however, whereas it is relatively easy to realize a high-level language support
routine in the case of an interrupt handler or the like that runs at the same protection level as the kernel, it is
more difficult in the case of a task or task exception handler running at a different protection level from the
kernel's. For this reason, when a high-level language support routine is used for a task, there is no guarantee
that the task will exit by a return from the function. Returning a task function using return or "}" leads to an
undefined behavior. At the end of a task, Exit Task (tk_ext_tsk) or Exit and Delete Task (tk_exd_tsk) must
always be issued.

In the case of a task exception handler, the high-level language support routine is supplied as source code
and is to be embedded in the user program.

The internal working of a high-level language support routine is as illustrated in Figure 3.1, “Behavior of
High-Level Language Support Routine”.

T-Kernel 2.0 Specification 45 / 534

Figure 3.1: Behavior of High-Level Language Support Routine

T-Kernel 2.0 Specification 46 / 534

Chapter 4

T-Kernel/OS Functions

This chapter describes details of the system calls provided by T-Kernel/OS (Operating System).

T-Kernel 2.0 Specification 47 / 534

4.1 Task Management Functions

Task management functions are functions that directly manipulate or reference task states. Functions are
provided for creating and deleting a task, for task starting and exit, changing task priority, and referencing
task state. A task is an object identified by an ID number called a task ID. Task states and scheduling rules
are explained in Section 2.2, “Task States and Scheduling Rules”.

For control of execution order, a task has a base priority and current priority. When simply "task priority"
is mentioned, this means the current priority. The base priority of a task is initialized to the startup priority
when a task is started. If the mutex function is not used, the task current priority is always identical to its base
priority. For this reason, the current priority immediately after a task is started is the task startup priority.
When the mutex function is used, the current priority is set as discussed in Section 4.5.1, “Mutex”.

The kernel does not perform processing for freeing of resources acquired by a task (semaphore resources,
memory blocks, etc.) upon task exit, other than mutex unlocking. Freeing of task resources is the responsibility
of the application.

T-Kernel 2.0 Specification 48 / 534

4.1.1 tk_cre_tsk - Create Task

C Language Interface

#include <tk/tkernel.h>

ID tskid = tk_cre_tsk (CONST T_CTSK *pk_ctsk);

Parameter

CONST T_CTSK* pk_ctsk Packet to Create Task Information about task creation

pk_ctsk Detail:

void* exinf Extended Information Extended information
ATR tskatr Task Attribute Task attribute
FP task Task Start Address Task start address
PRI itskpri Initial Task Priority Initial task priority
INT stksz Stack Size Stack size (in bytes)
INT sstksz System Stack Size System stack size (in bytes)
void* stkptr User Stack Pointer User stack pointer
void* uatb Address of Task Space

Page Table
Task space page table

INT lsid Logical Space ID Logical space ID
ID resid Resource ID Resource ID
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID tskid Task ID Task ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block or user stack cannot be allocated)
E_LIMIT Number of tasks exceeds the system limit
E_RSATR Reserved attribute (tskatr is invalid or cannot be used), or the specified

coprocessor does not exist
E_NOSPT Unsupported function (when TA_USERSTACK or TA_TASKSPACE is not supported)
E_PAR Parameter error
E_ID Invalid resource ID (resid)
E_NOCOP The specified coprocessor cannot be used (not installed, or abnormal operation

detected)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

T-Kernel 2.0 Specification 49 / 534

Description

Creates a task, assigning to it a task ID number. This system call allocates a TCB (Task Control Block) to the
created task and initializes it based on itskpri, task, stksz and other parameters.

After the task is created, it is initially in DORMANT state.

itskpri specifies the initial priority at the time the task is started. Task priority values are specified from 1 to
140, with the smaller numbers indicating higher priority.

exinf can be used freely by the user to insert miscellaneous information about the task. The information set
here is passed to the task as startup parameter information and can be referred to by calling tk_ref_tsk. If
a larger area is needed for indicating user information, or if the information may need to be changed after
the task is created, this can be done by allocating separate memory for this purpose and putting the memory
packet address in exinf. The kernel pays no attention to the contents of exinf.

tskatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of tskatr is as follows.

tskatr := (TA_ASM || TA_HLNG)
| [TA_SSTKSZ] | [TA_USERSTACK] | [TA_TASKSPACE] | [TA_RESID] | [TA_DSNAME]
| (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3)
| [TA_COP0] | [TA_COP1] | [TA_COP2] | [TA_COP3] | [TA_FPU]

TA_ASM Indicates that the task is written in assembly language
TA_HLNG Indicates that the task is written in high-level language
TA_SSTKSZ Specifies the system stack size
TA_USERSTACK Points to the user stack
TA_TASKSPACE Points to the task space
TA_RESID Specifies the resource group to which the task belongs
TA_DSNAME Specifies DS object name
TA_RNGn Indicates that the task runs at protection level n
TA_COPn Specifies use of the nth coprocessor (including floating point coprocessor or DSP)
TA_FPU Specifies use of a floating point coprocessor (when a coprocessor specified in

TA_COPn is a general-purpose FPU particularly for floating point processing and not
dependent on the CPU)

The function for specifying implementation-dependent attributes can be used, for example, to specify that a
task is subject to debugging. One use of the remaining system attribute fields is for indicating multiprocessor
attributes in the future.

#define TA_ASM 0x00000000 /* Task in Assembly Language */
#define TA_HLNG 0x00000001 /* Task in High -level language */
#define TA_SSTKSZ 0x00000002 /* System stack size */
#define TA_USERSTACK 0x00000004 /* User stack pointer */
#define TA_TASKSPACE 0x00000008 /* Task space */
#define TA_RESID 0x00000010 /* Task resource group */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_RNG0 0x00000000 /* Run at protection level 0 */
#define TA_RNG1 0x00000100 /* Run at protection level 1 */
#define TA_RNG2 0x00000200 /* Run at protection level 2 */
#define TA_RNG3 0x00000300 /* Run at protection level 3 */
#define TA_COP0 0x00001000 /* Use ID=0 coprocessor */
#define TA_COP1 0x00002000 /* Use ID=1 coprocessor */
#define TA_COP2 0x00004000 /* Use ID=2 coprocessor */
#define TA_COP3 0x00008000 /* Use ID=3 coprocessor */

When TA_HLNG is specified, starting the task jumps to the task address not directly but by going through a
high-level language environment configuration program (high-level language support routine). The task takes

T-Kernel 2.0 Specification 50 / 534

the following form in this case.

void task(INT stacd , void *exinf)
{

/*
(processing)

*/

tk_ext_tsk (); or tk_exd_tsk (); /* Exit task */
}

The startup parameters passed to the task include the task startup code stacd specified in tk_sta_tsk, and the
extended information exinf specified in tk_cre_tsk.

The task cannot (must not) be terminated by a simple return from the function, otherwise the operation will
be indeterminate (implementation-dependent).

The form of the task when the TA_ASM attribute is specified in implementation-dependent, but stacd and exinf
must be passed as startup parameters.

The task runs at the protection level specified in the TA_RNGn attribute. When a system call or extended SVC
is called, the protection level goes to 0, then goes back to its original level upon return from the system call
or extended SVC.

Each task has two stack areas, a system stack and user stack. The user stack is used at the protection level
specified in TA_RNGn while the system stack is used at protection level 0. When the calling of a system call or
extended SVC causes the protection level to change, the stack is also switched.

Note that a task running at TA_RNG0 does not switch protection levels, so there is no stack switching either.
When TA_RNG0 is specified, the combined total of the user stack size and system stack size is the size of one
stack, employed as both a user stack and system stack.

When TA_SSTKSZ is specified, sstksz is valid. If TA_SSTKSZ is not specified, sstksz is ignored and the default
size applies.

When TA_USERSTACK is specified, stkptr is valid. In this case a user stack is not provided by the OS, but must
be allocated by the caller. stksz must be set to 0. If TA_USERSTACK is not specified, stkptr is ignored. Note that
if TA_RNG0 is set, TA_USERSTACK cannot be specified. E_PAR occurs if TA_RNG0 and TA_USERSTACK are specified at
the same time.

When TA_TASKSPACE is specified, uatb and lsid are valid and are set as task space. If TA_TASKSPACE is not
specified, uatb and lsid are ignored and task space is undefined. During the time task space is undefined,
only system space can be accessed; access to task (user) space is not allowed. Irrespective of TA_TASKSPACE
specification, task space can be changed after a task is created. Note that when task space is changed, in no
case does it revert to the task space set at task creation, even when the task returns to DORMANT state, but
the task always uses the most recently set task space.

When TA_RESID is specified, resid is valid and its resource group (see Section 4.10, “Subsystem Management
Functions”) is specified as the resource group to which the task belongs. If TA_RESID is not specified, resid
is ignored and the task belongs to the system resource group. Note that if the resource group of a task is
changed, in no case does it revert to the resource group set at task creation, even when the task returns to
DORMANT state, but the task always retains the most recently set resource group (See tk_cre_res).

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

Additional Notes

A task runs either at the protection level set in TA_RNGn or at protection level 0. For example, a task for which
TA_RNG3 is specified in no case runs at protection level 1 or 2.

T-Kernel 2.0 Specification 51 / 534

In a system with separate interrupt stack, interrupt handlers also use the system stack. An interrupt handler
runs at protection level 0.

The system stack default size is decided taking into account the amount taken up by system call execution
and, in a system with separate interrupt stack, the amount used by interrupt handlers.

The system stack is system space resident memory used at protection level 0. If TA_USERSTACK is not specified,
the user stack is system space resident memory used at the protection level specified in the TA_RNGn attribute.
If TA_USERSTACK is specified, the user stack memory attributes are as specified by the caller of this system call.
Task space may be made nonresident memory.

The definition of TA_COPn is dependent on the CPU and other hardware and is not portable.

TA_FPU is provided as a portable notation method only for the definition in TA_COPn of a floating point coproces-
sor. If, for example, the floating point coprocessor is TA_COP0, then TA_FPU = TA_COP0. If there is no particular
need to specify the use of a coprocessor for floating point operations, TA_FPU = 0 is set.

Even in a system without an MMU, for the sake of portability all attributes including TA_RNGnmust be accepted.
It is possible, for example, to handle all TA_RNGn as equivalent to TA_RNG0, but error must not be returned.

In the case of TA_USERSTACK and TA_TASKSPACE, however, E_NOSPT may be returned, since there are many
implementations where these cannot be supported without an MMU.

T-Kernel 2.0 Specification 52 / 534

4.1.2 tk_del_tsk - Delete Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_tsk (ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error Code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (the task is not in DORMANT state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Deletes the task specified in tskid.

This system call changes the state of the task specified in tskid from DORMANT state to NONEXISTENT state
(no longer exists in the system), releasing the TCB and stack area that were assigned to the task. The task ID
number is also released. When this system call is issued for a task not in DORMANT state, error code E_OBJ
is returned.

This system call cannot specify the invoking task. If the invoking task is specified, error code E_OBJ is returned
since the invoking task is not in DORMANT state. The invoking task is deleted not by this system call but by
the tk_exd_tsk system call.

T-Kernel 2.0 Specification 53 / 534

4.1.3 tk_sta_tsk - Start Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sta_tsk (ID tskid , INT stacd);

Parameter

ID tskid Task ID Task ID
INT stacd Task Start Code Task start code

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (the task is not in DORMANT state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Starts the task specified in tskid. This system call changes the state of the specified task from DORMANT
state to READY state.

Parameters to be passed to the task when it starts can be set in stacd. These parameters can be referred to
from the started task, enabling use of this feature for simple message passing.

The task priority when it starts is the task startup priority (itskpri) specified when the started task was created.

Start requests by this system call are not queued. If this system call is issued while the target task is in a state
other than DORMANT state, the system call is ignored and error code E_OBJ is returned to the calling task.

T-Kernel 2.0 Specification 54 / 534

4.1.4 tk_ext_tsk - Exit Task

C Language Interface

#include <tk/tkernel.h>

void tk_ext_tsk (void);

Parameter

None

Return Parameter

Does not return to the context issuing the system call.

Error Code

The following kind of error may be detected, but no return is made to the context issuing the system call
even if the error is detected. For this reason the error code cannot be passed directly as a system call return
parameter. The behavior in case an error occurs is implementation-dependent.

E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Exits the invoking task normally and changes its state to DORMANT state.

Additional Notes

When a task terminates by tk_ext_tsk, the resources acquired by the task up to that time (memory blocks,
semaphores, etc.) are not automatically freed. The user is responsible for releasing such resources before the
task exits.

tk_ext_tsk is a system call that does not return to the context from which it was called. Even if an error code
is returned when an error of some kind is detected, normally no error checking is performed in the context
from which the system call was invoked, leaving the possibility that the program will behave in an unexpected
manner. For this reason these system calls do not return even if error is detected.

As a rule, the task priority and other information included in the TCB is reset when the task returns to DOR-
MANT state. If, for example, the task priority is changed by tk_chg_pri and later terminated by tk_ext_tsk, the
task priority reverts to the startup priority (itskpri) specified by tk_cre_tsk at startup. It does not keep the
task priority in effect at the time tk_ext_tsk was executed.

System calls that do not return to the calling context are those named tk_ret_??? or tk_ext_??? (tk_exd_???).

T-Kernel 2.0 Specification 55 / 534

4.1.5 tk_exd_tsk - Exit and Delete Task

C Language Interface

#include <tk/tkernel.h>

void tk_exd_tsk (void);

Parameter

None

Return Parameter

Does not return to the context issuing the system call.

Error Code

The following kind of error may be detected, but no return is made to the context issuing the system call
even if the error is detected. For this reason the error code cannot be passed directly as a system call return
parameter. The behavior in case an error occurs is implementation-dependent.

E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Terminates the invoking task normally and also deletes it. This system call changes the state of the invoking
task to NON-EXISTENT state (no longer exists in the system).

Additional Notes

When a task terminates by tk_exd_tsk, the resources acquired by the task up to that time (memory blocks,
semaphores, etc.) are not automatically freed. The user is responsible for releasing such resources before the
task exits.

tk_exd_tsk is a system call that does not return to the context from which it was called. Even if an error code
is returned when an error of some kind is detected, normally no error checking is performed in the context
from which the system call was invoked, leaving the possibility that the program will behave in an unexpected
manner. For this reason these system calls do not return even if error is detected.

T-Kernel 2.0 Specification 56 / 534

4.1.6 tk_ter_tsk - Terminate Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ter_tsk (ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (the target task is in DORMANT state or is the invoking task)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Forcibly terminates the task specified in tskid. This system call changes the state of the target task specified
in tskid to DORMANT state.

Even if the target task was in the waiting state (including SUSPENDED state), the waiting state is released
and the task is terminated. If the target task was in some kind of queue (semaphore wait, etc.), executing
tk_ter_tsk results in its removal from the queue.

This system call cannot specify the invoking task. If the invoking task is specified, error code E_OBJ is
returned.

The relationships between target task states and the results of executing tk_ter_tsk are summarized in Ta-
ble 4.1, “Target Task State and Execution Result (tk_ter_tsk)”.

Additional Notes

When a task is terminated by tk_ter_tsk, the resources acquired by the task up to that time (memory blocks,
semaphores, etc.) are not automatically freed. The user is responsible for releasing such resources before the
task is terminated.

As a rule, the task priority and other information included in the TCB is reset when the task returns to DOR-
MANT state. If, for example, the task priority is changed by tk_chg_pri and later terminated by tk_ter_tsk, the

T-Kernel 2.0 Specification 57 / 534

Target Task State tk_ter_tsk ercd Return Value (processing)
Run state (RUNNING or READY) (not
for invoking task)

E_OK Forced termination

Running state (RUNNING) (invoking
task)

E_OBJ No operation

Waiting state (WAITING) E_OK Forced termination
Suspended state (SUSPENDED) E_OK Forced termination
Waiting-suspended state
(WAITING-SUSPENDED)

E_OK Forced termination

Dormant state (DORMANT) E_OBJ No operation
Non-existent state (NON-EXISTENT) E_NOEXS No operation

Table 4.1: Target Task State and Execution Result (tk_ter_tsk)

task priority reverts to the startup priority (itskpri) that is specified by tk_cre_tsk at startup. The task priority
at task termination by tk_ter_tsk is not used after the task is restarted by tk_sta_tsk.

Forcible termination of another task is intended for use only by a debugger or a few other tasks closely related
to the OS. As a rule, this system call is not to be used by ordinary applications or middleware, for the following
reason.

Forced termination occurs regardless of the running state of the target task. If, for example, a task were
forcibly terminated while the task was calling a middleware function, the task would terminate right while the
middleware was executing. If such a situation were allowed, normal operation of the middleware could not
be guaranteed.

This is an example of how task termination should not be allowed when the task status (what it is executing)
is unknown. Ordinary applications therefore must not use the forcible termination function.

T-Kernel 2.0 Specification 58 / 534

4.1.7 tk_chg_pri - Change Task Priority

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_chg_pri (ID tskid , PRI tskpri);

Parameter

ID tskid Task ID Task ID
PRI tskpri Task Priority Task priority

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (tskpri is invalid or cannot be used)
E_ILUSE Illegal use (upper priority limit exceeded)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Changes the base priority of the task specified in tskid to the value specified in tskpri. The current priority
of the task also changes as a result.

Task priority values are specified from 1 to 140, with the smaller numbers indicating higher priority.

When TSK_SELF (= 0) is specified in tskid, the invoking task is the target task. Note, however, that when
tskid=TSK_SELF is specified in a system call issued from a task-independent portion, error code E_ID is re-
turned. When TPRI_INI (= 0) is specified as tskpri, the target task base priority is changed to the initial
priority when the task was started (itskpri).

A priority changed by this system call remains valid until the task is terminated. When the task reverts to
DORMANT state, the task priority before its exit is discarded, with the task again assigned to the initial priority
when the task was started (itskpri). However, the priority changed in DORMANT state is valid. The next time
the task is started, it has the new initial priority.

If as a result of this system call execution the target task current priority matches the base priority (this
condition is always met when the mutex function is not used), processing is as follows.

If the target task is in a run state, the task precedence changes according to its priority. The target task has
the lowest precedence among tasks of the same priority after the change.

T-Kernel 2.0 Specification 59 / 534

If the target task is in some kind of priority-based queue, the order in that queue changes in accordance with
the new task priority. Among tasks of the same priority after the change, the target task is queued at the end.

If the target task has locked a TA_CEILING attribute mutex or is waiting for a lock, and the base priority specified
in tskpri is higher than any of the ceiling priorities, error code E_ILUSE is returned.

Additional Notes

In some cases when this system call results in a change in the queued order of the target task in a task priority-
based queue, it may be necessary to release the wait state of another task waiting in that queue (in a message
buffer send queue, or in a queue waiting to acquire a variable-size memory pool).

In some cases when this system call results in a base priority change while the target task is waiting for a
mutex lock with TA_INHERIT dynamic priority inheritance processing may be necessary.

When a mutex function is not used and the system call is issued specifying the invoking task as the target task,
setting the new priority to the base priority of the invoking task, the order of execution of the invoking task
becomes the lowest among tasks of the same priority. This system call can therefore be used to relinquish
execution privilege.

T-Kernel 2.0 Specification 60 / 534

4.1.8 tk_chg_slt - Change Task Slice Time

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_chg_slt (ID tskid , RELTIM slicetime);

Parameter

ID tskid Task ID Task ID
RELTIM slicetime Slice Time Slice Time (in ms)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (invalid slicetime)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Changes the slice time of the task specified in tskid to the value specified in slicetime.

The slice time function is used for round robin scheduling of tasks. When a task runs continuously for the
length of time specified in slicetime or longer, its precedence is switched to the lowest among tasks of the
same priority, automatically yielding the execution privilege to the next task.

Setting slicetime = 0 indicates unlimited time, and the task does not automatically yield execution privilege.
When a task is created, by default it is set to slicetime = 0.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

The slice time as changed by this system call remains valid until the task is terminated. When the task reverts
to DORMANT state, the slice time before termination is discarded, and the value at the time of task creation
(slicetime = 0) is assigned. However, the slice time changed in DORMANT state is valid. The next time the
task is started, the new slice time is applied.

Additional Notes

The time duration while execution privilege is preempted by a higher-priority task does not count in the
continuous run time; moreover, even if execution privilege is preempted by a higher-priority task, the run

T-Kernel 2.0 Specification 61 / 534

time is not regarded as disrupted. In other words, the time duration while execution privilege is preempted
by a higher-priority task is ignored for the purposes of counting run time.

If the specified task is the only one running at its priority, the slice time is effectively meaningless and the
task runs continuously.

If a task of slicetime = 0 is included in tasks of the same priority, as soon as that task obtains execution right,
round robin scheduling is stopped.

The method of counting run time is implementation-dependent, but does not need to be especially precise.
In fact, applications should not expect very high precision.

T-Kernel 2.0 Specification 62 / 534

4.1.9 tk_chg_slt_u - Change Task Slice Time (in microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_chg_slt_u (ID tskid , RELTIM_U slicetime_u);

Parameter

ID tskid Task ID Task ID
RELTIM_U slicetime_u Slice Time Slice Time (in microseconds)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (invalid slicetime_u)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit slicetime_u in microseconds instead of the parameter slicetime of tk_chg_slt.

The specification of this system call is same as that of tk_chg_slt, except that the parameter is replaced with
slicetime_u. For more details, see the description of tk_chg_slt.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 63 / 534

4.1.10 tk_get_tsp - Get Task Space

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_tsp (ID tskid , T_TSKSPC *pk_tskspc);

Parameter

ID tskid Task ID Task ID
T_TSKSPC* pk_tskspc Packet of Task Space Pointer to the area to return the task

space information

Return Parameter

ER ercd Error Code Error code

pk_tskspc Detail:

void* uatb Address of Task Space Page
Table

Task space page table address

INT lsid Logical Space ID Task space ID (logical space ID)

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (invalid pk_tskspc)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets the current task space information for the task specified in tskid.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

Additional Notes

The precise meaning of pk_tskspc (uatb, lsid) is implementation-dependent, but the above definitions should
be followed as much as possible.

T-Kernel 2.0 Specification 64 / 534

4.1.11 tk_set_tsp - Set Task Space

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_tsp (ID tskid , CONST T_TSKSPC *pk_tskspc);

Parameter

ID tskid Task ID Task ID
CONST T_TSKSPC* pk_tskspc Packet of Task Space Task space information

pk_tskspc Detail:

void* uatb Address of Task Space
Page Table

Task space page table address

INT lsid Logical Space ID Task space ID (logical space ID)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (invalid pk_tskspc)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Sets the task space of the task specified in tskid.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

The kernel is not responsible for handling the side-effects of task space changes. If, for example, a task space
is changed while a task is using it for its execution, the task may hang or encounter other problems. The caller
is responsible for avoiding such problems.

Additional Notes

The accuracy of pk_tskspc (uatb, lsid) is implementation-dependent, but the above definitions should be
followed as much as possible.

T-Kernel 2.0 Specification 65 / 534

4.1.12 tk_get_rid - Refers to resource group to which task belongs

C Language Interface

#include <tk/tkernel.h>

ID resid = tk_get_rid (ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ID resid Resource ID Resource ID
or Error Code Error code

Error Code

E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Task does not belong to a resource group

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Returns the resource group to which the task specified in tskid currently belongs.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

Additional Notes

For details of resource group, see Section 4.10, “Subsystem Management Functions”.

If a resource group is deleted, this system call may return the Resource ID of the deleted resource
group. Whether or not an error code (E_OBJ) is returned is implementation-dependent(See tk_cre_res and
tk_del_res).

This system call is used by a subsystem. The subsystem recognizes the process by the resource ID. However,
the resource ID cannot be specified when the application issues an extended SVC to make the subsystem.
For this reason, the subsystem uses this system call to obtain the resource ID.

T-Kernel 2.0 Specification 66 / 534

4.1.13 tk_set_rid - Set Task Resource ID

C Language Interface

#include <tk/tkernel.h>

ID oldid = tk_set_rid (ID tskid , ID resid);

Parameter

ID tskid Task ID Task ID
ID resid Resource ID New resource ID

Return Parameter

ID oldid Old Resource ID Old resource ID
or Error Code Error code

Error Code

E_ID Invalid ID number (tskid or resid is invalid or cannot be used)
E_NOEXS Object does not exist (the object specified in tskid or resid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Changes the current resource group of the task specified in tskid to the resource group specified in resid.
The Resource ID of the old resource group before the change is passed in a return parameter.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

Additional Notes

For details of resource group, see Section 4.10, “Subsystem Management Functions”.

In some cases error is not returned even if resid was previously deleted. Whether or not an error code
(E_NOEXS) is returned is implementation-dependent. In principle it is the responsibility of the caller not to
specify a deleted resource group.

T-Kernel 2.0 Specification 67 / 534

4.1.14 tk_get_reg - Get Task Registers

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_reg (ID tskid , T_REGS *pk_regs , T_EIT *pk_eit , T_CREGS *pk_cregs);

Parameter

ID tskid Task ID Task ID
T_REGS* pk_regs Packet of Registers Pointer to the area to return the

general register values
T_EIT* pk_eit Packet of EIT Registers Pointer to the area to return the

values of registers saved when an
exception occurs

T_CREGS* pk_cregs Packet of Control Registers Pointer to the area to return the
control register values

Return Parameter

ER ercd Error Code Error code

The contents of T_REGS, T_EIT, and T_CREGS are defined for each CPU and implementation.

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for the invoking task)
E_CTX Context error (called from task-independent portion)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets the current register contents of the task specified in tskid.

If NULL is set in pk_regs, pk_eit, or pk_cregs, the corresponding registers are not referenced.

The referenced register values are not necessarily the values at the time the task portion was executing.

If this system call is issued for the invoking task, error code E_OBJ is returned.

T-Kernel 2.0 Specification 68 / 534

Additional Notes

In principle, all registers in the task context can be referenced. This includes not only physical CPU registers
but also those treated by the kernel as virtual registers.

T-Kernel 2.0 Specification 69 / 534

4.1.15 tk_set_reg - Set Task Registers

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_reg (ID tskid , CONST T_REGS *pk_regs , CONST T_EIT *pk_eit , CONST T_CREGS *pk_cregs
);

Parameter

ID tskid Task ID Task ID
CONST T_REGS* pk_regs Packet of Registers General registers
CONST T_EIT* pk_eit Packet of EIT Registers Registers saved when EIT occurs
CONST T_CREGS* pk_cregs Packet of Control Registers Control registers

The contents of T_REGS, T_EIT, and T_CREGS are defined for each CPU and implementation.

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for the invoking task)
E_CTX Context error (called from task-independent portion)
E_PAR Invalid register value (implementation-dependent)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Sets the current register contents of the task specified in tskid.

If NULL is set in pk_regs, pk_eit, or pk_cregs, the corresponding registers are not set.

The set register values are not necessarily the values while the task portion is executing. The kernel is not
responsible for handling the side-effects of register value changes.

It is possible, however, that some registers or register bits cannot be changed if the kernel does not allow such
changes.(Implementation-dependent)

If this system call is issued for the invoking task, error code E_OBJ is returned.

T-Kernel 2.0 Specification 70 / 534

4.1.16 tk_get_cpr - Get Task Coprocessor Registers

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_cpr (ID tskid , INT copno , T_COPREGS *pk_copregs);

Parameter

ID tskid Task ID Task ID
INT copno Coprocessor Number Coprocessor number (0 to 3)
T_COPREGS* pk_copregs Packet of Coprocessor

Registers
Pointer to the area to return
coprocessor register values

Return Parameter

ER ercd Error Code Error code

pk_copregs Detail:

T_COP0REG cop0 Coprocessor Number 0
Register

Coprocessor number 0 register

T_COP1REG cop1 Coprocessor Number 1
Register

Coprocessor number 1 register

T_COP2REG cop2 Coprocessor Number 2
Register

Coprocessor number 2 register

T_COP3REG cop3 Coprocessor Number 3
Register

Coprocessor number 3 register

The contents of T_COPnREG are defined for each CPU and implementation.

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for the invoking task)
E_CTX Context error (called from task-independent portion)
E_PAR Parameter error (copno is invalid or the specified coprocessor does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets the current contents of the register specified in copno of the task specified in tskid.

T-Kernel 2.0 Specification 71 / 534

The referenced register values are not necessarily the values at the time the task portion was executing.

If this system call is issued for the invoking task, error code E_OBJ is returned.

Additional Notes

In principle, all registers in the task context can be referenced. This includes not only physical CPU registers
but also those treated by the kernel as virtual registers.

T-Kernel 2.0 Specification 72 / 534

4.1.17 tk_set_cpr - Set Task Coprocessor Registers

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_cpr (ID tskid , INT copno , CONST T_COPREGS *pk_copregs);

Parameter

ID tskid Task ID Task ID
INT copno Coprocessor Number Coprocessor number (0 to 3)
CONST T_COPREGS* pk_copregs Packet of Coprocessor

Registers
Coprocessor register

pk_copregs Detail:

T_COP0REG cop0 Coprocessor Number 0
Register

Coprocessor number 0 register

T_COP1REG cop1 Coprocessor Number 1
Register

Coprocessor number 1 register

T_COP2REG cop2 Coprocessor Number 2
Register

Coprocessor number 2 register

T_COP3REG cop3 Coprocessor Number 3
Register

Coprocessor number 3 register

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for the invoking task)
E_CTX Context error (called from task-independent portion)
E_PAR Parameter error (copno is invalid or the specified coprocessor does not exist), or the

set register value is invalid (implementation-dependent)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Sets the contents of the register specified in copno of the task specified in tskid.

The set register values are not necessarily the values while the task portion is executing. The kernel is not
responsible for handling the side-effects of register value changes.

T-Kernel 2.0 Specification 73 / 534

It is possible, however, that some registers or register bits cannot be changed if the kernel does not allow such
changes.(Implementation-dependent)

If this system call is issued for the invoking task, error code E_OBJ is returned.

T-Kernel 2.0 Specification 74 / 534

4.1.18 tk_inf_tsk - Reference Task Statistics

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_inf_tsk (ID tskid , T_ITSK *pk_itsk , BOOL clr);

Parameter

ID tskid Task ID Task ID
T_ITSK* pk_itsk Packet to Return Task Statistics Pointer to the area to return the task

statistics
BOOL clr Clear Task statistics clear flag

Return Parameter

ER ercd Error Code Error code

pk_itsk Detail:

RELTIM stime System Time Cumulative system-level run time (ms)
RELTIM utime User Time Cumulative user-level run time (ms)
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (invalid pk_itsk)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets statistical information for the task specified in tskid.

If clr=TRUE≠0, the cumulative information is reset (cleared to 0) after getting the information.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

stime and utime in the task statistics (T_ITSK) return values rounded to milliseconds. To know the value in
microseconds, call tk_inf_tsk_u.

T-Kernel 2.0 Specification 75 / 534

Additional Notes

The system-level run time is accumulated while the task runs at TA_RNG0, and the user-level run time is accu-
mulated while the task runs at protection levels other than TA_RNG0. The execution time of a task created to
run at TA_RNG0 is therefore counted entirely as system-level run time.

The method of counting run time is implementation-dependent, but does not need to be especially precise.
In fact, applications should not expect very high precision.

T-Kernel 2.0 Specification 76 / 534

4.1.19 tk_inf_tsk_u - Reference Task Statistics (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_inf_tsk_u (ID tskid , T_ITSK_U *pk_itsk_u , BOOL clr);

Parameter

ID tskid Task ID Task ID
T_ITSK_U* pk_itsk_u Packet to ReturnTask

Statistics
Pointer to the area to return the task
statistics

BOOL clr Clear Task statistics clear flag

Return Parameter

ER ercd Error Code Error code

pk_itsk_u Detail:

RELTIM_U stime_u System Time Cumulative system-level run time (in
microseconds)

RELTIM_U utime_u User Time Cumulative user-level run time (in
microseconds)

(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (invalid pk_itsk_u)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit stime_u and utime_u in microseconds instead of the return parameters stime and
utime of tk_inf_tsk.

The specification of this system call is same as that of tk_inf_tsk, except that the return parameters are replaced
with stime_u and utime_u. For more details, see the description of tk_inf_tsk.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 77 / 534

4.1.20 tk_ref_tsk - Reference Task Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_tsk (ID tskid , T_RTSK *pk_rtsk);

Parameter

ID tskid Task ID Task ID
T_RTSK* pk_rtsk Packet to Return Task Status Pointer to the area to return the task

status

Return Parameter

ER ercd Error Code Error code

pk_rtsk Detail:

void* exinf Extended Information Extended information
PRI tskpri Task Priority Current priority
PRI tskbpri Task Base Priority Base priority
UINT tskstat Task State Task State
UINT tskwait Task Wait Factor Wait factor
ID wid Waiting Object ID Waiting object ID
INT wupcnt Wakeup Count Wakeup request queuing count
INT suscnt Suspend Count Suspend request nesting count
RELTIM slicetime Slice Time Maximum continuous run time (in ms)
UINT waitmask Wait Mask Disabled wait factors
UINT texmask Task Exception Mask Allowed task exceptions
UINT tskevent Task Event Raised task event
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (invalid pk_rtsk)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the state of the task specified in tskid.

tskstat takes the following values.

T-Kernel 2.0 Specification 78 / 534

TTS_RUN 0x0001 RUNNING state
TTS_RDY 0x0002 READY state
TTS_WAI 0x0004 WAITING state
TTS_SUS 0x0008 SUSPENDED state
TTS_WAS 0x000c WAITING-SUSPENDED state
TTS_DMT 0x0010 DORMANT state
TTS_NODISWAI 0x0080 Disabling of wait by tk_dis_wai is prohibited

Task states such as TTS_RUN and TTS_WAI are expressed by corresponding bits, which is useful when making a
complex state decision (e.g., deciding that the state is one of either RUNNING or READY state). Note that of
the above states, TTS_WAS is a combination of TTS_SUS and TTS_WAI but TTS_SUS is never combined with other
states (TTS_RUN, TTS_RDY, TTS_DMT).

In the case of TTS_WAI (including TTS_WAS), disabling of wait by the tk_dis_wai is prohibited, TTS_NODISWAI is
set. TTS NODISWAI is never combined with states other than TTS WAI.

When tk_ref_tsk is executed for an interrupted task from an interrupt handler, RUNNING (TTS_RUN) is returned
as tskstat.

When tskstat is TTS_WAI (including TTS_WAS), the values of tskwait and wid are as shown in Table 4.2, “Values
of tskwait and wid”.

tskwait Value Description wid
TTW_SLP 0x00000001 Wait caused by tk_slp_tsk 0
TTW_DLY 0x00000002 Wait caused by tk_dly_tsk 0
TTW_SEM 0x00000004 Wait caused by tk_wai_sem semid
TTW_FLG 0x00000008 Wait caused by tk_wai_flg flgid
TTW_MBX 0x00000040 Wait caused by tk_rcv_mbx mbxid
TTW_MTX 0x00000080 Wait caused by tk_loc_mtx mtxid
TTW_SMBF 0x00000100 Wait caused by tk_snd_mbf mbfid
TTW_RMBF 0x00000200 Wait caused by tk_rcv_mbf mbfid
TTW_CAL 0x00000400 Wait on rendezvous call porid
TTW_ACP 0x00000800 Wait for rendezvous acceptance porid
TTW_RDV 0x00001000 Wait for rendezvous completion 0
(TTW_CAL | TTW_RDV) 0x00001400 Wait on rendezvous call or wait

for rendezvous completion
0

TTW_MPF 0x00002000 Wait caused by tk_get_mpf mpfid
TTW_MPL 0x00004000 Wait caused by tk_get_mpl mplid
TTW_EV1 0x00010000 Wait for task event #1 0
TTW_EV2 0x00020000 Wait for task event #2 0
TTW_EV3 0x00040000 Wait for task event #3 0
TTW_EV4 0x00080000 Wait for task event #4 0
TTW_EV5 0x00100000 Wait for task event #5 0
TTW_EV6 0x00200000 Wait for task event #6 0
TTW_EV7 0x00400000 Wait for task event #7 0
TTW_EV8 0x00800000 Wait for task event #8 0

Table 4.2: Values of tskwait and wid

When tskstat is not TTS_WAI (including TTS_WAS), both tskwait and wid are 0.

waitmask is the same bit array as tskwait.

For a task in DORMANT state, wupcnt = 0, suscnt = 0, and tskevent = 0.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when
tskid=TSK_SELF=0 is specified in a system call issued from a task-independent portion, error code E_ID
is returned.

T-Kernel 2.0 Specification 79 / 534

When the task specified with tk_ref_tsk does not exist, error code E_NOEXS is returned.

slicetime in the task status information (T_RTSK) returns a value rounded to milliseconds. To know the value
in microseconds, call tk_ref_tsk_u.

Additional Notes

Even when tskid = TSK_SELF is specified with this system call, the ID of the invoking task is not known. Use
tk_get_tid to find out the ID of the invoking task.

T-Kernel 2.0 Specification 80 / 534

4.1.21 tk_ref_tsk_u - Reference Task Status (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_tsk_u (ID tskid , T_RTSK_U *pk_rtsk_u);

Parameter

ID tskid Task ID Task ID
T_RTSK_U* pk_rtsk_u Packet to Refer Task Status Pointer to the area to return the task

status

Return Parameter

ER ercd Error Code Error code

pk_rtsk_u Detail:

void* exinf Extended Information Extended information
PRI tskpri Task Priority Current priority
PRI tskbpri Task Base Priority Base priority
UINT tskstat Task State Task State
UINT tskwait Task Wait Factor Wait factor
ID wid Waiting Object ID Waiting object ID
INT wupcnt Wakeup Count Wakeup request queuing count
INT suscnt Suspend Count Suspend request nesting count
RELTIM_U slicetime_u Slice Time Maximum continuous run time (in

microseconds)
UINT waitmask Wait Mask Disabled wait factors
UINT texmask Task Exception Mask Allowed task exceptions
UINT tskevent Task Event Raised task event
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (invalid pk_rtsk_u)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

T-Kernel 2.0 Specification 81 / 534

Description

This system call takes 64-bit slicetime_u in microseconds instead of the return parameter slicetime of
tk_ref_tsk.

The specification of this system call is same as that of tk_ref_tsk, except that the return parameter is replaced
with slicetime_u. For more details, see the description of tk_ref_tsk.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 82 / 534

4.2 Task Synchronization Functions

Task synchronization functions achieve synchronization among tasks by direct manipulation of task states.
They include functions for task sleep and wakeup, for canceling wakeup requests, for forcibly releasing task
WAITING state, for changing a task state to SUSPENDED state, for delaying execution of the invoking task,
and for disabling task WAITING state.

Wakeup requests for a task are queued. That is, when it is attempted to wake up a task that is not sleeping,
the wakeup request is remembered, and the next time the task is to go to a sleep state (waiting for wakeup),
it does not enter that state. The queuing of task wakeup requests is realized by having the task keep a task
wakeup request queuing count. When the task is started, this count is cleared to 0.

Suspend requests for a task are nested. That is, if it is attempted to suspend a task already in SUSPENDED
state (including WAITING-SUSPENDED state), the request is remembered, and later when it is attempted
to resume the task in SUSPENDED state (including WAITING-SUSPENDED state), it is not resumed. The
nesting of suspend requests is realized by having the task keep a suspend request nesting count. When the
task is started, this count is cleared to 0.

T-Kernel 2.0 Specification 83 / 534

4.2.1 tk_slp_tsk - Sleep Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_slp_tsk (TMO tmout);

Parameter

TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_PAR Parameter error (tmout ≦ (-2))
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Changes the state of the invoking task from RUNNING state to sleep state (WAITING state for tk_wup_tsk).
Note if the wakeup requests for the invoking task are queued, i.e., the wakeup request queuing count of the
invoking task is 1 or more, the count is decremented by 1, and the execution is continued without moving the
invoking task to the waiting state.

If tk_wup_tsk is issued for the invoking task before the time specified in tmout has elapsed, this system call
completes normally. If timeout occurs before tk_wup_tsk is issued, the timeout error code E_TMOUT is re-
turned. Specifying tmout = TMO_FEVR (= -1) means eternal wait. In this case, the task stays in waiting state until
tk_wup_tsk is issued.

Additional Notes

Since tk_slp_tsk is a system call that puts the invoking task into the waiting state, tk_slp_tsk can never be
nested. It is possible, however, for another task to issue tk_sus_tsk for a task that was put in the waiting state
by tk_slp_tsk. In this case the task goes to WAITING-SUSPENDED state.

For simply delaying a task, tk_dly_tsk should be used rather than tk_slp_tsk.

The task sleep function is intended for use by applications and as a rule should not be used by middleware.
The reason is as follows.

T-Kernel 2.0 Specification 84 / 534

Attempting to achieve synchronization by putting a task to sleep in two or more places would cause confu-
sion, leading to mis-operation. For example, if sleep were used by both an application and middleware for
synchronization, a wakeup request might arise in the application while middleware has a task sleeping. In
such a situation, normal operation would not be possible in either the application or middleware.

In this manner, proper task synchronization is not possible if it is not clear where the wait for wakeup origi-
nated. Task sleep is often used as a simple means of task synchronization. Applications should be able to use
it freely, which means as a rule it should not be used by middleware.

T-Kernel 2.0 Specification 85 / 534

4.2.2 tk_slp_tsk_u - Sleep Task (in microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_slp_tsk_u (TMO_U tmout_u);

Parameter

TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_PAR Parameter error (tmout_u ≦ (-2))
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_slp_tsk.

The specification of this system call is same as that of tk_slp_tsk, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_slp_tsk.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 86 / 534

4.2.3 tk_wup_tsk - Wakeup Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_wup_tsk (ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for the invoking task or for a task in DORMANT state)
E_QOVR Queuing or nesting overflow (too many queued wakeup requests in wupcnt)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

If the task specified in tskid has been put in WAITING state by tk_slp_tsk, this system call releases the WAIT-
ING state.

This system call cannot be called for the invoking task. If the invoking task is specified, error code E_OBJ is
returned.

If the target task has not called tk_slp_tsk and is not in WAITING state, the wakeup request by tk_wup_tsk is
queued. That is, the calling of tk_wup_tsk for the target task is recorded, then when tk_slp_tsk is called after
that, the task does not go to WAITING state. This is what is meant by queuing of wakeup requests.

The queuing of wakeup requests works as follows. Each task keeps a wakeup request queuing count (wupcnt) in
its TCB. Its initial value (when tk_sta_tsk is executed) is 0. When tk_wup_tsk is issued for a task not sleeping
(not in WAITING state), the count is incremented by 1; but each time tk_slp_tsk is executed, the count is
decremented by 1. When tk_slp_tsk is executed for a task whose wakeup queuing count is 0, the queuing
count is not made negative but rather the task goes to WAITING state.

It is always possible to queue tk_wup_tsk at least one time (wupcnt = 1), but the maximum queuing count
(wupcnt) is implementation-dependent and may be set to any appropriate value of 1 or above. In other words,
issuing tk_wup_tsk once for a task not in WAITING state does not return error, but whether an error is returned
for the second or subsequent time tk_wup_tsk is called is implementation-dependent.

When calling tk_wup_tsk causes wupcnt to exceed the allowed maximum value, error code E_QOVR is returned.

T-Kernel 2.0 Specification 87 / 534

4.2.4 tk_can_wup - Cancel Wakeup Task

C Language Interface

#include <tk/tkernel.h>

INT wupcnt = tk_can_wup (ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

INT wupcnt Wakeup Count Number of queued wakeup requests
or Error Code Error code

Error Codes

E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for a task in DORMANT state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Passes in the return value the wakeup request queuing count (wupcnt) for the task specified in tskid, at the
same time canceling all wakeup requests. That is, this system call clears the wakeup request queuing count
(wupcnt) to 0 for the specified task.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

Additional Notes

This system call can be used to determine whether the processing was completed within the allotted time when
processing is performed that involves cyclic wakeup of a task. Before processing of a prior wakeup request
is completed and tk_slp_tsk is called by the waken up task, the task monitoring this task calls tk_can_wup.
If wupcnt in the return parameter is 1 or above, this means the previous wakeup request was not processed
within the allotted time. Measure can then be taken accordingly to compensate for the delay.

T-Kernel 2.0 Specification 88 / 534

4.2.5 tk_rel_wai - Release Wait

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rel_wai (ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for a task not in WAITING state (including when called

for the invoking task, or for a task in DORMANT state))

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

If the task specified in tskid is in some kind of waiting state (not including SUSPENDED state), forcibly
releases that state.

To the task whose WAITING state was released by tk_rel_wai, the error code E_RLWAI is returned. At this time,
the target task is guaranteed to be released from its wait state without the allocation of the waited resource
(without the wait release conditions being met).

Wait release requests are not queued by tk_rel_wai. That is, if the task specified in tskid is already in WAITING
state, the WAITING state is cleared; but if it is not in WAITING state when this system call is issued, error
code E_OBJ is returned to the caller. Likewise, error code E_OBJ is returned when this system call is issued
specifying the invoking task.

The tk_rel_wai system call does not release a SUSPENDED state. If tk_rel_wai is issued for a task in WAITING-
SUSPENDED state, the task goes to SUSPENDED state. If it is necessary to release SUSPENDED state, the
separate system call tk_rsm_tsk or tk_frsm_tsk is used.

The states of the target task when tk_rel_wai is called and the results of its execution in each state are shown
in Table 4.3, “Target Task State and Execution Result (tk_rel_wai) ”.

T-Kernel 2.0 Specification 89 / 534

Target Task State
tk_rel_wai ercd Return
Value

(processing)

Run state (RUNNING or READY) (not for
invoking task)

E_OBJ No operation

Running state (RUNNING) (invoking task) E_OBJ No operation
Waiting state (WAITING) E_OK Wait released/release wait
Suspended state (SUSPENDED) E_OBJ No operation
Waiting-suspended state
(WAITING-SUSPENDED)

E_OK Goes to SUSPENDED
state

Dormant state (DORMANT) E_OBJ No operation
Non-existent state (NON-EXISTENT) E_NOEXS No operation

Table 4.3: Target Task State and Execution Result (tk_rel_wai)

Additional Notes

A function similar to timeout can be realized by using an alarm handler or the like to issue this system call
after a given task has been in WAITING state for a set time.

The main differences between tk_rel_wai and tk_wup_tsk are the following.

• Whereas tk_wup_tsk releases only WAITING state effected by tk_slp_tsk, tk_rel_wai releases also WAITING
state caused by other factors (tk_wai_flg, tk_wai_sem, tk_rcv_mbx, tk_get_mpl, tk_dly_tsk, etc.).

• Seen from the task in WAITING state, release of the WAITING state by tk_wup_tsk returns a Normal com-
pletion (E_OK), whereas release by tk_rel_wai returns an error code (E_RLWAI).

• Wakeup requests by tk_wup_tsk are queued if tk_slp_tsk has not yet been executed. If tk_rel_wai is issued
for a task not in WAITING state, error code E_OBJ is returned.

T-Kernel 2.0 Specification 90 / 534

4.2.6 tk_sus_tsk - Suspend Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sus_tsk (ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for the invoking task or for a task in DORMANT state)
E_CTX A task in RUNNING state was specified in dispatch disabled state
E_QOVR Queuing or nesting overflow (too many nested requests in suscnt)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Puts the task specified in tskid in SUSPENDED state and interrupts execution by the task.

SUSPENDED state is released by issuing system call tk_rsm_tsk or tk_frsm_tsk.

If tk_sus_tsk is called for a task already in WAITING state, the state goes to a combination of WAITING state
and SUSPENDED state (WAITING-SUSPENDED state). Thereafter when the task wait release conditions are
met, the task goes to SUSPENDED state. If tk_rsm_tsk is issued for the task in WAITING-SUSPENDED state,
the task state reverts to WAITING state (see Figure 2.1, “Task State Transition Diagram”).

Since SUSPENDED state means task interruption by a system call issued by another task, this system call
cannot be issued for the invoking task. If the invoking task is specified, error code E_OBJ is returned.

When this system call is issued from a task-independent portion, if a task in RUNNING state is specified while
dispatching is disabled, error code E_CTX is returned.

If tk_sus_tsk is issued more than once for the same task, the task is put in nested SUSPENDED state. This is
called nesting of suspend requests. In this case, the task reverts to its original state only when tk_rsm_tsk has
been issued for the same number of times as tk_sus_tsk (suscnt). Accordingly, nesting of the pair of system
calls tk_sus_tsk and tk_rsm_tsk is possible.

The nesting feature of suspend requests (issuing tk_sus_tsk two or more times for the same task) and limits
on nesting count are implementation-dependent.

T-Kernel 2.0 Specification 91 / 534

If tk_sus_tsk is issued multiple times in a system that does not allow suspend request nesting, or if the nesting
count exceeds the allowed limit, error code E_QOVR is returned.

Additional Notes

When a task is in WAITING state for resource acquisition (semaphore wait, etc.) and is also in SUSPENDED
state, the resource allocation (semaphore allocation, etc.) takes place under the same conditions as when the
task is not in SUSPENDED state. Resource allocation is not delayed by the SUSPENDED state, and there
is no change whatsoever in the priority of resource allocation or release from WAITING state. In this way
SUSPENDED state is in an orthogonal relation with other processing and task states.

In order to delay resource allocation to a task in SUSPENDED state (temporarily lowering its priority), the
user can employ tk_sus_tsk and tk_rsm_tsk in combination with tk_chg_pri.

Task suspension is intended only for very limited uses closely related to the OS, such as page fault processing
in a virtual memory system or breakpoint processing in a debugger. As a rule it should not be used in ordinary
applications or in middleware. The reason is as follows

task suspension takes place regardless of the target task running state. If, for example, a task is put in SUS-
PENDED state while it is calling a middleware function, the task will be stopped in the course of middleware
internal processing. In some cases middleware performs resource management or other mutual exclusion
control. If a task stops inside middleware while it has resources allocated, other tasks may not be able to use
that middleware. This situation can cause chain reactions, with other tasks stopping and leading to system-
wide deadlock.

For this reason a task must not be stopped without knowing its status (what it is doing at the time), and
ordinary tasks should not use the task suspension function.

T-Kernel 2.0 Specification 92 / 534

4.2.7 tk_rsm_tsk - Resumes a task in a SUSPENDED state

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rsm_tsk (ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (the specified task is not in SUSPENDED state (including when

this system call specifies the invoking task or a task in DORMANT state))

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Releases the SUSPENDED state of the task specified in tskid. If the target task was earlier put in SUSPENDED
state by the tk_sus_tsk system call, this system call releases that SUSPENDED state and resumes the task
execution.

When the target task is in a combined WAITING state and SUSPENDED state (WAITING-SUSPENDED state),
executing tk_rsm_tsk releases only the SUSPENDED state, putting the task in WAITING state (see Figure 2.1,
“Task State Transition Diagram”).

This system call cannot be called for the invoking task. If the invoking task is specified, error code E_OBJ is
returned.

Executing tk_rsm_tsk once clears only one nested suspend request (suscnt). If tk_sus_tsk was issued more
than once for the target task (suscnt ≧ 2), the target task remains in SUSPENDED state even after tk_rsm_tsk
is executed.

Additional Notes

After a task in RUNNING state or READY state is put in SUSPENDED state by tk_sus_tsk and then resumed
by tk_rsm_tsk or tk_frsm_tsk, the task has the lowest precedence among tasks of the same priority.

When, for example, the following system calls are executed for tasks A and B of the same priority, the result
is as indicated below.

T-Kernel 2.0 Specification 93 / 534

tk_sta_tsk (tskid=task_A , stacd_A);
tk_sta_tsk (tskid=task_B , stacd_B);
/* By the rule of FCFS , precedence becomes task_A → task_B. */

tk_sus_tsk (tskid=task_A);
tk_rsm_tsk (tskid=task_A);
/* In this case precedence becomes task_B → task_A. */

T-Kernel 2.0 Specification 94 / 534

4.2.8 tk_frsm_tsk - Force Resume Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_frsm_tsk (ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (the specified task is not in SUSPENDED state (including when

this system call specifies the invoking task or a task in DORMANT state))

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Releases the SUSPENDED state of the task specified in tskid. If the target task was earlier put in SUSPENDED
state by the tk_sus_tsk system call, this system call releases that SUSPENDED state and resumes the task
execution.

When the target task is in a combined WAITING state and SUSPENDED state (WAITING-SUSPENDED state),
executing tk_frsm_tsk releases only the SUSPENDED state, putting the task in WAITING state (see Figure 2.1,
“Task State Transition Diagram”).

This system call cannot be called for the invoking task. If the invoking task is specified, error code E_OBJ is
returned.

Executing tk_frsm_tsk once clears all the nested suspend requests (suscnt) (suscnt = 0). Therefore, all suspend
requests are released (suscnt is cleared to 0) even if tk_sus_tsk was issued more than once (suscnt ≧ 2).
The SUSPENDED state is always cleared, and unless the task was in the WAITING-SUSPENDED state, its
execution resumes.

Additional Notes

After a task in RUNNING state or READY state is put in SUSPENDED state by tk_sus_tsk and then resumed
by tk_rsm_tsk or tk_frsm_tsk, the task has the lowest precedence among tasks of the same priority.

T-Kernel 2.0 Specification 95 / 534

When, for example, the following system calls are executed for tasks A and B of the same priority, the result
is as indicated below.

tk_sta_tsk (tskid=task_A , stacd_A);
tk_sta_tsk (tskid=task_B , stacd_B);
/* By the rule of FCFS , precedence becomes task_A → task_B. */

tk_sus_tsk (tskid=task_A);
tk_frsm_tsk (tskid=task_A);
/* In this case precedence becomes task_B → task_A. */

T-Kernel 2.0 Specification 96 / 534

4.2.9 tk_dly_tsk - Delay Task

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_dly_tsk (RELTIM dlytim);

Parameter

RELTIM dlytim Delay Time Delay time (ms)

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_PAR Parameter error (dlytim is invalid)
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Temporarily stops execution of the invoking task and waits for time dlytim to elapse.

The state while the task waits for the delay time to elapse is a WAITING state and is subject to release by
tk_rel_wai.

If the task issuing this system call goes to SUSPENDED state or WAITING-SUSPENDED state while it is
waiting for the delay time to elapse, the elapsed time continues to be counted in the SUSPENDED state.

The time unit for dlytim (time unit) is the same as that for system time (= 1 ms).

Additional Notes

This system call differs from tk_slp_tsk in that normal completion, not an error code, is returned when the
specified delay time elapses. Moreover, the wait is not released even if tk_wup_tsk is executed during the
delay time. The only way to terminate tk_dly_tsk before the delay time elapses is by calling tk_ter_tsk or
tk_rel_wai.

T-Kernel 2.0 Specification 97 / 534

4.2.10 tk_dly_tsk_u - Delay Task (in microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_dly_tsk_u (RELTIM_U dlytim_u);

Parameter

RELTIM_U dlytim_u Delay Time Delay time (microseconds)

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_PAR Parameter error (dlytim_u is invalid)
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit dlytim_u in microseconds instead of the parameter dlytim of tk_dly_tsk.

The specification of this system call is same as that of tk_dly_tsk, except that the parameter is replaced with
dlytim_u. For more details, see the description of tk_dly_tsk.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 98 / 534

4.2.11 tk_sig_tev - Signal Task Event

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sig_tev (ID tskid , INT tskevt);

Parameter

ID tskid Task ID Task ID
INT tskevt Task Event Task event number (1 to 8)

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (called for a task in DORMANT state)
E_PAR Parameter error (tskevt is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Sends the task event specified in tskevt to the task specified in tskid.

There are eight task event types stored for each task, specified by numbers 1 to 8.

The task event send count is not saved, only whether the event occurs or not.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

Additional Notes

The task event function is used for task synchronization much like tk_slp_tsk and tk_wup_tsk, but differs from
the use of these system calls in the following ways.

• The wakeup request (task event) count is not kept.

• Wakeup requests can be classified by the eight event types.

Using the same event type for synchronization in two or more places in the same task would cause confusion.
Event type allocation should be clearly defined.

T-Kernel 2.0 Specification 99 / 534

The task event function is intended for use in middleware, and as a rule should not be used in ordinary
applications. Use of tk_slp_tsk and tk_wup_tsk is recommended for applications.

T-Kernel 2.0 Specification 100 / 534

4.2.12 tk_wai_tev - Wait Task Event

C Language Interface

#include <tk/tkernel.h>

INT tevptn = tk_wai_tev (INT waiptn , TMO tmout);

Parameter

INT waiptn Wait Event Pattern Task event pattern
TMO tmout Timeout Timeout (ms)

Return Parameter

INT tevptn Task Event Pattern Task event status when wait released
or Error Code Error code

Error Codes

E_PAR Parameter error (waiptn or tmout is invalid)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Waits for the occurrence of one of the task events specified in waiptn. When the wait is released by a task
event, the task events specified in waiptn are cleared (raised task event &= ~waiptn). The task event status
when the wait was released (the state before clearing) is passed in the return code (tevptn).

The parameters waiptn and tevptn consist of logical OR values of the bits for each task event in the form 1 <<
(task event number -1).

A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition
is met (tk_sig_tev is not executed), the system call terminates, returning timeout error code E_TMOUT.

Only positive values can be set in tmout. The time unit for tmout (time unit) is the same as that for system time
(= 1 ms).

When TMO_POL (= 0) is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state even if no task event occurs. When TMO_FEVR (= -1) is set in tmout, this means
infinity was specified as the timeout value, and the task continues to wait for a task event without timing out.

T-Kernel 2.0 Specification 101 / 534

4.2.13 tk_wai_tev_u - Wait Task Event (in microseconds)

C Language Interface

#include <tk/tkernel.h>

INT tevptn = tk_wai_tev_u (INT waiptn , TMO_U tmout_u);

Parameter

INT waiptn Wait Event Pattern Task event pattern
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

INT tevptn Task Event Pattern Task event status when wait released
or Error Code Error Codes

Error Code

E_PAR Parameter error (waiptn or tmout_u is invalid)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_wai_tev.

The specification of this system call is same as that of tk_wai_tev, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_wai_tev.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 102 / 534

4.2.14 tk_dis_wai - Disable Task Wait

C Language Interface

#include <tk/tkernel.h>

INT tskwait = tk_dis_wai (ID tskid , UINT waitmask);

Parameter

ID tskid Task ID Task ID
UINT waitmask Wait Mask Task wait disabled setting

Return Parameter

INT tskwait Task Wait Task state after task wait is disabled
or Error Code Error code

Error Codes

E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (waitmask is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Disables waits for the wait factors set in waitmask by the task specified in tskid. If the task is already waiting
for a factor specified in waitmask , that wait is released.

waitmask is specified as the logical OR of any combination of the following wait factors.

#define TTW_SLP 0x00000001 /* Wait caused by sleep */
#define TTW_DLY 0x00000002 /* Wait for task delay */
#define TTW_SEM 0x00000004 /* Wait for semaphore */
#define TTW_FLG 0x00000008 /* Wait for event flag */
#define TTW_MBX 0x00000040 /* Wait for mailbox */
#define TTW_MTX 0x00000080 /* Wait for mutex */
#define TTW_SMBF 0x00000100 /* Wait for message buffer send */
#define TTW_RMBF 0x00000200 /* Wait for message buffer receive */
#define TTW_CAL 0x00000400 /* Wait on rendezvous call */
#define TTW_ACP 0x00000800 /* Wait for rendezvous acceptance */
#define TTW_RDV 0x00001000 /* Wait for rendezvous completion */
#define TTW_MPF 0x00002000 /* Wait for fixed -size memory pool */
#define TTW_MPL 0x00004000 /* Wait for variable -size memory pool */
#define TTW_EV1 0x00010000 /* Wait for task event #1 */
#define TTW_EV2 0x00020000 /* Wait for task event #2 */
#define TTW_EV3 0x00040000 /* Wait for task event #3 */
#define TTW_EV4 0x00080000 /* Wait for task event #4 */

T-Kernel 2.0 Specification 103 / 534

#define TTW_EV5 0x00100000 /* Wait for task event #5 */
#define TTW_EV6 0x00200000 /* Wait for task event #6 */
#define TTW_EV7 0x00400000 /* Wait for task event #7 */
#define TTW_EV8 0x00800000 /* Wait for task event #8 */
#define TTX_SVC 0x80000000 /* Extended SVC disabled */

TTX_SVC is a special value disabling not the task wait but the calling of an extended SVC. If TTX_SVC has been
set when a task attempts to call an extended SVC, E_DISWAI is returned without calling the extended SVC.
This value does not have the effect of terminating an already called extended SVC.

The return value (tskwait) includes the waiting state of a task after the waiting states are disabled by tk_dis_wai.
This value is same as tskwait returned by tk_ref_tsk. Information concerning TTX_SVC is not returned in tskwait.
A tskwait value of 0 means the task has not entered WAITING state (or the wait was released). If tskwait is
not 0, this means the task is in WAITING state for a cause other than those disabled in waitmask .

When a task wait is cleared by tk_dis_wai or the task is prevented from entering WAITING state after this
system call has taken effect, E_DISWAI is returned.

When a system call for which there is the possibility of entering the WAITING state is invoked during wait-
disabled state, E_DISWAI is returned even if the processing could be performed without waiting. For example,
when message buffer space is available and it is possible to send message without entering the WAITING state,
and if a message is sent to message buffer (tk_snd_mbf is called), the message is not sent and E_DISWAI is
returned.

Disabling of wait that is set during an extended SVC will be cleared automatically upon return from the ex-
tended SVC to its caller. It is automatically cleared also when an extended SVC is called, reverting to the
original setting upon return from the extended SVC.

Disabling of wait that is set is cleared also when the task reverts to DORMANT state. The setting made while
a task is in DORMANT state, however, is valid and the disabling of wait is applied the next time the task is
started.

In the case of semaphores and most other objects, TA_NODISWAI can be specified when the object is created.
An object created with TA_NODISWAI specified cannot have wait disabled, and rejects any attempt to disable
wait by tk_dis_wai.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

Additional Notes

The function to disable wait is provided for preventing execution of an extended SVC handler and is for use
mainly (though not exclusively) in break functions.

Disabling wait in the case of a rendezvous is more complex than other cases. Essentially, wait-disabled state
is detected based on a change in the rendezvous waiting state, then the wait is released.

Some specific examples are given in the following.

When waiting by TTW_CAL is not disabled but TTW_RDV waits are disabled, a task enters into wait on rendezvous
call state; but when the rendezvous is accepted and a wait for rendezvous completion would normally begin,
the wait is released and E_DISWAI is returned. At this time a message is sent to the receiving task, the
receiving task declares acceptance of the message and the task goes to rendezvous established state. Only
when the accepting task replies (tk_rpl_rdv) does it become clear that there is no other task in the rendezvous,
and error code E_OBJ is returned.

Disabling of wait applies also when a rendezvous is forwarded. In that case the attribute of the destination
rendezvous port applies. That is, if the TA_NODISWAI attribute is specified for the destination port, an attempt
to disable wait is rejected.

If TTW_CAL wait is disabled after going to wait for rendezvous completion state, and a rendezvous is forwarded
in that state, the state will go to WAITING on rendezvous call as a result of the forwarding. However, wait
has been disabled by TTW_CAL. So E_DISWAI is returned to both the rendezvous calling task (tk_cal_por) and
forwarding task (tk_fwd_por).

T-Kernel 2.0 Specification 104 / 534

4.2.15 tk_ena_wai - Enable Task Wait

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ena_wai (ID tskid);

Parameter

ID tskid Task ID Task ID

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Releases all disabling of waits set by tk_dis_wai for the task specified in tskid.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

T-Kernel 2.0 Specification 105 / 534

4.3 Task Exception Handling Functions

Task exception handling functions handle exception events that are raised for a task in the context of that
task.

The task exception handler is started when all the following processing has taken place:

1. Register task exception handler by tk_def_tex

2. Enable task exception by tk_ena_tex

3. Raise task exception by tk_ras_tex

A task exception handler is executed as a part of the task where the task exception occurred, in the context of
that task and at the protection level specified when the task was created. The task states in a task exception
handler, except for those states concerning task exceptions, are the same as the states when running an
ordinary task portion; and the same set of system calls are available.

A task exception handler can be started only when the target task is running in a task portion. If the task is
running in any other portion when a task exception is raised, the task exception handler is started only after the
control returns to the task portion. If a quasi-task portion (extended SVC) is executing when a task exception
is raised, a break function corresponding to that extended SVC is called. The break function interrupts the
extended SVC processing, and the task returns to the task portion.

Requested task exceptions are cleared when the task exception handler is called (when the task exception
handler starts running).

Task exceptions are specified by task exception codes from 0 to 31, of which 0 has the highest priority and
31 the lowest. Task exception code 0 is handled differently from the others, as explained below.

Task exception codes 1 to 31 :

• These task exception handlers cannot be executed by nesting them. A task exception (other than task
exception code 0) raised while a task exception handler is running will be made pending.

• On return from a task exception handler, the task resumes from the point where processing was inter-
rupted by the exception.

• It is also possible to use longjmp() or the like to jump to any point in the task without returning from
the task exception handler.

Task exception code 0:

• This exception can be executed by nesting it even while a task exception handler is executing for an
exception of task exception code 1 to 31. Execution of task exception code 0 handlers is not nested.

• A task exception handler runs after setting the user stack pointer to the initial setting when the task
was started. In a system without a separate user stack and system stack, however, the stack pointer is
not reset to its initial setting.

• A task exception code 0 handler does not return to task processing. The task must be terminated by
calling tk_ext_tsk or tk_exd_tsk.

T-Kernel 2.0 Specification 106 / 534

4.3.1 tk_def_tex - Define Task Exception Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_def_tex (ID tskid , CONST T_DTEX *pk_dtex);

Parameter

ID tskid Task ID Task ID
CONST T_DTEX* pk_dtex Packet to Define Task

Exception
Task exception handler definition
information

pk_dtex Detail:

ATR texatr Task Exception Attribute Task exception handler attributes
FP texhdr Task Exception Handler Task exception handler address
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (the task specified in tskid runs at protection level 0 (TA_RNG0))
E_RSATR Reserved attribute (texatr is invalid or cannot be used)
E_PAR Parameter error (pk_dtex is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Defines a task exception handler for the task specified in tskid. Only one task exception handler can be
defined per task; if one is already defined, the last-defined handler is valid. Setting pk_dtex = NULL cancels a
definition.

Defining or canceling a task exception handler clears pending task exception requests and disables all task
exceptions.

texatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The texatr system attributes are not assigned in the present version of T-Kernel specification, and system
attributes are not used.

T-Kernel 2.0 Specification 107 / 534

A task exception handler takes the following form.

void texhdr(INT texcd)
{

/*
Task exception handling

*/

/* Task exception handler termination */
if (texcd == 0) {

tk_ext_tsk () or tk_exd_tsk ();
} else {

tk_end_tex ();
return or longjmp ();

}
}

A task exception handler behaves like a TA_ASM attribute object and cannot be called via a high-level language
support routine. The entry part of the task exception handler must be written in assembly language. The
kernel vendor must provide the assembly language source code of the entry routine for calling the above C
language task exception handler. That is, source code equivalent to a high-level language support routine
must be provided.

A task set to protection level TA_RNG0 when it is created cannot use task exceptions.

Additional Notes

At the time a task is created, no task exception handler is defined and task exceptions are disabled.

When a task reverts to DORMANT state, the task exception handler definition is canceled and task exceptions
are disabled. Pending task exceptions are cleared. It is possible, however, to define a task exception handler
for a task in DORMANT state.

Task exceptions are software interrupts raised by tk_ras_tex, with no direct relation to CPU exceptions.

T-Kernel 2.0 Specification 108 / 534

4.3.2 tk_ena_tex - Enable Task Exception

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ena_tex (ID tskid , UINT texptn);

Parameter

ID tskid Task ID Task ID
UINT texptn Task Exception Pattern Task exception pattern

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist or no task exception

handler is defined)
E_PAR Parameter error (texptn is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Enables task exceptions for the task specified in tskid.

The parameter texptn is a logical OR bit array representing task exception codes in the form 1 << task excep-
tion code.

tk_ena_tex enables the task exceptions specified in texptn. If the current exception enabled status is texmask,
it changes as follows.

enable: texmask |= texptn

If all the bits of texptn are cleared to 0, no operation is made to texmask. No error will result in this case.

Task exceptions cannot be enabled for a task with no task exception handler defined.

This system call can be called to tasks in DORMANT state.

T-Kernel 2.0 Specification 109 / 534

4.3.3 tk_dis_tex - Disable Task Exception

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_dis_tex (ID tskid , UINT texptn);

Parameter

ID tskid Task ID Task ID
UINT texptn Task Exception Pattern Task exception pattern

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist or no task exception

handler is defined)
E_PAR Parameter error (texptn is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Disables task exceptions for the task specified in tskid.

The parameter texptn is a logical OR bit array representing task exception codes in the form 1 << task excep-
tion code.

tk_dis_tex disables the task exceptions specified in texptn. If the current exception enabled status is texmask,
it changes as follows.

disable: texmask &= ~texptn

If all the bits of texptn are cleared to 0, no operation is made to texmask. No error will result in either case.

A disabled task exception is ignored, and is not made pending. If exceptions are disabled for a task while
there are pending task exceptions, the pending task exception requests are discarded (their pending status is
cleared).

This system call can be called to tasks in DORMANT state.

T-Kernel 2.0 Specification 110 / 534

4.3.4 tk_ras_tex - Raise Task Exception

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ras_tex (ID tskid , INT texcd);

Parameter

ID tskid Task ID Task ID
INT texcd Task Exception Code Task exception code (0 to 31)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist or no task exception

handler is defined)
E_OBJ Invalid object state (the task specified in tskid is in DORMANT state)
E_PAR Parameter error (texcd is invalid or cannot be used)
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Raises the task exception specified in texcd for the task specified in tskid. If the task specified in tskid disables
the task exception specified in texcd, the raised task exception is ignored, and is not made pending. In this
case, E_OK is returned to this system call.

If a task exception handler is already running in the task specified in tskid, the newly raised task exception is
made pending. If an exception is pending, a break function is not executed even if the target task is executing
an extended SVC.

In the case of texcd = 0, however, exceptions are not made pending even if the target task is executing an
exception handler. If the target task is running a task exception handler for an exception of task exception
codes 1 to 31, the task exception is accepted; and if an extended SVC is executing, a break function is called.
If the target task is running a task exception handler for an exception of task exception code 0, task exceptions
are ignored.

The invoking task can be specified by setting tskid = TSK_SELF = 0.

If this system call is issued from a task-independent portion, error code E_CTX is returned.

T-Kernel 2.0 Specification 111 / 534

Additional Notes

If the target task is executing an extended SVC, the break function corresponding to the extended SVC runs
as a quasi-task portion of the task that issued tk_ras_tex. That is, it is executed in the context of the quasi-task
portion whose requesting task is the task that issued tk_ras_tex.

In such a case tk_ras_tex does not return control until the break function processing ends. For this reason,
the specification does not allow tk_ras_tex to be issued from a task-independent portion.

Task exceptions raised in the task that called tk_ras_tex while the break function is running are held until the
break function ends.

T-Kernel 2.0 Specification 112 / 534

4.3.5 tk_end_tex - end task exception handler

C Language Interface

#include <tk/tkernel.h>

INT texcd = tk_end_tex (BOOL enatex);

Parameter

BOOL enatex Enable Task Exception Task exception handler calling enabled
flag

Return Parameter

INT texcd Task Exception Code Raised exception code (0 to 31)
or Error Code Error code

Error Code

E_CTX Context error (called for other than a task exception handler or task exception code
0 (detection is implementation-dependent))

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Ends a task exception handler and enables the new task exception handler. If there are pending task ex-
ceptions, the highest-priority task exception code among them is passed in the return code. If there are no
pending task exceptions, 0 is returned.

If enatex = FALSE and there are pending task exception, calling the new task exception handler is not al-
lowed. In this case, the exception handler specified in return code texcd is in running state upon return from
tk_end_tex. If there are no pending task exceptions, calling the new task exception handler is allowed.

If enatex = TRUE, calling the new task exception handler is allowed regardless of whether there are pending
task exceptions. Even if there are pending task exceptions, the task exception handler is in terminated status.

There is no way of ending a task exception handler other than by calling tk_end_tex. A task exception handler
continues executing from the time it is started until tk_end_tex is called. Even if return is made from a task
exception handler without calling tk_end_tex, the task exception handler will still be running at the point of
return. Similarly, even if longjmp is used to get out of a task exception handler without calling tk_end_tex, the
task exception handler will still be running at the jump destination.

Calling tk_end_tex while task exceptions are pending results in a new task exception being accepted. At this
time even when tk_end_tex is called from an extended SVC handler, a break function cannot be called for that
extended SVC handler. If extended SVC calls are nested, then when the extended SVC nesting goes down
one level, the break function corresponding to the extended SVC return destination can be called. Calling of
a task exception handler takes place upon return to the task portion.

T-Kernel 2.0 Specification 113 / 534

The tk_end_tex system call cannot be issued in the case of task exception code 0 since the task exception
handler cannot be ended in this case. The task must be terminated by calling tk_ext_tsk or tk_exd_tsk. If
tk_end_tex is called while processing the task exception code 0, the behavior is undefined (implementation-
dependent).

This system call cannot be issued from other than a task exception handler. The behavior when it is called
from other than a task exception handler is undefined (implementation-dependent).

Additional Notes

When tk_end_tex (TRUE) is called and there are pending task exceptions, another task exception handler call
is made immediately following tk_end_tex. In this case, a task exception handler is called without restoring
the stack, giving rise to possible stack overflow.

Ordinarily tk_end_tex (FALSE) can be used, and processing looped as illustrated below while there are task
exceptions pending.

void texhdr(INT texcd)
{
if (texcd == 0){
/*
Processing for task exception 0

*/
tk_exd_tsk ();

}

do {
/*
Processing for task exception 1〜31

*/
} while ((texcd = tk_end_tex(FALSE)) > 0);

}

Strictly speaking, if a task exception were to occur during the interval after 0 is returned by tk_end_tex ending
the loop and before exit from texhdr, the possibility exists of reentering texhdr without restoring the stack.
Since task exceptions are software driven, however, ordinarily they do not occur independently of executing
tasks; so in practice this is not a problem.

T-Kernel 2.0 Specification 114 / 534

4.3.6 tk_ref_tex - Reference Task Exception Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_tex (ID tskid , T_RTEX *pk_rtex);

Parameter

ID tskid Task ID Task ID
T_RTEX* pk_rtex Packet to Return Task

Exception Status
Pointer to the area to return the task
exception status

Return Parameter

ER ercd Error Code Error code

pk_rtex Detail:

UINT pendtex Pending Task Exception Pending task exceptions
UINT texmask Task Exception Mask Allowed task exceptions
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_PAR Parameter error (invalid pk_rtex)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets the status of task exceptions for the task specified in tskid.

pendtex indicates the currently pending task exceptions. A raised task exception is indicated in pendtex from
the time the task exception is raised until its task exception handler is called.

texmask indicates allowed task exceptions.

Both pendtex and texmask are bit arrays of the form 1 << task exception code.

The invoking task can be specified by setting tskid = TSK_SELF = 0. Note, however, that when tskid = TSK_SELF
= 0 is specified in a system call issued from a task-independent portion, error code E_ID is returned.

T-Kernel 2.0 Specification 115 / 534

4.4 Synchronization and Communication Functions

Synchronization and communication functions use objects independent of tasks used to synchronize tasks
and achieve communication between tasks. The objects available for these purposes include semaphores,
event flags, and mailboxes.

T-Kernel 2.0 Specification 116 / 534

4.4.1 Semaphore

A semaphore is an object indicating the availability of a resource and its quantity as a numerical value. A
semaphore is used to realize mutual exclusion control and synchronization when using a resource. Functions
are provided for creating and deleting a semaphore, acquiring and returning resources corresponding to
semaphores, and referencing semaphore status. A semaphore is an object identified by an ID number. The
ID number for the semaphore is called a semaphore ID.

A semaphore contains a resource count indicating whether the corresponding resource exists and in what
quantity, and a queue of tasks waiting to acquire the resource. When a task (the task making event notification)
returns m resources, it increments the semaphore resource count by m. When a task (the task waiting for an
event) acquires n resources, it decreases the semaphore resource count by n. If the number of semaphore
resources is insufficient (i.e., further reducing the semaphore resource count would cause it to be negative),
a task attempting to acquire resources goes into WAITING state until the next time resources are returned. A
task waiting for semaphore resources is put in the semaphore queue.

To prevent too many resources from being returned to a semaphore, a maximum resource count can be set
for each semaphore. Error is reported if it is attempted to return resources to a semaphore that would cause
this maximum count to be exceeded.

T-Kernel 2.0 Specification 117 / 534

4.4.1.1 tk_cre_sem - Create Semaphore

C Language Interface

#include <tk/tkernel.h>

ID semid = tk_cre_sem (CONST T_CSEM *pk_csem);

Parameter

CONST T_CSEM* pk_csem Packet to Create
Semaphore

Semaphore creation information

pk_csem Detail:

void* exinf Extended Information Extended information
ATR sematr Semaphore Attribute Semaphore attribute
INT isemcnt Initial Semaphore Count Initial semaphore count
INT maxsem Maximum Semaphore

Count
Maximum semaphore count

UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID semid Semaphore ID Semaphore ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Semaphore count exceeds the system limit
E_RSATR Reserved attribute (sematr is invalid or cannot be used)
E_PAR Parameter error (pk_csem is invalid, or isemcnt or maxsem is negative or invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Creates a semaphore, assigning to it a semaphore ID. This system call allocates a control block to the created
semaphore, setting the initial count to isemcnt and maximum count (upper limit) to maxsem. It must be possible
to set maxsem to at least 65535. Whether values including and above 65536 can be set is implementation-
dependent.

exinf can be used freely by the user to set miscellaneous information about the created semaphore. The
information set in this parameter can be referenced by tk_ref_sem. If a larger area is needed for indicating
user information, or if the information may need to be changed after the message buffer is created, this can
be done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

T-Kernel 2.0 Specification 118 / 534

sematr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of sematr is as follows.

sematr:= (TA_TFIFO || TA_TPRI) | (TA_FIRST || TA_CNT) | [TA_DSNAME] | [TA_NODISWAI]

TA_TFIFO Tasks are queued in FIFO order
TA_TPRI Tasks are queued in priority order
TA_FIRST The first task in the queue has precedence
TA_CNT Tasks with fewer requests have precedence
TA_DSNAME Specifies DS object name
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

The queuing order of tasks waiting for a semaphore can be specified in TA_TFIFO or TA_TPRI. If the attribute
is TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing of tasks in order of their priority
setting.

TA_FIRST and TA_CNT specify precedence of resource acquisition. TA_FIRST and TA_CNT do not change the order
of the queue, which is determined by TA_TFIFO and TA_TPRI.

When TA_FIRST is specified, resources are allocated starting from the first task in the queue regardless of
request count. As long as the first task in the queue cannot obtain the requested number of resources, tasks
behind it in the queue are prevented from obtaining resources.

TA_CNT means resources are assigned based on the order in which tasks are able to obtain the requested
number of resources. The request counts are checked starting from the first task in the queue, and tasks to
which their requested amount can be allocated receive resources. This is not the same as allocating in order
of fewest requests.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

#define TA_TFIFO 0x00000000 /* manage queue by FIFO */
#define TA_TPRI 0x00000001 /* manage queue by priority */
#define TA_FIRST 0x00000000 /* first task in queue has precedence */
#define TA_CNT 0x00000002 /* tasks with fewer requests have precedence */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */

T-Kernel 2.0 Specification 119 / 534

4.4.1.2 tk_del_sem - Delete Semaphore

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_sem (ID semid);

Parameter

ID semid Semaphore ID Semaphore ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (semid is invalid or cannot be used)
E_NOEXS Object does not exist (the semaphore specified in semid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Deletes the semaphore specified in semid.

The semaphore ID and control block area are released as a result of this system call.

This system call completes normally even if there is a task waiting for condition fulfillment on the semaphore,
but error code E_DLT is returned to the task in WAITING state.

T-Kernel 2.0 Specification 120 / 534

4.4.1.3 tk_sig_sem - Signal Semaphore

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sig_sem (ID semid , INT cnt);

Parameter

ID semid Semaphore ID Semaphore ID
INT cnt Count Resource return count

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (semid is invalid or cannot be used)
E_NOEXS Object does not exist (the semaphore specified in semid does not exist)
E_QOVR Queuing or nesting overflow (semcnt over limit)
E_PAR Parameter error (cnt ≦ 0)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Returns to the semaphore specified in semid the number of resources indicated in cnt. If there is a task waiting
for the semaphore, its request count is checked and resources allocated if possible. A task allocated resources
goes to READY state. In some conditions more than one task may be allocated resources and put in READY
state.

If the semaphore count increases to the point where the maximum count (maxsem) would be exceeded by the
return of more resources, error code E_QOVR is returned. In this case no resources are returned and the
count (semcnt) does not change.

Additional Notes

Error is not returned even if semcnt goes over the semaphore initial count (isemcnt). When semaphores are
used not for mutual exclusion control but for synchronization (like tk_wup_tsk and tk_slp_tsk), the semaphore
count (semcnt) will sometimes go over the initial setting (isemcnt). The semaphore function can be used for
mutual exclusion control by setting isemcnt and the maximum semaphore count (maxsem) to the same value
and checking for the error that is returned when the count increases.

T-Kernel 2.0 Specification 121 / 534

4.4.1.4 tk_wai_sem - Wait on Semaphore

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_wai_sem (ID semid , INT cnt , TMO tmout);

Parameter

ID semid Semaphore ID Semaphore ID
INT cnt Count Resource request count
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (semid is invalid or cannot be used)
E_NOEXS Object does not exist (the semaphore specified in semid does not exist)
E_PAR Parameter error (tmout ≦ (-2), cnt ≦ 0)
E_DLT The object being waited for was deleted (the specified semaphore was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Obtains from the semaphore specified in semid the number of resources indicated in cnt. If the requested
resources can be allocated, the task issuing this system call does not enter WAITING state but continues
executing. In this case the semaphore count (semcnt) is decreased by the size of cnt. If the resources are not
available, the task issuing this system call enters WAITING state, and is put in the queue of tasks waiting for
the semaphore. The semaphore count (semcnt) for this semaphore does not change in this case.

A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition
is met (tk_sig_sem is not executed), the system call terminates, returning timeout error code E_TMOUT.

Only positive values can be set in tmout. The time unit for tmout (time unit) is the same as that for system time
(= 1 ms).

When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state even if no resources are acquired. When TMO_FEVR (= -1) is set in tmout, this
means infinity was specified as the timeout value, and the task continues to wait for resource acquisition
without timing out.

T-Kernel 2.0 Specification 122 / 534

4.4.1.5 tk_wai_sem_u - Wait on Semaphore (in microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_wai_sem_u (ID semid , INT cnt , TMO_U tmout_u);

Parameter

ID semid Semaphore ID Semaphore ID
INT cnt Count Resource request count
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (semid is invalid or cannot be used)
E_NOEXS Object does not exist (the semaphore specified in semid does not exist)
E_PAR Parameter error (tmout_u ≦ (-2), cnt ≦ 0)
E_DLT The object being waited for was deleted (the specified semaphore was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_wai_sem.

The specification of this system call is same as that of tk_wai_sem, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_wai_sem.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 123 / 534

4.4.1.6 tk_ref_sem - Reference Semaphore Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_sem (ID semid , T_RSEM *pk_rsem);

Parameter

ID semid Semaphore ID Semaphore ID
T_RSEM* pk_rsem Packet to Return Semaphore

Status
Pointer to the area to return the
semaphore status

Return Parameter

ER ercd Error Code Error code

pk_rsem Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
INT semcnt Semaphore Count current semaphore count value
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (semid is invalid or cannot be used)
E_NOEXS Object does not exist (the semaphore specified in semid does not exist)
E_PAR Parameter error (invalid pk_rsem)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

References the status of the semaphore specified in semid, passing in the return parameters the current
semaphore count (semcnt), the waiting task ID (wtsk), and extended information (exinf).

wtsk indicates the ID of a task waiting for the semaphore. If there are two or more such tasks, the ID of the
task at the head of the queue is returned. If there are no waiting tasks, wtsk = 0 is returned.

If the specified semaphore does not exist, error code E_NOEXS is returned.

T-Kernel 2.0 Specification 124 / 534

4.4.2 Event Flag

An event flag is an object used for synchronization, consisting of a pattern of bits used as flags to indicate
the existence of the corresponding events. Functions are provided for creating and deleting an event flag, for
event flag setting and clearing, event flag waiting, and event flag status reference. An event flag is an object
identified by an ID number. The ID number for the event flag is called an event flag ID.

In addition to the bit pattern indicating the existence of corresponding events, an event flag has a queue of
tasks waiting for the event flag. The event flag bit pattern is sometimes called simply event flag. The event
notifier sets or clears the specified bits of the event flag. A task can be made to wait for all or some of the
event flag bits to be set. A task waiting for an event flag is put in the queue of that event flag.

T-Kernel 2.0 Specification 125 / 534

4.4.2.1 tk_cre_flg - Create Event Flag

C Language Interface

#include <tk/tkernel.h>

ID flgid = tk_cre_flg (CONST T_CFLG *pk_cflg);

Parameter

CONST T_CFLG* pk_cflg Packet to Create EventFlag Event flag creation information

pk_cflg Detail:

void* exinf Extended Information Extended information
ATR flgatr EventFlag Attribute Event flag attribute
UINT iflgptn Initial EventFlag Pattern Event flag initial value
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID flgid EventFlag ID Event flag ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of event flags exceeds the system limit
E_RSATR Reserved attribute (flgatr is invalid or cannot be used)
E_PAR Parameter error (pk_cflg is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Creates an event flag, assigning to it an event flag ID. This system call allocates a control block to the created
event flag and sets its initial value to iflgptn. An event flag handles one word's worth of bits as a group. All
operations are performed in single word units.

exinf can be used freely by the user to set miscellaneous information about the created event flag. The
information set in this parameter can be referenced by tk_ref_flg. If a larger area is needed for indicating user
information, or if the information may need to be changed after the message buffer is created, this can be
done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

flgatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of flgatr is as follows.

flgatr:= (TA_TFIFO || TA_TPRI) | (TA_WMUL || TA_WSGL) | [TA_DSNAME] | [TA_NODISWAI]

T-Kernel 2.0 Specification 126 / 534

TA_TFIFO Tasks are queued in FIFO order
TA_TPRI Tasks are queued in priority order
TA_WSGL Waiting by multiple tasks is not allowed (Wait Single Task)
TA_WMUL Waiting by multiple tasks is allowed (Wait Multiple Tasks)
TA_DSNAME Specifies DS object name
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

When TA_WSGL is specified, multiple tasks cannot be in the WAITING state at the same time. Specifying TA_WMUL
allows waiting by multiple tasks at the same time.

The queuing order of tasks waiting for an event flag can be specified in TA_TFIFO or TA_TPRI. If the attribute
is TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing of tasks in order of their priority
setting. When TA_WSGL is specified, however, since tasks cannot be queued, TA_TFIFO or TA_TPRI makes no
difference.

When multiple tasks are waiting for an event flag, tasks are checked in order from the head of the queue,
and the wait is released for tasks meeting the conditions. The first task to have its WAITING state released
is therefore not necessarily the first in the queue. If multiple tasks meet the conditions, wait state is released
for each of them.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

#define TA_TFIFO 0x00000000 /* manage queue by FIFO */
#define TA_TPRI 0x00000001 /* manage queue by priority */
#define TA_WSGL 0x00000000 /* prohibit multiple task waiting */
#define TA_WMUL 0x00000008 /* permit multiple task waiting */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */

T-Kernel 2.0 Specification 127 / 534

4.4.2.2 tk_del_flg - Delete Event Flag

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_flg (ID flgid);

Parameter

ID flgid EventFlag ID Event flag ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (flgid is invalid or cannot be used)
E_NOEXS Object does not exist (the event flag specified in flgid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Deletes the event flag specified in flgid.

Issuing this system call releases the corresponding event flag ID and control block memory space.

This system call is completed normally even if there are tasks waiting for the event flag, but error code E_DLT
is returned to each task in WAITING state.

T-Kernel 2.0 Specification 128 / 534

4.4.2.3 tk_set_flg - Set Event Flag

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_flg (ID flgid , UINT setptn);

Parameter

ID flgid EventFlag ID Event flag ID
UINT setptn Set Bit Pattern Bit pattern to be set

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (flgid is invalid or cannot be used)
E_NOEXS Object does not exist (the event flag specified in flgid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

tk_set_flg sets the bits indicated in setptn in a one-word event flag specified in flgid. That is, a logical sum
is taken of the values of the event flag specified in flgid and the values indicated in setptn. (the processing
flgptn |= setptn is executed for the event flag value flgptn)

After event flag values are changed by tk_set_flg, if the condition for releasing the wait state of a task that
called tk_wai_flg is met, the WAITING state of that task is cleared, putting it in RUNNING state or READY
state (or SUSPENDED state if the waiting task was in WAITING-SUSPENDED state).

If all the bits of setptn are cleared to 0 in tk_set_flg, no operation is made to the target event flag. No error
will result in either case.

Multiple tasks can wait for a single event flag if that event flag has the TA_WMUL attribute. The event flag in that
case has a queue for the waiting tasks. A single tk_set_flg call for such an event flag may result in the release
of multiple waiting tasks.

T-Kernel 2.0 Specification 129 / 534

4.4.2.4 tk_clr_flg - Clear Event Flag

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_clr_flg (ID flgid , UINT clrptn);

Parameter

ID flgid EventFlag ID Event flag ID
UINT clrptn Clear Bit Pattern Bit pattern to be cleared

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (flgid is invalid or cannot be used)
E_NOEXS Object does not exist (the event flag specified in flgid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

tk_clr_flg clears the bits of the one-word event flag specified in flgid, based on the corresponding zero bits
of clrptn. That is, a logical product is taken of the values of the event flag specified in flgid and the values
indicated in clrptn.(the processing flgptn &= clrptn is executed for the event flag value flgptn)

Issuing tk_clr_flg never results in wait conditions being released for a task waiting for the specified event flag;
that is, dispatching never occurs with tk_clr_flg.

If all the bits of clrptn are set to 1 in tk_clr_flg, no operation is made to the target event flag. No error will be
returned in either case.

T-Kernel 2.0 Specification 130 / 534

4.4.2.5 tk_wai_flg - Wait Event Flag

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_wai_flg (ID flgid , UINT waiptn , UINT wfmode , UINT *p_flgptn , TMO tmout);

Parameter

ID flgid EventFlag ID Event flag ID
UINT waiptn Wait Bit Pattern Wait bit pattern
UINT wfmode Wait EventFlag Mode Wait release condition
UINT* p_flgptn Pointer to EventFlag Bit Pattern Pointer to the area to return the return

parameter flgptn
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code
UINT flgptn EventFlag Bit Pattern Event flag bit pattern

Error Code

E_OK Normal completion
E_ID Invalid ID number (flgid is invalid or cannot be used)
E_NOEXS Object does not exist (the event flag specified in flgid does not exist)
E_PAR Parameter error (waiptn = 0, wfmode is invalid, or tmout ≦ (-2))
E_OBJ Invalid object state (multiple tasks are waiting for an event flag with TA_WSGL

attribute)
E_DLT The object being waited for was deleted (the specified event flag was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Waits for the event flag specified in flgid to be set, fulfilling the wait release condition specified in wfmode.

If the event flag specified in flgid already meets the wait release condition set in wfmode, the waiting task
continues executing without going to WAITING state.

wfmode is specified as follows.

wfmode := (TWF_ANDW || TWF_ORW) | [TWF_CLR || TWF_BITCLR]

T-Kernel 2.0 Specification 131 / 534

TWF_ANDW 0x00 AND wait condition
TWF_ORW 0x01 OR wait condition
TWF_CLR 0x10 Clear all
TWF_BITCLR 0x20 Clear condition bit only

If TWF_ORW is specified, the issuing task waits for any of the bits specified in waiptn to be set for the event flag
specified in flgid (OR wait). If TWF_ANDW is specified, the issuing task will wait for all of the bits specified in
waiptn to be set for the event flag specified in flgid (AND wait).

If TWF_CLR specification is not specified, the event flag values will remain unchanged even after the conditions
have been satisfied and the task has been released from WAITING state. If TWF_CLR is specified, all bits of the
event flag will be cleared to 0 once wait conditions of the waiting task have been met. If TWF_BITCLR is specified,
then when the conditions are met and the task is released from WAITING state, only the bits matching the
event flag wait release conditions are cleared to 0(event flag values &= ~wait release conditions).

The return parameter flgptn returns the value of the event flag after the WAITING state of a task has been
released due to this system call. If TWF_CLR or TWF_BITCLR was specified, the value before event flag bits were
cleared is returned. The value returned by flgptn meets the wait release conditions of this system call. The
contents of flgptn are indeterminate if the wait is released due to timeout or the like.

A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition
is met, the system call terminates, returning timeout error code E_TMOUT.

Only positive values can be set in tmout. The time unit for tmout (time unit) is the same as that for system time
(= 1 ms).

When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state even if the condition is not met. When TMO_FEVR (= -1) is set in tmout, this
means infinity was specified as the timeout value, and the task continues to wait for the condition to be met
without timing out.

In the case of a timeout, the event flag bits are not cleared even if TWF_CLR or TWF_BITCLR was specified.

Setting waiptn to 0 results in Parameter error E_PAR.

A task cannot execute tk_wai_flg for an event flag having the TA_WSGL attribute while another task is waiting
for it. Error code E_OBJ will be returned for the task issuing the subsequent tk_wai_flg, regardless of whether
that task would have gone to WAITING state; i.e., regardless of whether the wait release conditions would be
met.

If an event flag has the TA_WMUL attribute, multiple tasks can wait for it at the same time. The event flag in that
case has a queue for the waiting tasks. A single tk_set_flg call for such an event flag may result in the release
of multiple waiting tasks.

If multiple tasks are queued for an event flag with TA_WMUL attribute, the behavior is as follows.

• Tasks are queued in either FIFO or priority order. (Release of wait state does not always start from the head
of the queue, however, depending on factors such as waiptn and wfmode settings.)

• If TWF_CLR or TWF_BITCLR was specified by a task in the queue, the event flag is cleared when that task
is released from WAITING state.

• Tasks later in the queue than a task specifying TWF_CLR or TWF_BITCLR will see the event flag after it has
already been cleared.

If multiple tasks having the same priority are released from waiting simultaneously as a result of tk_set_flg,
the order of tasks in the ready queue (precedence) after release will continue to be the same as their original
order in the event flag queue.

T-Kernel 2.0 Specification 132 / 534

Additional Notes

If a logical sum of all bits is specified as the wait release condition when tk_wai_flg is called (waiptn = 0xfff...ff,
wfmode = TWF_ORW), it is possible to transfer messages using one-word bit patterns in combination with tk_set_flg.
However, it is not possible to send a message containing only 0s for all bits. Moreover, if the next message is
sent by tk_set_flg before a previous message has been read by tk_wai_flg, the previous message will be lost;
that is, message queuing is not possible.

Since setting waiptn = 0 will result in an E_PAR error, it is guaranteed that the waiptn of tasks waiting for an
event flag will not be 0. The result is that if tk_set_flg sets all bits of an event flag to 1, the task at the head of
the queue will always be released from waiting no matter what its wait condition is.

The ability to have multiple tasks wait for the same event flag is useful in situations like the following. Suppose,
for example, that Task B and Task C are waiting for tk_wai_flg calls (2) and (3) until Task A issues (1) tk_set_flg.
If multiple tasks are allowed to wait for the event flag, the result will be the same regardless of the order in
which system calls (1)(2)(3) are executed (see Figure 4.1, “Multiple Tasks Waiting for One Event Flag”). On
the other hand, if multiple task waiting is not allowed and system calls are executed in the order (2), (3), (1),
an E_OBJ error will result from the execution of (3) tk_wai_flg.

Figure 4.1: Multiple Tasks Waiting for One Event Flag

Rationale for the Specification

The reason for returning E_PAR error for specifying waiptn = 0 is that if waiptn = 0 were allowed, it would not
be possible to get out of WAITING state regardless of the subsequent event flag values.

T-Kernel 2.0 Specification 133 / 534

4.4.2.6 tk_wai_flg_u - Wait Event Flag (in microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_wai_flg_u (ID flgid , UINT waiptn , UINT wfmode , UINT *p_flgptn , TMO_U tmout_u);

Parameter

ID flgid EventFlag ID Event flag ID
UINT waiptn Wait Bit Pattern Wait bit pattern
UINT wfmode Wait EventFlag Mode Wait mode
UINT* p_flgptn Pointer to EventFlag Bit Pattern Pointer to the area to return the return

parameter flgptn
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code
UINT flgptn EventFlag Bit Pattern Bit pattern of wait releasing

Error Code

E_OK Normal completion
E_ID Invalid ID number (flgid is invalid or cannot be used)
E_NOEXS Object does not exist (the event flag specified in flgid does not exist)
E_PAR Parameter error (waiptn = 0, wfmode is invalid, or tmout_u ≦ (-2))
E_OBJ Invalid object state (multiple tasks are waiting for an event flag with TA_WSGL

attribute)
E_DLT The object being waited for was deleted (the specified event flag was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_wai_flg.

The specification of this system call is same as that of tk_wai_flg, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_wai_flg.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 134 / 534

4.4.2.7 tk_ref_flg - Reference Event Flag Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_flg (ID flgid , T_RFLG *pk_rflg);

Parameter

ID flgid EventFlag ID Event flag ID
T_RFLG* pk_rflg Packet to Return EventFlag

Status
Pointer to the area to return the event
flag status

Return Parameter

ER ercd Error Code Error code

pk_rflg Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
UINT flgptn EventFlag Bit Pattern The current event flag bit pattern
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (flgid is invalid or cannot be used)
E_NOEXS Object does not exist (the event flag specified in flgid does not exist)
E_PAR Parameter error (invalid pk_rflg)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

References the status of the event flag specified in flgid, passing in the return parameters the current flag
pattern (flgptn), waiting task ID (wtsk), and extended information (exinf).

wtsk returns the ID of a task waiting for this event flag. If more than one task is waiting (only when the TA_WMUL
was specified), the ID of the first task in the queue is returned. If there are no waiting tasks, wtsk = 0 is
returned.

If the specified event flag does not exist, error code E_NOEXS is returned.

T-Kernel 2.0 Specification 135 / 534

4.4.3 Mailbox

A mailbox is an object used to achieve synchronization and communication by passing messages in system
(shared) memory space. Functions are provided for creating and deleting a mailbox, sending and receiving
messages in a mailbox, and referencing the mailbox status. A mailbox is an object identified by an ID number.
The ID number for the mailbox is called a mailbox ID.

A mailbox has a message queue for sent messages, and a task queue for tasks waiting to receive messages. At
the message sending end (posting event notification), messages to be sent go in the message queue. On the
message receiving end (waiting for event notification), a task fetches one message from the message queue.
If there are no queued messages, the task goes to WAITING state for receipt from the mailbox until the next
message is sent. Tasks waiting for message receipt from a mailbox are put in the task queue of that mailbox.

Since the contents of messages using this function are in memory space shared both by the sending and
receiving sides, only the start address of a message located in this shared space is actually sent and received.
The contents of the messages themselves are not copied. T-Kernel manages messages in the message queue
by means of a linked listed. An application program must allocate space at the beginning of a message to be
sent, for linked list processing by T-Kernel. This area is called the message header. The message header and
the message body together are called a message packet. When a system call sends a message to a mailbox,
the start address of the message packet (pk_msg) is passed in a parameter.

When a system call receives a message from a mailbox, the start address of the message packet is passed in
a return parameter.

If messages are assigned a priority in the message queue, the message priority (msgpri) of each message must
be specified in the message header. [Figure 4.2, “Format of Messages Using a Mailbox”]

The user puts the message contents not at the beginning of the packet but after the header part (the message
contents part in the figure).

Figure 4.2: Format of Messages Using a Mailbox

T-Kernel overwrites the contents of the header when a message is put in the message queue (except for the
message priority area). An application, on the other hand, must not overwrite the header of a message in

T-Kernel 2.0 Specification 136 / 534

the queue (including the message priority area). The behavior when an application overwrites the message
header is not defined. This specification applies not only to the direct writing of a message header by an
application program, but also to the multiple passing of a header address to T-Kernel and having T-Kernel
overwrite the message header. Accordingly, the behavior when a message already in the message queue is
again sent to a mailbox is undefined.

Additional Notes
Since the application program allocates the message header space for this mailbox function, there is no limit
on the number of messages that can be queued. A system call sending a message does not enter WAITING
state.
Memory blocks allocated dynamically from a fixed-size memory pool or variable-size memory pool, or else a
statically allocated area can be used for message packets; but these must not be located in task space.
Generally, a sending task allocates a memory block from a memory pool, sending it as a message packet.
After a task on the receiving end fetches the message, it returns the memory block directly to its memory
pool.
The memory managed by the memory pool management functions is all in system space;
The following sample programs show the above usage:

/* Message type definition */
typedef struct {
T_MSG msgque; /* Message header with T_MFIFO attribute */
UB msgcont[MSG_SIZE]; /* Message content */

} T_MSG_PACKET;

/* Task operation that acquires a memory block and sends a message */

T_MSG_PACKET *pk_msg;
...

/* Acquire a memory block from the fixed -size memory pool. */
/* Fixed -memory block size must be sizeof(T_MSG_PACKET) or more */
tk_get_mpf(mpfid , (void **)&pk_msg , TMO_FEVR);

/* Create a message at pk_msg -> msgcont [] */
...

/* Send a message */
tk_snd_mbx(mbxid , (T_MSG *) pk_msg);

/* Task operation that receives a message and releases a memory block */

T_MSG_PACKET *pk_msg;
...

/* Receive a message */
tk_rcv_mbx(mbxid , (T_MSG **)&pk_msg , TMO_FEVR);

/* Check message content at pk_msg -> msgcont [] and process them accordingly */
...

/* Return the memory block to the fixed -size memory pool. */
tk_rel_mpf(mpfid , (void*) pk_msg);

T-Kernel 2.0 Specification 137 / 534

4.4.3.1 tk_cre_mbx - Create Mailbox

C Language Interface

#include <tk/tkernel.h>

ID mbxid = tk_cre_mbx (CONST T_CMBX *pk_cmbx);

Parameter

CONST T_CMBX* pk_cmbx Packet to Create Mailbox Mailbox creation information

pk_cmbx Detail:

void* exinf Extended Information Extended information
ATR mbxatr Mailbox Attribute Mailbox attribute
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID mbxid Mailbox ID Mailbox ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of mailboxes exceeds the system limit
E_RSATR Reserved attribute (mbxatr is invalid or cannot be used)
E_PAR Parameter error (pk_cmbx is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Creates a mailbox, assigning to it a mailbox ID. This system call allocates a control block, etc. for the created
mailbox.

exinf can be used freely by the user to set miscellaneous information about the created mailbox. The infor-
mation set in this parameter can be referenced by tk_ref_mbx. If a larger area is needed for indicating user
information, or if the information may need to be changed after the message buffer is created, this can be
done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

mbxatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of mbxatr is as follows.

mbxatr:= (TA_TFIFO || TA_TPRI) | (TA_MFIFO || TA_MPRI) | [TA_DSNAME] | [TA_NODISWAI]

T-Kernel 2.0 Specification 138 / 534

TA_TFIFO Tasks are queued in FIFO order
TA_TPRI Tasks are queued in priority order
TA_MFIFO Messages are queued in FIFO order
TA_MPRI Messages are queued in priority order
TA_DSNAME Specifies DS object name
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

The queuing order of tasks waiting for a mailbox can be specified in TA_TFIFO or TA_TPRI. If the attribute is
TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing of tasks in order of their priority
setting.

TA_MFIFO and TA_MPRI are used to specify the order of messages in the message queue (messages waiting to be
received). If the attribute is TA_MFIFO , messages are ordered by FIFO; TA_MPRI specifies queuing of messages
in priority order. Message priority is set in a special field in the message packet. Message priority is specified
by positive values, with 1 indicating the highest priority and higher numbers indicating successively lower
priority. The largest value that can be expressed in the PRI type is the lowest priority. Messages having the
same priority are ordered as FIFO.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

#define TA_TFIFO 0x00000000 /* manage queue by FIFO */
#define TA_TPRI 0x00000001 /* manage queue by priority */
#define TA_MFIFO 0x00000000 /* manage message queue by FIFO */
#define TA_MPRI 0x00000002 /* manage message queue by priority */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */

Additional Notes

The body of a message passed by the mailbox function is located in system (shared) memory; only its start
address is actually sent and received. For this reason a message must not be located in task space.

T-Kernel 2.0 Specification 139 / 534

4.4.3.2 tk_del_mbx - Delete Mailbox

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_mbx (ID mbxid);

Parameter

ID mbxid Mailbox ID Mailbox ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Deletes the mailbox specified in mbxid.

Issuing this system call releases the mailbox ID and control block memory space, etc., associated with the
mailbox.

This system call completes normally even if there are tasks waiting for messages in the deleted mailbox, but
error code E_DLT is returned to each of the tasks in WAITING state. Even if there are messages still in the
deleted mailbox, the mailbox is deleted without returning an error code.

T-Kernel 2.0 Specification 140 / 534

4.4.3.3 tk_snd_mbx - Send Message to Mailbox

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_snd_mbx (ID mbxid , T_MSG *pk_msg);

Parameter

ID mbxid Mailbox ID Mailbox ID
T_MSG* pk_msg Packet of Message Start address of message packet

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
E_PAR Parameter error (invalid pk_msg, or msgpri ≦ 0)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Sends the message packet having pk_msg as its start address to the mailbox specified in mbxid.

The message packet contents are not copied; only the start address (pk_msg) is passed at the time of message
receipt. Therefore, the content of the message packet must not be overwritten until it is fetched by the task
that receives this message.

If tasks are already waiting for messages in the same mailbox, the WAITING state of the task at the head of the
queue is released, and the pk_msg specified in tk_snd_mbx is sent to that task, becoming a parameter returned
by tk_rcv_mbx. If there are no tasks waiting for messages in the specified mailbox, the sent message goes in
the message queue of that mailbox. In neither case does the task issuing tk_snd_mbx enter WAITING state.

pk_msg is the start address of the packet containing the message, including header. The message header has
the following format.

typedef struct t_msg {
? ? /* Implementation -dependent content (fixed -size) */

} T_MSG;

typedef struct t_msg_pri {
T_MSG msgque; /* message queue area */
PRI msgpri; /* message priority */

} T_MSG_PRI;

T-Kernel 2.0 Specification 141 / 534

The message header is T_MSG (if TA_MFIFO attribute is specified) or T_MSG_PRI (if TA_MPRI). In either case the
message header has a fixed-size, which can be obtained by sizeof(T_MSG) or sizeof (T_MSG_PRI).

The actual message must be put in the area after the header. There is no limit on message size, which may be
variable.

Additional Notes

Messages are sent by tk_snd_mbx regardless of the status of the receiving tasks. In other words, message
sending is asynchronous. What waits in the queue is not the sending task itself, but the sent message. So
while there are queues of waiting messages and receiving tasks, the sending task does not go to WAITING
state.

The body of a message passed by the mailbox function is located in system (shared) memory; only its start
address is actually sent and received. For this reason, a message must not be located in task space.

T-Kernel 2.0 Specification 142 / 534

4.4.3.4 tk_rcv_mbx - Receive Message from Mailbox

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rcv_mbx (ID mbxid , T_MSG **ppk_msg , TMO tmout);

Parameter

ID mbxid Mailbox ID Mailbox ID
T_MSG** ppk_msg Pointer to Packet of Message Pointer to the area to return the return

parameter pk_msg
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code
T_MSG* pk_msg Packet of Message Start address of message packet

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
E_PAR Parameter error (tmout ≦ (-2))
E_DLT The object being waited for was deleted (the mailbox was deleted while waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

tk_rcv_mbx receives a message from the mailbox specified in mbxid.

If no messages have been sent to the mailbox (the message queue is empty), the task issuing this system call
enters WAITING state and is queued for message arrival. If there are messages in the mailbox, the task issuing
this system call fetches the first message in the message queue, passing this in the return parameter pk_msg.

A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition
is met (before a message arrives), the system call terminates, returning timeout error code E_TMOUT.

Only positive values can be set in tmout. The time unit for tmout (time unit) is the same as that for system time
(= 1 ms).

When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state even if no message arrives. When TMO_FEVR (= -1) is set in tmout, this means
infinity was specified as the timeout value, and the task continues to wait for message arrival without timing
out.

T-Kernel 2.0 Specification 143 / 534

Additional Notes

pk_msg is the start address of the packet containing the message, including header. The message header is
T_MSG (if TA_MFIFO attribute is specified) or T_MSG_PRI (if TA_MPRI).

The body of a message passed by the mailbox function is located in system (shared) memory; only its start
address is actually sent and received. For this reason a message must not be located in task space.

T-Kernel 2.0 Specification 144 / 534

4.4.3.5 tk_rcv_mbx_u - Receive Message from Mailbox (in microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rcv_mbx_u (ID mbxid , T_MSG **ppk_msg , TMO_U tmout_u);

Parameter

ID mbxid Mailbox ID Mailbox ID
T_MSG** ppk_msg Pointer to Packet of Message Pointer to the area to return the return

parameter pk_msg
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code
T_MSG* pk_msg Packet of Message Start address of message packet

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
E_PAR Parameter error (tmout_u ≦ (-2))
E_DLT The object being waited for was deleted (the mailbox was deleted while waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_rcv_mbx.

The specification of this system call is same as that of tk_rcv_mbx, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_rcv_mbx.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 145 / 534

4.4.3.6 tk_ref_mbx - Reference Mailbox Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_mbx (ID mbxid , T_RMBX *pk_rmbx);

Parameter

ID mbxid Mailbox ID Mailbox ID
T_RMBX* pk_rmbx Packet to Refer Mailbox Status Pointer to the area to return the

mailbox status

Return Parameter

ER ercd Error Code Error code

pk_rmbx Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
T_MSG* pk_msg Packet of Message Next message to be received
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)
E_PAR Parameter error (invalid pk_rmbx)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

References the status of the mailbox specified in mbxid, passing in the return parameters the next message
to be received (the first message in the message queue), waiting task ID (wtsk), and extended information
(exinf).

wtsk indicates the ID of a task waiting for the mailbox. If there are multiple waiting tasks, the ID of the first
task in the queue is returned. If there are no waiting tasks, wtsk = 0 is returned.

If the specified mailbox does not exist, error code E_NOEXS is returned.

pk_msg indicates the message that will be received the next time tk_rcv_mbx is issued. If there are no messages
in the message queue, pk_msg = NULL is returned. At least one of pk_msg= NULL and wtsk = 0 is always true for
this system call.

T-Kernel 2.0 Specification 146 / 534

4.5 Extended Synchronization and Communication Functions

Extended synchronization and communication functions use objects independent of tasks to realize more so-
phisticated synchronization and communication between tasks. The functions specified here include mutex,
message buffer, and rendezvous functions.

T-Kernel 2.0 Specification 147 / 534

4.5.1 Mutex

A mutex is an object for mutual exclusion control among tasks that use shared resources. Priority inheritance
mutexes and priority ceiling mutexes are supported, as a mechanism to prevent the problem of unbounded
priority inversion that can occur in mutual exclusion control.

Functions are provided for creating and deleting a mutex, locking and unlocking a mutex, and referencing
mutex status. A mutex is identified by an ID number. The ID number for the mutex is called a mutex ID.

A mutex has a status (locked or unlocked) and a queue for tasks waiting to lock the mutex. For each mutex,
T-Kernel keeps track of the tasks locking it; and for each task, it keeps track of the mutexes it has locked.
Before a task uses a resource, it locks a mutex associated with that resource. If the mutex is already locked
by another task, the task waits for the mutex to become unlocked. Tasks in mutex lock waiting state are put
in the mutex queue. When a task finishes with a resource, it unlocks the mutex.

A mutex with TA_INHERIT (= 0x02) specified as mutex attribute supports priority inheritance protocol while one
with TA_CEILING (= 0x03) specified supports priority ceiling protocol. When a mutex with TA_CEILING attribute
is created, a ceiling priority is assigned to it, indicating the base priority of the task having the highest base
priority among the tasks that will lock that mutex. If a task having a higher base priority than the ceiling
priority of the mutex with TA_CEILING attribute tries to lock it, error code E_ILUSE is returned. If tk_chg_pri
is issued in an attempt to set the base priority of a task having locked a mutex with TA_CEILING attribute to a
value higher than the ceiling priority of that mutex, E_ILUSE is returned by the tk_chg_pri system call.

When these protocols are used, unbounded priority inversion is prevented by automatically changing the
current priority of a task in a mutex operation. Strict adherence to the priority inheritance protocol and
priority ceiling protocol requires that the task current priority must always be changed to match the peak
value of the following priorities. This is called strict priority control.

• Task base priority

• When tasks lock mutexes with TA_INHERIT attribute, the current priority of the task having the highest current
priority of the tasks waiting for those mutexes.

• When tasks lock mutexes with TA_CEILING attribute, the highest ceiling priority of the mutex among those
mutexes.

Note that when the current priority of a task waiting for a mutex with TA_INHERIT attribute changes as the result
of a base priority change brought about by mutex operation or tk_chg_pri, it may become necessary to change
the current priority of the task locking that mutex. This is called dynamic priority inheritance. Further, if
this task is waiting for another mutex with TA_INHERIT attribute, dynamic priority inheritance processing may
become necessary also for the task locking that mutex.

The T-Kernel defines, in addition to the above strict priority control, a simplified priority control limiting the
situations in which the current priority is changed. The choice between the two is implementation-dependent.
In the simplified priority control, whereas all changes in the direction of raising the task current priority are
carried out, changes in the direction of lowering that priority are made only when a task is no longer locking
any mutexes. (In this case the task current priority reverts to the base priority.) More specifically, processing
to change the current priority is needed only in the following circumstances.

• When a task with a higher current priority than that of the task locking a mutex with TA_INHERIT attribute
starts waiting for that mutex.

• When task B is waiting for a mutex with TA_INHERIT attribute being locked by another task called A, and if
the current priority of B is changed to a higher one than that of task A.

• When a task locks a mutex with TA_CEILING attribute having a higher ceiling priority than the task's current
priority.

• When a task is no longer locking any mutexes.

T-Kernel 2.0 Specification 148 / 534

When the current priority of a task is changed in connection with a mutex operation, the following processing
is performed.

If the task whose priority changed is in a run state, the task precedence is changed in accordance with the new
priority. Its precedence among other tasks having the same priority is implementation-dependent. Likewise,
if the task whose priority changes is waiting in a queue of some kind, its order in that queue is changed based
on its new priority. Its order among other tasks having the same priority is implementation-dependent. When
a task terminates and there are mutexes still locked by that task, all the mutexes are unlocked. The order in
which multiple locked mutexes are unlocked is implementation-dependent. See the description of tk_unl_mtx
for the specific processing involved.

Additional Notes
TA_TFIFO attribute mutex or TA_TPRI attribute mutex has functionality equivalent to that of a semaphore with
a maximum of one resource (binary semaphore). The main differences are that a mutex can be unlocked only
by the task that locked it, and a mutex is automatically unlocked when the task locking it terminates.
The term "priority ceiling protocol" is used here in a broad sense. The protocol described here is not the
same as the algorithm originally proposed. Strictly speaking, it is what is otherwise referred to as a highest
locker protocol or by other names.
When the change in current priority of a task due to a mutex operation results in that task's order being
changed in a priority-based queue, it may be necessary to release the waiting state of other tasks waiting for
that task or for that queue.

Rationale for the Specification
The precedence of tasks having the same priority as the result of a change in task current priority in a mu-
tex operation is left as implementation-dependent, for the following reason. Depending on the application,
the mutex function may lead to frequent changes in current priority. It would not be desirable for this to
result in constant task switching, which is what would happen if the precedence were made the lowest each
time among tasks of the same priority. Ideally task precedence rather than priority should be inherited,
but that results in large overhead in implementation. This aspect of the specification is therefore made an
implementation-dependent matter.

T-Kernel 2.0 Specification 149 / 534

4.5.1.1 tk_cre_mtx - Create Mutex

C Language Interface

#include <tk/tkernel.h>

ID mtxid = tk_cre_mtx (CONST T_CMTX *pk_cmtx);

Parameter

CONST T_CMTX* pk_cmtx Packet to Create Mutex Information about the mutex to be
created

pk_cmtx Detail:

void* exinf Extended Information Extended information
ATR mtxatr Mutex Attribute Mutex attributes
PRI ceilpri Ceiling Priority of Mutex Mutex ceiling priority
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID mtxid Mutex ID Mutex ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of mutexes exceeds the system limit
E_RSATR Reserved attribute (mtxatr is invalid or cannot be used)
E_PAR Parameter error (pk_cmtx or ceilpri is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Creates a mutex, assigning to it a mutex ID. This system call allocates a control block, etc. for the created
mutex.

exinf can be used freely by the user to set miscellaneous information about the created mutex. The information
set in this parameter can be referenced by tk_ref_mtx. If a larger area is needed for indicating user information,
or if the information may need to be changed after the message buffer is created, this can be done by allocating
separate memory for this purpose and putting the memory packet address in exinf. The kernel pays no
attention to the contents of exinf.

mtxatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of mtxatr is specified as follows.

mtxatr:= (TA_TFIFO || TA_TPRI || TA_INHERIT || TA_CEILING) | [TA_DSNAME] | [TA_NODISWAI]

T-Kernel 2.0 Specification 150 / 534

TA_TFIFO Tasks are queued in FIFO order
TA_TPRI Tasks are queued in priority order
TA_INHERIT Priority inheritance protocol
TA_CEILING Priority ceiling protocol
TA_DSNAME Specifies DS object name
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

When the TA_TFIFO attribute is specified, the order of the mutex task queue is FIFO. If TA_TPRI, TA_INHERIT,
or TA_CEILING is specified, tasks are ordered by their priority. TA_INHERIT indicates that priority inheritance
protocol is used, and TA_CEILING specifies priority ceiling protocol.

Only when TA_CEILING is specified, ceilpri is valid and specifies the mutex ceiling priority.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

#define TA_TFIFO 0x00000000 /* manage queue by FIFO */
#define TA_TPRI 0x00000001 /* manage queue by priority */
#define TA_INHERIT 0x00000002 /* priority inheritance protocol */
#define TA_CEILING 0x00000003 /* priority ceiling protocol */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */

T-Kernel 2.0 Specification 151 / 534

4.5.1.2 tk_del_mtx - Delete Mutex

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_mtx (ID mtxid);

Parameter

ID mtxid Mutex ID Mutex ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mtxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Deletes the mutex specified in mtxid.

Issuing this system call releases the mutex ID and control block memory space allocated to the mutex.

This system call completes normally even if there are tasks waiting to lock the deleted mutex, but error code
E_DLT is returned to each of the tasks in WAITING state.

When a mutex is deleted, a task locking the mutex will have one fewer locked mutexes. If the mutex to be
deleted was a priority inheritance mutex (TA_INHERIT) or priority ceiling mutex (TA_CEILING), then deleting the
mutex might change the priority of the task that has locked it.

T-Kernel 2.0 Specification 152 / 534

4.5.1.3 tk_loc_mtx - Lock Mutex

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_loc_mtx (ID mtxid , TMO tmout);

Parameter

ID mtxid Mutex ID Mutex ID
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mtxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)
E_PAR Parameter error (tmout ≦ (-2))
E_DLT The object being waited for was deleted (the mutex was deleted while waiting for a

lock)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)
E_ILUSE Illegal use (multiple lock, or upper priority limit exceeded)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Locks the mutex specified in mtxid. If the mutex can be locked immediately, the task issuing this system call
continue executing without entering WAITING state, and the mutex goes to locked status. If the mutex cannot
be locked, the task issuing this system call enters WAITING state. That is, the task is put in the queue of this
mutex.

A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition
is met, the system call terminates, returning timeout error code E_TMOUT.

Only positive values can be set in tmout. The time unit for tmout (time unit) is the same as that for system time
(= 1 ms).

When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state even if the resource cannot be locked. When TMO_FEVR (= -1) is set in tmout,
this means infinity was specified as the timeout value, and the task continues wait to until the resource is
locked.

T-Kernel 2.0 Specification 153 / 534

If the invoking task has already locked the specified mutex, error code E_ILUSE (multiple lock) is returned.

If the specified mutex is a priority ceiling mutex (TA_CEILING) and the base priority1of the invoking task is
higher than the ceiling priority of the mutex, error code E_ILUSE (upper priority limit exceeded) is returned.

Additional Notes

• Priority inheritance mutex (TA_INHERIT attribute)

If the invoking task is waiting to lock a mutex and the current priority of the task currently locking that
mutex is lower than that of the invoking task, the priority of the locking task is raised to the same level
as the invoking task. If the wait ends before the waiting task can obtain a lock (timeout or other reason),
the priority of the task locking that mutex can be lowered to the highest of the following three priorities.
Whether this lowering takes place is implementation-dependent.

a. The highest priority among the current priorities of tasks waiting to lock the mutex.

b. The highest priority among all the other mutexes locked by the task currently locking this mutex.

c. The base priority of the locking task.

• Priority ceiling mutex (TA_CEILING attribute)

If the invoking task obtains a lock and its current priority is lower than the mutex ceiling priority, the priority
of the invoking task is raised to the mutex ceiling priority.

1 Base priority: The task priority before it is automatically raised by the mutex. This is the priority last set by tk_chg_pri (including
while the mutex is locked), or if tk_chg_pri has never been issued, the priority that was set when the task was created.

T-Kernel 2.0 Specification 154 / 534

4.5.1.4 tk_loc_mtx_u - Lock Mutex (in microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_loc_mtx_u (ID mtxid , TMO_U tmout_u);

Parameter

ID mtxid Mutex ID Mutex ID
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mtxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)
E_PAR Parameter error (tmout_u ≦ (-2))
E_DLT The object being waited for was deleted (the mutex was deleted while waiting for a

lock)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)
E_ILUSE Illegal use (multiple lock, or upper priority limit exceeded)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_loc_mtx.

The specification of this system call is same as that of tk_loc_mtx, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_loc_mtx.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 155 / 534

4.5.1.5 tk_unl_mtx - Unlock Mutex

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_unl_mtx (ID mtxid);

Parameter

ID mtxid Mutex ID Mutex ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mtxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)
E_ILUSE Illegal use (not a mutex locked by the invoking task)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Unlocks the mutex specified in mtxid.

If there are tasks waiting to lock the mutex, the WAITING state of the task at the head of the queue for that
mutex is released and that task locks the mutex.

If a mutex that was not locked by the invoking task is specified, error code E_ILUSE is returned.

Additional Notes

If the unlocked mutex is a priority inheritance mutex (TA_INHERIT) or priority ceiling mutex (TA_CEILING), task
priority must be lowered as follows.

If as a result of this operation the invoking task no longer has any locked mutexes, the invoking task priority
is lowered to its base priority.

If the invoking task continues to have locked mutexes after the operation above, the invoking task priority is
lowered to whichever of the following priority is highest.

a. The highest priority among the current priority of the tasks in the queue of the mutex with the TA_INHERIT
attribute locked by the invoking task

b. The highest priority among the ceiling priority of the mutexes with the TA_CEILING attribute locked by the
invoking task

T-Kernel 2.0 Specification 156 / 534

c. Base priority of the invoking task

Note that the lowering of priority when locked mutexes remain is implementation-dependent.

If a task terminates (goes to DORMANT state or NON-EXISTENT state) without explicitly unlocking mutexes,
all its locked mutexes are automatically unlocked by T-Kernel.

T-Kernel 2.0 Specification 157 / 534

4.5.1.6 tk_ref_mtx - Refer Mutex Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_mtx (ID mtxid , T_RMTX *pk_rmtx);

Parameter

ID mtxid Mutex ID Mutex ID
T_RMTX* pk_rmtx Packet to Return Mutex Status Pointer to the area to return the mutex

status

Return Parameter

ER ercd Error Code Error code

pk_rmtx Detail:

void* exinf Extended Information Extended information
ID htsk Locking Task ID ID of task locking the mutex
ID wtsk Lock Waiting Task ID ID of tasks waiting to lock the mutex
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (mtxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)
E_PAR Parameter error (invalid pk_rmtx)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

References the status of the mutex specified in mtxid, passing in the return parameters the task currently
locking the mutex (htsk), tasks waiting to lock the mutex (wtsk), and extended information (exinf).

htsk indicates the ID of the task locking the mutex. If no task is locking it, htsk = 0 is returned.

wtsk indicates the ID of a task waiting to lock the mutex. If there are two or more such tasks, the ID of the task
at the head of the queue is returned. If there are no waiting tasks, wtsk = 0 is returned.

If the specified mutex does not exist, error code E_NOEXS is returned.

T-Kernel 2.0 Specification 158 / 534

4.5.2 Message Buffer

A message buffer is an object for achieving synchronization and communication by the passing of variable-size
messages. Functions are provided for creating and deleting a message buffer, sending and receiving messages
using a message buffer, and referencing message buffer status. A message buffer is an object identified by an
ID number. The ID number for the message buffer is called a message buffer ID.

A message buffer keeps a queue of tasks waiting to send a message (send queue) and a queue of tasks waiting
for receive a message (receive queue). It also has a message buffer space for holding sent messages. The
message sender (the side posting event notification) copies a message it wants to send to the message buffer.
If there is insufficient space in the message buffer area, the task trying to send the message is queued for
sending until enough space is available.

A task waiting to send a message to the message buffer is put in the send queue. On the message receive
side (waiting for event notification), one message is fetched from the message buffer. If the message buffer
has no messages, the task enters WAITING state until the next message is sent. A task waiting for receiving
a message from a message buffer is put in the receive queue of that message buffer.

A synchronous message function can be realized by setting the message buffer space size to 0. In that case
both the sending task and receiving task wait for a system call to be invoked by each other, and the message
is passed when both sides issue system calls.

Additional Notes
The message buffer behavior when the size of the message buffer space is set to 0 is explained here using
the example in Figure 4.3, “Synchronous Communication by Message Buffer”. In this example Task A and
Task B run asynchronously.

• If Task A calls tk_snd_mbf first, it goes to WAITING state until Task B calls tk_rcv_mbf. In this case Task A is
put in the message buffer send queue [Figure 4.3, “Synchronous Communication by Message Buffer” (a)]

• If Task B calls tk_rcv_mbf first, on the other hand, Task B goes to WAITING state until Task A calls tk_snd_mbf.
Task B is put in the message buffer receive queue [Figure 4.3, “Synchronous Communication by Message
Buffer” (b)].

• At the point where both Task A has called tk_snd_mbf and Task B has called tk_rcv_mbf, a message is passed
from Task A to Task B; Thereafter both tasks enter a run state.

Tasks waiting to send to a message buffer send messages in their queued order. Suppose Task A wanting to
send a 40-byte message to a message buffer, and Task B wanting to send a 10-byte message, are queued in
that order. If another task receives a message opening 20 bytes of space in the message buffer, Task B is still
required to wait until Task A sends its message.
A message buffer is used to pass variable-size messages by copying them. It is the copying of messages that
makes this function different from the mailbox function.
It is assumed that the message buffer will be implemented as a ring buffer.

T-Kernel 2.0 Specification 159 / 534

Figure 4.3: Synchronous Communication by Message Buffer

T-Kernel 2.0 Specification 160 / 534

4.5.2.1 tk_cre_mbf - Create Message Buffer

C Language Interface

#include <tk/tkernel.h>

ID mbfid = tk_cre_mbf (CONST T_CMBF *pk_cmbf);

Parameter

CONST T_CMBF* pk_cmbf Packet to Create Message
Buffer

Message buffer creation
information

pk_cmbf Detail:

void* exinf Extended Information Extended information
ATR mbfatr Message Buffer Attribute Message buffer attribute
INT bufsz Buffer Size Message buffer size (in bytes)
INT maxmsz Max Message Size Maximum message size (in bytes)
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID mbfid Message Buffer ID Message buffer ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block or ring buffer area cannot be
allocated)

E_LIMIT Number of message buffers exceeds the system limit
E_RSATR Reserved attribute (mbfatr is invalid or cannot be used)
E_PAR Parameter error (pk_cmbf is invalid, or bufsz or maxmsz is negative or invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Creates a message buffer, assigning to it a message buffer ID. This system call allocates a control block to the
created message buffer. Based on the information specified in bufsz, it allocates a ring buffer area for message
queue use (for messages waiting to be received).

A message buffer is an object for managing the sending and receiving of variable-size messages. If differs
from a mailbox (mbx) in that the contents of the variable-size messages are copied when the message is sent
and received. It also has a function for putting the sending task in WAITING state when the buffer is full.

exinf can be used freely by the user to set miscellaneous information about the created message buffer. The
information set in this parameter can be referenced by tk_ref_mbf. If a larger area is needed for indicating

T-Kernel 2.0 Specification 161 / 534

user information, or if the information may need to be changed after the message buffer is created, this can
be done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

mbfatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of mbfatr is specified as follows.

mbfatr:= (TA_TFIFO || TA_TPRI) | [TA_DSNAME] | [TA_NODISWAI]

TA_TFIFO Tasks waiting on call are queued in FIFO order
TA_TPRI Tasks waiting on call are queued in priority order
TA_DSNAME Specifies DS object name
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

The queuing order of tasks waiting for sending a message when the buffer is full can be specified in TA_TFIFO
or TA_TPRI. If the attribute is TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing of tasks
in order of their priority setting. Messages themselves are queued in FIFO order only.

Tasks waiting for receiving a message from a message buffer are queued in FIFO order only.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

#define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
#define TA_TPRI 0x00000001 /* manage task queue by priority */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */

Additional Notes

When there are multiple tasks waiting to send messages, the order in which their messages are sent when
buffer space becomes available is always in their queued order.

If, for example, a Task A wanting to send a 30-byte message is queued with a Task B wanting to send a 10-byte
message, in the order A-B, even if 20 bytes of message buffer space becomes available, Task B never sends
its message before Task A.

The ring buffer in which messages are queued also contains information for managing each message. For
this reason the total size of queued messages will ordinarily not be identical to the ring buffer size specified
in bufsz. Normally the total message size will be smaller than bufsz. In this sense bufsz does not strictly
represent the total message capacity.

It is possible to create a message buffer with bufsz = 0. In this case communication using the message buffer is
completely synchronous between the sending and receiving tasks. That is, if either tk_snd_mbf or tk_rcv_mbf
is executed ahead of the other, the task executing the first system call goes to WAITING state. When the other
system call is executed, the message is passed (copied), then both tasks resume running.

In the case of a bufsz = 0 message buffer, the specific functioning is as follows.

1. In Figure 4.4, “Synchronous Communication Using Message Buffer of bufsz = 0”, Task A and Task
B operate asynchronously. If Task A arrives at point (1) first and executes tk_snd_mbf(mbfid), Task
A goes to send waiting state until Task B arrives at point (2). If tk_ref_tsk is issued for Task A in
this state, tskwait=TTW_SMBF is returned. If, on the other hand, Task B gets to point (2) first and calls
tk_rcv_mbf(mbfid), Task B goes to receive waiting state until Task A gets to point (1). If tk_ref_tsk is
issued for Task B in this state, tskwait=TTW_RMBF is returned.

T-Kernel 2.0 Specification 162 / 534

2. At the point where both Task A has executed tk_snd_mbf(mbfid) and Task B has executed
tk_rcv_mbf(mbfid), a message is passed from Task A to Task B, their wait states are released and both
tasks resume running.

Figure 4.4: Synchronous Communication Using Message Buffer of bufsz = 0

T-Kernel 2.0 Specification 163 / 534

4.5.2.2 tk_del_mbf - Delete Message Buffer

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_mbf (ID mbfid);

Parameter

ID mbfid Message Buffer ID Message buffer ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Deletes the message buffer specified in mbfid.

Issuing this system call releases the corresponding message buffer and control block memory space, as well
as the message buffer space.

This system call completes normally even if there were tasks queued in the message buffer for message receipt
or message sending, but error code E_DLT is returned to the tasks in WAITING state. If there are messages
left in the message buffer when it is deleted, the message buffer is deleted anyway. No error code is returned
and the messages are discarded.

T-Kernel 2.0 Specification 164 / 534

4.5.2.3 tk_snd_mbf - Send Message to Message Buffer

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_snd_mbf (ID mbfid , CONST void *msg , INT msgsz , TMO tmout);

Parameter

ID mbfid Message Buffer ID Message buffer ID
CONST void* msg Send Message Start address of send message
INT msgsz Send Message Size Send message size (in bytes)
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
E_PAR Parameter error (msgsz ≦ 0, msgsz > maxmsz, invalid msg, or tmout ≦ (-2))
E_DLT The object being waited for was deleted (message buffer was deleted while waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO(* Available in some

circumstances)

Description

tk_snd_mbf sends the message at the address specified in msg to the message buffer indicated in mbfid. The
message size is specified in msgsz. This system call copies msgsz bytes starting from msg to the message queue
of message buffer mbfid. The message queue is assumed to be implemented as a ring buffer.

If msgsz is larger than the maxmsz specified in tk_cre_mbf, error code E_PAR is returned.

If there is not enough available buffer space to accommodate message msg in the message queue, the task
issuing this system call goes to send waiting state and is put in the send queue of the message buffer waiting
for buffer space to become available. Waiting tasks are queued in either FIFO or priority order, depending on
the attribute specified in tk_cre_mbf.

A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condi-
tion is met (before there is sufficient buffer space), the system call terminates, returning timeout error code
E_TMOUT.

T-Kernel 2.0 Specification 165 / 534

Only positive values can be set in tmout. The time unit for tmout (time unit) is the same as that for system time
(= 1 ms).

When TMO_POL = 0 is specified in tmout, it means 0 is specified as the timeout value, and if there is not enough
buffer space, then E_TMOUT is returned without entering WAITING state. When TMO_FEVR (= -1) is specified
in tmout, this means infinity was specified as the timeout value, and the task continues to wait for buffer space
to become available, without timing out.

A message of size 0 cannot be sent. When msgsz ≦ 0, error code E_PAR is returned.

When this system call is invoked from a task-independent portion or in dispatch disabled state, error code
E_CTX is returned; but in the case of tmout = TMO_POL, there may be implementations where execution from a
task-independent portion or in dispatch disabled state is possible.

T-Kernel 2.0 Specification 166 / 534

4.5.2.4 tk_snd_mbf_u - Send Message to Message Buffer (in microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_snd_mbf_u (ID mbfid , CONST void *msg , INT msgsz , TMO_U tmout_u);

Parameter

ID mbfid Message Buffer ID Message buffer ID
CONST void* msg Send Message Start address of send message
INT msgsz Send Message Size Send message size (in bytes)
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
E_PAR Parameter error (msgsz ≦ 0, msgsz > maxmsz, invalid msg, or tmout_u ≦ (-2))
E_DLT The object being waited for was deleted (message buffer was deleted while waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO(* Available in certain

circumstance)

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_snd_mbf.

The specification of this system call is same as that of tk_snd_mbf, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_snd_mbf.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 167 / 534

4.5.2.5 tk_rcv_mbf - Receive Message from Message Buffer

C Language Interface

#include <tk/tkernel.h>

INT msgsz = tk_rcv_mbf (ID mbfid , void *msg , TMO tmout);

Parameter

ID mbfid Message Buffer ID Message buffer ID
void* msg Receive Message Address of the receive message
TMO tmout Timeout Timeout (ms)

Return Parameter

INT msgsz Receive Message Size Received message size (in bytes)
or Error Code Error code

Error Code

E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
E_PAR Parameter error (invalid msg, or tmout ≦ (-2))
E_DLT The object being waited for was deleted (message buffer was deleted while waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

tk_rcv_mbf receives a message from the message buffer specified in mbfid, copying it in the location specified
in msg. This system call copies the contents of the first queued message in the message buffer specified in
mbfid, and copies it to an area of msgsz bytes starting at address msg.

If no message has been sent to the message buffer specified in mbfid (the message queue is empty), the task
issuing this system call goes to WAITING state and is put in the receive queue of the message buffer to wait
for message arrival. Tasks in the receive queue are ordered by FIFO only.

A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition
is met (before a message arrives), the system call terminates, returning timeout error code E_TMOUT.

Only positive values can be set in tmout. The time unit for tmout (time unit) is the same as that for system time
(= 1 ms).

When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state even if there is no message. When TMO_FEVR (= -1) is set in tmout, this means
infinity was specified as the timeout value, and the task continues to wait for message arrival without timing
out.

T-Kernel 2.0 Specification 168 / 534

4.5.2.6 tk_rcv_mbf_u - Receive Message from Message Buffer (in microseconds)

C Language Interface

#include <tk/tkernel.h>

INT msgsz = tk_rcv_mbf_u (ID mbfid , void *msg , TMO_U tmout_u);

Parameter

ID mbfid Message Buffer ID Message buffer ID
void* msg Receive Message Address of the receive message
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

INT msgsz Receive Message Size Received message size (in bytes)
or Error Code Error code

Error Code

E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
E_PAR Parameter error (invalid msg, or tmout_u ≦ (-2))
E_DLT The object being waited for was deleted (message buffer was deleted while waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_rcv_mbf.

The specification of this system call is same as that of tk_rcv_mbf, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_rcv_mbf.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 169 / 534

4.5.2.7 tk_ref_mbf - Reference Message Buffer Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_mbf (ID mbfid , T_RMBF *pk_rmbf);

Parameter

ID mbfid Message Buffer ID Message buffer ID
T_RMBF* pk_rmbf Packet to Return Message Buffer

Status
Pointer to the area to return the
message buffer status

Return Parameter

ER ercd Error Code Error code

pk_rmbf Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Receive waiting task ID
ID stsk Send Waiting Task ID Send waiting task ID
INT msgsz Message Size Size of the next message to be

received (in bytes)
INT frbufsz Free Buffer Size Free buffer size (in bytes)
INT maxmsz Maximum Message Size Maximum message size (in bytes)
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)
E_PAR Parameter error (invalid pk_rmbf)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

References the status of the message buffer specified in mbfid, passing in the return parameters the send
waiting task ID(stsk), the size of the next message to be received (msgsz), free buffer size (frbufsz), maximum
message size (maxmsz), receive waiting task ID (wtsk), and extended information (exinf).

wtsk indicates the ID of a task waiting to receive a message from the message buffer. stsk indicates the ID
of a task waiting to send a message to the message buffer. If multiple tasks are waiting in the message buffer
queues, the ID of the task at the head of the queue is returned. If no tasks are waiting, 0 is returned.

If the specified message buffer does not exist, error code E_NOEXS is returned.

T-Kernel 2.0 Specification 170 / 534

The size of the message at the head of the queue (the next message to be received) is returned in msgsz. If
there are no queued messages, msgsz = 0 is returned. A message of size 0 cannot be sent.

At least one of msgsz = 0 and wtsk = 0 is always true for this system call.

frbufsz indicates the free space in the ring buffer of which the message queue consists. This value indicates
the approximate size of messages that can be sent.

The maximum message size as specified in tk_cre_mbf is returned to maxmsz.

T-Kernel 2.0 Specification 171 / 534

4.5.3 Rendezvous

Rendezvous is a function to perform synchronized communication between tasks that are in a relationship
of server and client. Specifically, rendezvous includes a function that enables both the client and server
side tasks wait for the acceptance of processing, a function that enables the client side task send a message
requesting a processing (call message) to the server side task, a function that enables the client side task wait
for the completion of processing of server side task, and a function that enables the server side task reply a
message of processing result (reply message) to the client side task. A series of processing steps listed above
can be achieved easily by using system calls for rendezvous. Rendezvous works on the object that is called a
rendezvous port.

Figure 4.5: Rendezvous operation between a client task and server task

Functions are provided for creating and deleting a rendezvous port, issuing a processing request to a ren-
dezvous port (call rendezvous), accepting a processing request from a rendezvous port (accept rendezvous),
returning the processing result (reply rendezvous), forwarding an accepted processing request to another
rendezvous port (forward rendezvous to other port), and referencing rendezvous port status and rendezvous
status. A rendezvous port is identified by an ID number. The ID number for the rendezvous port is called a
rendezvous port ID.

A task issuing a processing request to a rendezvous port (the client-side task) calls a rendezvous, specifying a
message (called a call message) with information about the rendezvous port, the rendezvous conditions, and
the processing being requested. The task accepting a processing request on a rendezvous port (the server-side
task) accepts the rendezvous, specifying the rendezvous port and rendezvous conditions.

The rendezvous conditions are indicated in a bit pattern. If the bitwise logical AND of the bit patterns on both
sides (the rendezvous condition bit pattern of the task calling a rendezvous for a rendezvous port and the
rendezvous condition bit pattern of the accepting task) is not 0, the rendezvous is established. The state of
the task calling the rendezvous is WAITING on rendezvous call until the rendezvous is established. The state
of the task accepting a rendezvous is WAITING on rendezvous acceptance until the rendezvous is established.

When a rendezvous is established, a call message is passed from the task that called the rendezvous to the
accepting task. The state of the task calling the rendezvous goes to WAITING for rendezvous completion until

T-Kernel 2.0 Specification 172 / 534

the requested processing is completed. The task accepting the rendezvous is released from WAITING state
and it performs the requested processing. Upon completion of the requested processing, the task accept-
ing the rendezvous passes the result of the processing in a reply message to the calling task and ends the
rendezvous. At this point the WAITING state of the task that called the rendezvous is released.

The above operation is explained using the example shown in Figure 4.6, “Rendezvous Operation”. In this
example Task A and Task B run asynchronously.

Figure 4.6: Rendezvous Operation

• If Task A first calls tk_cal_por, Task A goes to WAITING state until Task B calls tk_acp_por. The state of
Task A at this time is WAITING on rendezvous call [Figure 4.6, “Rendezvous Operation” (a)].

• If, on the other hand, Task B first calls tk_acp_por, Task B goes to WAITING state until Task A calls tk_cal_por.
The state of Task B at this time is WAITING on rendezvous acceptance [Figure 4.6, “Rendezvous Operation”
(b)].

• A rendezvous is established when both Task A has called tk_cal_por and Task B has called tk_acp_por. At
this time Task A remains in WAITING state while the WAITING state of Task B is released. The state of Task
A is WAITING for rendezvous completion.

• The Task A WAITING state is released when Task B calls tk_rpl_rdv. Thereafter both tasks enter a run state.

A rendezvous port has separate queues for tasks waiting on rendezvous call (call queue) and tasks waiting
on rendezvous acceptance (accept queue). Note, however, that after a rendezvous is established, both tasks
that formed the rendezvous are detached from the rendezvous port. In other words, a rendezvous port does
not have a queue for tasks waiting for rendezvous completion. Nor does it keep information about the task
performing the requested processing.

T-Kernel assigns a unique number called a rendezvous number to identify each rendezvous when more
than one is established at the same time. The method of assigning rendezvous numbers is implementation-
dependent, but at a minimum, information must be included for specifying the task that called the rendezvous.
Even if the same task makes multiple rendezvous calls, the first rendezvous and second rendezvous must have
different rendezvous numbers assigned.

T-Kernel 2.0 Specification 173 / 534

Additional Notes
An example of the method to assign a rendezvous number is to use the ID number of the task that called a
rendezvous to the lower bits of the rendezvous number, and put a serial number to the higher bits.

Rationale for the Specification
The name "rendezvous" of this function is based on the fact that a client side task and a server side task have
a rendezvous between them. When rendezvous was included in T-Kernel specification, Rendezvous in Ada
programming language and CSP (Communicating Sequential Processes) from which Ada derived affected it.
However, the rendezvous function provided by T-Kernel is not the same as that of Ada language.
While it is true that the rendezvous functionality can be achieved through a combination of other synchro-
nization and communication functions, better efficiency and ease of programming are achieved
by having a dedicated function for cases where the communication involves an acknowledgment. One advan-
tage of the rendezvous function is that since both tasks wait until message passing is completed, no memory
space needs to be allocated for storing messages.
The reason for assigning unique rendezvous numbers even when the same task does the calling is as follows. It
is possible that a task, after establishing a rendezvous and going to WAITING state for its completion, will have
its WAITING state released due to timeout or forcible release by another task, then again call a rendezvous and
have that rendezvous established. If the same number were assigned to both the first and second rendezvous,
attempting to terminate the first rendezvous would end up terminating the second rendezvous. If separate
numbers are assigned to the two rendezvous and the task in WAITING state for rendezvous completion is
made to remember the unique number of the rendezvous for which it is waiting, error will be returned when
the attempt is made to terminate the first rendezvous.

T-Kernel 2.0 Specification 174 / 534

4.5.3.1 tk_cre_por - Create Port for Rendezvous

C Language Interface

#include <tk/tkernel.h>

ID porid = tk_cre_por (CONST T_CPOR *pk_cpor);

Parameter

CONST T_CPOR* pk_cpor Packet to Create Port Rendezvous port creation
information

pk_cpor Detail:

void* exinf Extended Information Extended information
ATR poratr Port Attribute Rendezvous port attributes
INT maxcmsz Max Call Message Size Maximum call message size (in

bytes)
INT maxrmsz Max Reply Message Size Maximum reply message size (in

bytes)
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID porid Port ID Rendezvous port ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of rendezvous ports exceeds the system limit
E_RSATR Reserved attribute (poratr is invalid or cannot be used)
E_PAR Parameter error (pk_cpor is invalid; maxcmsz or maxrmsz is negative or invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Creates a rendezvous port, assigning to it a rendezvous port ID number. This specification allocates a control
block to the created rendezvous port. A rendezvous port is an object used as an OS primitive for implementing
a rendezvous capability.

exinf can be used freely by the user to set miscellaneous information about the created rendezvous port. The
information set in this parameter can be referenced by tk_ref_por. If a larger area is needed for indicating
user information, or if the information may need to be changed after the message buffer is created, this can
be done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

T-Kernel 2.0 Specification 175 / 534

poratr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of poratr is specified as follows.

poratr:= (TA_TFIFO || TA_TPRI) | [TA_DSNAME] | [TA_NODISWAI]

TA_TFIFO Tasks waiting on call are queued in FIFO order
TA_TPRI Tasks waiting on call are queued in priority order
TA_DSNAME Specifies DS object name
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

TA_TFIFO and TA_TPRI specify the queuing order of tasks waiting on a rendezvous call. Tasks waiting on ren-
dezvous acceptance are queued in FIFO order only.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

#define TA_TFIFO 0x00000000 /* manage queue by FIFO */
#define TA_TPRI 0x00000001 /* manage queue by priority */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */

maxcmsz specifies the maximum size (bytes) of the message passed at rendezvous call. maxcmsz can be 0. When
maxcmsz is 0, the size of the message passed at rendezvous calling is limited to 0, and thus it is used only for
synchronization without message.

maxrmsz specifies the maximum size (bytes) of the message passed at rendezvous return. maxrmsz can be 0.
When maxrmsz is 0, the size of the message passed at rendezvous return is limited to 0.

T-Kernel 2.0 Specification 176 / 534

4.5.3.2 tk_del_por - Delete Port for Rendezvous

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_por (ID porid);

Parameter

ID porid Port ID Rendezvous port ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (porid is invalid or cannot be used)
E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Deletes the rendezvous port specified in porid.

Issuing this system call releases the ID number and control block space allocated to the rendezvous port.

This system call completes normally even if there are tasks waiting on rendezvous acceptance (tk_acp_por)
or rendezvous port call (tk_cal_por) at the specified rendezvous port, but error code E_DLT is returned to the
tasks in WAITING state.

Deletion of a rendezvous port by tk_del_por does not affect tasks for which rendezvous is already established.
In this case, nothing is reported to the task accepting the rendezvous (not in WAITING state), and the state
of the task calling the rendezvous (WAITING for rendezvous completion) remains unchanged. When the task
accepting the rendezvous issues tk_rpl_rdv, that tk_rpl_rdv will execute normally even if the port on which
the rendezvous was established has been deleted.

T-Kernel 2.0 Specification 177 / 534

4.5.3.3 tk_cal_por - Call Port for Rendezvous

C Language Interface

#include <tk/tkernel.h>

INT rmsgsz = tk_cal_por (ID porid , UINT calptn , void *msg , INT cmsgsz , TMO tmout);

Parameter

ID porid Port ID Rendezvous port ID
UINT calptn Call Bit Pattern Call bit pattern (indicating conditions of

the caller)
void* msg Message Address of the message
INT cmsgsz Call Message Size Call message size (bytes)
TMO tmout Timeout Timeout (ms)

Return Parameter

INT rmsgsz Reply Message Size Reply message size (in bytes)
or Error Code Error code

Error Code

E_ID Invalid ID number (porid is invalid or cannot be used)
E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
E_PAR Parameter error (cmsgsz < 0, cmsgsz > maxcmsz, calptn = 0, invalid msg, or tmout ≦ (-2))
E_DLT The object being waited for was deleted (the rendezvous port was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Issues a rendezvous call for a rendezvous port.

The specific operation of tk_cal_por is as follows. A rendezvous is established if there is a task waiting to
accept a rendezvous at the port specified in porid and rendezvous conditions between that task and the task
issuing tk_cal_por. In this case, the task waiting to accept the rendezvous enters READY state while the state
of the task issuing tk_cal_por is WAIT for rendezvous completion. The task waiting for rendezvous completion
is released from WAITING state when the other (accepting) task executes tk_rpl_rdv. The tk_cal_por system
call completes at this time.

If there is no task waiting to accept a rendezvous at the port specified in porid, or if there is a task but conditions
for establishing a rendezvous are not satisfied, the task issuing tk_cal_por is placed at the end of the call queue

T-Kernel 2.0 Specification 178 / 534

of that port and enters WAITING state on rendezvous call. The order of tasks in the call queue is either FIFO
or priority order, depending on the attribute made when calling tk_cre_por.

The decision on rendezvous establishment is made by checking conditions in the bit patterns acpptn of the
accepting task and calptn of the calling task. A rendezvous is established if the bitwise logical AND of these
two bit patterns is not 0. Parameter error E_PAR is returned if calptn is 0, since no rendezvous can be
established in that case.

When a rendezvous is established, the calling task can send a message (a call message) to the accepting task.
The size of the call message is specified in cmsgsz. In this operation, cmsgsz bytes starting at address msg
specified by the calling task when calling tk_cal_por are copied to address msg as specified by the accepting
task when calling tk_acp_por.

Similarly, when the rendezvous completes, the accepting task may send a message (reply message) to the
calling task. In this operation, the contents of a reply message specified by the accepting task when calling
tk_rpl_rdv are copied to address msg as specified by the calling task when calling tk_cal_por. The size of the
reply message rmsgsz is set in a tk_cal_por return parameter. The original content of the message area passed
in msg by tk_cal_por ends up being overwritten by the reply message received when tk_rpl_rdv executes.

Note that it is possible message content will be destroyed when a rendezvous is forwarded, since an area no
larger than maxrmsz starting from the address msg as specified with tk_cal_por is used as a buffer. It is therefore
necessary to reserve a memory space of at least maxrmsz starting from msg, regardless of the expected size
of the reply message, whenever there is any possibility that a rendezvous requested by tk_cal_por might be
forwarded(See the description of tk_fwd_por for details).

Error code E_PAR is returned when cmsgsz exceeds the size maxcmsz specified with tk_cre_por. This error
checking is made before a task enters WAITING state on rendezvous call; and if error is detected, the task
executing tk_cal_por does not enter WAITING state.

A maximum wait time (timeout) until rendezvous establishment can be set in tmout. If the tmout time elapses
before the wait release condition is met (rendezvous is not established), the system call terminates, returning
timeout error code E_TMOUT.

Only positive values can be set in tmout. The time unit for tmout (time unit) is the same as that for system time
(= 1 ms).

When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state if there is no task waiting on a rendezvous at the rendezvous port, or if the
rendezvous conditions are not met.

When TMO_FEVR (= -1) is set in tmout, this means infinity was specified as the timeout value, and the task
continues to wait for a rendezvous to be established without timing out.

tmout indicates the time allowed for a rendezvous to be established, and does not apply to the time from
rendezvous establishment to rendezvous completion.

T-Kernel 2.0 Specification 179 / 534

4.5.3.4 tk_cal_por_u - Call Port for Rendezvous (in microseconds)

C Language Interface

#include <tk/tkernel.h>

INT rmsgsz = tk_cal_por_u (ID porid , UINT calptn , void *msg , INT cmsgsz , TMO_U tmout_u);

Parameter

ID porid Port ID Rendezvous port ID
UINT calptn Call Bit Pattern Call bit pattern (indicating conditions of

the caller)
void* msg Message Address of the message
INT cmsgsz Call Message Size Call message size (bytes)
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

INT rmsgsz Reply Message Size Reply message size (in bytes)
or Error Code Error code

Error Code

E_ID Invalid ID number (porid is invalid or cannot be used)
E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
E_PAR Parameter error (cmsgsz < 0, cmsgsz > maxcmsz, calptn = 0, invalid msg, or tmout_u ≦

(-2))
E_DLT The object being waited for was deleted (the rendezvous port was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_cal_por.

The specification of this system call is same as that of tk_cal_por, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_cal_por.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 180 / 534

4.5.3.5 tk_acp_por - Accept Port for Rendezvous

C Language Interface

#include <tk/tkernel.h>

INT cmsgsz = tk_acp_por (ID porid , UINT acpptn , RNO *p_rdvno , void *msg , TMO tmout);

Parameter

ID porid Port ID Rendezvous port ID
UINT acpptn Accept Bit Pattern Accept bit pattern (indicating

conditions for acceptance)
RNO* p_rdvno Pointer to Rendezvous Number Pointer to the area to return the return

parameter rdvno
void* msg Packet of Call Message Address of call message packet
TMO tmout Timeout Timeout (ms)

Return Parameter

RNO rdvno Rendezvous Number Rendezvous number
INT cmsgsz Call Message Size Call message size (bytes)

or Error Code Error code

Error Code

E_ID Invalid ID number (porid is invalid or cannot be used)
E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
E_PAR Parameter error (acpptn = 0, invalid msg, or tmout ≦ (-2))
E_DLT The object being waited for was deleted (the rendezvous port was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Accepts a rendezvous on a rendezvous port.

The specific operation of tk_acp_por is as follows. A rendezvous is established if there is a task queued for a
rendezvous call at the port specified in porid and if rendezvous conditions of that task and the task issuing
this call overlap. In this case, the task queued for a rendezvous call is removed from the queue, and its state
changes from WAIT on rendezvous call to WAIT for rendezvous completion. The task issuing tk_acp_por
continues executing.

If there is no task waiting to call a rendezvous at the port specified in porid, or if there is a task but condi-
tions for establishing a rendezvous are not satisfied, the task issuing tk_acp_por will enter WAITING state on

T-Kernel 2.0 Specification 181 / 534

rendezvous acceptance for that port. No error results if there is already another task in WAITING state on
rendezvous acceptance at this time; the task issuing tk_acp_por is placed in the accept queue. It is possible to
conduct multiple rendezvous operations on the same port at the same time. Accordingly, no error results even
if the next rendezvous is carried out while another task is still conducting a rendezvous (before tk_rpl_rdv is
called for a previously established rendezvous) at the port specified in porid.

The decision on rendezvous establishment is made by checking conditions in the bit patterns acpptn of the
accepting task and calptn of the calling task. A rendezvous is established if the bitwise logical AND of these
two bit patterns is not 0. If the first task does not satisfy these conditions, each subsequent task in the call
queue is checked in succession. If calptn and acpptn are assigned the same non-zero value, rendezvous is
established unconditionally. Parameter error E_PAR is returned if acpptn is 0, since no rendezvous can be
established in that case. All processing before a rendezvous is established is fully symmetrical on the calling
and accepting sides.

When a rendezvous is established, the calling task can send a message (a call message) to the accepting task.
The contents of the message specified by the calling task are copied to an area starting from msg specified
by the accepting task when tk_acp_por is called. The call message size cmsgsz is passed in return value of
tk_acp_por.

A task accepting rendezvous can establish more than one rendezvous at a time. That is, a task that has
accepted one rendezvous using tk_acp_por may execute tk_acp_por again before executing tk_rpl_rdv on the
first rendezvous. The port specified for the second tk_acp_por call at this time may be the same port as the
first rendezvous or a different one. It is even possible for a task already conducting a rendezvous on a given
port to execute tk_acp_por again on the same port and conduct multiple rendezvous on the same port at the
same time. Of course, the calling tasks will be different in each case.

The return parameter rdvno passed by tk_acp_por is information used to distinguish different rendezvous
when more than one has been established at a given time. It is used as a return parameter by tk_rpl_rdv
when a rendezvous completes. It is also passed as a parameter to tk_fwd_por when forwarding a rendezvous.
Although the exact contents of rdvno are implementation-dependent, it is expected to include information
specifying the calling task on the other side of the rendezvous.

A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition
is met (rendezvous is not established), the system call terminates, returning timeout error code E_TMOUT.

Only positive values can be set in tmout. The time unit for tmout (time unit) is the same as that for system time
(= 1 ms).

When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state if there is no task waiting for a rendezvous call at the rendezvous port, or if
the rendezvous conditions are not met. When TMO_FEVR (= -1) is set in tmout, this means infinity was specified
as the timeout value, and the task continues to wait for a rendezvous to be established without timing out.

Additional Notes

The ability to queue tasks accepting rendezvous is useful when multiple servers perform the same processing
concurrently. This capability also takes advantage of the task-independent nature of ports.

If a task accepting a rendezvous terminates abnormally for some reason before completing its rendezvous
(before issuing tk_rpl_rdv), the task calling for the rendezvous by issuing tk_cal_por will continue waiting
indefinitely for rendezvous completion without being released. To avoid such a situation, tasks accepting
rendezvous should execute a tk_rpl_rdv or tk_rel_wai call when they terminate abnormally, as well as notifying
the task calling for the rendezvous that the rendezvous ended in error.

rdvno contains information specifying the calling task in the rendezvous, but unique numbers should be as-
signed as much as possible. Even if different rendezvous are conducted between the same tasks, a different
rdvno value should be assigned to the first and second rendezvous to avoid problems like the following.

If a task that called tk_cal_por and is waiting for rendezvous completion has its WAITING state released
by tk_rel_wai or by tk_ter_tsk + tk_sta_tsk or the like, conceivably it may execute tk_cal_por a second time,
resulting in establishment of a rendezvous. If the same rdvno value is assigned to the first rendezvous and the

T-Kernel 2.0 Specification 182 / 534

subsequent one, then if tk_rpl_rdv is executed for the first rendezvous it will end up terminating the second
one. By assigning rdvno numbers uniquely and having the task in WAITING state for rendezvous completion
remember the number of the expected rdvno, it will be possible to detect the error when tk_rpl_rdv is called
for the first rendezvous.

One possible method of assigning rdvno numbers is to put the ID number of the task calling the rendezvous
in the lower byte of rdvno, using the higher byte for a serial number.

The capability of setting rendezvous conditions in calptn and acpptn can be applied to implement a rendezvous
selective acceptance function like the Ada select function. A specific approach equivalent to an Ada select
statement sample (Figure 4.7, “Sample Ada-like Program Using select Statement”) is shown in Figure 4.8,
“Using Rendezvous to Implement Ada select Function”.

select
when condition_A

accept entry_A do ... end;
or

when condition_B
accept entry_B do ... end;

or
when condition_C

accept entry_C do ... end;
end select;

Figure 4.7: Sample Ada-like Program Using select Statement

T-Kernel 2.0 Specification 183 / 534

• Rather than entry_A, entry_B, and entry_C each corresponding to one rendezvous port, the entire select
statement corresponds to one rendezvous port.

• entry_A, entry_B, and entry_C correspond to calptn and acpptn bits 2�0, 2�1, and 2�2.

• A select statement in a typical Ada program will look like the following:

ptn := 0;
if condition_A then ptn := ptn + 2^0 endif;
if condition_B then ptn := ptn + 2^1 endif;
if condition_C then ptn := ptn + 2^2 endif;
tk_acp_por(acpptn := ptn);

• If the program contains a simple entry_A accept with no select in addition to the select statement shown
above,

tk_acp_por(acpptn := 2^0);

can be executed. If it is desired to have entry_A, entry_B, and entry_C wait unconditionally in parallel (using
OR)

tk_acp_por(acpptn := 2^2+2^1+2^0);

can be executed.

• If the caller can call entry_A by the following

tk_cal_por(calptn := 2^0);

and if the call is for entry_C,

tk_cal_por(calptn := 2^2);

can be executed.

Figure 4.8: Using Rendezvous to Implement Ada select Function

The Ada select function is provided only on the accepting side, but it is also possible to implement a select
function on the calling side by specifying multiple bits in calptn .

Rationale for the Specification

The reason for specifying separate system calls tk_cal_por and tk_acp_por even though the conditions for
establishing a rendezvous mirror each other on the calling and accepting sides is because processing required
after a rendezvous is established differs for the tasks on each side. That is, whereas the calling task enters
WAITING state after the rendezvous is established, the accepting task enters READY state.

T-Kernel 2.0 Specification 184 / 534

4.5.3.6 tk_acp_por_u - Accept Port for Rendezvous (in microseconds)

C Language Interface

#include <tk/tkernel.h>

INT cmsgsz = tk_acp_por_u (ID porid , UINT acpptn , RNO *p_rdvno , void *msg , TMO_U tmout_u);

Parameter

ID porid Port ID Rendezvous port ID
UINT acpptn Accept Bit Pattern Accept bit pattern (indicating

conditions for acceptance)
RNO* p_rdvno Pointer to Rendezvous Number Pointer to the area to return the return

parameter rdvno
void* msg Packet of Call Message Address of call message packet
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

RNO rdvno Rendezvous Number Rendezvous number
INT cmsgsz Call Message Size Call message size (bytes)

or Error Code Error code

Error Code

E_ID Invalid ID number (porid is invalid or cannot be used)
E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
E_PAR Parameter error (acpptn = 0, invalid msg, or tmout_u ≦ (-2))
E_DLT The object being waited for was deleted (the rendezvous port was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_acp_por.

The specification of this system call is same as that of tk_acp_por, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_acp_por.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 185 / 534

4.5.3.7 tk_fwd_por - Forwards rendezvous to other port

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_fwd_por (ID porid , UINT calptn , RNO rdvno , CONST void *msg , INT cmsgsz);

Parameter

ID porid Port ID Destination rendezvous port ID
UINT calptn Call Bit Pattern Call bit pattern (indicating

conditions of the caller)
RNO rdvno Rendezvous Number Rendezvous number before

transmission
CONST void* msg Call Message Address of forwarded message

packet
INT cmsgsz Call Message Size Forwarded message size (in bytes)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (porid is invalid or cannot be used)
E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
E_PAR Parameter error (cmsgsz < 0, cmsgsz > maxcmsz after forwarding, cmsgsz > maxrmsz

before forwarding, calptn = 0, or invalid msg)
E_OBJ Invalid object state (invalid rdvno, or maxrmsz after forwarding > maxrmsz before

forwarding)
E_CTX Context error (issued from task-independent portion (implementation-dependent

error))
E_DISWAI Wait released due to disabling of wait

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Forward an accepted rendezvous to another rendezvous port.

The task issuing this system call (here "Task X") must have accepted the rendezvous specified in porid; i.e.,
this system call can be issued only after executing tk_acp_por. In the discussion that follows, the rendezvous
calling task is "Task Y," and the rendezvous number passed in a return parameter by tk_acp_por is rdvno.
After tk_fwd_por is issued in this situation, the rendezvous between Task X and Task Y is released, and all
processing thereafter is the same as if Task Y had called for a rendezvous on another port (rendezvous port
B) passed to this system call in porid.

The specific operations of tk_fwd_por are as follows.

T-Kernel 2.0 Specification 186 / 534

1. The rendezvous specified in rdvno is released.

2. Task Y goes to WAITING state on rendezvous call for the rendezvous port specified in porid. The bit
conditions representing the call select conditions in this case are not those specified in calptn by Task
Y when it called tk_cal_por, but those specified by Task X when it called tk_fwd_por. The state of Task
Y goes from WAIT for rendezvous completion back to WAIT on rendezvous call.

3. Then if a rendezvous for the rendezvous port specified in porid is accepted, a rendezvous is established
between the accepting task and Task Y. Naturally, if there is a task already waiting to accept a rendezvous
on the rendezvous port specified in porid and the rendezvous conditions are met, executing tk_fwd_por
will immediately cause a rendezvous to be established. Here too, as with calptn, the message sent to
the accepting task when the rendezvous is established is that specified in tk_fwd_por by Task X, not that
specified in tk_cal_por by Task Y.

4. After the new rendezvous has completed, the reply message returned to the calling task by tk_rpl_rdv is
copied to the area specified in the msg parameter passed to tk_cal_por by Task Y, not to the area specified
in the msg parameter passed to tk_fwd_por by Task X.

Essentially the following situation:

Executing tk_fwd_por (porid=portB, calptn=ptnB, msg=mesB) after tk_cal_por (porid=portA, calptn=ptnA,
msg=mesA)

is the same as the following:

Executing tk_cal_por (porid=portB, calptn=ptnB, msg=mesB).

As the result, the kernel does not have to remember the history of rendezvous forwarding.

If tk_ref_tsk is executed for a task that has returned to WAITING on rendezvous call due to tk_fwd_por execu-
tion, the value returned in tskwait is TTW_CAL. Here wid is the ID of the rendezvous port to which the rendezvous
was forwarded.

tk_fwd_por execution completes immediately; in no case does this system call go to the WAITING state. A
task issuing tk_fwd_por loses any relationship to the rendezvous port on which the forwarded rendezvous was
established, the forwarding destination (the port specified in porid), and the tasks conducting rendezvous on
these ports.

Error code E_PAR is returned if cmsgsz is larger than maxcmsz of the rendezvous port after forwarding. This
error is checked before the rendezvous is forwarded. If this error occurs, the rendezvous is not forwarded and
the rendezvous specified in rdvno is not released.

The send message specified by tk_fwd_por is copied to another memory area (such as the message area
specified by tk_cal_por) when tk_fwd_por is executed. Accordingly, even if the contents of the message area
specified in the msg parameter passed to tk_fwd_por are changed before the forwarded rendezvous is estab-
lished, the forwarded rendezvous will not be affected.

When a rendezvous is forwarded by tk_fwd_por, maxrmsz of the rendezvous port after forwarding (specified
in porid) must be no larger than maxrmsz of the rendezvous port on which the rendezvous was established
before forwarding. If maxrmsz of the rendezvous port after forwarding is larger than maxrmsz of the rendezvous
port before forwarding, this means the destination rendezvous port was not suitable, and error code :E_OBJ
is returned. The task calling the rendezvous prepares a reply message receiving area based on the maxrmsz
of the rendezvous port before forwarding. If the maximum size for the reply message increases when the
rendezvous is forwarded, this may indicate that an unexpectedly large reply message is being returned to the
calling rendezvous port, which would cause problems. For this reason a rendezvous cannot be forwarded to
a rendezvous port having a larger maxrmsz.

Similarly, cmsgsz indicating the size of the message sent by tk_fwd_por must be no larger than maxrmsz of the
rendezvous port on which the rendezvous was established before forwarding. This is because it is assumed
that the message area specified with tk_cal_por will be used as a buffer in implementing tk_fwd_por. If cmsgsz
is larger than maxrmsz of the rendezvous port before forwarding, error code E_PAR is returned (See Additional
Notes for details).

T-Kernel 2.0 Specification 187 / 534

It is not necessary to issue tk_fwd_por and tk_rpl_rdv from a task-independent portion, but it is possible to
issue tk_fwd_por or tk_rpl_rdv from dispatch disabled or interrupts disabled state. This capability can be
used to perform processing that is inseparable from tk_fwd_por or tk_rpl_rdv. Whether or not error checking
is made for issuing of tk_fwd_por or tk_rpl_rdv from a task-independent portion is implementation-dependent.

When as a result of tk_fwd_por Task Y that was in WAITING state for rendezvous completion reverts to
WAITING on rendezvous call, the timeout until rendezvous establishment is always treated as Wait for-
ever(TMO_FEVR).

The rendezvous port being forwarded to may be the same port used for the previous rendezvous (the ren-
dezvous port on which the rendezvous specified in rdvno was established). In this case, tk_fwd_por cancels
the previously accepted rendezvous. Even in this case, however, the call message and calptn parameters are
changed to those passed to tk_fwd_por by the accepting task, not those passed to tk_cal_por by the calling
task.

It is possible to forward a rendezvous that has already been forwarded.

Additional Notes

A server task operation using tk_fwd_por is illustrated in Figure 4.9, “Server Task Operation Using
tk_fwd_por”.2

2

• Bold outlines indicate rendezvous ports (rendezvous entries).

• While it is possible to use tk_cal_por in place of tk_fwd_por, this results in rendezvous nesting. Assuming it is acceptable for requesting
Task X to resume execution after the processing of server tasks A to C is completed, use of tk_fwd_por does away with the need for
rendezvous nesting and results in more efficient operations.

T-Kernel 2.0 Specification 188 / 534

Figure 4.9: Server Task Operation Using tk_fwd_por

Generally tk_fwd_por is executed by server distribution tasks (tasks for distributing server-accepted process-
ing to other tasks) as shown in Figure 4.9, “Server Task Operation Using tk_fwd_por”. Accordingly, a server
distribution task that has executed tk_fwd_por must go on to accept the next request regardless of whether the
forwarded rendezvous is established or not. The tk_fwd_por message area in this case is used for processing
the next request, making it necessary to ensure that changes to the contents of this message area will not
affect the previously forwarded rendezvous. For this reason, after tk_fwd_por is executed, it must be possible
to modify the contents of the message area indicated in msg passed to tk_fwd_por even before the forwarded
rendezvous is established.

In order to fulfill this requirement, an implementation is allowed to use the message area specified with
tk_cal_por as a buffer. That is, in the tk_fwd_por processing, it is permissible to copy the call messages
specified with tk_fwd_por to the message area indicated in msg when tk_cal_por was called, and for the task
calling tk_fwd_por to change the contents of the message area. When a rendezvous is established, the message
placed in the tk_cal_por message area is passed to the accepting task, regardless of whether the rendezvous
is one that was forwarded from another port.

The following is specified to allow this sort of implementation.

• If there is a possibility that a rendezvous requested by tk_cal_por may be forwarded, a memory space of
at least maxrmsz bytes must be allocated starting from msg (passed to tk_cal_por),regardless of the expected
reply message size.

• The send message size cmsgsz passed to tk_fwd_por must be no larger than maxrmsz of the rendezvous port
before forwarding.

T-Kernel 2.0 Specification 189 / 534

• If a rendezvous is forwarded using tk_fwd_por, maxrmsz of the destination port rendezvous does not become
larger than maxrmsz of the port before forwarding. The former is equal to or smaller than the latter.

Rationale for the Specification

The tk_fwd_por specification is designed not to require logging a history of rendezvous forwarding, so as to
reduce the number of states that must be kept track of in the system as a whole. Applications that require
such a log to be kept can use nested pairs of tk_cal_por and tk_acp_por rather than using tk_fwd_por.

T-Kernel 2.0 Specification 190 / 534

4.5.3.8 tk_rpl_rdv - Reply Rendezvous

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rpl_rdv (RNO rdvno , CONST void *msg , INT rmsgsz);

Parameter

RNO rdvno Rendezvous Number Rendezvous number
CONST void* msg Reply Message Address of the reply message
INT rmsgsz Reply Message Size Reply message size (in bytes)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (rmsgsz < 0, rmsgsz > maxrmsz, or invalid msg)
E_OBJ Invalid object state (rdvno is invalid)
E_CTX Context error (issued from task-independent portion (implementation-dependent

error))

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Returns a reply to the calling task in the rendezvous, ending the rendezvous.

The task issuing this system call (here "Task X") must be engaged in a rendezvous; that is, this system call
can be issued only after executing tk_acp_por. In the discussion that follows, the rendezvous calling task is
"Task Y", and the rendezvous number passed in a return parameter by tk_acp_por is rdvno. When tk_rpl_rdv
is executed in this situation, the rendezvous state between Task X and Task Y is released, and the Task Y state
goes from WAITING for rendezvous completion back to READY state.

When a rendezvous is ended by tk_rpl_rdv, accepting Task X can send a reply message to calling Task Y.
The contents of the message specified by the accepting task are copied to the memory space specified in msg
passed by Task Y to tk_cal_por. The size of the reply message rmsgsz is set in a tk_cal_por return parameter.

Error code E_PAR is returned if rmsgsz is larger than maxrmsz specified with tk_cre_por. When this error
is detected, the rendezvous is not ended and the task that called tk_cal_por remains in WAITING state for
rendezvous completion.

It is not possible to issue tk_fwd_por and tk_rpl_rdv from a task-independent portion, but it is possible to issue
tk_fwd_por or tk_rpl_rdv from dispatch disabled or interrupts disabled state. This capability can be used to
perform processing that is inseparable from tk_fwd_por or tk_rpl_rdv. Whether or not error checking is made
for issuing of tk_fwd_por or tk_rpl_rdv from a task-independent portion is implementation-dependent.

T-Kernel 2.0 Specification 191 / 534

Additional Notes

If a task calling a rendezvous aborts for some reason before completion of the rendezvous (before tk_rpl_rdv
is executed), the accepting task has no direct way of knowing of the abort. In such a case, error code E_OBJ
is returned to the rendezvous accepting task when it executes tk_rpl_rdv.

After a rendezvous is established, tasks are in principle detached from the rendezvous port and have no need
to reference information about each other. However, since the value of maxrmsz, used when checking the
length of the reply message sent using tk_rpl_rdv, is dependent on the rendezvous port, the task in rendezvous
must record this information somewhere. One possible implementation would be to put this information in
the TCB of the calling task after it goes to WAITING state, or in another area that can be referenced from the
TCB, such as a stack area.

Rationale for the Specification

The parameter rdvno is passed to tk_rpl_rdv and tk_fwd_por as information for distinguishing a established
rendezvous from another, but the rendezvous port ID (porid) used when establishing a rendezvous is not
specified. This is based on the design principle that tasks are no longer related to rendezvous ports after a
rendezvous has been established.

Error code E_OBJ rather than E_PAR is returned for an invalid rdvno. This is because rdvno itself is an object
indicating the task that called the rendezvous.

T-Kernel 2.0 Specification 192 / 534

4.5.3.9 tk_ref_por - Reference Port Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_por (ID porid , T_RPOR *pk_rpor);

Parameter

ID porid Port ID Rendezvous port ID
T_RPOR* pk_rpor Packet to Return Port Status Pointer to the area to return the

rendezvous port status

Return Parameter

ER ercd Error Code Error code

pk_rpor Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Call waiting task ID
ID atsk Accept Waiting Task ID Accept waiting task ID
INT maxcmsz Maximum Call Message Size Maximum call message size (in bytes)
INT maxrmsz Maximum Reply Message Size Maximum reply message size (in bytes)
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (porid is invalid or cannot be used)
E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)
E_PAR Parameter error (invalid pk_rpor)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

References the status of the rendezvous port specified in porid, passing in return parameters the accept
waiting task ID (atsk), the call waiting task ID (wtsk), the maximum message sizes (maxcmsz, maxrmsz), and the
extended information (exinf).

wtsk indicates the ID of a task in WAITING state on rendezvous call at the rendezvous port. If there is no
task waiting on rendezvous call, wtsk = 0 is returned. atsk indicates the ID of a task in WAITING state on
rendezvous acceptance at the rendezvous port. If there is no task waiting for rendezvous acceptance, atsk =
0 is returned.

If there are multiple tasks waiting on rendezvous call or acceptance at this rendezvous port, the ID of the task
at the head of the call queue and accept queue is returned.

T-Kernel 2.0 Specification 193 / 534

If the specified rendezvous port does not exist, error code E_NOEXS is returned.

Additional Notes

This system call cannot be used to get information about tasks involved in a currently established rendezvous.

T-Kernel 2.0 Specification 194 / 534

4.6 Memory Pool Management Functions

Memory pool management functions are for managing memory pools and allocating memory blocks by using
software.

There are fixed-size memory pools and variable-size memory pools, which are considered separate objects and
require separate sets of system calls for their operation. Memory blocks allocated from a fixed-size memory
pool are all of one fixed size, whereas memory blocks from a variable-size memory pool can be of various
sizes.

The memory managed by the memory pool management functions is all in system space. There is no T-Kernel
function for managing task space memory.

T-Kernel 2.0 Specification 195 / 534

4.6.1 Fixed-size Memory Pool

A fixed-size memory pool is an object used for dynamic management of fixed-size memory blocks. Functions
are provided for creating and deleting a fixed-size memory pool, getting and returning memory blocks in a
fixed-size memory pool, and referencing the status of a fixed-size memory pool. A fixed-size memory pool is
an object identified by an ID number. The ID number for the fixed-size memory pool is called a fixed-size
memory pool ID.

A fixed-size memory pool has a memory space used as the fixed-size memory pool (called a fixed-size memory
pool area or simply memory pool area), and a queue for tasks waiting for memory block allocation. A task
wanting to allocate a memory block from a fixed-size memory pool that lacks sufficient available memory
space goes to WAITING state for fixed-size memory block until memory blocks are returned to the pool. A
task in this state is put in the task queue of the fixed-size memory pool.

Additional Notes
When memory blocks of various sizes are needed from fixed-size memory pools, it is necessary to provide
multiple memory pools of different sizes.

T-Kernel 2.0 Specification 196 / 534

4.6.1.1 tk_cre_mpf - Create Fixed-size Memory Pool

C Language Interface

#include <tk/tkernel.h>

ID mpfid = tk_cre_mpf (CONST T_CMPF *pk_cmpf);

Parameter

CONST T_CMPF* pk_cmpf Packet to Create Memory
Pool

Information about the fixed-size
memory pool to be created

pk_cmpf Detail:

void* exinf Extended Information Extended information
ATR mpfatr Memory Pool Attribute Memory pool attribute
INT mpfcnt Memory Pool Block Count Memory pool block count
INT blfsz Memory Block Size Fixed-size memory block size (in

bytes)
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID mpfid Memory Pool ID Fixed-size memory pool ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block or memory pool area cannot be
allocated)

E_LIMIT Number of fixed-size memory pools exceeds the system limit
E_RSATR Reserved attribute (mpfatr is invalid or cannot be used)
E_PAR Parameter error (pk_cmpf is invalid, or mpfcnt or blfsz is negative or invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Creates a fixed-size memory pool, assigning to it a fixed-size memory pool ID. This system call allocates a
memory space for use as a memory pool based on the information specified in parameters mpfcnt and blfsz,
and assigns a control block to the memory pool. A memory block of size blfsz can be allocated from the
created memory pool by calling the tk_get_mpf system call.

exinf can be used freely by the user to set miscellaneous information about the created memory pool. The
information set in this parameter can be referenced by tk_ref_mpf. If a larger area is needed for indicating
user information, or if the information may need to be changed after the message buffer is created, this can

T-Kernel 2.0 Specification 197 / 534

be done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

mpfatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of mpfatr is as follows.

mbxatr:= (TA_TFIFO || TA_TPRI) | [TA_DSNAME] | [TA_NODISWAI]
| (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3)

TA_TFIFO Tasks waiting for memory allocation are queued in FIFO order
TA_TPRI Tasks waiting for memory allocation are queued in priority order
TA_RNGn Memory access privilege is set to protection level n
TA_DSNAME Specifies DS object name
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

#define TA_TFIFO 0x00000000 /* manage queue by FIFO */
#define TA_TPRI 0x00000001 /* manage queue by priority */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */
#define TA_RNG0 0x00000000 /* Protection level 0 */
#define TA_RNG1 0x00000100 /* Protection level 1 */
#define TA_RNG2 0x00000200 /* Protection level 2 */
#define TA_RNG3 0x00000300 /* Protection level 3 */

The queuing order of tasks waiting for memory block allocation from a memory pool can be specified in
TA_TFIFO or TA_TPRI. If the attribute is TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing
of tasks in order of their priority setting.

TA_RNGn is specified to limit the protection levels from which memory can be accessed. Only tasks running at
the same or higher protection level than the one specified can access the allocated memory. If a task running at
a lower protection level attempts an access, a CPU protection fault exception is raised. For example, memory
allocated from a memory pool specified as TA_RNG1 can be accessed by tasks running at levels TA_RNG0 or
TA_RNG1, but not by tasks running at levels TA_RNG2 or TA_RNG3.

The created memory pool is in resident memory in system space. There is no T-Kernel function for creating
a memory pool in task space.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

Additional Notes

In the case of a fixed-size memory pool, separate memory pools must be provided for different block sizes.
That is, if various memory block sizes are required, memory pools must be created for each block size.

For the sake of portability, the TA_RNGn attribute must be accepted even by a system without an MMU. It is
possible, for example, to handle all TA_RNGn as equivalent to TA_RNG0, but error must not be returned.

T-Kernel 2.0 Specification 198 / 534

4.6.1.2 tk_del_mpf - Delete Fixed-size Memory Pool

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_mpf (ID mpfid);

Parameter

ID mpfid Memory Pool ID Fixed-size memory pool ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mpfid is invalid or cannot be used)
E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Deletes the fixed-size memory pool specified in mpfid.

No check or notification is made as to whether there are tasks using memory allocated from this memory pool.
The system call completes normally even if not all blocks have been returned to the pool.

Issuing this system call releases the memory pool ID number, the control block memory space and the memory
pool space itself.

This system call completes normally even if there are tasks waiting for memory block allocation from the
deleted memory pool, but error code E_DLT is returned to the tasks in WAITING state.

T-Kernel 2.0 Specification 199 / 534

4.6.1.3 tk_get_mpf - Get Fixed-size Memory Block

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_mpf (ID mpfid , void **p_blf , TMO tmout);

Parameter

ID mpfid Memory Pool ID Fixed-size memory pool ID
void** p_blf Pointer to Block Start Address Pointer to the area to return the block

start address blf
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code
void* blf Block Start Address Memory block start address

Error Code

E_OK Normal completion
E_ID Invalid ID number (mpfid is invalid or cannot be used)
E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
E_PAR Parameter error (tmout ≦ (-2))
E_DLT The object being waited for was deleted (the memory pool was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets a memory block from the fixed-size memory pool specified in mpfid. The start address of the allocated
memory block is returned in blf. The size of the allocated memory block is the value specified in the blfsz
parameter when the fixed-size memory pool was created.

The allocated memory is not cleared to zero, and the memory block contents are indeterminate.

If a block cannot be allocated from the specified memory pool, the task that issued tk_get_mpf is put in the
queue of tasks waiting for memory allocation from that memory pool, and waits until memory can be allocated.

A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition
is met (memory space does not become available), the system call terminates, returning timeout error code
E_TMOUT.

Only positive values can be set in tmout. The time unit for tmout (time unit) is the same as that for system time
(= 1 ms).

T-Kernel 2.0 Specification 200 / 534

When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITInG state even if memory cannot be allocated.

When TMO_FEVR (= -1) is set in tmout, this means infinity was specified as the timeout value, and the task
continues to wait for memory allocation without timing out.

The queuing order of tasks waiting for memory block allocation is either FIFO or task priority order, depending
on the memory pool attribute.

T-Kernel 2.0 Specification 201 / 534

4.6.1.4 tk_get_mpf_u - Get Fixed-size Memory Block (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_mpf_u (ID mpfid , void **p_blf , TMO_U tmout_u);

Parameter

ID mpfid Memory Pool ID Fixed-size memory pool ID
void** p_blf Pointer to Block Start Address Pointer to the area to return the block

start address blf
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code
void* blf Block Start Address Memory block start address

Error Code

E_OK Normal completion
E_ID Invalid ID number (mpfid is invalid or cannot be used)
E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
E_PAR Parameter error (tmout_u ≦ (-2))
E_DLT The object being waited for was deleted (the memory pool was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_get_mpf.

The specification of this system call is same as that of tk_get_mpf, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_get_mpf.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 202 / 534

4.6.1.5 tk_rel_mpf - Release Fixed-size Memory Block

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rel_mpf (ID mpfid , void *blf);

Parameter

ID mpfid Memory Pool ID Fixed-size memory pool ID
void* blf Block Start Address Memory block start address

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mpfid is invalid or cannot be used)
E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
E_PAR Parameter error (blf is invalid, or block returned to wrong memory pool)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Returns the memory block specified in blf to the fixed-size memory pool specified in mpfid.

Executing tk_rel_mpf may enable memory block acquisition by another task waiting to allocate memory from
the memory pool specified in mpfid, releasing the WAITING state of that task.

When a memory block is returned to a fixed-size memory pool, it must be the same fixed-size memory pool from
which the block was allocated. If an attempt to return a memory block to a different memory pool is detected,
error code E_PAR is returned. Whether this error detection is performed or not is implementation-dependent.

T-Kernel 2.0 Specification 203 / 534

4.6.1.6 tk_ref_mpf - Reference Fixed-size Memory Pool Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_mpf (ID mpfid , T_RMPF *pk_rmpf);

Parameter

ID mpfid Memory Pool ID Fixed-size memory pool ID
T_RMPF* pk_rmpf Packet to Return Memory Pool

Status
Pointer to the area to return the
memory pool status

Return Parameter

ER ercd Error Code Error code

pk_rmpf Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
INT frbcnt Free Block Count Free block count
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (mpfid is invalid or cannot be used)
E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)
E_PAR Parameter error (invalid pk_rmpf)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

References the status of the fixed-size memory pool specified in mpfid, passing in return parameters the current
free block count (frbcnt), waiting task ID (wtsk), and extended information (exinf).

wtsk indicates the ID of a task waiting for memory block allocation from this fixed-size memory pool. If multiple
tasks are waiting for the fixed-size memory pool, the ID of the task at the head of the queue is returned. If
there are no waiting tasks, wtsk = 0 is returned.

If the fixed-size memory pool specified with tk_ref_mpf does not exist, error code E_NOEXS is returned.

At least one of frbcnt = 0 and wtsk = 0 is always true for this system call.

T-Kernel 2.0 Specification 204 / 534

Additional Notes

Whereas frsz returned by tk_ref_mpl gives the total free memory size in bytes, frbcnt returned by tk_ref_mpf
gives the number of unused memory blocks.

T-Kernel 2.0 Specification 205 / 534

4.6.2 Variable-size Memory Pool

A variable-size memory pool is an object for dynamically managing memory blocks of any size. Functions are
provided for creating and deleting a variable-size memory pool, allocating and returning memory blocks in a
variable-size memory pool, and referencing the status of a variable-size memory pool. A variable-size memory
pool is an object identified by an ID number. The ID number for the variable-size memory pool is called a
variable-size memory pool ID.

A variable-size memory pool has a memory space used as the variable-size memory pool (called a variable-size
memory pool area or simply memory pool area), and a queue for tasks waiting for memory block allocation.
A task wanting to allocate a memory block from a variable-size memory pool that lacks sufficient available
memory space goes to WAITING state for variable-size memory block until memory blocks are returned to
the pool. A task in this state is put in the task queue of the variable-size memory pool.

Additional Notes
When tasks are waiting for memory block allocation from a variable-size memory pool, they are served in
queued order. If, for example, Task A requesting a 400-byte memory block from a variable-size memory pool
is queued along with Task B requesting a 100-byte block, in A-B order, then even if 200-byte block of space
are free, Task B is made to wait until Task A has acquired the requested memory block.

T-Kernel 2.0 Specification 206 / 534

4.6.2.1 tk_cre_mpl - Create Variable-size Memory Pool

C Language Interface

#include <tk/tkernel.h>

ID mplid = tk_cre_mpl (CONST T_CMPL *pk_cmpl);

Parameter

CONST T_CMPL* pk_cmpl Packet to Create Memory
Pool

Information about the
variable-size memory pool to be
created

pk_cmpl Detail:

void* exinf Extended Information Extended information
ATR mplatr Memory Pool Attribute Memory pool attribute
INT mplsz Memory Pool Size Memory pool size (in bytes)
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID mplid Memory Pool ID Variable-size memory pool ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block or memory pool area cannot be
allocated)

E_LIMIT Number of variable-size memory pools exceeds the system limit
E_RSATR Reserved attribute (mplatr is invalid or cannot be used)
E_PAR Parameter error (pk_cmpl is invalid, or mplsz is negative or invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Creates a variable-size memory pool, assigning to it a variable-size memory pool ID. This system call allocates
a memory space for use as a memory pool, based on the information in parameter mplsz, and assigns a control
block to the memory pool.

exinf can be used freely by the user to set miscellaneous information about the created memory pool. The
information set in this parameter can be referenced by tk_ref_mpl. If a larger area is needed for indicating
user information, or if the information may need to be changed after the message buffer is created, this can
be done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

T-Kernel 2.0 Specification 207 / 534

mplatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of mplatr is as follows.

mplatr:= (TA_TFIFO || TA_TPRI) | [TA_DSNAME] | [TA_NODISWAI]
| (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3)

TA_TFIFO Tasks waiting for memory allocation are queued in FIFO order
TA_TPRI Tasks waiting for memory allocation are queued in priority order
TA_RNGn Memory access privilege is set to protection level n
TA_DSNAME Specifies DS object name
TA_NODISWAI Disabling of wait by tk_dis_wai is prohibited

#define TA_TFIFO 0x00000000 /* manage task queue by FIFO */
#define TA_TPRI 0x00000001 /* manage task queue by priority */
#define TA_DSNAME 0x00000040 /* DS object name */
#define TA_NODISWAI 0x00000080 /* reject request to disable wait */
#define TA_RNG0 0x00000000 /* protection level 0 */
#define TA_RNG1 0x00000100 /* protection level 1 */
#define TA_RNG2 0x00000200 /* protection level 2 */
#define TA_RNG3 0x00000300 /* protection level 3 */

The queuing order of tasks waiting for memory block allocation from a memory pool can be specified in
TA_TFIFO or TA_TPRI. If the attribute is TA_TFIFO, tasks are ordered by FIFO, whereas TA_TPRI specifies queuing
of tasks in order of their priority setting.

When tasks are queued waiting for memory allocation, memory is allocated in the order of queuing. Even if
other tasks in the queue are requesting smaller amounts of memory than the task at the head of the queue,
they do not acquire memory blocks before the first task. If, for example, Task A requesting a 400-byte memory
block from a variable-size memory pool is queued along with Task B requesting a 100-byte block, in A-B order,
then even if 200-byte block of space are freed by tk_rel_mpl of another task, Task B is made to wait until Task
A has acquired the requested memory block.

TA_RNGn is specified to limit the protection levels from which memory can be accessed. Only tasks running at
the same or higher protection level than the one specified can access the allocated memory. If a task running at
a lower protection level attempts an access, a CPU protection fault exception is raised. For example, memory
allocated from a memory pool specified as TA_RNG1 can be accessed by tasks running at levels TA_RNG0 or
TA_RNG1, but not by tasks running at levels TA_RNG2 or TA_RNG3.

The created memory pool is in resident memory in system space. There is no T-Kernel function for creating
a memory pool in task space.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

Additional Notes

If the task at the head of the queue waiting for memory allocation has its WAITING state forcibly released, or
if a different task becomes the first in the queue as a result of a change in task priority, memory allocation is
attempted to that task. If memory can be allocated, the WAITInG state of that task is released. In this way
it is possible under some circumstances for memory allocation to take place and task WAITING state to be
released even when memory is not released by tk_rel_mpl.

For the sake of portability, the TA_RNGn attribute must be accepted even by a system without an MMU. It is
possible, for example, to handle all TA_RNGn as equivalent to TA_RNG0, but error must not be returned.

T-Kernel 2.0 Specification 208 / 534

Rationale for the Specification

The capability of creating multiple variable-size memory pools can be used for memory allocation as needed
for error handling or in emergent situations in programming, etc.

T-Kernel 2.0 Specification 209 / 534

4.6.2.2 tk_del_mpl - Delete Variable-size Memory Pool

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_mpl (ID mplid);

Parameter

ID mplid Memory Pool ID Variable-size memory pool ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mplid is invalid or cannot be used)
E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not

exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Deletes the variable-size memory pool specified in mplid.

No check or notification is made as to whether there are tasks using memory allocated from this memory pool.
The system call completes normally even if not all blocks have been returned to the pool.

Issuing this system call releases the memory pool ID number, the control block memory space and the memory
pool space itself.

This system call completes normally even if there are tasks waiting for memory block allocation from the
deleted memory pool, but error code E_DLT is returned to the tasks in WAITING state.

T-Kernel 2.0 Specification 210 / 534

4.6.2.3 tk_get_mpl - Get Variable-size Memory Block

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_mpl (ID mplid , INT blksz , void **p_blk , TMO tmout);

Parameter

ID mplid Memory Pool ID Variable-size memory pool ID
INT blksz Memory Block Size Memory block size (in bytes)
void** p_blk Pointer to Block Start Address Pointer to the area to return the block

start address blk
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code
void* blk Block Start Address Memory block start address

Error Code

E_OK Normal completion
E_ID Invalid ID number (mplid is invalid or cannot be used)
E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not

exist)
E_PAR Parameter error (tmout ≦ (-2))
E_DLT The object being waited for was deleted (the memory pool was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets a memory block of size blksz (bytes) from the variable-size memory pool specified in mplid. The start
address of the allocated memory block is returned in blk.

The allocated memory is not cleared to zero, and the memory block contents are indeterminate.

If memory cannot be allocated, the task issuing this system call enters WAITING state.

A maximum wait time (timeout) can be set in tmout. If the tmout time elapses before the wait release condition
is met (memory space does not become available), the system call terminates, returning timeout error code
E_TMOUT.

Only positive values can be set in tmout. The time unit for tmout (time unit) is the same as that for system time
(= 1 ms).

T-Kernel 2.0 Specification 211 / 534

When TMO_POL = 0 is set in tmout, this means 0 was specified as the timeout value, and E_TMOUT is returned
without entering WAITING state even if memory cannot be allocated.

When TMO_FEVR (= -1) is set in tmout, this means infinity was specified as the timeout value, and the task
continues to wait for memory allocation without timing out.

The queuing order of tasks waiting for memory block allocation is either FIFO or task priority order, depending
on the memory pool attribute.

T-Kernel 2.0 Specification 212 / 534

4.6.2.4 tk_get_mpl_u - Get Variable-size Memory Block (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_mpl_u (ID mplid , INT blksz , void **p_blk , TMO_U tmout_u);

Parameter

ID mplid Memory Pool ID Variable-size memory pool ID
INT blksz Memory Block Size Memory block size (in bytes)
void** p_blk Pointer to Block Start Address Pointer to the area to return the block

start address blk
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code
void* blk Block Start Address Memory block start address

Error Code

E_OK Normal completion
E_ID Invalid ID number (mplid is invalid or cannot be used)
E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not

exist)
E_PAR Parameter error (tmout_u ≦ (-2))
E_DLT The object being waited for was deleted (the memory pool was deleted while

waiting)
E_RLWAI Waiting state released (tk_rel_wai received in waiting state)
E_DISWAI Wait released due to disabling of wait
E_TMOUT Polling failed or timeout
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit tmout_u in microseconds instead of the parameter tmout of tk_get_mpl.

The specification of this system call is same as that of tk_get_mpl, except that the parameter is replaced with
tmout_u. For more details, see the description of tk_get_mpl.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 213 / 534

4.6.2.5 tk_rel_mpl - Release Variable-size Memory Block

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rel_mpl (ID mplid , void *blk);

Parameter

ID mplid Memory Pool ID Variable-size memory pool ID
void* blk Block Start Address Memory block start address

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (mplid is invalid or cannot be used)
E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not

exist)
E_PAR Parameter error (blk is invalid, or block returned to wrong memory pool)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Returns the memory block specified in blk to the variable-size memory pool specified in mplid.

Executing tk_rel_mpl may enable memory block acquisition by another task waiting to allocate memory from
the memory pool specified in mplid, releasing the WAITING state of that task.

When a memory block is returned to a variable-size memory pool, it must be the same variable-size memory
pool from which the block was allocated. If an attempt to return a memory block to a different memory pool is
detected, error code E_PAR is returned. Whether this error detection is performed or not is implementation-
dependent.

Additional Notes

When memory is returned to a variable-size memory pool in which multiple tasks are queued, multiple tasks
may be released at the same time depending on the amount of memory returned and their requested memory
size. The task precedence among tasks of the same priority after their WAITING state is released in such a
case is the order in which they were queued.

T-Kernel 2.0 Specification 214 / 534

4.6.2.6 tk_ref_mpl - Reference Variable-size Memory Pool Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_mpl (ID mplid , T_RMPL *pk_rmpl);

Parameter

ID mplid Memory Pool ID Variable-size memory pool ID
T_RMPL* pk_rmpl Packet to Return Memory Pool

Status
Pointer to the area to return the
memory pool status

Return Parameter

ER ercd Error Code Error code

pk_rmpl Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
INT frsz Free Memory Size Free memory size (in bytes)
INT maxsz Max Memory Size Maximum memory space size (in bytes)
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (mplid is invalid or cannot be used)
E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not

exist)
E_PAR Parameter error (invalid pk_rmpl)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

References the status of the variable-size memory pool specified in mplid, passing in return parameters the
total size of free space (frsz), the maximum size of memory immediately available (maxsz), the waiting task ID
(wtsk), and extended information (exinf).

wtsk indicates the ID of a task waiting for memory block allocation from this variable-size memory pool. If
multiple tasks are waiting for the variable-size memory pool, the ID of the task at the head of the queue is
returned. If there are no waiting tasks, wtsk = 0 is returned.

If the variable-size memory pool specified with tk_ref_mpl does not exist, error code E_NOEXS is returned.

T-Kernel 2.0 Specification 215 / 534

4.7 Time Management Functions

Time management functions perform time-dependent processing. They include functions for system time
management, cyclic handlers, and alarm handlers.

The generic name used in the following for cyclic handlers and alarm handlers is time event handlers.

T-Kernel 2.0 Specification 216 / 534

4.7.1 System Time Management

System time management functions manipulate system time. Functions are provided for system clock setting
and reference, and for referencing system operating time.

T-Kernel 2.0 Specification 217 / 534

4.7.1.1 tk_set_tim - Set Time

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_tim (CONST SYSTIM *pk_tim);

Parameter

CONST SYSTIM* pk_tim Packet of Current Time Packet indicating current
time (ms)

pk_tim Detail:

W hi High 32 bits Higher 32 bits of current time
for setting the system time

UW lo Low 32 bits Lower 32 bits of current time
for setting the system time

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_PAR Parameter error (pk_tim is invalid, or time setting is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Sets the system clock to the value specified in pk_tim.

System time is expressed as cumulative milliseconds from 0:00:00 (GMT), January 1, 1985.

Additional Notes

The relative time specified in RELTIM or TMO does not change even if the system clock is changed by calling
tk_set_tim during system operation. For example, if a timeout is set to elapse in 60 seconds and the system
clock is advanced by 60 seconds by tk_set_tim while waiting for the timeout, the timeout occurs not imme-
diately but 60 seconds after it was set. Instead, tk_set_tim changes the system time at which the timeout
occurs.

The time specified in pk_tim for tk_set_tim() is not restricted to the resolution of the timer interrupt cycle.
But the time that is read later by tk_get_tim() changes according to the time resolution of the timer interrupt
cycle. For example, in the system where the timer interrupt cycle is 10 milliseconds, if the time of 0005 (ms)

T-Kernel 2.0 Specification 218 / 534

is specified in tk_set_tim(), then the time obtained later by tk_get_tim() changes as follows: 0005 (ms) → 0015
(ms) → 0025 (ms).

T-Kernel 2.0 Specification 219 / 534

4.7.1.2 tk_set_tim_u - Set Time (in microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_tim_u (SYSTIM_U tim_u);

Parameter

SYSTIM_U tim_u Current Time Current time (in microseconds)

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_PAR Parameter error (tim_u is invalid, or time setting is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit tim_u in microseconds instead of the parameter pk_tim of tk_set_tim.

Whereas the parameter pk_tim of tk_set_tim is passed in packet using the structure SYSTIM, the parameter
tim_u of tk_set_tim_u is passed by value (not packet) using the 64-bit signed integer SYSTIM_U.

The specification of this system call is same as that of tk_set_tim, except the above-mentioned point. For more
details, see the description of tk_set_tim.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 220 / 534

4.7.1.3 tk_get_tim - Get System Time

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_tim (SYSTIM *pk_tim);

Parameter

SYSTIM* pk_tim Packet of Current Time Pointer to the area to return the current
time (ms)

Return Parameter

ER ercd Error Code Error code

pk_tim Detail:

W hi High 32 bits Higher 32 bits of current time of the
system time

UW lo Low 32 bits Lower 32 bits of current time of the
system time

Error Codes

E_OK Normal completion
E_PAR Parameter error (pk_tim is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Reads the current value of the system clock and returns in it pk_tim.

System time is expressed as cumulative milliseconds from 0:00:00 (GMT), January 1, 1985.

The resolution of the current system time read by this system call varies depending on the time resolution of
the timer interrupt interval (cycle).

Additional Notes

tk_get_tim() cannot be used to get the elapsed time that is shorter than the timer interrupt interval (cycle).
To find out the elapsed time shorter than the timer interrupt interval (cycle), use the return parameter ofs of
tk_get_tim_u() or td_get_tim().

T-Kernel 2.0 Specification 221 / 534

4.7.1.4 tk_get_tim_u - Get System Time (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_tim_u (SYSTIM_U *tim_u , UINT *ofs);

Parameter

SYSTIM_U* tim_u Time Pointer to the area to return the
current time (microseconds)

UINT* ofs Offset Pointer to the area to return the
return parameter ofs

Return Parameter

ER ercd Error Code Error code
SYSTIM_U tim_u Time Current time (in microseconds)
UINT ofs Offset Relative elapsed time from tim_u

(nanoseconds)

Error Codes

E_OK Normal completion
E_PAR Parameter error (invalid tim_u or ofs)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit tim_u in microseconds instead of the return parameter pk_tim of tk_get_tim. It
also includes the return parameter ofs that returns the relative time in nanoseconds.

tim_u has the resolution of time interrupt interval (cycle), but even more precise time information is obtained
in ofs as the elapsed time from tim_u in nanoseconds. The resolution of ofs is implementation-dependent,
but generally is the resolution of hardware timer.

If ofs = NULL is set, the information of ofs is not stored.

The specification of this system call is same as that of tk_get_tim, except the above-mentioned point. In
addition, the specification of this system call is the same as that of td_get_tim, except that the data type of
tim_u is SYSTIM_U. For more details, see the description of tk_get_tim and td_get_tim.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 222 / 534

4.7.1.5 tk_get_otm - Get Operating Time

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_otm (SYSTIM *pk_tim);

Parameter

SYSTIM* pk_tim Packet of Operating Time Pointer to the area to return the
operating time (ms)

Return Parameter

ER ercd Error Code Error code

pk_tim Detail:

W hi High 32 bits Higher 32 bits of the system operating
time

UW lo Low 32 bits Lower 32 bits of the system operating
time

Error Codes

E_OK Normal completion
E_PAR Parameter error (pk_tim is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets the system operating time (up time).

System operating time, unlike system time, indicates the length of time elapsed linearly since the system was
started. It is not affected by clock settings made by tk_set_tim.

System operating time must have the same precision as system time.

T-Kernel 2.0 Specification 223 / 534

4.7.1.6 tk_get_otm_u - Get Operating Time (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_otm_u (SYSTIM_U *tim_u , UINT *ofs);

Parameter

SYSTIM_U* tim_u Time Pointer to the area to return the
operating time (microseconds)

UINT* ofs Offset Pointer to the area to return the
return parameter ofs

Return Parameter

ER ercd Error Code Error Codes
SYSTIM_U tim_u Time Operating time (microseconds)
UINT ofs Offset Relative elapsed time from tim_u

(nanoseconds)

Error Codes

E_OK Normal completion
E_PAR Parameter error (invalid tim_u or ofs)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit tim_u in microseconds instead of the return parameter pk_tim of tk_get_otm. It
also includes the return parameter ofs that returns the relative time in nanoseconds.

tim_u has the resolution of time interrupt interval (cycle), but even more precise time information is obtained
in ofs as the elapsed time from tim_u in nanoseconds. The resolution of ofs is implementation-dependent,
but generally is the resolution of hardware timer.

If ofs = NULL is set, the information of ofs is not stored.

The specification of this system call is same as that of tk_get_otm, except the above-mentioned point. In
addition, the specification of this system call is the same as that of td_get_otm, except that the data type of
tim_u is SYSTIM_U. For more details, see the description of tk_get_otm and td_get_otm.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 224 / 534

4.7.2 Cyclic Handler

A cyclic handler is a time event handler started at regular intervals. Cyclic handler functions are provided for
creating and deleting a cyclic handler, activating and deactivating a cyclic handler operation, and referencing
cyclic handler status. A cyclic handler is an object identified by an ID number. The ID number for the cyclic
handler is called a cyclic handler ID.

The time interval at which a cyclic handler is started (cycle time) and the cycle phase are specified for each
cyclic handler when it is created. When a cyclic handler operation is requested, T-Kernel determines the
time at which the cyclic handler should next be started based on the cycle time and cycle phase set for it.
When a cyclic handler is created, the time when it is to be started next is the time of its creation plus the cycle
phase. When the time comes to start a cyclic handler, exinf, containing extended information about the cyclic
handler, is passed to it as a starting parameter. The time when the cyclic handler is started plus its cycle time
becomes the next start time. Sometimes when a cyclic handler is activated, the next start time will be newly
set.

In principle the cycle phase of a cyclic handler is no longer than its cycle time. The behavior is implementation-
dependent when the cycle phase is made longer than the cycle time.

A cyclic handler has two activation states, active and inactive. While a cyclic handler is inactive, it is not
started even when its start time arrives, although calculation of the next start time does take place. When a
system call for activating a cyclic handler is called (tk_sta_cyc), the cyclic handler goes to active state, and
the next start time is decided if necessary. When a system call for deactivating a cyclic handler is called
(tk_stp_cyc), the cyclic handler goes to inactive state. Whether a cyclic handler upon creation is active or
inactive is decided by a cyclic handler attribute.

The cycle phase of a cyclic handler is a relative time specifying the first time the cyclic handler is to be
started, in relation to the time when the system call creating it was invoked. The cycle time of a cyclic handler
is likewise a relative time, specifying the next time the cyclic handler is to be started in relation to the time it
should have started (not the time it started). For this reason, the intervals between times the cyclic handler
is started will individually be shorter than the cycle time in some cases, but their average over a longer time
span will match the cycle time.

Additional Notes
Actual time resolution in T-Kernel time management functions processing uses one that is specified by the
"timer interrupt interval" (TTimPeriod) in Section 5.7.2, “Standard System Configuration Information”. It also
means that a cyclic handler or an alarm handler is actually started at the time according to the time resolution
provided by the timer interrupt interval (TTimPeriod). For this reason, the cyclic handler is actually started at
the time of timer interrupt occurrence immediately after the time when the cyclic handler should be started.
A general T-Kernel implementation checks if a cyclic handler or an alarm handler that is to be started within
the processing of timer interrupt exists, and then starts them as necessary.

T-Kernel 2.0 Specification 225 / 534

4.7.2.1 tk_cre_cyc - Create Cyclic Handler

C Language Interface

#include <tk/tkernel.h>

ID cycid = tk_cre_cyc (CONST T_CCYC *pk_ccyc);

Parameter

CONST T_CCYC* pk_ccyc Packet to Create Cyclic
Handler

Cyclic handler definition
information

pk_ccyc Detail:

void* exinf Extended Information Extended information
ATR cycatr Cyclic Handler Attribute Cyclic handler attribute
FP cychdr Cyclic Handler Address Cyclic handler address
RELTIM cyctim Cycle Time Interval of cyclic start (ms)
RELTIM cycphs Cycle Phase Cycle phase (ms)
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID cycid Cyclic Handler ID Cyclic handler ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of cyclic handlers exceeds the system limit
E_RSATR Reserved attribute (cycatr is invalid or cannot be used)
E_PAR Parameter error (pk_ccyc, cychdr, cyctim, or cycphs is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Creates a cyclic handler, assigning to it a cyclic handler ID. This is performed by assigning a control block for
the generated cyclic handler.

A cyclic handler is a handler running at specified intervals as a task-independent portion.

exinf can be used freely by the user to set miscellaneous information about the created cyclic handler. The
information set in this parameter can be referenced by tk_ref_cyc. If a larger area is needed for indicating
user information, or if the information may need to be changed after the message buffer is created, this can
be done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

T-Kernel 2.0 Specification 226 / 534

cycatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of cycatr is as follows.

cycatr := (TA_ASM || TA_HLNG) | [TA_STA] | [TA_PHS] | [TA_DSNAME]

TA_ASM The handler is written in assembly language
TA_HLNG The handler is written in high-level language
TA_STA Activate immediately upon cyclic handler creation
TA_PHS Save the cycle phase
TA_DSNAME Specifies DS object name

#define TA_ASM 0x00000000 /* assembly language program */
#define TA_HLNG 0x00000001 /* high -level language program */
#define TA_STA 0x00000002 /* activate cyclic handler */
#define TA_PHS 0x00000004 /* save cyclic handler cycle phase */
#define TA_DSNAME 0x00000040 /* DS object name */

cychdr specifies the cyclic handler start address, cyctim the cycle time, and cycphs the cycle phase.

When the TA_HLNG attribute is specified, the cyclic handler is started via a high-level language support routine.
The high-level language support routine takes care of saving and restoring register values. The cyclic handler
terminates by a simple return from a function. The cyclic handler takes the following format when the TA_HLNG
attribute is specified.

void cychdr(void *exinf)
{

/*
(processing)

*/

return; /* Exit cyclic handler */
}

The cyclic handler format when the TA_ASM attribute is specified is implementation-dependent, but exinfmust
be passed in a starting parameter.

cycphs indicates the length of time until the cyclic handler is initially started after being created by tk_cre_cyc.
Thereafter it is started periodically at the interval set in cyctim. If zero is specified in cycphs, the cyclic handler
starts immediately after it is created. Zero cannot be specified in cyctim.

The starting of the cyclic handler for the nth time occurs after at least cycphs + cyctim * (n - 1) time has elapsed
from the cyclic handler creation.

When TA_STA is specified, the cyclic handler goes to active state immediately on creation, and starts at the
intervals noted above. If TA_STA is not specified, the cycle time is calculated but the cyclic handler is not
actually started.

When TA_PHS is specified, then even if tk_sta_cyc is called activating the cyclic handler, the cycle time is not
reset, and the cycle time calculated as above from the time of cyclic handler creation continues to apply.
If TA_PHS is not specified, calling tk_sta_cyc resets the cycle time and the cyclic handler is started at cyctim
intervals measured from the time tk_sta_cyc was called. Note that the resetting of cycle time by tk_sta_cyc
does not affect cycphs. In this case the starting of the cyclic handler for the nth time occurs after at least cyctim
* n has elapsed from the calling of tk_sta_cyc.

Even if a system call is invoked from a cyclic handler and this causes the task in RUNNING state up to that
time to go to another state, with a different task going to RUNNING state, dispatching (task switching) does not
occur while the cyclic handler is running. Completion of execution by the cyclic handler has precedence even
if dispatching is necessary; only when the cyclic handler terminates does the dispatch take place. In other
words, a dispatch request that is generated while a cyclic handler is running is not processed immediately,
but is delayed until the cyclic handler terminates. This is called delayed dispatching.

T-Kernel 2.0 Specification 227 / 534

A cyclic handler runs as a task-independent portion. As such, it is not possible to call in a cyclic handler a
system call that can enter WAITING state, or one that is intended for the invoking task.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

Additional Notes

Once a cyclic handler is defined, it continues to run at the specified cycles either until tk_stp_cyc is called to
deactivate it or until it is deleted. There is no parameter to specify the number of cycles in tk_cre_cyc.

When multiple time event handlers or interrupt handlers operate at the same time, it is implementation-
dependent whether to have them run serially (after one handler exits, another starts) or in a nested manner
(one handler operation is suspended, another runs, and when that one finishes the previous one resumes). In
either case, since time event handlers and interrupt handlers run as task-independent portion, the principle
of delayed dispatching applies.

If 0 is specified in cycphs, the first startup of the cyclic handler is executed immediately after this system call
execution. However, depending on the implementation, the first startup (execution) of the cyclic handler may
be executed while processing this system call, instead of immediately after the completion of this system call
execution. In such case, the interrupt disabled or other state in the cyclic handler may differ from the state at
the second and subsequent ordinary startups. In addition, when 0 is set to cycphs, the first startup of the cyclic
handler is executed without waiting for a timer interrupt, that is, regardless of the timer interrupt interval. This
behavior also differs from the second and subsequent startups of the cyclic handler, and from the startup of
the cyclic handler with cycphs set to other than 0.

T-Kernel 2.0 Specification 228 / 534

4.7.2.2 tk_cre_cyc_u - Create Cyclic Handler (in microseconds)

C Language Interface

#include <tk/tkernel.h>

ID cycid = tk_cre_cyc_u (CONST T_CCYC_U *pk_ccyc_u);

Parameter

CONST T_CCYC_U* pk_ccyc_u Packet to Create Cyclic
Handler

Cyclic handler definition
information

pk_ccyc_u Detail:

void* exinf Extended Information Extended information
ATR cycatr Cyclic Handler Attribute Cyclic handler attribute
FP cychdr Cyclic Handler Address Cyclic handler address
RELTIM_U cyctim_u Cycle Time Interval of cyclic start

(microseconds)
RELTIM_U cycphs_u Cycle Phase Cycle phase (microseconds)
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID cycid Cyclic Handler ID Cyclic handler ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of cyclic handlers exceeds the system limit
E_RSATR Reserved attribute (cycatr is invalid or cannot be used)
E_PAR Parameter error (pk_ccyc_u, cychdr, cyctim_u, or cycphs_u is invalid or cannot be

used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This system call takes 64-bit cyctim_u and cycphs_u in microseconds instead of the parameters cyctim and
cycphs of tk_cre_cyc.

The specification of this system call is same as that of tk_cre_cyc, except that the parameter is replaced with
cyctim_u and cycphs_u. For more details, see the description of tk_cre_cyc.

T-Kernel 2.0 Specification 229 / 534

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 230 / 534

4.7.2.3 tk_del_cyc - Delete Cyclic Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_cyc (ID cycid);

Parameter

ID cycid Cyclic Handler ID Cyclic handler ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (cycid is invalid or cannot be used)
E_NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Deletes a cyclic handler.

T-Kernel 2.0 Specification 231 / 534

4.7.2.4 tk_sta_cyc - Start Cyclic Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sta_cyc (ID cycid);

Parameter

ID cycid Cyclic Handler ID Cyclic handler ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (cycid is invalid or cannot be used)
E_NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Activates a cyclic handler, putting it in active state.

If the TA_PHS attribute was specified, the cycle time of the cyclic handler is not reset when the cyclic handler
goes to active state. If it was already in active state when this system call was executed, it continues unchanged
in active state.

If the TA_PHS attribute was not specified, the cycle time is reset when the cyclic handler goes to active state. If
it was already in active state, it continues in active state but its cycle time is reset. In this case, the next time
the cyclic handler starts is after cyctim has elapsed.

T-Kernel 2.0 Specification 232 / 534

4.7.2.5 tk_stp_cyc - Stop Cyclic Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_stp_cyc (ID cycid);

Parameter

ID cycid Cyclic Handler ID Cyclic handler ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (cycid is invalid or cannot be used)
E_NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Deactivates a cyclic handler, putting it in inactive state. It the cyclic handler was already in inactive state, this
system call has no effect (no operation).

T-Kernel 2.0 Specification 233 / 534

4.7.2.6 tk_ref_cyc - Reference Cyclic Handler Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_cyc (ID cycid , T_RCYC *pk_rcyc);

Parameter

ID cycid Cyclic Handler ID Cyclic handler ID
T_RCYC* pk_rcyc Packet to Return Cyclic

Handler Status
Pointer to the area to return the cyclic
handler status

Return Parameter

ER ercd Error Code Error code

pk_rcyc Detail:

void* exinf Extended Information Extended information
RELTIM lfttim Left Time Time remaining until the next handler

starts (ms)
UINT cycstat Cyclic Handler Status Cyclic handler activation state
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (cycid is invalid or cannot be used)
E_NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)
E_PAR Parameter error (invalid pk_rcyc)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

References the status of the cyclic handler specified in cycid, passing in return parameters the cyclic handler
activation state (cycstat), the time remaining until the next start (lfttim), and extended information (exinf).

The following information is returned in cycstat.

cycstat:= (TCYC_STP | TCYC_STA)

#define TCYC_STP 0x00 /* cyclic handler is inactive */
#define TCYC_STA 0x01 /* cyclic handler is active */

lfttim returns the remaining time (milliseconds) until the next time when the cyclic handler is invoked. It
does not matter whether the cyclic handler is currently running or stopped.

T-Kernel 2.0 Specification 234 / 534

exinf returns the extended information specified as a parameter when the cyclic handler is generated.exinf
is passed to the cyclic handler as a parameter.

If the cyclic handler specified in cycid does not exist for, error code E_NOEXS is returned.

The time remaining lfttim returned in the cyclic handler status information (T_RCYC) is a value rounded to
milliseconds. To know the value in microseconds, call tk_ref_cyc_u.

T-Kernel 2.0 Specification 235 / 534

4.7.2.7 tk_ref_cyc_u - Reference Cyclic Handler Status (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_cyc_u (ID cycid , T_RCYC_U *pk_rcyc_u);

Parameter

ID cycid Cyclic Handler ID Cyclic handler ID
T_RCYC_U* pk_rcyc_u Packet to Return Cyclic

Handler Status
Pointer to the area to return the
cyclic handler status

Return Parameter

ER ercd Error Code Error code

pk_rcyc_u Detail:

void* exinf Extended Information Extended information
RELTIM_U lfttim_u Left Time Time remaining until the next

handler starts (microseconds)
UINT cycstat Cyclic Handler Status Cyclic handler activation state
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (cycid is invalid or cannot be used)
E_NOEXS Object does not exist (the cyclic handler specified in cycid does not exist)
E_PAR Parameter error (invalid pk_rcyc_u)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

This system call takes 64-bit lfttim_u in microseconds instead of the return parameter lfttim of tk_ref_cyc.

The specification of this system call is same as that of tk_ref_cyc, except that the return parameter is replaced
with lfttim_u. For more details, see the description of tk_ref_cyc.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 236 / 534

4.7.3 Alarm Handler

An alarm handler is a time event handler that starts at a specified time. Functions are provided for creating and
deleting an alarm handler, activating and deactivating the alarm handler, and referencing the alarm handler
status. An alarm handler is an object identified by an ID number. The ID number for an alarm handler is
called an alarm handler ID.

The time at which an alarm handler starts (called the alarm time) can be set independently for each alarm
handler. When the alarm time arrives, exinf, containing extended information about the alarm handler, is
passed to it as a starting parameter.

After an alarm handler is created, initially it has no alarm time set and is in inactive state. The alarm time is
set when the alarm handler is activated by calling tk_sta_alm, as relative time from the time that system call
is executed. When tk_stp_alm is called deactivating the alarm handler, the alarm time setting is canceled.
Likewise, when an alarm time arrives and the alarm handler runs, the alarm time is canceled and the alarm
handler becomes inactive.

Additional Notes
An alarm handler is actually started at the time according to the time resolution provided by the timer interrupt
interval (TTimPeriod). For more details, see the additional notes for Section 4.7.2, “Cyclic Handler”.

T-Kernel 2.0 Specification 237 / 534

4.7.3.1 tk_cre_alm - Create Alarm Handler

C Language Interface

#include <tk/tkernel.h>

ID almid = tk_cre_alm (CONST T_CALM *pk_calm);

Parameter

CONST T_CALM* pk_calm Packet to Create Alarm
Handler

Alarm handler definition
information

pk_calm Detail:

void* exinf Extended Information Extended information
ATR almatr Alarm Handler Attribute Alarm handler attributes
FP almhdr Alarm Handler Address Alarm handler address
UB dsname[8] DS Object name DS object name
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ID almid Alarm Handler ID Alarm handler ID
or Error Code Error code

Error Code

E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of alarm handlers exceeds the system limit
E_RSATR Reserved attribute (almatr is invalid or cannot be used)
E_PAR Parameter error (pk_calm or almhdr is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Creates an alarm handler, assigning to it an alarm handler ID. This is performed by assigning a control block
for the generated alarm handler.

An alarm handler is a handler running at the specified time as a task-independent portion.

exinf can be used freely by the user to set miscellaneous information about the created alarm handler. The
information set in this parameter can be referenced by tk_ref_alm. If a larger area is needed for indicating
user information, or if the information may need to be changed after the message buffer is created, this can
be done by allocating separate memory for this purpose and putting the memory packet address in exinf. The
kernel pays no attention to the contents of exinf.

almatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of almatr is as follows.

T-Kernel 2.0 Specification 238 / 534

almatr := (TA_ASM || TA_HLNG) | [TA_DSNAME]

TA_ASM The handler is written in assembly language
TA_HLNG The handler is written in high-level language
TA_DSNAME Specifies DS object name

#define TA_ASM 0x00000000 /* assembly language program */
#define TA_HLNG 0x00000001 /* high -level language program */
#define TA_DSNAME 0x00000040 /* DS object name */

almhdr specifies the alarm handler start address.

When the TA_HLNG attribute is specified, the alarm handler is started via a high-level language support routine.
The high-level language support routine takes care of saving and restoring register values. The alarm handler
terminates by a simple return from a function. The alarm handler takes the following format when the TA_HLNG
attribute is specified.

void almhdr(void *exinf)
{

/*
(processing)

*/

return; /* exit alarm handler */
}

The alarm handler format when the TA_ASM attribute is specified is implementation-dependent, but exinfmust
be passed in a starting parameter.

Even if a system call is invoked from an alarm handler and this causes the task in RUNNING state up to that
time to go to another state, with a different task going to RUNNING state, dispatching (task switching) does not
occur while the alarm handler is running. Completion of execution by the alarm handler has precedence even
if dispatching is necessary; only when the alarm handler terminates does the dispatch take place. In other
words, a dispatch request that is generated while an alarm handler is running is not processed immediately,
but is delayed until the alarm handler terminates. This is called delayed dispatching.

An alarm handler runs as a task-independent portion. As such, it is not possible to call in an alarm handler a
system call that can enter WAITING state, or one that is intended for the invoking task.

When TA_DSNAME is specified, dsname is valid and specifies the DS object name. DS object name is used to
identify objects by debugger, and it is handled only by T-Kernel/DS API, td_ref_dsname and td_set_dsname.
For more details, see the description of td_ref_dsname and td_set_dsname. If TA_DSNAME is not specified, dsname
is ignored. Then td_ref_dsname and td_set_dsname return E_OBJ error.

Additional Notes

When multiple time event handlers or interrupt handlers operate at the same time, it is an implementation-
dependent whether to have them run serially (after one handler exits, another starts) or in a nested manner
(one handler operation is suspended, another runs, and when that one finishes the previous one resumes). In
either case, since time event handlers and interrupt handlers run as task-independent portion, the principle
of delayed dispatching applies.

T-Kernel 2.0 Specification 239 / 534

4.7.3.2 tk_del_alm - Delete Alarm Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_alm (ID almid);

Parameter

ID almid Alarm Handler ID Alarm handler ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (almid is invalid or cannot be used)
E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Deletes an alarm handler.

T-Kernel 2.0 Specification 240 / 534

4.7.3.3 tk_sta_alm - Start Alarm Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sta_alm (ID almid , RELTIM almtim);

Parameter

ID almid Alarm Handler ID Alarm handler ID
RELTIM almtim Alarm Time Alarm handler start relative time (ms)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (almid is invalid or cannot be used)
E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Sets the alarm time of the alarm handler specified in almid to the time given in almtim, putting the alarm
handler in active state. almtim is specified as relative time from the time of calling tk_sta_alm. After the time
specified in almtim has elapsed, the alarm handler starts. If the alarm handler is already active when this
system call is invoked, the existing almtim setting is canceled and the alarm handler is activated anew with
the alarm time specified here.

If almtim = 0 is set, the alarm handler starts as soon as it is activated.

T-Kernel 2.0 Specification 241 / 534

4.7.3.4 tk_sta_alm_u - Start Alarm Handler (in microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sta_alm_u (ID almid , RELTIM_U almtim_u);

Parameter

ID almid Alarm Handler ID Alarm handler ID
RELTIM_U almtim_u Alarm Time Alarm handler start relative time

(microseconds)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (almid is invalid or cannot be used)
E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

This system call takes 64-bit almtim_u in microseconds instead of the parameter almtim of tk_sta_alm.

The specification of this system call is same as that of tk_sta_alm, except that the parameter is replaced with
almtim_u. For more details, see the description of tk_sta_alm.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 242 / 534

4.7.3.5 tk_stp_alm - Stop Alarm Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_stp_alm (ID almid);

Parameter

ID almid Alarm Handler ID Alarm handler ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (almid is invalid or cannot be used)
E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Cancels the alarm time of the alarm handler specified in almid, putting it in inactive state. It the cyclic handler
was already in inactive state, this system call has no effect (no operation).

T-Kernel 2.0 Specification 243 / 534

4.7.3.6 tk_ref_alm - Reference Alarm Handler Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_alm (ID almid , T_RALM *pk_ralm);

Parameter

ID almid Alarm Handler ID Alarm handler ID
T_RALM* pk_ralm Packet to Return Alarm

Handler Status
Pointer to the area to return the alarm
handler status

Return Parameter

ER ercd Error Code Error code

pk_ralm Detail:

void* exinf Extended Information Extended information
RELTIM lfttim Left Time Time remaining until the handler starts

(ms)
UINT almstat Alarm Handler Status Alarm handler activation state
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (almid is invalid or cannot be used)
E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)
E_PAR Parameter error (invalid pk_ralm)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

References the status of the alarm handler specified in almid, passing in return parameters the time remaining
until the handler starts (lfttim), and extended information (exinf).

The following information is returned in almstat.

almstat:= (TALM_STP | TALM_STA)

#define TALM_STP 0x00 0x00 /* alarm handler is inactive */
#define TALM_STA 0x01 0x01 /* alarm handler is active */

If the alarm handler is active (TALM_STA), the relative time until the alarm handler is scheduled to be started
next time is returned to lfttim. This value is within the range almtim ≧ lfttim ≧ 0 specified with tk_sta_alm.

T-Kernel 2.0 Specification 244 / 534

Since lfttim is decremented with each timer interrupt, lfttim = 0 means the alarm handler will start at the
next timer interrupt.

exinf returns the extended information specified as a parameter when the alarm handler is generated. exinf
is passed to the alarm handler as a parameter.

If the alarm handler is inactive (TALM_STP), lfttim is indeterminate.

If the alarm handler specified with tk_ref_alm in almid does not exist, error code E_NOEXS is returned.

The time remaining lfttim returned in the alarm handler status information (T_RALM) is a value rounded to
milliseconds. To know the value in microseconds, call tk_ref_alm_u.

T-Kernel 2.0 Specification 245 / 534

4.7.3.7 tk_ref_alm_u - Reference Alarm Handler Status (Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_alm_u (ID almid , T_RALM_U *pk_ralm_u);

Parameter

ID almid Alarm Handler ID Alarm handler ID
T_RALM_U* pk_ralm_u Packet to Return Alarm

Handler Status
Pointer to the area to return the
alarm handler status

Return Parameter

ER ercd Error Code Error code

pk_ralm_u Detail:

void* exinf Extended Information Extended information
RELTIM_U lfttim_u Left Time Time remaining until the handler

starts (microseconds)
UINT almstat Alarm Handler Status Alarm handler activation state
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (almid is invalid or cannot be used)
E_NOEXS Object does not exist (the alarm handler specified in almid does not exist)
E_PAR Parameter error (invalid pk_ralm_u)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

This system call takes 64-bit lfttim_u in microseconds instead of the return parameter lfttim of tk_ref_alm.

The specification of this system call is same as that of tk_ref_alm, except that the return parameter is replaced
with lfttim_u. For more details, see the description of tk_ref_alm.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 246 / 534

4.8 Interrupt Management Functions

Interrupt management functions are for defining and manipulating handlers for external interrupts and CPU
exceptions.

An interrupt handler runs as a task-independent portion. System calls can be invoked in a task-independent
portion in the same way as in a task portion, but the following restriction applies to system call issuing in a
task-independent portion.

• A system call that implicitly specifies the invoking task, or one that may put the invoking task in WAITING
state cannot be issued. Error code E_CTX is returned in such cases.

During task-independent portion execution, task switching (dispatching) does not occur. If system call pro-
cessing results in a dispatch request, the dispatch is delayed until processing leaves the task-independent
portion. This is called delayed dispatching.

T-Kernel 2.0 Specification 247 / 534

4.8.1 tk_def_int - Define Interrupt Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_def_int (UINT dintno , CONST T_DINT *pk_dint);

Parameter

UINT dintno Interrupt Handler Number Interrupt handler number
CONST T_DINT* pk_dint Packet to Define Interrupt

Handler
Interrupt handler definition
information

pk_dint Detail:

ATR intatr Interrupt Handler Attribute Interrupt handler attribute
FP inthdr Interrupt Handler Address Interrupt handler address
(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_RSATR Reserved attribute (intatr is invalid or cannot be used)
E_PAR Parameter error (dintno, pk_dint, or inthdr is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

"Interrupts" include both external interrupts from devices and interrupts due to CPU exceptions.

Defines an interrupt handler for the interrupt handler number dintno to enable use of the interrupt handler.
This system call maps the interrupt handler number indicated in dintno to the address and attributes of the
interrupt handler.

dintno is the number used to distinguish between different interrupt handlers. Its specific meaning is defined
for each implementation, but generally the interrupt vector defined by the interrupt handling in the CPU
hardware is used as it is, or any number that can be mapped to the interrupt vector is used. To get the
interrupt handler number dintno from the interrupt vector, use the T-Kernel/SM DINTNO().

intatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute part of intatr is specified as follows.

T-Kernel 2.0 Specification 248 / 534

intatr := (TA_ASM || TA_HLNG)

TA_ASM The handler is written in assembly language
TA_HLNG The handler is written in high-level language

#define TA_ASM 0x00000000 /* assembly language program */
#define TA_HLNG 0x00000001 /* high -level language program */

As a rule, the kernel is not involved in the starting of a TA_ASM attribute interrupt handler. When an interrupt
is raised, the interrupt handling function in the CPU hardware directly starts the interrupt handler defined by
this system call (depending on the implementation, processing by program may be included). Accordingly,
processing for saving and restoring registers used by the interrupt handler is necessary at the beginning and
end of the interrupt handler. An interrupt handler is terminated by execution of the tk_ret_int system call or
by the CPU interrupt return instruction (or an equivalent mechanism).

Support of a mechanism for return from an interrupt handler without using tk_ret_int and hence without
kernel intervention is mandatory. Note that if tk_ret_int is not used, delayed dispatching does not need to be
performed.

Support for return from an interrupt handler using tk_ret_int is also mandatory, and in this case delayed
dispatching must be performed.

When the TA_HLNG attribute is specified, the interrupt handler is started via a high-level language support
routine. The high-level language support routine takes care of saving and restoring register values. The
interrupt handler terminates by a return from a C language function. The interrupt handler takes the following
format when the TA_HLNG attribute is specified.

void inthdr(UINT dintno)
{

/*
Interrupt Handling

*/

return; /* Exit interrupt handler */
}

The parameter dintno passed to an interrupt handler is the interrupt handler number identifying the interrupt
that was raised, and is the same as that specified with tk_def_int. Depending on the implementation, other
information about the interrupt may be passed in addition to dintno. If such information is used, it must be
defined for each implementation in a second parameter or subsequent parameters passed to the interrupt
handler.

If the TA_HLNG attribute is specified, it is assumed that the CPU interrupt flag will be set to interrupts disabled
state from the time the interrupt is raised until the interrupt handler is called. In other words, as soon as
an interrupt is raised, multiple interrupts are disabled, and this state remains when the interrupt handler is
called. If multiple interrupts are to be allowed, the interrupt handler must include processing that handles
multiple interrupts by manipulating the CPU interrupt flag.

Also in the case of the TA_HLNG attribute, upon entry into the interrupt handler, issuing system call must be
possible. Note, however, that assuming standard provision of the functionality described above, extensions
are allowed such as adding a function for entering an interrupt handler with multiple interrupts enabled.

When the TA_ASM attribute is specified, the state upon entry into the interrupt handler shall be defined for each
implementation. Such matters as the stack and register status upon interrupt handler entry, whether system
calls can be made, the method of invoking system calls, and the method of returning from the interrupt handler
without kernel intervention must all be defined explicitly.

In the case of the TA_ASM attribute, depending on the implementation there may be cases where interrupt
handler execution is not considered to be a task-independent portion. In such a case the following points
need to be noted carefully.

T-Kernel 2.0 Specification 249 / 534

• If interrupts are enabled, there is a possibility that task dispatching will occur.

• When a system call is invoked, it will be processed as having been called from a task portion or quasi-task
portion.

If a method is provided for performing some kind of operation in an interrupt handler to detected whether it
runs as task-independent portion, that method shall be announced for each implementation.

Whether the TA_HLNG or TA_ASM attribute is specified, upon entry into an interrupt handler, the logical memory
space at the time the interrupt occurred is retained. No processing takes place upon return from the interrupt
handler for restoring the logical memory space to its state at the time the interrupt was raised. Switching
logical memory spaces inside the interrupt handler is not prohibited, but the kernel is not aware of the effect
of such logical memory space switching.

Even if a system call is invoked from an interrupt handler and this causes the task in RUNNING state up to that
time to go to another state, with a different task going to RUNNING state, dispatching (task switching) does not
occur while the interrupt handler is running. Completion of execution of the interrupt handler has precedence
even if dispatching is necessary; only when the interrupt handler terminates does the dispatch take place.
In other words, a dispatch request that is generated while an interrupt handler is running is not processed
immediately, but is delayed until the interrupt handler terminates. This is called delayed dispatching.

An interrupt handler runs as a task-independent portion. As such, it is not possible to call in an interrupt
handler a system call that can enter WAITING state, or one that is intended for the invoking task.

When pk_dint = NULL is set, a previously defined interrupt handler is canceled. When the handler definitions
are canceled, the default handler defined by the system is used.

It is possible to redefine an interrupt handler for an interrupt handler number that is already defined. It is not
necessary first to cancel the definition for that number. Defining a new handler for a dintno already having
an interrupt handler defined does not return error.

Additional Notes

The various specifications governing the TA_ASM attribute are mainly concerned with realizing an interrupt
hook. For example, when an exception is raised due to illegal address access, ordinarily an interrupt handler
defined in a higher-level program detects this and performs the error processing; but in the case of debugging,
in place of error processing by a higher-level program, the default interrupt handler defined by the system may
perform the processing and starts a debugger. In this case, the interrupt handler defined by high-level program
hooks the default interrupt handler defined by the system. And, according to the situation, the handler either
passes the interrupt handling to a system program such as a debugger, or it just processes it for itself.

T-Kernel 2.0 Specification 250 / 534

4.8.2 tk_ret_int - Return from Interrupt Handler

C Language Interface

#include <tk/tkernel.h>

void tk_ret_int (void);

Although this system call is defined in the form of a C language interface, it will not be called in this format if
a high-level language support routine is used.

Parameter

None

Return Parameter

Does not return to the context issuing the system call.

Error Codes

The following kind of error may be detected, but no return is made to the context issuing the system call
even if the error is detected. For this reason the error code cannot be passed directly as a system call return
parameter. The behavior in case an error occurs is implementation-dependent.

E_CTX Context error (issued from other than an interrupt handler
(implementation-dependent error))

Valid Context

Task portion Quasi-task portion Task-independent portion
NO NO YES

Description

Exits from an interrupt handler.

System calls invoked from an interrupt handler do not result in dispatching while the handler is running;
instead, the dispatching is delayed until tk_ret_int is called ending the interrupt handler processing(delayed
dispatching). Accordingly, tk_ret_int results in the processing of all dispatch requests made while the interrupt
handler was running.

tk_ret_int is invoked only if the interrupt handler was defined specifying the TA_ASM attribute. In the case of
a TA_HLNG attribute interrupt handler, the functionality equivalent to tk_ret_int is executed implicitly in the
high-level language support routine, so tk_ret_int is not (must not be) called explicitly.

As a rule, the kernel is not involved in the starting of a TA_ASM attribute interrupt handler. When an interrupt
is raised, the defined interrupt handler is started directly by the CPU hardware interrupt processing function.
The saving and restoring of registers used by the interrupt handler must therefore be taken care of in the
interrupt handler.

For the same reason, the stack and register states at the time tk_ret_int is issued must be the same as those
at the time of entry into the interrupt handler. Because of this, in some cases function codes cannot be used

T-Kernel 2.0 Specification 251 / 534

in tk_ret_int, in which case tk_ret_int can be implemented using a trap instruction of another vector separate
from that used for other system calls.

Additional Notes

tk_ret_int is a system call that does not return to the context from which it was called. Even if an error code
is returned when an error of some kind is detected, normally no error checking is performed in the context
from which the system call was invoked, leaving the possibility that the program will hang. For this reason
these system calls do not return even if error is detected.

Using an assembly language return-from-interrupt instruction instead of tk_ret_int to exit the interrupt handler
is possible if it is clear no dispatching will take place on return from the handler (the same task is guaranteed
to continue executing), or if there is no need for dispatching to take place.

Depending on the CPU architecture and method of implementing the kernel, it may be possible to perform
delayed dispatching even when an interrupt handler exits using an assembly language return-from-interrupt
instruction. In such cases, it is permissible for the assembly language return-from-interrupt instruction to be
interpreted as if it were a tk_ret_int system call.

Performing of E_CTX error checking when tk_ret_int is called from a time event handler is implementation-
dependent. Depending on implementation, control may return from a different type of handler immediately.

T-Kernel 2.0 Specification 252 / 534

4.9 System Management Functions

System management functions sets and references system states. Functions are provided for rotating task
precedence in a queue, getting the ID of the task in RUNNING state, disabling and enabling task dispatching,
referencing context and system states, setting low-power mode, and referencing the T-Kernel version.

T-Kernel 2.0 Specification 253 / 534

4.9.1 tk_rot_rdq - Rotate Ready Queue

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rot_rdq (PRI tskpri);

Parameter

PRI tskpri Task Priority Task priority

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (tskpri is invalid)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Rotates the precedence among tasks having the priority specified in tskpri. This system call changes the
precedence of tasks in RUN or READY state having the specified priority, so that the task with the highest
precedence among those tasks is given the lowest precedence.

By setting tskpri = TPRI_RUN = 0, this system call rotates the precedence of tasks having the priority level of the
task currently in RUNNING state. When tk_rot_rdq is called from an ordinary task, it rotates the precedence
of tasks having the same priority as the invoking task. When calling from a cyclic handler or other task-
independent portion, it is also possible to call tk_rot_rdq (tskpri = TPRI_RUN).

Additional Notes

If there are no tasks in a run state having the specified priority, or only one such task, the system call completes
normally with no operation (no error code is returned).

When this system call is issued in dispatch enabled state, specifying as the priority either TPRI_RUN or the
current priority of the invoking task, the precedence of the invoking task will be the lowest among tasks of
the same priority. This system call can therefore be used to relinquish execution privilege.

In dispatch disabled state, the task with highest precedence among tasks of the same priority is not always
the currently executing task. The precedence of the invoking task will therefore not always become the lowest
among tasks having the same priority when the above method is used in dispatch disabled state.

Examples of tk_rot_rdq execution are given in Figure 4.10, “Precedence Before Issuing tk_rot_rdq” and Fig-
ure 4.11, “Precedence After Issuing tk_rot_rdq (tskpri = 2)”. When this system call is issued in the state

T-Kernel 2.0 Specification 254 / 534

shown in Figure 4.10, “Precedence Before Issuing tk_rot_rdq” specifying tskpri = 2, the new precedence
order becomes that in Figure 4.11, “Precedence After Issuing tk_rot_rdq (tskpri = 2)”, and Task C becomes
the executing task.

Figure 4.10: Precedence Before Issuing tk_rot_rdq

Figure 4.11: Precedence After Issuing tk_rot_rdq (tskpri = 2)

T-Kernel 2.0 Specification 255 / 534

4.9.2 tk_get_tid - Get Task Identifier

C Language Interface

#include <tk/tkernel.h>

ID tskid = tk_get_tid (void);

Parameter

None

Return Parameter

ID tskid Task ID ID of the task in RUNNING state

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the ID number of the task currently in RUNNING state. Unless the task-independent portion is executing,
the current RUNNING state task will be the invoking task.

If there is no task currently in RUNNING state, 0 is returned.

Additional Notes

The task ID returned by tk_get_tid is identical to runtskid returned by tk_ref_sys.

T-Kernel 2.0 Specification 256 / 534

4.9.3 tk_dis_dsp - Disable Dispatch

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_dis_dsp (void);

Parameter

None

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_CTX Context error (issued from task-independent portion)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Disables task dispatching. Dispatch disabled state remains in effect until tk_ena_dsp is called enabling task
dispatching. While dispatching is disabled, the invoking task does not change from RUNNING state to READY
state or to WAITING state. External interrupts, however, are still enabled, so even in dispatch disabled state
an interrupt handler can be started. In dispatch disabled state, the running task can be preempted by an
interrupt handler, but not by another task.

The specific operations during dispatch disabled state are as follows.

• Even if a system call issued from an interrupt handler or by the task that called tk_dis_dsp results in a
task going to READY state with a higher priority than the task that called tk_dis_dsp, that task will not be
dispatched. Dispatching of the higher-priority task is delayed until dispatch disabled state ends.

• If the task that called tk_dis_dsp issues a system call that may cause the invoking task to be put in WAITING
state (e.g., tk_slp_tsk or tk_wai_sem), error code E_CTX is returned.

• When system status is referenced by tk_ref_sys, TSS_DDSP is returned in sysstat.

If tk_dis_dsp is called for a task already in dispatch disabled state, that state continues with no error code
returned. No matter how many times tk_dis_dsp is called, calling tk_ena_dsp just one time is enough to enable
dispatching again. The sophisticated operation when the pair of system calls tk_dis_dsp and tk_ena_dsp are
used in a nested manner must therefore be managed by the user as necessary.

T-Kernel 2.0 Specification 257 / 534

Additional Notes

A task in RUNNING state cannot go to DORMANT state or NON-EXISTENT state while dispatching is disabled.
If tk_ext_tsk or tk_exd_tsk is called for a task in RUNNING state while interrupts or dispatching is disabled,
error code E_CTX is detected. Since, however, tk_ext_tsk and tk_exd_tsk are system calls that do not return
to their original context, such errors are not passed in return parameters by these system calls.

T-Kernel 2.0 Specification 258 / 534

4.9.4 tk_ena_dsp - Enable Dispatch

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ena_dsp (void);

Parameter

None

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_CTX Context error (issued from task-independent portion)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Enables task dispatching. This system call cancels the disabling of dispatching by the tk_dis_dsp system call.

If tk_ena_dsp is called from a task not in dispatch disabled state, the dispatch enabled state continues and no
error code is returned.

T-Kernel 2.0 Specification 259 / 534

4.9.5 tk_ref_sys - Reference System Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_sys (T_RSYS *pk_rsys);

Parameter

T_RSYS* pk_rsys Packet to Refer System Status Pointer to the area to return the system
status

Return Parameter

ER ercd Error Code Error code

pk_rsys Detail:

INT sysstat System State System State
ID runtskid Running Task ID ID of the task currently in RUNNING

state
ID schedtskid Scheduled Task ID ID of the task scheduled to run next
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_PAR Parameter error (invalid pk_rsys)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the current system execution status, passing in return parameters such information as the dispatch
disabled state and whether a task-independent portion is executing.

The following values are returned in sysstat.

sysstat := (TSS_TSK | [TSS_DDSP] | [TSS_DINT])
|| (TSS_QTSK | [TSS_DDSP] | [TSS_DINT])
|| (TSS_INDP)

TSS_TSK 0 Task portion is running
TSS_DDSP 1 Dispatch disabled
TSS_DINT 2 Interrupts disabled
TSS_INDP 4 Task-independent portion is running
TSS_QTSK 8 Quasi-task portion is running

T-Kernel 2.0 Specification 260 / 534

The ID of the task currently in RUNNING state is returned in runtskid, while schedtskid indicates the ID of
the next task scheduled to go to RUNNING state. Normally runtskid = schedtskid, but this is not necessarily
true if, for example, a higher-priority task was wakened during dispatch disabled state. If there is no such task,
0 is returned.

It must be possible to invoke this system call from an interrupt handler or time event handler.

Additional Notes

Depending on the kernel implementation, the information returned by tk_ref_sys is not necessarily guaranteed
to be accurate at all times.

T-Kernel 2.0 Specification 261 / 534

4.9.6 tk_set_pow - Set Power Mode

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_set_pow (UINT powmode);

Parameter

UINT powmode Power Mode Low-power mode

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (value that cannot be used in powmode)
E_QOVR Low-power mode disable count overflow
E_OBJ TPW_ENALOWPOW was requested with low-power mode disable count at 0

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

The following two power-saving functions are supported.

● Switching to low-power mode when the system is idle
When there are no tasks to be executed, the system switches to a low-power mode provided in hardware.

Low-power mode is a function for reducing power use during very short intervals, such as from one
timer interrupt to the next. This is accomplished, for example, by lowering the CPU clock frequency.
It does not require complicated mode-switching in software but is implemented mainly using hardware
functionality.

● Automatic power-off
When the operator performs no operations for a certain length of time, the system automatically cuts the
power and goes to suspended state. If there is a start request (interrupt, etc.) from a peripheral device
or if the operator turns on the power, the system resumes from the state when the power was cut.

In the case of a power supply problem such as low battery, the system likewise cuts the power and goes
to suspended state.

In suspended state, the power is cut to peripheral devices and circuits as well as to the CPU, but the
main memory contents are retained.

tk_set_pow sets the low-power mode.

T-Kernel 2.0 Specification 262 / 534

powmode:= (TPW_DOSUSPEND || TPW_DISLOWPOW || TPW_ENALOWPOW)

#define TPW_DOSUSPEND 1 Suspended state
#define TPW_DISLOWPOW 2 Switching to low -power mode disabled
#define TPW_ENALOWPOW 3 Switching to low -power mode enabled (default)

• TPW_DOSUSPEND

Execution of all tasks and handlers is stopped, peripheral circuits (timers, interrupt controllers, etc.) are
stopped, and the power is cut (suspended). (off_pow is called.)

When power is turned back on, peripheral circuits are restarted, execution of all tasks and handlers is
resumed, operations resume from the point before power was cut, and the system call returns.

If for some reason the resume processing fails, normal startup processing (for reset) is performed and the
system boots fresh.

• TPW_DISLOWPOW

Switching to low-power mode in the dispatcher is disabled.(low_pow is not called.)

• TPW_ENALOWPOW

Switching to low-power mode in the dispatcher is enabled (low_pow is called).

The default at system startup is low-power mode enabled (TPW_ENALOWPOW).

Each time TPW_DISLOWPOW is specified, the request count is incremented. Low-power mode is enabled only
when TPW_ENALOWPOW is requested for as many times as TPW_DISLOWPOW was requested. The maximum request
count is implementation-dependent, but a count of at least 255 times must be possible.

Additional Notes

off_pow and low_pow are T-Kernel/SM functions. For more details, see Section 5.6, “Power Management
Functions”.

T-Kernel does not detect power supply problems or other factors for suspending the system. Actual suspen-
sion requires suspend processing in each of the peripheral devices (device drivers). The system is suspended
not by calling tk_set_pow directly but by use of the T-Kernel/SM suspend function.

T-Kernel 2.0 Specification 263 / 534

4.9.7 tk_ref_ver - Reference Version Information

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_ver (T_RVER *pk_rver);

Parameter

T_RVER* pk_rver Packet to Return Version
Information

Pointer to the area to return the version
information

Return Parameter

ER ercd Error Code Error code

pk_rver Detail:

UH maker Maker Code T-Kernel maker code
UH prid Product ID T-Kernel identification number
UH spver Specification Version Specification version
UH prver Product Version T-Kernel version
UH prno[4] Product Number T-Kernel products management

information

Error Code

E_OK Normal completion
E_PAR Parameter error (invalid pk_rver)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets information about the T-Kernel version in use, returning that information in the packet specified in
pk_rver. The following information can be obtained.

maker is the maker code of the T-Kernel implementing vendor. The maker field has the format shown in Fig-
ure 4.12, “maker Format”.

T-Kernel 2.0 Specification 264 / 534

Figure 4.12: maker Format

prid is a number indicating the T-Kernel type. The prid field has the format shown in Figure 4.13, “prid
Format”.

Assignment of values to prid is left up to the vendor implementing T-Kernel. Note, however, that this is the
only number distinguishing product types, and that vendors should give careful thought to how they assign
these numbers, doing so in a systematic way. In that way the combination of maker code and prid becomes a
unique identifier of the T-Kernel type.

The original version of T-Kernel is provided from T-Engine Forum, and its maker and prid are as follows.

maker = 0x0000
prid = 0x0000

Figure 4.13: prid Format

The upper 4 bits of spver give the TRON specification series. The lower 12 bits indicate the T-Kernel specifi-
cation version implemented. The spver field has the format shown in Figure 4.14, “spver Format”.

If, for example, a product conforms to the T-Kernel specification Ver 2.01.xx, spver is as follows.

MAGIC = 0x7 (T-Kernel)
SpecVer = 0x201 (Ver 2.01)
spver = 0x7201

If a product implements the T-Kernel specification draft version Ver 2.B0.xx, spver is as follows.

MAGIC = 0x7 (T-Kernel)
SpecVer = 0x2B0 (Ver 2.B0)
spver = 0x72B0

Figure 4.14: spver Format

MAGIC:
Type of OS specification

T-Kernel 2.0 Specification 265 / 534

0x0 TRON common (TAD, etc.)
0x1 reserved
0x2 reserved
0x3 reserved
0x4 reserved
0x5 reserved
0x6 reserved
0x7 T-Kernel

SpecVer:
The version of the specification that the kernel complies with. This is given as a three-digit packed-format
BCD code. In the case of a draft version, the letter A, B, or C may appear in the second digit. In this case
the corresponding hexadecimal form of A, B, or C is inserted.

prver is the version number of the T-Kernel implementation. The specific values assigned to prver are left to
the T-Kernel implementing vendor to decide.

prno is a return parameter for use in indicating T-Kernel product management information, product number
or the like. The specific meaning of values set in prno is left to the T-Kernel implementing vendor to decide.

Additional Notes

The format of the packet and structure members for getting version information is mostly uniform across the
various T-Kernel specifications.

The value obtained by tk_ref_ver in SpecVer is the first three digits of the specification version number. The
numbers after that indicate minor revisions such as those issued to correct misprints and the like, and are not
obtained by tk_ref_ver. For the purpose of matching to the specification contents, the first three numbers of
the specification version are sufficient.

A kernel implementing a draft version may have A, B, or C as the second number of SpecVer. It must be noted
that in such cases the specification order of release may not correspond exactly to higher and lower SpecVer
values. For example, specifications may be released in the following order: Ver 2.A1 → Ver 2.A2 → Ver 2.B1
→ Ver 2.C1 → Ver 2.00 → Ver 2.01... In this example, when going from Ver 2.Cx to Ver 2.00, SpecVer goes
from a higher to a lower value.

T-Kernel 2.0 Specification 266 / 534

4.10 Subsystem Management Functions

Subsystem management functions extends the functions of T-Kernel itself by adding a user-defined function
called "subsystem" to the kernel in order to implement middleware and others running on the T-Kernel. Some
functions provided by T-Kernel/SM are also implemented by utilizing the subsystem management functions.

A subsystem consists of extended SVC handlers to execute user-defined system calls (called "extended SVCs"),
a break function that performs the required processing when any exception occurs, an event handling func-
tion that performs the required processing when any event is raised from devices, etc., startup and cleanup
functions that perform required processing at the start/exit of task for each resource group, and resource
control blocks (Figure 4.15, “T-Kernel Subsystems”.)

Figure 4.15: T-Kernel Subsystems

The extended SVC handler directly accepts requests from applications and others. A break function, event
processing function, startup function, and cleanup function are so-called callback type functions and accept
requests from the kernel.

T-Kernel 2.0 Specification 267 / 534

Additional Notes
Functions of T-Kernel Extension (T-Kernel Standard Extension) including the process management functions
and the file management functions are also implemented by utilizing the subsystem management functions.
Other examples of middleware for T-Kernel that are implemented by utilizing the subsystem management
functions include TCP/IP manager, USB manager, and PC card manager.
Though subsystem management functions are equivalent to the extended SVC handlers and extended service
calls provided in ITRON specification, they can be used to build complex and advanced middleware through
not only the addition of just user-defined system calls but also through provision of resource management
functions and exception processing functions to handle the exceptions, which are required for the added
system calls.
Subsystem management functions manage resources by each resource group to which the task belongs. T-
Kernel Extension (T-Kernel Standard Extension), a high level middleware of T-Kernel, uses T-Kernel resource
group functions to realize a process. Because of the relationship described above, the resource management
can be performed independently for each process in a subsystem by automatic execution of starup function or
cleanup function defined in the subsystem upon creation (starting) or termination of a process. For example,
if you want to automatically close a file that is not closed at the time of process termination, you can do so in
the cleanup function included in the file management subsystem.
In addition to the subsystem management functions, T-Kernel also provides the device driver functions in
order to extend itself. Both subsystems and device drivers are function modules independent from T-Kernel
itself. They can be used by loading their corresponding binary programs into system space and then calling
them from a task on T-Kernel. Both run at the protection level 0. While API is limited to using open/close
and read/write type when calling a device driver, API for calling a subsystem can be defined without any
restriction. Moreover, for the subsystem, there is a function that automatically manages a resource at the
time of creating (starting) or terminating a resource group (process), for the device driver, there is no function
to do so.
Subsystems are identified by subsystem IDs (ssid), more than one subsystem can be defined and used at the
same time. One subsystem can be called and used from within another subsystem.

T-Kernel 2.0 Specification 268 / 534

4.10.1 tk_def_ssy - Define Subsystem

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_def_ssy (ID ssid , CONST T_DSSY *pk_dssy);

Parameter

ID ssid Subsystem ID Subsystem ID
CONST T_DSSY* pk_dssy Packet to Define

Subsystem
Subsystem definition information

pk_dssy Detail:

ATR ssyatr Subsystem Attributes Subsystem attributes
PRI ssypri Subsystem Priority Subsystem priority
FP svchdr Extended SVC Handler

Address
Extended SVC handler address

FP breakfn Break Function Address Break function address
FP startupfn Startup Function Address Startup function address
FP cleanupfn Cleanup Function Address Cleanup function address
FP eventfn Event Handling Function

Address
Event handling function address

INT resblksz Resource Control Block
Size

Resource control block size (in
bytes)

(Other implementation-dependent parameters may be added beyond this point.)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (ssid is invalid or cannot be used)
E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_RSATR Reserved attribute (ssyatr is invalid or cannot be used)
E_PAR Parameter error (pk_dssy is invalid or cannot be used)
E_OBJ ssid is already defined (when pk_dssy ≠ NULL)
E_NOEXS ssid is not defined (when pk_dssy = NULL)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

T-Kernel 2.0 Specification 269 / 534

Description

Defines subsystem specified in ssid.

One subsystem ID must be assigned to one subsystem without overlapping with other subsystems. The kernel
does not have a function for assigning subsystem IDs automatically.

Subsystem IDs 1 to 9 are reserved for T-Kernel use. 10 to 255 are numbers used by middleware, etc. The
maximum usable subsystem ID value is implementation-dependent and may be lower than 255 in some im-
plementations.

ssyatr indicates system attributes in its lower bits and implementation-dependent attributes in its higher bits.
The system attribute in ssyatr are not assigned in this version, and no system attributes are used.

ssypri indicates the subsystem priority. The startup function, cleanup function, and event handling function
are called in order of priority. The calling order is undefined when these subsystems have the same priority.
Subsystem priority 1 is the highest priority, with larger numbers indicating lower priorities. The range of
priorities that can be specified is implementation-dependent, but it must be possible to assign at least priorities
1 to 16.

NULL can be specified in breakfn, startupfn, cleanupfn, and eventfn, in which case the corresponding function
will not be called.

Specifying pk_dssy = NULL deletes a subsystem definition. The resource control block for the subsystem of
ssid will also be deleted.

• Resource control block

The resource control block defines groups of resources and manages them by their attributes and other
factors. Resource control block is allocated for each resource group. The block has its own memory area
of the size specified in resblksz. If resblksz = 0 is specified, no resource control block is allocated; but a
resource ID (see tk_cre_res) is assigned even in this case.

Each task belongs to one resource group. When a task makes a request to a subsystem and resources are
allocated to that task in the subsystem, the allocation information is stored in the resource control block.
The subsystem decides what kinds of resource information to register in the resource control block and how
they are to be registered.

The kernel is not responsible for the content of the resource control block; it can be used freely by the
subsystem. The size specified in resblksz should, however, be as small as possible. If a larger memory
block is needed, the subsystem should allocate that memory on its own and register its address in the
resource control block.

A resource control block is located in resident memory of shared (system) space.

• Extended SVC handler

An extended SVC handler accepts requests from applications and other programs as an application pro-
gramming interface (API) for a subsystem. It can be called in the same way as an ordinary system call, and
is normally invoked using a trap instruction or the like.

The format of an extended SVC handler is as follows.

INT svchdr(void *pk_para , FN fncd)
{

/*
branching by fncd

*/

return retcode; /* exit extended SVC handler */
}

fncd is a function code. The lower 8 bits of the instruction code are the subsystem ID. The remaining higher
bits can be used in any way by the subsystem. Ordinarily they are used as a function code inside the
subsystem. A function code must be a positive value, so the most significant bit is always 0.

T-Kernel 2.0 Specification 270 / 534

pk_para points to a packet of parameters passed to this system call. The packet format can be decided by
the subsystem. Generally a format like the stack passed to a C language function is used, which in many
cases is the same format as a C language structure.

The return code passed from an extended SVC handler is passed to the caller transparently as the function
return code. As a rule, negative values are error codes and 0 or positive values are the return code for
normal completion. If an extended SVC call fails for some reason, the error code (negative value) set by
T-Kernel is returned to the caller without invoking the extended SVC handler, so it is best to avoid confusion
with these values.

The format by which an extended SVC is called is dependent on the kernel implementation. As a subsystem
API, however, it must be specified in a C language function format independent of the kernel implementa-
tion. The subsystem must provide an interface library for converting from the C language function format
to the kernel-dependent extended SVC calling format.

An extended SVC handler runs as a quasi-task portion.

It can be called from a task-independent portion, and in this case the extended SVC handler also runs as a
task-independent portion.

• Break function

A break function is a function called when a task exception is raised for a task while an extended SVC
handler is executing.

When a break function is called, the processing by the extended SVC handler running at the time the task
exception was raised must be stopped promptly and control must be returned from the extended SVC han-
dler to its caller. The role of a break function is to abort the processing of the currently running extended
SVC handler.

The format of a break function is as follows.

void breakfn(ID tskid)
{

/*
stop the running extended SVC handler

*/
}

tskid is the ID of the task in which the task exception was raised.

A break function is called when a task exception is raised by tk_ras_tex. If extended SVC handler calls are
nested, then when the nesting level of the extended SVC handler is decreased by the return from the latest
extended SVC handler, the break function corresponding to the former extended SVC handler to which the
control will be returned next, is called.

A break function is called only once for one extended SVC handler per one task exception.

If another nested extended SVC call is made while a task exception is raised, no break function is called for
the called extended SVC handler.

A break function runs as a quasi-task portion. Its requesting task is identified as follows: If a break function
is called by tk_ras_tex, it runs as a quasi-task portion of the task that issued tk_ras_tex. On the other hand,
when the nesting level of extended SVC handler is decreased, the break function runs as a quasi-task portion
of the task that raised the task exception (the task running the extended SVC handler). This means that the
task executing the break function may be different from the task executing the extended SVC handler. In
such a case, the break function and extended SVC handler run concurrently as controlled by task scheduling.

It is thus conceivable that the extended SVC handler will return to its caller before the break function
finished executing, but in that case the extended SVC handler waits at the point right before returning, until
the break function completes. How this waiting state maps to the task state transitions is implementation-
dependent, but preferably it should remain in READY state (a READY state that does not go to RUNNING
state). The precedence of a task may change while it is waiting for a break function to complete, but how
task precedence is treated is implementation-dependent.

Similarly, an extended SVC handler cannot call an extended SVC until break function execution completes.

T-Kernel 2.0 Specification 271 / 534

In other words, during the time from the raising of a task interrupt until the break function completes, the
affected task must stay in the extended SVC handler that was executing at the time of the task exception.

In the case where the requesting task of the break function differs from that of the extended SVC handler,
that is, where the break function and the extended SVC handler run in different task contexts, the task
priority of the break function is raised to the same as that of the extended SVC handler only while the break
handler is executing if the former is lower than the latter. On the other hand, if the break function task
priority is the same as or higher than that of the extended SVC handler, the priority does not change. The
priority that gets changed is the current priority; the base priority stays the same.

The change in priority occurs only immediately before entry into the break function; any changes after
that of the extended SVC handler task priority are not followed by further changes in priority of the break
function task. In no case does a change in the break function priority while a break function is running
results in a priority change in the extended SVC handler task. At the same time, there is no restriction on
priority changes due to a running break function.

When the break function completes, the current priority of its task reverts to base priority. If a mutex was
locked, however, the priority reverts to that as adjusted by the mutex. (In other words, the ability is provided
to adjust the current priority at the entry and exit of the break function only; other than that, the priority is
the same as when an ordinary task is running.)

• Startup function

A startup function is called by issuing the tk_sta_ssy system call.

It performs resource control block initialization processing.

The format of a startup function is as follows.

void startupfn(ID resid , INT info)
{

/*
resource control block initialization processing

*/
}

resid is the ID of the resource group to be initialized, and info is a parameter that can be used in any way.
Both are passed specified in tk_sta_ssy.

Even if initialization of the resource control block fails for some reason, the startup function must be ter-
minated normally. If the resource control block could not be initialized, the extended SVC handler returns
error code when the API is called and cannot be executed normally, as a result of unsuccessful initialization
of the resource control block.

A startup function runs as a quasi-task portion of the task that issued tk_sta_ssy.

• Cleanup function

A cleanup function is called by issuing the tk_cln_ssy system call.

It performs resource release processing.

The format of a cleanup function is as follows.

void cleanupfn(ID resid , INT info)
{

/*
resource release processing

*/
}

resid is the ID of the resource group to be released, while info is a parameter that can be used freely. Both
are parameters specified in tk_cln_ssy.

Even if releasing fails for some reason, the cleanup function must be terminated normally. The error han-
dling method, such as logging of errors, are left to the subsystem implementing vendor to decide.

T-Kernel 2.0 Specification 272 / 534

After the cleanup function completes its processing, the resource control block is automatically cleared to 0.
If no cleanup function was defined (cleanupfn = NULL), the tk_cln_ssy system call clears the resource control
block to 0.

A cleanup function runs as a quasi-task portion of the task that issued tk_cln_ssy.

• Event handling function

An event handling function is called by issuing the tk_evt_ssy system call.

It processes various requests made to a subsystem.

Note that it has to process all requests for all subsystems. If processing is not required, it can simply return
E_OK without performing any operation.

The format of an event handling function is as follows.

ER eventfn(INT evttyp , ID resid , INT info)
{

/*
event processing

*/

return ercd;
}

evttyp indicates the request type, resid gives the ID of the resource group, and info is a parameter that
can be used freely. All these parameters are passed to tk_evt_ssy. If the system call is not invoked for any
particular resource group, resid can be set to 0.

If processing completes normally, E_OK is passed in the return code; otherwise an error code (negative
value) is returned.

The following event types evttyp are defined. For more details, see Section 5.3, “Device Management Func-
tions”.

#define TSEVT_SUSPEND_BEGIN 1 /* before suspending device */
#define TSEVT_SUSPEND_DONE 2 /* after suspending device */
#define TSEVT_RESUME_BEGIN 3 /* before resuming device */
#define TSEVT_RESUME_DONE 4 /* after resuming device */
#define TSEVT_DEVICE_REGIST 5 /* device registration notice */
#define TSEVT_DEVICE_DELETE 6 /* device deletion notice */

An event handling function runs as a quasi-task portion of the task that issued tk_evt_ssy.

Additional Notes

Extended SVC handlers as well as break functions, startup functions, cleanup functions and event handling
functions all have the equivalent of the TA_HLNG attribute only. There is no means of specifying the TA_ASM
attribute.

Prior to initialization of a resource control block by the startup function, and after resource release by the
cleanup function, the behavior if an extended SVC is called by a task belonging to that resource group is
dependent on the subsystem implementation. The kernel does not make any attempt to prevent this kind of
call. Basically it is necessary to avoid calling an extended SVC before calling the startup function and after
calling the cleanup function.

There may be cases where, for some reason or other, the break function, cleanup function or event handling
function is called without first calling the startup function. These functions must execute normally even in
such a case. A resource control block is cleared to 0 when it is first created and when cleanup processing is
executed by tk_cln_ssy. Accordingly, even if it was not initialized properly by a startup function, the resource
control block can still be assumed to have been cleared to 0.

The task space in the extended SVC handler is the same as that of the caller. Therefore, it is not necessary
to switch the task space even when accessing the buffer passed by the caller. However, the extended SVC

T-Kernel 2.0 Specification 273 / 534

handler runs at protection level 0 (privileged mode), which makes it possible to access the memory that the
caller task is not permitted to access. For this reason, in the extended SVC handler, the access permission
check should be performed as necessary, using ChkSpaceR(), ChkSpaceRW(), and so on.

It is possible to issue a system call that enters WAITING state in the extended SVC handler, but in that case
the program must be designed so that it can be stopped by calling a break function. The specific processing
flow is as follows: If tk_ras_tex is issued for the caller task while an extended SVC handler is executing, it
is necessary to stop the running extended SVC handler as soon as possible and return a stop error to the
caller task. For this purpose the break function is used. In order to stop the running extended SVC handler
immediately, the break function must forcibly release the WAITING state, even if the system call is in WAITING
state during processing the extended SVC handler. For this purpose, the tk_dis_wai system call is generally
used. tk_dis_wai can prevent the system call from entering WAITING state until the control returns from the
extended SVC handler to the caller task, but the implementor should also make it possible to stop the program
of the extended SVC handler by calling a break function. For example, leaving from WAITING state with the
error code E_DISWAI can mean that the execution is stopped by a break function. So it is best to stop the
extended SVC handler immediately and return a stop error to the caller task, without continuing to execute
the subsequent processing.

An extended SVC handler may be called concurrently by multiple tasks. If the tasks share same resources,
the mutual exclusion control must be performed in the extended SVC handler.

T-Kernel 2.0 Specification 274 / 534

4.10.2 tk_sta_ssy - Call Startup Function

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_sta_ssy (ID ssid , ID resid , INT info);

Parameter

ID ssid Subsystem ID Subsystem ID
ID resid Resource ID Resource ID
INT info Information Any parameter

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (ssid or resid is invalid or cannot be used)
E_NOEXS Object does not exist (the subsystem specified in ssid is not defined)
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Calls the startup function of the subsystem specified in ssid.

Specifying ssid = 0 makes the system call applied to all currently defined subsystems. In this case the startup
function of each subsystem is called in descending order of priority.

The calling order is undefined when these subsystems have the same priority.

If there are dependency relationships among different subsystems, the subsystem priority must therefore be
set with those relationships in mind. If, for example, subsystem B uses functions in subsystem A, then the
priority of subsystem A must be set higher than that of subsystem B.

If this system call is issued for a subsystem with no startup function defined, the function is simply not called;
no error results.

If a task exception is raised for the task that called tk_sta_ssy during startup function execution execution, the
task exception is held until the startup function completes its processing.

Additional Notes

T-Kernel Extension (T-Kernel Standard Extension), a higher level middleware of T-Kernel, uses tk_sta_ssy and
tk_cln_ssy to perform the startup processing during process creation (startup) and the cleanup processing

T-Kernel 2.0 Specification 275 / 534

during process termination, respectively. Specifically, during the processing of process creation (startup) in
T-Kernel Extension, tk_sta_ssy is issued specifying ssid = 0 to perform the startup processing for the newly
started process. During the processing of process termination in T-Kernel Extension, tk_cln_ssy is issued
specifying ssid = 0 to perform the cleanup processing for the process to be terminated. For example, when
the file management subsystem performs the cleanup processing for terminating a process, the subsystem
can use this function to automatically close the file opened by that process.

If multiple subsystems are defined, the startup/cleanup function of each subsystem is executed in the or-
der determined by subsystem priority, which is reversed between the startup processing and the cleanup
processing.

For example, in the case where Subsystem A is used to implement another Subsystem B, the priority of
Subsystem A should be higher than that of Subsystem B. This makes the startup processing of Subsystem
A being executed before Subsystem B for the process to be newly started. Thus, the function (extended SVC
handler) of Subsystem A can be called during the startup processing of Subsystem B. On the other hand,
the cleanup processing of Subsystem B is executed before Subsystem A for the process to be terminated.
Thus, the function (extended SVC handler) of Subsystem A can be called during the cleanup processing of
Subsystem B (see Figure 4.16, “Dependency and Priority of Subsystems”).

Figure 4.16: Dependency and Priority of Subsystems

The startup functions of all the subsystems are always executed each time a new process is created (started).
The started process does not necessarily use all of the subsystem functions, or it may never call them. Consid-
ering that all of the startup functions of subsystems are executed when a process (including one unrelated to
the subsystems) is created (started), the overhead due to startup functions should be minimized. To do this,
the startup function should only perform the bare minimum of processing, and a complicated processing, if
necessary, should be deferred without being executed in the startup function until the subsystem is actually
used, for example when the extended SVC handler is called from the process for the first time.

T-Kernel 2.0 Specification 276 / 534

4.10.3 tk_cln_ssy - Call Cleanup Function

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_cln_ssy (ID ssid , ID resid , INT info);

Parameter

ID ssid Subsystem ID Subsystem ID
ID resid Resource ID Resource ID
INT info Information Any parameter

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (ssid or resid is invalid or cannot be used)
E_NOEXS Object does not exist (the subsystem specified in ssid is not defined)
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Calls the cleanup function of the subsystem specified in ssid.

Specifying ssid = 0 makes the system call applied to all currently defined subsystems. In this case the cleanup
function of each subsystem is called in ascending order of priority.

The calling order is undefined when these subsystems have the same priority.

If there are dependency relationships among different subsystems, the subsystem priority must therefore be
set with those relationships in mind. If, for example, subsystem B uses functions in subsystem A, then the
priority of subsystem A must be set higher than that of subsystem B.

If this system call is issued for a subsystem with no cleanup function defined, the function is simply not called;
no error results.

If a task exception is raised for the task that called tk_cln_ssy during cleanup function execution, the task
exception is held until the cleanup function completes its processing.

T-Kernel 2.0 Specification 277 / 534

4.10.4 tk_evt_ssy - Call Event Function

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_evt_ssy (ID ssid , INT evttyp , ID resid , INT info);

Parameter

ID ssid Subsystem ID Subsystem ID
INT evttyp Event Type Event request type
ID resid Resource ID Resource ID
INT info Information Any parameter

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (ssid or resid is invalid or cannot be used)
E_NOEXS Object does not exist (the subsystem specified in ssid is not defined)
E_CTX Context error (issued from task-independent portion, or in dispatch disabled state)
Other Error code returned by the event handling function

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Calls the event handling function of the subsystem specified in ssid.

Specifying ssid = 0 makes the system call applied to all currently defined subsystems. In this case the event
handling function of each subsystem is called in sequence.

When evttyp is an odd number:
Calls subsystems in descending order of priority.

When evttyp is an even number:
Calls subsystems in ascending order of priority.

The calling order is undefined wheren these subsystems have the same priority.

If this system call is issued for a subsystem with no event handling function defined, the function is simply
not called; no error results.

If this system call is not invoked for any particular resource group, set resid to 0.

T-Kernel 2.0 Specification 278 / 534

If the event handling function returns an error, the error code is passed transparently in the system call
return code. When ssid = 0 and an event handler returns an error, the event handling functions of all other
subsystems continue to be called. In the system call return code, only one error code is returned even if
more than one event handling function returned an error. It is not possible to know which subsystem's event
handling function returned the error.

If a task exception is raised for the task that called tk_evt_ssy, during the execution of event handling function,
the task exception is held until the event handling function completes its processing.

Additional Notes

An example of using an event handling function is to perform the suspend/resume processing for the power
management functions. Specifically, when the system enters the power-off state (device suspended state) due
to power failure or other reason, it notifies each subsystem of its transition to suspended state. Then the event
handling function of each subsystem is called to perform the appropriate processing for it. In T-Kernel/SM,
tk_evt_ssy is executed for this purpose during the processing of tk_sus_dev. The event handling function of
each subsystem performs any necessary operations before going to suspended state, such as saving the data.
On the other hand, when the system returns (resumes) from the suspended state due to power on or other
reason, it notifies each subsystem of its return from suspended state. Then the event handling function of each
subsystem is called again to perform the appropriate processing for it. For more details, see the description
of tk_sus_dev.

For another example, when a new device is registered by tk_def_dev, the system notifies each subsystem
of the registration, and the event handling function of each subsystem is called to perform the appropriate
processing for it. In T-Kernel/SM, tk_evt_ssy is executed for this purpose during the processing of tk_def_dev.

T-Kernel 2.0 Specification 279 / 534

4.10.5 tk_ref_ssy - Reference Subsystem Status

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_ssy (ID ssid , T_RSSY *pk_rssy);

Parameter

ID ssid Subsystem ID Subsystem ID
T_RSSY* pk_rssy Packet to Return Subsystem Status Pointer to the area to return the

subsystem definition information

Return Parameter

ER ercd Error Code Error code

pk_rssy Detail:

PRI ssypri Subsystem Priority Subsystem priority
INT resblksz Resource Control Block Size Resource control block size (in

bytes)
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_ID Invalid ID number (ssid is invalid or cannot be used)
E_NOEXS Object does not exist (the subsystem specified in ssid is not defined)
E_PAR Parameter error (invalid pk_rssy)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

References information about the subsystem specified in ssid.

ssypri returns the subsystem priority specified in tk_def_ssy.

resblksz returns the size of the resource control block specified in tk_def_ssy.

If the subsystem specified in ssid is not defined, E_NOEXS is returned.

T-Kernel 2.0 Specification 280 / 534

4.10.6 tk_cre_res - Create Resource Group

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_cre_res (void);

Parameter

None

Return Parameter

ID resid Resource ID Resource ID
or Error Code Error code

Error Code

E_LIMIT Number of resource groups exceeds the system limit
E_NOMEM Insufficient memory (memory for control block cannot be allocated)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Creates a new resource group, assigning to it a resource control block and resource ID.

Resource IDs are assigned in common for the entire system. A separate resource control block is created for
each subsystem (see the description of Figure 4.17, “Subsystems and Resource Groups”).

T-Kernel 2.0 Specification 281 / 534

Figure 4.17: Subsystems and Resource Groups

A new subsystem can be defined when a resource group is already created. Even in such a case, it is necessary
to create a resource control block of an already existing resource group for the newly registered subsystem.
In other words, there may be cases where resource control block must be created by tk_def_ssy.

For example, if a new subsystem ID is defined in a situation like that shown in Figure 4.17, “Subsystems and
Resource Groups”, resource control blocks with resource IDs #1, #2, and #3 must automatically be created
for the subsystem.

Additional Notes

A Resource ID is in some cases used also as a logical space ID (lsid). Resource IDs should therefore be
assigned values that can be used directly as logical space IDs or that can easily be converted for use as logical
space IDs.

A system resource group always exists as a special resource group. One system resource group always exists,
moreover, from the time the system boots, without waiting for creation by tk_cre_res. The system resource
group cannot be deleted. Other than the point that it always exists, a system resource group is no different
from other resource groups.

Resource control block creation might be implemented in either of the following ways.

• (A) At the time of subsystem definition (tk_def_ssy), create as many resource control blocks as the maximum
number of resource groups, and use tk_cre_res simply to assign them.

• (B) Use tk_cre_res to create as many resource control blocks as there are subsystems and assign them.

Since the specification requires clearing a resource control block to 0 when it is initially created, the timing
of this clearing to 0 differs between methods (A) and (B). This difference should not have much of an effect;
but since method (A) will have fewer cases of clearing to 0, subsystems must be implemented assuming (A).
Method (A) is also recommended for the kernel implementation.

T-Kernel Extension (T-Kernel Standard Extension), a higher level middleware of T-Kernel, uses the resource
group function of T-Kernel to achieve various functions of process, where one process corresponds to one
resource group. For this reason, when creating (starting) a process, it is necessary to allocate a resource
control block for it by executing tk_cre_res.

Using the resource control function, each subsystem can allocate an independent resource to each process
(that is, to each resource group), or can automatically release the allocated resource when the process is

T-Kernel 2.0 Specification 282 / 534

terminated. For example, a file management subsystem often assigns an identifier called "file descriptor" to a
file each time a process opens it, and usually uses that file descriptor for subsequent file manipulations. In this
case, various management information identified by the file descriptor for file manipulation is the resource.
Placing this resource in the resource control block for the file management subsystem allows the information
for file manipulation to be managed independently for each process (resource group).

Generally, for subsystems that realize functions which should be controlled independently for each process,
it is effective to use the resource control block to manage the information of each process independently. It is
also possible to use the startup function to prepare the subsystem side or initialize the resource control block
for a newly created (started) process, or to use the cleanup function to automatically release the resources
when the process is terminated. On the other hand, for subsystems that realize functions which is not directly
related to a process (such as functions shared between processes, or functions for the entire system), functions
related to the resource control block, resources, and resource groups have less chance to be used.

When a new process is created (started), the resource control block for each subsystem is allocated in the
resident memory area of the system shared space, regardless of whether the process actually uses the sub-
system or not. That means that some system shared memory is consumed. To reduce the overhead for the
entire system, it is best to minimize the size of the resource control block.

Suppose, for example, there is a subsystem that needs 1 MB of independent working memory for each pro-
cess. As the working memory is required for each process, you might choose to use a part of the resource
control block for the working memory, but the amount is too large for the resource control block. If the re-
source control block size is set to 1 MB, that amount of space is unconditionally allocated each time when
a new process is created (started), which consumes too much resident memory of the system shared space.
Especially, if a new process never uses the function of this subsystem, too much memory is wasted.

In such case, it is best to defer the allocation of the working memory used by subsystem until it is actually
required. To do so, for example, include in the resource control block only the flag indicating whether the
working memory space has been allocated or not, and the address of the working memory space. Then check
the flag when the process uses the subsystem function (calls the extended SVC handler), and allocate the
working memory space only if it is not yet allocated. This solution can eliminate the waste of memory space
caused by allocating the large resource control block to a process that does not call the subsystem.

T-Kernel 2.0 Specification 283 / 534

4.10.7 tk_del_res - Delete Resource Group

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_del_res (ID resid);

Parameter

ID resid Resource ID Resource ID

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (resid is invalid or cannot be used)
E_NOEXS Object does not exist (the resource specified in resid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Deletes the resource control blocks of the resource group specified in resid, and releases the resource ID.

The resource control blocks of all subsystems are deleted.

Additional Notes

Resources are deleted even if there are still tasks belonging to a resource to be deleted. In principle, resource
deletion must be performed after exit and deletion of all tasks belonging to the resources. The behavior is not
guaranteed if a resource is deleted while a task belonging to that resource remains and is calling a subsystem
(extended SVC). Likewise, the behavior is not guaranteed if a task belonging to a deleted resource calls a
subsystem (extended SVC).

The timing for actual resource control block deletion is implementation-dependent (See tk_cre_res).

The system resource group cannot be deleted (error code E_ID is returned).

T-Kernel 2.0 Specification 284 / 534

4.10.8 tk_get_res - Get Resource Management Block

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_res (ID resid , ID ssid , void **p_resblk);

Parameter

ID resid Resource ID Resource ID
ID ssid Subsystem ID Subsystem ID
void** p_resblk Resource Control Block Pointer to the area to return the return

parameter resblk

Return Parameter

void* resblk Resource Control Block Resource control block
ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (resid or ssid is invalid or cannot be used)
E_NOEXS Object does not exist (the resource specified in resid or ssid does not exist)
E_PAR Parameter error (invalid p_resblk)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets the address of the resource control block of resource group resid for subsystem ssid.

Additional Notes

E_OK might be returned even if this system call is issued for a deleted resource ID. Whether or not error
(E_NOEXS) is returned in this case is implementation-dependent.

T-Kernel 2.0 Specification 285 / 534

Chapter 5

T-Kernel/SM Functions

This chapter describes details of the functions provided by T-Kernel/SM (System Manager).

Overall Note and Supplement

• There are two types of API names that are defined in T-Kernel/SM specification: one beginning with tk_
and others. As a general rule, APIs with a name beginning with tk_ are implemented in extended SVC, and
other APIs are implemented as library functions (including in-line functions) or macros of the C language.
APIs that are defined in T-Kernel/SM, however, are not called as "system call." The word "system call" refers
to APIs that are defined in T-Kernel/OS or T-Kernel/DS.

• Some libraries and macros call some extended SVC or system calls indirectly.

• Error codes such as E_PAR, E_MACV, and E_NOMEM that can be returned in many situations are not de-
scribed here always unless there is some special reason for doing so.

• Except where otherwise noted, extended SVC and libraries of T-Kernel/SM cannot be called from a task-
independent portion and while dispatching and interrupts are disabled. There may be some limitations,
however, imposed by particular implementations (E_CTX).

• Extended SVC and libraries of T-Kernel/SM cannot be invoked from a lower protection level than that at
which T-Kernel/OS system calls can be invoked (lower than TSVCLimit)(E_OACV).

• Extended SVC and libraries of T-Kernel/SM are reentrant except when a special explanation is given. Note
that some functions perform mutual exclusion internally.

T-Kernel 2.0 Specification 286 / 534

5.1 System Memory Management Functions

The system memory management functions are for managing all the memory (system memory) allocated
dynamically by T-Kernel. This includes memory used internally by T-Kernel as well as task stacks, message
buffers, and memory pools.

System memory is managed in memory block units. A block size is usually a page size defined in MMU, and
assumed to be approximately 4 KB in the current implementation. A system that does not use an MMU can
set any desired block size, but approximately same size as the MMU page size is recommended. Block size
can be retrieved by calling tk_ref_smb.

System memory is allocated in the system space. T-Kernel does not manage task space memory.

System memory management functions consist of the extended SVCs for system memory operation that allo-
cate and release memory from the system memory, and the memory allocation libraries that manage memory
through subdividing system memory obtained in blocks into smaller ones.

The system memory management functions are for use not only within T-Kernel but also in applications,
subsystems, and device drivers. Use inside T-Kernel does not have to go through extended SVC; this choice
is implementation-dependent.

T-Kernel 2.0 Specification 287 / 534

5.1.1 System Memory Allocation

System memory allocation functions provide extended SVCs for allocating and releasing memory from the
system memory and referring to the system memory information.

T-Kernel 2.0 Specification 288 / 534

5.1.1.1 tk_get_smb - Allocate System Memory

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_get_smb (void **addr , INT nblk , UINT attr);

Parameter

void** addr Pointer to Memory Start
Address

Pointer to the area to return the start
address of the allocated memory

INT nblk Number of Blocks Number of memory blocks to be
allocated

UINT attr Attribute Attribute for memory to be allocated

Return Parameter

ER ercd Error Code Error code
void* addr Memory Start Address Start address of the allocated memory

Error Code

E_OK Normal completion
E_PAR Parameter error ((nblk≦0) or attr is invalid)
E_NOMEM Insufficient memory (system memory is insufficient)
E_MACV Memory access privilege error (unable to write to addr)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Allocates a contiguous memory area having the size of the number of memory blocks specified in nblk, and
having the attributes specified in attr. The start address of the allocated memory space is returned in addr.

The following attributes can be specified in attr:

attr := (TA_RNG0 || TA_RNG1 || TA_RNG2 || TA_RNG3) | [TA_NORESIDENT]

TA_RNG0 Specify the protect level 0 memory
TA_RNG1 Specify the protect level 1 memory
TA_RNG2 Specify the protect level 2 memory
TA_RNG3 Specify the protect level 3 memory
TA_NORESIDENT Specify nonresident memory

TA_RNGn is specified to limit the protection levels from which memory can be accessed. Only tasks running at
the same or higher protection level than the one specified can access the allocated memory.

T-Kernel 2.0 Specification 289 / 534

When TA_NORESIDENT is specified, the allocated memory becomes nonresident. In a system without MMU, the
actual behavior is the same as the resident memory even if the nonresident memory attribute is specified, but
an error is not returned.

If a negative value is specified in nblk or an unavailable attribute is specified in attr, the error code E_PAR is
returned. When the write access to the memory (the area to return the start address of the allocated memory)
pointed by addr is not allowed, the error code E_MACV is returned.

If the contiguous memory space for the number of blocks specified in nblk cannot be allocated, the error code
E_NOMEM is returned. In this case, NULL is returned in the memory pointed by addr.

Additional Notes

In a system without MMU, the implementation cannot detect the access privilege error exception even if an
access violates the memory protection level, which allows the access as normal. In consideration of program
portability and expandability, it is recommended that the appropriate protection level for the protection levels
of accessing tasks is specified for the memory to be allocated.

T-Kernel 2.0 Specification 290 / 534

5.1.1.2 tk_rel_smb - Release System Memory

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_rel_smb (void *addr);

Parameter

void* addr Memory Start Address Start address of memory to be released

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (invalid addr)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Releases the resident memory specified in addr. addr must be the address retrieved by tk_get_smb().

If the address specified in addr is invalid, the error code E_PAR is returned. Specifically, when addr points at
the space out of the memory range managed by T-Kernel or when the memory already released by tk_rel_smb()
is released again, the error code E_PAR is returned. However, due to implementation constraints, an error
may not be detected even if addr is invalid. In that case, the subsequent correct behavior is not guaranteed.
The caller must guarantee the validity of addr.

T-Kernel 2.0 Specification 291 / 534

5.1.1.3 tk_ref_smb - Reference System Memory Block

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_smb (T_RSMB *pk_rsmb);

Parameter

T_RSMB* pk_rsmb Packet to Return System
Memory Block information

Pointer to the area to return the system
memory information

Return Parameter

ER ercd Error Code Error code

pk_rsmb Detail:

INT blksz Block Size Block size (in bytes)
INT total Total Block Count Total block count
INT free Free Block Count Remaining free block count
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_MACV Memory access privilege error (unable to write to pk_rsmb)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets information about system memory.

A system with the virtual memory can use a memory larger than the physical memory by allocating the non-
resident memory. For this reason, total number of blocks or the number of remaining free blocks may not
be uniquely determined. In such cases, the contents of total and free are implementation-dependent, but
preferably they should be values such that free ÷ total gives a useful estimate of the remaining memory
capacity.

T-Kernel 2.0 Specification 292 / 534

5.1.2 Memory Allocation Library Functions

Memory allocation library is used to efficiently use memory by subdividing system memory obtained in blocks
by tk_get_smb() into smaller ones.

System memory returned by tk_get_smb() is managed inside the memory allocation library, and the memory
of the size requested from an application is allocated from that memory. If the free memory managed by
the memory allocation library is smaller than the one requested from an application, additional memory is
allocated by calling tk_get_smb() again.

On the other hand, when memory is returned from an application, if the entire memory block containing the
returned memory becomes free (unallocated), that memory block is released by calling tk_rel_smb(). The
strict timing, however, of allocating or releasing memory block is implementation-dependent.

Memory allocation library provides functions equivalent to malloc/calloc/realloc/free provided by C stan-
dard library. If a target memory is nonresident memory, its API has a name beginning with the letter V, and
if a target memory is resident memory, its API has a name beginning with the letter K.

These memories are all allocated as memory with a protection level specified in TSVCLimit.

T-Kernel 2.0 Specification 293 / 534

5.1.2.1 Vmalloc - Allocate Nonresident Memory

C Language Interface

#include <tk/tkernel.h>

void* Vmalloc (size_t size);

Parameter

size_t size Size Memory size to be allocated (in bytes)

Return Parameter

void* addr Memory Start Address Start address of the allocated memory

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Allocates the nonresident memory size bytes and returns the start address of the allocated memory in addr.

When the specified size of memory cannot be allocated or 0 is specified in size, NULL is returned in addr.

APIs in the memory allocation library, including Vmalloc, cannot be called from a task-independent portion
and while dispatch or interrupt is disabled. Such a call may lead to an undefined behavior including possible
system failure, and the caller is responsible for guaranteeing the state on the call.

Additional Notes

Any value can be specified in size. Note that a larger memory size than the number of bytes specified in size
may be allocated internally for allocating the management space, aligning the allocated memory address, or
other reasons. For example, when the implementation specifies that the least allocatable memory size is 16
bytes and the alignment is 8-byte unit, 16-byte memory is allocated internally even if a value less than 16
bytes is specified in size. Similarly, 24-byte memory is allocated even if 20 bytes is specified in size.

Therefore, when comparing the entire system memory size used by the memory allocation library with the
total memory size allocated by individual APIs in the memory allocation library, the former value may be
larger.

T-Kernel 2.0 Specification 294 / 534

5.1.2.2 Vcalloc - Allocate Nonresident Memory

C Language Interface

#include <tk/tkernel.h>

void* Vcalloc (size_t nmemb , size_t size);

Parameter

size_t nmemb Number of Memory Blocks Number of memory blocks to be
allocated

size_t size Size Memory block size to be allocated (in
bytes)

Return Parameter

void* addr Memory Start Address Start address of the allocated memory

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Allocates the specified number (nmemb) of contiguous memory blocks of the specified bytes (size), clears them
with 0, then returns the start address of them in addr. This memory allocation operation is identical to allo-
cating one memory block of the number of size * nmemb bytes. The allocated memory is nonresident memory.

When the specified number of memory blocks cannot be allocated or 0 is specified in nmemb or size, NULL is
returned in addr.

APIs in the memory allocation library, including Vcalloc, cannot be called from a task-independent portion
and while dispatch or interrupt is disabled. Such a call may lead to an undefined behavior including possible
system failure, and the caller is responsible for guaranteeing the state on the call.

Additional Notes

A larger memory size than the number of size * nmemb bytes may be allocated internally. For more details, see
the additional note for Vmalloc().

T-Kernel 2.0 Specification 295 / 534

5.1.2.3 Vrealloc - Reallocate Nonresident Memory

C Language Interface

#include <tk/tkernel.h>

void* Vrealloc (void *ptr , size_t size);

Parameter

void* ptr Pointer to Memory Memory address to be reallocated
size_t size Size Reallocated memory size (in bytes)

Return Parameter

void* addr Memory Start Address Start address of the reallocated memory

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Changes the size of the previously allocated nonresident memory specified in ptr to the size specified in size.
At that time, reallocates the memory and returns the start address of the reallocated memory in addr.

Generally, addr results in different value from ptr because the memory start address is moved by reallocating
the memory with resizing. The content of the reallocated memory is retained. To do so, the memory content
is copied during the Vrealloc processing. The memory that becomes free by reallocation will be released.

The start address of the memory allocated previously by Vmalloc, Vcalloc, or Vrealloc must be specified in
ptr. The caller must guarantee the validity of ptr.

If NULL is specified in ptr, only the new memory allocation is performed. This operation is identical to Vmal-
loc().

When the specified size of memory cannot be reallocated or 0 is specified in size, NULL is returned in addr.
In this case, the memory specified by ptr is only released if a value other than NULL is specified in ptr. This
operation is identical to Vfree().

APIs in the memory allocation library, including Vrealloc, cannot be called from a task-independent portion
and while dispatch or interrupt is disabled. Such a call may lead to an undefined behavior including possible
system failure, and the caller is responsible for guaranteeing the state on the call.

Additional Notes

The memory address returned in addr may be the same as ptr in some cases, for example, when the memory
size becomes smaller than before by reallocation or when the reallocation is performed without moving the
memory start address because an unallocated memory area was around the memory specified in ptr.

T-Kernel 2.0 Specification 296 / 534

A larger memory size than the number of bytes specified in sizemay be allocated internally. For more details,
see the additional note for Vmalloc().

T-Kernel 2.0 Specification 297 / 534

5.1.2.4 Vfree - Release Nonresident Memory

C Language Interface

#include <tk/tkernel.h>

void Vfree (void *ptr);

Parameter

void* ptr Pointer to Memory Start address of memory to be released

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Releases the nonresident memory specified in ptr.

The start address of the memory allocated previously by Vmalloc, Vcalloc, or Vrealloc must be specified in
ptr. The caller must guarantee the validity of ptr.

APIs in the memory allocation libraries, including Vfree, cannot be called from a task-independent portion
and while dispatch or interrupt is disabled. Such a call may lead to an undefined behavior including possible
system failure, and the caller is responsible for guaranteeing the state on the call.

T-Kernel 2.0 Specification 298 / 534

5.1.2.5 Kmalloc - Allocate Resident Memory

C Language Interface

#include <tk/tkernel.h>

void* Kmalloc (size_t size);

Parameter

size_t size Size Memory size to be allocated (in bytes)

Return Parameter

void* addr Memory Start Address Start address of the allocated memory

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Allocates the resident memory of bytes specified in size and returns the start address of the allocated memory
in addr.

When the specified size of memory cannot be allocated or 0 is specified in size, NULL is returned in addr.

APIs in the memory allocation library, including Kmalloc, cannot be called from a task-independent portion
and while dispatch or interrupt is disabled. Such a call may lead to an undefined behavior including possible
system failure, and the caller is responsible for guaranteeing the state on the call.

Additional Notes

A larger memory size than the number of bytes specified in sizemay be allocated internally. For more details,
see the additional note for Vmalloc().

T-Kernel 2.0 Specification 299 / 534

5.1.2.6 Kcalloc - Allocate Resident Memory

C Language Interface

#include <tk/tkernel.h>

void* Kcalloc (size_t nmemb , size_t size);

Parameter

size_t nmemb Number of Memory Blocks Number of memory blocks to be
allocated

size_t size Size Memory block size to be allocated (in
bytes)

Return Parameter

void* addr Memory Start Address Start address of the allocated memory

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Allocates the specified number (nmemb) of contiguous memory blocks of the specified bytes (size), clears them
with 0, then returns the start address of them in addr. This memory allocation operation is identical to allo-
cating one memory block of the number of size * nmemb bytes. The allocated memory is a resident memory.

When the specified number of memory blocks cannot be allocated or 0 is specified in nmemb or size, NULL is
returned in addr.

APIs in the memory allocation libraries, including Kcalloc, cannot be called from a task-independent portion
and while dispatch or interrupt is disabled. Such a call may lead to an undefined behavior including possible
system failure, and the caller is responsible for guaranteeing the state on the call.

Additional Notes

A larger memory size than the number of size * nmemb bytes may be allocated internally. For more details, see
the additional note for Vmalloc().

T-Kernel 2.0 Specification 300 / 534

5.1.2.7 Krealloc - Reallocate Resident Memory

C Language Interface

#include <tk/tkernel.h>

void* Krealloc (void *ptr , size_t size);

Parameter

void* ptr Pointer to Memory Memory address to be reallocated
size_t size Size Reallocated memory size (in bytes)

Return Parameter

void* addr Memory Start Address Start address of the reallocated memory

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Changes the size of the previously allocated resident memory specified in ptr to the size specified in size. At
that time, reallocates the memory and returns the start address of the reallocated memory in addr.

Generally, addr results in different value from ptr because the memory start address is moved by reallocating
the memory with resizing. The content of the reallocated memory is retained. To do so, the memory content
is copied during the Krealloc processing. The memory that becomes free by reallocation will be released.

The start address of the memory allocated previously by Kmalloc, Kcalloc, or Krealloc must be specified in
ptr. The caller must guarantee the validity of ptr.

If NULL is specified in ptr, only the new memory allocation is performed. This operation is identical to Kmal-
loc().

When the specified size of memory cannot be reallocated or 0 is specified in size, NULL is returned in addr.
In this case, the memory specified by ptr is only released if a value other than NULL is specified in ptr. This
operation is identical to Kfree().

APIs in the memory allocation library, including Krealloc, cannot be called from a task-independent portion
and while dispatch or interrupt is disabled. Such a call may lead to an undefined behavior including possible
system failure, and the caller is responsible for guaranteeing the state on the call.

Additional Notes

The memory address returned in addr may be the same as ptr in some cases, for example, when the memory
size becomes smaller than before by reallocation or when the reallocation is performed without moving the
memory start address because an unallocated memory area was around the memory specified in ptr.

T-Kernel 2.0 Specification 301 / 534

A larger memory size than the number of bytes specified in sizemay be allocated internally. For more details,
see the additional note for Vmalloc().

T-Kernel 2.0 Specification 302 / 534

5.1.2.8 Kfree - Release Resident Memory

C Language Interface

#include <tk/tkernel.h>

void Kfree (void *ptr);

Parameter

void* ptr Pointer to Memory Start address of memory to be released

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Releases the resident memory specified in ptr.

The start address of the memory allocated previously by Kmalloc, Kcalloc, or Krealloc must be specified in
ptr. The caller must guarantee the validity of ptr.

APIs in the memory allocation library, including Kfree, cannot be called from a task-independent portion and
while dispatch or interrupt is disabled. Such a call may lead to an undefined behavior including possible
system failure, and the caller is responsible for guaranteeing the state on the call.

T-Kernel 2.0 Specification 303 / 534

5.2 Address Space Management Functions

Address space management functions perform various operations or managements on logical address spaces.
These functions are mainly realized by operating on MMUs or page tables, and offer address space config-
uration functions to set a task space, address space checking that checks access privilege, locking memory
space (resident), and conversion and mapping between logical address and physical address.

These functions are used to not only implement system programs such as device drivers and subsystems
but also to realize a virtual memory system by combining subsystems that process a demand paging related
processing.

APIs for address space management functions are provided even for systems that do not use MMUs. In
consideration of portability and expandability, it is preferable for applications to use these APIs appropriately
even on the systems that do not use MMUs.

In T-Kernel, four levels from 0 to 3 (meaning privileged mode, user mode, etc.) are defined as the protection
level at runtime, and also four levels from 0 to 3 are defined as the protection level of memory to be accessed.
The currently running execution task can access only to the memory with the same or lower protection level.
An MMU is responsible for checking the memory privileges at runtime. This function is useful for protecting
a system such as OS from being illegally accessed by programs. To realize a memory access privileges check
function, T-Kernel sets configuration of MMU and others appropriately.

Caller access privilege information of memory is held for each task to indicate the access right of a protection
level immediately before an extended SVC is called. As the information indicates the protection level prior to
an extended SVC, it may not be identical to the current protection level at runtime. For example, when a task
that is running at protection level 3 calls an extended SVC that usually runs at protection level 0, the task will
have an access right of protection level 3. When extended SVC (a) calls extended SVC (b), making a nested
call, the caller access privilege information at the extended SVC (b) that is called in a nested manner has a
protection level of immediately before the extended SVC (b) has been called, which means the protection
level 0 under which the extended SVC (a) is running.

Caller access privilege information of memory is set as follows.

• Immediately after a task is started, the protection level at runtime specified when the task was created is set
as the caller access privilege information.

• When an extended SVC is called, the protection level at the time of the call is set as the caller access privilege
information.

• Upon return from the extended SVC, the caller access privilege information reverts to that at the time the
extended SVC was called.

• When SetTaskSpace() is issued, the protection level of the specified task just before the call to an extended
SVC is set as the caller access privilege information of the invoking task. When the call to extended SVC is
nested, the protection level at runtime just before the last call to the extended SVC is set. When the specified
task is running a task portion, the protection level at runtime specified when the task was created is set as
the caller access privilege information of the running task.

Caller access privilege information of memory is maintained in order for extended SVC to support operations
depending on the protection levels of callers. For example, address space checking functions (ChkSpaceXXX)
can be used in extended SVC to check memory access privilege of the caller, as it utilizes caller access privilege
information instead of current protection level at runtime.

T-Kernel 2.0 Specification 304 / 534

5.2.1 Address Space Configuration

How to handle T-Kernel address space is explained in Section 2.7.1, “Address Space”. Address space con-
figuration functions provide APIs for setting task address spaces and caller access privilege information.

T-Kernel 2.0 Specification 305 / 534

5.2.1.1 SetTaskSpace - Set Task Space

C Language Interface

#include <tk/tkernel.h>

ER ercd = SetTaskSpace (ID tskid);

Parameter

ID tskid Task ID Task ID of the task which has the
source address space

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID tskid is invalid
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invoking task specified by other than TSK_SELF

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Sets the task space and caller access privilege information of the invoking task according to the task specified
in tskid. As a result, the task that executed this API has the same address space as the task with tskid, and the
protection level of the specified task just before the call to an extended SVC is set as the caller access privilege
information of the invoking task. When the call to extended SVC is nested, the protection level at runtime
just before the last call to the extended SVC is set. When the specified task is running a task portion, the
protection level at runtime specified when the specified task was created is set as the caller access privilege
information of the invoking task.

Note that, even if the address space or caller access privilege information of the task tskid (target task) is
changed after executing this API, the address space or caller access privilege information of the invoking task
is not affected. This means that only the state of the target task at the time when executing this API is reflected
to that of the invoking task. The invoking task does not follow the later states of the target task.

When this API is executed during an extended SVC and the extended SVC returns to the caller, its caller
access privilege information is restored to the state prior to calling the extended SVC. However, its task space
is not restored. The task space set by this API is still valid after the extended SVC returned to the caller.

The task ID of the invoking task cannot be specified in tskid. If TSK_SELF is used to specify the invoking task,
caller access privilege information is set to the currently running protection level; task space is not switched
in this case.

Note that the protection level at runtime is not altered after changing caller access privilege information.

T-Kernel 2.0 Specification 306 / 534

Additional Notes

In the situation that a task A (a task that calls an extended SVC for the device management or subsystem)
requests another task B to manage a device driver or subsystem, SetTaskSpace() is used to set the task space
and caller access privilege information of the managing task B as the same as those of the requestor task A.

For example, it is assumed that the managing task B for the device driver reads the input data from the device
and stores it in the buffer X specified by the requestor task A. If the address of the buffer X is included in the
task space of the task A, and the requestor task A and the managing task B have different task spaces, the
managing task B cannot access the buffer X and store the input data in it.

In such a case, the managing task B can execute SetTaskSpace() in advance to set its task space as the same
as that of the requestor task A to access the buffer X. Since the caller access privilege information of the
managing task B becomes the same as that of the requestor task A, it is checked appropriately when storing
the input data in the buffer X.

Use tk_set_tsp to set the task space only without setting the caller access privilege information.

T-Kernel 2.0 Specification 307 / 534

5.2.2 Address Space Checking

The following functions check whether access is allowed to the specified memory space, based on the current
caller access privilege information.

APIs named ChkSpaceXXX() are provided for such checking. The last letter of API name means as follows:

• R: Check for read access privilege.

• RW: Check for read and write access privilege.

• RE: Check for read and execute access privilege.

If the current caller access privilege information does not allow access to the target memory space, or memory
does not exist in the target memory space, an error code E_MACV is returned. The same error code E_MACV
is returned when the access is not allowed for a part of the target memory space, or a part of memory does
not exist in the target memory space.

If the target memory space for checking is a task space, the currently set task space is used.

Additional Notes
When a general application task A running at lower protection level requests a device driver or subsystem
running at higher protection level for a processing, if a parameter or return parameter of the processing is
placed in the memory space X, a check should be performed by the device driver or subsystem side to check
if the requesting task A has access privileges for the memory space X. If this check is not performed, task
A can, for example, easily access the disallowed memory space via a device driver or subsystem illegally.
APIs for address space checking are functions that are assumed to be used to perform such a check in these
situation.

T-Kernel 2.0 Specification 308 / 534

5.2.2.1 ChkSpaceR - Check Read Access Privilege

C Language Interface

#include <tk/tkernel.h>

ER ercd = ChkSpaceR (CONST void *addr , INT len);

Parameter

CONST void* addr Memory Start Address Start address of the target memory
INT len Length Size of the target memory (in bytes)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_MACV Memory cannot be accessed

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Based on the current caller access privilege information, checks whether read access is allowed to the len
bytes memory area from the address specified in addr. E_OK is returned if access is allowed; E_MACV is
returned otherwise.

T-Kernel 2.0 Specification 309 / 534

5.2.2.2 ChkSpaceRW - Check Read-Write Access Privilege

C Language Interface

#include <tk/tkernel.h>

ER ercd = ChkSpaceRW (CONST void *addr , INT len);

Parameter

CONST void* addr Memory Start Address Start address of the target memory
INT len Length Size of the target memory (in bytes)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_MACV Memory cannot be accessed

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Based on the current caller access privilege information, checks whether both read and write accesses are
allowed to the len bytes memory area from the address specified in addr. E_OK is returned if both accesses
are allowed; E_MACV is returned if at least one is prohibited.

T-Kernel 2.0 Specification 310 / 534

5.2.2.3 ChkSpaceRE - Check Read-Execute Access Privilege

C Language Interface

#include <tk/tkernel.h>

ER ercd = ChkSpaceRE (CONST void *addr , INT len);

Parameter

CONST void* addr Memory Start Address Start address of the target memory
INT len Length Size of the target memory (in bytes)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_MACV Memory cannot be accessed

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Based on the current caller access privilege information, checks whether read access is allowed to the len
bytes memory area from the address specified in addr and whether that memory area can be executed as a
program. E_OK is returned if both are allowed; E_MACV is returned if at least one is prohibited.

T-Kernel 2.0 Specification 311 / 534

5.2.2.4 ChkSpaceBstrR - Check Read Access Privilege (String)

C Language Interface

#include <tk/tkernel.h>

INT rlen = ChkSpaceBstrR (CONST UB *str , INT max);

Parameter

CONST UB* str String Start address of the target string
INT max Max Length Maximum length of the target

string

Return Parameter

INT rlen Result Length Length of the accessible string (in
bytes)

or Error Code Error code

Error Code

E_MACV Memory cannot be accessed

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Based on the current caller access privilege information, checks whether read access and write access is
allowed to the memory area from str to the string termination ('\0') or to the number of characters (bytes)
specified in max, whichever comes first. If max = 0 is set, privilege is checked up to the string termination.

If access is allowed, the length of the string (in bytes) is returned. If the string termination occurs before
max bytes, the length to the character before '\0' is returned; if max characters are scanned before the string
termination is seen, max is returned.

If access is prohibited, the error code E_MACV is returned.

T-Kernel 2.0 Specification 312 / 534

5.2.2.5 ChkSpaceBstrRW - Check Read-Write Access Privilege (String)

C Language Interface

#include <tk/tkernel.h>

INT rlen = ChkSpaceBstrRW (CONST UB *str , INT max);

Parameter

CONST UB* str String Start address of the target string
INT max Max Length Maximum length of the target

string

Return Parameter

INT rlen Result Length Length of the accessible string (in
bytes)

or Error Code Error code

Error Code

E_MACV Memory cannot be accessed

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Based on the current caller access privilege information, checks whether read access and write access is
allowed to the memory area from str to the string termination ('\0') or to the number of characters (bytes)
specified in max, whichever comes first. If max = 0 is set, privilege is checked up to the string termination.

If both read and write access is allowed, the length of the string (bytes) is returned. If the string termination
occurs before max bytes, the length to the character before '\0' is returned; if max characters are scanned before
the string termination is seen, max is returned.

If at least one of read and write accesses is prohibited, the error code E_MACV is returned.

T-Kernel 2.0 Specification 313 / 534

5.2.2.6 ChkSpaceTstrR - Check Read Access Privilege (TRON Code)

C Language Interface

#include <tk/tkernel.h>

INT rlen = ChkSpaceTstrR (CONST TC *str , INT max);

Parameter

CONST TC* str String Start address of the target string
INT max Max Length Maximum length of the target

string

Return Parameter

INT rlen Result Length Length of the accessible string (in
TRON code characters)

or Error Code Error code

Error Code

E_MACV Memory cannot be accessed

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Based on the current caller access privilege information, checks whether read access is allowed to the memory
area from str to the TRON code string termination (TNULL = 0x0000) or to the number of characters (number
of TRON code characters) specified in max, whichever comes first. If max = 0 is set, privilege is checked up to
the string termination.

If access is allowed, the length of the string (number of TRON code characters) is returned. If the string
termination occurs before max TRON code characters, the length to the character before TNULL is returned; if
max characters are scanned before the string termination is seen, max is returned.

If access is prohibited, the error code E_MACV is returned.

str must be an even-numbered address.

T-Kernel 2.0 Specification 314 / 534

5.2.2.7 ChkSpaceTstrRW - Check Read-Write Access Privilege (TRON Code)

C Language Interface

#include <tk/tkernel.h>

INT rlen = ChkSpaceTstrRW (CONST TC *str , INT max);

Parameter

CONST TC* str String Start address of the target string
INT max Max Length Maximum length of the target

string (in TRON code characters)

Return Parameter

INT rlen Result Length Length of the accessible string
or Error Code Error code

Error Code

E_MACV Memory cannot be accessed

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Based on the current caller access privilege information, checks whether read access is and write access
allowed to the memory area from str to the TRON code string termination (TNULL = 0x0000) or to the number
of characters (number of TRON code characters) specified in max, whichever comes first. If max = 0 is set,
privilege is checked up to the string termination.

If both read and write access is allowed, the length of the string (number of TRON code characters) is returned.
If the string termination occurs before max TRON code characters, the length to the character before TNULL is
returned; if max characters are scanned before the string termination is seen, max is returned.

If at least one of read and write accesses is prohibited, the error code E_MACV is returned.

str must be an even-numbered address.

T-Kernel 2.0 Specification 315 / 534

5.2.3 Logical Address Space Management

Logical address space management functions provide APIs relating to converting address (conversion from
a logical address to a physical address), making memory resident, and setting memory access privileges.

T-Kernel performs the address conversion (conversion from a logical address to a physical address) using
MMUs in order to manage the access privileges for memory, realize a task space, and use memory efficiently.
While usual programs does not need to handle any physical address because they are running in a logical
address space, some system programs that directly operate a hardware device such as a device driver that
performs DMA transfer may handle physical addresses. Since mapping between a logical address and a phys-
ical address must be retrieved or set, CnvPhysicalAddr(), MapMemory(), and UnmapMemory() are provided
as APIs for these operations.

When a virtual memory system is constructed on T-Kernel, a situation occurs where memory being accessed
from program A does not physically exist in main memory (paged out state). When there is an access to
the paged-out memory, in the case of some CPU, an MMU detects the access and raises a page fault CPU
exception, letting the virtual memory system that processes the exception returns (pages in) the paged out
memory content from an external disk (secondary storage device) to memory. As this processing is performed,
program A can proceed with its processing regardless of whether the accessed memory is paged out or not.
This is the general implementation method of a virtual memory system.

The above page-in processing cannot be performed when a page fault occurs, however, for those programs
which are during execution of task-independent portion, dispatch disabled, or interrupts disabled. For this
reason, to avoid page faults during execution of a program, all the memory to be accessed must be made
resident in advance by paging them in. The same action also needs to be performed when performing a
DMA transfer or executing a strictly time-constrained program. LockSpace() for locking (making resident)
memory space and UnlockSpace() for releasing the locked memory space are provided as APIs for this kind
of situation.

In addition to this, GetSpaceInfo() to retrieve various information on address space, SetMemoryAccess() to
set memory access privileges, etc. are provided as APIs.

APIs that perform processing related to DMA transfer also perform memory cache control optimized to the
DMA transfer. Specifically, when performing a conversion from a logical address to a physical address using
CnvPhysicalAddr(), memory caching for the target memory space is turned off so that DMA transfer can be
performed. After completing the DMA transfer, making memory nonresident by executing UnlockSpace()
returns memory caching to the on state.

Additional Notes
T-Kernel/SM sets or operates MMUs and page tables in order to manage correspondence relationship (map-
ping) between a logical space and a physical space, memory access privileges, page nonexistence, making
a page resident, etc. However, T-Kernel is not the sole entity to realize a virtual memory system. In order to
actually realize a virtual memory system, other various processings such as page in/out between the physical
memory and the disk (secondary storage device) are required. These processings are performed by subsys-
tems (part of T-Kernel Extension) for realizing a virtual memory system rather than T-Kernel itself.

T-Kernel 2.0 Specification 316 / 534

5.2.3.1 LockSpace - Lock Memory Space

C Language Interface

#include <tk/tkernel.h>

ER ercd = LockSpace (CONST void *addr , INT len);

Parameter

CONST void* addr Memory Start Address Start address of memory to be
locked

INT len Length Size of memory to be locked (in
bytes)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (len ≦ 0)
E_MACV An area out of the memory space is specified
E_NOMEM Insufficient memory (page in memory for resident cannot be allocated)
E_LIMIT Lock attempts exceed the upper limit of the number of locks

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Locks (makes resident) the len bytes memory area from the logical address addr (target area). After making an
area resident with this API, the target area will not be paged out, and is always mapped to a physical address
space and allocated to the real memory (physical memory).

When a part of the target area has been paged out, it is paged in before making the area resident. If the real
memory cannot be allocated for paging in, the error code E_NOMEM is returned.

LockSpace() can be executed more than once for the same memory area. In this case, the number of
LockSpace() operations is counted and the same number of UnlockSpace() operations can make the area
nonresident. That is, the resident state can be nested by LockSpace(). However, there is an implementation-
dependent upper limit to the nesting depth (difference between the numbers of LockSpace() and Un-
lockSpace() operations). If LockSpace() is executed exceeding the upper limit, the error code E_LIMIT is
returned.

If 0 or less is specified in len, the error code E_PAR is returned. If the target area includes an area out of the
memory space (logical address that is not assumed to be allocated to memory), the error code E_MACV is
returned.

The lock operation (making resident) with this API is performed in units of page, using the MMU function.
Therefore, if addr is not the start address of a page or len is not an integral multiple of the page size, the entire

T-Kernel 2.0 Specification 317 / 534

pages containing the range specified by addr and len are taken as the target area. For example, if 1 is specified
in len, one page area is locked.

In a system without MMU, all the memory can be considered resident. Thus, no specific operation must
be performed in LockSpace(), but E_OK must be returned rather than an error code, in consideration of
compatibility with a system using MMU. In a system without MMU, whether or not to check errors such as
E_PAR is implementation-dependent.

Additional Notes

Among memory resident operations with LockSpace(), the page-in and some other operations are per-
formed by calling the subsystem to realize a virtual memory system. The calling interface is implementation-
dependent.

An area in logical address space allocated by MapMemory() must not be included in the target area for
LockSpace(). The subsequent correct behavior of the whole system in such a case is not guaranteed.

T-Kernel 2.0 Specification 318 / 534

5.2.3.2 UnlockSpace - Unlock Memory Space

C Language Interface

#include <tk/tkernel.h>

ER ercd = UnlockSpace (CONST void *addr , INT len);

Parameter

CONST void* addr Memory Start Address Start address of memory to be
unlocked

INT len Length Size of memory to be unlocked (in
bytes)

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (len ≦ 0)
E_MACV An area out of the memory space is specified
E_LIMIT Non-locked area was specified

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Unlocks (makes nonresident) the len bytes area from the logical address addr (target area). After being made
nonresident with this API, the target area will be subject to page-out.

If the memory cache mode was off for the target area, it is turned on.

The target area must be the same area that was specified when LockSpace() was issued to lock it. Note that
it is not possible to unlock just a part of a locked area. In addition, T-Kernel cannot detect such an operation
as an error. The caller is responsible for specifying the same area.

When LockSpace() was executed more than once for the same memory area, the same number of Un-
lockSpace() operations can make it nonresident. UnlockSpace() returns E_OK rather than an error even
if the memory area is not made nonresident because the number of UnlockSpace() operations does not reach
the number of LockSpace() operations. On the other hand, if a non-locked area is specified for the target area,
E_LIMIT is returned as the lock count error.

If 0 or less is specified in len, the error code E_PAR is returned. If the target area includes an area out of the
memory space (logical address that is not assumed to be allocated to memory), the error code E_MACV is
returned.

The unlock operation (making nonresident) with this API is performed in units of page, using the MMU func-
tion. Therefore, if addr is not the start address of a page or len is not an integral multiple of the page size, the

T-Kernel 2.0 Specification 319 / 534

entire pages containing the range specified by addr and len are taken as the target area. For example, if 1 is
specified in len, one page area is unlocked.

In a system without MMU, all the memory can be considered resident. Thus, no specific operation must be
performed in UnlockSpace() as well as LockSpace(), but E_OK must be returned rather than an error code, in
consideration of compatibility with a system using MMU. In a system without MMU, whether or not to check
errors such as E_PAR is implementation-dependent.

Additional Notes

A logical address area allocated by MapMemory() must not be included in the target area for UnlockSpace().
The subsequent correct behavior of the whole system is not guaranteed in such a case.

When performing the DMA transfer, the buffer memory area must be made resident and the buffer physical
address must be set on the DMA controller after turning off the memory cache mode setting. Normal steps
are as follows:

1. Use LockSpace() to make the buffer resident.

2. Use CnvPhysicalAddr() to get the buffer physical address and turn off the buffer memory cache mode
setting.

3. Perform the DMA transfer between the buffer and the I/O device.

4. Use UnlockSpace() to make the buffer nonresident and turn on the buffer memory cache mode setting.

UnlockSpace() always turns on the memory cache mode setting regardless of previously issued APIs as shown
above. Note that the memory cache mode setting may be changed by executing UnlockSpace().

T-Kernel 2.0 Specification 320 / 534

5.2.3.3 CnvPhysicalAddr - Get Physical Address

C Language Interface

#include <tk/tkernel.h>

INT rlen = CnvPhysicalAddr (CONST void *vaddr , INT len , void **paddr);

Parameter

CONST void* vaddr Virtual Address Logical address of the source
INT len Length Memory area size (in bytes)
void** paddr Pointer to Physical Address Pointer to the area to return the

physical address corresponding to
the logical address

Return Parameter

INT rlen Result Length Size of contiguous physical address
area (in bytes)

or Error Code Error code
void* paddr Physical Address Physical address corresponding to

the logical address

Error Code

E_OK Normal completion
E_PAR Parameter error (cache of the target area cannot be controlled)
E_MACV An area out of the memory space is specified

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets the physical address corresponding to the logical address vaddr, returning the result in paddr. Also
returns the contiguous size (in bytes) of the corresponding physical address in the return code rlen, within
the len bytes memory area from vaddr. That is, the contiguous correspondence between the logical address
and the physical address exists only for rlen in size (rlen≦len). The contiguous area in the logical address
space from vaddr for rlen corresponds to the contiguous area in the physical address space from paddr for
rlen.

Also turns off the memory cache mode setting for the physical address area from paddr for rlen (target area).
This assumes that the DMA transfer is performed after executing CnvPhysicalAddr(). If it is not possible to
make memory cached off partly by a hardware limitation, this API flush the cache memory (that is, write back
it and invalidate it).

CnvPhysicalAddr() does not make the target area resident. Before performing the DMA transfer, the buffer
area must be made resident (locked) by separately issuing LockSpace() for the buffer area.

If 0 or less is specified in len, the error code E_PAR is returned. If the len bytes memory area from vaddr

T-Kernel 2.0 Specification 321 / 534

includes an area out of the memory space (logical address that is not assumed to be allocated to memory),
the error code E_MACV is returned.

Additional Notes

The CnvPhysicalAddr() API is intended to be used for preparing the DMA transfer. For concrete usage for
the DMA transfer, see the additional note for UnlockSpace().

For the target area of CnvPhysicalAddr(), it is best to set the memory attribute that guarantees the completion
of memory access in addition to turning off the cache mode setting.

T-Kernel 2.0 Specification 322 / 534

5.2.3.4 MapMemory - Map Memory

C Language Interface

#include <tk/tkernel.h>

ER ercd = MapMemory (CONST void *paddr , INT len , UINT attr , void **laddr);

Parameter

CONST void* paddr Physical Address Physical address to be mapped
INT len Length Size of memory to be mapped (in

bytes)
UINT attr Attribute Memory attribute for mapping
void** laddr Pointer to Logical Address Pointer to the area to return the

mapped logical address

Return Parameter

ER ercd Error Code Error code
void* laddr Logical Address Mapped logical address

Error Code

E_OK Normal completion
E_PAR Parameter error (len ≦ 0)
E_LIMIT Insufficient logical address space to be mapped
E_NOMEM Insufficient real memory for allocating or insufficient memory for managing logical

address space

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Maps the len bytes contiguous area from the physical address paddr to a logical address space and returns the
mapped logical start address in laddr. The mapped memory area is made resident (locked). The attributes
specified in attr are set for the mapped memory area.

The following attributes can be specified in attr:

attr := (MM_USER || MM_SYSTEM) | [MM_READ] | [MM_WRITE] | [MM_EXECUTE] | [MM_CDIS]

MM_USER User level access
MM_SYSTEM System level access
MM_READ Read access
MM_WRITE Write access
MM_EXECUTE Execution
MM_CDIS Disable cache

T-Kernel 2.0 Specification 323 / 534

Other attributes may be specified depending on the hardware or implementation.

If NULL is specified in paddr, the actual contiguous len bytes physical memory is allocated for address and the
real memory physical address space is mapped to the logical address space.

If 0 or less is specified in len, the error code E_PAR is returned. If the allocation fails due to insufficient
mapped logical address space, the error code E_LIMIT is returned. If the memory required to manage the
logical address space cannot be allocated or the real memory cannot be allocated when NULL is specified in
paddr, the error code E_NOMEM is returned.

Additional Notes

MapMemory() has the function to map the space for an I/O device (Video RAM etc.) located in the physical
address space to the logical address space that can be accessed directly from a program such as a device
driver.

The mapped logical address laddr is automatically allocated during execution of this API. The mapped logical
address cannot be specified.

An address within the system memory managed by T-Kernel cannot be specified in paddr. When you want
to reserve the system memory with MapMemory(), specify NULL in paddr to use the system memory that is
automatically allocated by T-Kernel.

Values corresponding to symbols (mnemonics) for attributes specified in attr may vary depending on imple-
mentation. Therefore, the above symbols should be used for attr, in consideration of compatibility.

MapMemory() must not be executed for the physical address area that is already a target of MapMemory(). The
memory allocated by MapMemory() is a resident memory and cannot be made nonresident, so UnlockSpace()
should not be called to make it nonresident. The caller is responsible for preventing such usage.

After executing MapMemory(), directly accessing paddr or subsequent physical address using other method
rather than via the logical address allocated as laddr may cause cache inconsistency or other problem. With
such an access, the caller is responsible for paying careful attention to data consistency.

If MM_CDIS is specified for attr, the memory attribute should guarantee the completion of memory access in
addition to not using cache.

T-Kernel 2.0 Specification 324 / 534

5.2.3.5 UnmapMemory - Unmap Memory

C Language Interface

#include <tk/tkernel.h>

ER ercd = UnmapMemory (CONST void *laddr);

Parameter

CONST void* laddr Logical Address Logical address to be unmapped

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (invalid laddr)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Unmaps (releases) a logical address area allocated by MapMemory(). The logical address of the area to be
unmapped is specified in laddr. It must be the value retrieved from the return parameter laddr of MapMem-
ory().

If paddr = NULL is specified to allocate the real memory when executing MapMemory(), it is also released by
executing UnmapMemory().

T-Kernel 2.0 Specification 325 / 534

5.2.3.6 GetSpaceInfo - Get Various Information about Address Space

C Language Interface

#include <tk/tkernel.h>

ER ercd = GetSpaceInfo (CONST void *addr , INT len , T_SPINFO *pk_spinfo);

Parameter

CONST void* addr Start Address Start logical address to get the
information for

INT len Length Space size to get the information for
(in bytes)

T_SPINFO* pk_spinfo Packet to Return Address
Space Info

Pointer to the area to return the
address space information

Return Parameter

ER ercd Error Code Error code

pk_spinfo Detail:

void* paddr Physical Address Physical address corresponding to
addr

void* page Page Start Address Start physical address of the page
that addr belongs to

INT pagesz Page Size Page size (in bytes)
INT cachesz Cache Line Size Cache line size (in bytes)
INT cont Continuous Length Contiguous physical address space

size (in bytes)
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_OK Normal completion
E_PAR Parameter error (addr, len, or pk_spinfo is invalid or cannot be used)
E_MACV Memory cannot be accessed; memory access privilege error

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets the address space information about the len bytes space from the logical address addr and returns it in
the return parameter pk_spinfo. Returns the physical address corresponding to addr in paddr. Returns the
start physical address of the page that addr belongs to in page.

Returns the page size in pagesz. The page size is defined in MMU and the same value as is used as unit for
setting the memory access permission in SetMemoryAccess() or the cache mode in SetCacheMode().

T-Kernel 2.0 Specification 326 / 534

Returns the cache line size in cachesz. The cache line size is the same value as is used as unit for controlling
the cache in ControlCache().

Returns the contiguous size (in bytes) of the corresponding physical address in cont, within the len bytes
space from addr. That is, the contiguous correspondence between the logical address and the physical address
exists only for cont in size (cont≦len). The contiguous area in the logical address space from addr for cont
corresponds to the contiguous area in the physical address space from paddr for cont.

If a paged out area exists in the range, physical addresses up to just before it are considered contiguous.
Particularly, if a page to which addr belongs is paged out, cont = 0 is returned. In this case, E_OK is returned
in the return code ercd and the contents other than cont in the return parameters of pk_spinfo are undefined.

If 0 or less is specified in len, the error code E_PAR is returned. When an error occurs, the contents set in
pk_spinfo are undefined.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 327 / 534

5.2.3.7 SetMemoryAccess - Set Memory Access Privilege

C Language Interface

#include <tk/tkernel.h>

INT rlen = SetMemoryAccess (CONST void *addr , INT len , UINT mode);

Parameter

CONST void* addr Start Address Start logical address of the memory
area to set the access permission for

INT len Length Size of the memory area to set the
access permission for (in bytes)

UINT mode Memory Access Mode Mode indicating the memory access
permission to be set

Return Parameter

INT rlen Result Length Size of the area for which the
memory access permission could be
set (in bytes)

or Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (addr, len, or mode is invalid or cannot be used)
E_NOSPT Unsupported function (function specified in mode is unsupported)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Sets the memory access permission specified in mode for the len bytes memory area from the logical address
addr. Returns the size (in bytes) of the area for which the memory access permission can actually be set, in
the return code rlen.

The following memory access permissions are specified in mode:

mode := (MM_EXECUTE | MM_READ | MM_WRITE)
MM_EXECUTE Execution access
MM_READ Read access
MM_WRITE Write access

...
/* Implementation-dependent mode may be added */

Setting the memory access permission with this API is performed in units of page, using the MMU function.
Therefore, if addr is not the start address of a page or len is not an integral multiple of the page size, the entire

T-Kernel 2.0 Specification 328 / 534

pages containing the range specified by addr and len are taken as the target area for setting the memory access
permission. For example, if 1 is specified in len, the memory access permission for one page is set.

Other memory access permissions may be specified depending on the hardware or implementation. Some or
all of the above memory access permissions may not be set depending on the hardware or implementation.
If any unavailable memory access permission is specified in mode, the error code E_NOSPT is returned.

Additional Notes

For the memory area used by normal applications, appropriate memory access permissions are set in advance
by T-Kernel. Therefore, normal applications do not need to use SetMemoryAccess(). SetMemoryAccess() is
intended for use by special-purpose programs rather than normal applications, for example, to allocate the
system memory, dynamically manage the security, or debug programs.

The memory access permissions specified in mode are the same as some attributes specified in attr of Map-
Memory.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 329 / 534

5.3 Device Management Functions

Device management functions manage device drivers running on T-Kernel.

A device driver is a program that is implemented independent from T-Kernel itself to control a hardware
device or perform I/O processing with the hardware device. Since the difference of specifications among
individual devices is absorbed by the device driver when an application or middleware operates a device or
performs I/O processing with the device via the device driver, the application or middleware can enhance its
hardware independency and compatibility.

Device management functions include a function to define a device driver, or to register the device driver to
T-Kernel, and a function to use the registered device driver from an application or middleware.

While this registration of device drivers is mostly performed in the initialization at system startup, it can also be
performed dynamically during the normal operation of the system. A device driver is registered in the device
registration information (ddev) that is one of parameters for the extended SVC, tk_def_dev(), by specifying
the set of functions (driver processing functions) of a program that actually implements device driver. These
functions include the open function (openfn) that is called when a device is opened, the execute function
(execfn) that is called when read or write processing starts, wait-for-completion function (waitfn) that waits
for completion of read or write processing, etc. The actual operation of a device or I/O processing with the
devices are performed in these driver processing functions.

As these driver processing functions are executed at protection level 0 as quasi-task portion, they can also
access hardware directly. I/O processing with a device may be performed directly in these driver processing
functions or may be performed in another task that runs based on the request from one of these driver pro-
cessing functions. The specification of parameters, etc. when these driver processing functions are called is
specified as a device driver interface. The device driver interface is an interface between a device driver and
the T-Kernel device management functions.

When a device driver program is implemented, it is recommended to separate three layers of interface, logical,
and physical layers carefully in order to enhance their maintainability and portability. The interface layer is
responsible for implementing an interface between the T-Kernel device management functions and a device
driver. The logical layer is responsible for performing a common processing according to the type of device.
The physical layer is responsible for performing an operation dependent on the actual hardware or control
chip. The interface specification, however, among the interface layer, logical layer, and physical layer is not
specified in the T-Kernel, so that the actual layer separation can be implemented appropriately in each device
driver. Programs that process the interface layer may be provided as libraries since there are many common
processings that are independent of individual devices in the physical layer.

Extended SVCs are provided such as open (tk_opn_dev()), close (tk_cls_dev()), read (tk_rea_dev()), write
(tk_wri_dev()), etc. to use the registered device driver from an application or middleware. The specifica-
tion of these extended SVCs is called an application interface. For example, when an application executes
tk_opn_dev() to open a device, the T-Kernel calls the open function (openfn) for the corresponding device
driver to request the device open processing.

The positioning and configuration of T-Kernel device management functions are shown in Figure 5.1, “Device
Management Functions”.

T-Kernel 2.0 Specification 330 / 534

Figure 5.1: Device Management Functions

Additional Notes
The device drivers have common features with the subsystems as being implemented independent from T-
Kernel itself and also being a system program to add or extend functions for T-Kernel. Additionally, both are
also same in that they are both executed by loading the program into the system space, operate at protection
level 0, and can access a hardware. While API for calling a device driver is limited to using open/close and
read/write type, API for calling a subsystem can be defined without any restriction. The subsystems have
functions to manage resources but the device drivers have no functions to do so.
Though T-Kernel device drivers managed by device management functions are assumed to be drivers for
physical devices or hardware, they are not necessarily required to handle real physical devices or hardware.
Also, system program for operating a device could be implemented as a subsystem rather than a device driver
if it is not compatible with open/close or read/write type APIs.

T-Kernel 2.0 Specification 331 / 534

5.3.1 Common Notes Related to Device Drivers

5.3.1.1 Basic Concepts

In addition to a physical device that represents a device as a physical hardware, there is a logical device that
represents a perceived unit of a device from the viewpoint of software.

Although both devices match for most devices, when partitions were created on a hard disk or any other
storage type device (SD card, USB storage, etc.), entire device represents a physical device and each partition
represents a logical device.

The physical devices of same type are identified by "unit" while logical devices in one physical device are
identified by "subunit." For example, the information that distinguishes the first hard disk from the second is
called "unit," and the information that distinguishes the first partition from the second within that first hard
disk is called "subunit."

The data definitions used in device management functions are explained in the subsequent subsections.

5.3.1.1.1 Device Name (UB* type)

A device name is a string of up to eight characters that is given to each device. It consists of the following
elements:

#define L_DEVNM 8 /* Device name length */

Type
Name indicating the device type

Characters a to z and A to Z can be used.

Unit
One letter indicating a physical device

Each unit is assigned a letter from a to z in order starting from a.

Subunit
One to three digits indicating a logical device

Each subunit is assigned a number from 0 to 254 in order starting from 0.

Device names take the format of type + unit + subunit. Some devices may not have a unit or subunit, in which
case the corresponding field is omitted.

The subunit is usually used to distinguish partitions in a hard disk. In other devices also, it can be used to
create multiple logical devices in one physical device.

A name consisting of type + unit is called a physical device name. A name consisting of type + unit + subunit
is called a logical device name. If there is no subunit, the physical device name and logical device name are
identical. The term "device name" by itself means the logical device name.

Example 5.1 Example of Device Name

Device name Target device
hda Hard disk (entire disk)
hda0 Hard disk (1st partition)
fda Floppy disk
rsa Serial port
kbpd Keyboard/pointing device

T-Kernel 2.0 Specification 332 / 534

5.3.1.1.2 Device ID (ID type)

By registering a device (device driver) with T-Kernel/SM, a device ID (> 0) is assigned to the device (physical
device name). Device IDs are assigned to each physical device. The device ID of a logical device consists of
the device ID assigned to the physical device to which is appended the subunit number + 1 (1 to 255).

devid: The device ID assigned at device registration

devid Physical device
devid + n+1 The nth subunit (logical device)

Example 5.2 Example of Device ID

Device name Device ID Summary description
hda devid Hard disk (entire disk)
hda0 devid + 1 1st partition of hard disk
hda1 devid + 2 2nd partition of hard disk

5.3.1.1.3 Device Attribute (ATR type)

Device attributes are defined in order to represent a feature for each device and classify a device for each
type. Device attributes should be specified when registering a device driver.

The specification method of device attributes is as follows:

IIII IIII IIII IIII PRxx xxxx KKKK KKKK

The high 16 bits are device-dependent attributes defined for each device. The low 16 bits are standard
attributes defined as follows.

#define TD_PROTECT 0x8000 /* P: Write protected */
#define TD_REMOVABLE 0x4000 /* R: removable media */

#define TD_DEVKIND 0x00ff /* K: device/media kind */
#define TD_DEVTYPE 0x00f0 /* device type */

/* device type */
#define TDK_UNDEF 0x0000 /* undefined/unknown */
#define TDK_DISK 0x0010 /* disk device */

As to the above shown device type, whether it is the disk type (TDK_DISK) or not affects the processing proce-
dure at the time of suspend. For more details, see the description of tk_sus_dev and Section 5.3.3.5, “Special
Properties of Disk Devices”.

Within the realm of T-Kernel, the device type other than disk type is not defined. Defining the device type
other than disk type does not affect the behavior of T-Kernel. Other devices are assigned to undefined type
(TDK_UNDEF).

For the disk device, the disk kinds are additionally defined. The typical disk kinds are as follows: For disk
types other than these, see the specification related to device drivers or Section 7.1.1, “Disk Kind for Device
Attributes” in Section 7.1, “Specification Related to Device Drivers to be Used as Reference”.

/* disk kind */
#define TDK_DISK_UNDEF 0x0010 /* miscellaneous disk */
#define TDK_DISK_HD 0x0015 /* hard disk */
#define TDK_DISK_CDROM 0x0016 /* CD -ROM */

The definition of disk kinds does not affect the T-Kernel behavior. These definitions are used only when
they are required in a device driver or an application. For example, when an application must change its
processing according to the kind of devices or media, the disk kind information is used. Devices or media
that do not need such distinctions do not have to be assigned a device type.

T-Kernel 2.0 Specification 333 / 534

5.3.1.1.4 Device Descriptor (ID type)

A device descriptor is an identifier used to access a device.

The device descriptor is assigned a positive value (> 0) by the T-Kernel/SM when a device is opened.

The device descriptor belongs to the same resource group as that of the task that opened the device. Opera-
tions using a device descriptor can be performed only by tasks belonging to the same resource group as the
device descriptor. Error code (E_OACV) is returned for requests from tasks belonging to a different resource
group.

5.3.1.1.5 Request ID (ID type)

When an I/O request is made to a device, a request ID (> 0) is assigned identifying the request. This ID can
be used to wait for I/O completion.

5.3.1.1.6 Data Number (W type, D type)

Data input/output from/to device is specified by a data number. Data is roughly classified into device-specific
data and attribute data.

Device-specific data: Data number ≧ 0
As device-specific data, the data numbers are defined separately for each device.

Example 5.3 Example of Device-specific Data

device Data number
Disk Data number = physical block number
Serial port Data number = 0 only

Attribute data: Data number < 0
Attribute data specifies driver or device state acquisition and setting modes, and special functions, etc.

Data numbers common to devices are defined, but device-dependent attribute data can also be defined.
For more details, see Section 5.3.1.2, “Attribute Data”.

T-Kernel 2.0 Specification 334 / 534

5.3.1.2 Attribute Data

Attribute data are classified broadly into the following three types of data.

Common attributes
Attributes defined in common for all devices (device drivers).

Device kind attributes
Attributes defined in common for devices (device drivers) of the same kind.

Device-specific attributes
Attributes defined individually for each device (device driver).

For the device kind attributes and device-specific attributes, see the specifications related to device driver.
Only the common attributes are defined here.

Common attributes are assigned attribute data numbers in the range from -1 to -99. While common attribute
data numbers are the same for all devices, not all devices necessarily support all the common attributes. If
an unsupported data number is specified, error code E_PAR is returned.

The definition of common attributes is as follows:

#define TDN_EVENT (-1) /* RW: event notification message buffer ID */
#define TDN_DISKINFO (-2) /* R: disk information */
#define TDN_DISPSPEC (-3) /* R: display device specification */
#define TDN_PCMCIAINFO (-4) /* R: PC card information */
#define TDN_DISKINFO_D (-5) /* R: disk information (64-bit device) */

RW: read (tk_rea_dev)/write (tk_wri_dev) enabled
R-: read (tk_rea_dev) only

TDN_EVENT
Event notification message buffer ID

Data type ID

The ID of the message buffer used for device event notification.

As a device is registered by tk_def_dev when a device driver is started and the system default event
notification message buffer ID (evtmbfid) is returned as this API return parameter, the value is held in
the device driver and is used as the initial value of this attribute data.

If 0 is set, device events are not notified. For device event notification, see Section 5.3.3.3, “Device
Event Notification”.

TDN_DISKINFO
32-bit device and disk information

Data type DiskInfo

typedef enum {
DiskFmt_STD = 0, /* standard (HD , etc.) */
DiskFmt_2HD = 2, /* 2HD 1.44MB */
DiskFmt_CDROM = 4 /* CD -ROM 640MB */

} DiskFormat;

typedef struct {
DiskFormat format; /* format */
UW protect :1; /* protected status */
UW removable :1; /* removable */

T-Kernel 2.0 Specification 335 / 534

UW rsv :30; /* reserved (always 0) */
W blocksize; /* block size in bytes */
W blockcont; /* total block count */

} DiskInfo;

For definition of DiskFormat other than the above description, see the specification related to device
drivers or Section 7.1.2, “Device Attribute Data” in Section 7.1, “Specification Related to Device Drivers
to be Used as Reference”.

TDN_DISPSPEC
Display Device Specification

Data type DEV_SPEC

For the definition of DEV_SPEC, see the specification related to device drivers or Section 7.1.2, “Device
Attribute Data” in Section 7.1, “Specification Related to Device Drivers to be Used as Reference”.

TDN_DISKINFO_D
64-bit device and disk information

Data type DiskInfo_D

typedef struct diskinfo_d {
DiskFormat format; /* format */
BOOL protect :1; /* protected status */
BOOL removable :1; /* removable */
UW rsv :30; /* reserved (0) */
W blocksize; /* block size in bytes */
D blockcont_d; /* total number of blocks in 64-bit */

} DiskInfo_D;

Difference between DiskInfo_D and DiskInfo is only the part of their names being blockcont or
blockcont_d, and the data type.

T-Kernel/SM does not convert a data between DiskInfo and DiskInfo_D. Both TDN_DISKINFO and
TDN_DISKINFO_D just pass the request to device driver without any modification.

A disk driver must support TDN_DISKINFO and/or TDN_DISKINFO_D. It is recommended that TDN_DISKINFO is
supported wherever possible for compatibility with T-Kernel 1.0.

Even if the total number of blocks of entire disk exceeds W, the number of blocks of individual partition
may fit within W. In that case, the preferable implementation is such that a partitions fitting within W
correspond to TDN_DISKINFO and partitions not fitting within W are determined to be an error (E_PAR) by
TDN_DISKINFO. It is also preferable that TDN_DISKINFO_D is supported even if the number of blocks fit within
W.

There is no direct dependency between the support for TDN_DISKINFO_D and the device driver attribute
TDA_DEV_D. A device driver does not always have TDA_DEV_D attribute even if TDN_DISKINFO_D is supported.
Also, TDN_DISKINFO_D is not always supported even if the device driver has TDA_DEV_D attribute.

As the definition of common attributes described above is a part of the specification of device driver rather than
T-Kernel, it does not directly affect the T-Kernel behavior. Each device driver does not need to implement all
the functions defined in the common attributes. However, as the definition of common attributes is applicable
to all the device drivers, the specification of each device driver must be specified in a way that does not conflict
with this definitions.

Difference from T-Kernel 1.0
Attribute data for TDN_DISKINFO_D is added to support 64-bit devices.

T-Kernel 2.0 Specification 336 / 534

5.3.2 Device Input/Output Operations

The application interface is used to make use of the registered device drivers from an application or middle-
ware. The functions below are provided as application interface functions, called as extended SVC. These
functions cannot be called from a task-independent portion or while dispatch or interrupts are disabled
(E_CTX).

ID tk_opn_dev(CONST UB *devnm , UINT omode)
ER tk_cls_dev(ID dd , UINT option)
ID tk_rea_dev(ID dd , W start , void *buf , W size , TMO tmout)
ID tk_rea_dev_du(ID dd , D start_d , void *buf , W size , TMO_U tmout_u)
ER tk_srea_dev(ID dd , W start , void *buf , W size , W *asize)
ER tk_srea_dev_d(ID dd , D start_d , void *buf , W size , W *asize)
ID tk_wri_dev(ID dd , W start , CONST void *buf , W size , TMO tmout)
ID tk_wri_dev_du(ID dd , D start_d , CONST void *buf , W size , TMO_U tmout_u)
ER tk_swri_dev(ID dd , W start , CONST void *buf , W size , W *asize)
ER tk_swri_dev_d(ID dd , D start_d , CONST void *buf , W size , W *asize)
ID tk_wai_dev(ID dd , ID reqid , W *asize , ER *ioer , TMO tmout)
ID tk_wai_dev_u(ID dd , ID reqid , W *asize , ER *ioer , TMO_U tmout_u)
INT tk_sus_dev(UINT mode)
ID tk_get_dev(ID devid , UB *devnm)
ID tk_ref_dev(CONST UB *devnm , T_RDEV *rdev)
ID tk_oref_dev(ID dd , T_RDEV *rdev)
INT tk_lst_dev(T_LDEV *ldev , INT start , INT ndev)
INT tk_evt_dev(ID devid , INT evttyp , void *evtinf)

T-Kernel 2.0 Specification 337 / 534

5.3.2.1 tk_opn_dev - Open Device

C Language Interface

#include <tk/tkernel.h>

ID dd = tk_opn_dev (CONST UB *devnm , UINT omode);

Parameter

CONST UB* devnm Device Name Device name
UINT omode Open Mode Open mode

Return Parameter

ID dd Device Descriptor Device descriptor
or Error Code Error code

Error Code

E_BUSY Device BUSY (exclusive open)
E_NOEXS Device does not exist
E_LIMIT Open count exceeds the limit
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Opens the device specified in devnm in the mode specified in omode, and prepares for device access. The device
descriptor is passed in the return code.

omode := (TD_READ || TD_WRITE || TD_UPDATE) | [TD_EXCL || TD_WEXCL || TD_REXCL]
| [TD_NOLOCK]

#define TD_READ 0x0001 /* read only */
#define TD_WRITE 0x0002 /* write only */
#define TD_UPDATE 0x0003 /* read/write */
#define TD_EXCL 0x0100 /* exclusive */
#define TD_WEXCL 0x0200 /* exclusive write */
#define TD_REXCL 0x0400 /* exclusive read */
#define TD_NOLOCK 0x1000 /* unnecessary to be locked (resident) */

TD_READ
read only

TD_WRITE
Write only

T-Kernel 2.0 Specification 338 / 534

TD_UPDATE
Read/write

Sets the access mode.

When TD_READ is set, tk_wri_dev() cannot be used.

When TD_WRITE is set, tk_rea_dev() cannot be used.

TD_EXCL
Exclusive

TD_WEXCL
Exclusive write

TD_REXCL
Exclusive read

Sets the exclusive mode.

When TD_EXCL is set, all concurrent opening is prohibited.

When TD_WEXCL is set, concurrent opening in write mode (TD_WRITE or TD_UPDATE) is prohibited.

When TD_REXCL is set, concurrent opening in read mode (TD_READ or TD_UPDATE) is prohibited.

Present Open Mode
Concurrent Open Mode

No exclusive
mode

TD_WEXCL TD_REXCL TD_EXCL

R U W R U W R U W R U W

No exclusive
mode

R YES YES YES YES YES YES NO NO NO NO NO NO
U YES YES YES NO NO NO NO NO NO NO NO NO
W YES YES YES NO NO NO YES YES YES NO NO NO

TD_WEXCL
R YES NO NO YES NO NO NO NO NO NO NO NO
U YES NO NO NO NO NO NO NO NO NO NO NO
W YES NO NO NO NO NO YES NO NO NO NO NO

TD_REXCL
R NO NO YES NO NO YES NO NO NO NO NO NO
U NO NO YES NO NO NO NO NO NO NO NO NO
W NO NO YES NO NO NO NO NO YES NO NO NO

TD_EXCL
R NO NO NO NO NO NO NO NO NO NO NO NO
U NO NO NO NO NO NO NO NO NO NO NO NO
W NO NO NO NO NO NO NO NO NO NO NO NO

Table 5.1: Whether Concurrent Open of Same Device is Allowed or NOT

R = TD_READ
W = TD_WRITE
U = TD_UPDATE
YES = Yes, can be opened
NO = No, cannot be opened (E_BUSY)

TD_NOLOCK
unnecessary to be locked (resident)

Indicates that a memory space (buf) specified in I/O operations (tk_rea_dev and tk_wri_dev) has already been
locked (made resident) on the calling side and does not have to be locked by the device driver. In this case the
device driver does not (must not) lock the area. This is used e.g. to perform disk access for page-in/page-out
in a virtual memory system. Generally it does not need to be specified.

The device descriptor belongs to the resource group of the task that opened the device.

When a physical device is opened, the logical devices belonging to it are all treated as having been opened
in the same mode, and are processed as exclusive open.

T-Kernel 2.0 Specification 339 / 534

5.3.2.2 tk_cls_dev - Close Device

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_cls_dev (ID dd , UINT option);

Parameter

ID dd Device Descriptor Device descriptor
UINT option Close Option Close option

Return Parameter

ER ercd Error Code Error code

Error Code

E_ID dd is invalid or not open
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Closes device descriptor dd. If a request is being processed, the processing is aborted and the device is closed.

option := [TD_EJECT]

#define TD_EJECT 0x0001 /* Eject media */

TD_EJECT
Eject media

If the same device has not been opened by another task, the media is ejected. In the case of devices
that cannot eject their media, the request is ignored.

The subsystem cleanup processing (tk_cln_ssy) closes all the device descriptors belonging to the resource
group.

T-Kernel 2.0 Specification 340 / 534

5.3.2.3 tk_rea_dev - Start Read Device

C Language Interface

#include <tk/tkernel.h>

ID reqid = tk_rea_dev (ID dd , W start , void *buf , W size , TMO tmout);

Parameter

ID dd Device Descriptor Device descriptor
W start Start Location Read start location (≧ 0:

Device-specific data, < 0: Attribute
data)

void* buf Buffer Buffer location for putting the read data
W size Read Size Read size
TMO tmout Timeout Request acceptance timeout (ms)

Return Parameter

ID reqid Request ID Request ID
or Error Code Error code

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (read not permitted)
E_LIMIT Number of requests exceeds the limit
E_TMOUT Busy processing other requests
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Initiates reading device-specific data or attribute data from the specified device. This function initiates reading
only, returning to its caller without waiting for the read operation to finish. The space specified in bufmust be
retained until the read operation completes. Read completion is waited for by tk_wai_dev(). The time required
for initiating read operation differs among device drivers; return of control is not necessarily immediate.

In the case of device-specific data, the start and size units are defined for each device. With attribute data,
start is an attribute data number and size is in bytes. The attribute data of the data number specified in start
is read. Normally sizemust be at least as large as the size of the attribute data to be read. Reading of multiple
attribute data in one operation is not possible. When size = 0 is specified, actual reading does not take place
but the current size of data that can be read is checked.

Whether or not a new request can be accepted while a read or write operation is in progress depends on the
device driver. If a new request cannot be accepted, the request is queued. The timeout for request waiting is

T-Kernel 2.0 Specification 341 / 534

set in tmout. The TMO_POL or TMO_FEVR attribute can be specified in tmout. Note that the timeout applies to the
request acceptance. Once a request has been accepted, this function does not time out.

This extended SVC can be used for a device driver that has the TDA_DEV_D or TDA_TMO_U attribute. In that
case, the parameters are converted appropriately by T-Kernel/SM. For example, when a device driver has the
TDA_TMO_U attribute, the timeout interval (milliseconds) specified in tmout of this extended SVC is converted
to the time in microseconds, and then passed to the device driver with the TDA_TMO_U attribute.

Difference from T-Kernel 1.0

The data type of start and size was changed from INT to W. This is because it is more easier to understand to
fix the number of bits at a known value for the parameters closely related to the functions (time management
and device management) that now have the 64-bit specifications in T-Kernel 2.0. The reason why the type of
MSEC and TMO was changed from INT to W, and the type of RELTIM was changed from UINT to UW is also
similar, in addition to the relationship with μT-Kernel.

T-Kernel 2.0 Specification 342 / 534

5.3.2.4 tk_rea_dev_du - Read Device (in 64-bit microseconds)

C Language Interface

#include <tk/tkernel.h>

ID reqid = tk_rea_dev_du (ID dd , D start_d , void *buf , W size , TMO_U tmout_u);

Parameter

ID dd Device Descriptor Device descriptor
D start_d Start Location Read start location (64 bit, ≧ 0:

Device-specific data, < 0: Attribute
data)

void* buf Buffer Buffer location for putting the read data
W size Read Size Read size
TMO_U tmout_u Timeout Request acceptance timeout (in

microseconds)

Return Parameter

ID reqid Request ID Request ID
or Error Code Error code

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (read not permitted)
E_LIMIT Number of requests exceeds the limit
E_TMOUT Busy processing other requests
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This extended SVC takes the parameters start_d (64 bits) and tmout_u (64-bit microseconds), instead of the
parameters start and tmout of tk_rea_dev.

Its specification is the same as that of tk_rea_dev, except that the parameters are changed to start_d and
tmout_u. For more details, see the description of tk_rea_dev.

Additional Notes

If the corresponding device driver does not have the TDA_DEV_D attribute, the error code E_PAR is returned
when specifying a value that is out of the range of W for the start position start_d.

T-Kernel 2.0 Specification 343 / 534

If the corresponding device driver does not have the TDA_TMO_U attribute (does not supports microseconds),
it cannot handle the timeout in microseconds. In that case, the timeout (in microseconds) specified by this
extended SVC in tmout_u is rounded to the time in milliseconds and passed to the device driver.

Thus, the appropriate conversion of parameters is executed by T-Kernel/SM. The application does not have
to know whether the device driver has the TDA_DEV_D attribute or not, or whether the device driver supports
64 bits or not.

Difference from T-Kernel 1.0

This extended SVC was added in T-Kernel 2.0.

tk_rea_dev_du and tk_wri_dev_du include the both meanings of the suffixes, '_u' and '_d', because their start
positions are 64 bits and timeouts are 64-bit microseconds.

T-Kernel 2.0 Specification 344 / 534

5.3.2.5 tk_srea_dev - Synchronous Read

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_srea_dev (ID dd , W start , void *buf , W size , W *asize);

Parameter

ID dd Device Descriptor Device descriptor
W start Start Location Read start location (≧ 0:

Device-specific data, < 0: Attribute
data)

void* buf Buffer Buffer location for putting the read data
W size Read Size Read size
W* asize Actual Size Pointer to the area to return the read

size

Return Parameter

ER ercd Error Code Error code
W asize Actual Size Actually read size

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (read not permitted)
E_LIMIT Number of requests exceeds the limit
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Synchronous read. This is equivalent to the following.

ER tk_srea_dev(ID dd , W start , void *buf , W size , W *asize)
{

ER er , ioer;

er = tk_rea_dev(dd , start , buf , size , TMO_FEVR);
if (er > 0) {

er = tk_wai_dev(dd , er , asize , &ioer , TMO_FEVR);
if (er > 0) er = ioer;

}

return er;
}

T-Kernel 2.0 Specification 345 / 534

This extended SVC can be used for a device driver that has the TDA_DEV_D attribute. In that case, the parameters
are converted appropriately by T-Kernel/SM.

Difference from T-Kernel 1.0

The data type of start and size is changed from INT to W, and the data type of asize is changed from INT* to
W*.

T-Kernel 2.0 Specification 346 / 534

5.3.2.6 tk_srea_dev_d - Synchronous Read (64 bit)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_srea_dev_d (ID dd , D start_d , void *buf , W size , W *asize);

Parameter

ID dd Device Descriptor Device descriptor
D start_d Start Location Read start location (64 bit, ≧ 0:

Device-specific data, < 0: Attribute
data)

void* buf Buffer Buffer location for putting the read data
W size Read Size Read size
W* asize Actual Size Pointer to the area to return the read

size

Return Parameter

ER ercd Error Code Error code
W asize Actual Size Actually read size

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (read not permitted)
E_LIMIT Number of requests exceeds the limit
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This extended SVC takes the 64-bit parameter start_d, instead of the parameter start of tk_srea_dev.

Its specification is the same as that of tk_srea_dev, except that the parameter is changed to start_d. For more
details, see the description of tk_srea_dev.

Additional Notes

If the corresponding device driver does not have the TDA_DEV_D attribute, the error code E_PAR is returned
when specifying a value that is out of the range of W for the start position start_d.

Thus, the appropriate conversion of parameters is executed by T-Kernel/SM. The application does not have
to know whether the device driver has the TDA_DEV_D attribute, or whether the device driver supports 64 bits.

T-Kernel 2.0 Specification 347 / 534

Difference from T-Kernel 1.0

This extended SVC was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 348 / 534

5.3.2.7 tk_wri_dev - Start Write Device

C Language Interface

#include <tk/tkernel.h>

ID reqid = tk_wri_dev (ID dd , W start , CONST void *buf , W size , TMO tmout);

Parameter

ID dd Device Descriptor Device descriptor
W start Start Location write start location (≧ 0:

Device-specific data, < 0: Attribute
data)

CONST void* buf Buffer Buffer holding data to be written
W size Write Size Size of data to be written
TMO tmout Timeout Request acceptance timeout (ms)

Return Parameter

ID reqid Request ID Request ID
or Error Code Error code

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (write not permitted)
E_RONLY Read-only device
E_LIMIT Number of requests exceeds the limit
E_TMOUT Busy processing other requests
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Initiates writing device-specific data or attribute data to a device. This function initiates writing only, returning
to its caller without waiting for the write operation to finish. The space specified in bufmust be retained until
the write operation completes. Write completion is waited for by tk_wai_dev(). The time required for initiating
write operation differs among device drivers; return of control is not necessarily immediate.

In the case of device-specific data, the start and size units are defined for each device. With attribute data,
start is an attribute data number and size is in bytes. The attribute data of the data number specified in start
is written. Normally size must be at least as large as the size of the attribute data to be written. Multiple
attribute data cannot be written in one operation. When size = 0 is specified, actual writing does not take
place but the current size of data that can be written is checked.

Whether or not a new request can be accepted while a read or write operation is in progress depends on the
device driver. If a new request cannot be accepted, the request is queued. The timeout for request waiting is

T-Kernel 2.0 Specification 349 / 534

set in tmout. The TMO_POL or TMO_FEVR attribute can be specified in tmout. Note that the timeout applies to the
request acceptance. Once a request has been accepted, this function does not time out.

This extended SVC can be used for a device driver that has the TDA_DEV_D or TDA_TMO_U attribute. In that
case, the parameters are converted appropriately by T-Kernel/SM. For example, when a device driver has the
TDA_TMO_U attribute, the timeout interval (milliseconds) specified in tmout of this extended SVC is converted
to the time in microseconds, and then passed to the device driver with the TDA_TMO_U attribute.

Difference from T-Kernel 1.0

The data type of start and size was changed from INT to W.

T-Kernel 2.0 Specification 350 / 534

5.3.2.8 tk_wri_dev_du - Write Device (in 64-bit microseconds)

C Language Interface

#include <tk/tkernel.h>

ID reqid = tk_wri_dev_du (ID dd , D start_d , CONST void *buf , W size , TMO_U tmout_u);

Parameter

ID dd Device Descriptor Device descriptor
D start_d Start Location Write start location (64 bit, ≧ 0:

Device-specific data, < 0: Attribute
data)

CONST void* buf Buffer Buffer holding data to be written
W size Write Size Size of data to be written
TMO_U tmout_u Timeout Request acceptance timeout (in

microseconds)

Return Parameter

ID reqid Request ID Request ID
or Error Code Error code

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (write not permitted)
E_RONLY Read-only device
E_LIMIT Number of requests exceeds the limit
E_TMOUT Busy processing other requests
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This extended SVC takes the parameters start_d (64 bits) and tmout_u (64-bit microseconds), instead of the
parameters start and tmout of tk_wri_dev.

Its specification is the same as that of tk_wri_dev, except that the parameters are changed to start_d and
tmout_u. For more details, see the description of tk_wri_dev.

Additional Notes

If the corresponding device driver does not have the TDA_DEV_D attribute, the error code E_PAR is returned
when specifying a value that is out of the range of W for the start position start_d.

T-Kernel 2.0 Specification 351 / 534

If the corresponding device driver does not have the TDA_TMO_U attribute (does not supports microseconds),
it cannot handle the timeout in microseconds. In that case, the timeout (in microseconds) specified by this
extended SVC in tmout_u is rounded to the time in milliseconds and passed to the device driver.

Thus, the appropriate conversion of parameters is executed by T-Kernel/SM. The application does not have
to know whether the device driver has the TDA_DEV_D attribute or not, or whether the device driver supports
64 bits or not.

Difference from T-Kernel 1.0

This extended SVC was added in T-Kernel 2.0.

tk_rea_dev_du and tk_wri_dev_du include the both meanings of the suffixes '_u' and '_d', because their start
positions are 64 bits and timeouts are 64-bit microseconds.

T-Kernel 2.0 Specification 352 / 534

5.3.2.9 tk_swri_dev - Synchronous Write

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_swri_dev (ID dd , W start , CONST void *buf , W size , W *asize);

Parameter

ID dd Device Descriptor Device descriptor
W start Start Location Write start location (≧ 0:

Device-specific data, < 0: Attribute
data)

CONST void* buf Buffer Buffer holding data to be written
W size Write Size Size of data to be written
W* asize Actual Size Pointer to the area to return the

written size

Return Parameter

ER ercd Error Code Error code
W asize Actual Size Actually written size

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (write not permitted)
E_RONLY Read-only device
E_LIMIT Number of requests exceeds the limit
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Synchronous write. This is equivalent to the following.

ER tk_swri_dev(ID dd , W start , void *buf , W size , W *asize)
{

ER er , ioer;

er = tk_wri_dev(dd , start , buf , size , TMO_FEVR);
if (er > 0) {

er = tk_wai_dev(dd , er , asize , &ioer , TMO_FEVR);
if (er > 0) er = ioer;

}

return er;

T-Kernel 2.0 Specification 353 / 534

}

This extended SVC can be used for a device driver that has the TDA_DEV_D attribute. In that case, the parameters
are converted appropriately by T-Kernel/SM.

Difference from T-Kernel 1.0

The data type of start and size is changed from INT to W, and the data type of asize is changed from INT* to
W*.

T-Kernel 2.0 Specification 354 / 534

5.3.2.10 tk_swri_dev_d - Synchronous Write (64 bit)

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_swri_dev_d (ID dd , D start_d , CONST void *buf , W size , W *asize);

Parameter

ID dd Device Descriptor Device descriptor
D start_d Start Location Write start location (64 bit, ≧ 0:

Device-specific data, < 0: Attribute
data)

CONST void* buf Buffer Buffer holding data to be written
W size Write Size Size of data to be written
W* asize Actual Size Pointer to the area to return the

written size

Return Parameter

ER ercd Error Code Error code
W asize Actual Size Actually written size

Error Code

E_ID dd is invalid or not open
E_OACV Open mode is invalid (write not permitted)
E_RONLY Read-only device
E_LIMIT Number of requests exceeds the limit
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This extended SVC takes the 64-bit parameter start_d, instead of the parameter start of tk_swri_dev.

Its specification is the same as that of tk_swri_dev, except that the parameter is changed to start_d. For more
details, see the description of tk_swri_dev.

Additional Notes

If the corresponding device driver does not have the TDA_DEV_D attribute, the error code E_PAR is returned
when specifying a value that is out of the range of W for the start position start_d.

Thus, the appropriate conversion of parameters is executed by T-Kernel/SM. The application does not have
to know whether the device driver has the TDA_DEV_D attribute or not, or whether the device driver supports
64 bits or not.

T-Kernel 2.0 Specification 355 / 534

Difference from T-Kernel 1.0

This extended SVC was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 356 / 534

5.3.2.11 tk_wai_dev - Wait for Request Completion for Device

C Language Interface

#include <tk/tkernel.h>

ID creqid = tk_wai_dev (ID dd , ID reqid , W *asize , ER *ioer , TMO tmout);

Parameter

ID dd Device Descriptor Device descriptor
ID reqid Request ID Request ID
W* asize Actually Read/Written Size Pointer to the area to return the

read/written size
ER* ioer I/O Error Pointer to the area to return I/O error
TMO tmout Timeout Timeout (ms)

Return Parameter

ID creqid Completed Request ID Completed request ID
or Error Code Error code

W asize Actually Read/Written Size Actually read/written size
ER ioer I/O Error I/O error

Error Code

E_ID dd is invalid or not opened, or reqid is invalid or not a request for dd
E_OBJ Another task is already waiting for request reqid
E_NOEXS No requests are being processed (only when reqid = 0)
E_TMOUT Timeout (processing continues)
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Waits for completion of request reqid for device dd. If reqid = 0 is set, this function waits for completion of
any pending request to dd. This function waits for completion only of requests currently processing when the
function is called. A request issued after tk_wai_dev() was called is not waited for.

When multiple requests are being processed concurrently, the order of their completion is not necessarily the
same as the order of request but is dependent on the device driver. Processing is, however, guaranteed to be
performed in a sequence such that the result is consistent with the order of requesting. When processing a
read operation from a disk, for example, the sequence might be changed as follows.

Block number request sequence
1 4 3 2 5

Block number processing sequence
1 2 3 4 5

T-Kernel 2.0 Specification 357 / 534

Disk access can be made more efficient by changing the sequence as above with the aim of reducing seek
time and spin wait time.

The timeout for waiting for completion is set in tmout. The TMO_POL or TMO_FEVR attribute can be specified
for tmout. If a timeout error is returned (E_TMOUT), tk_wai_dev() must be called again to wait for completion
since the request processing is still ongoing. When reqid > 0 and tmout = TMO_FEVR are both set, the processing
must be completed without timing out.

If the device driver returns a processing result error (such as I/O error) for the requested processing, the error
code is stored in ioer instead of the return code. Specifically, the error code, which is stored in error of the
request packet T_DEVREQ by the wait-for-completion function (waitfn) called for processing tk_wai_dev, is
returned to ioer as the processing result error.

On the other hand, the return code is used for errors when the wait request itself was not handled properly.
When error is passed in the return code, ioer has no meaning. Note also that if an error is passed in the return
code, tk_wai_dev() must be called again to wait for completion since the processing is still ongoing. For more
details, see Section 5.3.3.2.4, “waitfn - Wait-for-completion function”.

If a task exception is raised during completion waiting by tk_wai_dev(), the request in reqid is aborted and
processing is completed. The result of aborting the requested processing is dependent on the device driver.
When reqid = 0 was set, however, requests are not aborted but are treated as timeout. In this case E_ABORT
rather than E_TMOUT is returned.

It is not possible for multiple tasks to wait for completion of the same request ID at the same time. If there is
a task waiting for request completion with reqid = 0 set, another task cannot wait for completion for the same
dd. Similarly, if there is a task waiting for request completion with reqid > 0 set, another task cannot wait for
completion specifying reqid = 0.

This extended SVC can be used for a device driver that has the TDA_TMO_U attribute. In that case, the pa-
rameters are converted appropriately by T-Kernel/SM. For example, when a device driver has the TDA_TMO_U
attribute, the timeout interval (milliseconds) specified in tmout of this extended SVC is converted to the time
in microseconds, and then passed to the device driver with the TDA_TMO_U attribute.

Difference from T-Kernel 1.0

The data type of asize was changed from INT* to W*.

T-Kernel 2.0 Specification 358 / 534

5.3.2.12 tk_wai_dev_u - Wait Device (in microseconds)

C Language Interface

#include <tk/tkernel.h>

ID creqid = tk_wai_dev_u (ID dd , ID reqid , W *asize , ER *ioer , TMO_U tmout_u);

Parameter

ID dd Device Descriptor Device descriptor
ID reqid Request ID Request ID
W* asize Actually Read/Written Size Pointer to the area to return the

read/written size
ER* ioer I/O Error Pointer to the area to return I/O error
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ID creqid Completed Request ID Completed request ID
or Error Code Error code

W asize Actually Read/Written Size Actually read/written size
ER ioer I/O Error I/O error

Error Code

E_ID dd is invalid or not opened, or reqid is invalid or not a request for dd
E_OBJ Another task is already waiting for request reqid
E_NOEXS No requests are being processed (only when reqid = 0)
E_TMOUT Timeout (processing continues)
E_ABORT Processing aborted
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

This extended SVC takes the parameter tmout_u (64-bit microseconds), instead of the parameter tmout of
tk_wai_dev.

Its specification is the same as that of tk_wai_dev, except that the parameter changed to tmout_u. For more
details, see the description of tk_wai_dev.

Additional Notes

If the corresponding device driver does not have the TDA_TMO_U attribute (does not supports microseconds),
it cannot handle the timeout in microseconds. In that case, the timeout (in microseconds) specified by this
extended SVC in tmout_u is rounded to the time in milliseconds and passed to the device driver.

T-Kernel 2.0 Specification 359 / 534

Thus, the appropriate conversion of parameters is executed by T-Kernel/SM. The application does not have
to know whether the device driver has the TDA_TMO_U attribute or not, or whether the device driver supports
microseconds or not.

Difference from T-Kernel 1.0

This extended SVC was added in T-Kernel 2.0.

Note that an extended SVC of device management function tk_wai_dev_u is appended with the suffix '_u', not
'_d'.

T-Kernel 2.0 Specification 360 / 534

5.3.2.13 tk_sus_dev - Suspends Device

C Language Interface

#include <tk/tkernel.h>

INT dissus = tk_sus_dev (UINT mode);

Parameter

UINT mode Mode Mode

Return Parameter

INT dissus Suspend Disable Request
Count

Suspend disable request count

or Error Code Error code

Error Code

E_BUSY Suspend already disabled
E_QOVR Suspend disable request count limit exceeded

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Performs the processing specified in mode, then passes the resulting suspend disable request count in the
return code.

mode := ((TD_SUSPEND | [TD_FORCE]) || TD_DISSUS || TD_ENASUS || TD_CHECK)

#define TD_SUSPEND 0x0001 /* suspend */
#define TD_DISSUS 0x0002 /* disable suspension */
#define TD_ENASUS 0x0003 /* enable suspension */
#define TD_CHECK 0x0004 /* get suspend disable request count */
#define TD_FORCE 0x8000 /* forced suspend specification */

TD_SUSPEND
Suspend

If suspending is enabled, suspends processing.

If suspending is disabled, returns E_BUSY.

TD_SUSPEND|TD_FORCE
Forcibly suspend

Suspends even in suspend disabled state.

T-Kernel 2.0 Specification 361 / 534

TD_DISSUS
Disable suspension

Disables suspension.

TD_ENASUS
Enable suspension

Enables suspension.

If the enable request count is above the disable count for the resource group, no operation is performed.

TD_CHECK
Get suspend disable count

Gets only the number of times suspend disable has been requested.

Suspension is performed in the following steps.

1. Processing prior to start of suspension in each subsystem

tk_evt_ssy(0, TSEVT_SUSPEND_BEGIN, 0, 0)

2. Suspension processing in non-disk devices

3. Suspension processing in disk devices

4. Processing after completion of suspension in each subsystem

tk_evt_ssy(0, TSEVT_SUSPEND_DONE, 0, 0)

5. Suspended state

tk_set_pow(TPW_DOSUSPEND)

Resumption from SUSPEND state is performed in the following steps.

1. Return from SUSPEND state

Return from tk_set_pow(TPW_DOSUSPEND)

2. Processing prior to start of resumption in each subsystem

tk_evt_ssy(0, TSEVT_RESUME_BEGIN, 0, 0)

3. Resumption processing in disk devices

4. Resumption processing in non-disk devices

5. Processing after completion of resumption in each subsystem

tk_evt_ssy(0, TSEVT_RESUME_DONE, 0, 0)

In the above processing, whether the device is a disk device or not is determined by checking whether the
device attribute is the disk type (TDK_DISK) or not.

The number of suspend disable requests is counted. Suspension is enabled only if the same number of
suspend enable requests is made. At system boot, the suspend disable count is 0 and suspension is enabled.
There is only one suspend disable request count kept per system, but the system keeps track of the resource
group making the request. It is not possible to clear suspend disable requests made in another resource
group. When the cleanup function runs in a resource group, all the suspend requests made in that group
are cleared and the suspend disable request count is reduced accordingly. The maximum suspend disable
request count is implementation-dependent, but must be at least 255. When the upper limit is exceeded,
E_QOVR is returned.

T-Kernel 2.0 Specification 362 / 534

5.3.2.14 tk_get_dev - Get Device Name

C Language Interface

#include <tk/tkernel.h>

ID pdevid = tk_get_dev (ID devid , UB *devnm);

Parameter

ID devid Device ID Device ID
UB* devnm Device Name Pointer to the device name storage

location

Return Parameter

ID pdevid Device ID of Physical Device Device ID of the physical device
or Error Code Error code

UB devnm Device Name Device name

Error Code

E_NOEXS The device specified in devid does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets the device name of the device specified in devid and puts the result in devnm.

devid is the device ID of either a physical device or a logical device.

If devid is a physical device, the physical device name is put in devnm.

If devid is a logical device, the logical device name is put in devnm.

devnm requires a space of L_DEVNM + 1 bytes or larger.

The device ID of the physical device to which device devid belongs is passed in the return code.

T-Kernel 2.0 Specification 363 / 534

5.3.2.15 tk_ref_dev - Get Device Information

C Language Interface

#include <tk/tkernel.h>

ID devid = tk_ref_dev (CONST UB *devnm , T_RDEV *rdev);

Parameter

CONST UB* devnm Device Name Device name
T_RDEV* rdev Packet to Return Device

Information
Pointer to the area to return the
device information

Return Parameter

ID devid Device ID Device ID
or Error Code Error code

rdev Detail:

ATR devatr Device Attribute Device attributes
INT blksz Block Size of Device-specific

Data
Block size of device-specific data (-1:
unknown)

INT nsub Subunit Count Number of subunits
INT subno Subunit Number 0: Physical device, 1 to nsub:

Subunit number+1
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_NOEXS The device specified in devnm does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets device information about the device specified in devnm, and puts the result in rdev. If rdev = NULL is set,
the device information is not stored.

nsub indicates the number of physical device subunits belonging to the device specified in devnm.

The device ID of the device specified in devnm is passed in the return code.

T-Kernel 2.0 Specification 364 / 534

5.3.2.16 tk_oref_dev - Get Device Information

C Language Interface

#include <tk/tkernel.h>

ID devid = tk_oref_dev (ID dd , T_RDEV *rdev);

Parameter

ID dd Device Descriptor Device descriptor
T_RDEV* rdev Packet to Return Device

Information
Pointer to the area to return the device
information

Return Parameter

ID devid Device ID Device ID
or Error Code Error code

rdev Detail:

ATR devatr Device Attribute Device attributes
INT blksz Block Size of Device-specific

Data
Block size of device-specific data (-1:
unknown)

INT nsub Subunit Count Number of subunits
INT subno Subunit Number 0: Physical device, 1 to nsub: Subunit

number+1
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_ID dd is invalid or not open

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets device information about the device specified in dd, and puts the result in rdev. If rdev = NULL is set, the
device information is not stored.

nsub indicates the number of physical device subunits belonging to the device specified in dd.

The device ID of the device specified in dd is passed in the return code.

T-Kernel 2.0 Specification 365 / 534

5.3.2.17 tk_lst_dev - Get Registered Device Information

C Language Interface

#include <tk/tkernel.h>

INT remcnt = tk_lst_dev (T_LDEV *ldev , INT start , INT ndev);

Parameter

T_LDEV* ldev List of Devices Location of registered device
information (array)

INT start Starting Number Starting number
INT ndev Number of Devices Number to acquire

Return Parameter

INT remcnt Remaining Device Count Number of remaining registrations
or Error Code Error code

ldev Detail:

ATR devatr Device Attribute Device attributes
INT blksz Block Size of Device-specific

Data
Block size of device-specific data (-1:
unknown)

INT nsub Subunit Count Number of subunits
UB devnm[L_DEVNM] Physical Device Name Physical device name
(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_NOEXS start exceeds the registered number

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets information about registered devices. Registered devices are managed per physical device. The regis-
tered device information is therefore also obtained per physical device.

When the number of registered devices is N, number are assigned serially to devices from 0 to N - 1. Starting
from the number specified in start in accordance with this scheme, the number of registrations specified in
ndev is acquired and put in ldev. The space specified in ldev must be large enough to hold ndev registration
information. The number of remaining registrations after start (N-start) is passed in the return code.

If the number of registrations from start is fewer than ndev, all remaining registrations are stored. A value
passed in return code less than or equal to ndev means all remaining registrations were obtained. Note that
this numbering changes as devices are registered and deleted. For this reason, accurate information may not
be always obtained if the acquisition is carried out over multiple operations.

T-Kernel 2.0 Specification 366 / 534

5.3.2.18 tk_evt_dev - Send Driver Request Event to Device

C Language Interface

#include <tk/tkernel.h>

INT retcode = tk_evt_dev (ID devid , INT evttyp , void *evtinf);

Parameter

ID devid Device ID Event destination device ID
INT evttyp Event Type Driver request event type
void* evtinf Event Information Information for each event type

Return Parameter

INT retcode Return Code from eventfn Return code passed by eventfn
or Error Code Error code

Error Code

E_NOEXS The device specified in devid does not exist
E_PAR Internal device manager events (evttyp < 0) cannot be specified
Other Error code returned by device driver

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Sends a driver request event to the device (device driver) specified in devid.

The functioning of driver request events and the contents of evtinf are defined for each event type. For details
on driver request event, see Section 5.3.3.2.6, “eventfn - Event function”.

T-Kernel 2.0 Specification 367 / 534

5.3.3 Registration of Device Driver

5.3.3.1 Registration Method of Device Driver

Device driver registration is performed for each physical device.

T-Kernel 2.0 Specification 368 / 534

5.3.3.1.1 tk_def_dev - Register Device

C Language Interface

#include <tk/tkernel.h>

ID devid = tk_def_dev (CONST UB *devnm , CONST T_DDEV *ddev , T_IDEV *idev);

Parameter

CONST UB* devnm Physical Device Name Physical device name
CONST T_DDEV* ddev Define Device Device registration information
T_IDEV* idev Initial Device Information Device initial information

Return Parameter

ID devid Device ID Device ID
or Error Code Error code

idev Detail:

ID evtmbfid Event Notification
Message Buffer ID

Event notification message buffer
ID

(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_LIMIT Number of registrations exceeds the system limit
E_NOEXS The device specified in devnm does not exist (when ddev = NULL)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Registers a device (device driver) with the device name set in devnm, and passes the device ID of the registered
device in the return code. If a device with device name devnm is already registered, the registration is updated
with new information, in which case the device ID does not change.

ddev specifies the device registration information. When ddev = NULL is specified, device devnm registration is
deleted.

ddev is a structure in the following format:

typedef struct t_ddev {
void *exinf; /* extended information */
ATR drvatr; /* driver attributes */
ATR devatr; /* device attributes */
INT nsub; /* number of subunits */
INT blksz; /* block size of device -specific data (-1: unknown) */
FP openfn; /* open function */

T-Kernel 2.0 Specification 369 / 534

FP closefn; /* close function */
FP execfn; /* execute function */
FP waitfn; /* wait -for -completion function */
FP abortfn; /* abort function */
FP eventfn; /* event function */
/* Implementation -dependent information may be added beyond this point .*/

} T_DDEV;

exinf is used to store any desired information. The value is passed to the processing functions. Device
management pays no attention to the contents.

drvatr sets device driver attribute information. The lower bits indicate system attributes, and the high bits are
used for implementation-dependent attributes. The implementation-dependent attribute portion is used, for
example, to define validity flags when implementation-dependent data is added to T_DDEV.

drvatr := [TDA_OPENREQ] | [TDA_TMO_U] | [TDA_DEV_D]

#define TDA_OPENREQ 0x0001 /* open/close each time */
#define TDA_TMO_U 0x0002 /* timeout in microseconds is used */
#define TDA_DEV_D 0x0004 /* 64 bit device */

drvatr can be specified by combining the following driver attributes.

TDA_OPENREQ

When a device is opened multiple times, normally openfn is called only the first time it is opened and closefn
the last time it is closed. If TDA_OPENREQ is specified, then openfn/closefn will be called for all open/close
operations even in case of multiple openings.

TDA_TMO_U

Indicates that timeout in microseconds is used.

In this case, the timeout tmout of driver processing functions is specified in the TMO_U format (microseconds).

TDA_DEV_D

Indicates that a 64-bit device is used. In this case, the type of the request packet devreq of driver processing
functions is T_DEVREQ_D.

If TDA_TMO_U or TDA_DEV_D is specified, type of some parameters of driver processing functions is changed. If a
combination of multiple driver attributes that change the type of parameters is specified in a driver processing
function, the type of all specified parameters of that function is changed.

Device attributes are specified in devatr. The details of device attribute setting are as noted above.

The number of subunits is set in nsub. If there are no subunits, 0 is specified.

blksz sets the block size of device-specific data in bytes. In the case of a disk device, this is the physical block
size. It is set to 1 byte for a serial port, etc. For a device with no device-specific data, it is set to 0. For an
unformatted disk or other device whose block size is unknown, -1 is set. If blksz ≦ 0, device-specific data
cannot be accessed. When device-specific data is accessed by tk_rea_dev or tk_wri_dev, size * blksz must be
the size of the area being accessed, that is, the size of buf.

openfn, closefn, execfn, waitfn, abortfn, and eventfn set the entry address of driver processing functions. For
more details on driver processing functions, see Section 5.3.3.2, “Device Driver Interface”.

The device initialization information is returned in idev. This includes information set by default when the
device driver is started, and can be used as necessary. When idev = NULL is set, device initialization information
is not stored.

evtmbfid specifies the system default message buffer ID for event notification. If there is no system default
event notification message buffer, 0 is set.

Notification like the following is made to each subsystem when a device is registered or deleted. devid is the
device ID of the registered or deleted physical device.

T-Kernel 2.0 Specification 370 / 534

Device registration or update:
tk_evt_ssy(0, TSEVT_DEVICE_REGIST, 0, devid)

Device deletion:
tk_evt_ssy(0, TSEVT_DEVICE_DELETE, 0, devid)

Difference from T-Kernel 1.0

TDA_TMO_U and TDA_DEV_D are added as attributes of drvatr to support 64-bit devices.

T-Kernel 2.0 Specification 371 / 534

5.3.3.1.2 tk_ref_idv - Reference Device Initialization Information

C Language Interface

#include <tk/tkernel.h>

ER ercd = tk_ref_idv (T_IDEV *idev);

Parameter

T_IDEV* idev Packet to Return Initial Device
Information

Pointer to the area to return the device
initialization information

Return Parameter

ER ercd Error Code Error code

idev Detail:

ID evtmbfid Event Notification Message
Buffer ID

Event notification message buffer ID

(Other implementation-dependent parameters may be added beyond this point.)

Error Code

E_MACV Memory access privilege error

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets device initialization information. The contents are the same as the information obtained by tk_def_dev().

Additional Notes

The error code E_MACV is common to many system calls, and usually not included in the error code list of
each system call. However, for this extended SVC, E_MACV is included in this error code list because it is
the only typical error.

T-Kernel 2.0 Specification 372 / 534

5.3.3.2 Device Driver Interface

The device driver interface consists of processing functions (driver processing functions) specified when
registering a device.

Open function
ER openfn(ID devid, UINT omode, void *exinf);

Close function
ER closefn(ID devid, UINT option, void *exinf);

Execute function
ER execfn(T_DEVREQ *devreq, TMO tmout, void *exinf);

Wait-for-completion function
INT waitfn(T_DEVREQ *devreq, INT nreq, TMO tmout, void *exinf);

Abort function
ER abortfn(ID tskid, T_DEVREQ *devreq, INT nreq, void *exinf);

Event function
INT eventfn(INT evttyp, void *evtinf, void *exinf);

If TDA_TMO_U is specified for a driver attribute, the timeout specification tmout for the following driver processing
functions is set to TMO_U type (in microseconds).

Execute function
ER execfn(T_DEVREQ *devreq, TMO_U tmout_u, void *exinf);

Wait-for-completion function
INT waitfn(T_DEVREQ *devreq, INT nreq, TMO_U tmout_u, void *exinf);

If TDA_DEV_D is specified for a driver attribute, the type of request packet devreq for the following driver pro-
cessing functions is set to T_DEVREQ_D.

Execute function
ER execfn(T_DEVREQ_D *devreq_d, TMO tmout, void *exinf);

Wait-for-completion function
INT waitfn(T_DEVREQ_D *devreq_d, INT nreq, TMO tmout, void *exinf);

Abort function
ER abortfn(ID tskid, T_DEVREQ_D *devreq_d, INT nreq, void *exinf);

If TDA_TMO_U and TDA_DEV_D are specified set a driver attribute, a driver processing function is set to the one
that has parameters with all the specified types of changes were applied.

Execute function
ER execfn(T_DEVREQ_D *devreq_d, TMO_U tmout_u, void *exinf);

Wait-for-completion function
INT waitfn(T_DEVREQ_D *devreq_d, INT nreq, TMO_U tmout_u, void *exinf);

Driver processing functions are called by device management and run as a quasi-task portion. These driver
processing functions must be reentrant. Calling of these driver processing functions in a mutually exclusive
manner is not guaranteed. If, for example, there are simultaneous requests from multiple devices for the same
device, different tasks might call the same driver processing function at the same time. The device driver must
perform mutual exclusion control in such cases as necessary.

I/O requests to a device driver are made by means of the following request packet associated with a request
ID.

T-Kernel 2.0 Specification 373 / 534

/*
* Device request packet: For 32-bit
* In: Input parameter to driver processing function (set in T-Kernel/SM device management ←↩

)
* Out: Output parameter from driver processing function (set in driver processing function ←↩

)
*/
typedef struct t_devreq {

struct t_devreq *next; /* In: Link to request packet (NULL: termination) */
void *exinf; /* X: Extended information */
ID devid; /* In: Target device ID */
INT cmd :4; /* In: Request command */
BOOL abort :1; /* In: TRUE if abort request */
BOOL nolock :1; /* In: TRUE if lock (making resident) not needed */
INT rsv :26; /* In: Reserved (always 0) */
T_TSKSPC tskspc; /* In: Task space of requesting task */
W start; /* In: Starting data number */
W size; /* In: Request size */
void *buf; /* In: IO buffer address */
W asize; /* Out: Size of result */
ER error; /* Out: Error result */
/* Implementation -dependent information may be added beyond this point .*/

} T_DEVREQ;

/*
* Device request packet: For 64-bit
* In: Input parameter to driver processing function (set in T-Kernel/SM device management ←↩

)
* Out: Output parameter from driver processing function (set in driver processing function ←↩

)
*/
typedef struct t_devreq_d {

struct t_devreq_d *next; /* In: Link to request packet (NULL: termination) */
void *exinf; /* X: Extended information */
ID devid; /* In: Target device ID */
INT cmd :4; /* In: Request command */
BOOL abort :1; /* In: TRUE if abort request */
BOOL nolock :1; /* In: TRUE if lock (making resident) not needed */
INT rsv :26; /* In: Reserved (always 0) */
T_TSKSPC tskspc; /* In: Task space of requesting task */
D start_d; /* In: Starting data number , 64-bit */
W size; /* In: Request size */
void *buf; /* In: IO buffer address */
W asize; /* Out: Size of result */
ER error; /* Out: Error result */
/* Implementation -dependent information may be added beyond this point .*/

} T_DEVREQ_D;

In: Input parameter to the driver processing function is set in T-Kernel/SM device management. Should not
be changed on the device driver side. Parameters other than input parameters (In) are initially cleared to
0 by the device management. After that, device management does not modify them.Out: Output parameter
returned from the driver processing function is set in the driver processing function.

next is used to link the request packet. In addition to usage for keeping track of request packets in device
management, it is used also by the completion wait function (waitfn) and abort function (abortfn).

exinf can be used freely by the device driver. Device management does not pay attention to the contents.

The device ID of the device to which the request is issued is specified in devid.

The request command is specified in cmd as follows.

T-Kernel 2.0 Specification 374 / 534

cmd := (TDC_READ || TDC_WRITE)

#define TDC_READ 1 /* read request */
#define TDC_WRITE 2 /* write request */

If abort processing is to be carried out, abort is set to TRUE right before calling the abort function (abortfn).
abort is a flag indicating whether abort processing was requested, and does not indicate that processing
was aborted. In some cases abort is set to TRUE even when the abort function (abortfn) is not called. Abort
processing is performed when a request with abort set to TRUE is actually passed to the device driver.

nolock indicates that the memory space specified in buf has already been locked (made resident) and does not
need to be locked by the device driver. In this case the device driver must not lock the memory space. (nolock
is specified when there is a possibility of incorrect operation if the device driver performs a lock. Accordingly,
when nolock = TRUE, the device driver must not lock the space.)

tskspc is set as the task space for a task (API issuing task) that issued API for device I/O operation. Since
the processing function is executed in a context of a quasi-task portion in which the API issuing task is a
requesting task, tskspc is same as the task space for the processing function. If, however, the actual I/O
processing (read/write in the space specified in buf) is performed by a separate task in the device driver, it is
necessary to switch the task space of the task performing the actual I/O processing to the task space of the
task issuing API.

start, start_d, and size are just set as start, start_d, and size specified in tk_rea_dev(),

tk_rea_dev_du(), tk_wri_dev(), and tk_wri_dev_du().

buf is just set as buf specified in tk_rea_dev(), tk_rea_dev_du(), tk_wri_dev(), and tk_wri_dev_du(). The memory
space specified in bufmay be nonresident in some cases or task space in others. Care must therefore be taken
regarding the following points.

• Nonresident memory cannot be accessed from a task-independent portion or while dispatching or interrupts
are disabled.

• Task space memory cannot be accessed from another task.

For these reasons, switching of task space or making memory space resident must be performed as necessary.
Special attention is needed when access is made by an interrupt handler. Generally it is best not to access
buf directly from an interrupt handler. Before accessing the buf memory space, the validity of buf must be
checked using an address space check function(ChkSpace... are described above).

The device driver sets in asize the value returned in asize by tk_wai_dev().

The device driver sets in error the error code passed by tk_wai_dev() in its return code. E_OK indicates a
normal result.

Difference between T_DEVREQ and T_DEVREQ_D is only the part of their names being start or start_d, and
the data type.

The type of device request packet (T_DEVREQ or T_DEVREQ_D) is selected based on the driver attribute
(TDA_DEV_D) at device registration. For this reason, T_DEVREQ and T_DEVRE do not co-exist in the request
packet for one driver.

Difference from T-Kernel 1.0
The data type of start, size, and asize for T_DEVREQ was changed from INT to W. Device request packet for
T_DEVREQ_D is added to support 64-bit devices.

T-Kernel 2.0 Specification 375 / 534

5.3.3.2.1 openfn - Open function

C Language Interface

ER ercd = openfn (ID devid , UINT omode , void *exinf);

Parameter

ID devid Device ID Device ID of the device to open
UINT omode Open Mode Open mode (same as tk_opn_dev)
void* exinf Extended Information Extended information set at device

registration

Return Parameter

ER ercd Error Code Error code

Error Code

Other Error code returned by the device driver

Description

The open function openfn is called when tk_opn_dev() is invoked.

The function openfn performs processing to enable use of a device. Details of the processing are device-
dependent; if no processing is needed, it does nothing. The device driver does not need to remember whether
a device is open or not, nor is it necessary to treat as error the calling of another processing function simply
because the device was not opened (openfn had not been called). If another processing function is called for
a device that is not open, the necessary processing can be performed so long as there is no problem in device
driver operation.

When openfn is used to perform device initialization or the like, in principle no processing should be per-
formed that causes a wait. The processing and return from openfn must be as prompt as possible. In the case
of a device such as a serial port for which it is necessary to set the communication mode, for example, the
device can be initialized when the communication mode is set by tk_wri_dev. There is no need for openfn to
initialize the device.

When the same device is opened multiple times, normally this function is called only for the first time. If,
however, the driver attribute TDA_OPENREQ is specified in device registration, this function is called each time
the device is opened.

The openfn function does not need to perform any processing with regard to multiple opening or open mode,
which are handled by device management. Likewise, omode is simply passed as reference information; no
processing relating to omode is required.

openfn runs as a quasi-task portion of the task that issued tk_opn_dev. That is, it is executed in the context of
the quasi-task portion whose requesting task is the task that issued tk_opn_dev.

T-Kernel 2.0 Specification 376 / 534

5.3.3.2.2 closefn - Close function

C Language Interface

ER ercd = closefn (ID devid , UINT option , void *exinf);

Parameter

ID devid Device ID Device ID of the device to close
UINT option Close Option Close option (same as tk_cls_dev)
void* exinf Extended Information Extended information set at device

registration

Return Parameter

ER ercd Error Code Error code

Error Code

Other Error code returned by the device driver

Description

The close function closefn is called when tk_cls_dev() is invoked.

The closefn function performs processing to end use of a device. Details of the processing are device-
dependent; if no processing is needed, it does nothing.

If the device is capable of ejecting media and TD_EJECT is set in option, media ejection is performed.

When closefn is used to perform device shutdown processing or media ejection, in principle no processing
should be performed that causes a wait. The processing and return from closefn must be as prompt as possible.
If media ejection takes time, it is permissible to return from closefn without waiting for the ejection to complete.

When the same device is opened multiple times, normally this function is called only the last time it is closed.
If, however, the driver attribute TDA_OPENREQ is specified in device registration, this function is called each time
the device is closed. In this case TD_EJECT is specified in option only for the last time.

The closefn function does not need to perform any processing with regard to multiple opening or open mode,
which are handled by device management.

closefn runs as a quasi-task portion of the task that issued tk_cls_dev. When the device is closed by cleanup
processing, this function is executed in the context of the cleanup function, that is, it runs as a quasi-task
portion of the task that issued tk_cln_ssy.

T-Kernel 2.0 Specification 377 / 534

5.3.3.2.3 execfn - Execute function

C Language Interface

/* Execute function (32-bit request packet, millisecond timeout) */

ER ercd = execfn (T_DEVREQ *devreq , TMO tmout , void *exinf);

/* execute function (64-bit request packet, millisecond timeout) */

ER ercd = execfn (T_DEVREQ_D *devreq_d , TMO tmout , void *exinf);

/* execute function (32-bit request packet, microsecond timeout) */

ER ercd = execfn (T_DEVREQ *devreq , TMO_U tmout_u , void *exinf);

/* execute function (64-bit request packet, microsecond timeout) */

ER ercd = execfn (T_DEVREQ_D *devreq_d , TMO_U tmout_u , void *exinf);

Parameter

T_DEVREQ* devreq Device Request Packet Request packet (32-bit)
T_DEVREQ_D* devreq_d Device Request Packet Request packet (64-bit)
TMO tmout Timeout Request acceptance timeout (ms)
TMO_U tmout_u Timeout Request acceptance timeout (in

microseconds)
void* exinf Extended Information Extended information set at device

registration

Return Parameter

ER ercd Error Code Error code

Error Code

Other Error code returned by the device driver

Description

The execute function execfn is called when tk_rea_dev() or tk_wri_dev() is invoked.

Initiates the processing requested in devreq. This function initiates the requested processing only, returning
to its caller without waiting for the processing to complete. The time required to initiate processing depends
on the device driver; this function does not necessarily complete immediately.

When new processing cannot be accepted, this function goes to WAITING state for request acceptance. If
the new request cannot be accepted within the time specified in tmout, the function times out. The TMO_POL or
TMO_FEVR attribute can be specified in tmout. If the function times out, E_TMOUT is passed in the execfn return
code. The request packet error parameter does not change. Timeout applies to the request acceptance, not
to the processing after acceptance.

When error is passed in the execfn return code, the request is considered not to have been accepted and the
request packet is discarded.

T-Kernel 2.0 Specification 378 / 534

If processing is aborted before the request is accepted (before the requested processing starts), E_ABORT is
passed in the execfn return code. In this case, the request packet is discarded. If the abort occurs after the
processing has been accepted, E_OK is returned for this function. The request packet is not discarded until
waitfn is executed and processing completes.

When abort occurs, the important thing is to return from execfn as quickly as possible. If processing will end
soon anyway without aborting, it is not necessary to abort.

execfn runs as a quasi-task portion of the task that issued tk_rea_dev, tk_wri_dev, tk_srea_dev, or tk_swri_dev.

In a device driver for which TDA_DEV_D is specified as an attribute at the time of registering the device, the exe-
cute function (64-bit request packet, millisecond timeout) execfn is called when tk_rea_dev() or tk_wri_dev()
is invoked. In this case, the function specification is the same as that of 32-bit request packet, millisecond
timeout execfn, except that the parameter request packet is a 64-bit T_DEVREQ_D* devreq_d.

In a device driver for which TDA_TMO_U is specified as an attribute at the time of registering the device, the exe-
cute function (32-bit request packet, microsecond timeout) execfn is called when tk_rea_dev() or tk_wri_dev()
is invoked. In this case, the function specification is the same as that of 32-bit request packet, millisecond
timeout execfn, except that the parameter timeout specification is a microsecond TMO_U tmout_u.

In a device driver for which both TDA_DEV_D and TDA_TMO_U are specified as an attribute at the time of regis-
tering the device, the execute function (64-bit request packet, microsecond timeout) execfn is called when
tk_rea_dev() or tk_wri_dev() is invoked. In this case, the function specification is the same as that of 32-bit re-
quest packet, millisecond timeout execfn, except that the parameter request packet is a 64-bit T_DEVREQ_D*
devreq_d and the parameter timeout specification is a microsecond TMO_U tmout_u.

Difference from T-Kernel 1.0

The execute function (64-bit request packet, millisecond timeout), execute function (32-bit request packet,
microsecond timeout), and execute function (64-bit request packet, microsecond timeout) were added in
T-Kernel 2.0.

T-Kernel 2.0 Specification 379 / 534

5.3.3.2.4 waitfn - Wait-for-completion function

C Language Interface

/* wait-for-completion function (32-bit request packet, millisecond timeout) */

INT creqno = waitfn (T_DEVREQ *devreq , INT nreq , TMO tmout , void *exinf);

/* wait-for-completion function (64-bit request packet, millisecond timeout) */

INT creqno = waitfn (T_DEVREQ_D *devreq_d , INT nreq , TMO tmout , void *exinf);

/* wait-for-completion function (32-bit request packet, microsecond timeout) */

INT creqno = waitfn (T_DEVREQ *devreq , INT nreq , TMO_U tmout_u , void *exinf);

/* wait-for-completion function (64-bit request packet, microsecond timeout) */

INT creqno = waitfn (T_DEVREQ_D *devreq_d , INT nreq , TMO_U tmout_u , void *exinf);

Parameter

T_DEVREQ* devreq Device Request Packet Request packet list (32-bit)
T_DEVREQ_D* devreq_d Device Request Packet Request packet list (64-bit)
INT nreq Number of Requests Request packet count
TMO tmout Timeout Timeout (ms)
TMO_U tmout_u Timeout Timeout (in microseconds)
void* exinf Extended Information Extended information set at device

registration

Return Parameter

INT creqno Completed Request Packet
Number

Completed request packet number

or Error Code Error code

Error Code

Other Error code returned by the device driver

Description

The wait-for-completion function waitfn is called when tk_wai_dev() is invoked.

devreq is a list of request packets in a chain linked by devreq->next. This function waits for completion of
any of the nreq request packets starting from devreq. The final next is not necessarily NULL, so the nreq must
always be followed. The number of the completed request packet (which one after devreq) is passed in the
return code. The first one is numbered 0 and the last one is numbered nreq - 1. Here completion means any
of normal completion, abnormal (error) termination, or abort.

The timeout for waiting for completion is set in tmout. The TMO_POL or TMO_FEVR attribute can be specified for
tmout. If the wait times out, the requested processing continues. The waitfn return code in case of timeout is

T-Kernel 2.0 Specification 380 / 534

E_TMOUT. The request packet error parameter does not change. Note that if return from waitfn occurs while
the requested processing continues, error must be returned in the waitfn return code; but the processing must
not be completed when error is passed in the return code, and a value other than error must not be returned
if processing is ongoing. As long as error is passed in the waitfn return code, the request is considered to be
pending and no request packet is discarded. When the number of a request packet whose processing was
completed is passed in the waitfn return code, the processing of that request is considered to be completed
and that request packet is discarded.

I/O error and other device-related errors are stored in the request packet error parameter. Error is passed in
the waitfn return code when completion waiting did not take place properly. The waitfn return code is set in
the tk_wai_dev return code, whereas the request packet error value is returned in ioer.

The abort processing when the abort function abortfn was executed during completion waiting by waitfn differs
depending on whether to wait for completion of a single request (waitfn, nreq = 1) or multiple requests (waitfn,
nreq > 1). When waiting for completion of a single request, the request currently processing is aborted. On
the other hand, when waiting for completion of multiple requests, as a special handling, only the completion
waiting by waitfn is released and the processing for the request itself is not aborted. It means that, even if
the abort function abortfn is executed, the request packets' abort remains FALSE and the processing for the
requests continues. E_ABORT is passed in the return code from the released waitfn.

During a wait for request completion, an abort request may be set in the abort parameter of a request packet.
In such a case, if it is a single request, the request abort processing must be performed. If the wait is for
multiple requests it is also preferable that abort processing be executed, but it is also possible to ignore the
abort flag.

When abort occurs, the important thing is to return from waitfn as quickly as possible. If processing will end
soon anyway without aborting, it is not necessary to abort.

As a rule, E_ABORT is returned in the request packet error parameter when processing is aborted; but a
different error code than E_ABORT may be returned as appropriate based on the device properties. It is
also permissible to return E_OK on the basis that the processing right up to the abort is valid. If processing
completes normally to the end, E_OK is returned even if there was an abort request.

waitfn runs as a quasi-task portion of the task that issued tk_wai_dev, tk_srea_dev, or tk_swri_dev.

In a device driver for which TDA_DEV_D is specified as an attribute at the time of registering the device, the
wait-for-completion function (64-bit request packet, millisecond timeout) waitfn is called when tk_wai_dev()
is invoked. In this case, the function specification is the same as that of 32-bit request packet, millisecond
timeout waitfn, except that the parameter request packet is a 64-bit T_DEVREQ_D* devreq_d.

In a device driver for which TDA_TMO_U is specified as an attribute at the time of registering the device, the
wait-for-completion function (32-bit request packet, microsecond timeout) waitfn is called when tk_wai_dev()
is invoked. In this case, the function specification is the same as that of 32-bit request packet, millisecond
timeout waitfn, except that the parameter timeout specification is a microsecond TMO_U tmout_u.

In a device driver for which TDA_DEV_D and TDA_TMO_U are specified as an attribute at the time of registering the
device, the wait-for-completion function (64-bit request packet, microsecond timeout) waitfn is called when
tk_wai_dev() is invoked. In this case, the function specification is the same as that of 32-bit request packet,
millisecond timeout waitfn, except that the parameter request packet is a 64-bit T_DEVREQ_D* devreq_d and
the parameter timeout specification is a microsecond TMO_U tmout_u.

Difference from T-Kernel 1.0

The wait-for-completion function (64-bit request packet, millisecond timeout), wait-for-completion function
(32-bit request packet, microsecond timeout), and wait-for-completion function (64-bit request packet, mi-
crosecond timeout) were added in T-Kernel 2.0.

T-Kernel 2.0 Specification 381 / 534

5.3.3.2.5 abortfn - Abort function

C Language Interface

/* abort function (32-bit request packet) */

ER ercd = abortfn (ID tskid , T_DEVREQ *devreq , INT nreq , void *exinf);

/* abort function (64-bit request packet) */

ER ercd = abortfn (ID tskid , T_DEVREQ_D *devreq_d , INT nreq , void *exinf);

Parameter

ID tskid Task ID Task ID of the task executing execfn
or waitfn

T_DEVREQ* devreq Device Request Packet Request packet list (32-bit)
T_DEVREQ_D* devreq_d Device Request Packet Request packet list (64-bit)
INT nreq Number of Requests Request packet count
void* exinf Extended Information Extended information set at device

registration

Return Parameter

ER ercd Error Code Error code

Error Code

Other Error code returned by the device driver

Description

The abort function abortfn is called when you want to promptly return from the currently running execute
function execfn or wait-for-completion function waitfn. Normally this means the request being processed is
aborted. If, however, the processing can be completed soon without aborting, it may not have to be aborted.
The important thing is to return as quickly as possible from execfn or waitfn.

abortfn is called in the following cases.

• When a break function is executing after a task exception and the task that raised the exception requests
abort processing, abortfn is used to abort the request being processed by that task.

• When a device is being closed by tk_cls_dev and by subsystem cleanup processing, and the device descriptor
was processing a request, abortfn is used to abort the request being processed by the device descriptor.

tskid indicates the task executing the request specified in devreq. In other words, it is the task executing
execfn or waitfn. devreq and nreq are the same as the parameters that were passed to execfn or waitfn. In the
case of execfn , nreq is always 1.

abortfn is called by a different task from the one executing execfn or waitfn. Since both tasks run concurrently,
mutual exclusion control must be performed as necessary. It is possible that the abortfn function will be called
immediately before calling execfn or waitfn, or during return from these functions. Measures must be taken
to ensure proper operation in such cases. Before abortfn is called, the abort flag in the request packet whose

T-Kernel 2.0 Specification 382 / 534

processing is to be aborted is set to TRUE, enabling execfn or waitfn to know whether there is going to be an
abort request. Note also that abortfn can use tk_dis_wai() for any object.

When waitfn is executing for multiple requests (nreq > 1), this is treated as a special case differing as follows
from other cases.

• Only the completion wait is aborted (waited is released), not the requested processing.

• The abort flag is not set in the request packet (remains as abort = FALSE).

Aborting a request when execfn and waitfn are not executing is done not by calling abortfn but by setting the
request packet abort flag. If execfn is called when the abort flag is set, the request is not accepted. If waitfn
is called, abort processing is the same as if abortfn is called.

If a request for which processing was started by execfn is aborted before waitfn was called to wait for its
completion, the completion of the aborted processing is notified when waitfn is called later. Even though
processing was aborted, the request itself is not discarded until its completion has been checked by waitfn.

abortfn initiates abort processing only, returning promptly without waiting for the abort to complete.

The abortfn that is executed on a task exception runs as a quasi-task portion of the task issuing tk_ras_tex that
raised the task exception. The abortfn that is executed on a device close runs as a quasi-task portion of the
task that issued tk_cls_dev. When the device is closed by cleanup processing, this function is executed in the
context of the cleanup function, that is, it runs as a quasi-task portion of the task that issued tk_cln_ssy.

In a device driver for which TDA_DEV_D is specified as an attribute at the time of registering the device, the
abort function (64-bit request packet) abortfn is called when you want to promptly return from the currently
running execute function execfn or wait-for-completion function waitfn. In this case, the function specification
is the same as that of 32-bit request packet abortfn, except that the parameter request packet is a 64-bit
T_DEVREQ_D* devreq_d.

Difference from T-Kernel 1.0

The abort function (64-bit request packet) was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 383 / 534

5.3.3.2.6 eventfn - Event function

C Language Interface

INT retcode = eventfn (INT evttyp , void *evtinf , void *exinf);

Parameter

INT evttyp Event Type Driver request event type
void* evtinf Event Information Information for each event type
void* exinf Extended Information Extended information set at device

registration

Return Parameter

INT retcode Return Code Return code defined for each event type
or Error Code Error code

Error Code

Other Error code returned by the device driver

Description

When a state change occurs in the device or system which is caused by a factor other than normal device I/O
processing by an application interface, requiring some processing by the device driver, a driver request event
is raised and then the event function eventfn is called.

The driver request event is raised when suspending or resuming a device for power control (see tk_sus_dev)
or when connecting a removable device such as USB or PC card.

For example, when the system is suspended by tk_sus_dev, the driver request event for the suspend
(TDV_SUSPEND) is raised in the T-Kernel (during the tk_sus_dev processing) and the event function for each
device is called with evttyp = TDV_SUSPEND. The event function called for each device performs necessary
operations for suspend such as saving the state.

The following driver request events are defined.

#define TDV_SUSPEND (-1) /* suspend */
#define TDV_RESUME (-2) /* resume */
#define TDV_CARDEVT 1 /* PC card event */
#define TDV_USBEVT 2 /* USB event */

The driver request events with a negative value are called internally from the device management in the
T-Kernel/SM, for suspend or resume processing.

On the other hand, the driver request events with a positive value (TDV_CARDEVT and TDV_USBEVT) are reference
specifications which are not directly related to the T-Kernel operation, and raised by calling tk_evt_dev().
These driver request events are used as needed to implement a bus driver for USB, PC card, or other device.

The processing performed by the event function is defined for each event type. For suspend and resume
processings, see Section 5.3.3.4, “Device Suspend/Resume Processing”.

When a device event is called by tk_evt_dev(), the eventfn return code is set transparently as the tk_evt_dev()
return code.

Requests to event functions must be accepted even if another request is processed, and must be processed
as quickly as possible.

The eventfn runs as a quasi-task portion of the task that issued tk_evt_dev or tk_sus_dev that caused the event.

T-Kernel 2.0 Specification 384 / 534

Additional Notes

The following behaviors are assumed for PC card event or USB event.

Note that they describe implementation examples of device drivers that handle a device such as PC card or
USB and are not part of the T-Kernel specification.

When a USB device is connected, a class driver should dynamically be mapped to the USB device to perform
an actual I/O processing.

For example, when a storage such as USB memory is connected, a device driver for the mass storage class
handles the I/O for the device, or when a USB camera is connected, a device driver for the video class
handles the I/O for the device. Which device driver should be used cannot be determined until the USB
device is connected.

In this case, the driver request event for the USB connection and the event function for each device driver are
used in order to map a class driver to the USB device. Specifically, when the USB bus driver (USB manager)
monitoring the USB ports detects a newly connected USB device, it sends the driver request event for the
USB connection (TDV_USBEVT) to each device driver which will be candidate of the class driver and then calls
the event function for each device.

The event function for each device returns whether or not it can support the newly connected USB device in
response to this TDV_USBEVT. The USB bus driver receives the return codes and determines the mapping to the
actual class driver.

The similar steps are used also for connecting PC card.

T-Kernel 2.0 Specification 385 / 534

5.3.3.3 Device Event Notification

A device driver sends events that occur on each device to the specific message buffer (event notification
message buffer) as device event notification messages. The event notification message buffer ID is referenced
or set as an attribute data of TDN_EVENT for each device.

The system default event notification message buffer is used immediately after device registration. As a device
is registered by tk_def_dev when a device driver is started, the system default event notification message buffer
ID value is returned as this API's return parameter, the value is held in the device driver and is used as the
initial value of this attribute data, TDN_EVENT.

The system default event notification message buffer is created at system startup. Its size and maximum
message length are defined by TDEvtMbfSz in the system configuration information.

The message formats used in device event notification are as follows: The content and size of the event
notification message vary depending on the event type.

◇Basic format of device event notification

typedef struct t_devevt {
TDEvtTyp evttyp; /* event type */
/* Information specific to each event type is appended here. */

} T_DEVEVT;

◇Format of device event notification with device ID

typedef struct t_devevt_id {
TDEvtTyp evttyp; /* event type */
ID devid; /* Device ID */
/* Information specific to each event type is appended here. */

} T_DEVEVT_ID;

◇Format of device event notification with extended information

typedef struct t_devevt_ex {
TDEvtTyp evttyp; /* event type */
ID devid; /* Device ID */
UB exdat [16]; /* Extended information */
/* Information specific to each event type is appended here. */

} T_DEVEVT_EX;

The event type of a device event notification is classified as follows:

a. Basic event notification (event type: 0x0001 to 0x002F)

Basic event notification from a device

b. System event notification (event type: 0x0030 to 0x007F)

Event notification related to entire system such as power supply control

c. Event notification with extended information (event type: 0x0080 to 0x00FF)

Event notification from a device with extended information

d. User-defined event notification (event type: 0x0100 to 0xFFFF)

Notification of event that users can arbitrarily define

T-Kernel 2.0 Specification 386 / 534

Typical event types are as follows: For more details on each event and other event types, see the specifica-
tion related to device drivers or Section 7.1.3, “Event Type of the Device Event Notification” in Section 7.1,
“Specification Related to Device Drivers to be Used as Reference”.

typedef enum tdevttyp {
TDE_unknown = 0, /* undefined */
TDE_MOUNT = 0x01 , /* media insert */
TDE_EJECT = 0x02 , /* Eject media */
TDE_POWEROFF = 0x31 , /* power switch off */
TDE_POWERLOW = 0x32 , /* low power alarm */
TDE_POWERFAIL = 0x33 , /* abnormal power */
TDE_POWERSUS = 0x34 /* auto suspend */

} TDEvtTyp;

Measures must be taken so that if event notification cannot be sent because the message buffer is full, the lack
of notification will not adversely affect operation on the receiving end. One option is to hold the notification
until space becomes available in the message buffer, but in that case other device driver processing should
not, as a rule, be allowed to fall behind as a result. Processing on the receiving end should be designed to
avoid message buffer overflow as much as possible.

Difference from T-Kernel 1.0
The description has been re-organized for message formats and event types used in the device event notifi-
cation.

T-Kernel 2.0 Specification 387 / 534

5.3.3.4 Device Suspend/Resume Processing

Device drivers perform suspend and resume operations in response to the issuing of suspend/resume
(TDV_SUSPEND/TDV_RESUME) events to the event handling function (eventfn). Suspend and resume events are
issued only to physical devices.

TDV_SUSPEND
Suspend

evttyp = TDV_SUSPEND
evtinf = NULL (none)

Suspend processing takes place as follows.

1. If there is a request being processed at the time, the device driver waits for it to complete, pauses
it or aborts it. Which of these options to take depends on the device driver implementation. Since
the suspension must be effected as quickly as possible, however, pause or abort should be chosen
if completion of the request will take time.
Suspend events can be issued only for physical devices, but the same processing is applied to all
logical devices included in the physical device.

Pause: Processing is suspended, then continues after the device resumes operation.
Abort: Processing is aborted just as when the abort function (abortfn) is executed, and is not continued after the device resumes operation.

2. New requests other than a resume event are not accepted.

3. The device power is cut off and other suspend operation is performed.

Abort should be avoided if possible because of its effects on applications. It should be used only in such
cases as long input wait from a serial port, or when pause would be difficult. Normally it is best to wait
for completion of a request or, if possible, choose pause (suspend and resume).

Requests arriving at the device driver in suspend state are made to wait until operation resumes, after
which they are accepted for processing. If the request does not involve access to the device, however,
or otherwise can be processed even during suspension, a request may be accepted without waiting for
resumption.

TDV_RESUME
Resume

evttyp = TDV_RESUME
evtinf = NULL (none)

Resume processing takes place as follows.

1. The device power is turned back on, the device states are restored and other device resume pro-
cessing is performed.

2. Paused processing is resumed.

3. Accepting request is resumed.

T-Kernel 2.0 Specification 388 / 534

5.3.3.5 Special Properties of Disk Devices

A disk device has a special role to play in a virtual memory system. When implementing a virtual memory
system, in order to perform data transfer between memory and a disk, OS (specifically, a part to process a
virtual memory in a T-Kernel Extension, etc.) needs to call a disk driver.

The need for the OS to perform data transfer with a disk arises when access is made to nonresident memory
and the memory contents must be read from a disk (page in). The OS calls the disk driver in this case.

If nonresident memory is accessed in the disk driver, the OS must likewise call the disk driver. In such a
case, when the disk driver is waiting for a page to be read in due to the access to nonresident memory, it is
possible that the OS will again request disk access to that disk driver. Even then, the disk driver must be able
to execute the later OS request.

A similar case may arise in suspend processing. When access is made to nonresident memory during suspend
processing and a disk driver is called, if that disk driver is already suspended, page-in will not be possible.
To avoid such a situation, suspend processing should suspend other devices before disk devices. If there
are multiple disk devices, however, the order of their suspension is indeterminate. For this reason, during
suspend processing a disk driver must not access nonresident memory.

Because of the above limitations, a disk driver shall not use (access) nonresident memory. It is possible, how-
ever, that the I/O buffer (buf) space specified with tk_rea_dev() or tk_wri_dev() can be nonresident memory
since this is a memory location specified by the caller. In the case of I/O buffers, therefore, it is necessary to
make the memory space resident (see LockSpace) at the time of I/O access.

T-Kernel 2.0 Specification 389 / 534

5.4 Interrupt Management Functions

T-Kernel/SM interrupt management functions are functions for disabling or enabling external interrupt, re-
trieving interrupt disable status, controlling interrupt controller, etc.

Interrupt handling is largely hardware-dependent, different on each system, and therefore difficult to stan-
dardize. The following are given as standard specification, but it may not be possible to follow these exactly
on all systems. Implementors should comply with these specifications as much as possible; but where im-
plementation is not feasible, full compliance is not mandatory. If functions not in the standard specification
are added, however, the function names must be different from those given here. In any case, DI(), EI(), and
isDI() must be implemented in accordance with the standard specification.

Interrupt management functions are provided as library functions or C language macros. These can be called
from a task-independent portion and while dispatching and interrupts are disabled.

T-Kernel 2.0 Specification 390 / 534

5.4.1 CPU Interrupt Control

These functions are for CPU external interrupt flag control. Generally they do not perform any operation on
the interrupt controller.

DI(), EI(), and isDI() are C language macros.

T-Kernel 2.0 Specification 391 / 534

5.4.1.1 DI - Disable External Interrupts

C Language Interface

#include <tk/tkernel.h>

DI (UINT intsts);

Parameter

UINT intsts Interrupt Status Variable that stores the CPU external
interrupt flag

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Controls the external interrupt flag in the CPU and disables all external interrupts. Also stores the flag state
in intsts before disabling interrupt.

This API is defined as a C language macro and intsts is not a pointer. Write a variable directly.

T-Kernel 2.0 Specification 392 / 534

5.4.1.2 EI - Enable External Interrupt

C Language Interface

#include <tk/tkernel.h>

EI (UINT intsts);

Parameter

UINT intsts Interrupt Status Variable that stores the CPU external
interrupt flag

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Controls the external interrupt flag in the CPU and reverts the flag state to intsts. That is, this API reverts the
flag state to the state before disabling external interrupts by the previously executed DI(intsts).

If the state before executing DI(intsts) was the external-interrupt-enabled, the subsequent EI(intsts) enables
external interrupts. On the other hand, if the state was already interrupt-disabled at the time DI(intsts) was
executed, interrupt is not enabled by EI(intsts). However, if 0 is specified in intsts, the external interrupt flag
in the CPU is set to the interrupt-enable state.

intsts must be either the value saved by DI() or 0. If any other value is specified, the subsequent correct
behavior is not guaranteed.

T-Kernel 2.0 Specification 393 / 534

5.4.1.3 isDI - Get Interrupt Disable Status

C Language Interface

#include <tk/tkernel.h>

BOOL disint = isDI (UINT intsts);

Parameter

UINT intsts Interrupt Status Variable that stores the CPU external
interrupt flag

Return Parameter

BOOL disint Interrupt Disabled Status External interrupt disabled status

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Checks the external interrupt flag in the CPU that was stored in intsts by the previously executed DI(), and
returns TRUE (a value other than 0) if the flag status is determined as the interrupt-disabled by T-Kernel/OS,
or FALSE otherwise.

intstsmust be the value saved by DI(). If any other value is specified, the subsequent correct behavior is not
guaranteed.

Example 5.4 Sample Usage of isDI

void foo()
{

UINT intsts;

DI(intsts);

if (isDI(intsts)) {
/* Interrupt was already disabled at the time the above DI() was called */

} else {
/* Interrupt was enabled at the time the above DI() was called */

}

EI(intsts);
}

T-Kernel 2.0 Specification 394 / 534

5.4.2 Control of Interrupt Controller

These functions control the interrupt controller. Generally they do not perform any operation with respect to
the CPU interrupt flag.

typedef UINT INTVEC; /* Interrupt vector */

The specific details of the interrupt vectors (INTVEC) are implementation-dependent. Preferably, however,
they should be the same numbers as the interrupt handler numbers specified with tk_def_int(), or should allow
for simple conversion to and from those numbers.

T-Kernel 2.0 Specification 395 / 534

5.4.2.1 DINTNO - Convert Interrupt Vector to Interrupt Handler Number

C Language Interface

#include <tk/tkernel.h>

UINT dintno = DINTNO (INTVEC intvec);

Parameter

INTVEC intvec Interrupt Vector Interrupt vector

Return Parameter

UINT dintno Interrupt Handler Number Interrupt handler number

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Converts an interrupt vector to the corresponding interrupt handler number.

T-Kernel 2.0 Specification 396 / 534

5.4.2.2 EnableInt - Enable Interrupts

C Language Interface

#include <tk/tkernel.h>

void EnableInt (INTVEC intvec);
void EnableInt (INTVEC intvec , INT level);

Parameter

INTVEC intvec Interrupt Vector Interrupt vector
INT level Interrupt Priority Level Interrupt priority level

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Enables the interrupt specified in intvec. In a system that allows interrupt priority level to be specified,
the level parameter can be used to specify the interrupt priority level. The precise meaning of level is
implementation-dependent.

Either methods with or without level shall be provided.

T-Kernel 2.0 Specification 397 / 534

5.4.2.3 DisableInt - Disable Interrupts

C Language Interface

#include <tk/tkernel.h>

void DisableInt (INTVEC intvec);

Parameter

INTVEC intvec Interrupt Vector Interrupt vector

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Disables the interrupt specified in intvec. Generally, interrupts raised while the interrupts are disabled are
made pending, and are raised after interrupts are enabled by EnableInt() . ClearInt() must be used if it is
desired to clear interrupts raised during interrupt-disabled-state.

T-Kernel 2.0 Specification 398 / 534

5.4.2.4 ClearInt - Clear Interrupt

C Language Interface

#include <tk/tkernel.h>

void ClearInt (INTVEC intvec);

Parameter

INTVEC intvec Interrupt Vector Interrupt vector

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Clears interrupts raised for intvec, if any.

T-Kernel 2.0 Specification 399 / 534

5.4.2.5 EndOfInt - Issue EOI to Interrupt Controller

C Language Interface

#include <tk/tkernel.h>

void EndOfInt (INTVEC intvec);

Parameter

INTVEC intvec Interrupt Vector Interrupt vector

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Issues EOI (End Of Interrupt) to the interrupt controller. intvec must be an interrupt for which EOI can be
issued. Generally this must be executed at the end of an interrupt handler.

T-Kernel 2.0 Specification 400 / 534

5.4.2.6 CheckInt - Check Interrupt

C Language Interface

#include <tk/tkernel.h>

BOOL rasint = CheckInt (INTVEC intvec);

Parameter

INTVEC intvec Interrupt Vector Interrupt vector

Return Parameter

BOOL rasint Interrupt Raised Status External interrupt raised status

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Checks whether an interrupt for intvec has been raised. If an interrupt for intvec has been raised, it returns
TRUE (value other than 0), else returns FALSE.

T-Kernel 2.0 Specification 401 / 534

5.4.2.7 SetIntMode - Set Interrupt Mode

C Language Interface

#include <tk/tkernel.h>

void SetIntMode (INTVEC intvec , UINT mode);

Parameter

INTVEC intvec Interrupt Vector Interrupt vector
UINT mode Mode Interrupt mode

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Sets the interrupt specified in intvec for the mode specified in mode.

The settable modes and how to specify mode are implementation-dependent. The following is an example of
settable modes:

mode := (IM_LEVEL || IM_EDGE) | (IM_HI || IM_LOW)

#define IM_LEVEL 0x0002 /* Level trigger */
#define IM_EDGE 0x0000 /* Edge trigger */
#define IM_HI 0x0000 /* H level/Interrupt at rising edge */
#define IM_LOW 0x0001 /* L level/Interrupt at falling edge */

If invalid mode is specified, the subsequent correct behavior is not guaranteed.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 402 / 534

5.5 I/O Port Access Support Functions

I/O port access support functions support accesses or operations to the I/O devices. These include functions
that read from or write to the I/O port of the specified address using the unit of byte or word, and a function
that realizes a wait for a short time (micro wait) which is used for I/O device operations.

I/O port access support functions are provided as library functions or C language macros. These can be called
from a task-independent portion or while task dispatching and interrupts are disabled.

5.5.1 I/O Port Access

In a system with separate I/O space and memory space, I/O port access functions access I/O space. In a
system with memory-mapped I/O only, I/O port access functions access memory space. Using these functions
will improve software portability and readability even in a memory-mapped I/O system.

T-Kernel 2.0 Specification 403 / 534

5.5.1.1 out_b - Write to I/O Port (In Unit of Byte)

C Language Interface

#include <tk/tkernel.h>

void out_b (INT port , UB data);

Parameter

INT port I/O Port Address I/O port address
UB data Write Data Data to be written (in unit of byte)

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Writes data in byte (8-bit) to the I/O port pointed by the address port.

T-Kernel 2.0 Specification 404 / 534

5.5.1.2 out_h - Write to I/O Port (In Unit of Half-word)

C Language Interface

#include <tk/tkernel.h>

void out_h (INT port , UH data);

Parameter

INT port I/O Port Address I/O port address
UH data Write Data Data to be written (in unit of half-word)

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Writes data in a half-word (16-bit) to the I/O port pointed by the address port.

T-Kernel 2.0 Specification 405 / 534

5.5.1.3 out_w - Write to I/O Port (In Unit of Word)

C Language Interface

#include <tk/tkernel.h>

void out_w (INT port , UW data);

Parameter

INT port I/O Port Address I/O port address
UW data Write Data Data to be written (in unit of word)

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Writes data in a word (32-bit) to the I/O port pointed by the address port.

T-Kernel 2.0 Specification 406 / 534

5.5.1.4 out_d - Write to I/O Port (In Unit of Double-word)

C Language Interface

#include <tk/tkernel.h>

void out_d (INT port , UD data);

Parameter

INT port I/O Port Address I/O port address
UD data Write Data Data to be written (in unit of

double-word)

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Writes data in a double-word (64-bit) to the I/O port pointed by the address port.

Note that, in a system where I/O port cannot be accessed in double-word (64-bit) due to hardware constraint,
data is separated into shorter units than double-word (64-bit) before they are written.

Rationale for the Specification

There are many systems where I/O port cannot be accessed in double-word (64-bit) due to hardware con-
straint such as 32-bit or less I/O data bus. In such systems, the strict specification of out_d() and in_d() cannot
be implemented; that is, they cannot process data in one chunk of the specified bit width. In terms of the orig-
inal purpose of this API, it is preferable not to implement the out_d() and in_d() or return an error at runtime.
However, it is not practical to detect an error by determining the bus configuration at runtime, and it is often
harmless to separate 64-bit data into 32-bit or narrower units before writing.

This is why the specification of out_d() and in_d() allow for the case where 64-bit data cannot be processed
in one chunk. Therefore, whether out_d() and in_d() support the block access to 64-bit I/O port or not is
implementation-dependent. If the block access to 64-bit I/O port is needed, the system hardware configura-
tion and handling of out_d() and in_d() should be checked.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 407 / 534

5.5.1.5 in_b - Read from I/O Port (In Unit of Byte)

C Language Interface

#include <tk/tkernel.h>

UB data = in_b (INT port);

Parameter

INT port I/O Port Address I/O port address

Return Parameter

UB data Read Data Data to be read (in unit of byte)

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Reads data in a byte (8-bit) from the I/O port pointed by the address port and returns it in the return parameter
data.

T-Kernel 2.0 Specification 408 / 534

5.5.1.6 in_h - Read from I/O Port (In Unit of Half-word)

C Language Interface

#include <tk/tkernel.h>

UH data = in_h (INT port);

Parameter

INT port I/O Port Address I/O port address

Return Parameter

UH data Read Data Data to be read (in unit of half-word)

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Reads data in a half-word (16-bit) from the I/O port pointed by the address port and returns it in the return
parameter data.

T-Kernel 2.0 Specification 409 / 534

5.5.1.7 in_w - Read from I/O Port (In Unit of Word)

C Language Interface

#include <tk/tkernel.h>

UW data = in_w (INT port);

Parameter

INT port I/O Port Address I/O port address

Return Parameter

UW data Read Data Data to be read (in unit of word)

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Reads data in a word (32-bit) from the I/O port pointed by the address port and returns it in the return
parameter data.

T-Kernel 2.0 Specification 410 / 534

5.5.1.8 in_d - Read from I/O Port (In Unit of Double-word)

C Language Interface

#include <tk/tkernel.h>

UD data = in_d (INT port);

Parameter

INT port I/O Port Address I/O port address

Return Parameter

UD data Read Data Data to be read (in unit of double-word)

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Reads data in a double-word (64-bit) from the I/O port pointed by the address port and returns it in the return
parameter data.

Note that, in a system where I/O port cannot be accessed in one chunk of double-word (64-bit) due to hardware
constraint, data is separated into shorter units than double-word (64-bit) before reading.

Rationale for the Specification

See Section 5.5.1.4, “out_d - Write to I/O Port (In Unit of Double-word)”.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 411 / 534

5.5.2 Micro Wait

5.5.2.1 WaitUsec - Micro Wait (in Microseconds)

C Language Interface

#include <tk/tkernel.h>

void WaitUsec (UINT usec);

Parameter

UINT usec Micro Seconds Wait time (microseconds)

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Performs a micro wait for the specified interval (in microseconds).

This wait is usually implemented as a busy loop. This means that the micro wait occurs in the task RUNNING
state rather than WAITING state.

The micro wait is easily influenced by the runtime environment, such as execution in RAM, execution in ROM,
memory cache on or off, etc. The wait time is therefore not very accurate.

T-Kernel 2.0 Specification 412 / 534

5.5.2.2 WaitNsec - Micro Wait (in Nanoseconds)

C Language Interface

#include <tk/tkernel.h>

void WaitNsec (UINT nsec);

Parameter

UINT nsec Nanoseconds Wait time (nanoseconds)

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Performs a micro wait for the specified interval (in nanoseconds).

This wait is usually implemented as a busy loop. This means that the micro wait occurs in the task RUNNING
state rather than WAITING state.

The micro wait is easily influenced by the runtime environment, such as execution in RAM, execution in ROM,
memory cache on or off, etc. The wait time is therefore not very accurate.

T-Kernel 2.0 Specification 413 / 534

5.6 Power Management Functions

Power management functions are used to realize system power saving. Power management functions are
called as a callback type function from within T-Kernel/OS.

Though low_pow() off_pow() exist as part of APIs that are defined in the power management function, they are
reference specification and should be used only internally inside the T-Kernel. Since device drivers, middle-
ware, and applications do not call these APIs directly, it is allowed to modify the functions or their APIs in the
original specification to realize more advanced power management function. If, however, the functions imple-
mented have only the equivalent or similar performance as the APIs being defined as a reference specification
here, it is preferable to follow this reference specification in order to enhance the program reusability.

Calling method of APIs for these functions is also implementation-dependent. Simple system calls are possi-
ble, as is the use of a trap. These functions may be provided in programs other than the T-Kernel. Use of an
extended SVC or other means that makes use of T-Kernel function is not possible, however.

T-Kernel 2.0 Specification 414 / 534

5.6.1 low_pow - Move System to Low-power Mode

C Language Interface

void low_pow (void);

Parameter

None

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
NO NO NO

Description

Called from the T-Kernel task dispatcher to move the CPU and its associated hardware to the low-power mode.

After moving CPU to the low-power mode, low_pow() waits for an external interrupt. When an external inter-
rupt occurs, low_pow() moves the CPU and its associated hardware back to the normal mode (non low-power
mode) and then returns to the caller of it.

The detailed processing procedure for low_pow() is as follows:

1. Move CPU to the low-power mode. For example, lower the clock frequency.

2. Stop CPU, waiting for an external interrupt. For example, execute such a CPU instruction.

3. Resume CPU after an external interrupt (by hardware).

4. Move the CPU back to the normal mode. For example, restore the normal clock frequency.

5. Return to the caller. The actual caller is the dispatcher in T-Kernel.

When implementing low_pow(), the following points need to be noted:

• This function is called in interrupts disabled state.

• Interrupts must not be enabled.

• Since the processing speed affects the speed of response to an interrupt, it should be as fast as possible.

Additional Notes

The task dispatcher calls low_pow() to lower the power consumption when it has no tasks to be executed.

T-Kernel 2.0 Specification 415 / 534

5.6.2 off_pow - Move System to Suspend State

C Language Interface

void off_pow (void);

Parameter

None

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
NO NO NO

Description

Called from T-Kernel during the processing of tk_set_pow() with powmode = TPW_DOSUSPEND to move the CPU
and its associated hardware to the suspend state (power off state).

After moving the hardware to the suspend state, off_pow() waits for a resume factor (power on, etc.). When a
resume factor occurs, off_pow() releases the suspend state and then returns to the caller of it.

The detailed processing procedure for off_pow() is as follows:

1. Move CPU to the suspend state and wait for a resume factor. For example, stop the clock.

2. Resume CPU on the occurrence of a resume factor (by hardware).

3. Move CPU or other hardware back to the normal state, if necessary. Release the suspend state.(may be
processed by hardware together with the previous step)

4. Return to the caller. The actual caller is the processing part of tk_set_pow() in T-Kernel.

When implementing off_pow(), the following points need to be noted:

• This function is called in interrupts disabled state.

• Interrupts must not be enabled.

Note that the device drivers perform the suspending and resuming of peripherals and other devices. For more
details, see the description of tk_sus_dev().

T-Kernel 2.0 Specification 416 / 534

5.7 System Configuration Information Management Functions

System configuration information management functions maintain and manage various information related
to system configuration.

A part of system configuration information including the information on the maximum number of tasks, timer
interrupt intervals, etc. are defined as the standard definition. Other than these, any information arbitrarily
defined in applications, subsystems, or device drivers can be used by adding it to the system configuration
information.

The format of system configuration information consists of a name and defined data as a pair.

Name
The name is a string of up to 16 characters.

Characters that can be used (UB) are a to z, A to Z, 0 to 9 and '_' (underscore).

Defined Data
Data consists of numbers (integers) or character strings.

Characters that can be used (UB) are any characters other than 0x00 to 0x1F, 0x7F, or 0xFF (in character
code).

Example 5.5 Example of Format of System Configuration Information

Name Defined Data
SysVer 1 0
SysName T-Kernel Version 1.00

How the system configuration information is to be stored is not specified here, but it is generally put in memory
(ROM/RAM). This functionality is therefore not intended for storing large amounts of information.

System configuration information can be retrieved by tk_get_cfn and tk_get_cfs.

However, system configuration information cannot be added or changed during system execution.

T-Kernel 2.0 Specification 417 / 534

5.7.1 System Configuration Information Acquisition

There are tk_get_cfn and tk_get_cfs as extended SVCs to retrieve system configuration information. These
are callable from applications, subsystems, device drivers, etc. and are also used internally in the T-Kernel.
Usage inside T-Kernel does not have to go through extended SVC; this choice is implementation-dependent.

T-Kernel 2.0 Specification 418 / 534

5.7.1.1 tk_get_cfn - Get Numbers

C Language Interface

#include <tk/tkernel.h>

INT ct = tk_get_cfn (CONST UB *name , INT *val , INT max);

Parameter

CONST UB* name Name Name
INT* val Value Array storing numbers
INT max Maximum Count Number of elements in val array

Return Parameter

INT ct Defined Numeric
Information Count

Number of defined numeric
information

or Error Code Error code

Error Codes

E_NOEXS No information is defined for the name specified in the name parameter

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets numeric information from system configuration information. This function gets up to max items of nu-
merical information defined for the name specified in the name parameter and stores the acquired information
in val. The number of defined numeric information is passed in the return code. If return code > max, this
indicates that not all the information could be stored. By specifying max = 0, the number of defined numeric
values can be found out without actually storing them in val.

E_NOEXS is returned if no information is defined for the name specified in the name parameter. The behavior
if the information defined for name is a character string is indeterminate.

This function can be invoked from any protection level, without being limited to the protection level from
which T-Kernel/OS system call can be invoked.

T-Kernel 2.0 Specification 419 / 534

5.7.1.2 tk_get_cfs - Get Character String

C Language Interface

#include <tk/tkernel.h>

INT rlen = tk_get_cfs (CONST UB *name , UB *buf , INT max);

Parameter

CONST UB* name Name Name
UB* buf Buffer Array storing character string
INT max Maximum Length Maximum size of buf (in bytes)

Return Parameter

INT rlen Size of Defined Character
String Information

Size of defined character string
information (in bytes)

or Error Code Error code

Error Codes

E_NOEXS No information is defined for the name specified in the name parameter

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets character string information from system configuration information. This function gets up to max char-
acters of character string information defined for the name specified in the name parameter and stores the
acquired information in buf. If the acquired character string is shorter than max characters, it is terminated by
'\0' when stored. The length of the defined character string information (not including '\0') is passed in the
return code. If return code > max, this indicates that not all the information could be stored. By specifying max
= 0, the character string length can be found out without actually storing anything in buf .

E_NOEXS is returned if no information is defined for the name specified in the name parameter. The behavior
if the information defined for name is a numeric string is indeterminate.

This function can be invoked from any protection level, without being limited to the protection level from
which T-Kernel/OS system call can be invoked.

T-Kernel 2.0 Specification 420 / 534

5.7.2 Standard System Configuration Information

The following information is defined as standard system configuration information. A standard information
name is prefixed by T.

character string Summary description
N Numeric string information
S Character string information

• Product information

character string Name of standard definition Summary description
S TSysName System name (product name)

• Maximum number of objects

character string Name of standard definition Summary description
N TMaxTskId Maximum number of tasks
N TMaxSemId Maximum number of

semaphores
N TMaxFlgId Maximum number of event flags
N TMaxMbxId Maximum number of mailboxes
N TMaxMtxId Maximum number of mutexes
N TMaxMbfId Maximum number of message

buffers
N TMaxPorId Maximum number of

rendezvous ports
N TMaxMpfId Maximum number of fixed-size

memory pools
N TMaxMplId Maximum number of

variable-size memory pools
N TMaxCycId Maximum number of cyclic

handlers
N TMaxAlmId Maximum number of alarm

handlers
N TMaxResId Maximum number of resource

groups
N TMaxSsyId Maximum number of

subsystems
N TMaxSsyPri Maximum number of subsystem

priorities

• Other

character string Name of standard definition Summary description
N TSysStkSz Default system stack size (in

bytes)
N TSVCLimit Lowest protection level for

system call invoking
N TTimPeriod Timer interrupt interval (in

milliseconds)Timer interrupt
interval (in microseconds)

The actual length of timer interrupt interval is a sum of time in milliseconds and time in microseconds. The
interval in microseconds is assumed to be 0 when omitted.

T-Kernel 2.0 Specification 421 / 534

For example, when timer interrupt interval should be 5 milliseconds, describe as "TTimPeriod 5" or
"TTimPeriod 0 5000". When timer interrupt interval should be 1.5 milliseconds (1,500 microseconds), de-
scribe as "TTimPeriod 1 500" or "TTimPeriod 0 1500".

• device management function

character string Name of standard definition Summary description
N TMaxRegDev Maximum number of device

registrations
N TMaxOpnDev Maximum device open count
N TMaxReqDev Maximum number of device

requests
N TDEvtMbfSz Event notification message

buffer size (in bytes)Maximum
event notification message
length (in bytes)

If TDEvtMbfSz is not defined or if the message buffer size is a negative value, an event notification message
buffer is not used.

When multiple values are defined for any of the above numeric strings, they are stored in the same order as
in the explanation.

Example 5.6 Example of Storage Order of More than One Numeric Value

tk_get_cfn (" TDEvtMbfSz", val , 2)

val[0] = Event notification message buffer size
val[1] = Maximum event notification message length

Difference from T-Kernel 1.0
Setting information in microseconds is added as the second element of TTimPeriod.

T-Kernel 2.0 Specification 422 / 534

5.8 Memory Cache Control Functions

Memory cache control functions perform a cache control or mode setting.

The approach of cache control in T-Kernel are as follows:

Basically, even if application and device driver programs are created without paying attention to the existence
of cache, the appropriate cache control should be automatically performed during their execution. Especially,
in consideration of program portability, functions with strong dependency on system including cache are
better to be handled separately from application programs wherever possible. For this reason, it is the policy
of individual systems based on T-Kernel to make the T-Kernel itself control the cache automatically.

Specifically, T-Kernel sets the cache so that it is turned on for space like memory to store usual programs or
data, and off for space such as I/O. For this reason, ordinary application programs do not need to explicitly
call a function for cache control. Appropriate cache control is automatically performed even if cache control
is not explicitly performed from the program.

However, the cache control by T-Kernel only (cache control by default setting) may not be enough for partic-
ular situations. For example, for I/O processing with DMA transfer or using memory space outside the kernel
management, explicit cache control may be required. When executing a program by dynamically loading or
generating (compiling) it, such cache control may be required so that data cache and instruction cache are
appropriately synchronized. Memory cache control functions are assumed to be used in these situations.

Difference from T-Kernel 1.0
These functions were added in T-Kernel 2.0.

T-Kernel 2.0 Specification 423 / 534

5.8.1 SetCacheMode - Set Cache Mode

C Language Interface

#include <tk/tkernel.h>

INT rlen = SetCacheMode (void *addr , INT len , UINT mode);

Parameter

void* addr Start Address Start address
INT len Length memory area size (in bytes)
UINT mode Mode Cache mode

Return Parameter

INT rlen Result Length Size of the area for which the cache
mode was set (in bytes)

or Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (addr, len, or mode is invalid or cannot be used)
E_NOSPT Unsupported function (function specified in mode is unsupported)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Sets the cache mode for a memory area. Specifically, performs the setting specified in mode for the cache of
the len bytes memory area from the address addr. The memory cache mode is set in page units.

mode := (CM_OFF || CM_WB || CM_WT) | [CM_CONT]
CM_OFF Cache off
CM_WB Cache on (write back)
CM_WT Cache on (write through)
CM_CONT Applies the cache setting only for the contiguous physical address space
...

/* Implementation-dependent mode may be added */

Specify CM_OFF in mode to flush (writes back) the cache, invalidate it, and turn it off.

Specify CM_WT in mode to flush the cache and then set the write through cache mode.

Specify CM_WB in mode to set the write back cache mode. In this case, whether or not to flush the cache is
implementation-dependent.

T-Kernel 2.0 Specification 424 / 534

Specify CM_CONT in mode to apply the cache mode setting only for the contiguous physical address space area
from addr. If a non-contiguous physical address or a paged out area exists within the specified area that
corresponds to the specified logical memory space area, the processing is aborted immediately before the
non-contiguous physical address and the size of the processed area is returned. If CM_CONT is not specified,
the cache is processed for the entire specified area and the size of the processed area is returned.

Some or all of the cache mode settings may be unusable depending on CPU or implementation. If an unusable
mode is specified, E_NOSPT is returned without any processing.

len must be 1 or more. If a value of 0 or less is specified, the error code E_PAR is returned.

Additional Notes

Because the cache mode setting is performed in page units, the start address of the page including addr and
subsequent addresses is taken as the setting target when addr is not on the page border. Note that unintended
cache access may occur to adjacent area when using this API. The page size is implementation-dependent
and can be obtained using GetSpaceInfo.

When you want more detailed cache mode settings depending on the hardware configuration or the cache
function of CPU, add and use an implementation-dependent mode. For example, NORMAL CACHE OFF (Weakly
Order), DEVICE CACHE OFF (Weakly Order), STRONG ORDER, or other cache mode may be specified.

When an unavailable mode is specified, it is implementation-dependent whether to generate an error as
E_NOSPT or E_PAR.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

In T-Kernel 1.0, CnvPhysicalAddr was supported to perform the DMA transfer using the physical address. This
single API performs the following three operations: (a) convert the logical address to the physical address, (b)
write back the cache as preprocessing of the DMA transfer, and (c) disable the cache of the DMA transfer buffer
space. However, some of these three operations are often unnecessary and it may be more efficient to invoke
only the necessary operations. In addition, some device drivers for other OSes assume that the operation (a),
(b), or (c) are provided separately, and it is more convenient to invoke the operations (a), (b), or (c) separately
when you want to port them to T-Kernel. Therefore, in T-Kernel 2.0, these three operations performed in
CnvPhysicalAddr are separated into three new APIs to get address space information (GetSpaceInfo), set
cache mode (SetCacheMode), and control cache (ControlCache).

T-Kernel 2.0 Specification 425 / 534

5.8.2 ControlCache - Control Cache

C Language Interface

#include <tk/tkernel.h>

INT rlen = ControlCache (void *addr , INT len , UINT mode);

Parameter

void* addr Start Address Start address
INT len Length Memory area size (in bytes)
UINT mode Mode Control mode

Return Parameter

INT rlen Result Length Size of the area for which the cache
mode was set (in bytes)

or Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (invalid addr, len or mode)
E_NOSPT Unsupported function (function specified in mode is unsupported)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Control the cache (flush or invalidate) of a memory area. Specifically, performs the control specified in mode
for the cache of the len bytes memory area from the logical address addr.

mode := (CC_FLUSH | CC_INVALIDATE)
CC_FLUSH Flush (write back) cache
CC_INVALIDATE Invalidate cache

...
/* Implementation-dependent mode values may be added */

Both CC_FLUSH and CC_INVALIDATE can be set at the same time. This combination flushes the cache and then
invalidates it.

If the processing is successful, the size of the processed space is returned. If a paged out area exists within
the specified space, the processing is aborted immediately before it and the size of the processed space is
returned.

A range that spans areas with different cache modes or attributes must not be specified. For example, a
range that spans areas with cache on and cache off, task space and task shared space, or areas with different

T-Kernel 2.0 Specification 426 / 534

protection levels must not be specified. If such a range is specified, the subsequent correct behavior is not
guaranteed.

The detail of the function varies depending on CPU, hardware, or implementation because the cache control
depends heavily on the hardware. The cache control is basically applied on the specified area using the
specified mode, but it may affect more area including the specified area. For example, there are the following
cases:

• Only the exactly specified range is not always controlled (flushed or invalidated). An area including the
specified range is controlled, but it is also possible to flush or invalidate the cache for other areas (for
example, entire memory) depending on CPU, hardware, or implementation.

• Normally, no operation is performed when a cache-off area is specified. Even in this case, it is possible to
flush or invalidate the cache for areas other than the specified range.(always flush the entire space, etc.)

• No operation is performed in a system without cache.

Generally, the cache control is performed in cache line size units. For this reason, note that unintended cache
access may occur to adjacent area when using this API. The cache line size is implementation-dependent and
can be obtained using GetSpaceInfo.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 427 / 534

5.9 Physical Timer Functions

Physical timer functions are useful in the system equipped with more than one hardware timer when process-
ing should be performed based on smaller unit of elapsed time than the timer interrupt interval (TTimPeriod).

A physical timer means a hardware counter that is monotonically incremented by one from 0 at a constant
time interval. When a count value reaches a certain value (upper limit) specified for each physical timer, the
handler (physical timer handler) specified for each physical timer is started and the count value is reset to 0.

More than one physical timer can be used depending on the number of hardware timers available in the
system. The number of available physical timers is implementation-dependent. In the usual T-Kernel imple-
mentation, one hardware timer is used to realize the time management functions. Therefore it is assumed that
remaining hardware timers are used for the physical timers.

Positive integer of ascending order like 1, 2, ... is used as a physical timer number. For example, when there
are four hardware timers, as one of them is used for the T-Kernel time management functions, remaining three
hardware timers are available with physical timer numbers assigned as 1, 2, and 3, respectively.

The T-Kernel/SM physical timer functions do not manage coordination between an individual physical timer
and tasks that use the timer. If more than one task share one physical timer, coordination like mutual exclusion
control must be performed on the application side.

Additional Notes
For the T-Kernel time management functions, the kernel starts alarm handler or cyclic handler, processes
timeout, and processes these requests, all in the handler that is started on the time interval specified by "timer
interrupt interval" (TTimPeriod) in Section 5.7.2, “Standard System Configuration Information”. On the other
hand, the physical timer functions only standardize the primitive functions such as setting a hardware timer,
reading a count value, and triggering interrupt. They do not perform multiple processings like the T-Kernel
time management functions do. Based on this observation, the physical timer functions carry the name of
"physical timer" since they have lower abstraction level than conventional time management functions, and
are closer to hardware layer.
Due to the above positioning, the physical timer functions are made to be as simple as possible and limited
to a small specification, and are assumed to be realized by library functions which have small overhead. This
policy is reflected in the specification of using the statically fixed physical timer numbers rather than dynam-
ical ID numbers, and the specification of never performing the management of mapping with the requesting
task or the requests from more than one task.
Physical timer functions are implemented by standardizing APIs that operate the timer (counter) device. How-
ever, the timer devices have direct relation with time related behaviors such as calling interrupt handler based
on a small elapsed time, making such devises more closely connected with the kernel than other devices
(storage and communication). For this reason, the physical timer is provided as more generic function by
standardizing its specification as a part of the T-Kernel/SM instead of standardizing it as part of device driver
specification.
Since the physical timer functions belong to the T-Kernel/SM, the T-Kernel/SM [Overall Note and Supple-
ment] is applied.
Hardware timer counter used as a physical timer is assumed to be 32-bit or less. Therefore, 32-bit UW is
used for the data type that represents the count values or upper limits. In the future, 64-bit functions can be
added.

Rationale for the Specification
In the T-Kernel 2.0, the time management functions are enhanced, and the physical timer functions have been
introduced in order to make effective use of multiple hardware timers implemented on the recent embedded
microcomputers or SoC (System on a Chip) and enhance the portability of programs that operate these timers.

Difference from T-Kernel 1.0
These functions were added in T-Kernel 2.0.

T-Kernel 2.0 Specification 428 / 534

5.9.1 Use Case of Physical Timer

Examples of effective use of physical timer functions are as follows:

(a)Example of processing to be realized
Assume that there are a cyclic processing X to be run every 2,500 microseconds and a cyclic processing
Y to be run every 1,800 microseconds. Physical timers can achieve this efficiently.

(b)Implementation with physical timer functions
Two physical timers are used, and one is set to start a physical timer handler every 2,500 microseconds.

For example, if the physical timer clock frequency is 10 MHz, as 1 clock corresponds to 0.1 microseconds
(= 100 nanoseconds), set a physical timer upper limit (limit) to 24,999 (= 25,000 - 1) to make the physical
timer handler start when the count value is changed from 24,999 to 0.

As this is a cyclic processing, mode of StartPhysicalTimer should be set to TA_CYC_PTMR.

Processing X is performed within this physical timer handler.

Similarly using another physical timer, the physical timer handler is set to start every 1,800 microseconds
to perform the processing Y within this physical timer handler.

The timer interrupt interval (TTimPeriod) used by the T-Kernel time management functions can be left as
the default value (10 milliseconds) since it has no relationship with the physical timer functions.

(c)Implementation without physical timer functions
Instead of the physical timer handler, the T-Kernel 2.0 system call (tk_cre_cyc_u) that can specify time
in microseconds is used to define the cyclic handler to start it every 2,500 microseconds to perform
the processing X within this cyclic handler. Similarly, a cyclic handler is defined to start it every 1,800
microseconds to perform the processing Y within this cyclic handler.

However, in this case, the timer interrupt interval must be set with small enough interval so that the time
of every 2,500 microseconds and every 1,800 microseconds can be processed precisely. Specifically,
both processing every 2,500 microseconds and processing every 1,800 microseconds can be achieved
with almost exact timing by using the timer interrupt interval of 100 microseconds which is a common
divisor of 2,500 microseconds and 1,800 microseconds.

With the method (b) which uses the physical timer functions, the timer interrupt interval can be left as the
default value (every 10 milliseconds) since the T-Kernel time management functions are not used. Interrupts
by the physical timer will occur every 2,500 and 1,800 microseconds, from which the physical timer handler
is called to perform the processing X and Processing Y. No unnecessary interrupt related to timer will occur
other than these.

On the other hand, for the method of (c) which does not use a physical timer, because the timer interrupt
interval must be shortened, the overhead increases accordingly as the number of timer interrupts increases.
For example, when comparing (b) and (c) in terms of the number of timer related interrupts that occur in
10 milliseconds period, (b) will have a total interrupt number of 10; 1 (= 10 milliseconds/10 milliseconds)
for time management functions, 4 (= 10 milliseconds/2,500 microseconds) as physical timer interrupt for
processing X, and 5 (= 10 milliseconds/1,800 microseconds) as physical timer interrupt for processing Y. For
(c), timer interrupt number is 100 (10 milliseconds/100 microseconds) for time management functions. This
is a trade-off situation with the accuracy of time. The smaller timer interval may be required depending on
the difference between cycles or phases of processing X and processing Y, resulting in even larger overhead.
In these cases, the physical timer functions are clearly effective.

However, the physical timer functions are highly effective only when the number of processings that depend
on time is small and statically fixed, and enough number of hardware timers exist for them. Because the phys-
ical timer functions are, as its name shows, subject to the constraints of physical hardware resources, physical
timer functions cannot be used effectively when the number of hardware timers is too small. Additionally,
it will experience difficulty with the case where the number of time-dependent processings dynamically in-
creases. In these cases, using the conventional time management functions such as the cyclic handler and
alarm handler will achieve more flexible handling.

T-Kernel 2.0 Specification 429 / 534

Though the application area of physical timer functions and time management functions in microseconds may
overlap, they have different characteristics shown above. Therefore, it is recommended to use appropriate one
depending on the hardware configuration and applications. The physical timer functions have been added
for this reason.

T-Kernel 2.0 Specification 430 / 534

5.9.2 StartPhysicalTimer - Start Physical Timer

C Language Interface

#include <tk/tkernel.h>

ER ercd = StartPhysicalTimer (UINT ptmrno , UW limit , UINT mode);

Parameter

UINT ptmrno Physical Timer Number Physical timer number
UW limit Limit Upper limit
UINT mode Mode Operation mode

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (ptmrno, limit, or mode is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Sets the count value of the physical timer specified by ptmrno to 0, and then starts counting. After this function
is executed, the count value is incremented by one at a constant time interval that is the inverse of the timer
clock frequency.

limit specifies the upper limit of the count value. When a time period equal to the inverse of the clock
frequency has elapsed after the count value reaches the upper limit, the count value is reset to 0. At that
timing, if a physical timer handler is defined for this physical timer, that handler will be started. The duration
between when the counting is started by StartPhysicalTimer() call and when the counter is reset to zero is
(inverse of timer clock frequency) x (upper limit + 1).

If limit is set to 0, an E_PAR error will occur.

mode specifies the following modes:

TA_ALM_PTMR 0 The counting is stopped when the count value is reset
to 0 from the upper limit value. Afterward, the count
value remains as 0.

TA_CYC_PTMR 1 The count value starts to increase again, after it is reset
to 0 from the upper limit value. Therefore, the cycle of
increasing and resetting the count value repeats
periodically.

T-Kernel 2.0 Specification 431 / 534

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 432 / 534

5.9.3 StopPhysicalTimer - Stop Physical Timer

C Language Interface

#include <tk/tkernel.h>

ER ercd = StopPhysicalTimer (UINT ptmrno);

Parameter

UINT ptmrno Physical Timer Number Physical timer number

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Parameter error (ptmrno is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Stops the counting operation of the physical timer specified by ptmrno.

After executing this function, the last count value of the physical timer is retained. Therefore, if GetPhysical-
TimerCount is executed after this function is executed, that function will return the physical timer count value
just before this function is executed.

Executing this function for the physical timer that has already stopped counting does nothing. It does not
generate any error.

Additional Notes

If the physical timer that is no longer used is kept running, it may not adversely affect the program operation,
but clock signals will be used unnecessarily, which may not be desirable in terms of electric power saving.
So, it is recommended to stop the physical timer no longer used by executing this function.

Use of this function is effective for the case TA_CYC_PTMR is specified for the physical timer and its use is
ended. If TA_ALM_PTMR is specified as the mode, the physical timer automatically stopped counting after the
count value is reset to 0 from the upper limit value, which results in the same state as that after this function
being executed. In this case, it is not necessary to issue this function additionally. Issuing this function does
not cause any problem, but nothing is changed.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 433 / 534

5.9.4 GetPhysicalTimerCount - Get Physical Timer Count

C Language Interface

#include <tk/tkernel.h>

ER ercd = GetPhysicalTimerCount (UINT ptmrno , UW *p_count);

Parameter

UINT ptmrno Physical Timer Number Physical timer number
UW* p_count Pointer to Physical Timer Count Pointer to the area to return the current

physical timer count

Return Parameter

ER ercd Error Code Error code
UW count Physical Timer Count Current count value

Error Code

E_OK Normal completion
E_PAR Parameter error (ptmrno is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets the current count value of the physical timer specified by ptmrno, and returns it as the return parameter
count.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 434 / 534

5.9.5 DefinePhysicalTimerHandler - Define Physical Timer Handler

C Language Interface

#include <tk/tkernel.h>

ER ercd = DefinePhysicalTimerHandler (UINT ptmrno , CONST T_DPTMR *pk_dptmr);

Parameter

UINT ptmrno Physical Timer Number Physical timer number
CONST T_DPTMR* pk_dptmr Packet to Define Physical

Timer Handler
Physical timer handler definition
information

pk_dptmr Detail

void* exinf Extended Information Extended information
ATR ptmratr Physical Timer Attribute Physical timer handler attribute

(TA_ASM || TA_HLNG)
FP ptmrhdr Physical Timer Handler

Address
Physical timer handler address

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_RSATR Reserved attribute (ptmratr is invalid or cannot be used)
E_PAR Parameter error (ptmrno, pk_dptmr, or ptmrhdr is invalid or cannot be used, or the

physical timer handler for ptmrno cannot be defined)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

If pk_dptmr is not NULL, this function defines the physical timer handler for the physical timer specified by
ptmrno. The physical timer handler is a handler running as a task-independent portion, and is started when
the physical timer count is reset to 0 from the upper limit value specified by limit of StartPhysicalTimer.

The programming format of physical timer handler is similar to that of cyclic handler or alarm handler. This
means that if the TA_HLNG attribute is specified, the physical timer handler is started via a high-level language
support routine and terminated by a return from the function. If the TA_ASM attribute is specified, the physical
timer handler format is implementation-dependent. Regardless of which attribute is specified, exinf is passed
as a startup parameter of physical timer handler.

T-Kernel 2.0 Specification 435 / 534

If pk_dptmr is NULL, this function cancels the definition of the physical timer handler for the physical timer
specified by ptmrno. The physical timer handlers for all the physical timers are undefined right after the
system startup.

If the physical timer handler for the physical timer specified by ptmrno cannot be defined (if the pk_rptmr-
>defhdr in GetPhysicalTimerConfig returns FALSE), the E_PAR error occurs. If the physical timer specified by
ptmrno does not exist or cannot be used, the E_PAR error also occurs.

Additional Notes

In an implementation, the interrupt handler to realize the physical timer function should be defined within T-
Kernel/SM, and set to be started when the physical timer count is reset to 0 from the upper limit value. Within
this interrupt handler, call the physical timer handler defined by this function, and perform the processing
related to the physical timer implementation (such as one related to TA_ALM_PTMR and TA_CYC_PTMR).

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 436 / 534

5.9.6 GetPhysicalTimerConfig - Get Physical Timer Configuration Information

C Language Interface

#include <tk/tkernel.h>

ER ercd = GetPhysicalTimerConfig (UINT ptmrno , T_RPTMR *pk_rptmr);

Parameter

UINT ptmrno Physical Timer Number Physical timer number
T_RPTMR* pk_rptmr Packet to Return Physical

Timer Configuration
Information

Pointer to the area to return the
configuration information of the
physical timer

Return Parameter

ER ercd Error Code Error code

pk_rptmr Detail

UW ptmrclk Physical Timer Clock
Frequency

Physical timer clock frequency

UW maxcount Maximum Count Maximum count value
BOOL defhdr Handler Support Whether physical timer handler is

supported or not

Error Code

E_OK Normal completion
E_PAR Parameter error (ptmrno or pk_rptmr is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Gets the configuration information of the physical timer specified by ptmrno.

The retrievable configuration information includes the physical timer clock frequency ptmrclk, the maximum
count value maxcount, and whether the support for physical timer handler exists defhdr.

ptmrclk indicates the clock frequency used to count up the target physical timer. If ptmrclk is set to 1, the
clock is 1 Hz, and if it is set to MATH: 2�32 - 1, then the clock is MATH: 2�32 - 1 Hz (approximately 4 GHz).
If the clock is long (less than 1 Hz), then ptmrclk is 0. If ptmrclk is other than 0, the physical timer count value
is monotonically incremented by 1, from 0 to the upper limit value limit, at a constant time interval that is
the inverse of ptmrclk.

maxcount is the maximum value that can be counted by the target physical timer, and also the maximum value
that can be set as the upper limit value. Generally, maxcount is MATH: 2�16 - 1 for a 16-bit timer counter, and

T-Kernel 2.0 Specification 437 / 534

MATH: 2�32 - 1 for a 32-bit timer counter, but it may be other value depending on the hardware or system
configuration.

If defhdr is TRUE, the physical timer handler, which is started when the target physical timer count reaches the
upper limit value, can be defined. If defhdr is FALSE, the physical timer handler for this physical timer cannot
be defined.

If the physical timer specified by ptmrno does not exist or cannot be used, the E_PAR error occurs. For the
physical timer number, a positive integer value is assigned in ascending order, so if the system has N physical
timers, the E_PAR error occurs when ptmrno is 0 or larger than N.

Additional Notes

As the name of this function including "configuration" implies, the information ptmrclk, maxcount, and defhdr
retrieved by this function are fixed statically by the hardware specification or the configuration at system start
up, and it is assumed that they are not changed during the system operation. However, there is the possibility
that the function to actively set or change the physical timer configuration (such as the clock frequency)
is implemented in the future release or as additional implementation-dependent function. In such a case,
the information retrieved by this function may become dynamic information that changes during the system
operation. Such differences in usage depend heavily on the operation and usage, so it is better to absorb it in
the upper library that uses the physical timer, rather than defining it as the specification of T-Kernel. For this
reason, the T-Kernel specification does not specify the possibility that the configuration information retrieved
by this function is changed during the system operation. That is, whether the information retrieved by this
function may change during the operation is implementation-dependent.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 438 / 534

5.10 Utility Functions

Utility functions are used commonly from general programs such as applications, middleware, and device
drivers on the T-Kernel.

Utility functions are provided as library functions or C language macros.

Difference from T-Kernel 1.0
These functions were added in T-Kernel 2.0.

T-Kernel 2.0 Specification 439 / 534

5.10.1 Set Object Name

API for setting object name is provided as C language macros. It can be called from a task-independent
portion and while task dispatching and interrupts are disabled.

T-Kernel 2.0 Specification 440 / 534

5.10.1.1 SetOBJNAME - Set Object Name

C Language Interface

#include <tk/tkernel.h>

void SetOBJNAME (void *exinf , CONST UB *name);

Parameter

void* exinf Extended Information Variable to set as extended
information

CONST UB* name Object Name Object name to be set

Return Parameter

None

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Interprets the ASCII string of four or less characters specified in name as a single 32-bit data to store it in exinf.

This API is defined as a C language macro and exinf is not a pointer. Write a variable directly.

Additional Notes

This API can be used to set a name (task name, etc.) for an individual object in T-Kernel as an ASCII string
in the extended information exinf. When displaying the state of an object in the debugger, the object name
set by this API can be shown by displaying the value in exinf as an ASCII string.

Example 5.7 Sample Usage of SetOBJNAME

T_CTSK ctsk;
...
/* Set the object name "TEST" for the task ctsk */
SetOBJNAME(ctsk.exinf , "TEST");
task_id = tk_cre_tsk (&ctsk);

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 441 / 534

5.10.2 Fast Lock and Multi-lock Libraries

Fast lock and multi-lock libraries are for performing exclusion control faster between multiple tasks in the
device drivers or subsystems. In order to perform the exclusion control, while semaphore or mutex can
be used, fast lock is implemented as the T-Kernel/SM library functions that processes the lock acquisition
operation with specially higher speed when the task is not queued.

Among the fast lock and multi-lock libraries, the fast lock is a binary semaphore for mutual exclusion control
faster than semaphores or mutexes. Fast multi-lock is one object built by combining 32 independent binary
semaphores for mutual exclusion control each of which is distinguished by a lock number from 0 to 31.

For example, when exclusion control is performed at ten locations, one fast multi-lock can be created and
then the binary semaphores with lock numbers from 0 to 9 can be used to perform exclusion control while
ten fast locks can be used. While using ten fast locks bring faster result, the total required resources is lower
when the fast multi-lock is used.

Additional Notes
Fast lock function is implemented by using counters that show the lock states and a semaphore. Fast multi-
lock function is implemented by using a counter that shows the lock states and event flags. When the invoking
task is not queued at the lock acquisition, it performs faster than the usual semaphores or event flags because
only counter operation is performed. On the other hand, when the invoking task is queued at lock acquisition,
it is not necessarily faster than the usual semaphores or event flags because it uses usual semaphores and
event flags to manage transitions to waiting state or queues. Fast lock and multi-lock are effective when
possibility of being queued is low due to mutual exclusion control.

Difference from T-Kernel 1.0
These libraries were added in T-Kernel 2.0.

T-Kernel 2.0 Specification 442 / 534

5.10.2.1 CreateLock - Create Fast Lock

C Language Interface

#include <tk/tkernel.h>

ER ercd = CreateLock (FastLock *lock , CONST UB *name);

Parameter

FastLock* lock Control Block of FastLock Control block of fast lock
CONST UB* name Name of FastLock Name of fast lock

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of fast locks exceeds the system limit

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Creates a fast lock.

lock is a structure to control a fast lock. name is the name of the fast lock and can be NULL.

Fast lock is a binary semaphore used for mutual exclusion control and is implemented to be operated as fast
as possible.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 443 / 534

5.10.2.2 DeleteLock - Delete Fast Lock

C Language Interface

#include <tk/tkernel.h>

void DeleteLock (FastLock *lock);

Parameter

FastLock* lock Control Block of FastLock Control block of fast lock

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Deletes a fast lock.

Error detection is omitted for faster operation.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 444 / 534

5.10.2.3 Lock - Lock Fast Lock

C Language Interface

#include <tk/tkernel.h>

void Lock (FastLock *lock);

Parameter

FastLock* lock Control Block of FastLock Control block of fast lock

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Locks a fast lock.

If the lock is already locked, the invoking task goes to the waiting state and is put in the task queue until it is
unlocked. Tasks are queued in the priority order.

Error detection is omitted for faster operation.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 445 / 534

5.10.2.4 Unlock - Unlock Fast Lock

C Language Interface

#include <tk/tkernel.h>

void Unlock (FastLock *lock);

Parameter

FastLock* lock Control Block of FastLock Control block of fast lock

Return Parameter

None

Error Codes

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Unlocks a fast lock.

If there are tasks waiting for the fast lock, the first task in the task queue newly acquires the lock.

Error detection is omitted for faster operation.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 446 / 534

5.10.2.5 CreateMLock - Create Fast Multi-lock

C Language Interface

#include <tk/tkernel.h>

ER ercd = CreateMLock (FastMLock *lock , CONST UB *name);

Parameter

FastMLock* lock Control Block of FastMLock Control block of fast multi-lock
CONST UB* name Name of FastMLock Name of fast multi-lock

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_NOMEM Insufficient memory (memory for control block cannot be allocated)
E_LIMIT Number of fast multi-locks exceeds the system limit

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Creates a fast multi-lock.

lock is a structure to control a fast multi-lock. name is the name of the fast multi-lock and can be NULL.

Fast multi-lock is a list of 32 independent binary semaphores used for mutual exclusion control and is imple-
mented to be operated as fast as possible. Each of the 32 binary semaphores is specified by a lock number
from 0 to 31.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 447 / 534

5.10.2.6 DeleteMLock - Delete Fast Multi-lock

C Language Interface

#include <tk/tkernel.h>

ER ercd = DeleteMLock (FastMLock *lock);

Parameter

FastMLock* lock Control Block of FastMLock Control block of fast multi-lock

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_PAR Parameter error

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Deletes a fast multi-lock.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 448 / 534

5.10.2.7 MLock - Lock Fast Multi-lock

C Language Interface

#include <tk/tkernel.h>

ER ercd = MLock (FastMLock *lock , INT no);

Parameter

FastMLock* lock Control Block of FastMLock Control block of fast multi-lock
INT no Lock Number Lock number

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_PAR Parameter error
E_DLT Waiting object was deleted
E_RLWAI Waiting state was forcibly released
E_CTX Context error

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Locks a fast multi-lock.

no is a lock number from 0 to 31.

If the lock is already locked with the same lock number, the invoking task goes to the waiting state and is put
in the task queue until it is unlocked with the same lock number. Tasks are queued in the priority order.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 449 / 534

5.10.2.8 MLockTmo - Lock Fast Multi-lock (with Timeout)

C Language Interface

#include <tk/tkernel.h>

ER ercd = MLockTmo (FastMLock *lock , INT no , TMO tmout);

Parameter

FastMLock* lock Control Block of FastMLock Control block of fast multi-lock
INT no Lock Number Lock number
TMO tmout Timeout Timeout (ms)

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_PAR Parameter error
E_DLT Waiting object was deleted
E_RLWAI Waiting state was forcibly released
E_TMOUT Timeout
E_CTX Context error

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Locks a fast multi-lock with timeout.

This API is identical to MLock(), except that it can specify the timeout interval in tmout. If the lock cannot be
acquired before the timeout interval specified in tmout has elapsed, E_TMOUT is returned.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 450 / 534

5.10.2.9 MLockTmo_u - Lock Fast Multi-lock (with Timeout, in Microseconds)

C Language Interface

#include <tk/tkernel.h>

ER ercd = MLockTmo_u (FastMLock *lock , INT no , TMO_U tmout_u);

Parameter

FastMLock* lock Control Block of FastMLock Control block of fast multi-lock
INT no Lock Number Lock number
TMO_U tmout_u Timeout Timeout (in microseconds)

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion
E_PAR Parameter error
E_DLT Waiting object was deleted
E_RLWAI Waiting state was forcibly released
E_TMOUT Timeout
E_CTX Context error

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Locks a fast multi-lock with timeout in microseconds.

This API is identical to MLockTmo(), except that the timeout interval is specified with a 64-bit value in mi-
croseconds.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 451 / 534

5.10.2.10 MUnlock - Unlock Fast Multi-lock

C Language Interface

#include <tk/tkernel.h>

ER ercd = MUnlock (FastMLock *lock , INT no);

Parameter

FastMLock* lock Control Block of FastMLock Control block of fast multi-lock
INT no Lock Number Lock number

Return Parameter

ER ercd Error Code Error code

Error Codes

E_OK Normal completion

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES NO

Description

Unlocks a fast multi-lock.

no is a lock number from 0 to 31.

If there are tasks in the waiting state for the same lock number, the first task in the task queue newly acquires
the lock.

Difference from T-Kernel 1.0

This API was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 452 / 534

5.11 Subsystem and Device Driver Starting

Entry routines like the following are defined for subsystems and device drivers.

ER main(INT ac , UB *av[])
{

if (ac >= 0) {
/* Subsystem/device driver start processing */

} else {
/* Subsystem/device driver termination processing */

}

return ercd;
}

This entry routine simply performs startup processing or termination processing for a subsystem or device
driver and does not provide any actual service. It must return to its caller as soon as the startup processing
or termination processing is performed. An entry routine must perform its processing as quickly as possible
and return to its caller.

An entry routine is called by the task which belongs to the system resource group at the time of normal system
startup or shutdown, and runs in the context of the system start processing task or termination processing task
(protection level 0). In some implementations, it may run as a quasi-task portion. In a system that supports
dynamic loading of subsystems and device drivers, it may be called at other times besides system startup and
shutdown.

When there are multiple subsystems and device drivers, entry routines are called one at a time for each at
system startup and shutdown. In no case, are multiple entry routines called by different tasks at the same
time. Accordingly, if subsystem or device driver initialization needs to be performed in a certain order, this
order can be maintained by completing all necessary initializing processing before returning from an entry
routine.

The entry routine function name is normally main, but any other name may be used if, for example, main cannot
be used because of linking with the OS.

The methods of registering entry routines with the T-Kernel, specifying parameters, and specifying the order
in which entry routines are called are all dependent on the T-Kernel implementation.

5.11.1 Startup Processing

Parameter

INT ac Number of parameters (≧ 0)
UB* av Parameters (string)

Return Parameter

Return Codes Error Code

Description

A value of ac ≧ 0 indicates startup processing. After performing the subsystem or device driver initialization,
it registers the subsystem or device driver.

Passing of a negative value (error) as the return code means the startup processing failed. Depending on the
T-Kernel implementation, the subsystem or device driver may be deleted from memory, so error must not

T-Kernel 2.0 Specification 453 / 534

be returned while the subsystem or device driver is in registered state. The registration must first be erased
before returning an error. Allocated resources must also be released. They are not released automatically.

The parameters ac and av are the same as the parameters passed to the standard C language main() function,
with ac indicating the number of parameters and av indicating a parameter string as an array of ac + 1 pointers.
The last element of the array (av[ac]) is NULL.

av[0] is the name of the subsystem or device driver. Generally this is the file name of the subsystem or device
driver, but what name is stored is implementation-dependent. It is also possible to have no name (blank string
"").

Parameters at and after av[1] are defined for each subsystem and device driver.

After exit from the entry routine, the character string space specified by av is deleted, so parameters must be
saved to a different location if necessary.

5.11.2 Termination Processing

Parameter

INT ac -1
UB* av NULL

Return Parameter

Return Codes Error Code

Description

A value of ac < 0 indicates termination processing. After deleting the subsystem or device driver registration,
the entry routine releases allocated resources. If an error occurs during termination processing, the process-
ing must not be aborted but must be completed as much as possible. If some of the processing could not be
completed normally, error is passed in the return code.

The behavior if termination processing is called while requests to the subsystem or device driver are being
processed is dependent on the subsystem or device driver implementation. Generally termination process-
ing is called at system shutdown and requests are not issued during processing. For this reason, ordinarily
behavior is not guaranteed in the case of requests issued during termination processing.

T-Kernel 2.0 Specification 454 / 534

Chapter 6

T-Kernel/DS Functions

This chapter describes details of the functions provided by T-Kernel/DS (Debugger Support).

T-Kernel/DS provides functions enabling a debugger to reference T-Kernel internal states and run a trace.
The functions provided by T-Kernel/DS are only for debugger use and not for use by applications or other
programs.

Overall Note and Supplement

• Except where otherwise noted, T-Kernel/DS system calls (td_...) can be called from a task independent
portion and while dispatching and interrupts are disabled.

There may be some limitations, however, imposed by particular implementations.

• When T-Kernel/DS system calls (td_...) are invoked in interrupts disabled state, they are processed without
enabling interrupts. Other kernel states likewise remain unchanged during this processing. Changes in
kernel states may occur if a service call is invoked while interrupts or dispatching are enabled, since the
kernel continues operating.

• T-Kernel/DS system calls (td_...) cannot be invoked from a lower protection level than that at which T-
Kernel/OS system calls can be invoked (lower than TSVCLimit)(E_OACV).

• Error codes such as E_PAR, E_MACV, and E_CTX that can be returned in many situations are not described
here always unless there is some special reason for doing so.

T-Kernel 2.0 Specification 455 / 534

6.1 Kernel Internal State Acquisition Functions

Kernel internal state reference functions are functions for enabling a debugger to get T-Kernel internal states.
They include functions for getting a list of objects, getting task precedence, getting the order in which tasks
are queued, getting the status of objects, system, and task registers, and getting time.

T-Kernel 2.0 Specification 456 / 534

6.1.1 td_lst_tsk - Reference Task ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_tsk (ID list[], INT nent);

Parameter

ID list[] List Location of task ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used tasks
or Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the currently used tasks, and puts in list up to nent IDs. The number of the used
tasks is passed in the return code. If return code > nent, this means not all task IDs could be retrieved.

T-Kernel 2.0 Specification 457 / 534

6.1.2 td_lst_sem - Reference Semaphore ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_sem (ID list[], INT nent);

Parameter

ID list[] List Location of semaphore ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used semaphores
or Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the currently used semaphores, and puts in list up to nent IDs. The number of the
used semaphores is passed in the return code. If return code > nent, this means not all semaphore IDs could
be retrieved.

T-Kernel 2.0 Specification 458 / 534

6.1.3 td_lst_flg - Reference Event Flag ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_flg (ID list[], INT nent);

Parameter

ID list[] List Location of event flag ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used event flags
or Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the currently used event flags, and puts in list up to nent IDs. The number of the
used event flags is passed in the return code. If return code > nent, this means not all event flag IDs could be
retrieved.

T-Kernel 2.0 Specification 459 / 534

6.1.4 td_lst_mbx - Reference Mailbox ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_mbx (ID list[], INT nent);

Parameter

ID list[] List Location of mailbox ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used mailboxes
or Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the currently used mailboxes, and puts in list up to nent IDs. The number of the
used mailboxes is passed in the return code. If return code > nent, this means not all mailbox IDs could be
retrieved.

T-Kernel 2.0 Specification 460 / 534

6.1.5 td_lst_mtx - Reference Mutex ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_mtx (ID list[], INT nent);

Parameter

ID list[] List Location of mutex ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used mutexes
or Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the currently used mutexes, and puts in list up to nent IDs. The number of the used
mutexes is passed in the return code. If return code > nent, this means not all mutex IDs could be retrieved.

T-Kernel 2.0 Specification 461 / 534

6.1.6 td_lst_mbf - Reference Message Buffer ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_mbf (ID list[], INT nent);

Parameter

ID list[] List Location of message buffer ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used message buffers
or Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the currently used message buffers, and puts in list up to nent IDs. The number
of the used message buffers is passed in the return code. If return code > nent, this means not all message
buffer IDs could be retrieved.

T-Kernel 2.0 Specification 462 / 534

6.1.7 td_lst_por - Reference Rendezvous Port ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_por (ID list[], INT nent);

Parameter

ID list[] List Location of rendezvous port ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used rendezvous ports
or Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the currently used rendezvous ports, and puts in list up to nent IDs. The number of
the used rendezvous ports is passed in the return code. If return code > nent, this means not all rendezvous
port IDs could be retrieved.

T-Kernel 2.0 Specification 463 / 534

6.1.8 td_lst_mpf - Reference Fixed-size Memory Pool ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_mpf (ID list[], INT nent);

Parameter

ID list[] List Location of fixed-size memory pool ID
list

INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used fixed-size memory
pools

or Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the currently used fixed-size memory pools, and puts in list up to nent IDs. The
number of the used fixed-size memory pools is passed in the return code. If return code > nent, this means
not all fixed-size memory pool IDs could be retrieved.

T-Kernel 2.0 Specification 464 / 534

6.1.9 td_lst_mpl - Reference Variable-size Memory Pool ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_mpl (ID list[], INT nent);

Parameter

ID list[] List Location of variable-size memory pool
ID list

INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used variable-size memory
pools

or Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the currently used variable-size memory pools, and puts in list up to nent IDs. The
number of the used variable-size memory pools is passed in the return code. If return code > nent, this means
not all variable-size memory pool IDs could be retrieved.

T-Kernel 2.0 Specification 465 / 534

6.1.10 td_lst_cyc - Reference Cyclic Handler ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_cyc (ID list[], INT nent);

Parameter

ID list[] List Location of cyclic handler ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used cyclic handlers
or Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the currently used cyclic handlers, and puts in list up to nent IDs. The number of
the used cyclic handlers is passed in the return code. If return code > nent, this means not all cyclic handler
IDs could be retrieved.

T-Kernel 2.0 Specification 466 / 534

6.1.11 td_lst_alm - Reference Alarm Handler ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_alm (ID list[], INT nent);

Parameter

ID list[] List Location of alarm handler ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used alarm handlers
or Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the currently used alarm handlers, and puts in list up to nent IDs. The number of
the used alarm handlers is passed in the return code. If return code > nent, this means not all alarm handler
IDs could be retrieved.

T-Kernel 2.0 Specification 467 / 534

6.1.12 td_lst_ssy - Reference Subsystem ID List

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_lst_ssy (ID list[], INT nent);

Parameter

ID list[] List Location of subsystem ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of used subsystems
or Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the currently used subsystems, and puts in list up to nent IDs. The number of the
used subsystems is passed in the return code. If return code > nent, this means not all subsystem IDs could
be retrieved.

T-Kernel 2.0 Specification 468 / 534

6.1.13 td_rdy_que - Reference Task Precedence

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_rdy_que (PRI pri , ID list[], INT nent);

Parameter

PRI pri Task Priority Task priority
ID list[] Task ID List Location of task ID list
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of tasks with priority pri in a
run state

or Error Code Error code

Error Code

E_PAR Parameter error (pri is invalid or cannot be used)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets a list of IDs of the tasks in a run state (READY state or RUNNING state) whose task priority is pri,
arranged in the order from the highest to the lowest precedence.

This function stores in list up to nent task IDs, arranged in the order of precedence starting from the highest-
precedence task ID at the head of the list.

The number of tasks in a run state with priority pri is passed in the return code. If return code > nent, this
means not all task IDs could be retrieved.

T-Kernel 2.0 Specification 469 / 534

6.1.14 td_sem_que - Reference Semaphore Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_sem_que (ID semid , ID list[], INT nent);

Parameter

ID semid Semaphore ID Target semaphore ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (semid is invalid or cannot be used)
E_NOEXS Object does not exist (the semaphore specified in semid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the queued tasks waiting for a semaphore specified in semid. This function stores
in list up to nent task IDs, arranged in the order in which tasks are queued, starting from the first task in the
semaphore queue. The number of the tasks in the semaphore queue is passed in the return code. If return
code > nent, this means not all task IDs could be retrieved.

T-Kernel 2.0 Specification 470 / 534

6.1.15 td_flg_que - Reference Event Flag Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_flg_que (ID flgid , ID list[], INT nent);

Parameter

ID flgid EventFlag ID Target event flag ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (flgid is invalid or cannot be used)
E_NOEXS Object does not exist (the event flag specified in flgid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the queued tasks waiting for an event flag specified in flgid. This function stores
in list up to nent task IDs, arranged in the order in which tasks are queued, starting from the first task in the
event flag queue. The number of the tasks in the event flag queue is passed in the return code. If return code
> nent, this means not all task IDs could be retrieved.

T-Kernel 2.0 Specification 471 / 534

6.1.16 td_mbx_que - Reference Mailbox Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_mbx_que (ID mbxid , ID list[], INT nent);

Parameter

ID mbxid Mailbox ID Target mailbox ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (mbxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mailbox specified in mbxid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the queued tasks waiting for a mailbox specified in mbxid. This function stores in
list up to nent task IDs, arranged in the order in which tasks are queued, starting from the first task in the
mailbox queue. The number of the tasks in the mailbox queue is passed in the return code. If return code >
nent, this means not all task IDs could be retrieved.

T-Kernel 2.0 Specification 472 / 534

6.1.17 td_mtx_que - Reference Mutex Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_mtx_que (ID mtxid , ID list[], INT nent);

Parameter

ID mtxid Mutex ID Target mutex ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (mtxid is invalid or cannot be used)
E_NOEXS Object does not exist (the mutex specified in mtxid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the queued tasks waiting for a mutex specified in mtxid. This function stores in list
up to nent task IDs, arranged in the order in which tasks are queued, starting from the first task in the mutex
queue. The number of the tasks in the mutex queue is passed in the return code. If return code > nent, this
means not all task IDs could be retrieved.

T-Kernel 2.0 Specification 473 / 534

6.1.18 td_smbf_que - Reference Message Buffer Send Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_smbf_que (ID mbfid , ID list[], INT nent);

Parameter

ID mbfid Message Buffer ID Target message buffer ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the queued tasks waiting for sending a message to a message buffer specified in
mbfid. This function stores in list up to nent task IDs, arranged in the order in which tasks are queued,
starting from the first task in the message buffer send queue. The number of the tasks in the message buffer
send queue is passed in the return code. If return code > nent, this means not all task IDs could be retrieved.

T-Kernel 2.0 Specification 474 / 534

6.1.19 td_rmbf_que - Reference Message Buffer Receive Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_rmbf_que (ID mbfid , ID list[], INT nent);

Parameter

ID mbfid Message Buffer ID Target message buffer ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (mbfid is invalid or cannot be used)
E_NOEXS Object does not exist (the message buffer specified in mbfid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the queued tasks waiting for receiving a message from a message buffer specified in
mbfid. This function stores in list up to nent task IDs, arranged in the order in which tasks are queued, starting
from the first task in the message buffer receive queue. The number of the tasks in the message buffer receive
queue is passed in the return code. If return code > nent, this means not all task IDs could be retrieved.

T-Kernel 2.0 Specification 475 / 534

6.1.20 td_cal_que - Reference Call Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_cal_que (ID porid , ID list[], INT nent);

Parameter

ID porid Port ID Target rendezvous port ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (porid is invalid or cannot be used)
E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the queued tasks waiting for rendezvous call at a port specified in porid. This function
stores in list up to nent task IDs, arranged in the order in which tasks are queued, starting from the first task
in the rendezvous call queue. The number of the tasks in the rendezvous call queue is passed in the return
code. If return code > nent, this means not all task IDs could be retrieved.

T-Kernel 2.0 Specification 476 / 534

6.1.21 td_acp_que - Reference Accept Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_acp_que (ID porid , ID list[], INT nent);

Parameter

ID porid Port ID Target rendezvous port ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (porid is invalid or cannot be used)
E_NOEXS Object does not exist (the rendezvous port specified in porid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the queued tasks waiting for rendezvous acceptance at a port specified in porid. This
function stores in list up to nent task IDs, arranged in the order in which tasks are queued, starting from the
first task in the rendezvous acceptance queue. The number of the tasks in the rendezvous acceptance queue
is passed in the return code. If return code > nent, this means not all task IDs could be retrieved.

T-Kernel 2.0 Specification 477 / 534

6.1.22 td_mpf_que - Reference Fixed-size Memory Pool Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_mpf_que (ID mpfid , ID list[], INT nent);

Parameter

ID mpfid Memory Pool ID Target fixed-size memory pool ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (mpfid is invalid or cannot be used)
E_NOEXS Object does not exist (the fixed-size memory pool specified in mpfid does not exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the queued tasks waiting for allocation in a fixed-size memory pool specified in mpfid.
This function stores in list up to nent task IDs, arranged in the order in which tasks are queued, starting from
the first task in the fixed-size memory pool queue. The number of the tasks in the fixed-size memory pool
queue is passed in the return code. If return code > nent, this means not all task IDs could be retrieved.

T-Kernel 2.0 Specification 478 / 534

6.1.23 td_mpl_que - Reference Variable-size Memory Pool Queue

C Language Interface

#include <tk/dbgspt.h>

INT ct = td_mpl_que (ID mplid , ID list[], INT nent);

Parameter

ID mplid Memory Pool ID Target variable-size memory pool ID
ID list[] Task ID List Location of waiting task IDs
INT nent Number of List Entries Maximum number of entries in list

Return Parameter

INT ct Count Number of waiting tasks
or Error Code Error code

Error Code

E_ID Invalid ID number (mplid is invalid or cannot be used)
E_NOEXS Object does not exist (the variable-size memory pool specified in mplid does not

exist)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the list of the IDs of the queued tasks waiting for allocation in a variable-size memory pool specified
in mplid. This function stores in list up to nent task IDs, arranged in the order in which tasks are queued,
starting from the first task in the variable-size memory pool queue. The number of the tasks in the variable-size
memory pool queue is passed in the return code. If return code > nent, this means not all task IDs could be
retrieved.

T-Kernel 2.0 Specification 479 / 534

6.1.24 td_ref_tsk - Reference Task Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_tsk (ID tskid , TD_RTSK *rtsk);

Parameter

ID tskid Task ID Target task ID (TSK_SELF can be
specified)

TD_RTSK* rtsk Packet to Return Task Status Pointer to the area to return the task
status

Return Parameter

ER ercd Error Code Error code

rtsk Detail:

void* exinf Extended Information Extended information
PRI tskpri Task Priority Current priority
PRI tskbpri Task Base Priority Base priority
UINT tskstat Task State Task States
UINT tskwait Task Wait Factor Wait factor
ID wid Waiting Object ID Waiting object ID
INT wupcnt Wakeup Count Wakeup request queuing count
INT suscnt Suspend Count Suspend request nesting count
RELTIM slicetime Slice Time Maximum continuous run time (in

ms)
UINT waitmask Wait Mask Disabled wait factors
UINT texmask Task Exception Mask Allowed task exceptions
UINT tskevent Task Event Raised task event
FP task Task Start Address Task start address
INT stksz User Stack Size User stack size (in bytes)
INT sstksz System Stack Size System stack size (in bytes)
void* istack Initial User Stack Pointer User stack pointer initial value
void* isstack Initial System Stack Pointer System stack pointer initial value

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

T-Kernel 2.0 Specification 480 / 534

Description

Gets the state of the task designated in tskid. This function is similar to tk_ref_tsk(), with the task start address
and stack information added to the state information obtained.

The stack area extends from the stack pointer initial value toward the low addresses for the number of bytes
designated as the stack size.

• istack - stksz ≦ user stack area < istack

• isstack - sstksz ≦ system stack area < isstack

Note that the stack pointer initial value (istack, isstack) is not the same as its current position. The stack area
may be used even before a task is started. Calling td_get_reg() gets the stack pointer current position.

slicetime in the task status information (TD_RTSK) returns a value rounded to milliseconds. To know the
value in microseconds, call td_ref_tsk_u.

T-Kernel 2.0 Specification 481 / 534

6.1.25 td_ref_tsk_u - Reference Task Status (Microseconds)

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_tsk_u (ID tskid , TD_RTSK_U *rtsk_u);

Parameter

ID tskid Task ID Target task ID (TSK_SELF can be
specified)

TD_RTSK_U* rtsk_u Packet to Return Task Status Pointer to the area to return the task
status

Return Parameter

ER ercd Error Code Error code

rtsk_u Detail:

void* exinf Extended Information Extended information
PRI tskpri Task Priority Current priority
PRI tskbpri Task Base Priority Base priority
UINT tskstat Task State Task States
UINT tskwait Task Wait Factor Wait factor
ID wid Waiting Object ID Waiting object ID
INT wupcnt Wakeup Count Wakeup request queuing count
INT suscnt Suspend Count Suspend request nesting count
RELTIM_U slicetime_u Slice Time Maximum continuous run time (in

microseconds)
UINT waitmask Wait Mask Disabled wait factors
UINT texmask Task Exception Mask Allowed task exceptions
UINT tskevent Task Event Raised task event
FP task Task Start Address Task start address
INT stksz User Stack Size User stack size (in bytes)
INT sstksz System Stack Size System stack size (in bytes)
void* istack Initial User Stack Pointer User stack pointer initial value
void* isstack Initial System Stack Pointer System stack pointer initial value

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

T-Kernel 2.0 Specification 482 / 534

Description

This system call takes slicetime_u in 64-bit microseconds instead of the return parameter slicetime of
td_ref_tsk.

The specification of this system call is same as that of td_ref_tsk, except that a field in the return parameter is
replaced with slicetime_u. For more details, see the description of td_ref_tsk.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 483 / 534

6.1.26 td_ref_tex - Reference Task Exception Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_tex (ID tskid , TD_RTEX *pk_rtex);

Parameter

ID tskid Task ID Target task ID (TSK_SELF can be
specified)

TD_RTEX* pk_rtex Packet to Return Task
Exception Status

Pointer to the area to return the task
exception status

Return Parameter

ER ercd Error Code Error code

pk_rtex Detail:

UINT pendtex Pending Task Exception Pending task exceptions
UINT texmask Task Exception Mask Allowed task exceptions

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the task exception status. This is similar to tk_ref_tex().

T-Kernel 2.0 Specification 484 / 534

6.1.27 td_ref_sem - Reference Semaphore Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_sem (ID semid , TD_RSEM *rsem);

Parameter

ID semid Semaphore ID Target semaphore ID
TD_RSEM* rsem Packet to Return Semaphore

Status
Pointer to the area to return the
semaphore status

Return Parameter

ER ercd Error Code Error code

rsem Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
INT semcnt Semaphore Count current semaphore count value

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

References the semaphore status. This is similar to tk_ref_sem().

T-Kernel 2.0 Specification 485 / 534

6.1.28 td_ref_flg - Reference Event Flag Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_flg (ID flgid , TD_RFLG *rflg);

Parameter

ID flgid EventFlag ID Target event flag ID
TD_RFLG* rflg Packet to Return EventFlag

Status
Pointer to the area to return the
event flag status

Return Parameter

ER ercd Error Code Error code

rflg Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
UINT flgptn EventFlag Bit Pattern The current event flag bit

pattern

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

References the event flag status. This is similar to tk_ref_flg().

T-Kernel 2.0 Specification 486 / 534

6.1.29 td_ref_mbx - Reference Mailbox Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_mbx (ID mbxid , TD_RMBX *rmbx);

Parameter

ID mbxid Mailbox ID Target mailbox ID
TD_RMBX* rmbx Packet to Return Mailbox Status Pointer to the area to return the

mailbox status

Return Parameter

ER ercd Error Code Error code

rmbx Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
T_MSG* pk_msg Packet of Message Next message to be received

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

References the mailbox status. This is similar to tk_ref_mbx().

T-Kernel 2.0 Specification 487 / 534

6.1.30 td_ref_mtx - Refer Mutex Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_mtx (ID mtxid , TD_RMTX *rmtx);

Parameter

ID mtxid Mutex ID Target mutex ID
TD_RMTX* rmtx Packet to Return Mutex Status Pointer to the area to return the

mutex status

Return Parameter

ER ercd Error Code Error code

rmtx Detail:

void* exinf Extended Information Extended information
ID htsk Locking Task ID ID of task locking the mutex
ID wtsk Lock Waiting Task ID ID of tasks waiting to lock the

mutex

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

References the mutex status. This is similar to tk_ref_mtx().

T-Kernel 2.0 Specification 488 / 534

6.1.31 td_ref_mbf - Reference Message Buffer Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_mbf (ID mbfid , TD_RMBF *rmbf);

Parameter

ID mbfid Message Buffer ID Target message buffer ID
TD_RMBF* rmbf Packet to Return Message

Buffer Status
Pointer to the area to return the
message buffer status

Return Parameter

ER ercd Error Code Error code

rmbf Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Receive waiting task ID
ID stsk Send Waiting Task ID Send waiting task ID
INT msgsz Message Size Size of the next message to be

received (in bytes)
INT frbufsz Free Buffer Size Free buffer size (in bytes)
INT maxmsz Maximum Message Size Maximum message size (in bytes)

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

References the message buffer status. This is similar to tk_ref_mbf().

T-Kernel 2.0 Specification 489 / 534

6.1.32 td_ref_por - Reference Port Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_por (ID porid , TD_RPOR *rpor);

Parameter

ID porid Port ID Target rendezvous port ID
TD_RPOR* rpor Packet to Return Port Status Pointer to the area to return the

rendezvous port status

Return Parameter

ER ercd Error Code Error code

rpor Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Call waiting task ID
ID atsk Accept Waiting Task ID Accept waiting task ID
INT maxcmsz Maximum Call Message Size Maximum call message size (in

bytes)
INT maxrmsz Maximum Reply Message Size Maximum reply message size

(in bytes)

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

References the rendezvous port status. This is similar to tk_ref_por().

T-Kernel 2.0 Specification 490 / 534

6.1.33 td_ref_mpf - Reference Fixed-size Memory Pool Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_mpf (ID mpfid , TD_RMPF *rmpf);

Parameter

ID mpfid Memory Pool ID Target fixed-size memory pool ID
TD_RMPF* rmpf Packet to Return Memory

Pool Status
Pointer to the area to return the
memory pool status

Return Parameter

ER ercd Error Code Error code

rmpf Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
INT frbcnt Free Block Count Free block count

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

References the fixed-size memory pool status. This is similar to tk_ref_mpf().

T-Kernel 2.0 Specification 491 / 534

6.1.34 td_ref_mpl - Reference Variable-size Memory Pool Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_mpl (ID mplid , TD_RMPL *rmpl);

Parameter

ID mplid Memory Pool ID Target variable-size memory pool ID
TD_RMPL* rmpl Packet to Return Memory

Pool Status
Pointer to the area to return the
memory pool status

Return Parameter

ER ercd Error Code Error code

rmpl Detail:

void* exinf Extended Information Extended information
ID wtsk Waiting Task ID Waiting task ID
INT frsz Free Memory Size Free memory size (in bytes)
INT maxsz Max Memory Size Maximum memory space size (in

bytes)

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

References the variable-size memory pool status. This is similar to tk_ref_mpl().

T-Kernel 2.0 Specification 492 / 534

6.1.35 td_ref_cyc - Reference Cyclic Handler Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_cyc (ID cycid , TD_RCYC *rcyc);

Parameter

ID cycid Cyclic Handler ID Target cyclic handler ID
TD_RCYC* rcyc Packet to Return Cyclic

Handler Status
Pointer to the area to return the
cyclic handler status

Return Parameter

ER ercd Error Code Error code

rcyc Detail:

void* exinf Extended Information Extended information
RELTIM lfttim Left Time Time remaining until the next

handler starts (ms)
UINT cycstat Cyclic Handler Status Cyclic handler activation state

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

References the cyclic handler status. This is similar to tk_ref_cyc().

The time remaining lfttim returned in the cyclic handler status information (TD_RCYC) obtained by
td_ref_cyc is a value rounded to milliseconds. To know the value in microseconds, call td_ref_cyc_u.

T-Kernel 2.0 Specification 493 / 534

6.1.36 td_ref_cyc_u - Reference Cyclic Handler Status (Microseconds)

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_cyc_u (ID cycid , TD_RCYC_U *rcyc_u);

Parameter

ID cycid Cyclic Handler ID Target cyclic handler ID
TD_RCYC_U* rcyc_u Packet to Return Cyclic

Handler Status
Pointer to the area to return the
cyclic handler status

Return Parameter

ER ercd Error Code Error code

rcyc_u Detail:

void* exinf Extended Information Extended information
RELTIM_U lfttim_u Left Time Time remaining until the next

handler starts (microseconds)
UINT cycstat Cyclic Handler Status Cyclic handler activation state

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

This system call takes 64-bit lfttim_u in microseconds instead of the return parameter lfttim of td_ref_cyc.

The specification of this system call is same as that of td_ref_cyc, except that the return parameter is replaced
with lfttim_u. For more details, see the description of td_ref_cyc.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 494 / 534

6.1.37 td_ref_alm - Reference Alarm Handler Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_alm (ID almid , TD_RALM *ralm);

Parameter

ID almid Alarm Handler ID Target alarm handler ID
TD_RALM* ralm Packet to Return Alarm

Handler Status
Pointer to the area to return the
alarm handler status

Return Parameter

ER ercd Error Code Error code

ralm Detail:

void* exinf Extended Information Extended information
RELTIM lfttim Left Time Time remaining until the handler

starts (ms)
UINT almstat Alarm Handler Status Alarm handler activation state

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

References the alarm handler status. This is similar to tk_ref_alm().

The time remaining lfttim returned in the alarm handler status information (TD_RALM) obtained by
td_ref_alm is a value rounded to milliseconds. To know the value in microseconds, call td_ref_alm_u.

T-Kernel 2.0 Specification 495 / 534

6.1.38 td_ref_alm_u - Reference Alarm Handler Status (Microseconds)

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_alm_u (ID almid , TD_RALM_U *ralm_u);

Parameter

ID almid Alarm Handler ID Target alarm handler ID
TD_RALM_U* ralm_u Packet to Return Alarm

Handler Status
Pointer to the area to return the
alarm handler status

Return Parameter

ER ercd Error Code Error code

ralm_u Detail:

void* exinf Extended Information Extended information
RELTIM_U lfttim_u Left Time Time remaining until the handler

starts (microseconds)
UINT almstat Alarm Handler Status Alarm handler activation state

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

This system call takes 64-bit lfttim_u in microseconds instead of the return parameter lfttim of td_ref_alm.

The specification of this system call is same as that of td_ref_alm, except that the return parameter is replaced
with lfttim_u. For more details, see the description of td_ref_alm.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 496 / 534

6.1.39 td_ref_sys - Reference System Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_sys (TD_RSYS *pk_rsys);

Parameter

TD_RSYS* pk_rsys Packet to Return System
Status

Pointer to the area to return the
system status

Return Parameter

ER ercd Error Code Error code

pk_rsys Detail:

INT sysstat System State System State
ID runtskid Running Task ID ID of the task currently in

RUNNING state
ID schedtskid Scheduled Task ID ID of the task scheduled to run next

Error Code

E_OK Normal completion

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the system status. This is similar to tk_ref_sys().

T-Kernel 2.0 Specification 497 / 534

6.1.40 td_ref_ssy - Reference Subsystem Status

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_ssy (ID ssid , TD_RSSY *rssy);

Parameter

ID ssid Subsystem ID Target subsystem ID
TD_RSSY* rssy Packet to Return Subsystem

Status
Pointer to the area to return the
subsystem definition information

Return Parameter

ER ercd Error Code Error code

rssy Detail:

PRI ssypri Subsystem Priority Subsystem priority
INT resblksz Resource Control Block Size Resource control block size (in

bytes)

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

References the subsystem status. This is similar to tk_ref_ssy().

T-Kernel 2.0 Specification 498 / 534

6.1.41 td_inf_tsk - Reference Task Statistics

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_inf_tsk (ID tskid , TD_ITSK *pk_itsk , BOOL clr);

Parameter

ID tskid Task ID Target task ID (TSK_SELF can be
specified)

TD_ITSK* pk_itsk Packet to Return Task
Statistics

Pointer to the area to return the task
statistics

BOOL clr Clear Task statistics clear flag

Return Parameter

ER ercd Error Code Error code

pk_itsk Detail:

RELTIM stime System Time Cumulative system-level run time
(ms)

RELTIM utime User Time Cumulative user-level run time (ms)

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets task statistics. This is similar to tk_inf_tsk(). If clr = TRUE (≠ 0), the cumulative information is reset
(cleared to 0) after the information is obtained.

stime and utime in the task statistics (TD_ITSK) return values rounded to milliseconds. To know the value in
microseconds, call td_inf_tsk_u.

T-Kernel 2.0 Specification 499 / 534

6.1.42 td_inf_tsk_u - Reference Task Statistics (Microseconds)

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_inf_tsk_u (ID tskid , TD_ITSK_U *itsk_u , BOOL clr);

Parameter

ID tskid Task ID Target task ID (TSK_SELF can be
specified)

TD_ITSK_U* itsk_u Packet to Return Task
Statistics

Pointer to the area to return the task
statistics

BOOL clr Clear Task statistics clear flag

Return Parameter

ER ercd Error Code Error code

itsk_u Detail:

RELTIM_U stime_u System Time Cumulative system-level run time (in
microseconds)

RELTIM_U utime_u User Time Cumulative user-level run time (in
microseconds)

Error Code

E_OK Normal completion
E_ID Bad identifier
E_NOEXS Object does not exist

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

This system call takes 64-bit stime_u and utime_u in microseconds instead of the return parameters stime and
utime of td_inf_tsk.

The specification of this system call is same as that of td_inf_tsk, except that the return parameters are replaced
with stime_u and utime_u. For more details, see the description of td_inf_tsk.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 500 / 534

6.1.43 td_get_reg - Get Task Register

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_get_reg (ID tskid , T_REGS *pk_regs , T_EIT *pk_eit , T_CREGS *pk_cregs);

Parameter

ID tskid Task ID Target task ID (TSK_SELF cannot be
specified)

T_REGS* pk_regs Packet of Registers Pointer to the area to return the
general register values

T_EIT* pk_eit Packet of EIT Registers Pointer to the area to return the
values of registers saved when an
exception occurs

T_CREGS* pk_cregs Packet of Control Registers Pointer to the area to return the
control register values

Return Parameter

ER ercd Error Code Error code

The contents of T_REGS, T_EIT, and T_CREGS are defined for each CPU and implementation.

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (issued for a RUNNING state task)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the register values of the task designated in tskid. This is similar to tk_get_reg.

Registers cannot be referenced for the task currently in RUNNING state. Except when a task-independent
portion is executing, the current RUNNING state task is the invoking task.

If NULL is set in pk_regs, pk_eit, or pk_cregs, the corresponding registers are not referenced.

The contents of T_REGS, T_EIT, and T_CREGS are implementation-dependent.

T-Kernel 2.0 Specification 501 / 534

6.1.44 td_set_reg - Set Task Registers

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_set_reg (ID tskid , CONST T_REGS *pk_regs , CONST T_EIT *pk_eit , CONST T_CREGS *pk_cregs
);

Parameter

ID tskid Task ID Target task ID (TSK_SELF cannot
be specified)

CONST T_REGS* pk_regs Packet of Registers General registers
CONST T_EIT* pk_eit Packet of EIT Registers Registers saved when EIT occurs
CONST T_CREGS* pk_cregs Packet of Control Registers Control registers

The contents of T_REGS, T_EIT, and T_CREGS are defined for each CPU and implementation.

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_ID Invalid ID number (tskid is invalid or cannot be used)
E_NOEXS Object does not exist (the task specified in tskid does not exist)
E_OBJ Invalid object state (issued for a RUNNING state task)

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Sets registers of the task designated in tskid. This is similar to tk_set_reg.

Registers cannot be set for the task currently in RUNNING state. Except when a task-independent portion is
executing, the current RUNNING state task is the invoking task.

If NULL is set in pk_regs, pk_eit, or pk_cregs, the corresponding registers are not set.

The contents of T_REGS, T_EIT, and T_CREGS are implementation-dependent.

T-Kernel 2.0 Specification 502 / 534

6.1.45 td_get_tim - Get System Time

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_get_tim (SYSTIM *tim , UINT *ofs);

Parameter

SYSTIM* tim Time Pointer to the area to return the current
time (ms)

UINT* ofs Offset Pointer to the area to return the return
parameter ofs

Return Parameter

ER ercd Error Code Error code
SYSTIM tim Time Current time (in milliseconds)
UINT ofs Offset Elapsed time from tim (nanoseconds)

tim Detail:

W hi High 32 bits Higher 32 bits of current time of the
system time

UW lo Low 32 bits Lower 32 bits of current time of the
system time

Error Code

E_OK Normal completion

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the current time as total elapsed milliseconds since 0:00:00 (GMT), January 1, 1985. The value returned
in tim is the same as that obtained by tk_get_tim(). tim is the resolution of timer interrupt intervals (cycles),
but even more precise time information is obtained in ofs as the elapsed time from tim in nanoseconds. The
resolution of ofs is implementation-dependent, but generally is the resolution of hardware timer.

Since tim is a cumulative time counted based on timer interrupts, in some cases time is not refreshed, when
a timer interrupt cycle arrives while interrupts are disabled and the timer interrupt handler is not started (is
delayed). In such cases, the time as updated by the previous timer interrupt is returned in tim, and the elapsed
time from the previous timer interrupt is returned in ofs. Accordingly, in some cases ofs will be longer than
the timer interrupt cycle. The length of elapsed time that can be measured by ofs depends on the hardware,
but preferably it should be possible to measure at least up to twice the timer interrupt cycle (0 ≦ ofs < twice
the timer interrupt cycle).

T-Kernel 2.0 Specification 503 / 534

Note that the time returned in tim and ofs is the time at some point between the calling of and return from
td_get_tim(). It is neither the time at which td_get_tim() was called nor the time of return from td_get_tim().
In order to obtain more accurate information, this function should be called in interrupts disabled state.

T-Kernel 2.0 Specification 504 / 534

6.1.46 td_get_tim_u - Get System Time (Microseconds)

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_get_tim_u (SYSTIM_U *tim_u , UINT *ofs);

Parameter

SYSTIM_U* tim_u Time Pointer to the area to return the
current time (microseconds)

UINT* ofs Offset Pointer to the area to return the
return parameter ofs

Return Parameter

ER ercd Error Code Error code
SYSTIM_U tim_u Time Current time (in microseconds)
UINT ofs Offset Elapsed time from tim_u

(nanoseconds)

Error Code

E_OK Normal completion

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

This system call takes 64-bit tim_u in microseconds instead of the return parameter tim of td_get_tim.

The specification of this system call is same as that of td_get_tim, except that the return parameter is replaced
with tim_u. For more details, see the description of td_get_tim.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 505 / 534

6.1.47 td_get_otm - Get Operating Time

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_get_otm (SYSTIM *tim , UINT *ofs);

Parameter

SYSTIM* tim Time Pointer to the area to return the
operating time (ms)

UINT* ofs Offset Pointer to the area to return the return
parameter ofs

Return Parameter

ER ercd Error Code Error code
SYSTIM tim Time Operating time (ms)
UINT ofs Offset Elapsed time from tim (nanoseconds)

tim Detail:

W hi High 32 bits Higher 32 bits of the system operating
time

UW lo Low 32 bits Lower 32 bits of the system operating
time

Error Code

E_OK Normal completion

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Gets the system operating time (uptime, as elapsed milliseconds since the system was booted). The value
returned in tim is the same as that obtained by tk_get_otm. tim is the resolution of timer interrupt intervals
(cycles), but even more precise time information is obtained in ofs as the elapsed time from tim in nanosec-
onds. The resolution of ofs is implementation-dependent, but generally is the resolution of hardware timer.

Since tim is a cumulative time counted based on timer interrupts, in some cases time is not refreshed, when
a timer interrupt cycle arrives while interrupts are disabled and the timer interrupt handler is not started (is
delayed). In such cases, the time as updated by the previous timer interrupt is returned in tim, and the elapsed
time from the previous timer interrupt is returned in ofs. Accordingly, in some cases ofs will be longer than
the timer interrupt cycle. The length of elapsed time that can be measured by ofs depends on the hardware,
but preferably it should be possible to measure at least up to twice the timer interrupt cycle (0 ≦ ofs < twice
the timer interrupt cycle).

T-Kernel 2.0 Specification 506 / 534

Note that the time returned in tim and ofs is the time at some point between the calling of and return from
td_get_otm(). It is neither the time at which td_get_otm() was called nor the time of return from td_get_otm().
In order to obtain more accurate information, this function should be called in interrupts disabled state.

T-Kernel 2.0 Specification 507 / 534

6.1.48 td_get_otm_u - Get Operating Time (Microseconds)

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_get_otm_u (SYSTIM_U *tim_u , UINT *ofs);

Parameter

SYSTIM_U* tim_u Time Pointer to the area to return the
operating time (microseconds)

UINT* ofs Offset Pointer to the area to return the
return parameter ofs

Return Parameter

ER ercd Error Code Error code
SYSTIM_U tim_u Time Operating time (microseconds)
UINT ofs Offset Elapsed time from tim_u

(nanoseconds)

Error Code

E_OK Normal completion

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

This system call takes 64-bit tim_u in microseconds instead of the return parameter tim of td_get_otm.

The specification of this system call is same as that of td_get_otm, except that the return parameter is replaced
with tim_u. For more details, see the description of td_get_otm.

Difference from T-Kernel 1.0

This system call was added in T-Kernel 2.0.

T-Kernel 2.0 Specification 508 / 534

6.1.49 td_ref_dsname - Refer to DS Object Name

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_ref_dsname (UINT type , ID id , UB *dsname);

Parameter

UINT type Object Type Target object type
ID id Object ID Object ID
UB* dsname DS Object Name Pointer to the area to return the DS

object name

Return Parameter

ER ercd Error Code Error code

dsname Detail:
DS object name, set at object creation or by td_set_dsname()

Error Code

E_OK Normal completion
E_PAR Invalid object type
E_NOEXS Object does not exist
E_OBJ DS object name is not used

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

References the DS object name (dsname), which is set at object creation. The object is specified by object type
(type) and object ID (id).

Object types (type) are as follows:

TN_TSK 0x01 Task
TN_SEM 0x02 Semaphore
TN_FLG 0x03 Event Flag
TN_MBX 0x04 Mailbox
TN_MBF 0x05 Message Buffer
TN_POR 0x06 Rendezvous Port
TN_MTX 0x07 Mutex
TN_MPL 0x08 Variable-size Memory Pool
TN_MPF 0x09 Fixed-size Memory Pool

T-Kernel 2.0 Specification 509 / 534

TN_CYC 0x0a Cyclic Handler
TN_ALM 0x0b Alarm Handler

DS object name is valid if TA_DSNAME is set as object attribute. If DS object name is changed by td_set_dsname(),
then td_ref_dsname() references the new name.

DS object name needs to satisfy the following conditions:

Available characters (UB)
a to z, A to Z, 0 to 9

Name length
8-byte (filled with NULL for shorter name)

However, character code range is not checked by T-Kernel.

T-Kernel 2.0 Specification 510 / 534

6.1.50 td_set_dsname - Set DS Object Name

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_set_dsname (UINT type , ID id , CONST UB *dsname);

Parameter

UINT type Object Type Target object type
ID id Object ID Object ID
CONST UB* dsname DS Object Name DS object name to be set

Return Parameter

ER ercd Error Code Error code

Error Code

E_OK Normal completion
E_PAR Invalid object type
E_NOEXS Object does not exist
E_OBJ DS object name is not used

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Re-sets DS object name (dsname), which is set at object creation. The object is specified by object type (type)
and object ID (id).

Object types (type) are as same as that of td_ref_dsname() .

DS object name needs to satisfy the following conditions:

Available characters (UB)
a to z, A to Z, 0 to 9

Name length
8-byte (filled with NULL for shorter name)

However, character code range is not checked by T-Kernel.

DS object name is valid if TA_DSNAME is set as object attribute. td_set_dsname() returns E_OBJ error if TA_DSNAME
attribute is not specified.

T-Kernel 2.0 Specification 511 / 534

6.2 Trace Functions

Trace functions are functions for enabling a debugger to trace program execution. Execution trace is per-
formed by setting hook routines.

• Return from a hook routine must be made after states have returned to where they were when the hook
routine was called. Restoring of registers, however, can be done in accordance with the C language function
saving rules.

• In a hook routine, limitations on states must not be loosened to make them less restrictive than when the
routine was called. For example, if the hook routine was called during interrupts disabled state, interrupts
must not be enabled.

• A hook routine was called at protection level 0.

• A hook routine inherits the stack at the time of the hook. Using too much stack may therefore cause a stack
overflow. The extent to which the stack can be used is not definite, since it differs with the situation at the
time of the hook. Switching to a separate stack in the hook routine is a safer option.

T-Kernel 2.0 Specification 512 / 534

6.2.1 td_hok_svc - Define System Call/Extended SVC Hook Routine

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_hok_svc (CONST TD_HSVC *hsvc);

Parameter

CONST TD_HSVC* hsvc SVC Hook Routine Hook routine definition
information

hsvc Detail:

FP enter Hook Routine before
Calling

Hook routine before calling

FP leave Hook Routine after Calling Hook routine after calling

Return Parameter

ER ercd Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Sets hook routines before and after the issuing of a system call or extended SVC. Setting NULL in hsvc cancels
a hook routine.

The objects of a trace are T-Kernel/OS system calls (tk_???_???) and extended SVC. Depending on the imple-
mentation, generally tk_ret_int is not an object of a trace.

T-Kernel/DS system calls (td_???_???) are not objects of a trace.

A hook routine runs as a quasi-task portion of the task that called a system call or extended SVC for which a
hook routine is set. Therefore, for example, the invoking task in a hook routine is the same as the task that
invoked the system call or extended SVC.

Since task dispatching and interrupts can occur inside system call processing, enter() and leave() are not
necessarily called in succession as a pair in every case. If a system call is one that does not return, leave()
will not be called.

void *enter (FN fncd , TD_CALINF *calinf , ...);

T-Kernel 2.0 Specification 513 / 534

FN fncd Function Codes< 0 System call
≧ 0 Extended SVC

TD_CALINF* calinf Caller information
... Parameters (variable number)

Return Any value passed to leave()

typedef struct td_calinf {
Information to determine the caller for the system call or extended SVC;
it is preferable to include the information for the stack back -trace.
The contents are implementation -dependent ,
but generally consist of register values such as stack pointer and program counter.

} TD_CALINF;

enter is called right before a system call or extended SVC.

The value passed in the return code is passed transparently to the corresponding leave(). This makes it
possible to pair enter() and leave() calls or to pass any other information.

exinf = enter(fncd , &calinf , ...)
ret = system call or extended SVC execution
leave(fncd , ret , exinf)

• For system call

The parameters are the same as the system call parameters.

Example 6.1 tk_wai_sem(ID semid, INT cnt, TMO tmout)

enter(TFN_WAI_SEM , &calinf , semid , cnt , tmout)

• For extended SVC

The parameters are as in the packet passed to the extended SVC handler.

fncd is likewise the same as that passed to the extended SVC handler.

enter (FN fncd , TD_CALINF *calinf , void *pk_para);
void leave (FN fncd , INT ret , void *exinf);

FN fncd Function Codes
INT ret Return code of the system call or

extended SVC
void* exinf Any value returned by enter()

enter is called right after returning from a system call or extended SVC.

When a hook routine is set after a system call or extended SVC is called (while the system call or extended
SVC is executing), in some cases leave() only may be called without calling enter() . In such a case NULL is
passed in exinf.

If, on the other hand, a hook routine is canceled after a system call or extended SVC is called, there may be
cases when enter() is called but not leave().

T-Kernel 2.0 Specification 514 / 534

6.2.2 td_hok_dsp - Define Task Dispatch Hook Routine

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_hok_dsp (CONST TD_HDSP *hdsp);

Parameter

CONST TD_HDSP* hdsp Dispatcher Hook Routine Hook routine definition
information

hdsp Detail:

FP exec Hook Routine when
Execution Starts

Hook routine when execution
starts

FP stop Hook Routine when
Execution Stops

Hook routine when execution
stops

Return Parameter

ER ercd Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Sets hook routines in the task dispatcher. Setting NULL in hdsp cancels a hook routine.

The hook routines are called in dispatch disabled state. The hook routines must not invoke T-Kernel/OS
system calls (tk_.) or extended SVC. T-Kernel/DS system calls (td_...) may be invoked.

void exec (ID tskid , INT lsid);

ID tskid Task ID of the started or resumed task
INT lsid Logical space ID of the task designated

in tskid

exec is called when the designated task starts execution or resumes. At the time exec() is called, the task
designated in tskid is already in RUNNING state and logical space has been switched. However, execution
of the tskid task program code occurs after the return from exec().

void stop (ID tskid , INT lsid , UINT tskstat);

T-Kernel 2.0 Specification 515 / 534

ID tskid Task ID of the executed or stopped task
INT lsid Logical space ID of the task designated

in tskid
UINT tskstat State of the task designated in tskid

stop is called when the designated task executes or stops. tskstat indicates the task state after stopping, as
one of the following states:

TTS_RDY READY state
TTS_WAI WAITING state
TTS_SUS SUSPENDED state
TTS_WAS WAITING-SUSPENDED state
TTS_DMT DORMANT state
0 NON-EXISTENT state

At the time stop() is called, the task designated in tskid has already entered the state indicated in tskstat.
The logical space is indeterminate.

T-Kernel 2.0 Specification 516 / 534

6.2.3 td_hok_int - Define Interrupt Handler Hook Routine

C Language Interface

#include <tk/dbgspt.h>

ER ercd = td_hok_int (CONST TD_HINT *hint);

Parameter

CONST TD_HINT* hint Interrupt Handler Hook
Routine

Hook routine definition
information

hint Detail:

FP enter Hook Routine before
Calling Handler

Hook routine before calling
handler

FP leave Hook Routine after Calling
Handler

Hook routine after calling handler

Return Parameter

ER ercd Error Code Error code

Error Code

None

Valid Context

Task portion Quasi-task portion Task-independent portion
YES YES YES

Description

Sets hook routines before and after an interrupt handler is called. Hook routine setting cannot be done
individually for different exception or interrupt factors. One pair of hook routines is set in common for all
exception and interrupt factors.

Setting hint to NULL cancels the hook routines.

The hook routines are called as task-independent portion (part of the interrupt handler). Accordingly, the
hook routines can call only those system calls that can be invoked from a task-independent portion.

Note that hook routines can be set only for interrupt handlers defined by tk_def_int with the TA_HLNG attribute.
A TA_ASM attribute interrupt handler cannot be hooked by a hook routine. Hooking of a TA_ASM attribute in-
terrupt handler is possible only by directly manipulating the exception/interrupt vector table. The actual
methods are implementation-dependent.

void *enter (UINT dintno);
void *leave (UINT dintno);

T-Kernel 2.0 Specification 517 / 534

UINT dintno Interrupt handler number

The parameters passed to enter() and leave() are the same as those passed to the exception/interrupt handler.
Depending on the implementation, information other than dintno may also be passed.

A hook routine is called as follows from a high-level language support routine.

enter(dintno);
inthdr(dintno); /* exception/interrupt handler */
leave(dintno);

enter() is called in interrupts disabled state, and interrupts must not be enabled. Since leave() assumes the
status on return from inthdr(), the interrupts disabled or enabled status is indeterminate.

enter() can obtain only the same information as that obtainable by inthdr(). Information that cannot be
obtained by inthdr() cannot be obtained by enter() . The information that can be obtained by enter()
and inthdr() is guaranteed by the specification to include dintno, but other information is implementation-
dependent. Note that since interrupts disabled state and other states may change while leave() is running,
leave() does not necessarily obtain the same information as that obtained by enter() or inthdr().

T-Kernel 2.0 Specification 518 / 534

Chapter 7

Appendix

T-Kernel 2.0 Specification 519 / 534

7.1 Specification Related to Device Drivers to be Used as Reference

In this section, the specifications related to the device management functions or device drivers in the T-
Kernel/SM that are not included in the latest specification of T-Kernel though described in the device manage-
ment functions in the T-Kernel specification Ver.1.00.xx and for which implementation examples are available
on the existing systems are described.

It is preferable to examine the description described in this section when the compatibility with the device
related functions of the existing T-Kernel application system or the device drivers for the existing T-Kernel
need to be considered.

Details and the latest information of the specification, and the operation method of its specification need to
be confirmed separately.

7.1.1 Disk Kind for Device Attributes

In the definition of device attributes in the T-Kernel specification Ver.1.00.xx, the following disk kinds are
defined:

/* disk kind*/
#define TDK_DISK_UNDEF 0x0010 /* miscellaneous disk */
#define TDK_DISK_RAM 0x0011 /* RAM disk (used as main memory) */
#define TDK_DISK_ROM 0x0012 /* ROM disk (used as main memory) */
#define TDK_DISK_FLA 0x0013 /* Flash ROM or other silicon disk */
#define TDK_DISK_FD 0x0014 /* Floppy disk */
#define TDK_DISK_HD 0x0015 /* hard disk */
#define TDK_DISK_CDROM 0x0016 /* CD -ROM */

7.1.2 Device Attribute Data

TDN_DISKINFO
Disk information

The definition of DiskFormat that is used in the attribute data in the device common attribute in the
T-Kernel specification Ver.1.00.xx. DiskFormat is included in the data type DiskInfo that is used in the
disk information (TDN_DISKINFO) in the attribute data.

typedef enum {
DiskFmt_STD = 0, /* standard (HD , etc.) */
DiskFmt_2DD = 1, /* 2DD 720KB */
DiskFmt_2HD = 2, /* 2HD 1.44MB */
DiskFmt_CDROM = 4 /* CD -ROM 640MB */

} DiskFormat ;

TDN_DISPSPEC
Display Device Specification

The definition of DEV_SPEC that is used in the attribute data in the device common attribute in the T-
Kernel specification Ver.1.00.xx. DEV_SPEC is a data type that is used in the display device specification
(TDN_DISPSPEC) in the attribute data.

typedef struct {
H attr; /* Device attributes */
H planes; /* number of planes */
H pixbits; /* pixel bits (boundary/valid) */
H hpixels; /* horizontal pixels */
H vpixels; /* vertical pixels */
H hres; /* horizontal resolution */

T-Kernel 2.0 Specification 520 / 534

H vres; /* vertical resolution */
H color [4]; /* color information */
H resv [6]; /* reserved */

} DEV_SPEC;

7.1.3 Event Type of the Device Event Notification

The following event types are defined in the device event notification in the T-Kernel specification Ver.1.00.xx:

typedef enum tdevttyp {
TDE_unknown = 0, /* undefined */
TDE_MOUNT = 0x01 , /* media insert */
TDE_EJECT = 0x02 , /* Eject media */
TDE_ILLMOUNT = 0x03 , /* illegal media insert */
TDE_ILLEJECT = 0x04 , /* illegal media eject */
TDE_REMOUNT = 0x05 , /* media reinsert */
TDE_CARDBATLOW = 0x06 , /* card battery alarm */
TDE_CARDBATFAIL = 0x07 , /* card battery failure */
TDE_REQEJECT = 0x08 , /* media eject request */
TDE_PDBUT = 0x11 , /* PD button state change */
TDE_PDMOVE = 0x12 , /* PD position move */
TDE_PDSTATE = 0x13 , /* PD state change */
TDE_PDEXT = 0x14 , /* PD extended event */
TDE_KEYDOWN = 0x21 , /* key down */
TDE_KEYUP = 0x22 , /* key up */
TDE_KEYMETA = 0x23 , /* meta key state change */
TDE_POWEROFF = 0x31 , /* power switch off */
TDE_POWERLOW = 0x32 , /* low power alarm */
TDE_POWERFAIL = 0x33 , /* power failure */
TDE_POWERSUS = 0x34 , /* auto suspend */
TDE_POWERUPTM = 0x35 , /* clock update */
TDE_CKPWON = 0x41 /* autopower on notify */

} TDEvtTyp;

T-Kernel 2.0 Specification 521 / 534

Chapter 8

Reference

T-Kernel 2.0 Specification 522 / 534

8.1 List of C Language Interface

8.1.1 T-Kernel/OS

8.1.1.1 Task Management Functions

• ID tskid = tk_cre_tsk (CONST T_CTSK *pk_ctsk);

• ER ercd = tk_del_tsk (ID tskid);

• ER ercd = tk_sta_tsk (ID tskid, INT stacd);

• void tk_ext_tsk (void);

• void tk_exd_tsk (void);

• ER ercd = tk_ter_tsk (ID tskid);

• ER ercd = tk_chg_pri (ID tskid, PRI tskpri);

• ER ercd = tk_chg_slt (ID tskid, RELTIM slicetime);

• ER ercd = tk_chg_slt_u (ID tskid, RELTIM_U slicetime_u);

• ER ercd = tk_get_tsp (ID tskid, T_TSKSPC *pk_tskspc);

• ER ercd = tk_set_tsp (ID tskid, CONST T_TSKSPC *pk_tskspc);

• ID resid = tk_get_rid (ID tskid);

• ID oldid = tk_set_rid (ID tskid, ID resid);

• ER ercd = tk_get_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs);

• ER ercd = tk_set_reg (ID tskid, CONST T_REGS *pk_regs, CONST T_EIT *pk_eit, CONST T_CREGS *pk_cregs
);

• ER ercd = tk_get_cpr (ID tskid, INT copno, T_COPREGS *pk_copregs);

• ER ercd = tk_set_cpr (ID tskid, INT copno, CONST T_COPREGS *pk_copregs);

• ER ercd = tk_inf_tsk (ID tskid, T_ITSK *pk_itsk, BOOL clr);

• ER ercd = tk_inf_tsk_u (ID tskid, T_ITSK_U *pk_itsk_u, BOOL clr);

• ER ercd = tk_ref_tsk (ID tskid, T_RTSK *pk_rtsk);

• ER ercd = tk_ref_tsk_u (ID tskid, T_RTSK_U *pk_rtsk_u);

8.1.1.2 Task Synchronization Functions

• ER ercd = tk_slp_tsk (TMO tmout);

• ER ercd = tk_slp_tsk_u (TMO_U tmout_u);

• ER ercd = tk_wup_tsk (ID tskid);

• INT wupcnt = tk_can_wup (ID tskid);

• ER ercd = tk_rel_wai (ID tskid);

• ER ercd = tk_sus_tsk (ID tskid);

• ER ercd = tk_rsm_tsk (ID tskid);

T-Kernel 2.0 Specification 523 / 534

• ER ercd = tk_frsm_tsk (ID tskid);

• ER ercd = tk_dly_tsk (RELTIM dlytim);

• ER ercd = tk_dly_tsk_u (RELTIM_U dlytim_u);

• ER ercd = tk_sig_tev (ID tskid, INT tskevt);

• INT tevptn = tk_wai_tev (INT waiptn, TMO tmout);

• INT tevptn = tk_wai_tev_u (INT waiptn, TMO_U tmout_u);

• INT tskwait = tk_dis_wai (ID tskid, UINT waitmask);

• ER ercd = tk_ena_wai (ID tskid);

8.1.1.3 Task Exception Handling Functions

• ER ercd = tk_def_tex (ID tskid, CONST T_DTEX *pk_dtex);

• ER ercd = tk_ena_tex (ID tskid, UINT texptn);

• ER ercd = tk_dis_tex (ID tskid, UINT texptn);

• ER ercd = tk_ras_tex (ID tskid, INT texcd);

• INT texcd = tk_end_tex (BOOL enatex);

• ER ercd = tk_ref_tex (ID tskid, T_RTEX *pk_rtex);

8.1.1.4 Synchronization and Communication Functions

• ID semid = tk_cre_sem (CONST T_CSEM *pk_csem);

• ER ercd = tk_del_sem (ID semid);

• ER ercd = tk_sig_sem (ID semid, INT cnt);

• ER ercd = tk_wai_sem (ID semid, INT cnt, TMO tmout);

• ER ercd = tk_wai_sem_u (ID semid, INT cnt, TMO_U tmout_u);

• ER ercd = tk_ref_sem (ID semid, T_RSEM *pk_rsem);

• ID flgid = tk_cre_flg (CONST T_CFLG *pk_cflg);

• ER ercd = tk_del_flg (ID flgid);

• ER ercd = tk_set_flg (ID flgid, UINT setptn);

• ER ercd = tk_clr_flg (ID flgid, UINT clrptn);

• ER ercd = tk_wai_flg (ID flgid, UINT waiptn, UINT wfmode, UINT *p_flgptn, TMO tmout);

• ER ercd = tk_wai_flg_u (ID flgid, UINT waiptn, UINT wfmode, UINT *p_flgptn, TMO_U tmout_u);

• ER ercd = tk_ref_flg (ID flgid, T_RFLG *pk_rflg);

• ID mbxid = tk_cre_mbx (CONST T_CMBX* pk_cmbx);

• ER ercd = tk_del_mbx (ID mbxid);

• ER ercd = tk_snd_mbx (ID mbxid, T_MSG *pk_msg);

• ER ercd = tk_rcv_mbx (ID mbxid, T_MSG **ppk_msg, TMO tmout);

• ER ercd = tk_rcv_mbx_u (ID mbxid, T_MSG **ppk_msg, TMO_U tmout_u);

• ER ercd = tk_ref_mbx (ID mbxid, T_RMBX *pk_rmbx);

T-Kernel 2.0 Specification 524 / 534

8.1.1.5 Extended Synchronization and Communication Functions

• ID mtxid = tk_cre_mtx (CONST T_CMTX *pk_cmtx);

• ER ercd = tk_del_mtx (ID mtxid);

• ER ercd = tk_loc_mtx (ID mtxid, TMO tmout);

• ER ercd = tk_loc_mtx_u (ID mtxid, TMO_U tmout_u);

• ER ercd = tk_unl_mtx (ID mtxid);

• ER ercd = tk_ref_mtx (ID mtxid, T_RMTX *pk_rmtx);

• ID mbfid = tk_cre_mbf (CONST T_CMBF *pk_cmbf);

• ER ercd = tk_del_mbf (ID mbfid);

• ER ercd = tk_snd_mbf (ID mbfid, CONST void *msg, INT msgsz, TMO tmout);

• ER ercd = tk_snd_mbf_u (ID mbfid, CONST void *msg, INT msgsz, TMO_U tmout_u);

• INT msgsz = tk_rcv_mbf (ID mbfid, void *msg, TMO tmout);

• INT msgsz = tk_rcv_mbf_u (ID mbfid, void *msg, TMO_U tmout_u);

• ER ercd = tk_ref_mbf (ID mbfid, T_RMBF *pk_rmbf);

• ID porid = tk_cre_por (CONST T_CPOR *pk_cpor);

• ER ercd = tk_del_por (ID porid);

• INT rmsgsz = tk_cal_por (ID porid, UINT calptn, void *msg, INT cmsgsz, TMO tmout);

• INT rmsgsz = tk_cal_por_u (ID porid, UINT calptn, void *msg, INT cmsgsz, TMO_U tmout_u);

• INT cmsgsz = tk_acp_por (ID porid, UINT acpptn, RNO *p_rdvno, void *msg, TMO tmout);

• INT cmsgsz = tk_acp_por_u (ID porid, UINT acpptn, RNO *p_rdvno, void *msg, TMO_U tmout_u);

• ER ercd = tk_fwd_por (ID porid, UINT calptn, RNO rdvno, CONST void *msg, INT cmsgsz);

• ER ercd = tk_rpl_rdv (RNO rdvno, CONST void *msg, INT rmsgsz);

• ER ercd = tk_ref_por (ID porid, T_RPOR *pk_rpor);

8.1.1.6 Memory Pool Management Functions

• ID mpfid = tk_cre_mpf (CONST T_CMPF *pk_cmpf);

• ER ercd = tk_del_mpf (ID mpfid);

• ER ercd = tk_get_mpf (ID mpfid, void **p_blf, TMO tmout);

• ER ercd = tk_get_mpf_u (ID mpfid, void **p_blf, TMO_U tmout_u);

• ER ercd = tk_rel_mpf (ID mpfid, void *blf);

• ER ercd = tk_ref_mpf (ID mpfid, T_RMPF *pk_rmpf);

• ID mplid = tk_cre_mpl (CONST T_CMPL *pk_cmpl);

• ER ercd = tk_del_mpl (ID mplid);

• ER ercd = tk_get_mpl (ID mplid, INT blksz, void **p_blk, TMO tmout);

• ER ercd = tk_get_mpl_u (ID mplid, INT blksz, void **p_blk, TMO_U tmout_u);

• ER ercd = tk_rel_mpl (ID mplid, void *blk);

• ER ercd = tk_ref_mpl (ID mplid, T_RMPL *pk_rmpl);

T-Kernel 2.0 Specification 525 / 534

8.1.1.7 Time Management Functions

• ER ercd = tk_set_tim (CONST SYSTIM *pk_tim);

• ER ercd = tk_set_tim_u (SYSTIM_U tim_u);

• ER ercd = tk_get_tim (SYSTIM *pk_tim);

• ER ercd = tk_get_tim_u (SYSTIM_U *tim_u, UINT *ofs);

• ER ercd = tk_get_otm (SYSTIM *pk_tim);

• ER ercd = tk_get_otm_u (SYSTIM_U *tim_u, UINT *ofs);

• ID cycid = tk_cre_cyc (CONST T_CCYC *pk_ccyc);

• ID cycid = tk_cre_cyc_u (CONST T_CCYC_U *pk_ccyc_u);

• ER ercd = tk_del_cyc (ID cycid);

• ER ercd = tk_sta_cyc (ID cycid);

• ER ercd = tk_stp_cyc (ID cycid);

• ER ercd = tk_ref_cyc (ID cycid, T_RCYC *pk_rcyc);

• ER ercd = tk_ref_cyc_u (ID cycid, T_RCYC_U *pk_rcyc_u);

• ID almid = tk_cre_alm (CONST T_CALM *pk_calm);

• ER ercd = tk_del_alm (ID almid);

• ER ercd = tk_sta_alm (ID almid, RELTIM almtim);

• ER ercd = tk_sta_alm_u (ID almid, RELTIM_U almtim_u);

• ER ercd = tk_stp_alm (ID almid);

• ER ercd = tk_ref_alm (ID almid, T_RALM *pk_ralm);

• ER ercd = tk_ref_alm_u (ID almid, T_RALM_U *pk_ralm_u);

8.1.1.8 Interrupt Management Functions

• ER ercd = tk_def_int (UINT dintno, CONST T_DINT *pk_dint);

• void tk_ret_int (void);

8.1.1.9 System Management Functions

• ER ercd = tk_rot_rdq (PRI tskpri);

• ID tskid = tk_get_tid (void);

• ER ercd = tk_dis_dsp (void);

• ER ercd = tk_ena_dsp (void);

• ER ercd = tk_ref_sys (T_RSYS *pk_rsys);

• ER ercd = tk_set_pow (UINT powmode);

• ER ercd = tk_ref_ver (T_RVER *pk_rver);

T-Kernel 2.0 Specification 526 / 534

8.1.1.10 Subsystem Management Functions

• ER ercd = tk_def_ssy (ID ssid, CONST T_DSSY *pk_dssy);

• ER ercd = tk_sta_ssy (ID ssid, ID resid, INT info);

• ER ercd = tk_cln_ssy (ID ssid, ID resid, INT info);

• ER ercd = tk_evt_ssy (ID ssid, INT evttyp, ID resid, INT info);

• ER ercd = tk_ref_ssy (ID ssid, T_RSSY *pk_rssy);

• ER ercd = tk_cre_res (void);

• ER ercd = tk_del_res (ID resid);

• ER ercd = tk_get_res (ID resid, ID ssid, void **p_resblk);

8.1.2 T-Kernel/SM

8.1.2.1 System Memory Management Functions

• ER ercd = tk_get_smb (void **addr, INT nblk, UINT attr);

• ER ercd = tk_rel_smb (void *addr);

• ER ercd = tk_ref_smb (T_RSMB *pk_rsmb);

• void* Vmalloc (size_t size);

• void* Vcalloc (size_t nmemb, size_t size);

• void* Vrealloc (void *ptr, size_t size);

• void Vfree (void *ptr);

• void* Kmalloc (size_t size);

• void* Kcalloc (size_t nmemb, size_t size);

• void* Krealloc (void *ptr, size_t size);

• void Kfree (void *ptr);

8.1.2.2 Address Space Management Functions

• ER ercd = SetTaskSpace (ID tskid);

• ER ercd = ChkSpaceR (CONST void *addr, INT len);

• ER ercd = ChkSpaceRW (CONST void *addr, INT len);

• ER ercd = ChkSpaceRE (CONST void *addr, INT len);

• INT rlen = ChkSpaceBstrR (CONST UB *str, INT max);

• INT rlen = ChkSpaceBstrRW (CONST UB *str, INT max);

• INT rlen = ChkSpaceTstrR (CONST TC *str, INT max);

• INT rlen = ChkSpaceTstrRW (CONST TC *str, INT max);

• ER ercd = LockSpace (CONST void *addr, INT len);

T-Kernel 2.0 Specification 527 / 534

• ER ercd = UnlockSpace (CONST void *addr, INT len);

• INT rlen = CnvPhysicalAddr (CONST void *vaddr, INT len, void **paddr);

• ER ercd = MapMemory (CONST void *paddr, INT len, UINT attr, void **laddr);

• ER ercd = UnmapMemory (CONST void *laddr);

• ER ercd = GetSpaceInfo (CONST void *addr, INT len, T_SPINFO *pk_spinfo);

• INT rlen = SetMemoryAccess (CONST void *addr, INT len, UINT mode);

8.1.2.3 Device Management Functions

• ID dd = tk_opn_dev (CONST UB *devnm, UINT omode);

• ER ercd = tk_cls_dev (ID dd, UINT option);

• ID reqid = tk_rea_dev (ID dd, W start, void *buf, W size, TMO tmout);

• ID reqid = tk_rea_dev_du (ID dd, D start_d, void *buf, W size, TMO_U tmout_u);

• ER ercd = tk_srea_dev (ID dd, W start, void *buf, W size, W *asize);

• ER ercd = tk_srea_dev_d (ID dd, D start_d, void *buf, W size, W *asize);

• ID reqid = tk_wri_dev (ID dd, W start, CONST void *buf, W size, TMO tmout);

• ID reqid = tk_wri_dev_du (ID dd, D start_d, CONST void *buf, W size, TMO_U tmout_u);

• ER ercd = tk_swri_dev (ID dd, W start, CONST void *buf, W size, W *asize);

• ER ercd = tk_swri_dev_d (ID dd, D start_d, CONST void *buf, W size, W *asize);

• ID creqid = tk_wai_dev (ID dd, ID reqid, W *asize, ER *ioer, TMO tmout);

• ID creqid = tk_wai_dev_u (ID dd, ID reqid, W *asize, ER *ioer, TMO_U tmout_u);

• INT dissus = tk_sus_dev (UINT mode);

• ID pdevid = tk_get_dev (ID devid, UB *devnm);

• ID devid = tk_ref_dev (CONST UB *devnm, T_RDEV *rdev);

• ID devid = tk_oref_dev (ID dd, T_RDEV *rdev);

• INT remcnt = tk_lst_dev (T_LDEV *ldev, INT start, INT ndev);

• INT retcode = tk_evt_dev (ID devid, INT evttyp, void *evtinf);

• ID devid = tk_def_dev (CONST UB *devnm, CONST T_DDEV *ddev, T_IDEV *idev);

• ER ercd = tk_ref_idv (T_IDEV *idev);

• ER ercd = openfn (IDdevid, UINTomode, void * exinf);

• ER ercd = closefn (IDdevid, UINToption, void * exinf);

• ER ercd = execfn (T_DEVREQ * devreq, TMOtmout, void * exinf);

• ER ercd = execfn (T_DEVREQ_D * devreq_d, TMOtmout, void * exinf);

• ER ercd = execfn (T_DEVREQ * devreq, TMO_Utmout_u, void * exinf);

• ER ercd = execfn (T_DEVREQ_D * devreq_d, TMO_Utmout_u, void * exinf);

• INT creqno = waitfn (T_DEVREQ * devreq, INTnreq, TMOtmout * exinf);

T-Kernel 2.0 Specification 528 / 534

• INT creqno = waitfn (T_DEVREQ_D * devreq_d, INTnreq, TMOtmout * exinf);

• INT creqno = waitfn (T_DEVREQ * devreq, INTnreq, TMO_Utmout_u * exinf);

• INT creqno = waitfn (T_DEVREQ_D * devreq_d, INTnreq, TMO_Utmout_u * exinf);

• ER ercd = abortfn (IDtskid, T_DEVRQ * devreq, INTnreq, void * exinf);

• ER ercd = abortfn (IDtskid, T_DEVRQ_D * devreq_d, INTnreq, void * exinf);

• INT retcode = eventfn (INTevttyp, void * evtinf, void * exinf);

8.1.2.4 Interrupt Management Functions

• DI (UINT intsts);

• EI (UINT intsts);

• BOOL disint = isDI (UINT intsts);

• UINT dintno = DINTNO (INTVEC intvec);

• void EnableInt (INTVEC intvec);

• void EnableInt (INTVEC intvec, INT level);

• void DisableInt (INTVEC intvec);

• void ClearInt (INTVEC intvec);

• void EndOfInt (INTVEC intvec);

• BOOL rasint = CheckInt (INTVEC intvec);

• void SetIntMode (INTVEC intvec, UINT mode);

T-Kernel 2.0 Specification 529 / 534

8.1.2.5 I/O Port Access Support Functions

• void out_b (INT port, UB data);

• void out_h (INT port, UH data);

• void out_w (INT port, UW data);

• void out_d (INT port, UD data);

• UB data = in_b (INT port);

• UH data = in_h (INT port);

• UW data = in_w (INT port);

• UD data = in_d (INT port);

• void WaitUsec (UINT usec);

• void WaitNsec (UINT nsec);

8.1.2.6 Power Management Functions

• void low_pow (void);

• void off_pow (void);

8.1.2.7 System Configuration Information Management Functions

• INT ct = tk_get_cfn (CONST UB *name, INT *val, INT max);

• INT rlen = tk_get_cfs (CONST UB *name, UB *buf, INT max);

8.1.2.8 Memory Cache Control Functions

• INT rlen = SetCacheMode (void *addr, INT len, UINT mode);

• INT rlen = ControlCache (void *addr, INT len, UINT mode);

8.1.2.9 Physical Timer Functions

• ER ercd = StartPhysicalTimer (UINT ptmrno, UW limit, UINT mode);

• ER ercd = StopPhysicalTimer (UINT ptmrno);

• ER ercd = GetPhysicalTimerCount (UINT ptmrno, UW *p_count);

• ER ercd = DefinePhysicalTimerHandler (UINT ptmrno, CONST T_DPTMR *pk_dptmr);

• ER ercd = GetPhysicalTimerConfig (UINT ptmrno, T_RPTMR *pk_rptmr);

T-Kernel 2.0 Specification 530 / 534

8.1.2.10 Utility Functions

• void SetOBJNAME (void *exinf, CONST UB *name);

• ER ercd = CreateLock (FastLock *lock, CONST UB *name);

• void DeleteLock (FastLock *lock);

• void Lock (FastLock *lock);

• void Unlock (FastLock *lock);

• ER ercd = CreateMLock (FastMLock *lock, CONST UB *name);

• ER ercd = DeleteMLock (FastMLock *lock);

• ER ercd = MLock (FastMLock *lock, INT no);

• ER ercd = MLockTmo (FastMLock *lock, INT no, TMO tmout);

• ER ercd = MLockTmo_u (FastMLock *lock, INT no, TMO_U tmout_u);

• ER ercd = MUnlock (FastMLock *lock, INT no);

8.1.3 T-Kernel/DS

8.1.3.1 Kernel Internal State Acquisition Functions

• INT ct = td_lst_tsk (ID list[], INT nent);

• INT ct = td_lst_sem (ID list[], INT nent);

• INT ct = td_lst_flg (ID list[], INT nent);

• INT ct = td_lst_mbx (ID list[], INT nent);

• INT ct = td_lst_mtx (ID list[], INT nent);

• INT ct = td_lst_mbf (ID list[], INT nent);

• INT ct = td_lst_por (ID list[], INT nent);

• INT ct = td_lst_mpf (ID list[], INT nent);

• INT ct = td_lst_mpl (ID list[], INT nent);

• INT ct = td_lst_cyc (ID list[], INT nent);

• INT ct = td_lst_alm (ID list[], INT nent);

• INT ct = td_lst_ssy (ID list[], INT nent);

• INT ct = td_rdy_que (PRI pri, ID list[], INT nent);

• INT ct = td_sem_que (ID semid, ID list[], INT nent);

• INT ct = td_flg_que (ID flgid, ID list[], INT nent);

• INT ct = td_mbx_que (ID mbxid, ID list[], INT nent);

• INT ct = td_mtx_que (ID mtxid, ID list[], INT nent);

• INT ct = td_smbf_que (ID mbfid, ID list[], INT nent);

• INT ct = td_rmbf_que (ID mbfid, ID list[], INT nent);

T-Kernel 2.0 Specification 531 / 534

• INT ct = td_cal_que (ID porid, ID list[], INT nent);

• INT ct = td_acp_que (ID porid, ID list[], INT nent);

• INT ct = td_mpf_que (ID mpfid, ID list[], INT nent);

• INT ct = td_mpl_que (ID mplid, ID list[], INT nent);

• ER ercd = td_ref_tsk (ID tskid, TD_RTSK *rtsk);

• ER ercd = td_ref_tsk_u (ID tskid, TD_RTSK_U *rtsk_u);

• ER ercd = td_ref_tex (ID tskid, TD_RTEX *pk_rtex);

• ER ercd = td_ref_sem (ID semid, TD_RSEM *rsem);

• ER ercd = td_ref_flg (ID flgid, TD_RFLG *rflg);

• ER ercd = td_ref_mbx (ID mbxid, TD_RMBX *rmbx);

• ER ercd = td_ref_mtx (ID mtxid, TD_RMTX *rmtx);

• ER ercd = td_ref_mbf (ID mbfid, TD_RMBF *rmbf);

• ER ercd = td_ref_por (ID porid, TD_RPOR *rpor);

• ER ercd = td_ref_mpf (ID mpfid, TD_RMPF *rmpf);

• ER ercd = td_ref_mpl (ID mplid, TD_RMPL *rmpl);

• ER ercd = td_ref_cyc (ID cycid, TD_RCYC *rcyc);

• ER ercd = td_ref_cyc_u (ID cycid, TD_RCYC_U *rcyc_u);

• ER ercd = td_ref_alm (ID almid, TD_RALM *ralm);

• ER ercd = td_ref_alm_u (ID almid, TD_RALM_U *ralm_u);

• ER ercd = td_ref_sys (TD_RSYS *pk_rsys);

• ER ercd = td_ref_ssy (ID ssid, TD_RSSY *rssy);

• ER ercd = td_inf_tsk (ID tskid, TD_ITSK *pk_itsk, BOOL clr);

• ER ercd = td_inf_tsk_u (ID tskid, TD_ITSK_U *itsk_u, BOOL clr);

• ER ercd = td_get_reg (ID tskid, T_REGS *pk_regs, T_EIT *pk_eit, T_CREGS *pk_cregs);

• ER ercd = td_set_reg (ID tskid, CONST T_REGS *pk_regs, CONST T_EIT *pk_eit, CONST T_CREGS *pk_cregs
);

• ER ercd = td_get_tim (SYSTIM *tim, UINT *ofs);

• ER ercd = td_get_tim_u (SYSTIM_U *tim_u, UINT *ofs);

• ER ercd = td_get_otm (SYSTIM *tim, UINT *ofs);

• ER ercd = td_get_otm_u (SYSTIM_U *tim_u, UINT *ofs);

• ER ercd = td_ref_dsname (UINT type, ID id, UB *dsname);

• ER ercd = td_set_dsname (UINT type, ID id, CONST UB *dsname);

8.1.3.2 Trace Functions

• ER ercd = td_hok_svc (CONST TD_HSVC *hsvc);

• ER ercd = td_hok_dsp (CONST TD_HDSP *hdsp);

• ER ercd = td_hok_int (CONST TD_HINT *hint);

T-Kernel 2.0 Specification 532 / 534

8.2 List of Error Codes

8.2.1 Normal Completion Error Class (0)

Error code name Error Codes Summary description
E_OK 0 Normal completion

8.2.2 Normal completion Internal Error Class (5 to 8)

Error code name Error Codes Summary description
E_SYS ERCD(-5, 0) System error

An error of unknown cause affecting the system as a whole.

Error code name Error Codes Summary description
E_NOCOP ERCD(-6, 0) Unavailable co-processor

This error code is returned when the specified co-processor is not installed in the currently running hardware,
or abnormal co-processor condition was detected.

8.2.3 Unsupported Error Class (9 to 16)

Error code name Error Codes Summary description
E_NOSPT ERCD(-9, 0) Unsupported function

When some system call functions are not supported and such a function is invoked, error code E_RSATR or
E_NOSPT is returned. If E_RSATR does not apply, error code E_NOSPT is returned.

Error code name Error Codes Summary description
E_RSFN ERCD(-10, 0) Reserved function code number

This error code is returned when it is attempted to execute a system call specifying a reserved function code
(undefined function code), and also when it is attempted to execute an undefined extended SVC handler (a
positive function code).

Error code name Error Codes Summary description
E_RSATR ERCD(-11, 0) Reserved attribute

This error code is returned when an undefined or unsupported object attribute is specified.

Checking for this error may be omitted if system-dependent optimization is implemented.

8.2.4 Parameter Error Class (17 to 24)

Error code name Error Codes Summary description
E_PAR ERCD(-17, 0) Parameter error

T-Kernel 2.0 Specification 533 / 534

Checking for this error may be omitted if system-dependent optimization is implemented.

Error code name Error Codes Summary description
E_ID ERCD(-18, 0) Invalid ID number

E_ID is an error that is returned only for objects having an ID number.

Error code E_PAR is returned when a static error is detected for such as reserved number or out of range in
the case of interrupt handler number.

8.2.5 Call Context Error Class (25 to 32)

Error code name Error Codes Summary description
E_CTX ERCD(-25, 0) Context error

This error indicates that the specified system call cannot be issued in the current context (task portion/task-
independent portion or handler RUNNING state).

This error must be returned whenever there is a semantic context error in issuing a system call, such as
calling from a task-independent portion a system call that may put the invoking task in WAITING state. Due
to implementation limitations, there may be other system calls that, when called from a given context (such
as an interrupt handler), will cause this error to be returned.

Error code name Error Codes Summary description
E_MACV ERCD(-26, 0) Memory cannot be accessed;

memory access privilege error

Error detection is implementation-dependent.

Error code name Error Codes Summary description
E_OACV ERCD(-27, 0) Object access privilege error

This error code is returned when a user task tries to manipulate a system object.

The definition of system objects and error detection are implementation-dependent.

Error code name Error Codes Summary description
E_ILUSE ERCD(-28, 0) System call illegal use

8.2.6 Resource Constraint Error Class (33 to 40)

Error code name Error Codes Summary description
E_NOMEM ERCD(-33, 0) Insufficient memory

This error code is returned when there is insufficient memory (no memory) for allocating an object control
block space, user stack area, memory pool area, message buffer area or the like.

Error code name Error Codes Summary description
E_LIMIT ERCD(-34, 0) System limit exceeded

T-Kernel 2.0 Specification 534 / 534

This error code is returned, for example, when it is attempted to create more object(s) than the system allows.

8.2.7 Object State Error Class (41 to 48)

Error code name Error Codes Summary description
E_OBJ ERCD(-41, 0) Invalid object state
E_NOEXS ERCD(-42, 0) Object does not exist
E_QOVR ERCD(-43, 0) Queuing or nesting overflow

8.2.8 Wait Error Class (49 to 56)

Error code name Error Codes Summary description
E_RLWAI ERCD(-49, 0) Waiting state was forcibly

released
E_TMOUT ERCD(-50, 0) Polling failed or timeout
E_DLT ERCD(-51, 0) Waiting object was deleted
E_DISWAI ERCD(-52, 0) Wait released due to disabling of

wait

8.2.9 Device Error Class (57 to 64) (T-Kernel/SM)

Error code name Error Codes Summary description
E_IO ERCD(-57, 0) I/O error

※ Error information specific to individual devices may be defined in E_IO sub-codes.

Error code name Error Codes Summary description
E_NOMDA ERCD(-58, 0) No media

8.2.10 Status Error Class (65 to 72) (T-Kernel/SM)

Error code name Error Codes Summary description
E_BUSY ERCD(-65, 0) Busy
E_ABORT ERCD(-66, 0) Processing was aborted
E_RONLY ERCD(-67, 0) Write protected

	API Notation
	Index of T-Kernel/OS System Calls
	Index of T-Kernel/SM Extended SVC and Libraries
	Index of T-Kernel/DS System Calls
	T-Kernel Overview
	Position of T-Kernel
	Scalability
	T-Kernel 2.0 Overview
	Positioning and Basic Policy of T-Kernel 2.0
	Additional Functions to T-Kernel 2.0

	T-Kernel Concepts
	Meaning of Basic Terminology
	Task States and Scheduling Rules
	Task States
	Task Scheduling Rules

	Interrupt Handling
	Task Exception Handling
	System States
	System States While Non-task Portion Is Executing
	Task-Independent Portion and Quasi-Task Portion

	Objects
	Memory
	Address Space
	Nonresident Memory
	Protection Levels

	Common Rules of T-Kernel
	Data Types
	General Data Types
	Other Defined Data Types

	System Calls
	System Call Format
	System Calls Possible from Task-Independent Portion
	Restricting System Call Invocation
	Modifying a Parameter Packet Format
	Function Codes
	Error Codes
	Timeout
	Relative Time and System Time
	Timer Interrupt Interval

	High-Level Language Support Routines

	T-Kernel/OS Functions
	Task Management Functions
	tk_cre_tsk - Create Task
	tk_del_tsk - Delete Task
	tk_sta_tsk - Start Task
	tk_ext_tsk - Exit Task
	tk_exd_tsk - Exit and Delete Task
	tk_ter_tsk - Terminate Task
	tk_chg_pri - Change Task Priority
	tk_chg_slt - Change Task Slice Time
	tk_chg_slt_u - Change Task Slice Time (in microseconds)
	tk_get_tsp - Get Task Space
	tk_set_tsp - Set Task Space
	tk_get_rid - Refers to resource group to which task belongs
	tk_set_rid - Set Task Resource ID
	tk_get_reg - Get Task Registers
	tk_set_reg - Set Task Registers
	tk_get_cpr - Get Task Coprocessor Registers
	tk_set_cpr - Set Task Coprocessor Registers
	tk_inf_tsk - Reference Task Statistics
	tk_inf_tsk_u - Reference Task Statistics (Microseconds)
	tk_ref_tsk - Reference Task Status
	tk_ref_tsk_u - Reference Task Status (Microseconds)

	Task Synchronization Functions
	tk_slp_tsk - Sleep Task
	tk_slp_tsk_u - Sleep Task (in microseconds)
	tk_wup_tsk - Wakeup Task
	tk_can_wup - Cancel Wakeup Task
	tk_rel_wai - Release Wait
	tk_sus_tsk - Suspend Task
	tk_rsm_tsk - Resumes a task in a SUSPENDED state
	tk_frsm_tsk - Force Resume Task
	tk_dly_tsk - Delay Task
	tk_dly_tsk_u - Delay Task (in microseconds)
	tk_sig_tev - Signal Task Event
	tk_wai_tev - Wait Task Event
	tk_wai_tev_u - Wait Task Event (in microseconds)
	tk_dis_wai - Disable Task Wait
	tk_ena_wai - Enable Task Wait

	Task Exception Handling Functions
	tk_def_tex - Define Task Exception Handler
	tk_ena_tex - Enable Task Exception
	tk_dis_tex - Disable Task Exception
	tk_ras_tex - Raise Task Exception
	tk_end_tex - end task exception handler
	tk_ref_tex - Reference Task Exception Status

	Synchronization and Communication Functions
	Semaphore
	tk_cre_sem - Create Semaphore
	tk_del_sem - Delete Semaphore
	tk_sig_sem - Signal Semaphore
	tk_wai_sem - Wait on Semaphore
	tk_wai_sem_u - Wait on Semaphore (in microseconds)
	tk_ref_sem - Reference Semaphore Status

	Event Flag
	tk_cre_flg - Create Event Flag
	tk_del_flg - Delete Event Flag
	tk_set_flg - Set Event Flag
	tk_clr_flg - Clear Event Flag
	tk_wai_flg - Wait Event Flag
	tk_wai_flg_u - Wait Event Flag (in microseconds)
	tk_ref_flg - Reference Event Flag Status

	Mailbox
	tk_cre_mbx - Create Mailbox
	tk_del_mbx - Delete Mailbox
	tk_snd_mbx - Send Message to Mailbox
	tk_rcv_mbx - Receive Message from Mailbox
	tk_rcv_mbx_u - Receive Message from Mailbox (in microseconds)
	tk_ref_mbx - Reference Mailbox Status

	Extended Synchronization and Communication Functions
	Mutex
	tk_cre_mtx - Create Mutex
	tk_del_mtx - Delete Mutex
	tk_loc_mtx - Lock Mutex
	tk_loc_mtx_u - Lock Mutex (in microseconds)
	tk_unl_mtx - Unlock Mutex
	tk_ref_mtx - Refer Mutex Status

	Message Buffer
	tk_cre_mbf - Create Message Buffer
	tk_del_mbf - Delete Message Buffer
	tk_snd_mbf - Send Message to Message Buffer
	tk_snd_mbf_u - Send Message to Message Buffer (in microseconds)
	tk_rcv_mbf - Receive Message from Message Buffer
	tk_rcv_mbf_u - Receive Message from Message Buffer (in microseconds)
	tk_ref_mbf - Reference Message Buffer Status

	Rendezvous
	tk_cre_por - Create Port for Rendezvous
	tk_del_por - Delete Port for Rendezvous
	tk_cal_por - Call Port for Rendezvous
	tk_cal_por_u - Call Port for Rendezvous (in microseconds)
	tk_acp_por - Accept Port for Rendezvous
	tk_acp_por_u - Accept Port for Rendezvous (in microseconds)
	tk_fwd_por - Forwards rendezvous to other port
	tk_rpl_rdv - Reply Rendezvous
	tk_ref_por - Reference Port Status

	Memory Pool Management Functions
	Fixed-size Memory Pool
	tk_cre_mpf - Create Fixed-size Memory Pool
	tk_del_mpf - Delete Fixed-size Memory Pool
	tk_get_mpf - Get Fixed-size Memory Block
	tk_get_mpf_u - Get Fixed-size Memory Block (Microseconds)
	tk_rel_mpf - Release Fixed-size Memory Block
	tk_ref_mpf - Reference Fixed-size Memory Pool Status

	Variable-size Memory Pool
	tk_cre_mpl - Create Variable-size Memory Pool
	tk_del_mpl - Delete Variable-size Memory Pool
	tk_get_mpl - Get Variable-size Memory Block
	tk_get_mpl_u - Get Variable-size Memory Block (Microseconds)
	tk_rel_mpl - Release Variable-size Memory Block
	tk_ref_mpl - Reference Variable-size Memory Pool Status

	Time Management Functions
	System Time Management
	tk_set_tim - Set Time
	tk_set_tim_u - Set Time (in microseconds)
	tk_get_tim - Get System Time
	tk_get_tim_u - Get System Time (Microseconds)
	tk_get_otm - Get Operating Time
	tk_get_otm_u - Get Operating Time (Microseconds)

	Cyclic Handler
	tk_cre_cyc - Create Cyclic Handler
	tk_cre_cyc_u - Create Cyclic Handler (in microseconds)
	tk_del_cyc - Delete Cyclic Handler
	tk_sta_cyc - Start Cyclic Handler
	tk_stp_cyc - Stop Cyclic Handler
	tk_ref_cyc - Reference Cyclic Handler Status
	tk_ref_cyc_u - Reference Cyclic Handler Status (Microseconds)

	Alarm Handler
	tk_cre_alm - Create Alarm Handler
	tk_del_alm - Delete Alarm Handler
	tk_sta_alm - Start Alarm Handler
	tk_sta_alm_u - Start Alarm Handler (in microseconds)
	tk_stp_alm - Stop Alarm Handler
	tk_ref_alm - Reference Alarm Handler Status
	tk_ref_alm_u - Reference Alarm Handler Status (Microseconds)

	Interrupt Management Functions
	tk_def_int - Define Interrupt Handler
	tk_ret_int - Return from Interrupt Handler

	System Management Functions
	tk_rot_rdq - Rotate Ready Queue
	tk_get_tid - Get Task Identifier
	tk_dis_dsp - Disable Dispatch
	tk_ena_dsp - Enable Dispatch
	tk_ref_sys - Reference System Status
	tk_set_pow - Set Power Mode
	tk_ref_ver - Reference Version Information

	Subsystem Management Functions
	tk_def_ssy - Define Subsystem
	tk_sta_ssy - Call Startup Function
	tk_cln_ssy - Call Cleanup Function
	tk_evt_ssy - Call Event Function
	tk_ref_ssy - Reference Subsystem Status
	tk_cre_res - Create Resource Group
	tk_del_res - Delete Resource Group
	tk_get_res - Get Resource Management Block

	T-Kernel/SM Functions
	System Memory Management Functions
	System Memory Allocation
	tk_get_smb - Allocate System Memory
	tk_rel_smb - Release System Memory
	tk_ref_smb - Reference System Memory Block

	Memory Allocation Library Functions
	Vmalloc - Allocate Nonresident Memory
	Vcalloc - Allocate Nonresident Memory
	Vrealloc - Reallocate Nonresident Memory
	Vfree - Release Nonresident Memory
	Kmalloc - Allocate Resident Memory
	Kcalloc - Allocate Resident Memory
	Krealloc - Reallocate Resident Memory
	Kfree - Release Resident Memory

	Address Space Management Functions
	Address Space Configuration
	SetTaskSpace - Set Task Space

	Address Space Checking
	ChkSpaceR - Check Read Access Privilege
	ChkSpaceRW - Check Read-Write Access Privilege
	ChkSpaceRE - Check Read-Execute Access Privilege
	ChkSpaceBstrR - Check Read Access Privilege (String)
	ChkSpaceBstrRW - Check Read-Write Access Privilege (String)
	ChkSpaceTstrR - Check Read Access Privilege (TRON Code)
	ChkSpaceTstrRW - Check Read-Write Access Privilege (TRON Code)

	Logical Address Space Management
	LockSpace - Lock Memory Space
	UnlockSpace - Unlock Memory Space
	CnvPhysicalAddr - Get Physical Address
	MapMemory - Map Memory
	UnmapMemory - Unmap Memory
	GetSpaceInfo - Get Various Information about Address Space
	SetMemoryAccess - Set Memory Access Privilege

	Device Management Functions
	Common Notes Related to Device Drivers
	Basic Concepts
	Device Name (UB* type)
	Device ID (ID type)
	Device Attribute (ATR type)
	Device Descriptor (ID type)
	Request ID (ID type)
	Data Number (W type, D type)

	Attribute Data

	Device Input/Output Operations
	tk_opn_dev - Open Device
	tk_cls_dev - Close Device
	tk_rea_dev - Start Read Device
	tk_rea_dev_du - Read Device (in 64-bit microseconds)
	tk_srea_dev - Synchronous Read
	tk_srea_dev_d - Synchronous Read (64 bit)
	tk_wri_dev - Start Write Device
	tk_wri_dev_du - Write Device (in 64-bit microseconds)
	tk_swri_dev - Synchronous Write
	tk_swri_dev_d - Synchronous Write (64 bit)
	tk_wai_dev - Wait for Request Completion for Device
	tk_wai_dev_u - Wait Device (in microseconds)
	tk_sus_dev - Suspends Device
	tk_get_dev - Get Device Name
	tk_ref_dev - Get Device Information
	tk_oref_dev - Get Device Information
	tk_lst_dev - Get Registered Device Information
	tk_evt_dev - Send Driver Request Event to Device

	Registration of Device Driver
	Registration Method of Device Driver
	tk_def_dev - Register Device
	tk_ref_idv - Reference Device Initialization Information

	Device Driver Interface
	openfn - Open function
	closefn - Close function
	execfn - Execute function
	waitfn - Wait-for-completion function
	abortfn - Abort function
	eventfn - Event function

	Device Event Notification
	Device Suspend/Resume Processing
	Special Properties of Disk Devices

	Interrupt Management Functions
	CPU Interrupt Control
	DI - Disable External Interrupts
	EI - Enable External Interrupt
	isDI - Get Interrupt Disable Status

	Control of Interrupt Controller
	DINTNO - Convert Interrupt Vector to Interrupt Handler Number
	EnableInt - Enable Interrupts
	DisableInt - Disable Interrupts
	ClearInt - Clear Interrupt
	EndOfInt - Issue EOI to Interrupt Controller
	CheckInt - Check Interrupt
	SetIntMode - Set Interrupt Mode

	I/O Port Access Support Functions
	I/O Port Access
	out_b - Write to I/O Port (In Unit of Byte)
	out_h - Write to I/O Port (In Unit of Half-word)
	out_w - Write to I/O Port (In Unit of Word)
	out_d - Write to I/O Port (In Unit of Double-word)
	in_b - Read from I/O Port (In Unit of Byte)
	in_h - Read from I/O Port (In Unit of Half-word)
	in_w - Read from I/O Port (In Unit of Word)
	in_d - Read from I/O Port (In Unit of Double-word)

	Micro Wait
	WaitUsec - Micro Wait (in Microseconds)
	WaitNsec - Micro Wait (in Nanoseconds)

	Power Management Functions
	low_pow - Move System to Low-power Mode
	off_pow - Move System to Suspend State

	System Configuration Information Management Functions
	System Configuration Information Acquisition
	tk_get_cfn - Get Numbers
	tk_get_cfs - Get Character String

	Standard System Configuration Information

	Memory Cache Control Functions
	SetCacheMode - Set Cache Mode
	ControlCache - Control Cache

	Physical Timer Functions
	Use Case of Physical Timer
	StartPhysicalTimer - Start Physical Timer
	StopPhysicalTimer - Stop Physical Timer
	GetPhysicalTimerCount - Get Physical Timer Count
	DefinePhysicalTimerHandler - Define Physical Timer Handler
	GetPhysicalTimerConfig - Get Physical Timer Configuration Information

	Utility Functions
	Set Object Name
	SetOBJNAME - Set Object Name

	Fast Lock and Multi-lock Libraries
	CreateLock - Create Fast Lock
	DeleteLock - Delete Fast Lock
	Lock - Lock Fast Lock
	Unlock - Unlock Fast Lock
	CreateMLock - Create Fast Multi-lock
	DeleteMLock - Delete Fast Multi-lock
	MLock - Lock Fast Multi-lock
	MLockTmo - Lock Fast Multi-lock (with Timeout)
	MLockTmo_u - Lock Fast Multi-lock (with Timeout, in Microseconds)
	MUnlock - Unlock Fast Multi-lock

	Subsystem and Device Driver Starting
	Startup Processing
	Termination Processing

	T-Kernel/DS Functions
	Kernel Internal State Acquisition Functions
	td_lst_tsk - Reference Task ID List
	td_lst_sem - Reference Semaphore ID List
	td_lst_flg - Reference Event Flag ID List
	td_lst_mbx - Reference Mailbox ID List
	td_lst_mtx - Reference Mutex ID List
	td_lst_mbf - Reference Message Buffer ID List
	td_lst_por - Reference Rendezvous Port ID List
	td_lst_mpf - Reference Fixed-size Memory Pool ID List
	td_lst_mpl - Reference Variable-size Memory Pool ID List
	td_lst_cyc - Reference Cyclic Handler ID List
	td_lst_alm - Reference Alarm Handler ID List
	td_lst_ssy - Reference Subsystem ID List
	td_rdy_que - Reference Task Precedence
	td_sem_que - Reference Semaphore Queue
	td_flg_que - Reference Event Flag Queue
	td_mbx_que - Reference Mailbox Queue
	td_mtx_que - Reference Mutex Queue
	td_smbf_que - Reference Message Buffer Send Queue
	td_rmbf_que - Reference Message Buffer Receive Queue
	td_cal_que - Reference Call Queue
	td_acp_que - Reference Accept Queue
	td_mpf_que - Reference Fixed-size Memory Pool Queue
	td_mpl_que - Reference Variable-size Memory Pool Queue
	td_ref_tsk - Reference Task Status
	td_ref_tsk_u - Reference Task Status (Microseconds)
	td_ref_tex - Reference Task Exception Status
	td_ref_sem - Reference Semaphore Status
	td_ref_flg - Reference Event Flag Status
	td_ref_mbx - Reference Mailbox Status
	td_ref_mtx - Refer Mutex Status
	td_ref_mbf - Reference Message Buffer Status
	td_ref_por - Reference Port Status
	td_ref_mpf - Reference Fixed-size Memory Pool Status
	td_ref_mpl - Reference Variable-size Memory Pool Status
	td_ref_cyc - Reference Cyclic Handler Status
	td_ref_cyc_u - Reference Cyclic Handler Status (Microseconds)
	td_ref_alm - Reference Alarm Handler Status
	td_ref_alm_u - Reference Alarm Handler Status (Microseconds)
	td_ref_sys - Reference System Status
	td_ref_ssy - Reference Subsystem Status
	td_inf_tsk - Reference Task Statistics
	td_inf_tsk_u - Reference Task Statistics (Microseconds)
	td_get_reg - Get Task Register
	td_set_reg - Set Task Registers
	td_get_tim - Get System Time
	td_get_tim_u - Get System Time (Microseconds)
	td_get_otm - Get Operating Time
	td_get_otm_u - Get Operating Time (Microseconds)
	td_ref_dsname - Refer to DS Object Name
	td_set_dsname - Set DS Object Name

	Trace Functions
	td_hok_svc - Define System Call/Extended SVC Hook Routine
	td_hok_dsp - Define Task Dispatch Hook Routine
	td_hok_int - Define Interrupt Handler Hook Routine

	Appendix
	Specification Related to Device Drivers to be Used as Reference
	Disk Kind for Device Attributes
	Device Attribute Data
	Event Type of the Device Event Notification

	Reference
	List of C Language Interface
	T-Kernel/OS
	Task Management Functions
	Task Synchronization Functions
	Task Exception Handling Functions
	Synchronization and Communication Functions
	Extended Synchronization and Communication Functions
	Memory Pool Management Functions
	Time Management Functions
	Interrupt Management Functions
	System Management Functions
	Subsystem Management Functions

	T-Kernel/SM
	System Memory Management Functions
	Address Space Management Functions
	Device Management Functions
	Interrupt Management Functions
	I/O Port Access Support Functions
	Power Management Functions
	System Configuration Information Management Functions
	Memory Cache Control Functions
	Physical Timer Functions
	Utility Functions

	T-Kernel/DS
	Kernel Internal State Acquisition Functions
	Trace Functions

	List of Error Codes
	Normal Completion Error Class (0)
	Normal completion Internal Error Class (5 to 8)
	Unsupported Error Class (9 to 16)
	Parameter Error Class (17 to 24)
	Call Context Error Class (25 to 32)
	Resource Constraint Error Class (33 to 40)
	Object State Error Class (41 to 48)
	Wait Error Class (49 to 56)
	Device Error Class (57 to 64) (T-Kernel/SM)
	Status Error Class (65 to 72) (T-Kernel/SM)

