ITR

| TRON Debugging I nterface Specifications

Version 1.00.00

TRON Association ITRON Committee
ITRON Debugging Interface Specification Working Group

Copyright (C) 2000-2002 by ITRON Committee, TRON ASSOCIATION, JAPAN

ITRON Debugging Interface Specifications (Ver. 1.00.00)

This specification is copyrighted by the ITRON Committee of the TRON Association.

The ITRON Committee of the TRON Association permits you to copy and redistribute this
specifications free of charge or at cost aslong as no part of it isaltered. However, the redistri-
bution of a part of this specification is permitted only when a statement is made to indicate that
the redistributed information is an excerpt from the ITRON Debugging Interface Specifica-
tions, and to identify the source and the method of obtaining the entire contents of the specifi-
cations.

All inquiries about this specifications and its contents should be addressed to the following:

TRON Association ITRON Committee
5th floor, Katsuta Bldg., 1-3-39, Mita, Minato-ku, Tokyo 108-0073, Japan
Phone: +81-3-3454-3191 Fax: +81-3-3454-3224

2002, 15 February

* TRON is an abbreviation for "The Real-time Operating system Nucleus".

* ITRON isan abbreviation for "Industrial TRON".

* LITRON isan abbreviation for "Micro Industrial TRON".

* BTRON is an abbreviation for "Business TRON".

* CTRON isan abbreviation for "Central and Communication TRON".

* TRON, ITRON, uITRON, BTRON, and CTRON are not the names of specific products or product groups.

ITRON Debugging Interface Specification 1.00.00

|. CONTENTS

1 Formats in This Documentcccccooieiiiiiiiiieceeie e, 1
I A N[0} = 4] o [P URUPPPPUPUPPRTR 1
1.2 NaMING RUIES. e e e e e e e eeeeeraeees 3

1.2.1 Variable name/Argument NAMEccoooiuimriiiiiiiiieeeieeeeee e e e e 3
1.2.2 PrefiXes....ocooiiii 3
1.2.3 Supplementary explanationcccceeeiiiiieeeeeerieeeee e 4
S b o] F= T = 11 o o S 4
1.2, 4. ASUTTIX e 5

2 O L oo [= = U 1RSSR 5

1.2.5 FUNCHON NAMES ...euiiiiiiiiiiiiieeiee e e ee e e e e 6

1.3 Terms and DefiNitiONSoiiiiiiiii e 8
1.4 ADbbreviated NAMES ..ot 8

2 OVEIVIBW ..o e e e e e e e e 9
200 R = - o o [o 1 U1 o o 1S 9
2.2 Standardization ODJECHIVEccooeeeiiiiieeeeee e 11
2.3 Approaches to Standardizationueeeeeiiiiiinineee e 12

2.3.1 APProach Plans........ooooiiiiiii s 12
2.3.2 Approach selection and itS reasons..............uuuvveriiiiieeieeeeeeeeeeeeeeeannnns 14
A S O o (o1 =T o) TP PP 15
2.4 1 OPEIALION ...t e ettt e e e e e e e e e e e earraaaaa 16
2.5 CNaraCteriSTICS...coiiiiiiiiiiiiiiieee et 17
2.5.1 Two break method with task IDccccciiiiiiii 17
2.5.2 Scalable debugging environmMentcoovuuiiiiiiininnneee e 19

3 Common Regulationscoooeviiiiiii e 21
3.1 Interface Function Registration/Unregistration..........cccccvevvvvvvnnninnnnnnnn. 21
I 0] ¢ 1T 11 (=T 1 [0}V PP 22
3.3 Prohibition on Target Halt ... 22
I JR S Y 01T SO PP PP 23
3.5 BIt MASK ..o 24
3.6 Structure and Key of Getting Information............cccceoevvvviiiiiiiiicccieeenn, 25
O A 1 g o] g O Yo [TSP PPPPPI 28

3.7.1 E_xxxerror and ET_XXX €ITONccooiiiiiiiiiiiiiiiiian e e e e e e eeeeeeeeeens 28
3.7.2 COMMON EITONS ...cieeiiieeeeeeeiee e e ee ennnnn s 28
3.7.3 SIMIIAr €ITOIS ... eeeeeeeaaee 29
3.8 Variable-Length Storage RegiONcoevviiiiiiiiiiiii e 30
3.8.1 Separate-space variable-length region.........ccccovvviiiiiii e, 30
3.8.2 Same-space variable-length regionoouuiiiiiiiin s 31

Table of Contents

ITRON Debugging Interface Specification 1.00.00

3.9 Identification NUMDBEr (ID)....cccoiiiiiieeeieieeeeeeecr e 32
3.10 REQISTEr NAIME ...t e e e e e e e e e e e e e e e eeas 33
00 I I | - Vo 34
3.12 Register Set Description Table ..., 35
3.13 Special BIocking MOAeccooiiiiiiiiie e 38
RTOS Support Function Guideline.........ccccccoeveeieeeennnn. 39
4.1 Standardization of Implemented Functionalities...........cccccvvvvviiiiinnnnenn. 39
4.2 LeVel INAICAIONS ... e s 41
4.2.1 RIF1evel INdICAtIONvuiiiiiie e e 41
4.2.2 TIFlevel iNdiCatioN..........oiiiiiieii e e 42
4.2.3 Other INtErfacecooeiiiiiiii e 42
4.3 Terms and DefiNitiONSuuiii i e 43
4.3.1 Debugging toOL.......ccoiiiiiiiiiiiiiir e 43
VG T2 B 1=T o 18 To To 11 o = To = o | APPSR 43
4.4 Break MECNANISIMccciiiiiiii et e e 44
4.4.1 Decision of callbackcccoouuiiiiiiiiiiii e, 44
4.4.2 Break of condition-getting typecovvvvvevveiiiiiiiiii e 46
4.5 Trace Log MeChaNiSMcciiii i 48
T] Y O UPRR 48
A.5.2 SHAM ... 49
A.5.3 EXECULION .cuutiiii et e e e et e e e et e e e et e e eeanans 50
Y = OSSPSR 51
A.5.5 BN .oiiiiiiiii e 52
A.5.6 DEIBLE ..ueeeeeeeeee s 52
RTOS Access INterface.....cooovvveiviiiiiiieieeeeeeeeea, 53
5.1 Functional Unit ... 53
5.2 Get Of ODJECT STATUS ..ooiiiiiiiiiiiiiie e 54
5.3 Get Of TaSK CONTEXL....cioiiiiiiiieeeeeec e e 66
5.3.1 Get of register set description table...............oovviiiiiiiii s 66
5.3.2 Get of task CONEXL.......oeiiiiiiiiie e e 68
5.3.3 Set of task CONIEXLuiiiiiiieiii e 70
5.4 1ssue Of Service Call ... 72
5.4.1 Issue of SErviCe Callccuuieiiiiiiiiiiii e, 72
5.4.2 Cancel of anissued service callcccooevviiiiiiiiiiiieee e, 75
5.4.3 Reportof service call endccoooeiiiiiiiiiiiiic e 76
5.4.4 Get of functional CoOAE........iiiiiiiiiii e, 77
5.4.5 Getofservice call Nameccooovviiiiiiiiii e, 78
5.5 Set 0f Break POINt.. ... 80
5.5.1 Setof break poiNnt...........oouuiieiiiiiii e 80
5.5.2 Delete of break point..........ccooiiiiiiiiiiii e 84
5.5.3 Reportof break hit............ouuuuiiiiiiiii e 85
5.5.4 Get of break informationcoooiiiiiiiiiiiie e, 86

Table of Contents

ITRON Debugging Interface Specification 1.00.00

5.5.5 Get of break condition.............eeeeieiiiiiiiiiiiiiii e 87

5.6 Execution History (Trace LOQg) ...ccvvvverieeiiiiiiiiiiie e e eeee e e e 89
5.6.1 Set Of traCe 10Q.......ceveiiiiieeieee i 89
5.6.2 Delete Of trace 10Q.........uvuuuuiuiiiiiii e 93
5.6.3 Request of trace log function start.............oeuveiviiiiiiiineeeeeeeieiiees 94
5.6.4 Request trace 10g StOPuuuruuiiiiiiiieeeeeeee ettt e e e e e e e e e eeeaeeaaanes 95
5.6.5 Get of Of traCe l0gcevvviviiiiiiiie e 96
5.6.6 Reconfigur of trace log mechanismcccccouviiiiiiiis 100

5.7 Other RTOS-related INfOrmationccccccvveeeeiiiiiiieeeeeee 102
5.7.1 Get of kernel configuration...........cccceeeeeieiiiieeeeieeree e 102

6 Target Access Interface......ccooovieiiiiiiiiiiiiece e, 107
6.1 MemMOTry OPEratiONSccoiiiiiiiiiiiiiiiiiee e e e e e e e e ettt a s e e e e e e e aeaeeeeesneeees 107
6.1.1 Allocate memory (0N NOSE)uiiiiiiie e eee e 107
6.1.2 Allocate memory (0N target)coooveeeeeeeiiiiiiiiiiiiiierie e er e 108
6.1.3 Free memory (0N NOSL)ccuuuiiiiiiiiie e 109
6.1.4 Free memory (0N target).........cceeeieieeeeeeeeeeeeeeetcrie e e e e e e e e eeeeneenns 110
6.1.5 Read memory (memory bIocK) ... 111
6.1.6 Read memory (DIOCK SEt)........uuiiiiiiiiieeeeiiieeeee e e e e ee e 113
6.1.7 Write memory (Memory BIOCK)......ccccoeeeiieiiiiiieeecreie e 116
6.1.8 Write memory (DIOCK Set)........ovviiieiii i 118
6.1.9 Set of Change rEPOItcoevveeieieccere e 120
6.1.10 Delete of change report Setting..........ccoeevvivveeeeiiiiiiiiie e eeeeeeeeennns 122
6.1.11 ChanQe POce ettt e ettt e e e e e e e e e eneeaeeees 123

6.2 RegiSter OPeratioNsSccceiiiiiiiiiiiiiie e et e e e e e s e eeeeeeeeereenn 124
6.2.1 Read Of regiSter ValUEuuuiiiiiiiie e e e e e e eeeeneenns 124
6.2.2 WIE FEQISTEN ..t e e e e e e e eeeeees 126

6.3 Target OPeratioNS......cooiiiiiiiiiiiiiiie it e e e e e e e e e e e eeeeeaeeees 127
6.3.1 Start of target eXeCULION...........cvvuiiiiiiiie e 127
6.3.2 Stop Of target @XECULION.......c.eeviieiiiiie e 129
6.3.3 Break of target @XeCULION..........uiiiiiie e e e e e e e e e e e eeaeenns 130
6.3.4 Resumption of target eXeCUtiONccovvvivivieiiiiiicieie e e e eee e 131

6.4 Hardware Break Operationsccoceeiiiiieiiiiiiiiiiieeiiees e e e e e e eeeeeaeanns 132
6.4.1 Setof break poiNt...........covvviieiiiiiiiii e 132
6.4.2 Delete of break point.............ouvviiiiiiiiiiii e 135
6.4.3 BreaK NEPON .. o i i ettt a e e e e eeeaaeeee 136

6.5 Symbol Table Operationscccoiiii i 138
6.5.1 Reference of symbol table valueccccovvviiiiiiiiiiiiie e, 138
6.5.2 Reference of symbol in symbol table............cccccoiiiii 139

6.6 FUNCLION EXECULION c.iiiiiiiiiiiiii et e e 141
6.6.1 FUNCHON Call........ccoii e 141
6.6.2 Report of function execution end............coeoeiiiiiiiiiiiiiiiiii e 144

6.7 Trace LOQ OPEratiONS ...cceueuuuuiiiiiiiiiee e e e eee e e e ettt a s e e e e e e e eeaeeeeeeneeens 145
6.7.1 Set Of traCe 10Q.....cceee i 145
6.7.2 Delete of trace 10g SettiNGuoviiiiiiiiiiiiiiieeeie e 149

Table of Contents

ITRON Debugging Interface Specification 1.00.00

6.7.3 Start of traCe 10gcovvveeeeiieice e 150

6.7.4 StOP Of traCe 10Q.......uuuiiiiiiiiii i 151

6.7.5 Trace 10gs callback.............eeiiiiiiieiiiiiiiieer e 152

6.7.6 Get Of traCe 10gcovvieieeiiiici e e e e er e 153

7 Other Interfaces ... 155
7.1 Debugging TOOl Operationsccoooeiiiiiiiiiiiiiiiiiiee e eeeeeeieeens 155
7.1.1 Get of debugging tool information.............ccceevvvviiiiiiiiii e, 155

7.2 RIM OPEIratiONS ..o eiee e r e e e e e e e e e e et e e e e e e e e e e aaeeeeeennnnens 157
7.2.1 RIM INItIANIZALION........eeieiiiiiieee e e e e e e e e ee e aeaaannees 157

7.2.2 RIM finalization ProCESS........uuuuuuiiiiiieeeeeeeeee et n e e e e e eeaes 158

7.2.3 Get of RIM-related information ... 159

7.3 INterface OPEratioNS........cooiuiiiiiiiiiiie et eeeeeeeeeaeeeeens 160
7.3.1 Interface iNtialiZationuueiiiiieii i 160

8 Recommended Guidelinesccoeveiviiiiiciiiiic, 163
8.1 RIM GUIAERIINEG. ..o 163
8.1.1 RIM operation QUIAElINE...........uvuiiiiiieeie e 163

8.1.2 RIM data format for SUPPIYING.........cceiiiiiiiiriii e 163

8.1.3 Speed enhancement and debugging agent...........cccccceevveiieeeeeeeenn. 164

8.2 Windows-DLL Creation Guideline (32-bit RIM)ccooooiiiiiiiiiiiiiiennn. 166

o T N IV o1 PO 166

8.2.2 Structure bits alignment..............ceiiiiiiiiiiee e 167

8.2.3 FUNCLION EXPOIT....cciiiiieeeeeeieiiie e e et e e e e e e e e e e aneaaeeees 167

8.3 File Format of Standard Execution HiStOry........ccceeeeiiiieiieiiiiiieeecieiiinnns 168

O REfEreNCE .o 171
S IR A 4 € U o3 (U1 = PP 171

S I U1 o 1 o o I 013 184

LS IR T © o) o o T =T USRS 187
9.3.1 ComMmMON flagS.....cceeieiieeeeeee e 187

9.3.2 UNIQUE flagS...cce e e e oot 187

0.4 CONSTANTS ..ot 189
9.4.1 Object identification CONSTANTSccoeveiiiiiiiiiieieii e 189

9.4.2 EITOIr CONSTANTS ...uuviiiii it eees 190

9.4.3 Break CONSIANTScciiiiiiiiiiiiiiieea et e e e e eeeeeeeees 191

9.4.4 LOQ CONSLANTSoiiiiiii et e e e e e e e e e eeeanns 191

9.4.5 Other CONSIANTSccoviiiiieiiic e e e e e e e e e eeeeaes 193

9.5 Key Code List of Getting Informationccceeeiiiniieiiiiiiieeeeiinnn 194
APPENAIX it 205

vi Table of Contents

ITRON Debugging Interface Specification 1.00.00

I[I. Table of Contents

Table 1 Symbols and Key COde TYPES....uuuiiiiiieieeeeiiieieeeeeieiicsss s e e s e e e e e e e eeeeeaeennnnnns 2
TADIE 2 PrefiXES . 3
Table 3 Supplementary EXplanationccoooiiiiiiiiiiiiiiii e 4
Table 4 EXPlanationcccoooiiiiiiiiiie e e e e e 4
TADIE 5 SUFIXES ettt 5
Table 6 UNIQUE NAIMES ...t e e e e e e e e eeeeaeenaneee 5
Table 7 Interface ldentification Characterscccccoiiiiiiiiiiiii e 6
Table 8 Notation Of XXX @Nd YYY ..ceeeeeiiiiiiiiiie e e e e e e e e e e e 6
Table 9 LISt Of TEIMS ...uiiii et e e e e e e ee e neeannenas 8
Table 10 ADDIeviationsoooiiiiiiiiii e 8
Table 11 OSes Used for Recently Developed Embedded Deviceccccevvveennens 9
Table 12 Shortcomings of ITRON Specification-compliant OSes............coeeeeeeeeeeee. 10
TabIe 13 UNIQUE TYPES .uuiiiieeeeeiie ettt s s e st e e e e e e e e e e ettt a e e e e e e e e e aaeeeesessnennnnns 23
Table 14 The most Significant Bit of the Last Key and Got Information Type.......... 25
Table 15 Functions Of FIAgScoooiiiiiiiiiii e 34
Table 16 Typical Register Set Description Tableoovviiiiiiiiiiii s 36
Table 17 ReQISIEr SIOTAQE .. .cooe i e i eeeeeeeeeee e e e e e e e e e e e aeeeaeeanne 37
Table 18 Level Indication EXamPleuuuueiiiiiiiie e 41
Table 19 Operation Performed in Relation to a Semaphore Having 10 Tasks in a
LAY V1L T I 54
Table 20 Relationship between T_ROMPF Members and Bit Mask Bit Positions...55
Table 21 Special Parameter Values Available for Break Setupccccoevvvveeeeenenn... 81
Table 22 Relation Between Block Set and Data Arrangementcccccceeeeeeeeeeeee. 113
Table 23 32-bit RIM DLL HOSE TYPESuuuuiiiiiieieieeeeeeeeeeeeieeiitie s e e eeeeeees 166
Table 24 32-bit RIM DLL Target TYPEScuuuuiiiiiiiiiee e eeeeieeeeeeeveaininsnn e e e e e eaeaeeaaens 166
Table 25 Windows DLL Creation Guideline Bits Alignmentcccccoevveeeeeeennenne. 167
Table 26 MeMDEI LISt ... e eeeeneeees 205

I1l. Fig of Contents

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

O©CoO~NOOUITA,WNE

vii

ITRON Debugging Interface Specification Concept Diagram...............cccc..... 15
Getting ID1 TaSK STAtUScovvvieiiiiiiiiiiees e ee e e e e ee e et s e e e e e e e e e e e eeeeaeannnes 16
Two Break Methods and Difference in Operations Flowccccvvvvvvnnne. 19
Flow of Operations when a Special Break Routine is Implemented.............. 20
Separate-space Variable-length Region (Task ID)..........ccuvvuiiiiiiiiiiieeeeeeeenen, 30
Same-space variable-length Region ... 31
Setting of Break POINt.........cooiiiiiiiiiii e 44
Break Hil....oooeeeeee e 45
tf_rep _Brk Call ... 45
INformation COllECHION..........uiii e 45
Operation of rif_rep_brk when Conditions Satisfiedccccccevvvviviiiinnnnnns 45
Continuation of Break OpPerationoooeeoeiiiiiiiiiiiiiiiiineee e eeeeeeeeeens 46
Operation of rif_rep_brk when Conditions Not Satisfied..................cccvunnnein. 46
Abortion of Break Operation and Resumption of Target Program Execution 46
Break of Condition-getting TYPEccvuiiiiiiiiiiiiei et 46
Y= o) B I = Tot = o o PSR UUPPPPPPPTPPPRRTR 48

Table of Contents

ITRON Debugging Interface Specification 1.00.00

T T A = U o) I = Tt 3 o o 49
Fig. 18 EXeCULiON Of TIraC@ LOQ....utuuuuuuuuuiiiieeeeeeeeeeeeee ettt e e e e e e e e e e eeeeeeaann s 50
Lo T S I = Tt o To [N =] 1] o S 51
1o P2 O I =t To I) N I - o = 1 T 52
Fig. 21 Delete Of TraCe LOQccouiiiuiiiiiiiiiieeee et e e e e eeeeeeesannnnanes 52
Fig. 22 Special RIM Supply Methodccoooiiiiiiiecee e 164

IV. Function of Contents

Name
rif_ref_obj

LT o] o= ox B r= LU 1P 54
rif_get_rdt

Get Of desCription tabIocoi i 66
rif_get_ctx

Get Of tASK CONIEXE.....uuii i e e e e e e e e e e e e eeaaes 68
rif_set_ctx

Set Of taSK CONTEXL .ooviii i e eeeaaes 70
rif_cal_svc

ISSUE OF SEIVICE Call ...coevi e 72
rif_can_svc

Cancel of an issued ServiCe Call.............uuuuiiiiiiiiie e 75
rif_rep_svc

Report Of SErvice Call €Nuuueiiiii e 76
rif _ref svc

(€T 0o) {0 Td 1 0] o T oo To [USRS 77
rif_rrf_svc

Get of service Call NAMEuuiiii e 78
rif_set_brk

Set Of DrEaK POINT.....eeiiiiiie ettt e e e e e e e e eeeeeeees 80
rif_del_brk

Delete of break POINt...... ... 84
rif_rep_brk

Report of break hitcoooiiiii e 85
rif_ref_brk

Get of break iNfOrmMationcooiiiiiiiiic e e e e e 86
rif_ref cnd

Get of break CONAITION..........uii e e e e e eeaaes 87
rif_set_log

Y= o 1 = o = (o o [P U U PRPUTPPPPIN 89
rif_del_log

Delete Of traCe 10Qcooiiiiiiiiiiiie e 93
rif_sta_log

Request of trace 1og fuNCLioN Startcoooiiiiiiiiiieccc e 94

viii Table of Contents

ITRON Debugging Interface Specification 1.00.00

rif_stp_log

Request Of trace 10g STOPcevveeiiiiiiiiiiie e 95
rif_get_log

(T o) (= (ot 3N (o o PSSR UUPPPPTUPRRUPT 96
rif_cfg_log

Reconfigur of trace log mechanism ... 100
rif_ref_cfg

Get of kernel configuration..............ooeeveiiiiiiiiin e e e e ee e 102
tif_alc_mbh

Allocate memory (0N NOSE) ..ovvvveeeiiiiccie e e e 107
tif_alc_mbt

Allocate Memory (0N tArgEL).......uuuuuueiie e 108
tif_fre_mbh

Free memory (0N NOST) ..o 109
tif_fre_mbt

Free memory (0N tArget)euuueueiii e 110
tif_get_mem

== Lo I 41T T} o S 111
tif_get_bls

Read memory DY DIOCK SELoiiiii e 113
tif_set_mem

Write memory by memory DIOCKccooiiiiiiiii e 116
tif_set bls

Write memory DY DIOCK Set ... 118
tif_set_pol

Set of memory data change rePOItoouuiiieiiiiiiie e 120
tif_del_pol

Delete of change report SEtHNGcooo i 122
tif_rep_pol

Report of memory data Changecooovee i 123
tif_get_reg

Read Of regiSter VAlUEuuveiiiiie e e e e e e e 124
tif_set_reg

Write Of regiSter VAlUEoeeeeiieiii e e 126
tif_sta_tgt

Start Of target @XECULION.......cooi i e e e e e eeeeeeeees 127
tif_stp_tgt

SEOP tArget @XECULION ...eueiiiie ettt e s e e e e e e e eeeeeeeenes 129
tif_brk_tgt

Break of target @XECULIONuuiiiiii i 130
tif_cnt_tgt

Resumption of target @XECULIONcccoeiiiiiiieeeeecce e 131
tif_set_brk

Set Of DreaK POINT......uiieiiie e e e e e e e e s s e e e e e e e e e eeeeennennes 132

iX Table of Contents

ITRON Debugging Interface Specification 1.00.00

tif_del_brk

Delete of break POINt.........ccooiiiii e 135
tif_rep_brk

o = 1 (=T 0T] o SRS 136
tif_ref_sym

Reference of symbol table value..............coorrrrece 138
tif_rrf_sym

Reference of symbol in symboltable...........cooooeiiii 139
tif_cal_fnc

U] o 1o o> || S 141
tif_rep_fnc

Report of function eXeCution €Ndcoiieiiiiiiiie e e 144
tif_set_log

Y= o 1 = o = (o o PP UPUUPPRTTPPRRRRN 145
tif_del_log

Delete Of trace 10g SEHING «...uuurureiiiie e 149
tif_sta_log

S = L o) 1 =Tt [T RS 150
tif_stp_log

(0] o JNo) 11 = Lo = (o o RSP 151
tif_rep_log

Trace 10gS CallDACKcooei i e e e e e e e 152
tif_get_log

Gt OF TrACE 10 ... a e e eeeaaeeee 153
dbg_ref_dbg

Get of debugging tool INfOrMationuueeiiiiiii e 155
dbg_ini_rim

RIM INIAliZAtION e e 157
dbg_fin_rim

RIM fiNAliZAtION PrOCESSuuueiiiiiiie et e e e e e aeees 158
dbg ref _rim

Get Of RIM INfOrMALION e e e e e e e e e e eeeaaenee 159
dbg_ini_inf

INterface INILIAIZALIONueiiiie e e e e e e ee e e 160

X Table of Contents

ITRON Debugging Interface Specification Ver. 1.00.00

1. Formats in This Document

1.1 Notation

In this document, entries that must be written as shown are indicated as follows (bold, italic,
Gothic). Command names, structure names, and constant names are indicated in this manner.

% command, T_RSBRK, rif_xxx_yyy, €tc.

In this document, program codes are described as follows:

— P FOQFAM source
Program code

Program source

Service calls are described as follows:

Name Overview of Functions [Category] mark

Prototype
Argument type Argument name

Meaning of argument

(Return value) Return valuetype Name representing meaning of return value if not ER
Meaning of return value

Explanation
Explanation of functions

Supplementary explanation
Supplementary explanation of parameters and service call

Flag
Flag name Explanation of flag

Flag name Explanation of default flag (default)

1 Extension I |

The explanations of extended functions are provided with these upper and lower banners. For
more details of " TIF, see Section 2.4. In the explanation of an essential function [R] that isa
component of TIF, these banners indicate the portion that is handled as an extended function.

1 Extension | |

Formats in This Document - Notation Name

[

ITRON Debugging Interface Specification Ver. 1.00.00

Key

Key name Meaning (See “format description of information acquisition
key codes’ described later.)

Error

Error constant name Error description

Arrays and array members are described as follows:
Array type name {
Typename Name : Explanation
Typename Name : Explanation (variable whose value may be rewritten at execu-
tion)

}

RIFs are classified into [OBJ], [CTX], [SVC], [BRK], [CND], and [LOG] on an individual
function basis. TIFs are classified into [R] and [E] depending on the required level. A call-
back for each interface is also described within a category entry in [xxx:callback] form. For
details of categories, seeSection 4.2.

The O mark indicates that the function must be implemented on the RIM side. The] mark
indicates that the function must be implemented on the debugging tool side.

Key codes of getting information are entered as follows. For details of key codes, see Section
3.6.

First key Value [type]
Explanation of information that key can get

.Second key Value [type]
Explanation of information that key can get

.Third key Value [type]
Explanation of information that key can get

.Fourth key Value [type]

Explanation of information that key can get

The key codes are entered with the following symbols:

Table 1: Symbols and Key Code Types

Symbol Type
wW 32-bit signed integer
S Character string
T Structure or other special type
1 Boolean value (FALSE ® 0, TRUE ® other than 0)

(32-bit signed integer [W] in redlity)

2 Formats in This Document - Notation Name

ITRON Debugging Interface Specification Ver. 1.00.00

1.2 Naming Rules

1.2.1 Variable name/Argument name

Structure internal variable names and function argument names used within functions included
in the debugging interface are named according to the following rules:

Variables are named as shown below. Their names consist of lowercase |etters only.
Variable name := [*prefix " _"] ((supplementary explanation * explanation [* suf-
fix]) | (unigque name))

Constants are named as shown below. Their names consist of uppercase letters only.
Constant name ;= *(type"_") <character string representing meaning>

The following types are used:

ACS Flag for access method setup

FLG Flag in common use to plural functions
OPT Option constant for giving hint to Function
OBJ Flag to specify object type

BRK Break-related constant

E Error code

ET Error code on target

DSP Dispatcher-related constant

EV Event code

LOG Log

The structure is named as shown below. Their names constant of uppercase letters only.
Name of the structure = “T_" ([interface]<the first character of the function name
XXX-yyy> explanation) | <recognizable character string>

The structure used as a member of another structure (nested structure) is written as follows:
Name of the structure=<name of structure that contains structure indicated at |eft>

<uppercase name assigned to member>

Further, the structure is named in lowercase letters as structure tag name. Specifically, thetag
name for the structureT_ROSEM ist-rosem.

1.2.2 Prefixes

When the following prefixes are followed by a variable, it indicates the variable structure or
usage.

Table 2: Prefixes

Character(s) Meaning
p The variable with this prefix is atered when storing a
value.
pk Entity of structure
str Null-terminated character string

3 Formats in This Document - Naming Rules Name

ITRON Debugging Interface Specification Ver. 1.00.00

1.2.3 Supplementary explanation

Supplementary explanation characters prefixing a name supplement the meaning of the target
variable.

Table 3: Supplementary Explanation

Character(s) Meaning
w Wait state
S Send
r Receive
f Free
C Call (rendezvous port)
a Acceptance (rendezvous port)
run Running

1.2.4 Explanation

The following characters are used to indicate the meaning of avariable. The abbreviationsin
Table 8, Notation of xxx and yyy, may aso be used.

Table 4: Explanation

Characters Meaning
id ID number
blk Block
stat Status
pri Priority
obj MTRON object
sem Semaphore
tsk Task
type Type information flag
opt Optiona item
ptn Bit pattern
dtq Data queue
msg Message
mbf Message buffer
sz Size
fn Functional code
prm Parameter
ptr Pointer

4 Formats in This Document - Naming Rules Name

ITRON Debugging Interface Specification Ver. 1.00.00

len and sz indicate the length. They have different units. The len unit is the size of an item
element. sz isindicated in bytes.

1.2.4.1 Suffix

The following suffixes of variables have usage and datain itself.

Table 5: Suffixes

Characters Meaning
adr Address
cnt Stores count
Ist Stores list
ptr Pointer storing information
ofs Offset
len Length

The difference between the suffix adr and suffix ptr liesin the meaning of the target variable.
When a variable has the suffix adr, it is attached to an item whose address is meaningful. A
typical exampleisabreak point (brkadr). On the other hand, the suffix ptr is attached to the
name of avariable that is attached to an item when the information indicated by its address is
meaningful. A typical exampleisthe buffer pointer (bufptr).

The suffixescnt and Ist have a specia function for the function rif_ref_obj. For details, see
Section 5.2

1.2.4.2 Unique name
The following unique names indicate that the variable has a unigue meaning.

Table 6: Unique Names

Characters Meaning
result Stores result
storage Data storage area, etc. (mainly for write)
param Parameter
flags Flag variable/argument
name Name
length Length (when structure contains only one variable)

5 Formats in This Document - Naming Rules Name

ITRON Debugging Interface Specification Ver. 1.00.00

The following interface identification characters are used to identify the interface with the
structure.

Table 7: Interface Identification Characters

Character Meaning
R RTOS access interface
T Target access interface

However, the interface identification characters are omitted only in the following situations:
» Common structurefor both interfaces
* Independent structure from both interfaces

1.2.5 Function names

All the functions included in the debugging interface take of the form www_xxx_yyy (soft-
ware conponents naming standard). A www is specified according to each interface ("rif" for
afunction on the RTOS access interface or "tif" for a function on the target access interface).
dbg isused for functions that do not come under the RIF or TIF category.

For the xxx and yyy portions, see the table below:

Table 8: Notation of xxx and yyy

Abbreviation Complete form Meaning
alc allocate Allocation
brk break Break
cal call Call
can cancel Cancel
cfg configure Configuration
fin finalize Finalization
fre free Freeing
get get Getting
hok hook Hook function registration
ini initialize Initialization
pol poll Polling
ref refer (forward) Reference
req request Request
rep report Report (callback included)
rrf refer (backward) Backward reference
rst reset Reset

Formats in This Document - Naming Rules Name

ITRON Debugging Interface Specification

Ver. 1.00.00

Table 8: Notation of xxx and yyy

Abbreviation Complete form Meaning
set Set Setup
sta start Start
stp stop Stop
bls block set A set of memory blocks
brk break point Break point
cfg configuration Configuration information
cnd condition Condition
ctx context Context
dgb debug tool Debugging tool
fnc function Function
log trace log Tracelog
mbh memory block on host Memory block on the host side
mbt memory block on target Memory block on the target side
mem memory on target Memory on the target
rdt register set description table Register set description table
reg register Register
rim RTOS interface module RTOS interface module
stp stop by break point Stop by break point
svc service call Service call
sym symbol Symbol
tgt target Target

www_rep_yyy has a special meaning. It is handled as a callback function for the interface
WWW.

When functions added uniquely by an implementer or undefined in this specification are used
with this specification, the prefix "v" should be attached to xxx to indicate its uniqueness (as
withmTRON 4.0) (e.g., tif_vcal_svc).

7 Formats in This Document - Naming Rules Name

ITRON Debugging Interface Specification Ver. 1.00.00

1.3 Terms and Definitions

The following terms are used in this specifications.

Table 9: List of Terms

Term Meaning

Target Program to be debugged or hardware to store such target program
Debugging Hardware/software used for debugging (e.g., host computer, probe,

tool and debugging applications)

Guideline Non-mandatory standards that should be complied with

Agent Support program introduced for specific purpose
Implement An unique specification that is determined by an implementer at
dependant adoption
Implement An implement dependant which should be declared to TRON
definition association

1.4 Abbreviated Names

In this document, the following abbreviations are used to represent long names or frequently

used names:
Table 10: Abbreviations
Abbreviation Meaning
RIF RTOS access interface
TIF Target access interface
RIM RTOS interface module

Register table Register set description table

Formats in This Document - Terms and Definitions Name

ITRON Debugging Interface Specification Ver. 1.00.00

2. Overview

2.1 Background

Computers are now being used for various purposes. 1n embedded applications, which account
for the majority of applications, the number of associated products is increasing and the soft-
ware scale is growing gradually to implement more advanced functions. Meanwhile, the time
to market (interval between product development and coming on the market) is falling and
large-scal e applications need to be created quickly.

To complete development of large-scale software quickly, it is necessary to improve the devel-
opment environment. Improvement of the debugging environment is particularly important. It
is not easy to accurately determine the time required for software testing/debugging, which
accounts for the greater part of the overall development process. The time spent on debugging
depends largely on the performance of tools and debugging personnel’s experience.

When an application uses an OS, the OS support provided by debugging tools is an important
factor. If the displayed OS internal code for stepping-in or task status are irrelevant to the cur-
rently targeted codes which debugging personnel uses, productivity may be decreased.

In the field of embedded applications, the Real-Time Operating System (RTOS), which
focuses on real-time capabilities, is widely used in addition to the common OS function. The
results of a 1999 survey of RTOS market share are shown in Table 11. In Japan, the share of
ITRON Specification compliant OSes accounts for more than 30% of the total.

Table 11: OSes Used for Recently Developed Embedded Device

Category Share

Commercially-available ITRON Specification compliant OSes 18.8%
In-house ITRON Specification compliant OSes 12.0%

CTRON Specification complaint OSes 1.0%

Other commercially-available unique specification compliant OSes 40.4%
Not used because of OS problems 3.5%

Not used because no OS needed 24.3%

It isnot so difficult to create debugging tools that support only one ITRON specification-com-
pliant OS. Such debugging tools already exist. However, it is not easy to provide support for
all ITRON specification-compliant OSes. The reason is that the internal structure varies with
the respective OS installation method as the ITRON Specification states the APl specifica-
tions. Regarding debugging tools dependent on the internal structure, RTOS-related modules
might have to be rewritten whenever anew I TRON specification-compliant OSis released.
The development environment of ITRON specification-compliant OS has another problem.
That is, ITRON specification-compliant OS is provided by the manufacturer of the chip to be
embedded while OS debugging tools are provided by the tool vender dedicated to creating
tools.

It causes difficulty in keeping adjustability of tool and OS.

9 Overview - Background

ITRON Debugging Interface Specification Ver. 1.00.00

There would be no problem if everything from the OS to debugging tools is supplied by one
company. However, it would be difficult for two divisions of different companiesto cooperate
with development. Therefore, it is difficult to maintain consistency between tools and OSes.
Under these circumstances, the user may be afraid of possible debugging environment changes and
reluctant to use the latest ITRON specification-compliant OS even when programs running on
ITRON specification-compliant OSes with a high degree of portability. It has been difficult to
continue supplying a standard debugging method for I TRON-compliant OSs due to the above-
mentioned problem.

It was therefore pointed out that the devel opment environment is inadequate for ITRON speci-
fication-compliant OSes. Although ITRON specification-compliant OSes have nearly 30%
domestic share, the survey in 1999 revealed that more than 20% of engineers pointed out this
problem (Table 12).

Table 12: Shortcomings of ITRON Specification-compliant OSes

Description Percentage

Inadequate development environment and tools 22.9%
High dependency and poor portability 12.9%
Insufficient software components 11.5%
Insufficient number of engineers 7.8%
Insufficient functionality 4.4%

Excessive resource requirements of OS 4.4%
Other 18.9%

No significant deficiencies 17.2%

To solve the above-mentioned problem, it is necessary to standardize the interface between the
RTOS and debugging tools. When the interface is standardized, it is possible to use any com-
bination of debugging toolsand ITRON specification-compliant OSs. Asaresult, itispossible
to offer an RTOS level debugging environment with an increased degree of freedom.

The ITRON Debugging Interface Specification in this document was developed by the ITRON
Debugging Interface Specification Working Group, which started in February 1999.

10 Overview - Background

ITRON Debugging Interface Specification Ver. 1.00.00

2.2 Standardization Objective

The main objective of the ITRON Debugging Interface Specification Working Group is to
establish an interface for adding RTOS support functions to debuggers.

The significant items were defined by the Working Group to achieve the above objective as
follows:

* Furnish high degree of scalability
To handle processors ranging from 8-bit low-speed processors to 32-bit high-speed
processors

» Develop specificationsfor variety of debugging environments
To offer an interface that is commonly applicable to software Debuggers, ICE, JTAG
Emulators, software Emulators, etc.

* Create interface without limiting functionality to I TRON specification-compliant
OSes
To offer an interface that is available for of debugging the other RTOS and software
modules as well

11 Overview - Standardi zation Objective

ITRON Debugging Interface Specification Ver. 1.00.00

2.3 Approaches to Standardization

To develop the interface specification, we conducted interface specification studies from vari-
ous viewpoints. This section states the approach plans for interface specification studies,
including their merits and demerits, as well as the adopted plan and reasons for adoption.

2.3.1 Approach plans

Approach 1: Fixing object information

This method uses a stronger binary level standard instead of the current name-only standard-
ization level to bind a control block that retains the status of objects defined by the uI TRON
specification. It provides compatibility between OSes by uniquely determining the block stor-
age site, alignment, etc.

* Merits
Realizes ITRON debugging interface implementation without any modifications to
debugging tools.

* Demerits
Current commercial OSes mostly unsupported
Dependent on CPU architecture
Originality of each company lost

Approach 2: Implementing support function on target side

This method standardizes the differing information among RTOSes when it is acquired from
the target. It can be classified into the following two types depending on the function imple-
mentation location.

Implementing support function as task
The support mechanism is introduced as a task. If, for example, thereis a
memory management unit (MMU) within the target, the OS internal infor-
mation cannot be read because the support function is implemented by the
task. However, other tasks are unlikely to be affected.

Implementing inside RTOS
The support mechanism is directly introduced into the RTOS. Detailed
information can be obtained. The effect of the MMU is averted. However,
other tasks are likely to be affected.

Expanding debug monitor
This method expands a debug monitor that is used for target debugging. The
RTOS operations are likely to be affected.

* Merits
Wide range of OSes, including existing ones, covered

* Demerits
Burden on target (both CPU and memory resource)
If the MMU or protective mechanism is located in the target, it is necessary to furnish
the kernel with support functions, etc. Asaresult, the structure will be complicated.

12 Overview - Approachesto Standardization

ITRON Debugging Interface Specification Ver. 1.00.00

Approach 3: Introducing support module within debugging tool
This method incorporates a module with the function for RTOS to get information into a
debugging tool, and standardizes a series of associated functions.
* Merits
Various OSes, including existing ones, covered
Load on target minimized

e Demerits
Flexibility of the moduleis required to be incorporated in debugging tool.

13 Overview - Approachesto Standardization

ITRON Debugging Interface Specification Ver. 1.00.00

2.3.2 Approach selection and its reasons

The ITRON Debugging Interface Specification Working Group examined the above three
approaches and adopted Approach 3 (Introducing support module within debugging tool). The
prime reason isthat it was easy to switch from the former debugger design to the design based
on the ITRON Debugging Interface Specification.

In most previously created debugging environments, many RTOS level debugging support
mechanisms are incorporated in the target (Approach 2) to permit RTOS level debugging.
Under these circumstances, support modules should be newly incorporated in debugging tools
when Approach 3 is used. However, regarding debugging tools, it is just that the target func-
tions are transferred to the host. For RTOS manufacturers, it isjust that the write destination
merely changes from the RTOS kernel interior or debugging support task to a support module.
Therefore, debugging tool vendors and RTOS vendors can both switch to a new environment
without wasting previous assets.

This approach does not conflict with the previously employed approach. Therefore, RTOS
manufacturers can implement the above-mentioned mechanism as needed. If, for example, all
functions cannot be provided by support modules alone or a high degree of scalability can be
attained by introduction, the support mechanism will be provided within the target.

Evenin this situation, Approach 3 isinstrumental in reducing the amount of information trans-
fer between the host and target. If Approach 2 is used, a problem arises because the informa-
tion between the target and debugging tools needs to be standardized. However, when
Approach 3 is used, it is just necessary that the information be standardized before and after
support modules existing in the host. Therefore, the debugging support mechanism within the
target merely exchanges the required minimum information with the debugging tools. Eventu-
ally, when the support module expands internal information and reshapes it to a standard type,
the previous functions can be realized with minimum information transfer to the target com-
puter and minimum load.

For these reasons, the ITRON Debugging Interface Specification Working Group selected
Approach 3.

14 Overview - Approachesto Standardization

ITRON Debugging Interface Specification Ver. 1.00.00

2.4 Concept

The ITRON Debugging Interface Specification is developed to improve the debugging envi-
ronment for applications that use a uI TRON specification-compliant OS.
The figure below shows the debugging interface concept diagram:

Host Target

User

Interface » application []
€ ——» | History infopmation]
storage region
| Sf—— -
< RIM-dependent Symbol | [Prefiminary histcry T
input/output information J {Storage region sthrage region

Debugging tool
Nl > RTOS —

S-GL] Debuggingtask |

User

Figure 1: ITRON Debugging Interface Specification Concept Diagram

To enable the host to get the RTOS-dependent information on the target, the ITRON Debug-
ging Interface Specification has the concept of one module and the definitions of two associ-
ated interfaces and one guideline.

15

e Support function guideline
This guideline determines the functions related to the RTOS support functions that are
to be implemented in the debugging tools and their details. These guidelines make it
enables standardization of the terms and similar functions among the debugging tools
that support the ITRON Debugging Interface Specification, and assure the minimum
functions for the user. These guidelines are aso used to define the two interfaces (RIF
and TIF) described later.

* RTOSinterface module (RIM)
This module notifies a debugging tool of the RTOS internal information and transl ates
RTOS-dependent instructions that are not understandable to the debugging tool into
understandable instructions. It is provided and incorporated into a debugging tool by
an RTOS manufacturer. (Typical providing means are C language source program and
Windows DLL.) Thismoduleisthe core of this specification.

* RTOS accessinterface (RIF)
When a debugging tool performs an RTOS-dependent debugging operation with the
RIM function, it uses the RIF as the interface. It provides a debugging tool with a
means of knowing the RTOS current status. It consists of atotal of 21 functions (call-
back functionsincluded) that are defined in C language API format. It offersfuncitons,
including getting RTOS object details and context.

* Target accessinterface (TIF)
To answer arequest issued by a debugging tool via the RIF, the RIM needs to access
the target and RTOS with the debugging tool function. The target access interface,
which consists of 31 functions and callback functions that define the basic debugging
tool functions, provides the RIM with debugging tool functionsto cope with such a sit-
uation. Thisinterface offers memory read/write, run/break, and other functions.

Overview - Concept

ITRON Debugging Interface Specification Ver. 1.00.00

The other modul es are described below:

Previous history storage region
Thisregion is used to temporarily store log information while getting atrace log.

Standar d infor mation storage region

This region is used to store a trace log, etc., in the standard format for the ITRON
Debugging Interface Specification. The stored information can be viewed with a stan-
dard format compliant viewer instead of support of debuging tool.

RIM-dependent input/output

When the RTOS has advanced debugging options or handles unique implement-depen-
dent information, the standard information input with a debugging tool may be insuffi-
cient. In such a situation, the RIM-dependent input/output is used. This RIM-
independent input/output standardizes a part of a debugging tool user interface and per-
mitsthe RIM to be interactive with the user. (Thisfunction isnot supported by the cur-
rent specification.)

In the ITRON Debugging Interface, a debugging tool and the RTOS interface module (RIM)
incorporated in the debugging tool transfer data with each other to realize debugging tools
RTOS-compliance even when they do not support RTOS. The next section provides an exam-
ple to explain the operation principles.

24.1

Operation

This section explains getting 1D 1 task status as an example.

=

8.

Target

EEN | 4)
g 8 5

Figure 2: Getting ID1 Task Status

The user issues arequest for getting the ID1 task status.

To refer the RTOS internal status, the debugging tool sends a request for an ID1 task
status to the RIM.

The RIM refers to the symbol table, etc. for the address of task control block (TCB)
that corresponds to the task D1, and requests the debugging tool to read the associ-
ated memory on the target.

The debugging tool uses an existing function to read the specified memory on the tar-
get.

5. Theread memory datais notified to the debugging tool.
6.
7. The RIM decodes the received data in accordance with the TCB data and then for-

The debugging tool sends the dataread in step 3 to the RIM.

wards it to the debugging tool in the standardized form.
The display screen showsthe ID1 task status in accordance with the resullt.

When the RTOS and RIM are offered as a set, the debugging tool can access the RTOS-depen-
dent information without knowing the details of the RTOS internal structure.

16

Overview - Concept

ITRON Debugging Interface Specification Ver. 1.00.00

2.5 Characteristics

This section details the distinctive characteristics of the ITRON Debugging Interface Specifi-
cation.

2.5.1 Two break methods with task ID

For the RTOS support function of adebugging tool, the break function isimportant asit breaks
task at a specific operation performed by a task with a specific task ID. If this function is not
provided for situations where two or more tasks share the same module, number of nonessen-
tial operations increases with an increase in the number of tasks. For example, execution
resumption must be repeated manually until a break occurs at the task to be focused.

The ITRON Debugging Interface Specification implements two break functionalities for spe-
cific tasks in order to achieving one of the goals of covering plural debugging tool. Another
objective of this break function is to utilize a highly functional debugging tool which fails its
full expected performance due to use of function that is standardized in consideration of low-
grade debugging tools.

Method 1: Break by callback routine based on RIM
Debugging tools that are incapable of getting a task ID and other RTOS-dependent
information will be turned into an RTOS support debugging tool with RIM, as
described earlier. This method performsatask ID dependent break with a break gener-
ation callback of RIM, which isthe core of the interface.

It is assumed that the following types of debugging toolswill use this function:
» Having execution break function with respect to specific address
« Having no conditional break mechanism
» Having no RTOS-dependent mechanism

This function is detailed below with reference to an example. In the example, it is assumed

that a break occurs when atask with the task ID number 1 executes address 0x12345678.

1. The debugging tool requests the RIM to set an address 0x12345678 execution break
for task ID1.

The RIM sets the address 0x12345678 execution break for the debugging tool.

The user executes a program.

The program executes address 0x12345678. The debugging tool performs a break.

The debugging tool uses the callback function to notify the RIM of the occurrence of

abresk.

The RIM checks the region for storage of the currently executed task ID to determine

whether or not to perform a halt, and then notifies the debugging tool of the result.

7. When the RIM notifies the debugging tool that the conditions are satisfied, the debug-
ging tool completes abreak operation and notifies it to the user. 1f the debugging tool
is notified that the conditions are not satisfied, it aborts the break operation and
resumes program execution.

gk owbd

IS

This break method has two characteristics. Oneisatask ID based break can be operated even
when the debugging tool is not highly functional. The other characteristic is that nearly all
RTOSes can be covered, because the RIM determines whether or not to operate a break.

17 Overview - Characteristics

ITRON Debugging Interface Specification Ver. 1.00.00

However, this break method has a disadvantage in that the number of callbacks and the load on
the host increases if a large number of breaks are set. When remote debugging is conducted
viaaseria port in particular, the task ID is checked at each break, considerably increasing the
overhead.

Even if the RIM does not decide on performing a halt in the break notification sequence, the
target remains stopped during the decision-making period. For a program with severe time
limitations, such an unnecessary break could cause a malfunction or an inability to detect
errorsto be debugged.

Method 2: Conditional break by debugging tool after getting break
condition
This method is used in case that a conditional break mechanism is aready implemented in a

debugging tool. In response to a request, the RIM notifies equivalent conditions to a debug-
ging tool.

It is assumed that the following types of debugging toolswill use this function:
» Having execution break function with respect to specific address
» Having conditional break mechanism
» Having no RTOS-dependent mechanism

When this method is used, the RIM does not set a break point itself. 1n the method 1, the RIM
would merely generate a conditional expression for a conditional break equivalent to a condi-
tional judgment formed by the RIM, and return the generated conditional expression to the
debugging tool. The debugging tool adds a conditional expression as needed to the obtained
condition, and then sets a conditional break directly.

In marked contrast from the description in the method 1, this method does not perform a call-
back even at abreak hit. Therefore, when the debugging tool has an extremely advanced con-
ditional break mechanism, a break mechanism dependent on RTOS information can be
established without generating unnecessary overhead.

The following conditions are now applicable to this function.
« Memory address
» Data length (in bytes)
* Value
» Condition (equal to, greater than, lessthan, or not equal to)

Figure 3 shows two types of breaks and their difference in program flow. Parts indicated by
solid lines represent the paths between different programs (between the RIM and debugging
tool or between the target and debugging tool). Clearly an increase in the number of solid lines
increases the program overhead. Parts indicated by dotted lines represent regions within the
same program. Numbered arrow marks respectively represent aflow for setting a break point,
aflow for a program for determining whether or not to stop the operation, and a flow for noti-
fying a break hit to the user after the decision of abreak hit.

18 Overview - Characteristics

ITRON Debugging Interface Specification Ver. 1.00.00

Callback decision break

A

(@]
<]
=
o
=
o
>
=N
]
X
°
=}
]
[}
@,
o
=
Q
[]
>
]
=
QO
=
o
=
o
g
]
QO
2

A

— ; | 8

e

1
<4— Break point setup flow

2
<4— Halt condition compliance check flow

3
<4— Break hit sequence flow

Figure 3: Two Break Methods and Difference in Operations Flow

2.5.2 Scalable debugging environment

The field of embedded applications is characterized by the fact that many bugs that should be
detected are not encountered depending on the situation. For example, a bug may occur only
in situations where a time-critical task is executed at a specific timing. A typical problem
would be I/O read wait negligence after an 1/0 write. When a break point is set immediately
before an /O read that is performed stepwise, no error occurs in debugging operation because
an adequate wait is taken by a break before the start of the I/O read. However, if execution is
performed in the same manner asin an actual environment, an error occurs.

Regarding bugs that are timing-dependent, the full function of a debugging tool may cause unfa-
vorable results as stated below. When simplified RIM implementation is completed for the
aforementioned break support function of the ITRON Debugging Interface, timing-dependent
bugs may not always occur depending on the time of the round trip between the RIM and target
for making a decision.

For the architecture of the ITRON Debugging Interface, on the other hand, the RIM and RTOS
are both supplied by an RTOS manufacturer. It istherefore possible to supply two or more sets
of the RIM and RTOS depending on the situation to enable the user to select the best combina-
tion for the user environment.

Depending on whether RIM or RTOS has a larger number of debugging support functions, the
following characteristics can be provided even if the same function is offered.

* Implementation with greater importanceto RIM side
When a larger number of functions are implemented in the RIM, applications can be
debugged in an environment that is very close to the one for the release time. As a
result, the load on the target can be reduced.

* Implementation with greater importanceto RTOS side
When alarger number of functions are implemented in the RTOS, the time required for
communication between a debugging tool and target can be minimized. Thisresultsin
increased response speed.

19 Overview - Characteristics

ITRON Debugging Interface Specification Ver. 1.00.00

When the RIM and RTOS are supplied with source code, the RIM itself can be reconfigured
with respect to the RTOS that is freely reconfigurable as needed for applications. To avoid
allocating memory space for unused function in the RIM or unnecessary debugging support
within the RTOS, the RTOS can be reconfigured to support only the required abilities. Fur-
thermore, a best suited RIM for debugging the RTOS and that without unnecessary functions,
can be generated to minimize useless overhead while debugging.

As an example, examine a situation where a high-speed break must be supported. To excuse a
high-speed break, it is necessary to minimize the amount of communication between the target
and debugging tool, which is a bottleneck in the current debugging environment. When all
functions provided by the ITRON Debugging Interface Specification are implemented with
greater importance placed on the RIM side, the modules within a debugging tool determine the
conditions that are dependent on the RTOS. Therefore, the target-to-debugging tool communi-
cation forms a bottleneck. When a high-speed break must be provided, the objective will not
be achieved by normal means because of the above-mentioned problem.

To solve this problem, the break hit decision routine implemented in the RIM should be incor-
porated in the RTOS. When this method is used, the task 1D decision routine is embedded in
the RTOS so that a break point is set inside the RTOS (thisis not a place where a break is nor-
mally positioned). Aninstruction for calling the routine is positioned at a place where a break
point should normally exist. This ensures that the debugging speed increases because the
amount of communication between the host and target dramatically decreases. However, the
routine placed within the RTOS causes a larger amount of overheads to the target than that in
normal situations. The debugging personnel should exercise judgment to select one of the var-
ious methods.

Conditional expression generation break
3

RTOS
L Decision | Application
| section

1 X 2+ »X

A

1
<+— Break point setup flow

2
<+—— Halt condition compliance check flow

4—3 Break hit sequence flow
Figure 4: Flow of Operations when a Special Break Routine is Implemented

20 Overview - Characteristics

ITRON Debugging Interface Specification Ver. 1.00.00

3. Common Regulations

This chapter explains the common concepts in the ITRON Debugging Interface Specification.

3.1 Interface Function Registration/Unregistration

The ITRON Debugging Interface Specification ensures that all functions are available for a
debugging tool or RIM when the pointers to them are registered in the structure
T_INTERFACE that storesinterface function pointers.

All functions offered by the ITRON Debugging Interface must be called by acquiring the
pointers to the functions from the above-mentioned interface structure, except for
dbg_ini_inf. Except when functions are bound statically, the function pointer values regis-
tered in the interface structure may change. Therefore, use of alocal copy or similar process-
ing operation must not be performed, because the changes will not be reflected.

The structure T_INTERFACE stores the pointers to all the interface functions. Structure
members are arrayed in the order of entriesin the specifications. Consequently, the pointersto
functions that are outside the scope of the specifications are arrayed in random order. Structure
members for all the pointers to nonexisting or unsupported functions must store NULL (= 0).
Therefore, before calling interface initiaization related functions (dbg_ini_inf,
dbg_ini_rim), the debugging tool must put NULL into all pointers to the unsupported func-
tions included in the interface and functions possessed by the RIM.

The following example shows a debugging interface initialization routine for the debugging
tool side:

Program source
[* Interface structure initialization */
ZeroMemory(&interface, sizeof(T_INTERFACE));
/* TIF function registration */
interface.tif_Xxx_yyy = XxXx_yyy;
/* Interface initialization */
dbg_ini_inf(...);
/* RIM initialization */
if(interface->dbg_ini_rim != (void *)0I)
(*interface->dbg_ini_rim)(...);

Program source

21 Common Regulations - Interface Function Registration/Unregistration

ITRON Debugging Interface Specification Ver. 1.00.00

3.2 Consistency

The term consistency means that data is retained throughout a single operation. The term con-
sistency assurance means assuring that data agrees with the information on the target through-
out asingle operation.

The operation is judged to be inconsistent if the system is unstable (e.g., operation in a critical
section of an OS) when, for example, an RTOS-dependent information read process is executed.

When the debugging tool performs a process after stopping the user target, you may conclude
that all functions assure consistency. However, if the user target isoperated in acritical section
of an OSwhileit is halted, consistency is not assured.

Conditions for function and consistency assurance are listed below:

» Singlememory block read (tif_get_mem)
When aprocedureis performed to read a specified memory block, the targeted memory
block must not be written to.

e Plural memory block read (tif _get bls)
When aprocedure is performed to read a specified memory block, no targeted memory
blocks must be written to. (If asingle memory block is called more than once, the con-
sistency among the blocks is not assured.)

e Task statusretrieval (rif_ref _obj)
The current execution position must not be a critical section of a current OS. In addi-
tion, the pointer to the TCB and the TCB itself must be read with consistency assur-
ance. Further, there must be no contradiction in the data constructed with the read
information.

3.3 Prohibition on Target Halt

The prohibition on target halt means that the target operation related procedures defined in the
ITRON Debugging Interface Specification must not be used. When the target is requested to
continue running in all operations, these functions must not be called.

Target operation-related functions that are defined in the ITRON Debugging Interface Specifi-
cation are listed asfollows:

 Target execution
tif_sta tgt

» Target stop
tif_stp_tgt

 Target execution break
tif_brk_tgt

* Target execution resumption
tif_cnt_tgt

For some functions, ‘consistency assurance’ and ‘permission for target halt’ may be used
simultaneously. In such an instance, the RIM must return the E_NOSPT error when consis-
tency cannot be assured permanently without halting the target, also the RIM must return
E_FAIL when consistency cannot be assured temporarily without halting the target.

22 Common Regulations - Consistency

ITRON Debugging Interface Specification Ver. 1.00.00

3.4 Types

This section describes unique types defined in the ITRON Debugging Interface Specification.
Table 13: Unique Types

Type name Meaning

BITMASK Bit mask (detailed later)

ER Move than 16-bit integer for storing error code
FLAG 32-bit unsigned integer
ER_ID ID or ER, whichever integer greater
A positive value indicates ID and negative value indicates ER.
DT_xxx Identical type that large enough to store variable defined as
xxx in ITRON Kernel Specification
ID Unsigned integer that large enough to store object number on
debugging interface
INT Signed integer that exists on host with natural length
UINT Unsigned integer that exists on host with natural length
VP Void pointer on host

VP_INT Type that large enough to store VP and INT
LOGTIM Integer that indicates |og time (unit defined at implementation)

Further, a type beginning with the prefix DT _is defined to store variables of atype defined in
the target ITRON kernel specification within the RIM and debugging tool. Thistypeis‘avari-
able that is large enough to store target data’. It may not always coincide with the target type
size. (Whenthetarget INT is 16 bits, DT_INT can be 32 bits.)

Even if adefined type nameisthe same asthe type of the ITRON kernel specification, the debug-
ging interface basically concludes that it does not comply with the ITRON kernel specification.
More specifically, ER and ID are defined in the ITRON Kernel Specification. However, they
are uniquely defined in the ITRON Debugging Interface Specification as well.

23 Common Regulations- Types

ITRON Debugging Interface Specification Ver. 1.00.00

3.5 Bit Mask

The ITRON Debugging Interface uses a bit mask in order to set enabled or disabled. A bit
mask isaset of 1-bit flags.

Thefirst item of the bit mask correspondsto the LSB. Therefore, when expressed in C, the sta-
tus of the n-th flag must be stored so that it can be got as indicated below:

Program source
((bitmask >>n) & 1)
Program source

Bit masks are classified into the following types according to length:
BITMASK With natural length that exceeds maximum count used within specifi-
cation
BITMASK_8 1byte (8 bits)
BITMASK 16 2 bytes (16 bits)
BITMASK 32 4 bytes (32 bits)
BITMASK 64 8 bytes (64 bits)

When a bit mask with a length not exceeding 64 bits is to be created, the minimum specified
type meeting the requirements must be used.

When the length of abit mask exceeds 64 bits or cannot be fixed, the bit mask must be defined

as a 1-byte bit mask array (BITMASK_8[]). Therefore, when expressed in C, the n-th item

must be stored so that it can be read with the following syntax:

Program source
((bitmask [n>>3] >> (N & 7)) & 1)

—— POgJram source

24 Common Regulations - Bit Mask

ITRON Debugging Interface Specification Ver. 1.00.00

3.6 Structure and Keys of Getting Information

To get information, the ITRON Debugging I nterface Specification uses a special structure and
akey for specifying the information to be got.

The following functions are used to get the information that applies thisrule.
o rif_ref cfg . Get of kernel configuration
e dbg ref_dbg : Get of tool information related debugging

e dbg ref rim : Get of information related RIM

To specify the information to be got, the ITRON Debugging Interface Specification uses key
code consisting of four 8-bit integers. In this document, the key codes are described as fol-
lows. Within aprogram, etc., the prefix INF_ may be attached to akey to indicate that the key
isakey for getting information.

Key code :=first key ["." second key ["." third key ["."fourth key]]]

(Example: BREAK.CONDITION.MAX, INF_HOST.INF_NAME)
The second and subsequent keys of a key code can be omitted. Omitted keys are handled as
DEFAULT = (0).

The structure of getting information T_INFO is detailed below:

typedef struct t_info_result_buf
{
UINT sz . Buffer size
VP ptr . Pointer to region where character string or special type be
stored

1 T_INFO_RESULT BUF;

typedef union t_info_result
{
INT value . 32-bit signed integer
T_INFO_RESULT_BUF buf
. Value of specia type
typedef struct t_info
char key[4] . Key for specifying information
T_INFO_RESULT result:Corresponding value for key
} T_INFO;

Two types of information can be got: 32-bit integer, and character string or special type. The
information type can be presumed from the most significant bit of the last key. In the above
example where "BREAK.CONDITION.MAX" is used, the information type can be derived
from the third key (MAX). The table below shows the relationship between the type and the
most significant bit of the last key.

Table 14: The most Significant Bit of the Last Key and Got Information Type

Most significant bit Got type
0 32-bit integer
1 Character string or specia type

25 Common Regulations - Structure and Keys of Getting Information

ITRON Debugging Interface Specification Ver. 1.00.00

T_INFO::result.buf.sz isavariable that retains the length of the buffer for getting the char-
acter string. However, when a character string or special type is read, its length is stored in
T_INFO::result.buf.sz. When an integer value isread, the value is undefined.

A storage region must be furnished separately by the caller for getting of a character string or
specid type. The caller gets an adequately large storage region. It stores the pointer to the
acquired region in T_INFO::result.buf.ptr and the acquired size in
T_INFO::result.buf.sz. The callee stores the information about character strings and special
types in a specified region in such a manner that the transfer length does not exceed the got
size. Since a termina symbol is aways attached to a character string, in case that
T _INFO::result.buf.sz isset to 1, no read data is obtained even if the function ends normally.
If T_INFO::result.buf.szissetto 0, the E_PAR error occurs.

If the buffer size is smaller than the transfer data length in situations where a special typeisto
be read, the behavior of the function is stipulated by an ‘implement definition’. However, if
T_INFO::result.buf.sz is0, the E_PAR error occurs.

If aninvalid key code’ is contained in one of the T _INFOs, which is specified as an argument,
in situations where two or more items of information are read simultaneously, the function
turnsout to an error. In such an instance, the function does not give areport or assurance about
whether information other than the invalid key code isread correctly.

Key code insertion occurs so that the first key is the first item for the array (T_INFO::key).
To clarify operations, the example below shows the implementation of the key code generation
function (in C++).

Program source
static char StringBufferfMAX_STRBUF_LENGTH];

static inilne void MAKE_KEYCODE

(T_INFO * info, char keyl, char key2 = 0, char key3 = 0, char key4 = 0)
{

info->key[0] = key1,;

info->key[1] = key2;

info->key[2] = key3;

info->key[3] = key4;

info->result.buf.sz = MAX_STRBUF_LENGTH,;

info->result.buf.ptr = StringBuffer;

Program source

The key code "0.0.0.0" has a special meaning. When "0.0.0.0" is passed as a key code, the
function of getting information returns a succeeding key code of previously got key code. Fur-
ther, if the first element of a key code array passed as an argument is "0.0.0.0", that element
denotes the first key code, and the information acquisition function gets a key code with the
smallest value.

In other words, when there are five T_INFO arrays with akey code "0.0.0.0", theinformation cor-
responding to each arraied information from first to fifth isgot. However, operations performed at
execution of a subsequent function remain unchanged even after continuous acquisition by
"0.0.0.0". Therefore, note that the same information is got even if afunction is executed two
or moretimesusing the T_INFO arrays, al of which consist of "0.0.0.0".

*. The'invalid key code’ refersto akey code that is neither defined by the ITRON Debugging Inter-
face Specification nor contained in a unique specification. All key codes defined by the ITRON
Debugging Interface Specification must have a certain value.

26 Common Regulations - Structure and Keys of Getting Information

ITRON Debugging Interface Specification Ver. 1.00.00

Program source
/IChecks whether each functional unit of RIF is supported
T_INFO support[6];

MAKE_KEYCODE (&support[0], INF_RIF, INF_UNIT, INF_OBJ, 0);
for(i = 1;i<6;i++)
MAKE_KEYCODE (&support[i], 0, 0, 0, 0);

//Now, everything from RIF.UNIT.OBJ to RIF.UNIT.CTX will be got.
dbg_ref rim (support, 6, 0);

Program source

Since this structure of getting information structure is supported by more than two function, it
is conceivable that different functions may use different information key codes (e.g., the CFG
key may be used for dbg_ref_dbg). Whether the function returns an error, associated value,
or invalid value in such an instance is determined by an ‘implement definition’. The caller
must not assume that information can be got even if the function does not match a key code, or
must not expect that an error will be reported when such a procedure is performed.

Each vendor can freely create the key for getting information instead of the use of the key
defined in the ITRON Debugging Interface Specification. In such asituation, it is strongly rec-
ommended that the second and third high-order bits of the key” are both 1. The ITRON
Debugging Interface Specification assures that no key definitions formulated in the future will
overlap thisrange.

*. 64 keysintotal (0x60-0x7f and Oxe0-0xff).

27 Common Regulations - Structure and Keys of Getting Information

ITRON Debugging Interface Specification Ver. 1.00.00

3.7 Error Codes

3.7.1 E_xxx error and ET_xxx error

Error codes defined as E_xxx in the ITRON Kernel Specification are expressed asET_xxx in
the ITRON Debugging Interface Specification. Error ET_xxx represents an error that may be
caused by target operations. On the other hand, error E_xxx represents an error that may occur
at the host. For example, E_ NOMEM means that an insufficient memory error has occurred at
the host, and ET_NOMEM means that an insufficient memory error has occurred at the target.
Error ET_xxx, which denotes an error at the target, has the same value as the error in the
ITRON Kernel Specification. On the other hand, error E_xxx, which denotes an error that
may occur at the host, is defined at a position 128 units away from the position in kernel spec-
ification. For example, when ET_ID is-18, E_ID is-146.

3.7.2 Common errors

Common errors are errors that may occur to all functions defined in the ITRON Debugging
Interface Specification.

E OK
Processing ended normally.

E_NOMEM
Memory was not allocated to host due to memory insufficiency.

E_NOSPT

Function is not supported. This error occurs when the function specified by aflag is
not implemented or is inoperative.

E_FAIL

Function could not answer the request due to some factor. However, this error is not
serious enough to affect target program execution. If the request isissued again, it may
be executed properly. Thisisagenera error that is not serious.

When a function returns this error, the status internally changed by the function must

be restored to such alevel” that the meaning is the same as that prevailing at the func-
tion start. Further, it must not be assumed that a debugging tool calls a function with
the same parameters (retry) immediately after it caused an error.

(Example of E.FAIL error: Asthe current execution position was in the kernel’s criti-
cal section at rif_ref _obj issuance, queue processing was not properly achieved.
When tif_set_reg wasissued, all the registers were not written into.)

*. If an argument is invalidated when a function ends with an error, the argument itself is also invali-
dated. Therefore, the values of the argument need not to be restored because the both meanings are
equivalent in the end. When implementation is performed in such a manner that allocated memory
isfreed at acertain time, absolutely unused memory need not to be freed on the spot.

28 Common Regulations - Error Codes

ITRON Debugging Interface Specification Ver. 1.00.00

E_SYS

Function could not answer the request due to some factor. And target computer sus-
pends its execution with an inconsistent state. Even if the request is issued again, nor-
mal processing is not performed. Thisis a general error that is serious. If afunction
for the target access interface used within an RTOS access interface function termi-
nates unexpectedly with E_SYS, it must return E_SYS.

(Example: Whenrif_ref_obj issued, memory read mechanism of debugging tool did
not normally operate and failed to get information. While writing tif_set_reg to a
register, it failed to complete the write process so some register values were not
updated.)

When the E_SYS error occurs, a debugging tool should notify the user of the fatal
error and state clearly that the operations of the debugging environment (target and
debugging tool) are unstable.

3.7.3 Similar errors

This section explains the differences between similar errors defined in the ITRON Debugging
Interface Specification.

E_ID and E_NOID

*E_ID
The specified ID range was outside the valid range. The error recurs as long as an 1D
number within the specified ID range is used.

« E_NOID
ID numbers were not sufficient to assign ID automatically. This error recurs until at
least one ID number for automatic assignment is available by means of object destruc-
tion and so on

ET_OBJ, ET_NOEXS, and ET_OACV

29

« ET_OBJ
Although the object assigned to the specified ID existed at the target, the operation was
not performed successfully. The error recurs until the cause isremoved. (For example,
Function reports ET_OBJ during exclusive kernel’s operation (critical section) of the
object.)

« ET_NOEXS
No object with the specified ID exists at the target. The error recurs until the object
assigned to the specified ID is generated.

« ET_OACV
Although the object assigned to the specified ID exists at the target, the operation was
denied because of an object access violation (e.g. privilege fault). The error recurs
until the privilege level of the caller or calleg, etc., is changed.

Common Regulations - Error Codes

ITRON Debugging Interface Specification Ver. 1.00.00

3.8 Variable-Length Storage Region

The ITRON Debugging Interface Specification uses the following two methods to obtain a
task ID list and other variable-length information.

» Separate-space variable-length region (suffix -IST)
The region for variable-length information storage will be allocated separately from
the structure of getting information. This method is used when, for example, the same
structure contains plural item of variable-length information.

» Same-space variable-length region (suffix -ary)
The region contiguous to the get information structure will be used as the region for
getting variable-length information.

Details are given in the following subsections.

3.8.1 Separate-space variable-length region

The separate-space variable-length region consists of variables with two unique suffixes and a
region for variable-length data storage.

Fixed-length
information

tskidlst o
Pointer to tskidlst region

Task ID list
storage region

tskident |
Size of tskident region

Structure (e.g., T_ROSEM) W

Figure 5. Separate-space Variable-length Region (Task ID)

* Suffix Ist
This variable stores the pointer at the beginning of the region that stores variable-
length data.

» Suffix cnt
This variable stores the size of the variable-length data storage region (in item units).

In the specification, the above variables are described as a pointer variable with the suffix Ist
and are contiguous to a variable with the suffix cnt.

30 Common Regulations - Variable-L ength Storage Region

ITRON Debugging Interface Specification Ver. 1.00.00

3.8.2 Same-space variable-length region

The same-gpace variable-length region consists of a variable that indicates the size of the stor-
age region and a region contiguous to the structure that is used as the variable-length data stor

ageregion.

Fixed-length
information

Size of regent —
region

regary
storage region

NN
Structure
Figure 6: Same-space variable-length Region

» Suffix ary
Array that stores variable-length data

« Suffix cnt
Variable that stores size of array that stores variable-length data (in item units)

In the specification, the above is described as an array or pointer variable that has the suffix
ary and is contiguous to a variable with the suffix cnt.

31 Common Regulations - Variable-L ength Storage Region

ITRON Debugging Interface Specification Ver. 1.00.00

3.9 Ildentification Number (ID)

The ITRON Debugging Interface Specification assigns an identification number (ID) to a set-
ting for identification purposes when break point or memory polling (watch point), etc., setting
is performed. However, note that this identification number (I1D) differs from the ID defined
by the ITRON Kernel Specification.

IDs can be assigned to the following functions:
* RIF break point
* TIF break point
* Polling (watch point)
* RIF log
* TIF log

The characteristics of the IDs are summarized below:

* Thevalueislor greater positive quantity.
0 or less-numbered cannot basically be handled. When a normal method is used, setup
items with an O or less-numbered value cannot be operated.

* |D values are not always consecutive.
Even when IDs are assigned continuoudly with the automatic number assignment func-
tion, etc., such assigned values are not always consecutive.

» Thevalue may be reused.
Once an ID isfreed, it may be reused. However, two or more setup items cannot exist
with the same ID and function.

» Thevalues areindependent of each other asfar asthey have different function.
An D isassigned to each function. Therefore, setup itemsfor the same functions (e.g.,
TIF break point and RIF break point) may have the same ID. However, the entities of
the setup items differ asfar as they have different functions even if they have the same
ID.
The IDs assigned to the above five functions are declared as an ID type. On the other hand, the
IDs defined by the ITRON Kernel Specification are declared as a DT_ID type. For the han-
dling of ID type (DT_ID type) variables defined in the ITRON Specification, refer to the
ITRON Kernel Specification and other relevant documents.

32 Common Regulations - | dentification Number (ID)

ITRON Debugging Interface Specification Ver. 1.00.00

3.10 Register Name

The ITRON Debugging Interface Specification uses a character string to identify the registers
of the target computer. The following rules apply to the register identification character
strings:
* Characters
The character string for a register name must consist of uppercase alphabetical letters
(A to Z) and numbers (0 to 9).

» Character count limitation
No register name may exceed 8 characters (termination included) in length.

* Unique name
Each register name must be a name (abbreviation) in a target chip hardware manual or
used by an assembler created by atarget chip manufacturer. If different names are used
to indicate the same register between target and debugger, alias should be given to the
register name in debugger side. However, the name must clearly indicate the charac-
teristics of the register.

The following functions use register names:
e rif_get_rdt : Get of description table

33 Common Regulations - Register Name

ITRON Debugging Interface Specification Ver. 1.00.00

3.11 Flag

The ITRON Debugging Interface Specification provides all functions with flags for function
selection (except for callback function and some supported functions). These flags are used as
part of parameters to use functions defined in the ITRON Debugging Interface Specification,
including the consistency assurance and automatic number assignment.

The bits of these flags have the following meanings:

Table 15: Functions of Flags

Bit mask Meaning
OxFF000000 Flagwith prefix FLG_, defined in this specification
OxO0FFO0000 Reserved
OxO000FF00 Flag region that can be defined freely by the RIM and debugging tool
Ox000000FF Option for each mechanism (Beginswith OPT_)

FLG_DEFAULT (= 0) indicates a state with no flag.

For these flags, new items can be added by each vendor. In such acase, use of low-order bits
8 to 15 is strongly recommended. The ITRON Debugging Interface Specification assures that
no new flag will be defined in that region.

Every function defined in the ITRON Debugging Interface Specification returns the
E_NOSPT error when an incoming flag cannot be processed by it.

34 Common Regulations- Flag

ITRON Debugging Interface Specification Ver. 1.00.00

3.12 Register Set Description Table

The register set description table consists of information of register value storage location and
register name. The RIM and debugging tools operate the registers and context in accordance
with the information written in this register set description table.

The following functions handle the register set description table:

rif_get_rdt Get of description table
rif_get_ctx Get of task context
rif_set ctx Set of task context
tif_get reg Read of register value
tif_set reg Write of register value

The register set description table structure (T_GRDT) is shown below:
typedef struct t_grdt_regary

{
char * strname . Pointer indicating register name
UINT length . Length (in bytes)
UINT offset . Storage offset position
} T_GRDT_REGARY;
typedef struct t_grdt
{
UINT regent : Count of registers
UNIT ctxent . Count of registers that can be contained in context

T_GRDT_REGARY regary(]
. Register information
} T _GRDT:

The register set description table has the following features:

» Storesregister name, size, and storage location
Theregister information (T_GRDT::regary) in the register set description table stores
the register name, register size (in bytes), and offset which is needed for the kernel to
load and store the register value. The register length and offset position are required
for getting, setup, and similar operations. These values define the offset position and
data length concerning the target register value storage within a region that retains the
register value.

* Retains context and registers operated by RIM

The register set description table stores two types of information: context information,
and register information. The first half of the register set description table lists the reg-
istersthat can serve as the context for the target OS, and the latter half lists all registers
that the RIM may operate.

T_GRDT::ctxcnt retains the context count of the target OS. The first ctxcnt regis-
ters of T_GRDT::regary ae OS task contexts. On the other hand,
T_GRDT::regcnt, retains the count of al registers that are written in the register set
description table.

35 Common Regulations - Register Set Description Table

ITRON Debugging Interface Specification Ver. 1.00.00

» Applicableto all register operations
Register operation functions provided by the target access interface refer to the register
set description table implicitly. Therefore, in principle, register operation functions
never handle registers which is not in the register set description table.

*Remainsinvariable throughout program execution period
The register set description table offered by the RIM does not change throughout a pro-

gram execution period. The RIM must not rewrite the contents of the table during
execution. Further, the debugging tool must not rewrite the contents of the table that is
obtained from the RIM through rif _get_rdt use.

The four functions using the register set description table, except for rif _get_rdt, retain the
enable/disable identification information (BITMASK _8 * valid) asan argument. valid corre-
lates to each element of regary, and the elements are valid when the associated bits are non-
zero. Furthermore, the enable/disable identification information obtained as a result of opera-
tionisstored againin valid.

When valid is NULL, all the registers are targeted for operation, and the operation results are
not stored.

An example is shown in Table 16. In this example, the task context merely has a program
counter (PC) and stack pointer (SP). Further, the RIM may operate a status register (SR) and
general-purpose register (R14) in addition to the PC and SP:

Table 16: Typical Register Set Description Table

Field Description
regent 4
ctxent 2

regary [0] {"PC", 4,0}
regary [1] {“SP’, 4,4}
regary [2] {“SR", 4,8}
regary [3] {“R14",4, 12}

In accordance with the information contained in the register set description table, the functions
for getting rif_get_ctx and tif_get_reg store the task contexts and register values in a speci-
fied region. The example below shows atypical program execution that is performed using the
register set description table indicated in the preceding example:

Program source

char buffer[16];
BITMASK 8 valid = Oxa:
tif_get_reg (buffer, &valid, FLG_DEFAULT);

Program source

*. Theterm program execution indicates the range of dbg_ini_rim to dbg_fin_rim.

36 Common Regulations - Register Set Description Table

ITRON Debugging Interface Specification Ver. 1.00.00

When the above program is executed and all the operations are ended normally, the function
tif_get_reg” storesaregister value in the variable buffer asfollows:

Table 17: Register Storage

Offset Contents
Oto 3 Nothing stored

4to0 7 Stuck pointer (SP)
8to 11 Nothing stored
12 to 15 General register (R14)

37 Common Regulations - Register Set Description Table

ITRON Debugging Interface Specification Ver. 1.00.00

3.13 Special Blocking Mode

Although, in principle, al of functions execute by the non-blocking mode, ITRON Debugging
Interface permits them to execute by the special blocking mode. It is assumed that the special
blocking modeis used for processes that do not take a considerable execution time. Use of this
specia blocking mode facilitates program implementation.

When afunction is executed in the special blocking mode, the program is blocked until execu-
tion ends. However, to prevent the program being stopped within the function permanently,
the special blocking mode times out automatically after a certain time specified by the imple-
mentor. |If the processis discontinued by atimeout, the function returns E_FAIL.

The specia blocking mode prevents certain operations (e.g. update of user interface) being
stopped due to the other related operation blocked. Therefore, the time for blocking should be

reasonable time for which users can keep waiting*. The actual timeout time is implementa-
tion-dependent.

The special blocking mode can be used by specifying the OPT_BLOCKING option flag. The
special block mode is supported by the following functions:

erif cal svc : Issueof servicecall
e tif_set_pol . Set of memory data changereport
 tif cal fnc : Issueof function

*. Itisusualy said that the user can only wait several seconds for processing without being notified.
However, if the user is notified before or during processing that processing will take a considerable
time, the timeout time can be increased as needed. However, note that the user must not be forced
to wait for an unlimited period.

38 Common Regulations - Special Blocking Mode

ITRON Debugging Interface Specification Ver. 1.00.00

4. RTOS Support Function Guideline

4.1 Standardization of Implemented Functionalities

This guideline is to standardize RTOS support functionalities that are implemented by
“ITRON Debugging Interface Specification complying debugging tools.” Functionality ele-
ments of RTOS support provided by ITRON Debugging Interface Specification are listed
below:

» Get of ITRON object status

» Handle of task context

* Issue of servicecall

* OS-dependent break and trace

» OS-dependent execution history (service call, task transition, debugging log, etc.)

The individual functions and their implementation methods are summarized below:

Get of ITRON object status

This functionality retrieves interna RTOS object information that are normally difficult to
inspect, and display them to user.

Examples of information to be got
» Task
Priority, stack, wait factor, waiting object, etc.

* Synchronous object
Control block data, waiting task, etc.

« Ready queue
Running task 1D and executable task list

» System-related information
Current context mode and kernel internal status

Handle of task context

This functionality provides the way to handle context information such as register contents,
including stack pointer, and program counter. In case of acquisition, the context information
can be retrieved from an appropriate region regardless of the task status.

Issue of service call

The issue of service call provides a means of issuing an RTOS service call with appropriate
parameter. For example, this can be used to invoke semaphore release operation form debug
tool. This functionality is not limited to RTOS service calls. Service calls of other software
components can also be invoked, resulting in enhanced debugging capability.

39 RTOS Support Function Guideline - Standardization of Implemented Functionalities

ITRON Debugging Interface Specification Ver. 1.00.00

OS-dependent break and trace
The ITRON Debugging Interface Specification supports the following RTOS-dependent break
functions:
» Task-related break
Operates break with specifying task ID.
Operates break for specified task without halting execution of other tasks.
Operates break when service call isinvoked by specified task.

* Object-related break
Operates break when specified object is operated.

» System-related break
Operates break upon context switching.
Operates break upon dispatch to specified task.

A method for halting the target at each break can be selected.
» Haltsentire system.

» Halts targeted task only and continues execution of system (RTOS support
required).

OS-dependent execution history
This function gets the execution history to monitor the system behavior. The ITRON Debug-
ging Interface Specification supports the following functions.

* Dispatch history
Getstask execution transition history.

* |ssue of service call
Gets parameters, error codes, and other historical information about issued service
cals.

» User event history
Gets comments and other historical information which are described by user.

40 RTOS Support Function Guideline - Standardization of Implemented Functionalities

ITRON Debugging Interface Specification Ver. 1.00.00

4.2 Level Indications

Service calls are classified into different levels. Debugging tools clearly compliant with the
ITRON Debugging Interface Specification must clearly indicate the levels they support. The
user isthen allowed to determine the available capabilities.

The ITRON Debugging Interface Specification uses dependent level descripion for RIF and
TIF. The subsequent subsections describe the RIF and TIF level indications.

4.2.1 RIF level indication

The RIM (RIF) level isindicated for each functional unit, which is an aggregation of functions
that provide RTOS support functions.

The functional units are listed below (abbreviationsin brackets):
» Get of object status[OBJ]
» Get of context manipulation [CTX]
* Issue of servicecall [SVC]
* Set of break [BRK]
» Get of break condition [CND]
» Execution history [LOG]

The RIM must describe which fuctional units are supported.
The debugging tool must describe the implementation of a connection mechanism (user inter-
face, etc.) for each functional unit asthe RIF level.

A level description example is shown below. When the combination shown in Table 18 is
used, the end user can use the minimum functions for get of object status, context manipula-

tion, issue of service call, set of break, and execution history*.

Table 18: Level Indication Example

Fun:rt]iict)nal RIM Debugging tool
OBJ O O
CTX O O
SvC QO (tif_alc_mbt required) O(tif_cal_svc unsupported)
BRK O
CND x (Conditional break nonsup-
O ported)
LOG O(RIM applicable indepen- x (Ul offered)
dently)
Other Partly expanded TIF leve [R]

*: The debugging tool does not support afunction for getting execution history. However, it is avail-
able because it can be executed by the RIM independently. Strictly speaking, it means that the TIF
log mechanism cannot be used.

41 RTOS Support Function Guideline - Level Indications

ITRON Debugging Interface Specification Ver. 1.00.00

4.2.2 TIF level indication

The TIF level description not only notifies the end user of available functions but also provides
an index for aRIM implementer.

The TIF level is provided for each function and is roughly divided into the following two types
(abbreviations in brackets):

* Necessary function [R]
This type of function must be implemented in the form of a debugging tool that com-
plies with the ITRON Debugging Interface Specification. The RIM implementer need
not check whether a necessary function exists. When the extended part of the neces-
sary function is used, the function may return E_NOSPT.

» Extended function [E]
An extended function is mainly defined for convenience (e.g., conditional break). It
may not be implemented depending on the debugging tool. Therefore, the RIM creator
must not issue a call without checking that a Function offering an extended function
exigts.

4.2.3 Other interface

For the RIF "rif_ref_cfg (get of kernel configuration)* and some functions with a name
beginning with dbg_, the required [R] and extended [E] description are used as with the TIF.
Since these functions mainly serve as information for RIM and debugging tool creator, they
need not be described even when they are implemented.

42 RTOS Support Function Guideline - Level Indications

ITRON Debugging Interface Specification Ver. 1.00.00

4.3 Terms and Definitions

4.3.1 Debugging tool

In the ITRON Debugging Interface Specification, the monitoring tools for checking whether
the target program and target hardware are normally operating are collectively called debug-
ging tools. The debugging tool does not contain atarget or target program. However, it may
contain a debugging agent (described later) needed for debugging and offered by tool manu-
facturers.

Using “debuggers’ as aterm is avoided intentionally. Debuggers usually indicates programs.
If atool including peripheral tools are also referred to as debuggers, the difference between the
target and debuggers would be vague. The term debugging tools is therefore used to distin-
guish such adifference.

4.3.2 Debugging agent

In the ITRON Debugging Interface Specification, the software is collectively caled a debug-
ging agent as far as it functions as a program on the target hardware to provide support for
debugging when a debugging environment is created. Thisterm is used without regard to the
implementation form no matter whether such software is an internal part of an OS or atask.

43 RTOS Support Function Guideline - Terms and Definitions

ITRON Debugging Interface Specification Ver. 1.00.00

4.4 Break Mechanism

The ITRON Debugging Interface Specification furnishes mechanism and functions to support
abreak in consideration of RTOS. This section details such a break mechanism.

The break mechanism consists of the following functions:
rif_set brk Request of break point set
rif_del _brk Delete of break point
rif_rep_brk Report of break hit
rif_ref_brk Get of set break information
rif ref cnd Get of break condition
tif_set _brk Set of break point
tif_del_brk Delete of break point
tif_rep_brk Break report

The following subsection details the characteristics of the break mechanism.

4.4.1 Decision of callback

When a debugging tool reaches break point defined by the function tif_set_brk on the target
access interface, a debugging tool callsthe callback functiontif _rep_brk to let the RIM deter-
mine whether or not to halt the operation.

Meanwhile, when RIM reaches a break point defined by the function rif_set_brk on the
RTOS access interface, the RIM calls the callback function tif_rep_brk to report a halt.
However, rif_rep_brk does not have areturn value and cannot decide on a break suspension.
Whentif_rep_brk returns E_TRUE, the debugging tool allows abreak operation to continue.
However, if tif_rep_brk returns E_FALSE, the debugging tool aborts a break operation and
resumes target execution. However, rif_rep_brk cannot decide on a break abortion.

The break operation is executed with the above-mentioned sequential operation.

An explanation is given below with an example.
1. The debugging tool usesrif_set_brk to inform the RIM of the user break point set-
ting request. The RIM usesthetif_set brk function to set abreak point at a specific
address.

TN //"’(

N v

rif_set_brk\ \u’f_set_brk
Figure 7: Setting of Break Point

44 RTOS Support Function Guideline - Break Mechanism

ITRON Debugging Interface Specification Ver. 1.00.00

2. When target execution isinitiated by the RIM or user and the target program satisfies

the break point setting conditions, the debugging tool function is exercised to break
the target. From thistime on, execution of the target program is broken.

~ He

Figure 8: Break Hit

. When the break point that caused a halt was set by tif_set_brk, the debugging tool
calls the callback function tif_rep_brk to report the occurrence of a break. In this
case, the break point ID and break parameters set by tif_set brk are passed as argu-
ments.

tif re p_ﬁ x

Figure 9: tif_rep_brk Call

. The RIM makes full use of TIF functions to collect adequate information for deter-
mining whether or not to halt target execution according to the preset break, and then
makes a judgment. The break process continues with Step 5 when target execution
should be halted or continues with Step 5, when target execution should not be halted.

’ 4

| %

ﬂ

i 0 yyy
Figure 10: Information Collection
. If RIM decides to halt target execution as a result of information collection and if the

break point has been set by rif_set_brk, RIM calstherif _rep_brk callback func-
tion. If target should halt, E_TRUE isreturned by the callback.

iif_rep_brk x

o
- Ly

E_TRUE
Figure 11: Operation of rif_rep_brk when Conditions Satisfied

RTOS Support Function Guideline - Break Mechanism

ITRON Debugging Interface Specification Ver. 1.00.00

6. The debugging tool allows continuing the break operation, and then notifies the user
that target execution halted at the break point.

«— Oﬁ 5

Figure 12: Continuation of Break Operation

5. If, as a result of information collection, the RIM concludes that target execution
should not be halted, RIF function immediately returns E_FALSE.

5

Figure 13: Operation of rif_rep_brk when Conditions Not Satisfied

6. The debugging tool resumes the target program execution that was halted in step 2.

oA X

Figure 14: Abortion of Break Operation and Resumption of Target Program Execution

4.4.2 Break of condition-getting type

The ITRON Debugging Interface Specification provides another break support mechanism
that acquires break conditions only (see Section 2.5.1). In order to use this feature, the debug-
ging tool must provide a conditional break capability.

The condition-getting type break mechanism consists of the following function:
rif ref cnd Get of break condition

The operation flow is shown below:

| Coraitions brosk

o %
(&5

rl_rel_crd

Figure 15: Break of Condition-getting Type

46 RTOS Support Function Guideline - Break Mechanism

ITRON Debugging Interface Specification Ver. 1.00.00

1. Based on user request, the debugging tool in turn callsrif_ref_cnd to have RIM gen-

erate RTOS-dependent conditions.
2. The RIM generates conditions that satisfies the request, and then returns them to the

debugging tool.
3. With the generated conditions, the debugging tool sets a break point at a user-speci-

fied address.

When the condition-getting type brake mechanism is used, the debugging tool performs break
point setup. Therefore, rif_rep_brk will not be called due to abreak point set by this method.

47 RTOS Support Function Guideline - Break Mechanism

ITRON Debugging Interface Specification Ver. 1.00.00

4.5 Trace Log Mechanism

To support acquisition of OS-dependent execution history, the ITRON Debugging Interface
Specification furnishes a trace log mechanism, which consists of a series of functions and a
group of functions. This section details the trace log mechanism.

The trace log mechanism consists of the following functions:

rif_set_log Set of tracelog

rif_del_log Delete of trace log set

rif_sta log Request of trace log function start
rif_stp_log Request of trace log acquisition stop
rif_get_log Get of tracelog

Trace log mechanism operations can be roughly divided into six types. set, start, execution,
get, end, and delete. During a single use of the trace log mechanism, the trace log mechanism
process performs one setup operation, two or more series of ‘start, execution, and end’ opera-
tions, two or more getting, and one deletion.

Each of these operations is detailed in the following subsections.

4.5.1 Set

For trace log setting, the function rif_set_log is used to set trace logs as required times.

Host Target
AN i
Log setting
rif_set_log tif_set_log
Debugging tool side operations RIM side operations
Repeated as needed to cover all the Does the tool have a logging function?
logs to be generated. YES

rif_set_log is called to perform log setup. Hardware log is set

(tif_set_log).
Figure 16: Set of Trace Log

At this stage, no operations are performed to affect on target systems . The debugging tool
gives trace settings to the RIM. The RIM performs necessary operations to prepare for subse-
quent log triggering (may occasionally optimize setup, for example, by merging the given set-
tings with previously defined settings).

If, for example, the debugging tool can get a memory access log, the RIM uses the
tif_set_log function to perform relevant setting at the same time.

*. This statement is made from the user viewpoint. The target may be more or less manipulated
depending on the implementation. However, such a manipulation must not be perceivable by the
user.

48 RTOS Support Function Guideline - Trace Log Mechanism

ITRON Debugging Interface Specification

4.5.2 Start

Ver. 1.00.00

For trace log starting, a process is performed for getting preselected trace logs.

Host Target
X
X
Log setup B 'x
rif_sta_log tif_sta_log
tif_set_brk
tif_set_pol

Debugging tool side operations

Repeated as needed to cover all the
logs to be generated.

rif_sta_log is called to start
a ogging operation.

or

@ rif sta_log (ID_ALL) is used to start

allTogging operations.

RIM side operations

@ Does the tool have a logging function?

YES

A hardware logging operation is
started (tif_sta_log).

NO

Setting watch points and break
points to make the operation

4 Satisfied the requests

Figure 17: Start of Trace Log

Tracing is prepared according to the preset configuration. |If the debugging tool itself has a
trace log mechanism, tif _sta log is called by RIM to pass settings and to enable the trace.
Otherwise, break points and watch points are set to satisfy the settings, and necessary logging
information is gathered by using memory read and other TIF APIs through various callbacks

invoked upon subsequent target execution.

49

RTOS Support Function Guideline - Trace Log Mechanism

ITRON Debugging Interface Specification

4.5.3 Execution

For execution, the program is run to get log information.

Debugging tool side or)erations for a target with

Debugging tool side operations for a target without

a hardware logging function a hardware logging function
Host Target Host Target
Ty X X

L—|

X

X

)

G Until the program stops

Is the log spool full
YES

is called.

NO

?

tif_rep_log
Previous history
” storage region

Debugging tool side operations

The function tif_rep_log

The information is collected.

/

[

i

|

X

tif_rep_brk
tif_rep_pol
if_rep_log

Debugging tool side operations

Until the program stops

The program is executed and

a callback is called as needed.

RIM side callback operation

With referring the memory and so on,

Ver. 1.00.00

to collect the information required for logging.

Figure 18: Execution of Trace Log

If the debugging tool has a hardware log mechanism, all mechanisms related to get log depend
on hardware. The RIM executes callbacks that are generated only when the hardware log
mechanism log buffer (called the previous history storage region in the ITRON Debugging
Interface Specification) becomes full and when trace log retrieval ends.
On the other hand, if thereis no apropriate hardware log mechanism, the RIM uses watch point
and break point callback functions to collect the necessary information required for logging.

50

RTOS Support Function Guideline - Trace Log Mechanism

ITRON Debugging Interface Specification Ver. 1.00.00

454 Get
After the end of program execution for getting log, the debugging tool gets the log.

Debugging tool side operations for a target
with a hardware logging function

Host Target

XX

o X

Historical information Previous history
]] storage region]] storage region

rif_get log tif_get_log ' rif_get_log
Debugging tool side operations

Debugging tool side operations for a target without
a hardware logging functon

Host Target

XX

ﬁ@ X

Historical information
]] storage region

Until rif_get_log turns out to be the E_NOEXT error

rif_get__lo% is called to get a log and
store it in the historical information storage region.

RIM side operation RIM side operation

Is the previous history storage region empty?
YES
The E_NOEXT error returns.

Is the log information region possessed by the RIM empty?
YES
The E_NOEXT error returns.

The log is fetched from the previous storage region,
edited into the standard format, and returned.

The log possessed by the RIM is edited into the
standard format and returned.

Figure 19: Trace Log Getting

The debugging tool callsrif_get log to get one record of log. Each record is obtained in the
order they gatherd, and then stored in the historical information storage region.

Since the historical information storage region stores trace log in a standard format defined by
the ITRON Debugging Interface Specification, the log may be viewed by some standard
viewer, apart from debugging tool used to collect them.

Log acquisition can be performed at any time while the log mechanism is operati ng.*
Possible log acquisition timings are shown below:

* When log spool becomes full
* When program ends

*: The getting order denotes the storage order. It does not precisely represent the chronology of get-
ting log.

51 RTOS Support Function Guideline - Trace Log Mechanism

ITRON Debugging Interface Specification Ver. 1.00.00

4.5.5 End
After getting of trace log is completed, the debugging tool terminates the |og mechanism.

e
VA

_ﬂ\jf >

Log setup L/ e
rif_stp_log tif_stp_log
tif_del_brk
tif_del_pol

Debugging tool side operations RIM side operations

Repeated as needed to cover all the é Does the tool have a logging function?
logging operations that were initiated. YES

rif_stp_log is called to stop

a logging operation. A hardware logging operation

is stopped (tif_stp_log).

NO
or
Setting watch points and break points
rif_stp_log (ID_ALL) is used to stop set to meet the request are deleted.
all logging operations. -

Figure 20: End of Trace Log

The RIM frees prepared resources for trace log retrieval such asaTIF break.

When the debugging tool has a log mechanism, the hardware log mechanism enabled by the
tif_sta_log functionis disabled by thetif _stp_log function. Under other circumstances, the
break points and watch points set for getting information are deleted. In both cases the mem-
ory acquired by the RIM as the log storage region is also released at the same time.

45.6 Delete

When the log setup is no longer needed after completion of the entire get log, the debugging
tool deletes the log setting.

[Host | [Target
Log setup E } ﬁ
rif_del_log tif_del_log
Debugging tool side operations RIM side operations

Repeated as needed to cover all the Does the tool have a logging function?
logging operations that were defined. YES

rif_del_log is called to delete .

o A hardware log setup is deleted.
a log setup. (tif del_log).

Figure 21: Delete of Trace Log

Upon deletion of settings, the RIM frees the corresponding settings of trace log retrieval, and
hardware trace log settingsif the RIM uses them.

52 RTOS Support Function Guideline - Trace Log Mechanism

ITRON Debugging Interface Specification Ver. 1.00.00

5. RTOS Access Interface

5.1 Functional Unit

All the functions on the RTOS access interface are grouped into two or more functional units.
Function availability is determined on an individual functiona unit basis.

When each functional unit isavailable, it meansthat all the functions composing the functional
unit are implemented and that the key code for identifying that functional unit exists (however,
the E_NOSPT error may be returned if some functions of Functions are not implemented).

The functional units are given below (Abbreviationsisin parenthesis):
» Get of object status[OBJ]
» Get of context [CTX]
* Issue of servicecall [SVC]
e Set of break [BRK]
* Get of break condition [CND]
« Execution history [LOG]

Keys
RIF 4y,
UNIT 204
.OBJ 14[1]
Supports the "get of object status" functional unit.
LOG 2y [1]
Supports the "get of execution history" functional unit.
.SVC 3n [1]
Supports the "issue of service call" functional unit.
BRK 4 [1]
Supports the "set of break" functional unit.
.CND 54 [1]
Supports the "get of break condition" functional unit.
.CTX 6 [1]

Supports the "get of context” functional unit.

53 RTOS Access Interface - Functional Unit

ITRON Debugging Interface Specification Ver. 1.00.00

5.2 Get of object Status

rif_ref_obj Get of object status [OBJ O

ER rif_ref_obj
(VP p_result, UINT objtype, DT _ID objid, FLAG flags)

VP p_result
Result storage location

UINT objtype
Object type

DT_ID objid
The object ID of the target to be got

FLAG flags
Various flags

This function gets the status of an object that currently exists on the RTOS.

For getting object status, aflag for specifying the object type (Obj Type) and aresult packet for
status storage are used. The read upper limit for the "waiting task ID list" and other variable-
length data described as "type *identifier-Ist" is determined when this function is called with
the upper-limit value set for the "count parameter” described as "UINT identifier-cnt”, which
is corresond with "type *identifier-AIB". In this case, the smaller data berween the "read
upper-limit value" substituted before operation and the "actual variable-length data count” is
substituted into the "count parameter" after operation. If the "actual variable-length data
count” exceeds the "read upper-limit value', variable-length data transfer does not take place
beyond the upper-limit value.

Table 19 shows the relationship between the R_ROSEM.wtskcnt data and the data stored in
the wtsklst-specified region when rif_ref_obj isissued to a semaphore having 10 tasksin a
waiting list.

Table 19: Operation Performed in Relation to a Semaphore Having 10 Tasks in a Waiting List

T _ROSEM.wtskcnt Data Stored in wtsklst-specified Region
Before After

Execution | Execution
0 0 Nothing is stored.
1 1 ID of the task positioned at the beginning of the waiting queue.
2 2 The first waiting task ID and the second waiting task ID.
10 10 IDs of the waiting tasks from the first one to the last one.
11 10 Same as above.

g

RTOS Access Interface - Get of object Statusrif_ref _obj

ITRON Debugging Interface Specification Ver. 1.00.00

At the beginning of the packet returned by rif_ref_obj, a bit mask is positioned to indicate
whether the subsequent field is valid or not. The first candidate for the bit mask is a structure
member that follows "valid”. If a structure member is a pointer to another structure, the
enable/disable identification information about the structure member indicated by the pointer
is stored, but the enable/disable identification information about the pointer to another struc-
tureisnot stored. If the pointer isinvalid, all members of the structure indicated by the pointer
areinvalidated. For detailed bit mask descriptions, see Section 3.5.

As an example, the table below shows the fields of the structure T_ROMPF that stores the
information about a fixed-length memory pool (OBJ_FMEMPOOL) and the corresponding
bit mask bit positions:

Table 20: Relationship between T_ROMPF Members and Bit Mask Bit Positions

Bit Position Structure Member

0 T _ROMPF::mpfatr
T_ROMPEF::blksz
T _ROMPF::fblkcnt
T _ROMPF::blkcnt
T_ROMPF::ablkcnt
T_ROMPF_BLKLST::htskid
T_ROMPF_BLKLST::blkadr
T_ROMPF::wtskcnt
T _ROMPF::wtsklst

0o N oo o A W N B

Object identification flags (ObjType) and result packets are shown below. If NC is attached
to the end of an object name, it means that the associated items and arguments are invalid.

« OBJ_SEMAPHORE (0x80): Semaphore
typedef struct t_rosem

{
BITMASK valid : Valid field flag
DT_ATR sematr . Semaphore attribute
DT _UINT isement : Initial semaphore count
DT_UINT maxsem : Semaphore maximum value
DT _UINT sement : Semaphore count value
DT_UINT wtskent : Waiting task count (also used as the wtsklst upper limit)
DT_ID * wtsklst . Pointer to the region for storing the waiting task ID list
T_ROSEM,;
}

Gets semaphore-related information. Before execution, wtsklst and wtskcnt must be initial-
ized.

55 RTOS Access Interface - Get of object Status

ITRON Debugging Interface Specification Ver. 1.00.00

* OBJ_EVENTFLAG (0x81): Event flag
typedef struct t_roflg_wflglst
{
DT _ID wtskid . Waiting task ID
DT_FLGPTN wflgptn: Wait flag pattern for each task
DT_UINT wflgmode: Wait mode for each task

} T _ROFLG_WFLGLST,
typedef struct t_roflg
{
BITMASK valid : Validfield flag
DT_ATR flgatr . Flag attribute
DT_FLGPTN iflgptn : Initial flag pattern
DT_FLGPTN flgptn : Flag pattern
DT_UINT wtskent : Waiting task count (also used as the upper limit for the wflglst)
T_ROFLG_WFLGLST * wflglst
: Pointer to information about task with this flag
} T_ROFLG;

Gets the information about an event flag. Before execution, wtskcnt, wtsklst, wflgptn, and
wflgmode must be initiaized.

* OBJ_DATAQUEUE (0x82): Data queue
typedef struct t_rodtq
{
BITMASK valid . Validfield flag
DT_ATR dtgatr : Data queue attribute
DT _UINT dtgent : Data queue capacity
DT _UINT gtskent : Count of tasks waiting for sending (also used as the upper limit
for wstsklst)
DT_UINT * gtsklst : Pointer to region storing ID list of tasks waiting for transmission
DT _UINT rtskent : Count of tasks waiting for reception (also used as the upper
[imit for wrtsklst)
DT_ID * rtsklst . Pointer to the region for storing the ID list of tasks waiting for
reception
DT _UINT itement : Count of queue data (also used as the upper limit for itemlst)
DT_VP_INT * itemlst: Pointer to the region for storing the list of all items
} T_RODTQ;
Gets the information about a data queue. Before execution, stskcnt, wstskist, rtskcnt,
wrtsklst, itemcnt, and itemlst must beinitialized.

* OBJ_MAILBOX (0x83): Mailbox
typedef struct t_rombx
{
BITMASK valid . Validfield flag
DT_ATR mbxatr . Mailbox attribute
DT_PRI maxmpri : Maximum priority
DT_UINT wtskent : Count of waiting tasks (also used as the upper limit for wtsklst)
DT _ID * witsklst . Pointer to the region for storing the ID list of waiting tasks
DT _UINT msgent ;. Count of message headers (also used as the upper limit for msglst)
DT_T_MSG ** msglst: Pointer to the region for storing the list of all messages
} T_ROMBX;

56 RTOS Access Interface - Get of object Status

ITRON Debugging Interface Specification Ver. 1.00.00

Gets the information about a mailbox. Before execution, wtskcnt, wtsklst, msgcnt, and
msglst must be initialized.

« OBJ_MUTEX (0x84): Mutex
typedef struct t_romtx

{
BITMASK vaid : Validfield flag
DT_ATR mtxatr . Mutex attribute
DT_PRI ceilpri . Upper-limit priority
DT_ID htskid . 1D of the task that locks a mutex
DT_UINT wtskent : Count of waiting tasks (also used as the upper limit for wtsklst)
DT_ID * wtsklst . Pointer to the region for storing the ID list of waiting tasks
} T_ROMTX;

Gets the information about a mutex. Before execution, wtskcnt and wtsklst must beinitialized.

* OBJ_MESSAGEBUFFER (0x85): M essage buffer
typedef struct t_rombf_msglst

{
DT_VP msgadr . Message addresses

DT _UINTmsgsz : Message length
} T_ROMBF_MSGLST,

typedef struct t_rombf

{
BITMASK valid . Validfield flag
DT_ATR mbfatr : Message buffer attribute
DT _UINT maxmsz : Message maximum size
DT_SIZE mbfsz . Buffer region size
DT_UINT stskent : Count of tasks waiting for sending (also used as the upper limit
for stsklst)
DT _ID * stskist . Pointer to region storing 1D list of waiting tasks
DT_UINT rtskent : Count of tasks waiting for reception (doubles as rtsklst upper limit)
DT _ID * rtsklst . Pointer to theregion for storing the ID list of waiting tasks
DT _SIZEfmbfsz : Freeregion size
DT _UINT msgent ;. Count of messages (also used as the upper limit for msgls)
T_ROMBF_MSGLST * msglst
. Pointer to information about messages
} T_ROMBF;

Gets the information about a message buffer. Before execution, stskcnt, wtsklst, msgcent,
msglst, and msgszlst must be initialized.

*« OBJ_RENDEZVOUSPORT (0x86): Rendezvous port
typedef struct t_ropor
{
BITMASK valid : Validfield flag
DT_ATR poratr : Rendezvous port attribute
DT_UINT maxcmsz : Call message maximum size
DT_UINT maxrmsz : Response message maximum size
DT _UINT ctskent : Count of taskswaiting for acall (also used as the upper limit for

ctsklst)
DT_ID * ctsklst : Pointer to the region for storing the IDs of all the tasks waiting
DT _UINT atskent : Count of tasks waiting for acceptance (doubles as atsklst upper
limit)

57 RTOS Access Interface - Get of object Status

ITRON Debugging Interface Specification Ver. 1.00.00

DT _ID * atsklst . Pointer to the region for storing the IDs of all the tasks waiting
for acceptance
} T_ROPOR;

Gets the information about arendezvous port. Before execution, ctskcnt, atskent, ctsklst,
and atsklst must beinitialized.

*« OBJ_RENDEZVOUS (0x87): Rendezvous
typedef struct t_rordv

{

BITMASK valid : Vdid field flag

DT_ID tskid . 1D of atask waiting for arendezvous
} T_RORDV;

Gets the information about a rendezvous.

« OBJ FMEMPOOL (0x88): Fixed-length memory pool
typedef struct t_rompf_blklst

{
DT _ID htskid : 1D number of task that acquired block

DT_VP blkadr . Block starting address
} T_ROMPF_BLKLST;

typedef struct t_rompf

{
BITMASK valid : Vdid field flag
DT_ATR mpfatr . Fixed-length memory pool attribute
DT _SIZE blksz . Block size

DT _UINT fblkent : Count of remaining fixed-length memory blocks
DT_UINT blkent : Count of all memory blocks

DT _UINT ablkent : Count of allocated block (blklst upper limit)

T ROMPF BLKLST *ablklst : Pointer to detailed information about blocks

DT_UINT wtskent : Count of tasks waiting for getting (wtsklst upper limit)
DT_UINT * wtskist : Pointer to region storing I1Ds of tasks waiting for get
} T _ROMPF;

Gets the information about a fixed-length memory pool. Before execution, ablkcnt, ablklst,
wtskcnt, and wtsklst must beinitialized.

* OBJ_ VMEMPOOL (0x89): Variable-length memory pool
typedef struct t_rompl_blklst

{
DT_SIZE blksz : Block size
DT _ID htskid : 1D number of task that got block
DT_VP blkadr . Block starting address

} T _ROMPL_BLKLST;

typedef struct t_rompl

{
BITMASK valid : Validfield flag
DT_ATR mplatr : Variable-length memory pool attribute
DT_SIZE mplsz . Variable-length memory pool region size

DT _UINT fblksz : Maximum gettable size

58 RTOS Access Interface - Get of object Status

ITRON Debugging Interface Specification Ver. 1.00.00

}

DT_UINT ablkent : Count of allocated block (upper limit for blklst)
T TOMPL_BLKLST * ablklst

. Pointer to detailed information about blocks
DT_UNIT wtskent : Count of tasks waiting for getting (wtsklst upper limit)
DT_ID * wtsklst . Pointer to region storing 1Ds of tasks waiting for getting
T_ROMPL;

Gets the information about a variable-length memory pool. Before execution, ablkcnt,
ablklst, wtskcnt, and wisklst must be initialized.

« OBJ_TASK (0x8a): Task

typedef struct t_rotsk

{

}

BITMASK valid : Valid field flag

DT_ATR tskatr . Task attribute
DT_VP_INT exinf : Extension information
DT _FPtask . Startup address

DT_PRI itskpri . Initial priority

DT_VPstk : Starting address of initial stack
DT _SIZE stksz . Stack size

DT_STAT tskstat : Task status

DT_PRI tskpri . Current task priority
DT_PRI tskbpri . Task base priority
DT_STAT tskwait : Factor of atask’swait
DT_ID waobjid : 1D of an object to wait for

DT_TMO|efttmo : Theremaining time before timeout
DT_UINT actent . Activation requests queuing count
DT _UINT wupcnt : Wake-up requests queuing count
DT _UINT suscnt : Suspension requests count

T _ROTSK;

Gets the information about a task.

* OBJ READYQUEUE (0x8b): Ready queue (NC: objid)

typedef struct t_rordg

{

}

BITMASK valid : Valid field flag

DT _ID runtskid . 1D of the currently executed task

DT_UINT tskent : Count of ready (and running) tasks (upper limit for tskist)

DT _ID * tskist . Pointer to the region for storing the IDs of all the executable
tasks

T_RORDQ;

Gets the information about a ready queue. If no executable task exists, the value O returns to
runtskid and tskcnt. Inthis case, the tsklst data has no change.
Before execution, tskcnt and tskist must beinitialized.

59

« OBJ_TIMERQUEUE (0x8c): Timer queue (NC: objid)

typedef struct t_rotmq_quelst

{

}

UINT objtype . Pointer to the region for storing the types of waiting objects
DT _ID wobjid . Pointer to the region for storing the IDs of waiting objects

DT_TMO |efttmo : Pointer to the region for storing the remaining wait time
T_ROTMQ_QUELST;

RTOS Access Interface - Get of object Status

ITRON Debugging Interface Specification Ver. 1.00.00

typedef struct t_rotmq
BITMASK vaid : Validfield flag
DT_SYSTIM systim : System time at the time of getting information
DT _UINT quecnt : Count of waiting objectsin atimer queue (upper limit for quelst)
T_TORMQ_QUELST * quelst
. Pointer to information about objects in timer queue
} T_ROTMQ;

Gets the information about a timer queue.

The timer queue information contains the types of all events (cyclic handler, alarm handler,
overrun handler, and task) to be activated by atime event and the scheduled times for the gen-
eration of such events. Asregards a cyclic handler, however, the information will not be got
not from all activating positions but from the next activating position.

The type of a waiting object is stored with a constant described as OBJ_xxx which use to
specify the object with rif_ref_obj.

Before execution, quecnt, objtyplst, wobjidlst, and lefttmolst must be initialized.

* OBJ_ CYCLICHANDLER (0x8d): Cyclic handler
typedef struct t_rocyc
{
BITMASK vaid : Validfield flag
DT_ATR cycatr . Attribute
DT VP INT exinf : Extension information
DT_FP cychdr : Start address
DT_RELTIM cyctim: Cycle
DT_RELTIM cycphs: Initial phase
DT_STAT cycstat : Cyclic handler start status
DT_RELTIM l€fttim : Remaining time
} T_ROCYC;

Gets the information about a cyclic handler.

* OBJ_ ALARMHANDLER (0x8e): Alarm handler
typedef struct t_roalm

{
BITMASK valid . Validfield flag
DT_ATR amatr . Attribute
DT_VP_INT exinf : Extension information
DT_FP amhdr . Startup address
DT _STAT amstat . Alarm handler start status
DT_RELTIM l€fttim : Remaining time

} T_ROALM;

Gets the information about an alarm handler.

* OBJ_ OVERRUNHANDLER (0x8f): Overrun handler
typedef struct t_roovr

{
BITMASK valid : Validfield flag
DT _ATR ovratr . Attribute
DT_FP ovrhdr : Start address

DT_STAT ovrstat : Handler start status

60 RTOS Access Interface - Get of object Status

ITRON Debugging Interface Specification Ver. 1.00.00

DT_OVRTIM lefttmo: Remaining processor time
} T_ROOVR;

Gets the information about an overrun handler.

* OBJ_ISR (0x90): Interrupt serviceroutine
typedef struct t_roisr

{
BITMASK vaid : Validfield flag
DT_ATR isratr . Attribute
DT VP INT exinf : Extension information
DT_FPisrfnclst . Registered routine start address
DT_INTNOinhno : Appliedinterrupt handler number
} T_ROISR;

Gets the information about an interrupt service routine.

* OBJ_KERNELSTATUS (0x91): Kernel information (NC: objid)
typedef struct t_roker

{
BITMASK vaid : Validfield flag
BOOL actker . Kernd start status (TRUE = activated)
BOOL inker . Kernel code execution (TRUE = execution in progress)
BOOL ctxstat : Context status (sns_ctx)
BOOL loccpu : CPU locked status (sns_cpu)
BOOL disdsp . Digpatch disabled status (sns_dsp)
BOOL dsppnd . Digpatch suspended status (sns_dpn)
DT_SYSTIM systim : System time
DT _VPintstk . Stack for non-task context
DT_SIZE intstksz : Stack size for non-task context

} T_ROKER;

Gets the information about kernel status.

actker is a variable that indicates the kernel start status. It is FALSE in the target start
sequence. It is TRUE when a system call become available after completion of kernel initial-
ization.

inker isavariable that indicates whether currently executed code is akernel code or not'.

* OBJ TASKEXCEPTION (0x92): Task exception handler
typedef struct t_rotex

{
BITMASK valid : Vdid field flag
DT_TEXPTN pndptn: Suspended exception factor
DT_FPtexrtn : Exception handler start address
} T_ROTEX;

*. The statuses that are judged as a kernel operation are as follows; a sequence between exception
occurrence and handler stertup, a sequence between handler termination and dispatcher termina-
tion, or a sequence between target startup and initial application task starup.

61 RTOS Access Interface - Get of object Status

ITRON Debugging Interface Specification Ver. 1.00.00

Gets the information about a task exception handler.

*« OBJ_CPUEXCEPTION (0x93): CPU exception handler (objid corresponds to
an exception factor)
typedef struct t_roexc

{

BITMASK vaid : Validfield flag

DT_FP excrtn . Exception handler activating address
} T_ROEXC;

Gets the information about CPU exception.

Supplementary explanation

I mplement-dependent information is defined as a structure member that follows each structure.
For definition of a unique object, the employed object identification constant must be outside
the range from 0 to 255. When performing a unique object operation, it is best to set up a flag
to clarify it.

62 RTOS Access Interface - Get of object Status

ITRON Debugging Interface Specification Ver. 1.00.00

Flags

OPT_GETMAXCNT (1)
Even when the variable-lengh data count exceeds the upper limit value, this
flag throughly tracks and gets the data count.

OPT_VENDORDEPEND (2)
Gets implement-dependent information.

FLG_NOCONSISTENCE (100000004): Nonconsistency flag
When this flag is specified, the data to get need not be consistent (e.g., the
task is not freed from the waiting state although there is no factor of the task
wait).

FLG_NOSYSTEMSTOP (200000004): An explicit system halt is not permitted.

When this flag is specified, tif_brk_tgt must not be used within a function
to halt the system. If thisflag is not supported, the E_NOSPT error occurs.

Keys
RIF 4
.RIF_REF_OBJ 14
.FLG_NOCONSISTENCE 14 [1]
The FLG_NOCONSISTENCE flagisavailable.
FLG_NOSYSTEMSTOP 2y [1]
The FLG_NOSYSTEMSTORP flag isavailable.
.OPT_VENDORDEPEND 10y [1]
The OPT_VENDORDEPEND option is available.
.OPT_GETMAXCNT 114 [1]
The OPT_GETMAXCNT option is available.
STATICPARAMETER 12
.OBJ_SEMAPHORE 80y [T]
This structure has semaphore information that is statically determinative.
.OBJ_EVENTFLAG 81K [T]
This structure has event flag information that is statically determinative.
.OBJ_DATAQUEUE 82y [T]
This structure has data queue information that is statically determinative,
.OBJ_MAILBOX 834 [T]
This structure has mailbox information that is statically determinative.
.OBJ_MUTEX 84y [T]
This structure has mutex information that is statically determinative.
.OBJ_MESSAGEBUFFER 85y [T]
This structure has message box information that is statically determinative.
.OBJ_RENDEZVOUSPORT 86y [T]
This structure has rendezvous port information that is statically deter-
minative.
.OBJ_RENDEZVOUS 874 [T]

This structure has rendezvous information that is statically determinative.

63 RTOS Access Interface - Get of object Status

ITRON Debugging Interface Specification Ver. 1.00.00

.OBJ_FMEMPOOL 88y [T]
This structure has fixed-length memory pool information that is stati-
cally determinative.

.OBJ_VMEMPOOL 89y [T]
This structure has variable-length memory pool information that is
statically determinative.

.OBJ_TASK 8A, [T]
This structure has task information that is statically determinative.
.OBJ_READYQUEUE 8By [T]
This structure has ready queue information that is statically determinative.
.OBJ_TIMERQUEUE 8CH [T]
This structure has timer queue information that is statically determinative.
.OBJ_CYCLICHANDLER 8Dy [T]
This structure has cyclic handler information that is statically determi-
native.
.OBJ_ALARMHANDLER 8Ey [T]
This structure has alarm handler information that is statically determi-
native.
.OBJ_OVERRUNHANDLER 8Fy [T]
This structure has overrun handler information that is statically deter-
minative.
.OBJ_ISR 90y [T]
This structure has interrupt service routine information that is statically
determinative.
.OBJ_KERNELSTATUS 91y [T]
This structure has kernel information that is statically determinative.
.OBJ_TASKEXCEPTION 92 [T]
This structure has task exception information that is statically determi-
native.
.OBJ_CPUEXCEPTION 93y [T]
This structure has CPU exception information that is statically determi-
native.
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.

64 RTOS Access Interface - Get of object Status

ITRON Debugging Interface Specification Ver. 1.00.00

E_CONSIST (-225)

Consistency was not assured (however, it is not handled as an error if

FLG_NOCONSISTENCE is st).
E_NOEXS (-42)

The targeted object was not found on the target.
E_PAR (-145)

A parameter value wasinvalid.
ET_OBJ (-41)

The targeted object on the target was inoperative.
ET_ID (-18)

The specified kernel object ID wasinvalid.
ET_OACV (-27)

Aninvalid object on an target was accessed (tskid < 0).

65 RTOS Access Interface - Get of object Status

ITRON Debugging Interface Specification Ver. 1.00.00

5.3 Get of Task Context

5.3.1 Get of register set description table

rif_get rdt Get of description table [CTX]IO)

ER rif_get_rdt (const T_GRDT ** ppk_pgrdt, FLAG flags)

const T_GRDT ** ppk_prgrdt

Pointer to the region that stores the pointer to the register set description table
structure

FLAG flags
Flags

Thisinstruction gets the pointer to the register table that contains the context information about
atargeted task. The body of this table is located in the RIM and its contents are constant. |f
the debugging tool is to be used to modify the contents, make a copy of the contents with the
debugging tool and then modify the contents of the copy.

The register table has the details of registers that need to be saved in case of task switching.
The structure"T_GRDT" isdetailed below. For the register table, see Section 3.12.
typedef struct t_grdt_regary

{
char * strname . Pointer to register name
UINT length . Length (in bytes)
UINT offset . Storage offset position

} T_GRDT_REGARY;

typedef struct t_grdt

{
UINT regent : Count of registers
UINT ctxcnt . Count of registers that can be contained in context
T_GRDT_REGARY regary(]
. Register information
} T_GRDT

Supplementary explanation

The register set description table contains al the registers that compose the context and all the
registers to be operated by the RIM. The targeted task context consists of T_GRDT::ctxcnt
specified number of elements beginning with the start of T_GRDT::regary.
T_GRDT::regcnt indicates the count of registers to be operated by the RIM.

66 RTOS Access Interface - Get of Task Context rif_get_rdt

ITRON Debugging Interface Specification Ver. 1.00.00

Keys
RIF 04y
RIF_GET_RDT 02y
.REGISTER 24
SIZE 04y, [W]
Size (in bytes) of adequate region for register storage.
.CONTEXT 12y
SIZE 044 [W]
Size (in bytes) of adequate region for context storage.
Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused for some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_PAR (-145)
A parameter value wasinvalid.

67 RTOS Access Interface - Get of Task Context rif_get_rdt

ITRON Debugging Interface Specification Ver. 1.00.00

5.3.2 Get of task context

rif_get _ctx Get of task context [CTX](O)
ER rif_get_ctx
(VP p_ctxblk, BITMASK_8 * p_valid, DT _ID tskid, FLAG flags)
VP p_ctxblk

Leading pointer that indicates the region for storing got context

BITMASK 8* p valid

Pointer to validation flag about register table items
(NULL: Targets entire context)

DT_ID tskid
ID of atargeted task

FLAG flags
Flags

This function gets and stores task context in accordance with the register table that is got by
rif_get_rdt. This function permits the debugging tool to get context from an appropriate
region at all timesirrespective of the current task status.

The variable "p_ctxblk" is the pointer to the buffer that stores context obtained upon execu-
tion of this function. Before executing this function, the debugging tool must create a region
that is large in size enough to store the context. The size of this buffer can be got by using the
information acquisition key code RIF.RIF_GET_RDT.CONTEXT.SIZE. It can aso be cal-
culated from the register table got by the function rif_get_rdt. When the region size is deter-
mined by calculation, it is necessary to furnish a region that is large enough to store only the
context portion of the register table.

Storage is performed in accordance with the storage offset position and register length written
in the register table got by rif_get_rdt. For the register table, see Section 3.12.

p_valid specifies whether the registers should be enabled or disabled. When given as an argu-
ment for the function, p_valid does not store disabled registers. This function aso stores the
result of getting targeted register in p_valid. However, if ungot registers are essential to the

targeted task context, an error such as ET_MACYV isreturned depending on the situation”. The
information stored in regions related to ungot registers is implement-dependent. Even if the
enable/disable information is given in excess of the number of registers (T_GRDT::ctxcnt)
composing the context, excess registers will not be got.

If NULL isspecified for p_valid, the whole context istargeted for getting so that the detail s of
the result will not be stored.

When the flag OPT_APPCONTEXT is specified, the context is got on the application level.
If the task is stopped inside the kernel, the RIM uses the current stack frame, etc., to generate
and return the context that prevailed before kernel code entry.

*. For example, the floating-point register is not required for tasks that do not perform floating-point
calculations. Even if the floating-point register is contained in the register table in such asituation,
the function may return E_OK without getting the floating-point register.
68 RTOS Access Interface - Get of Task Context rif_get ctx

ITRON Debugging Interface Specification Ver. 1.00.00

Flags

OPT_APPCONTEXT (1)
Handles context in application level as atarget.

FLG_NOCONSISTENCE (100000004): Nonconsistency flag
When this flag is specified, the got data need not be consistent (e.g., the task is
not cleared from the waiting state although there is no factor of the task’s wait).

FLG_NOSYSTEMSTOP (200000004): An explicit system halt is not permitted.
When this flag is specified, tif _brk_tgt must not be used within a function
to halt the system. If thisflag is not supported, the E_NOSPT error occurs.

Keys
RIF 04y,
RIF_GET_CTX 034
.FLG_NOCONSISTENCE 01y [1]
The FLG_NOCONSISTENCE flagis available.
FLG_NOSYSTEMSTOP 02y [1]
The FLG_NOSYSTEMSTORP flag isavailable.
.OPT_APPCONTEXT 104 [1]
The OPT_APPCONTEXT option isavailable.
Errors
E_OK (0)

Normally ended.
E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faiure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_CONSIST (-225)
Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).
ET_OBJ (-41)
The targeted object on the target was inoperative.
ET_OACYV (-27)
Aninvalid object on an target was accessed (tskid < 0).
ET_ID (-18)
The specified kernel object ID wasinvalid.
E_PAR (-145)
A parameter value wasinvalid.
ET_NOEXS (-42)
The target object was not found on the target.

69 RTOS Access Interface - Get of Task Context rif_get ctx

ITRON Debugging Interface Specification Ver. 1.00.00

5.3.3 Set of task context

rif_set _ctx Set of task context [CTX]O

ER rif_set ctx
(VP p_ctxblk, BITMASK_8 * valid, FLAG flags)

VP p_ctxblk
Pointer to the region that stores the context to be set

BITMASK_* p_valid

Pointer to validation flag about register table items
(NULL: Targets entire context)

FLAG flags
Flags

This function sets task context in accordance with the register table that is obtained by
rif_get_rdt. The use of thisfunction permits the debugging tool to set appropriate context at
all timesirrespective of the current task status.

Setup is performed in accordance with the information in the register table obtained by
rif_get_rdt. Thevariable "p_ctxblk" isthe pointer to the buffer that stores the context to be
set upon execution of this function. Before executing this function, the debugging tool must
store the context data to be set in a specified region in accordance with the register table
obtained by rif_get_rdt. For theregister table, see Section 3.12.

p_valid specifies whether the registers should be enabled or disabled. When given as an argu-
ment for the function, p_valid does not set disabled registers. This function also stores the
result of targeted register acquisition in p_valid. However, if registers that cannot be set are
essential to the targeted task context, an error such asET_MACYV isreturned depending on the

situation’. Even if enable/disable information is given in excess of the number of registers
(T_GRDT::ctxcnt) composing the context, excess registers will not be set.

If NULL is specified for p_valid, the whole context is targeted for setup so that the result
details will not be stored.

When the flag "OPT_APPCONTEXT" is specified, the context in application level will be
Set.

Flags

OPT_APPCONTEXT (1)
Handles context in application level as atarget.
FLG_NOSYSTEMSTOP (200000004): An explicit system halt is not permitted.

When this flag is specified, tif_brk_tgt must not be used within a function
to halt the system. If thisflag isnot supported, the E_ NOSPT error occurs.

*. For example, the floating-point register is not required for tasks that do not perform floating-point
calculations even if it is contained in the register table. In such a situation, the function may return
E_OK without setting the floating-point register even when it is targeted for setup.

70 RTOS Access Interface - Get of Task Context rif_set_ctx

ITRON Debugging Interface Specification Ver. 1.00.00

Keys
RIF 01
RIF_SET_CTX 13,
FLG_NOSYSTEMSTOP 024 [1]

The FLG_NOSYSTEMSTOP flag isavailable.
.OPT_APPCONTEXT 104 [1]

The OPT_APPCONTEXT option isavailable.

Errors

E_OK (0)
Normally ended.
E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).

E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason.
E_CONSIST (-225)

Consistency was not assured (however, it is not handled as an error if

FLG_NOCONSISTENCE is set).
ET_OBJ (-41)

The targeted object on the target was inoperative.
ET_OACV (-27)

Aninvalid object on atarget was accessed (tskid < 0).
ET_ID (-18)

The specified kernel object ID wasinvalid.
E_PAR (-145)

A parameter value wasinvalid.

ET_NOEXS (-42)
The target object was not found on the target.

71 RTOS Access Interface - Get of Task Context rif_set_ctx

ITRON Debugging Interface Specification Ver. 1.00.00

5.4 Issue of Service Call

5.4.1 Issue of service call

rif cal svc Issue of service call [SVvClO
ER rif_cal svc (T_RCSVC * pk_psvc , FLAG flags)
T RCSVC* pk_psvc
Information of call issuance
FLAG flags
Flags

This function issues a service call. Since issuance is executed in non-blocking mode, the end
of this function does not mean the end of a service call. However, note that issuance is exe-
cuted in the special blocking mode only when OPT_BLOCKING isset explicitly. The execu-
tion process performed in the special blocking mode times out at the pre-selected timeout time.

Contentsof T_RCSVC
typedef struct t_rcsvc

{
DT_FN svcfn : Function code to be issued
BOOL tskctx . Execution with task context (= TRUE)
DT _ID tskid . 1D of atargeted task (when tskctx = TRUE)
UINT prment . Parameter count
VP_INT paramry[] : Array that storeslist of all parameters

} T_RCSVC;

Supplementary explanation

Since this function is executed in non-blocking mode, the end of this function is not identical
with the end of the issued service call. However, if the use of non-blocking mode is prohibited
due to the employed RIM implementation method and blocking mode is implemented, the end
of thisfunction can be regarded as the end of service call. So, the termination of this function
can be regarded as the service call end. RIF.RIF_CAL_SVC.NON-BLOCKING should be
implement as FAL SE to let the dbg_ref_rim function inform the debugging tool that the end
of thisfunction is regarded as the end of the service call.

When T_RCSVC::tskctx is set to FAL SE, the service call for which this function is set will
be executed with nontask context.

Even when OPT_BLOCKING is specified, the callback function "rif_rep_svc" is caled
unlessFLG_NOREPORT is specified.

When rif_cal_svc is executed in the special blocking mode, the function may not return con-
trol until the service call terminatesin the strict sense. In the strict sense, the service call termi-
nates when the stack frame prevailing at function termination is equivalent to the stack frame
prevailing when afunction call ismade by rif_cal_svc. More specificaly, if the service call
is executed in such a manner as to invoke dispatching, such as a wait within the function, the
dispatch to the same task recurs and this function does not return control until the target service
call iscompleted. Furthermore, if the same function is executed recursively within the target
function, this function does not return control until termination occurs for the same number of
times asthe calls. However, when execution is performed in the special blocking mode, a pre-
defined timeout occurs even if the termination does not occur in the strict sense. For details,
see Section 3.13, Special Blocking Mode.

72 RTOS Access Interface - Issue of Service Call rif_cal_svc

ITRON Debugging Interface Specification Ver. 1.00.00

T _RCSVC::prmary stores the value to be delivered as a parameter. The method of parame-
ter delivery conforms to the method for the uITRON 4.0-compliant service call cal_svc (For
structures, etc., the pointers to structures are stored).

Flags
FLG_NOREPORT (800000004): Report function invalidation
The paired callback function will not be called.

OPT_BLOCKING (1)
Executed in a blocking mode.

Keys
RIF 04y
RIF_CAL_SVC 04y,
.FLG_NOREPORT 034 [1]
The FLG_NOREPORT flag isavailable.
.OPT_BLOCKING 104 [1]
The OPT_BLOCKING flag isavailable.
.OPT_APPCONTEXT 11y [1]
The OPT_APPCONTEXT option isavailable.
.NON-BLOCKING 12,4 [1]
A non-blocking SV C issue is supported.
Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_PAR (-145)
A parameter value wasinvalid.
E_EXCLUSIVE (-226)
Another request was already issued. The function could not receive a new
request until execution of the previous request ends.
ET_OBJ (-41)
The targeted object on the target was inoperative.

73 RTOS Access Interface - Issue of Service Call rif_cal_svc

ITRON Debugging Interface Specification Ver. 1.00.00

ET_OACV (-27)
Aninvalid object on an target was accessed (tskid < 0).

ET_ID (-18)
The specified kernel object ID wasinvalid.

ET_NOEXS (-42)
The target object was not found on the target.

74 RTOS Access Interface - Issue of Service Call rif_cal_svc

ITRON Debugging Interface Specification Ver. 1.00.00

5.4.2 Cancel of an issued service call

rif_can_svc Cancel of anissued service call [SVClO
ER rif_can_svc (FLAG flags)
FLAG flags
Flags

This function cancels the service call that is issued immediately before the operation. How-
ever, this function aims at getting focus that was lost by issuance. It cannot completely elimi-
nate the influence of the service call.

Flags

OPT_CANCEL (0)
Does not consider the influence of the issued service call (default).

OPT_UNDO (1)
Completely restore the state to the status before the issuance.

Keys
RIF 04y
.RIF_CAN_SVC 05y [1]
rif_can_svc isimplemented.
.OPT_CANCEL 104 [1]
The OPT_CANCEL optionisavailable.
.OPT_UNDO 114 [1]
The OPT_UNDO option is available.
Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_OBJ (-169)
The targeted object on the target was inoperative.

75 RTOS Access Interface - Issue of Service Call rif_can svc

ITRON Debugging Interface Specification Ver. 1.00.00

5.4.3 Report of service call end

rif_rep_svc Report of service call end [SVC:callback][]

void rif_rep_svc (DT_ER result)

DT ER result
Error code for the |ast-issued service call

When a service call invocated by rif _cal _svc ends, the debugging tool calls the callback
function rif_rep_svc to report the service call end to the RIM. rif_rep_svc is a callback
function to receive the error code for the last-issued service call. However, if the
FLG_NOREPORT flag is specified when rif_cal_svc is used to issue a service cal, this
function does not report the end.

Supplementary explanation
The argument "result” stores an error code (ET_xxx) that complies with the kernel specifica-
tion.

This function is called at the same time as the end of a service call. Therefore, an end report
might be made before escape from rif_cal_svc. To avoid such a problem, you should not
write the following code:

Program source

volatile int flag;
rif_rep_svc(err)
{ flag=1;}

foo()

rif_cal_svc(....);
/[Clears the flag (reporting may be completed at this time).

flag = 0;
/[Blocking continues until the service call ends.
while(flag == 0);

Program source

Keys
RIF 04y,
.RIF_CAL_SVC 06y

Error

This function does not return a value.

76 RTOS Access Interface - Issue of Service Call rif_rep_svc

ITRON Debugging Interface Specification Ver. 1.00.00

5.4.4 Get of function code

rif_ref svc Get of function code [SVClO
ER rif_ref svc (DT_FN * p_svcfn, char * strsvc, FLAG flags)
DT FN* p_svcfn
Pointer to the region for storing a function code that corresponds to the name of
aservice cal
char * strsve

Name of atargeted service call

rif_ref_svc gets a function code from a service call function name. Function codes got by
this function can be used for functions that haverif _cal_svc, rif_set_brk, rif_set_log, and
other function codes as parameters.

Supplementary explanation

The "str_svc" argument (name of the targeted service call) for this function corresponds to
an APl name that defined by the JITRON Standard. When the prefix *_" for C or a suffix
(parameter type, byte count, etc.) for C++ is added to the service call name, the normal opera-
tions of the function are not guaranteed. Normal operations will not be guaranteed either if a
parameter section is specified in the parenthesis following an APl name.

Keys
RIF 04y
.RIF_REF_SVC 07y
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_OBJ (-169)
The targeted object on the target was inoperative.
E_PAR (-145)
A parameter value wasinvalid.

77 RTOS Access Interface - Issue of Service Call rif_ref svc

ITRON Debugging Interface Specification Ver. 1.00.00

5.45 Get of service call name

rif_rrf_svc Get of service call name [svclO)
ER rif_rrf_svc
(char * pstr_svc, UINT bufsz, DT_FN svcfn, FLAG flags)
char * pstr_svc
Pointer to the beginning of the region that stores the name of a service call
UINT bufsz
Size of the buffer that stores the name (termination symbol included)
DT_FN svcfn
Function code of atargeted service call
FLAG flags
Flags

rif_rrf_svc getsaservice call name in accordance with a function code.

Supplementary explanation

pstr_svc (service call name) is a return value of this function. This return value is an AP
name defined by the LI TRON Standard. The prefix "_" for C language or a suffix (parameter
type, byte count, etc.) for C++ language is not added to the function name. Similarly, the
parameter section in a parenthesis following an APl name is not added.

For the argument "bufsz" the size of the buffer region specified by p_strsvc must be set in
bytes. In this instance, buflsz contains a terminal symbol. To thoroughly get a service cal
name, therefore, it is necessary that the specified size be not smaller than "service call name
length + 1". If this condition is not satisfied, the service call name, including terminal symbol,
will be stored without exceeding the above-mentioned length limit. When bufsz is 1, a nor-
mal end occurs with only the terminal symbol stored. However, if bufsz is O, the E_PAR
error occurs.

Keys
RIF 04y,
.RIF_RRF_SVC 084
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

78 RTOS Access Interface - Issue of Service Cal rif_rrf_svc

ITRON Debugging Interface Specification Ver. 1.00.00

E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_OBJ (-169)
The targeted object on the target was inoperative.
E_PAR (-145)
A parameter value wasinvalid.

79 RTOS Access Interface - Issue of Service Cal rif_rrf_svc

ITRON Debugging Interface Specification Ver. 1.00.00

5.5 Set of Break Point

5.5.1 Set of break point

rif_set_brk Set of break point [BRK]O)

ER_ID rif_set brk (ID brkid, T_RSBRK * pk_rsbrk , FLAG flags)

ID brkid
Break point ID

T RSBRK * pk_rsbrk
Pointer to the structure that has the information about the break to be set

FLAG flags
Flags
(Return value) ID brkid
Assigned break point ID

This function offers function for setting an RTOS-dependent break. A break point ID is
assigned to abreak point. A positive number other than 0 is used to indicate a break point ID.
It isused for cancellation and hit notification.

The structure of T_RSBRK is as shown below:
typedef struct t_rsbrk

{
UINT brktype . Break type
UINT brkent : Count before break
DT_ID tskid : Task ID
DT _ID objid . Object ID
UINT objtype . Object type
VP_INT brkprm . Parameter for callback function
DT_VP brkadr . Addressfor break setting
DT_FN svcfn : Function code
} T_RSBRK;

brktype consists of one "stop condition”, a desired number of "additional conditions’, and
one "stop procedure” detailed below. The parameters to be used are parenthesized. Note, how-
ever, that brkcnt isvalid for al combinations.

Stop conditions

* BRK_EXECUTE (2)
Sets an execution break (brkadr, tskid)

« BRK_ACCESS(2)
Sets an access break (brkadr, tskid)

* BRK_DISPATCH (3)
Sets a break for atask dispatcher (after execution) (tskid)

« BRK_SVC (4)
Performs a break upon an SV C (tskid, objid, svcfn)

80 RTOS Access Interface - Set of Break Point rif_set_brk

ITRON Debugging Interface Specification Ver. 1.00.00

Additional conditions
* BRK_ENTER (00)
Places abreak at the start position (BRK_DISPATCH, BRK_SVC)
« BRK_LEAVE (80,)
Places a break at the escape position (BRK_DISPATCH, BRK_SVC)

Stop procedures
* BRK_SYSTEM (0Oy)
Stops al system when abreak occurs.

« BRK_TASK (40,)
Stops task unit when a break occurs.

* BRK_REPORT (204)
Makes areport only (but does not break).

Special values are set to the paramenters, as detailed below:

Table 21: Special Parameter Values Available for Break Setup

Parameter Value Meaning
tskid ID_ALL (-1) Targets all tasks for a break.
objid ID_ALL (-1) Targets all objects for a break.
svcfn ID_ALL (-1) Breaks upon each SVC.
brkcnt BRK_NOCNT (1) Does not use a count.

The above values are variously combined for break setup purposes.
Example: Breaks upon the tenth switch to task 2.

Program source

T_RSBRK {
brktype : BRK_DISPATCH
brkent: .10
tskid 12

}

Program source

Example: Breaks when task 5 attempts to get semaphore 2.
Program source

T_RSBRK{
brktype : BRK_SVC
brkcnt : BRK_NOCNT
tskid :5
objtype : OBJ_SEMAPHORE
objid 12
ext.svcfn : -0x25 (wai_sem)

}
— POgram source

81 RTOS Access Interface - Set of Break Point rif_set_brk

ITRON Debugging Interface Specification Ver. 1.00.00

The parameters to be ignored depending on the option selection will be basicaly excluded
from consideration. However, if avendor furnishes a special break setting function, the use of
an argument section and the addition of parameters are permitted. However, the following flag
must be set for "flags™ to indicate above mentioned states.

OPT_EXTPARAM (2)
Specifies an extended parameter.

When atask dispatcher is used for setup, the RIM sets breaks at all locations where task dis-
patch may occur in the kernel.

Supplementary explanation

This function is called by the debugging tool. However, the debugging tool must not set a
break that it does not support. (For example, a debugging tool that does not support an access
break must not use this function to request access break setup.)

When the function is executed successfully in situations where the automatic number assign-
ment flag "FLG_AUTONUMBERING" is specified, the function returns the value of 1 or
greater (ID value), which is assigned to a break point. Thisis aso true even when the auto-
matic assignment flag is not specified.

Flags

OPT_NOCNDBREAK (1)
A conditional break can not be used for break setting.

OPT_EXTPARAM (2)
Specifies an extended parameter.

FLG_NOREPORT (800000004): Report function invalidation
The corresponding callback function will not be called.

FLG_AUTONUMBERING (400000004): ID automatic assignment

Automatically assigns an ID. The function ignores an argument which is
specified with ID. When successful, the function returns the automatically

assigned ID.
Keys
RIF 04y
RIF_SET_BRK 09y
.FLG_NOREPORT 034 [1]
The FLG_NOREPORT flag isavailable.
FLG_AUTONUMBERING 044 [1]
The FLG_AUTONUMBERING flag is available.
.OPT_NOCNDBREAK 104 [1]
The OPT_NOCNDBREAK option isavailable.
.OPT_EXTPARAM 114 [1]

The OPT_EXTPARAM option isavailable.

82 RTOS Access Interface - Set of Break Point rif_set_brk

ITRON Debugging Interface Specification Ver. 1.00.00

Errors

83

E_OK (0)
Normally ended.
E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the opration
could be continued).

E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason.
E_PAR (-145)

A parameter value wasinvalid.
E_ID (-146)

The specified object ID was invalid.
E_NOID (-162)

Count of IDsfor automatic assignment was insufficient.
ET_OBJ (-41)

The targeted object on the target was inoperative.
ET_OACV (-27)

Aninvalid object on an target was accessed (tskid < 0).
ET_ID (-18)

The specified kernel object ID wasinvalid.

ET_NOEXS (-42)
The targeted object was not found on the target.

RTOS Access Interface - Set of Break Point rif_set_brk

ITRON Debugging Interface Specification Ver. 1.00.00

5.5.2 Delete of break point

rif_del brk Delete of break point [BRK]()
ER rif_del_brk (ID brkid, FLAG flags)
ID brkid
ID of the break point to be deleted
FLAG flags
Flags

This function requests the RIM to delete an RTOS-dependent break.
When brkid isset to ID_ALL (= 0), the function deletes all break points.

Keys
RIF 04y
.RIF_DEL_BRK OAH

Flags
None in particular

Errors

E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason.
E_OBJ (-169)

The targeted object on the target was inoperative.
E_ID (-146)

The specified object ID was invalid.

®

RTOS Access Interface - Set of Break Point rif_del_brk

ITRON Debugging Interface Specification Ver. 1.00.00

5.5.3 Report of break hit

rif_rep_brk Report of break hit [BRK:callback][]
void rif_rep_brk (ID brkid, VP_INT exinf)
ID brkid
ID of the break hit
VP_INT exinf
Extended parameter

When a break set by rif_set_brk is reached and broken, the RIM uses this callback to report
the break. Normally, the Debugging tool requires the "tif_rep_brk" callback function to the
RIM for calling this function.

An extended parameter can be passed to the function. This parameter uses the value of
T _RSBRK::brkprm when break point is set withrif_set_brk.

Keys
RIF 04y,
.RIF_REP_BRK 0By
Errors

This function does not have any return value.

85 RTOS Access Interface - Set of Break Point rif_rep_brk

ITRON Debugging Interface Specification Ver. 1.00.00

5.5.4 Get of break information

rif_ref _brk Get of break information [BRK](O
ER rif_ref _brk (ID brkid, T_RSBRK * ppk_rsbrk, FLAG flags)

ID brkid
Break point ID

T _RSBRK * ppk_rsbrk
Pointer to the region that stores break information

FLAG flags
Flags

This function gets the break point information that corresponds to the specified break point ID.
When the function turns out to be successful, it stores the information about the specified break
point ID in the region specified by ppk_sbrk.

Keys
RIF 04y,
.RIF_REF_BRK 0Ch
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_OBJ (-169)
The targeted object on the target was inoperative.
E_ID (-146)
The specified object ID was invalid.
E_PAR (-145)
A parameter value wasinvalid.

86 RTOS Access Interface - Set of Break Point rif_ref brk

ITRON Debugging Interface Specification Ver. 1.00.00

5.5.5 Get of break condition

rif_ ref cnd Get of break condition [CND] ()

ER rif ref cnd
(T_RRCND_DBG * ppk_dbg, T RRCND_RTOS * pk_rtos,
FLAG flags)

T_RRCND_DBG * ppk_dbg
Pointer to the region that stores the information to check conditions that was set

T_RRCND_RTOS* pk_rtos
Pointer to the region that stores the conditions to be got

FLAG flags
Flags

Thisfunction is used to view the RTOS-dependent conditions that should be examined when a
debugging tool merely usesits own functions to perform an RTOS-dependent break.

The following RTOS-aware conditions are entered for T_RRCND_RTOS:
typedef struct t_rrcnd_rtos

{
FLAG flags . Contents to be examined

DT_ID objid . ID asacondition
} T_RRCND_RTOS;

Thefollowing value can be set for "T_RRCND_RTOS::objid":

« CND_CURTSKID (0)
Conditions under which the ID of the currently executed task is equal to id

This function returns the method of checking the conditionsthat issetto T_RRCND_DBG.
The following items of information to be checked is returned:
typedef struct t_rrcnd_dbg

{
DT_VP execadr . Execution address (NULL: NC)
DT _VPvaadr . Address for comparison (NULL: NC)
UINT valen . Datalength (1, 2, or 4 bytes)
VP_INT value . Data or pointer value

} T_RRCND _DBG;

The conditions generated by T RRCND_DBG is stated as “when program counter reachs
execadr and vallen bytes data from the memory address valadr isvalue”. When NULL is
stored at execador, this expression becomes a conditional expression that is independent of the
program counter. If valadr is omitted, this expression turns out to be a conditional expression
that is independent of memory data. However, if this function generates conditions under
which execadr and valadr are both NULL, the debugging tool that has executed this func-
tion concludes that all the conditions are invalid.

T _RRCND_DBG::value stores the value that is compared. If the value is greater than
VP_INT, value must also store the pointer to the region that stores this value.

87 RTOS Access Interface - Set of Break Point rif_ref _cnd

ITRON Debugging Interface Specification Ver. 1.00.00

Supplementary explanation

This function checks whether the range of specified IDsisvalid. However, it does not check
whether tasks exist.

Keys
RIF 04y,
.RIF_REF_CND 0Dy
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_PAR (-145)
A parameter value wasinvalid.
E_CND (-228)
The conditions can not be set.
ET_ID (-18)
The specified kernel object ID wasinvalid.

88 RTOS Access Interface - Set of Break Point rif_ref _cnd

ITRON Debugging Interface Specification Ver. 1.00.00

5.6 Execution History (Trace Log)

5.6.1 Set of trace log

rif_set log Set of tracelog [LOG]O

ER_ID rif_set log
(ID logid, UINT logtype, VP pk_rslog, FLAG flags)

ID logid
ID number to be assigned to the log to be set

Type of the log to be set
VP pk_rslog
Pointer to the region that stores the trace log setup information
FLAG flags
Flags
(Returnvalue) 1D logid

Unique value for identifying the log that is set

This function passes the setup information for get trace log to the RIM and make a request to
get it.

The following values can be used aslogtype:

* LOG_TYP_INTERRUPT (2)
I nterrupt

* LOG_TYP_ISR (2
Interrupt service routine

« LOG_TYP_TIMERHDR (3)
Timer handler

* LOG_TYP_CPUEXC (4)
CPU exception

* LOG_TYP_TSKEXC (5)
Task exception

* LOG_TYP_TSKSTAT (6)
Task state

« LOG_TYP_DISPATCH (7)
Task dispatch
* LOG_TYP_SVC (8)
Servicecall
« LOG_TYP_COMMENT (9)
Comment (It is alog which consists of a character string only; mainly written by the
user)

89 RTOS Access Interface - Execution History (Trace Log) rif_set log

ITRON Debugging Interface Specification Ver. 1.00.00

LOG_ENTER (0O4) and LOG_LEAVE (804) exist. Theformer is used as an additional flag
to activator or start. Thelatter isused to terminate an operation. If these desired position spec-
ifers are omitted, it is concluded that LOG_ENTER is specified (e.g., LOG_TYP_TSK |
LOG_ENTER: getsaloginrelation to atask startup).

The following structures are assigned to the above-mentioned various types. These structures
are used for pk_rslog. When "ID_ALL (= -1)" is specufued, parameters marked "ID_ALL
available', all IDswill be targeted. Substitution must be conducted by casting into the respec-
tive type as necessary.

LOG_TYP_INTERRUPT (1): Interrupt (start, end)
typedef struct t_rslog_interrupt

{
DT _INTNOintno : Interrupt number (ID_ALL available)
} T_RSLOG_INTERRUPT:

LOG_TYP_ISR (2): Interrupt service routine (start, end)
typedef struct t_rslog_isr

{
DT_ID isrid . Interrupt serviceroutine ID (ID_ALL available)

DT _INTNOintno : Interrupt number (ID_ALL available)
} T_RSLOG_ISR;

Note: If intno isID_ALL, isrid isautomatically set tolD_ALL.

LOG_TYP_TIMERHDR (3): Timer event handler (start, end)
typedef struct t_rslog_timerhdr

{
UINT type : Handler type (OBJ_ALL available)

(storesthe"OBJ_xxx" constant that isused for rif_ref_obj::objtype.)
(al types will be targeted when OBJ_ALL(=ID_ALL) is specified.)
DT_ID hdrid : Handler ID (ID_ALL available)
} T_RSLOG_TIMERHDR;

LOG_TYP_CPUEXC (4): CPU exception (start, end)
typedef struct t _rslog_cpuexc

{
DT_EXCNO excno : CPU exception code (ID_ALL available)
} T_RSLOG_CPUEXC;

LOG_TYP_TSKEXC (5): Task exception (start, end)
typedef struct t_rslog_tskexc

{
DT _ID tskid : Task ID (ID_ALL available)
} T_RSLOG_TSKEXC;

LOG_TYP_TSKSTAT (6): Task state
typedef struct t rslog_tskstat

{
DT_ID tskid : Task ID (ID_ALL available)
} T _RSLOG_TSKSTAT:
Note: Thetasks stateisregarded as the execution-ready state without distinction between exe-
cuting state and execution-ready state.

90 RTOS Access Interface - Execution History (Trace Log) rif_set log

ITRON Debugging Interface Specification Ver. 1.00.00

LOG_TYP_DISPATCH (7). Task dispatch start
typedef struct t rslog_dispatch

{
DT _ID tskid - Task ID (ID_ALL available)
} T_RSLOG_DISPATCH:;

LOG_TYP_SVC (8): System call (start, end)
typedef struct t rslog_svc

{
DT _FN svcfn . Function code
DT_ID objid . Targeted object ID (ignored when the SV C does not have a tar-
get; ID_ALL available)
DT_ID tskid : Task ID (ID_ALL available)

BITMASK param . Parameter to be targeted (ID_ALL available)
} T_RSLOG_SVC;

Note: When ID_NONTSKCTX(=0) is specified for tskid, the nontask context will be tar-
geted. ID_ALL means both the task context and nontask context. param specifiesthe
parameters to be logged and logs the parameters that correspond to the bit positions at
which the valueis 1. When LOG_ENTER is specified, the leftmost argument corre-
sponds to the first parameter. When LOG_LEAVE is specified, the return value is the
first parameter, and the second and subsequent parameters are the arguments.

LOG_TYP_COMMENT (9): Comment
typedef struct t_rslog_comment

{
UINT length : Comment character string length
} T_RSLOG_COMMENT;

Supplementary explanation
Some logs are output in a specified order. The following logs are output in a predetermined
order. Thelogs on the left-hand side are displayed first.

* LOG_TYP_DISPATCH|LOG_LEAVE, LOG_TYP_TSKEXC
* LOG_TYP_DISPATCH|LOG_ENTER, LOG_TYP_TSKSTAT

LOG_TYP_SVC|LOG_LEAVE does not detect the end of the following service cals:
e ext_tsk
e exd_tsk

LOG_TYP_TSKEXC|LOG_LEAVE will not be detected in the following situation:
« Non-local jump (Iongjmp) from task exception handler”

LOG_TYP_TSKSTAT does not distinguish between the executable state (READY) and exe-
cuting state (RUNNING). It recognizes both statesasa READY state. The READY state and
RUNNING state are acquired by LOG_TYP_DISPATCH.

*. Refersto process that uses longjmp, setjmp, etc., to forcibly pass process to specific function irre-
spective of function execution order

91 RTOS Access Interface - Execution History (Trace Log) rif_set log

ITRON Debugging Interface Specification Ver. 1.00.00

When the function is successfully executed in situations where the automatic number assign-
ment flag FLG_AUTONUMBERING is specified, the function returns a value of 1 or greater
(ID value), which isassigned to alog item. Thisis also true even when the automatic assign-
ment flag is not specified.

Flag

FLG_AUTONUMBERING (400000004): ID automatic assignment
Automatically assigns an ID. If an argument is specified as the ID, it is
ignored by the function. When the function is successfully executed, it
returns the automatically assigned ID.

Keys
RIF 04y
RIF_SET_LOG OEy
FLG_AUTONUMBERING 044 [1]
The FLG_AUTONUMBERING flag is available.
.OPT_BUFFUL_STOP 104 [1]
The OPT_BUFFUL_STOP optionisavailable.
.OPT_BUFFUL_FORCEEXEC 114 [1]
The OPT_BUFFUL_FORCEEXEC option isavailable.
Errors

E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason.
E_ID (-146)

The specified object ID was invalid.
E_NOID (-162)

Count of 1Ds for automatic assignment was insufficient.
E_OBJ (-169)

The targeted object on the target was inoperative.
ET_ID (-18)

The specified kernel object ID wasinvalid.
E_PAR (-145)

A parameter value wasinvalid.

92 RTOS Access Interface - Execution History (Trace Log) rif_set log

ITRON Debugging Interface Specification Ver. 1.00.00

5.6.2 Delete of trace log

rif_del log Delete of tracelog [LOG]O)
ER rif_del _log (ID logid, FLAG flags)
ID logid
ID of the trace log to be deleted
FLAG flags
Flags

This function deletes the trace log setting specified by rif_set _log. It deletes al the log set-
ting when logid issetto ID_ALL (=-1).

Supplementary explanation
Trace logs validated by rif_sta_log cannot be deleted.

Keys
RIF 04y
RIF_DEL_LOG OF4
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason.
E_ID (-146)

The specified object ID was invalid.
E_OBJ (-169)

The targeted object on the target was inoperative.

E_EXCLUSIVE (-226)
Another request has already been issued. The function could not receive a
new request until execution of the previous request ends.

93 RTOS Access Interface - Execution History (Trace Log) rif_del_log

ITRON Debugging Interface Specification Ver. 1.00.00

5.6.3 Request of trace log function start

rif_sta log Request of trace log function start [LOG]O
ER rif_sta_log (ID logid, FLAG flags)
ID logid
ID number assigned to the trace log function to be started
FLAG flags
Flags

This function starts executing the trace log function in accordance with the setting defined by
rif_set_log. WhenID_ALL (=-1) is specified, all the specified logs are validated.

Supplementary explanation

Getting trace log takes place in non-blocking mode. You should therefore note that the end of
this function does not mean the end of getting trace log. In reality, getting log operation is per-
formed during a program run resumption after the call of this function.

Supplementary explanation

Even when the trace log function is exercised two or more times for the log setting for the sigle
ID, the function returns E_OK. The all specified log settings are stopped by a single stop pro-
cedure even if the trace log function is exercised two or more times.

Keys
RIF 04y,
RIF_STA_LOG 10y
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).

E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason.
E_ID (-146)

The specified object ID was invalid.
E_OBJ (-169)

The targeted object on the target was inoperative.

94 RTOS Access Interface - Execution History (Trace Log) rif_sta log

ITRON Debugging Interface Specification Ver. 1.00.00

5.6.4 Request of trace log stop

rif_stp_log Request of trace log stop [LOG]O
ER rif_stp_log (ID logid, FLAG flags)
ID logid
ID of the trace log to be stopped
FLAG flags
Flags

This function stops the specified trace logging operation. All logs are targeted when logid is
settoID_ALL (=-1).

Supplementary explanation

This function aims at clearing the break points or other settings for get trace log. It does not
cancel the trace log settings.
Storage of the data specified by rif _set_log must be assured before and after this function.

Supplementary explanation
Even when this function is executed for an already terminated log setting, it returnsE_OK.

Keys
RIF 04y,
.RIF_STP_LOG 114
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason.
E_ID (-146)

The specified object ID was invalid.
E_OBJ (-169)

The targeted object on the target was inoperative.

95 RTOS Access Interface - Execution History (Trace Log) rif_stp_log

ITRON Debugging Interface Specification Ver. 1.00.00

5.6.5 Get of trace log

rif_get log Get of tracelog [LOG]O
ER rif_get log (T_RGLOG * ppk_rglog, FLAG flags)
T RGLOG * ppk_rglog
Pointer to the region that stores the standard trace log information
FLAG flags
Flags

rif_get_log requiresto get logs stored in the RIM. The RIM issuestif_get_log as needed to
get primitive log information and remakes this information into areturn value. When a highly
functional debugging tool is used, the RIM may use the data got by tif_get_log as the return
value without remaking.

When rif_get_log getsonelog, it moves the read position to the next log. To get all logs, the
debugging tool cals this function two or more times. When no log remains, rif_get_log
returnsthe E_OBJ error.

The contentsof T_RGLOG are indicated below:
typedef struct t_rglog

{

UINT logtype : Log type

LOGTIM logtim . Time stamp

BITMASK valid . Validation flag

UINT bufsz . Buffer region (buf) size (in bytes)

char buf[] . Buffer region to store information (detailed | ater)
} T_RGLOG;

T _RGLOG is required to have a sufficient region for storing "the type and the data to be
stored in a buffer” (mentioned later) in addition to essential items, "logtype", "logtim"”, and
"valid".

The generated log type enters the T_RGLOG::type position. T_RSLOG::buf stores the
information that corresponds to the specified type. For alog type that permits the designation
of startup and end, the specifiers "LOG_ENTER" and "LOG_LEAVE" are set to
"T_RGLOG::type". Thelog typesand the information to be stored are detailed below. Note
that the information logged at startup is different from information logged at termination only
when LOG_TYP_DISPATCH is used.

LOG_TYP_INTERRUPT (1): Interrupt handler
typedef struct t_rglog_interrupt

{
DT_INHNOinhno : Interrupt handler number
} T_RGLOG_INTERRUPT,

96 RTOS Access Interface - Execution History (Trace Log) rif_get log

ITRON Debugging Interface Specification Ver. 1.00.00

LOG_TYP_ISR (2): Interrupt service routine
typedef struct t_rglog_isr

{

DT _IDisrid . Interrupt service routine ID
DT_INTNO inhno : Interrupt handler number
} T_RGLOG_ISR;

LOG_TYP_TIMERHDR (3): Timer event handler
typedef struct t_rglog_timerhdr

{
UINT type . Timer type
(storesthe constant "OBJ_xxx" that isused for rif_ref_obj::objtype).
DT _ID hdrid . Timer event handler ID

DT_VP_INT exinf : Extension information
} T_RGLOG_TIMERHDR,;

LOG_TYP_CPUEXC (4): CPU exception
typedef struct t_rglog_cpuexc

{
DT_ID tskid . 1D of atargeted task
} T_RGLOG_CPUEXC;
If the cause of an CPU exception is outside the task, tskid isO.

LOG_TYP_TSKEXC (5): Task exception
typedef struct t_rglog_tskexc

{
DT _ID tskid . 1D of atargeted task
} T_RGLOG_TSKEXC;

LOG_TYP_TSKSTAT (6): Task state
typedef struct t_rglog_tskstat

{
DT_ID tskid : Task ID

DT _STAT tskstat : Status of task at transition destination
DT_STAT tskwait : Wait state
DT _ID wobjid . 1D of waiting object

} T _RGLOG_TSKSTAT,

LOG_TYP_DISPATCH|LOG_ENTER (7): Task dispatch start
typedef struct t_rglog_dispatch_enter

{
DT _ID tskid . 1D of executed task

UINT disptype . Dispatch type
} T_RGLOG_DISPATCH_ENTER;

The dispatch types are as follows:

DSP_NORMAL (0)
Dispatch from task context

DSP_NONTSKCTX (1)
Dispatch from interrupt process or CPU exception

97 RTOS Access Interface - Execution History (Trace Log) rif_get log

ITRON Debugging Interface Specification Ver. 1.00.00

LOG_TYP_DISPATCH|LOG_LEAVE (135): Task dispatch end
typedef struct t rglog_dispatch_leane

{
DT _ID tskid . 1D of task about to be executed
} T _RGLOG_DISPATCH_LEAVE;

LOG_TYP_SVC (8): Service call
typedef struct t rglog_svc
{
DT _FN fncno . Function code
UINT prment . Parameter count
DT_VP_INT prmary []:Parameters
} T_RGLOG_SVC;

LOG_TYP_COMMENT (9): Comment (log consisting of a character string only)
typedef structt_rglog_comment B
{
UINT length . Character string length
char strtext [] . Character string (NULL-terminated string) - May be broken
} T_RGLOG_COMMENT,

Before the call of this function, the debugging tool must store the size (in bytes) of the buffer
region specified by T_RGLOG::buf inthe T_RGLOG structure member bufsz.

Supplementary explanation

Asregardsalog (LOG_TYP_COMMENT::strtext) that is marked "May be broken™, atrans-
fer is made to the extent possible even if the buffer region isinsufficient. However, the mini-
mum required meaningful unit must be assured even if the transfer has to be broken before

completion due to buffer region insufficiency.” The enable/disable bit map (explained later)
for such abroken parameter remains enabled and the return valueisE_NOMEM error.

T RSLOG::valid indicatesavalid field of itemsto be stored in T_RSLOG::buf. Theitems
are sequentially mapped into bit map in order. As regards LOG_TYP_SVC _ENT, for
instance, fncno, prmcnt, and Prmary [n] are assigned to the least significant bit, the second
least bit, and the third+n least bit, respectively. | is stored in the enabled item, while O is stored
in the disabled item. However, T_RGLOG_COMMENT::strtext ishandled in the unit of the
entire character string and not in the character unit. Bitsirrelevant to itemsare al O.

T _RGLOG_SVC::prmcnt, got by a log type-service call start (LOG_TYP_SVCI|LOG _
ENTER) stores the maximum number of obtained parameters. As regards the normally got
portion of T_RGLOG_SVC::prmary, the leftmost argument is handled as the first one and
the bit corresponding to T_RGLOG::valid is 1. If, for example, parameter is got partialy,
note that the number of function arguments does not match T_RGLOG_ SVC::prmcnt.

T RGLOG_SVC::prmcnt, got by a log type-service cal end (LOG_TYP_SVCI|LOG _
LEAVE) stores the maximum number of got parameters, including the return value. For the
normally got portion of T_RGLOG_SVC::prmary, the return value and function leftmost
argument are handled as the first and second ones, respectively, and the bit corresponding to
T RGLOG::valid is1.

*, Strtext isaNULL-terminated character string. To assure that a NULL-terminated character string
ismeaningful, it is necessary to add aterminal symbol to break when the remaining buffer sizeis1
byte.

98 RTOS Access Interface - Execution History (Trace Log) rif_get log

ITRON Debugging Interface Specification Ver. 1.00.00

Some logs are output in a specified order. The following logs are output in a predetermined
order. Thelogson the left side are displayed first.

« LOG_TYP_DISPATCH|LOG_LEAVE, LOG_TYP_TSKEXC
* LOG_TYP_DISPATCH|LOG_ENTER, LOG_TYP_TSKSTAT
LOG_TYP_SVC|LOG_LEAVE does not detect termination of the following functions:
e ext_tsk
» exd_tsk
LOG_TYP_TSKEXC|LOG_LEAVE will not be detected in the following situation:
* Non-local jump (longjmp) from task exception handler

LOG_TYP_TSKSTAT does not distinguish between the execution-ready state (READY) and
executing state (RUNNING). It recognizes both states as a READY state. The READY state
and RUNNING state are got by LOG_TYP_DISPATCH.

Option

OPT_PEEK (1)
Gets atrace log without deleting it from the spool.

Keys
RIF 04y
RIF_GET_LOG 12,
.OPT_PEEK 10y [1]
The OPT_PEEK option isavailable.
.STRUCT_SVC 114 [1]
Uses a dedicated structure for the start/end of LOG_TYP_SVC.
Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_OBJ (-169)
The targeted object on the target was inoperative.
E_PAR (-145)
A parameter value wasinvalid.

99 RTOS Access Interface - Execution History (Trace Log) rif_get log

ITRON Debugging Interface Specification Ver. 1.00.00

5.6.6 Reconfigur of trace log mechanism

rif_cfg _log Reconfigur of trace log mechanism [LOG]O
ER rif_cfg_log (T_RCLOG * pk_rclog, FLAG flags)
T RCLOG * pk_rclog
Pointer to the packet that stores trace log configuration information
FLAG flags
Flags

This function changes the trace log mechanism configuration.

The structure"T_RCLOG" which stores trace |og configuration information is detailed below:
typedef struct t_rclog

{
UINT type : Trace log configuration type
DT_VP bufptr . Pointer to the trace log buffer
DT_SIZE bufsz . Trace log buffer size

} T_RCLOG;

T _RCLOG::type stores the trace log mechanism setup information. The buffer getting
method and log buffer full state operation can be specified as the setup information. The fol-
lowing values can be used as setup information (The E_NOSPT error occurs if an unsup-
ported method is selected).

Buffer getting method
* LOG_HARDWARE (0)
Gets buffer with TIF-based hardware log mechanism

* LOG_SOFTWARE (1)
Gets buffer with software-based log mechanism executed by RIM alone

Operation when buffer full

* LOG_BUFFUL_STOP (0)
Stops getting trace when buffer full

* LOG_BUFFUL_FORCEEXEC (4)
Continues getting buffer by discarding oldest information when buffer full

T _RCLOG::bufptr and T_RCLOG::bufsz set the guide for RTOS history storage region
creation by the RIM and debugging tool. When getting log is intended, the specified region is
used as the log buffer.

Supplementary explanation

If a log mechanism is used without these setting mentioned above, the operation follows
implement definition.

100 RTOS Access Interface - Execution History (Trace Log) rif_cfg log

ITRON Debugging Interface Specification Ver. 1.00.00

If LOG_HARDWARE is gpecified and the RIM checks the key code DEBUG-
GER.LOG.NUM and concludes that it has no hardware log mechanism, the function must
return E_NOSPT.

If the log buffer region overlaps with a program region (data or code region) or a nonexistent
memory space is specified, the RIM returnsthe ET_MACYV error.

Keys
RIF 04y,
RIF_CFG_LOG 13
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_PAR (-145)
A parameter value wasinvalid.
ET_MACV (-26)
Aninvalid memory region on the target was accessed.

101 RTOS Access Interface - Execution History (Trace Log) rif_cfg log

ITRON Debugging Interface Specification Ver. 1.00.00

5.7 Other RTOS-related Information

5.7.1 Get of kernel configuration

rif_ref cfg Get of kernel configuration [RIO
ER rif_ref cfg
(T_INFO * p_information, UINT packets, FLAG flags)

T _INFO* p_information
Pointer to the beginning of a get information structure array

UINT packets
Length of the get information structure array indicated by p_information

FLAG flags
Flags

This function gets a kernel configurati on.”

To get information, this function uses the function for getting information T_INFO and key
code. For details, see Section 3.6. rif_ref_cfg can get key codes under the INF_CFG key.

Keys
CFG H
.CPUEXCEPTION 174
.MIN 14 [W]
Minimum value of the internal exception causes that the kernel uses
.MAX 2y W]
Maximum value of the internal exception causes that the kernel uses
.NUM 3y W]
Count of internal exception causes that the kernel uses
SYSTIM 204
.TICK_D 14 [W]
Denominator when the timer resolution is expressed in milliseconds
(ms)
.TICK_N 2y W]
Numerator when the timer resolution is expressed in milliseconds (ms)
.UNIT_D 3y W]
Denominator when the timer unit is expressed in milliseconds (ms)
.UNIT_N 4 W]

Numerator when the timer unit is expressed in milliseconds (ms)

*. Inthe ITRON Debugging Interface Specification, the information changed by kernel reconfigura-
tion is defined as the kernel configuration. You should remember this definition if you have diffi-
culty selecting dbg_ref_rim (explained later) or rif_ref cfg function as a new information item
toaddin.

102 RTOS Access Interface - Other RTOS-related Information rif_ref cfg

ITRON Debugging Interface Specification Ver. 1.00.00

LOGTIM 21y
.TICK_D 14 [W]
Denominator when the log time resolution is expressed in milliseconds
(ms)
TICK_N 2y W]
Numerator when the log time resolution is expressed in milliseconds
(ms)
UNIT_D 3y W]
Denominator when the log time unit is expressed in milliseconds (ms)
{UNIT_N 4., [W]
Numerator when the log time unit is expressed in milliseconds (ms)
INTERRUPT 224
MIN 14 W]
Minimum value of the external interrupt factors that the kernel uses
MAX 2y [W]
Maximum value of the external interrupt factors that the kernel uses
NUM 3n [W]
Count of external interrupt factors that the kernel uses
ISR 254
MIN 14 W]
Minimum ISR number offered by kernel
MAX 2y [W]
Maximum ISR number offered by kernel
NUM 3n [W]
Number of 1SRs offered by kernel
.MAKER 234 [W]
Manufacturer code
PRIORITY 244
MIN 14 W]
Minimum value of the priority levels available to the kernel
MAX 2y [W]
Maximum value of the priority levels available to the kernel
.OBJ_SEMAPHORE 80y
MIN 14 W]
Minimum value of assignable IDs
MAX 2y [W]
Maximum value of assignable IDs
.OBJ_EVENTFLAG 81y
.MIN 14 [W]
Minimum value of assignable IDs
MAX 2y [W]
Maximum value of assignable IDs
.OBJ_DATAQUEUE 82y
.MIN 14 [W]

Minimum value of assignable IDs

103 RTOS Access Interface - Other RTOS-related Information rif_ref cfg

ITRON Debugging Interface Specification

MAX

Maximum value of assignable IDs
.OBJ_MAILBOX

.MIN

Minimum value of assignable IDs
.MAX

Maximum value of assignable IDs
.OBJ_MUTEX

.MIN

Minimum value of assignable IDs
.MAX

Maximum value of assignable IDs
.OBJ_MESSAGEBUFFER

.MIN

Minimum value of assignable IDs
.MAX

Maximum value of assignable IDs
.OBJ_RENDEZVOUSPORT

.MIN

Minimum value of assignable IDs
MAX

Maximum value of assignable IDs
.OBJ_RENDEZVOUS

.MIN

Minimum value of assignable IDs
MAX

Maximum value of assignable IDs
.OBJ_FMEMPOOL

.MIN

Minimum value of assignable IDs
MAX

Maximum value of assignable IDs
.OBJ_VMEMPOOL

.MIN

Minimum value of assignable IDs
.MAX

Maximum value of assignable IDs
.OBJ_TASK

.MIN

Minimum value of assignable IDs
.MAX

Maximum value of assignable IDs
.OBJ_CYCLICHANDLER

.MIN
Minimum value of assignable IDs

24 W]

83,
1y [W]

21 [W]

84,
1y [W]

21 [W]

85,
14 W]

21 [W]

86
1n W]

24 [W]

87y
14 (W]

24 [W]

88,
1n [W]

24 W]

89,
1n [W]

21 [W]

8Ay
1n [W]

21 [W]

8Dy
14 W]

Ver. 1.00.00

104 RTOS Access Interface - Other RTOS-related Information rif_ref cfg

ITRON Debugging Interface Specification Ver. 1.00.00

MAX 2y W]
Maximum value of assignable IDs
.OBJ_ALARMHANDLER 8EH
MIN 1y [W]
Minimum value of assignable IDs
MAX 24 W]
Maximum value of assignable IDs
.PRVER A0y [S]
Version number of the kernel
.SPVER Al,[S]

ITRON Specification version number

If the above .MAX key codeis 0 and .MIN key codeis 0, it means that the associated function
IS not supported.

.MIN is a key code of getting information to indicate the lower limit for an object ID or other
item used by the system. If the employed debugging tool does not display such system objects,

their values can be replaced by the object ID minimum value (1) available to the user.”

Supplementary explanation

If a nonexistent key code of getting information is specified or if this function is called
together with a buffer having asize of "0", the function returns E_PAR (parameter error).

Errors

E_OK (0)
Normally ended.
E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).

E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason.
E_PAR (-145)

A parameter value was invalid.
E_OBJ (-169)

The targeted objuect on the target was inoperative.

*. According to the ITRON Specification, system objects customarily have a negative object ID.
Meanwhile, user tasks can only use a positive object ID. Therefore, if system objects are not dis-
played, the INF_MIN valueis not so important.

105 RTOS Access Interface - Other RTOS-related Information rif_ref cfg

ITRON Debugging Interface Specification Ver. 1.00.00

This page isintentional blank.

106 RTOS Access Interface - Other RTOS-related Information rif_ref cfg

ITRON Debugging Interface Specification Ver. 1.00.00

6.Target Access Interface

6.1 Memory Operations

6.1.1 Allocate memory (on host)

tif_alc_mbh Allocate memory (on host) R[]
ER tif_alc_mbh (VP * p_blk, UINT blksz, FLAG flags)

VP* p_blk
Pointer to the region that stores the pointer to the beginning of an allocated
block

UINT blksz
Block size

FLAG flags
Flags

To create awork region for amemory read, the debugging tool provides the RIM with a means
of memory alocation. When the C library is available to the host, the debugging tool only call
the malloc function. However, the RIM must not assume that the C library isimplemented in
the host on which the debugging tool runs. Therefore, the RIM must not internally call the
malloc function.

Keys
TIF 054
TIF_ALC_MBH 01y
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_PAR (-145)
A parameter value wasinvalid.

107 Target Access Interface - Memory Operationstif _alc_mbh

ITRON Debugging Interface Specification Ver. 1.00.00

6.1.2 Allocate memory (on target)

tif_alc_mbt Allocate memory (on target) [E1]

ER tif_alc_mbt (DT_VP * p_blk, DT_SIZE blksz, FLAG flags)
DT_VP* p_blk
Region for storing the pointer to the beginning of an allocated memory region

DT_SIZE blksz
Size (in bytes) of the memory region to be allocated

FLAG flags
Flags

When the debugging tool can manage the memory on the target,” this function is executed to
allocate the memory on the target for the purpose of performing an operation, for instance, "to

let the RIM write aglueroutine” on the target”.

If dynamic memory allocation is unable, there is no need to support this function. In such an
instance, the RIM must allocate aregion itself.

Keys
TIF 054
.TIF_ALC_MBT 02y [1]
Supports this function.
Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).
E_PAR (-145)
A parameter value wasinvalid.
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.

ET_NOMEM (-33)
The request could not be executed due to insufficient memory on the target.

*: The assumed situation is such that a function for emulating a memory within a space where no
physical memory exists, which some general-purpose debuggers have, isimplemented.

**: For an SVC issue, the RIM may generate atemporary program for calling atargeted SVC. Such a
program is called a glue routine.

108 Target Access Interface - Memory Operationstif _alc_mbt

ITRON Debugging Interface Specification Ver. 1.00.00

6.1.3 Free memory (on host)

tif_fre_mbh Free memory (on host) [R] []
ER tif fre_mbh (VP blk, FLAG flags)
VP blk
Pointer to the beginning of the memory block to be freed
FLAG flags
Flags

This function frees a memory that is alocated on a host. On most of the hosts, it is assumed
that this function corresponds to the C library’s "free" function.

Supplementary explanation

When "blk" is contained in a closed section between the block start position and the "block
length - 1" position, this function normally frees memory.

Keys
TIF 05y
.TIF_FRE_MBH 034
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_PAR (-145)
A parameter value wasinvalid.
E_OBJ (-169)
The targeted object on the target was inoperative.

109 Target Access Interface - Memory Operationstif_fre_mbh

ITRON Debugging Interface Specification Ver. 1.00.00

6.1.4 Free memory (on target)

tif_fre_mbt Free memory (on target) [E] [
ER tif fre_mbt (DT_VP blk, FLAG flags)
DT VP blk
Pointer to the beginning of the memory block to be freed
FLAG flags
Flags

This function frees amemory that is allocated to the target.

Supplementary explanation
When blk is contained in a closed section between the block start position and the "block
length - 1" position, this function normally frees memory.

Keys
TIF 054
TIF_FRE_MBT 04y [1]
Supports this function.
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_PAR (-145)
A parameter value wasinvalid.
ET_NOMEM (-33)
The request could not be executed due to insufficient memory on the target.
ET_OBJ (-41)
The targeted object on the target was inoperative.

110 Target Access Interface - Memory Operationstif_fre_mbt

ITRON Debugging Interface Specification Ver. 1.00.00

6.1.5 Read memory (memory block)

tif _get_mem Read memory [R] [

ER tif_ get_ mem

(VP p_result, DT_VP memadr, DT_SIZE memsz, FLAG flags)

VP p_result
Pointer to the beginning of the storage region

DT VP memadr
Read starting address

DT_SIZE memsz
Length of the datato be read (in bytes)

FLAG flags
Flags

tif_get_mem reads the data in the target memory that has alength of memsz and begins with
memadr. Before a function call, the RIM creates a buffer with a length greater than memsz,
and setsitin p_result. The debugging tool stores the read memory datain p_result-speci-
fied region as a byte string.

e Extension | l
The following extended functionalities are defined:

Flags

FLG_NOCONSISTENCE (100000004): Nonconsistency flag
When this flag is specified, the data that is got need not be consistent (e.g.,
the task is still in the waiting state although there is no factor of the task
wait).

FLG_NOSYSTEMSTOP (200000004): An explicit system halt is not permitted.

When thisflag is specified, tif_brk_tgt must not be used within the function
to halt the system. If thisflag isnot supported, the E_ NOSPT error occurs.

1 Extension I]

Supplementary explanation
The read access size is determined by the debugging tool.

Keys
TIF 054
TIF_GET_MEM 054
.FLG_NOCONSISTENCE 01y [1]
Supportsthe FLG_NOCONSISTENCE flag.
FLG_NOSYSTEMSTOP 024 [1]

Supportsthe FLG_NOSYSTEMSTORP flag.

111 Target Access Interface - Memory Operationstif_get mem

ITRON Debugging Interface Specification Ver. 1.00.00

Errors

E_OK (0)
Normally ended.
E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).

E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason.
ET_MACYV (-26)

Aninvalid memory region on the target was accessed.
E_PAR (-145)

A parameter value wasinvalid.
E_CONSIST (-225)

Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

112 Target Access Interface - Memory Operationstif_get mem

ITRON Debugging Interface Specification Ver. 1.00.00

6.1.6 Read memory (block set)

tif _get bls Read memory by block set O[R] []
ER tif_get_bls
(VP p_result, T_BLKSET * blkset, FLAG flags)
VP p_result

Pointer to the region that stores the results of aread

T BLKSET * blkset
Structure specifying the read location

FLAG flags
Flags
This function reads the contents of the target memory by a block set. The block set retains

positions consisting of a memory address and byte length within a target memory space.
tif_get_bls can read the target memory space indicated by the block set in batch processing.

The T_BLKSET structure is an aggregate that stores memory blocks, which are read units.
typedef struct t_blkset

{
UINT blkent : Count of blocks
T_MEMBLK blkary []: Block array
} T _BLKSET:
typedef struct t_memblk
{
DT_VP blkptr . Pointer to store the memory block data
DT_SIZE blksz : Byte count of memory block data

} T_MEMBLK;
The read contents of the target memory are stored sequentially in the p_result-defined mem-
ory space in the order specified by the block set. If the memory is read with the following
block set, the read datais stored as indicated in Table 22.

T_BLKSET pk_blkset = { 3, { { 0x1000, 128} , { 0x2000, 1} , { 0x3000, 64} } }

Table 22: Relation Between Block Set and Data Arrangement

Starting offset 0 128 129
Data length 128 bytes 1 byte 64 bytes
Data address 0x1000 to 0x1080 0x2000 0x3000 to 0x3040

113 Target Access Interface - Memory Operationstif_get_bls

ITRON Debugging Interface Specification Ver. 1.00.00

Supplementary explanation

When this function returns E_OK, it assures that the required block set is normally read in
accordance a with required conditions. If any one of requested blocks is unsuccessfully read,
the E_MACYV error occurs. Furthermore, if FLG_NONCONSISTENCE (described later) is
not specified and consistency cannot be assured for all regions instead of on an individual
memory block basis, the E_ CONSIST error occurs, unlike when tif_get_mem is executed
continuously.

The read access size is determined by the debugging tool.

Before afunction call, the RIM must create a buffer that is large enough to store the result, and
storeitinp_result.

1 Extension | |
The following operation can be executed with extended functions:

Flags

FLG_NOCONSISTENCE (100000004): Nonconsistency flag
When this flag is specified, the data that is got need not be consistent (e.g.,
the task is still in the wait state although there is no cause of the task’s wait).
FLG_NOSYSTEMSTOP (200000004): An explicit system halt is not permitted.

When thisflag is specified, tif_brk_tgt must not be used within the function
to halt the system. If thisflag is not supported, the E_NOSPT error occurs.

1 Extension I]

Keys
TIF 05,
TIF_GET_BLS 06
.FLG_NOCONSISTENCE 014 [1]

Supportsthe FLG_NOCONSISTENCE flag.
FLG_NOSYSTEMSTOP 024 [1]

Supportsthe FLG_NOSYSTEMSTORP flag.

Errors

E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.

114 Target Access Interface - Memory Operationstif_get_bls

ITRON Debugging Interface Specification Ver. 1.00.00

ET_MACV (-26)

Aninvalid memory region on the target was accessed.
E_PAR (-145)

A parameter value wasinvalid.
E_CONSIST (-225)

Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

115 Target Access Interface - Memory Operationstif_get_bls

ITRON Debugging Interface Specification Ver. 1.00.00

6.1.7 Write memory (memory block)

tif_set_mem Write memory by memory block [R] [
ER tif set_ mem
(VP storage , DT_VP memadr, DT_SIZE memsz, FLAG flags)
VP storage
Pointer to the beginning of the region that retains the data to be written
DT VP memadr
Address on the target where data is written
DT_SIZE memsz
Length of datato be written (in bytes)
FLAG flags
Flags

This function writes to the target memory by memory block in accordance with the stored con-
tentsin storage. For details, see Section 6.1.5.

1 Extension 1]

The following operation can be executed with extended function:

Flags

FLG_NOCONSISTENCE (100000004): Nonconsistency flag
When this flag is specified, the data that is got need not be consistent (e.g.,
the task is still in the wait state although there is no factor of the task wait).
FLG_NOSYSTEMSTOP (200000004): An explicit system halt is not permitted.

When thisflag is specified, tif_brk_tgt must not be used within the function
to halt the system. If thisflag isnot supported, the E_ NOSPT error occurs.

1 Extension I]

Supplementary explanation
The write access size is determined by the debugging tool.

Keys
TIF 05y
.TIF_SET_MEM 074
.FLG_NOCONSISTENCE 01y [1]
Supportsthe FLG_NOCONSISTENCE flag.
.FLG_NOSYSTEMSTOP 024 [1]

Supportsthe FLG_NOSYSTEMSTORP flag.

116 Target Access Interface - Memory Operationstif _set mem

ITRON Debugging Interface Specification Ver. 1.00.00

Errors

E_OK (0)
Normally ended.
E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).

E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason.
ET_MACYV (-26)

Aninvalid memory region on the target was accessed.
E_PAR (-145)

A parameter value wasinvalid.
E_CONSIST (-225)

Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

117 Target Access Interface - Memory Operationstif _set mem

ITRON Debugging Interface Specification Ver. 1.00.00

6.1.8 Write memory (block set)

tif_set bls Write memory by block set Rl [

ER tif_set bls (VP storage, T_BLKSET * blkset, FLAG flags)

VP storage
Pointer to the region that stores the data to be written

T BLKSET * blkset
Pointer to the structure that indicates the write destination

FLAG flags
Flags

This function writes data into the memory on the target by block set. For details, see Section
6.1.6.

This function and the tif _get bls function are opposite. If the following operation is per-
formed, it must be assured that the memory data remains unchanged (except for spaces with a
real-time capability or dynamically changing contents).

Program source

{
//Writing the read data as it is
if(get_bls(buffer,blkset,0) == E_OK)
set_bls(buffer,blkset,0);
}

Program source

Supplementary explanation
If any of the specified block sets fails, the function ends with E_MACYV. In this instance,
tif_set_bls does not assure or report the extent to which blkset iswritten.

The write access size is determined by the debugging tool.

1 Extension | |
The following operation can be executed as extended functions:

Flags

FLG_NOCONSISTENCE (100000004): Non consistency flag
When this flag is specified, the data that is got need not be consistent (e.g.,
the task is still in the wait state although there is no factor of the task’s wait).
FLG_NOSYSTEMSTOP (200000004): An explicit system halt is not permitted.

When thisflag is specified, tif_brk_tgt must not be used within the function
to halt the system. If thisflag isnot supported, the E_NOSPT error occurs.

1 Extension I]

118 Target Access Interface - Memory Operationstif _set bls

ITRON Debugging Interface Specification Ver. 1.00.00

Keys
TIF 05,
TIF_SET_BLS 08y,
.FLG_NOCONSISTENCE 014 [1]

Supportsthe FLG_NOCONSISTENCE flag.
FLG_NOSYSTEMSTOP 024 [1]

Supportsthe FLG_NOSYSTEMSTORP flag.

Errors

E_OK (0)
Normally ended.
E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
ET_MACV (-26)
Aninvalid memory region on the target was accessed.
E_PAR (-145)
A parameter value wasinvalid.
E_CONSIST (-225)

Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

119 Target Access Interface - Memory Operationstif _set bls

ITRON Debugging Interface Specification Ver. 1.00.00

6.1.9 Set of change report

tif_set_pol Set of memory data change report [E]]

ER_ID tif _set pol
(ID polid, DT_VP adr, DT_INT value, UINT length, FLAG flags)

ID polid
Polling ID
DT_VP adr
Memory address where a change is detected
DT _INT value
Value to be compared
UINT length
Byte length of atargeted memory block (1, 2, 4, or 8)
FLAG flags
Flags
(Returnvalue) 1D polid

Any value identifying this polling setting

Thisfunction sets a polling to be performed by a debugging tool. The debugging tool performs
a polling to monitor data at a specific memory address. If there is any change in the data, the
debugging tool uses a callback function to report it. However, this operation may not keep up
with rapid data changes.

If OPT_CMPVALUE is specified, the debugging tool compares value with the memory data.
If they differ, the debugging tool calls the tif_rep_pol. If OPT_CMPVALUE is not speci-
fied, the debugging tool saves the memory data at the time of tif_set_pol setting, and com-
pares it with the current data. If they differ, the debugging tool callsthetif _rep_pol function.

Supplementary explanation
Unlike an access break, tif_set_pol does not report unless the contents change.

A memory data update and atif_rep_pol function call are not concurrent.
When the function is executed successfully in situations where the automatic number assign-
ment flag FLG_AUTONUMBERING is specified, the function returns avalue of 1 or greater

(ID value) that is assigned to a setup item. Thisis also true even when the automatic assign-
ment flag is not specified.

120 Target Access Interface - Memory Operationstif_set_pol

ITRON Debugging Interface Specification Ver. 1.00.00

Flags

OPT_CMPVALUE (2)
Sets avalue to be compared.

FLG_AUTONUMBERING (400000004): ID automatic assignment

Automatically assigns an ID. If a specified argument is same as the 1D
value, it is ignored by the function. When the function is successfully exe-
cuted, it returns the automatically assigned ID.

Keys
TIF 05y
.TIF_SET_POL 094 [1]
Supports this function.
.FLG_AUTONUMBERING 04y [1]
Supportsthe FLG_AUTONUMBERING flag.
.OPT_CMPVALUE 104 [1]
Supports the OPT_CMPVALUE option.
Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
ET_MACV (-26)
Aninvalid memory region on the target was accessed.
E_PAR (-145)
A parameter value wasinvalid.
E_ID (-146)
The specified object ID was invalid.
E_NOID (-162)
Count of 1Ds for automatic assignment was insufficient.
E_OBJ (-169)
The targeted obuject on the target was inoperative

121 Target Access Interface - Memory Operationstif_set_pol

ITRON Debugging Interface Specification Ver. 1.00.00

6.1.10 Delete of change report setting

tif_del _pol Delete of change report setting [E]]
ER tif_del _pol (ID polid, FLAG flags)
ID polid
ID to be deleted
FLAG flags
Flags

This function deletes a change report (polling) that is set by tif_set_pol. WhenID_ALL (=-
1) is specified, all the change reports are del eted.

Supplementary explanation
This function can also be called from the report function tif_rep_pol.

Keys
TIF 054
TIF_DEL_POL 0Ay [1]
Supports this function.
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_ID (-146)
The specified object ID was invalid.
E_OBJ (-169)
The targeted object on the target was inoperative

122 Target Access Interface - Memory Operationstif_del_pol

ITRON Debugging Interface Specification Ver. 1.00.00

6.1.11 Change report

tif_rep_pol Report of memory data change [E:callback] O

void tif rep_pol (ID polid, DT_INT value, FLAG flags)

ID polid

Polling ID
DT _INT value

Memory data value after a change
FLAG flags

Flags

When a debugging tool detects a memory data change with a polling process that is performed
by tif _set_pol, thisfunction reports the change.

Keys
TIF 054
TIF_REP_POL OBy
Errors

This function does not have a return value.

123 Target Access Interface - Memory Operationstif_rep pol

ITRON Debugging Interface Specification Ver. 1.00.00

6.2 Register Operations

6.2.1 Read of register value

tif _get reg Read of register value Rl [
ER tif_get_reg (VP r_result, BITMASK 8 * p_valid, FLAG flags)
VP r_result

Pointer to the beginning of the region that stores aregister value

BITMASK 8* p valid

Pointer to validation flag about register table items
(NULL: Targets entire context)

FLAG flags
Flags

Thisfunction gets the register value of the current target in accordance with the contents of the
register set description table.

The variable p_result isthe pointer to the buffer for storing the register value that will be got
by execution of this function. Before execution of this function, the debugging tool must cre-
ate aregion that is large enough to store the register value. The key code of getting informa-
tion RIFRIF_GET_RDT.REGISTER.SIZE should be used for the size of the buffer. The
buffer size can also be calculated from the register table got by the function rif_get_rdt. In
such a case, aregion large enough to store all the registers indicated by the register table must
be furnished.

p_valid specifies whether the registers should be enabled or disabled. When it isgiven as a
function argument, disabled registers will not be got. Furthermore, this function stores the got
results of targeted registersin p_valid. When all the targeted registers are got normally, this
function returns ET_SYS or other errors depending on the situation. The information stored
in regions related to the registers which could not be got isimplement-dependent. Even if the
enabled/disabled information is given in excess of the number of registers
(T_GRDT::regcnt), excessive registers will not be got.

If NULL is specified for p_valid, all registers are targeted for getting so the result details will
not be stored.

e Extension |
The following operation can be executed as extended function:

Flags

FLG_NOCONSISTENCE (100000004): Nonconsistency flag

When this flag is specified, the data that is get need not be consistent (e.g.,
the task is still in the wait state although there is no factor of the task’s wait).

124 Target Access Interface - Register Operationstif _get reg

ITRON Debugging Interface Specification Ver. 1.00.00

FLG_NOSYSTEMSTOP (200000004): An explicit system halt is not permitted.

When this flag is specified, thetif_brk_tgt must not be used in the function
to the function to halt the system. |If this flag is not supported, the
E_NOSPT error occurs.

1 Extension I]

Supplementary explanation
The read register value is stored in accordance with the endian of the target.

If a non-existent register is selected as the read operation target, the function returns the
E PAR error.

Keys
TIF 05,
TIF_GET_REG 0Cy
.FLG_NOCONSISTENCE 014 [1]

Supportsthe FLG_NOCONSISTENCE flag.
.FLG_NOSYSTEMSTOP 024 [1]

Supportsthe FLG_NOSYSTEMSTORP flag.

Errors

E_OK (0)
Normally ended.
E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_CONSIST (-225)
Consistency was not assured. (however, it is not handled as error if
FLG_NOCONSISTENCE is set).
E_PAR (-145)
A parameter value wasinvalid.
ET_MACYV (-26)
Aninvalid memory region on the target was accessed.

125 Target Access Interface - Register Operationstif _get reg

ITRON Debugging Interface Specification Ver. 1.00.00

6.2.2 Wite register

tif_set reg Write of register value R[]
ER tif_set reg (VP storage, BITMASK 8 * p_valid, FLAG flags)
VP storage

Pointer retaining the value to be written

BITMASK 8* p_ valid

Pointer to validation flag about register table items
(NULL: Targets entire context)

FLAG flags
Flags

This function changes the value of aregister on the target.

Supplementary explanation
The value to be written in aregister must be stored in the endian of the target.

If a nonexisting register is specified as the write destination, the function returns the E_PAR
error.

Keys
TIF 05y
.TIF_SET_REG ODy
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.

E_CONSIST (-225)
Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

E_PAR (-145)
A parameter value wasinvalid.

ET_MACV (-26)
Aninvalid memory region on the target was accessed.

126 Target Access Interface - Register Operationstif_set reg

ITRON Debugging Interface Specification Ver. 1.00.00

6.3 Target Operations

6.3.1 Start of target execution

tif sta tgt Start of target execution R[]

ER tif_sta_tgt (DT_VP staaddr, FLAG flags)

DT VP staaddr
Starting address

FLAG flags
Flags

This function executes the target from a specified address. It starts to execute target from a
specified address while retaining the current register values and target system status.

The write access size is determined by the debugging tool.

1 Extension 1]

Flag

OPT_RESTART (1)
Restarts target (ignores argument staadr).

1 Extension 1]

Supplementary explanation
This function can be executed only when the target is stopped or temporarily broken. If the
function cannot be executed in such a state, it returns the E_EXCLUSIVE error.

Keys
TIF 05y
TIF_STA _TGT OE,
.OPT_RESTART 104 [B]
OPT_RESTART isavailable.
Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

127 Target Access Interface - Target Operationstif_sta tgt

ITRON Debugging Interface Specification Ver. 1.00.00

E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).

E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason.
E_PAR (-145)

A parameter value wasinvalid.
E_EXCLUSIVE (-226)

Another request has already been issued. The function could not receive a
new request until execution of the previous request ends.

128 Target Access Interface - Target Operationstif_sta tgt

ITRON Debugging Interface Specification Ver. 1.00.00

6.3.2 Stop of target execution

tif_stp_tgt Stop of target execution [E]]
ER tif_stp_tgt (FLAG flags)
FLAG flags
Flags

This function stops the target when it isissued.

Supplementary explanation

When this function executes target switches to a stop state even when it has been stopped or
broken. Target execution resumption from the stop state depends on an implement definition.

Keys
TIF 054
TIF_STP_TGT OF4 [1]
Supports this function.
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.

129 Target Access Interface - Target Operationstif_stp_tgt

ITRON Debugging Interface Specification Ver. 1.00.00

6.3.3 Break of target execution

tif_brk _tgt Break of target execution [E]]
ER tif_brk_tgt (FLAG flags)
FLAG flags
Flags

This function stops the target in such a manner that its execution can be resumed later.

Keys
TIF 054
.TIF_BRK_TGT 104 [1]
Supports this function.

Supplementary explanation

If this function is executed while the target is stopped, the E_ EXCLUSIVE error occurs.
(E_OK occursin a break state.)

Errors

E_OK (0)
Normally ended.
E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.

E_EXCLUSIVE (-226)
Another request has already been issued. The function could not receive a
request until the execution of previous request ends.

130 Target Access Interface - Target Operationstif_brk_tgt

ITRON Debugging Interface Specification Ver. 1.00.00

6.3.4 Resumption of target execution

tif_cnt_tgt Resumption of target execution [R]]
ER tif_cnt_tgt (FLAG flags)
FLAG flags
Flags

This function resumes a target execution in break state.

Supplementary explanation

If this function is executed when the target is not in a break state, the E_EXCLUSIVE error
OCCuUrs.

Keys
TIF 05y
.TIF_CNT_TGT 114
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.

E_EXCLUSIVE (-226)
Another request has already been issued. The function could not receive a
new request until execution of the previous request ends.

131 Target Access Interface - Target Operationstif_cnt_tgt

ITRON Debugging Interface Specification Ver. 1.00.00

6.4 Hardware Break Operations

6.4.1 Set of break point

tif_set brk Set of break point [R] []

ER_ID tif_set brk (ID brkid, T_TSBRK * pk_tsbrk, FLAG flags)

ID brkid
Break point ID

T_TSBRK * pk_tsbrk
Pointer to the structure having break point information
FLAG flags
Flags
(Return value) ID brkid
Assigned break point ID

Thisfunction not only sets a break point on the target but also sets a callback routine for such a
break.

The contentsof T_TSBRK are given below:
typedef struct t_tsbrk

{
UINT brktype . Break type
DT_VP brkadr : Address at which abreak is set
VP_INT brkprm : Callback routine report flag

} T_TSBRK;

The meaning and the value that the brktype parameter can be set are shown below:

* BRK_EXECUTE (2)
Execution break

Supplementary explanation

When the function is executed successfully in situations where the automatic number assign-
ment flag FLG_AUTONUMBERING is specified, the function returns the value of 1 or
greater (ID value), which isassigned to a setup item. Thisisalso true even when the automatic
assignment flag is not specified.

Flag

FLG_NOREPORT (800000004): Report function invalidation
The paired callback function will not be called.

132 Target Access Interface - Hardware Break Operationstif_set_brk

ITRON Debugging Interface Specification Ver. 1.00.00

1 Extension I]

The following operation can be executed as extended functions:

For the brktype parameter, the following value can also be set:

« BRK_ACCESS(2)
Access break

When an access break is specified, at least one of the following access specifiers must be set.
However, two or more can be specified simultaneously.

* ACS READ (0x100)
Invokes break when read performed at target address

» ACS WRITE (0x200)
Invokes break when write performed at target address

« AS MODIFY (0x400)
Invokes break when modification made at target address

When the empl oyed debugging tool supports a conditional break function recommended by the
ITRON Debugging Interface Specification, setting OPT_CNDBRK to the flags parameter
enables to use the following T_TSBRK_CND instead of T_TSBRK. For use of
T _TSBRK_CND, the RIM must cast a T_TSBRK_CND type variable into the T_TSBRK
typeand passit totif_set_brk.

typedef struct t_tsbrk_cnd

{
UINT brktype . Break type
DT _VP brkadr . Address at which abreak is set
VP_INT brkprm . Callback routine report flag
DT_VP cndadr . Addressto be set for a conditional break
VP_INT cndval . Valueto be set for a conditional break
UINT cndvallen . Byte lenght (1, 2, or 4) of the value to be set for a conditional
break

} T _TSBRK_CND;

When this structure and OPT_CNDBRK are used, a conditiona expression (*cndadr == cnd-
val) is added to regular break conditions. A break is regarded as a provisional break hit only
when these two conditions are satisfied, and tif_rep_brk is called as needed.

Flags

OPT_CNDBREAK (4)
Uses a conditional break mechanism of the debugging tool.

FLG_AUTONUMBERING (400000004): ID automatic assignment

Automatically assignsan ID. If thelD valueis specified asan argument, it is
ignored by the function. When the function is successfully executed, it
returns the automatically assigned ID.

1 Extension I]

133 Target Access Interface - Hardware Break Operationstif_set_brk

ITRON Debugging Interface Specification Ver. 1.00.00

Keys
TIF 05y
.TIF_SET BRK 134
.FLG_AUTONUMBERING 04y [1]
Supportsthe FLG_ AUTONUMBERING flag.
.OPT_CNDBREAK 104 [1]
Supportsthe OPT_CNDBREAK option.
.BRK_ACCESS 114 [1]
An access break is available.
Errors

E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason.
E_NOID (-162)

Count of 1D for automatic assignment was insufficient .
E_OBJ (-169)

The targeted object on the target was inoperative.
ET_ID (-18)

The specified kernel object IDswasinvalid.
E_PAR (-145)

A parameter value wasinvalid.
ET_MACV (-26)

Aninvalid memory region on the target was accessed.

134 Target Access Interface - Hardware Break Operationstif_set_brk

ITRON Debugging Interface Specification Ver. 1.00.00

6.4.2 Delete of break point

tif_del _brk Delete of break point [R]]
ER tif_del_brk (ID brkid, FLAG flags)
ID brkid
Break point ID
FLAG flags
Flags

This function deletes a break point that corresponds to a specified ID.

The following special parameter can be set to specify the ID for deletion.

«ID_ALL (-1)
Deletes all break points.

Keys
TIF 054
TIF_DEL_BRK 14
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_ID (-146)
The specified object ID was invalid.
E_OBJ (-169)
The targeted object in the target was inoperative.

135 Target Access Interface - Hardware Break Operationstif _del_brk

ITRON Debugging Interface Specification Ver. 1.00.00

6.4.3 Break report

tif_rep_brk Break report [R:callback] O
ER tif_rep_brk (ID brkid, VP_INT param)
ID brkid
Break point ID
VP_INT param

Report parameter (see Section 6.4.1)

This function reports that the target is stopped at a break point specified by tif_rep_brk. In
this callback function, the RIM checks whether the conditions for this break are satisfied and
determines whether or not to break the system. When this function concludes that the condi-
tions are satisfied, the debugging tool performs a specified operation and escapes the function.
And then, it continues a target stop process. If the function does not conclude that the condi-
tions are satisfied, it cancels atarget stop process and resumes target execution.

A series of break operationsis show below:

1. A break setting request is delivered by tif_set_brk to the RIM.

2. The RIM usestif_set_brk to set a break point at alocation that satisfies the request.

3. When the debugging tool reaches the break point, it checks whether it has been set by
tif_set_brk.

4. If so, the debugging tool executes tif_rep_brk using the break 1D and report flag as
arguments.

5. The callback function check whether the currently stopped conditions satisfiey the
requested break setting on the basis of the report parameter, break ID, and
tif_set_brk argument (when the request is satisfied, proceed to the step 6. If not,
proceed to the step 6').

6. When therequest is satisfied, tif_rep_brk calsrif_rep_brk.

7. After a necessary process is performed by rif_rep_brk, tif_rep_brk returns
E_TRUE.

8. The debugging tool reports the user that the target is broken (the target is in a break
state in the steps 3 or later operation).

6'. If therequest is not satisfied, E_FALSE isreturned.
7'. The debugging tool resumes the target operation.

Supplementary explanation

When this function returns E_ TRUE, the debugging tool continues a break operation. On the
other hand, when this function returns E_FALSE, the debugging tool suspends a break opera-
tion to stop the election of target. However, if BRK_REPORT is specified as a stop state
operation for the target break point, the break operation does not continue even if this function
returns E_TRUE.

While this function is making a decision, target execution is in a break state. However, this
does not hold true when BRK_REPORT is specified as the stop state operation for the target
break point.

136 Target Access Interface - Hardware Break Operationstif_rep _brk

ITRON Debugging Interface Specification Ver. 1.00.00

Keys
TIF 054
TIF_REP_BRK 12,
Supports this function.
FLG_AUTONUMBERING 04y [1]
Supportsthe FLG_ AUTONUMBERING flag.
Errors
E_TRUE (0)

137

Decision routine return parameter (TRUE)
Concludes that a break hit has occurred, and continues a break process.

E_FALSE (-229)
Decision routine return parameter (FAL SE)
Concludes that the conditions are false, and continues target execution.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.

Target Access Interface - Hardware Break Operationstif_rep _brk

ITRON Debugging Interface Specification Ver. 1.00.00

6.5 Symbol Table Operations

6.5.1 Reference of symbol table value

tif ref_sym Reference of symbol table value [R]]
ER tif_ref sym (INT * p_value , char * strsym , FLAG flags)

INT * p_vaue
Pointer to the region that stores a value indicated by a symbol

char * strsym
Symbol name (NULL-terminated string)

FLAG flags
Flags

This function gets a value of the symbol table that is specified by strsym.

Supplementary explanation

Only a symbol value (address) can be got by tif_ref sym. An equation cannot be evaluated
in principle. More specifically, arithmetic operation, logic operation, array (dummy[n]),
indirect operator (*dummy), address operator (&dummy), and member selection equation
(a.b, c->d) cannot be used.

Keys
TIF 05y
.TIF_REF_SYM 154
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_OBJ (-169)
The targeted object on the target was inoperative.
E_PAR (-145)
A parameter value wasinvalid.

138 Target Access Interface - Symbol Table Operationstif _ref sym

ITRON Debugging Interface Specification Ver. 1.00.00

6.5.2 Reference of symbol in symbol table

tif_rrf_sym Reference of symbol in symbol table [E] []
ER tif_rrf_sym
(char * p_sym , UINT maxlen , INT value , FLAG flags)
char * p_sym
Stores the corresponding symbol
UINT maxlen
Maximum size (termination code excluded) of a symbol storage region
INT value
The key value for reverse search
FLAG flags
Flags

This function searches for a symbol that is closest to the key.

For a symbol search, the following flags can be exclusively used:

OPT_SEARCH_COMPLETELY (0)
Searches for only a symbol that perfectly matches the search key (default).

OPT_SEARCH_FORWARD (1)
Search forward (in increasing address direction) for symbol closest to speci-
fied value.

OPT_SEARCH_BACKWARD (2)
Search forward (in decreasing address direction) for symbol closest to speci-
fied value.

Supplementary explanation

When OPT_SEARCH_FORWARD or OPT_SEARCH_BACKWARD is specified, the
search ends when the sat or end of the address space is reached.
OPT_SEARCH_FORWARD and OPT_SEARCH_BACKWARD are provided to get the
name of the service call that is currently being executed by the RIM. The operation to be per-
formed when more than one symbol is assigned to the searched value is implementation-
dependent. However, for the above reason, a function name, etc., should be prefered in a code
region, and a global variable name, etc., should be prefered in a data region.

maxlen indicates the size of a symbol name storage buffer. maxlen indicates the prevailing

length when a terminating character isincluded. Therefore, when maxlen is 1, the character
string isvoid so that E_OK isreturned. When maxlen isO, the E_PAR error occurs.

139 Target Access Interface - Symbol Table Operationstif_rrf_sym

ITRON Debugging Interface Specification Ver. 1.00.00

Keys
TIF 05y
.TIF_RRF_SYM 164 [1]
Supports this function.
.OPT_SEARCH_FORWARD 10y [1]
The OPT_SEARCH_FORWARD option is available.
.OPT_SEARCH_BACKWARD 114 [1]
The OPT_SEARCH_BACKWARD option isavailable.
.OPT_SEARCH_COMPLETELY 124 [1]
The OPT_SEARCH_COMPLETELY optionisavailable.
Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_OBJ (-169)
The targeted object on the target was inoperative.
E_PAR (-145)
A parameter value wasinvalid.

140 Target Access Interface - Symbol Table Operationstif_rrf_sym

ITRON Debugging Interface Specification Ver. 1.00.00

6.6 Function Execution

6.6.1 Function call

tif _cal fnc Function call [E]]
ER tif_cal _fnc (T_TCFNC * pk_tcfnc, FLAG flags)
T _TCFENC* pk_tcfnc
Pointer to the structure that stores the service call information to be issued
FLAG flags
Flags

This function uses a debugging tool’s function to call afunction. Function execution basically
takes place in a non-blocking mode. Upon completion of function execution, the callback
function "tif_rep_fnc" iscalled.

The contents of the"T_TCFNC" structure are show below:
typedef struct t_tcfnc_prmary

{

UINT prmsz . Parameter size (in bytes)

VP prmptr . Pointer to the parameter storage region
} T_TCFNC_PRMARY:;

typedef struct t_tcfnc

{
DT_VP fncadr : Function address
DT_VP stkadr . Stack pointer for afunction issue
UINT retsz . Size (in bytes) of the result storage region
VP retptr . Pointer to the region that stores execution results
UINT resultsz . Count of parameter
T_TCFENC_PRMARY prmary[]
. Parameter
} T_TCFENC;

To store the function return value, the RIM creates a buffer and stores the pointer to the buffer
region in T_TCFNC::resultptr and the buffer region size in T_TCFNC::resultsz. After
function execution, tif_cal_fnc storesthe function return value in the buffer. 1f the debugging
tool concludes that the size is inadequate for return value storage, an error occurs before issu-
ing. Whether the debugging tool conducts a return value type check or not isimplementation-
dependent.

When the debugging tool passes parameters, it expands the parameters so that
T_TCENC::param[0] is the leftmost parameter of the function to be executed. The debug-
ging tool may sometimes place the parametersin the target stack areaasthey are. Therefore, if
the size setting is smaller than the size required by the function to be executed, two parameters
may be combined.

141 Target Access Interface - Function Execution tif _cal_fnc

ITRON Debugging Interface Specification Ver. 1.00.00

If the ITRON Debugging Interface Specification cannot be implemented in non-blocking
mode, the get information key code item "TIE.TIF_CAL_FNC.NON-BLOCKING" must be
set to FALSE (=0). If, in this instance, this function is executed without specifying
OPT_BLOCKING, it returns E_NOSPT. Even when this function is executed in a non-
blocking mode, the callback function tif rep_fnc iscalled.

Supplementary explanation

Whentif_cal _fnc isexecuted in blocking mode, this function does not return control until the
called function terminates in the strict sense. In the strict sense, the called function terminates
when the stack frame at function termination is equivalent to the stack frame when a function
is called by tif _cal fnc. More specifically, if dispatching occurs within the called function
and control is passed to another task, this function does not conclude that the function is termi-
nated. In some cases, this function does not return control until the associated function is
exited, irrespective of the context status. This aso holds true for the end report tif_rep_fnc
for tif_cal _fnc.

Flags
FLG_NOREPORT (800000004): Report function invalidation
The paired callback function will not be called.

OPT_BLOCKING (1)
Performs execution in blocking mode.

Keys
TIF 05y
.TIF_CAL_FNC 174 (1]
Supports this function.
.FLG_NOREPORT 034 [1]
Supportsthe FLG_ AUTONUMBERING flag.
.OPT_BLOCKING 114 [1]
Supports the OPT_NON-BLOCKING option.
.NON-BLOCKING 124 [1]
Supports a non-blocking function call.
Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although operation could
be continued).

142 Target Access Interface - Function Execution tif _cal_fnc

ITRON Debugging Interface Specification Ver. 1.00.00

E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_EXCLUSIVE (-226)
Another request has already been issued. The function could not receive a
function execution request until the execution of the previous request ends.
E_PAR (-145)
A parameter value wasinvalid.
ET_MACV (-26)
Aninvalid memory region on the target was accessed.

ET_NOMEM (-33)
The request could not be executed due to insufficient memory on the target.

143 Target Access Interface - Function Execution tif _cal_fnc

ITRON Debugging Interface Specification Ver. 1.00.00

6.6.2 Report of function execution end

tif_rep_fnc Report of function execution end [E:callback] (O

void tif_rep_fnc (FLAG flags)
FLAG flags
Flags

This function reports the end of a function that was issued by tif _cal_fnc in a non-blocking
mode. The return valueisto be stored in the region specified by tif _cal_fnc.

Keys
TIF 054
.TIF_REP_FNC 184 [1]
Supports this function.
Error

This function does not have areturn value.

144 Target Access Interface - Function Execution tif_rep fnc

ITRON Debugging Interface Specification Ver. 1.00.00

6.7 Trace Log Operations

6.7.1 Set of trace log

tif set log Set of tracelog [E]]

ER_ID tif_set log (ID logid, T_TSLOG * pk_tslog, FLAG flags)

ID logid
ID assigned to selected log information

T TSLOG * pk_tslog
Pointer to the structure that stores trace log setting information

FLAG flags
Flags
(Returnvalue) 1D logid
Assigned log ID (independent of rif_set_loQ)

This function performs trace log setting.

The contents of the structure T_TSLOG are indicated below:
typedef struct t_tslog

{
UINT logtype . Log typeflag
DT_VP staadr . Starting address
DT_VP endadr : Ending address (NULL if the range is not specified)
DT _VPvaptr . Read start position (NULL: event occurrence position)
DT _SIZE vasz . Datalength (in bytes)

} T_TSLOG;

The following values can be set for T_TSLOG::logtype:

The following values can be used exclusively:

* LOG_INSTRUCTION (0)
Instruction (default)

« LOG_DATA (1)
Data

When LOG_DATA is specified for logtype, at least one of the following operation options
must be specified. However, two or more can be specified s multaneously.

« ACS_READ (0x100)
Read

« ACS WRITE (0x200)
Write

* ACS MODIFY (0x400)
Modification (Read Modify Write)

145 Target Access Interface - Trace Log Operations tif_set_log

ITRON Debugging Interface Specification Ver. 1.00.00

When the buffer for getting log is full, the following options can be selected exclusively as the
performed operation.

LOG_BUFFUL_STOP (0)
Stops getting a trace when the buffer becomes full (default).

LOG_BUFFUL_CALLBACK (2)
Executes callback function when the buffer becomes full.

LOG_BUFFUL_ FORCEEXEC (1)
Continues with getting log by discarding oldest data when the buffer
becomes full.

The above options are valid for alog that is set by the execution of this function.

Let us assume that three different logs are activated. Thefirst log (ID: 1) isthe one for which
no option is set. For the second log (ID: 2), OPT_BUFFUL_CALLBACK is set. For the
third log (ID: 3), FLG_NOREPORT is set. When the buffer later becomes full due to target
program execution and the debugging tool concludes that the currently got log event cannot be
stored, a forced termination is issued to the logs having ID 1 and ID 3 for which
OPT_BUFFUL_STOP is set by default, and tif rep_log receives an ID1 end event
(EV_STOP). The debugging tool does not report to the ID 3 because FLG_NOREPORT is
set for it. Since OPT_BUFFUL_CALLBACK is set for the ID 2, tif_rep_log is called by
EV_REPORT. If, inthisinstance, a buffer read or other appropriate processis not performed
in tif_rep_log and the buffer becomes full again, EV_BUFFER_FULL cdls tif rep_log
for al existing logs.

Supplementary explanation

The T_TSLOG::staadr and T_TSLOG::endadr variables define the memory region to be
targeted for log event generation. This region is a closed section [staadr, endadr], and the
addressendadr istargeted. If staadr > endadr, the E_PAR error occurs.

Thevariable T_TSLOG::endadr defines the memory region to be targeted for event genera-
tion. The variable T_TSLOG::valsz defines the length of memory to be read at the time of
event generation. If T_TSLOG::valsz isset to O, only events will be stored.

The variable T_TSLOG::valptr specifies the address where a read operation begins when an
event occurs. When a log event occurs in a closed section [staadr, endadr] in situations
where a gspecific address is set, T_TSLOG::valsz bytes are read beginning with
T_TSLOG::valptr and recorded. On the other hand, if T_TSLOG::valptr is set to NULL,
the address where an event is generated becomes the start point. If, inthissituation, an eventis
generated, to access a certain address (evtadr) in a closed section [staadr, endadr], length
bytes datais read from evtadr and stored.

When the function is executed successfully in situations where the automatic number assign-
ment flag FLG_AUTONUMBERING is specified, the function returns the value of 1 or more
(ID value), which isassigned to asetup item. Thisisalso true even when the automatic assign-
ment flag is not specified.

146 Target Access Interface - Trace Log Operations tif_set_log

ITRON Debugging Interface Specification Ver. 1.00.00

Flags

FLG_NOREPORT (800000004): Report function invalidation
The paired callback function will not be called.

FLG_AUTONUMBERING (400000004): ID automatic assignment

Automatically assigns an ID. If an argument is used to specify the ID, it is
ignored by the function. When the function is successfully executed, it
returns the automatically assigned ID.

OPT_BUFFUL_STOP (0)
When the buffer becomes full, this flag stops getting trace operation
(default)

OPT_BUFFUL_FORCEEXEC (1)
When the buffer becomes full, thisflag discards the oldest data and continues
to get logs.

OPT_BUFFUL_CALLBACK (2)
When the buffer becomes full, this flag executestif rep log.

Keys
TIF 054
TIF_SET_LOG 194 [1]

Supports this function.

.FLG_NOREPORT 034 [1]
The"FLG_NOREPORT" flag isavailable.

.FLG_AUTONUMBERING 04y [1]
Supportsthe FLG_AUTONUMBERING flag.

.OPT_BUFFUL_FORCEEXEC 114 [1]
The OPT_BUFFUL_FORCEEXEC option isavailable.

.OPT_BUFFUL_CALLBACK 124 1]
The OPT_BUFFUL_CALLBACK optionisavailable.

.LOG_INSTRUCTION 134 [1]
Thelog type LOG_INSTRUCTION isavailable.

.LOG_DATA 144 [1]
Thelog type LOG_DATA isavailable.

.LOG_READ 154 [1]
LOG_READ isavailable.

.LOG_WRITE 164 [1]
LOG_WRITE isavailable.

.LOG_MODIFY 174 (1]

LOG_MODIFY isavailable.

147 Target Access Interface - Trace Log Operations tif_set_log

ITRON Debugging Interface Specification Ver. 1.00.00

Er

148

rors

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_ID (-146)
The specified object ID was invalid.
E_NOID (-162)
Count of 1Ds for automatic assignment was insufficient.
E_OBJ (-169)
The targeted object on the target was inoperative.
ET_MACYV (-26)
Aninvalid memory region on the target was accessed.
E_PAR (-145)
A parameter value wasinvalid.

Target Access Interface - Trace Log Operations tif_set_log

ITRON Debugging Interface Specification Ver. 1.00.00

6.7.2 Delete of trace log setting

tif_del log Delete of tracelog setting [E]]
ER tif_del _log (ID logid, FLAG flags)
ID logid
ID of the log to be deleted
FLAG flags
Flags

This function deletes logs that are set by tif _set _log completely or partialy. tif _set _log is
explained earlier.

Supplementary explanation

When logid issetto ID_ALL(=1), all thelogswill be targeted. Note that thislogid is given
by tif_set_log. Itisindependent of the ID of lag that isused for rif_set_log.

Keys
TIF 054
.TIF_DEL_LOG 1AH [1]
Supports this function.
Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_ID (-146)
The specified object ID was invalid.
E_OBJ (-169)
The targeted object on the target was inoperative.
E_EXCLUSIVE (-226)

Another request has already been issued. The function could not receive a
new request until the execution of the previous request ends.

149 Target Access Interface - Trace Log Operationstif_del _log

ITRON Debugging Interface Specification Ver. 1.00.00

6.7.3 Start of trace log

tif_sta log Start of tracelog [E]]
ER tif_sta_log (ID logid, FLAG flags)
ID logid
ID of the log to be activated
FLAG flags
Flags

This function starts to get a trace log in accordance with the data set by tif_set _log. When
logid issettoID_ALL(=1), thisfunction validates all the log settings defined by tif _set_log.

Supplementary explanation

Even when this function is executed for a second time with respect to a log setting that has
already been started, the function ends normally. However, the specified log setting is stopped
by a single stop procedure even if it has plurally been activated.

Keys
TIF 054
TIF_STA_LOG 1By [1]
Supports this function.
Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_ID (-146)
The specified object ID was invalid.
E_OBJ (-169)
The targeted object on the target was inoperative.

150 Target Access Interface - Trace Log Operations tif_sta log

ITRON Debugging Interface Specification Ver. 1.00.00

6.7.4 Stop of trace log

tif_stp_log Stop of tracelog [E]]
ER tif_stp_log (ID logid, FLAG flags)
FLAG flags
Flags

This function stops a specified trace log which is currently got.

Supplementary explanation

This function does not concern the target execution status.

Even when this function is executed for a second time with respect to an aready stopped log
setting, the function ends normally. However, the specified log setting is started by a single
start procedure even if it has plurally been stopped.

Keys
TIF 054
.TIF_STP_LOG 1CH [1]
Supports this function.
Errors
E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_ID (-146)
The specified object ID was invalid.
E_OBJ (-169)
The operation targeted was not found or operative.

151 Target Access Interface - Trace Log Operationstif_stp log

ITRON Debugging Interface Specification Ver. 1.00.00

6.7.5 Trace logs callback

tif rep_log Tracelogs callback [E:callback] O

void tif rep_log (ID logid, UINT event, FLAG flags)

ID logid
ID of the log that is the factor of generation

UINT event
Factor of the call of thisfunction

FLAG flags
Flags

This function is called to perform an appropriate process when a factor is generated by atrace
log operation or when a callback is set by the function for getting trace log tif_set_log. The
function also performs a process when, for instance, alog is deleted due to a buffer-full condi-
tion.

The probable factors of generation are enumerated below:

EV_BUFFER_FULL (1)
The trace buffer is full.

EV_STOP (2)
The trace log function is stopped.

EV_REPORT (4)
The report conditions specified by tif_set_log are satisfied.

Supplementary explanation

When alog is brought to a forced termination due, for instance, to a buffer-full condition, the
RIM needs not to call tif_stp_log for the targeted ID.

If it is necessary to get trace log on the target while this callback is being called, this function
does not assure to get trace log data.

As regards a log for which OPT_BUFFUL_CALLBACK is specified by tif_set_log, the
first buffer-full condition is reported as EV_REPORT. If there are two or more logs for
which OPT_BUFFUL_CALLBACK is specified, EV_REPORT isissued for al such logs.
If no appropriate processis performed later and the buffer-full condition, which was the factor
for the issue of EV_REPORT, is not cleared, EV_BUFFER_FULL is called for al remain-
ing logs as an unrecoverable error. If no appropriate process is performed for this buffer-full
condition, the debugging tool forcibly terminates all the logs and reportsan EV_STOP to ter-
minate the process.

Keys
TIF 054
TIF_REP_LOG 1Dy [1]
Supports this function.
Errors

This function does not have a return value.

152 Target Access Interface - Trace Log Operationstif_rep log

ITRON Debugging Interface Specification Ver. 1.00.00

6.7.6 Get of trace log

tif _get log Get of tracelog [E]]
ER tif_get log (VP p_result, FLAG flags)
VP p_result
Pointer to the region that stores atrace log
FLAG flags
Flags

This function gets a trace log source that is retained by a debugging tool. The trace log source
is memory data on the target that the debugging tool has got as log information. When alogis
directly written into memory or onto a disk not with debugging tool, but with a debugging task
and so on, this function cannot got alog.

After tif_set_log gets one log, it moves the read position to the next log. To get al the logs,
the RIM has to cal this function two or more times. When the remaining log count is O,
tif_get_log returnsthe E_OBJ error.

The data of structure for gettinglog T_TGLOG are shown below:
typedef struct t_tglog

{
ID logid : Corresponding log ID
DT_VP staadr . Preselected starting address
DT_VP endadr . Preselected ending address
UINT logtype . Log type information
LOGTIM logtim . Time stamp
DT _SIZE bufsz . Buffer size
char buff[] : Theregion that stores a value which was got
} T_TGLOG;
Notes:

1. When the tlogid does not exist (tlogid=0), it is necessary to be determined from an
address and so on.

2. The value specified for bufsz indicates the maximum length that can be get by buf. When
the function is executed, bufsz stores the size of the stored data. For details, see Section
5.2.

Option

OPT_PEEK (2)
Gets atrace log without deleting it from the spool.

Keys
TIF 054
TIF_GET_LOG 1E4 [1]
Supports this function.
.OPT_PEEK 104 [1]

Supportsthe OPT_PEEK option.

153 Target Access Interface - Trace Log Operationstif_get log

ITRON Debugging Interface Specification Ver. 1.00.00

Errors

E_OK (0)
Normally ended.
E_NOSPT (-137)
An unsupported operation was executed.
E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).

E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason.
E_OBJ (-169)

The targeted object on the target was inoperatve.
E_PAR (-145)

A parameter value wasinvalid.

154 Target Access Interface - Trace Log Operationstif_get log

ITRON Debugging Interface Specification Ver. 1.00.00

7. Other Interfaces

7.1 Debugging Tool Operations

7.1.1 Get of debugging tool information

dbg_ref_dbg Get of debugging tool information R[]

ER dgb_ref _dbg
(T_INFO * pk_rdbg, UINT packets, FLAG flags)

T INFO* pk_rdbg
Pointer to beginning of array of structure that stores information about debug-
ging tool

UINT packets
T_INFO structure array length

FLAG flags
Flags

The RIM uses this function to examine the type of a debugging tool, the operations the debug-
ging tool performs, and other information.

The function for getting information T_INFO and key codes are used for getting information
about this function. For details, see Section 3.6.

The contentsof T_INFO are shown below:
typedef struct t_info_result_buf
{
UINT sz . Buffer size
VP ptr . Pointer to region storing character string or special type
} T_INFO_RESULT_BUF;

typedef union t_info_result
{
INT value . 32-bit signed integer
T_INFO_RESULT_BUF buf
. Value of special type
} T_INFO_RESUT,

typedef struct t_info

{
char key [4] . Key for indentifying information
T_INFO_RESULT result
. Value corresponding to key
} T_INFO;

155 Other Interfaces - Debugging Tool Operations dbg_ref dbg

ITRON Debugging Interface Specification Ver. 1.00.00

Keys
DEBUGGER 14
.CNDBREAK 14
.NUM 3y W]
Count of conditional breaks that can be set (0: not supported)
LOG 24
NUM 3y [W]
Count of hardware logs that can be set (0: not supported)
.NAME 804 [S]
Any character(s) for debugging tool identification
HOST 24
.ENDIAN 1y [W]
Host computer endian (O: little; 1: big)
NAME 80y [S]
Any character(s) for host computer identification
TARGET 34
.ENDIAN 1y [W]
Target computer endian (0: little; 1: big)
REGISTER 24
.NUM 3y W]
Count of target computer registers
.NAME 804 [S]

Any character(s) for target device identification

Supplementary explanation
The information that can be got with this function includes all the key codeswith INF_TIF as
thefirst key as described in Chapter 6.

Errors

E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
Anirrecoverable (fatal) error for some reason

E_OBJ (-169)
The targeted object on the target was inoperative.

E_PAR (-145)
A parameter value wasinvalid.

156 Other Interfaces - Debugging Tool Operations dbg_ref dbg

ITRON Debugging Interface Specification Ver. 1.00.00

7.2 RIM Operations

7.2.1 RIM initialization

dbg_ini_rim RIM initialization [R1O
ER dbg_ini_rim (VP param)
VP param

Parameter sent from debugging tool

This function initializes the RIM at a debugging tool activation. Callback functions are regis-
tered at this stage. This function is executed after thedbg_ini_inf function described in Sec-
tion 7.3. Therefore, it is assured that all the functions offered by the debugging tool side are
available on the interface.

The parameter value is not especially stipulated. However, it is possible that parameters will
be standardized in compliance with the guidelines (e.g., Windows-DLL guidelines) within the
debugging interface.

Supplementary explanation

When this function returns an error other than E_OK, debugging tool judges that the function
failed in RIM initialization. In such a case, the debugging tool must not read the other inter-
face functions that belong to the RIM side.

Errors
E_OK (0)
Normally ended.
E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason
(No implicit error exists.)

157 Other Interfaces - RIM Operationsdbg_ini_rim

ITRON Debugging Interface Specification Ver. 1.00.00

7.2.2 RIM finalization process

dbg_fin_rim RIM finalization process [RIO
ER dbg_fin_rim (VP param)
VP param

Parameter sent from debugging tool

This function performs the RIM finalization process. The debugging tool must call this func-
tion before the end of the program, and the RIM must free all got sources within this function.

The parameter value is not especially stipulated. However, it is possible that parameters will
be standardized in compliance with the guidelines (e.g., Windows-DLL guidelines) within the
debugging interface.

Supplementary explanation

When this function ends with other than E_OK, the debugging tool must not call any functions
that are offered subsequently by the RIM.

Errors
E_OK (0)
Normally ended.
E_SYS (-133)

Anirrecoverable (fatal) error occurred for some reason.
(No implicit error exists.)

158 Other Interfaces - RIM Operations dbg_fin_rim

ITRON Debugging Interface Specification Ver. 1.00.00

7.2.3 Get RIM-related information

dbg_ref rim Get RIM-related information [RIO

ER dbg_ref rim
(T_INFO * ppk_rrim, UINT packets, FLAG flags)

T_INFO* ppk_rrim
Pointer to beginning of array of information storage structure

UINT packets
Length of array indicated by ppk_rrim

This function gets the RIM function and other RIM-related information. The information
obtained in this manner enables the debugging tool to acquire information including that of
function that are available on the RTOS access interface.

The function for getting information T_INFO and key codes are used to get information with
thisfunction. For details, see Section 3.6.

Keys
oS 84
NAME 80y [S]
Any character(s) for target OS identification ("ITRON")

Supplementary explanation
The information that can be got with this function includes all the key codes with INF_RIF
(described in Chapter 5) asthefirst key.

Errors

E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.
E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_OBJ (-169)
The targeted object on the target was inoperative.
E_PAR (-145)
A parameter value wasinvalid.

159 Other Interfaces - RIM Operations dbg_ref_rim

ITRON Debugging Interface Specification Ver. 1.00.00

7.3 Interface Operations

7.3.1 Interface initialization

dbg_ini_inf Interfaceinitialization [EIO

ER dbg_ini_inf (T_INTERFACE * ppk_interface, VP param)
T_INTERFACE* ppk_interface
Pointer to the region that stores entry point for each function

VP param
Parameter offered by debugging tool side

This function reports the location of the function pointer table to access interface functions and
initializes the function pointer table. It is executed by the debugging tool side. In this func-
tion, the RIM registers the pointer to a function to be offered by RIM itself on the interface in
ppk_interface.

Before execution of this function, the debugging tool must offer pointers to the following func-
tions:

« dbg_ref_dbg

* Functionson TIF
(Note: No callback on RIF need to be registered at this stage.)

In this function, the RIM must offer pointers to the following functions:
e dbg_ ini_rim
e dbg ref rim
e dbg_fin_rim

* Functionson RIM
(Note: No callback on the TIF need be registered at this stage.)

T_INTERFACE isastructure that has the pointersto all functions offered in compliance with
the ITRON Debugging Interface Specification.

This function need not to be executed in an environment where all the functions are bound stat-
icaly.

Errors

E_OK (0)
Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

160 Other Interfaces - Interface Operations dbg_ini_inf

ITRON Debugging Interface Specification Ver. 1.00.00

E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued).
E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.
E_PAR (-145)
A parameter value wasinvalid.

161 Other Interfaces - Interface Operations dbg_ini_inf

ITRON Debugging Interface Specification Ver. 1.00.00

This page isintentional blank.

162 Other Interfaces - Interface Operations dbg_ini_inf

ITRON Debugging Interface Specification Ver. 1.00.00

8. Recommended Guidelines

This chapter explains the recommended guidelines for the ITRON Debugging I nterface Speci-
fication. The recommended guidelines need not to be complied with. However, they contain
items concerning compatibility. It istherefore best if debugging tool or RIM implementation
is in compliance with the guidelines to provide support for a large number of debugging tools
and RIMs.

8.1 RIM Guideline

8.1.1 RIM operation guideline

» Accessin undefined state before target initialization
In a situation where the target is not initialized, the debugging tool might not be able to
gain accessing. If any operation is performed in such a state, function returns a system
error "E_SYS". Also, the resulting information isinvalid.

8.1.2 RIM data format for supplying
The RIM isimplemented in the manufacturer’s debugging tool. Therefore, specific guidelines
apply to its data format for supply.

The following data formats are supported in the current specifications:
» Supplies C source program
» Supplied with library

163 Recommended Guidelines- RIM Guideline

ITRON Debugging Interface Specification Ver. 1.00.00

With the use of any other method of supply isintended, the RIM creation side must introduce a
thunk layer to establish alink between the module main body and C language interface.

C language interface
implementation

RTOS
interface
module
main body

RTOS Access I/F Target Access I/F

(

Java byte code

C language DLL .

Java VM

source code

Figure 22: Special RIM Supply Method

8.1.3 Speed enhancement and debugging agent

The current debugging interface uses a callback to check for a break point hit. However, when
actual devices are used instead of ssimulation, the information transfer between host and target
ismostly viaa seria interface. Therefore, frequent callbacks lowers the debugging tool speed.
Under such circumstances, RTOS manufacturers should introduce ‘ debugging tasks geared to
increase speed’ to operate debugging tools at high speed (this function is effective for breaks
and trace logs whose speed should be increased).

Function examples of debugging tasks used for such purposes are listed below:
* Break-related function
* Function for satisfying some break conditionsin debugging task
 Tracelog function

* Function for getting trace log closed only in target without resort to debugging
tool

In addition to the above, we think it is possible to offer more effective functions and higher-
speed operations depending on the RTOS characteristics.

When a debugging agent incorporating the above functions is offered, the user can conduct
debugging operations in an appropriate environment by selecting one of three environments
(or two out of three environments in some situations).

» Debugging environment in which this functions operates with large debugging
agent and small RIM to eliminate bugs that can be detected with relative ease

164 Recommended Guidelines- RIM Guideline

ITRON Debugging Interface Specification Ver. 1.00.00

» Debugging environment with small debugging agent and large RIM can minimize
relative load on target with a view to simulating real environment though the
function islimited. The environment is suitable for eliminating bugs that cannot
easily be detected, for example, a bug with time limitations

» Debugging environment in which only RIM isused to impose no load on tar get
We expect that the user debugging situation will be improved when two or more sets of RIM

and debugging agent are offered to permit selective use depending on the debugging situation
(trade-off between overhead and function).

165 Recommended Guidelines- RIM Guideline

ITRON Debugging Interface Specification Ver. 1.00.00

8.2 Windows-DLL Creation Guideline (32-bit RIM)

8.2.1 Type
Host-side types offered by a Windows-DLL are fixed as shown below:

Table 23: 32-bit RIM DLL Host Types

Type . Bit
Name Meaning Length
BOOL Boolean value 32 bits
ER_ID Greater integer between ID and ER. ID represents a 32 bits
positive value. ER represents a negative value.
ID Unsigned integer with sufficiently large size to store 32 bits
object number on debugging interface
INT Signed integer that existson host and has natural length 32 bits
UINT Unsigned integer that exists on host and has natura 32 bits
length
VP Void pointer on host 32 bits
VP_INT Type with sufficiently large sizeto store VP and INT 32 bits
LOGTIM Log time (accuracy stipulated by ‘implement defini- 64 bits
tion’)

Table 24: 32-bit RIM DLL Target Types

Type Name Meaning Le?lgth
DT B, DT _UB,DT_VB 8-bit data type 8 bits
DT_H, DT_UH, DT_VH 16-bit data type 16 bits
DT_W, DT_UW, DT_VW 32-bit data type 32 bits
DT D, DT _UD, DT_VD 64-bit data type 64 bits
DT _SYSTIM, Time-related type (type of 64 bits
DT _RELTIM, the absolute time, the rela-

DT_OVRTIM, DT_TMO tive time, or the period of
relative time)

Other All other types 32 bits”

*. For a64-bit RIM DLL, thisis handled as 64-bit data.

166 Recommended Guidelines - Windows-DLL Creation Guideline (32-bit RIM)

ITRON Debugging Interface Specification Ver. 1.00.00

In some cases, these types might be duplicates of those that are stipulated by Windows. Such
duplication can be avoided by the following method:

Program source
#define TYPE WINDOWS_TYPE
#include <windows.h>
#undef TYPE
//Subsequently, TYPE can be used as WINDOWS_TYPE.

Program source

8.2.2 Structure bits alignment

As with Windows, a RIM created as a Windows-DLL and a debugging tool to accept such a
RIM-DLL must comply with the following alignment rules when they declare their respective
structures defined by the debugging interface.

Table 25: Windows DLL Creation Guideline Bits Alignment

Data Type Alignment
DT _B,DT_UB Aligned at byte boundary
DT _H,DT_UH Aligned a even-numbered

32-bit data type

byte boundary
Aligned at 32-bit boundary

LOGTIM, Aligned at 64-bit boundary
DT_SYSTIM
Structure Adjusting to alignment require-
ments of the member which has
maximum size in the same
structure
Union Adjusting to alignment require-

ments of first member

8.2.3 Function export

A RIM-DLL must export the symbol of the following function:

» dbg_ini_inf: Interfaceinitialization

167 Recommended Guidelines - Windows-DLL Creation Guideline (32-bit RIM)

ITRON Debugging Interface Specification Ver. 1.00.00

8.3 File Format of Standard Execution History

The ITRON Debugging Interface Specification stipulates a standard format for storing an got
execution history in afile.

The file is stored in ASCII format with tokens separated by one or more blank characters.”

Also, note that the symbols ‘., ‘[, ', and ;" aretreated as delimiters.””
The syntax is shown below:

Syntax format
Non-ter mination symbol Italic
Termination symbol Bold Gothic
Comment Character string following symbol ‘#
Character string Expressed by character string (xxx) and comment

Sandard history file
Configuration data group Execution history data group

Configuration data group
Configuration data Configuration data group
Configuration data

Configuration data
Key code: Vauelist;

Key code
Key Subsequent key Subsequent key Subsequent key
Key Subsequent key Subsequent key
Key Subsequent key

Key
Subsequent key
. Key
Key
XXX #Key name
Value list
Value Valuelist
Value
Value
- #When value setting skipped, hyphen must be used.
Integer value #Value notation conforms to C language (decimal and hexa-
decimal only).
Character string # Vaue notation conformsto C.

*. Space, carriage return, line feed, and tab
** Blank characters before and after a delimiter can be omitted.

168 Recommended Guidelines - File Format of Standard Execution History

ITRON Debugging Interface Specification Ver. 1.00.00

Execution history data group
Execution history data Execution history data group
Execution history data

Execution history data
Execution history header Type-dependent history data;

Execution history header
History type: History time

History type
XXX #Name of all log typesindicated by LOG_TYP_xxx
xxX | ENTER #LOG_TYP_xxx|LOG_ENTER
xxx | LEAVE #L.OG_TYP xxx|LOG_LEAVE
History time
- #When value setup skipped, hyphen must be used.
Integer value
Type-dependent history data
Vauelist #As many as parameter members of each log needed type.

L anguage examples generated from above syntax

Program source
CFG.LOGTIM.TICK_N: 1;
CFG.LOGTIM.TICK_D: 1000;
INTERRUPTI|ENTER: 0 4;
TASK|ENTER: 180 1;
COMMENT: 200 25 "The program is started.";

Program source

169 Recommended Guidelines - File Format of Standard Execution History

ITRON Debugging Interface Specification Ver. 1.00.00

This page isintentionuly blank.

170 Recommended Guidelines - File Format of Standard Execution History

ITRON Debugging Interface Specification Ver. 1.00.00

9. Reference

9.1 Structures

* T_MEMBLK [tif_get_bls, tif_set_bls]
typedef struct t _memblk

{
DT_VP blkptr . Pointer to store memory block data

DT_SIZE blksz . Byte count of memory block data
} T _MEMBLK;

* T_BLKSET [tif_get_bls, tif_set_blg]
typedef struct t_blkset

{
UINT blkent : Count of blocks
T _MEMBLK blkary []:Block array

} T _BLKSET:

« T_RCSVC [rif_cal_svc]
typedef struct t_rcsvc

{
DT _FN svcfn . Functional code to be issued
BOOL tskctx : Execution with task context (= TRUE)
DT_ID tskid . 1D of targeted task (when tskctx = TRUE)
UINT prmcent . Parameter count
VP_INT prmary[] : Array that storeslist of all parameters

} T_RCSVC,;

 T_GRDT [rif_get_rdt, tif_get_reg, tif_set_reg]
typedef struct t_grdt_regary

{
char * strname . Pointer to register name
UINT length : Length (in bytes)
UINT offset . Storage offset position

} T_GRDT_REGARY;

typedef struct t_grdt

{
UINT regent : Count of registers
UNIT ctxcnt . Count of registers that can be contained in context
T_GRDT_REGARY regary[]
. Register information
} T_GRDT;

171 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

* T_INFO [rif_ref cfg, dbg_ref _dbg, dbg ref rim]
typedef struct t_info_result_buf
{
UINT sz . Buffer size
VP ptr . Pointer to region storing caracter string or special type
} T_INFO_RESULT_BUF;

typedef struct t_info_result
{
INT value . 32-bit signed integer
T_INFO _RESULT_BUF buf
. Value of special type
} T_INFO_RESULT;

typedef struct t_info

{
char key[4] . Key for information identification
T _INFO_RESULT result
. Value corresponding to key
} T_INFO;

* T_RCLOG [rif_cfg_log]
typedef struct t_rclog

{
UINT type . Trace log configuration information
DT_BP bufptr . Pointer to trace log buffer
DT_SIZE bufsz . Size of trace log buffer

} T_RCLOG;

* T_RGLOG_COMMENT [rif_get_log]
typedef struct t_rglog_commnet

{
UINT length . Character string length

char strtext [] . Character string (NUL L-terminated) - May be broken
} T_RGLOG_COMMENT;

* T_RGLOG_CPUEXC [rif_get_log]
typedef struct t_rglog_cpuexc

{
DT_ID tskid . Targeted task ID
} T_RGLOG_CPUEXC;

« T_RGLOG_DISPATCH_ENTER [rif_get_log]
typedef struct t_rglog_dispatch_enter

{
DT_ID tskid . 1D of task in executing state

UINT disptype . Dispatch type
} T_RGLOG_DISPATCH_ENTER,;

172 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

* T_RGLOG_DISPATCH_LEAVE [rif_get_log]
typedef struct t rglog_dispatch_leave

{
DT _ID tskid . 1D of task going to be in executing state
} T _RGLOG_DISPATCH_LEAVE;

* T_RGLOG_INTERRUPT [rif_get_log]
typedef struct t_rglog_interrupt

{
DT _INHNOinhno : Interrupt handler number
} T_RGLOG_INTERRUPT:

* T _RGLOG_ISR [rif_get_log]
typedef struct t_rglog_isr
{
DT _IDisrid . Interrupt service routine ID
DT _INHNOinhno : Interrupt handler number
} T_RGLOG_ISR;

* T_ RGLOG_SVC rif_get log]
typedef struct t rglog_svc
{
DT_FN fncno . Functional code
UINT prment . Parameter count
DT_VP_INT prmary[]: Parameter
} T_RGLOG_SVC;

« T_RGLOG_TIMERHDR [rif_get_log]
typedef struct t_rglog_timerhdr

{
UINT type . Timer type
(stores constant OBJ_xxx used for rif_ref_obj::objtype)
DT _ID hdrid . Time event handler ID

DT_VP_INT exinf : Extension information
} T_RGLOG_TIMERHDR,;

T RGLOG _TSKEXC [rif_get log]
typedef struct t_rglog_tskexc

{
DT_ID tskid . Targeted task ID
} T_RGLOG_TSKEXC,;

* T_RGLOG_TSKSTAT [rif_get_log]
typedef struct t rglog_tskstat
{
DT _ID tskid : Task ID
DT_STAT tskstat : Status of task at transition destination
DT _STAT tskwait : Wait state
DT _ID wobjid . 1D of waiting object
} T _RGLOG_TSKSTAT;
173 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

* T_ROALM [rif_ref_obj]
typedef struct t_roalm

{
BITMASK valid : Validfield flag
DT_ART amatr . Attribute
DT VP INT exinf : Extension information
DT_FP amhdr . Startup address
DT_STAT admstat : Alarm handler start status
DT_RELTIM [€fttim : Remaining time

} T_ROALM;

* T_ROCYC [rif_ref_obj]

typedef struct t_rocyc

{
BITMASK vaid : Validfield flag
DT_ART cycatr . Attribute
DT_VP_INT exinf : Extension information
DT_FP cychdr . Startup address
DT_RELTIM cyctim: Cycle
DT_RELTIM cycphs: Initial phase
DT_STAT cycstat : Cyclic handler start status
DT_RELTIM [€fttim : Remaining time

} T_ROCYC;

* T_RODTQ [rif_ref_obj]
typedef struct t_rodtq

{
BITMASK valid . Validfield flag
DT_ATR dtgatr . Data queue attribute
DT _UINT dtgent : Data queue capacity
DT _UINT gtskent : Count of tasks waiting for sending (also used as upper limit for
wstsklst)
DT_ID * stskist . Pointer to region storing ID list of tasks waiting for transmis-
sion
DT _UINT rtskent : Count of tasks waiting for reception (also used as upper limit
for wrtsklst)
DT _ID * rtsklst . Pointer to region storing 1D list of tasks waiting for reception
DT _UINT itemcnt : Count of queued data (also used as upper limit for dtglst)
DT_VP_INT * itemlst: Pointer to region storing list of all items
} T_RODTQ;

« T_ROEXC [rif_ref _obj]
typedef struct t_roexc

{

BITMASK vaid : Validfield flag

DT_FP excrtn . Exception handler start address
} T_ROEXC;

174 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

* T_ROFLG]rif_ref_obj]
typedef struct t_roflg_wflglst
{
DT _ID wtskid . 1D of waiting task
DT_FLGPTN wflgptn: Task wait flag pattern
DT_UINT wflgmode: Task wait mode
} T_ROFLG_WFLGLST;

typedef struct t_roflg
{
BITMASK vaid : Validfield flag
DT_ATR flgatr . Flag attribute
DT_FLGPTN iflgptn : Initial flag pattern
DT_FLGPTN flgptn : Flag pattern
DT_UINT wflagent : Waiting task count (also used as upper limit for wflglst)
T_ROFLG_WFLGLST * wflglst
: Pointer to information about task with this flag
} T_ROFLG;

* T_ROISR [rif_ref_obj]
typedef struct t_roisr

{
BITMASK valid : Validfield flag
DT_ATR isratr . Attribute
DT VP INT exinf : Extension information
DT _FPisrfnclst . Starting address of registered routine
DT_INHNOinhno : Corresponded interrupt handler number
} T _ROISR;

* T_ROKER [rif_ref_obj]
typedef struct t_roker

{
BITMASK vaid : Validfield flag
BOOL actker . Kernd start status (TRUE = activated)
BOOL inker . Kernel code execution (TRUE = executing)
BOOL ctxstat . Context status (sns_ctx)
BOOL loccpu : CPU locked (sns_cpu)
BOOL disdsp . Digpatch disabled (sns_dsp)
BOOL dsppnd . Dispatch suspended (sns_dpn)
DT_SYSTIM systim : System time
DT _VPintstk . Stack for nontask context
DT_SIZE intstksz : Stack size for nontask context
} T_ROKER;

175 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

e T_ROMBX [rif_ref obj]

typedef struct t_rombx
{
BITMASK valid : Validfield flag
DT_ATR mbxatr : Mailbox attribute
DT _PRI maxmpri : Maximum priority
DT_UINT wtskent : Count of waiting tasks (also used as upper limit for wtsklst)
DT_ID * wtsklst . Pointer to region storing ID list of waiting tasks

DT_UINT msgent

: Count of message headers (also used as upper limit for msglst)

DT _T_MSG ** msglst: Pointer to region storing list of all messages

} T_ROMBX;

*T_ROMBEF [rif_ref_obj]

typedef struct

t_rombf_msglst

{
DT_VP msgadr : Message address
DT _UINTmsgsz : Message length
} T _ROMBF_MSGLST;
typedef struct t_rombf
{
BITMASK valid : Validfield flag
DT_ATR mbfatr : Message buffer attribute
DT_UINT maxmsz : Message maximum size
DT_SIZE mbfsz . Buffer region size
DT _UINT stskent : Count of tasks waiting for sending (also used as upper limit for
wisklst)
DT _ID * stskist . Pointer to region storing 1D list of waiting tasks
DT_UINT rtskent : Count of tasks waiting for reception (also used as upper limit
for rtsklst)
DT _ID * rtsklst . Pointer to region storing 1D list of waiting tasks
DT _SIZEfmbfsz : Freeregionsize
DT _UINT msgent ;. Count of messages (also used as upper limit for msglst)
T_ROMBF | MSGLST * msglst
. Pointer to information about messages
} T_ROMBF;

*T_ROMPF [rif _ref_obj]

typedef struct

t_rompf_blklst

{
DT _ID htskid : 1D number of task that got block
DT_VP blkadr . Block start address
} T_ROMPF_BLKLST,
typedef struct t_rompf
{
BITMASK valid . Validfield flag
DT_ATR mpfatr . Fixed-length memory pool attribute
DT _SIZE blksz . Block size
176 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

DT_UINT fblkent : Count of remaining fixed-length memory blocks
DT_UINT blkent : Count of all memory blocks
DT_UINT ablkent : Count of allocated block (upper limit for blklst)
T_ROMPF_BLKLST * ablklst

: Pointer to detailed information about each block
DT_UINT wtskent : Count of tasks waiting for acquisition (wtsklst upper limit)
DT _ID * witsklst . Pointer to region storing I1Ds of tasks waiting for getting

} T_ROMPF;

* T_ROMPL [rif_ref_obj]
typedef struct t_rompl_blklst

{
DT _SIZE blksz . Block size
DT_ID htskid . 1D number of task that got block
DT_VP blkadr . Block start address

} T _ROMPL_BLKLST:

typedef struct t_rompl

{
BITMASK vaid : Validfield flag
DT_ATR mplatr : Variable-length memory pool attribute
DT_SIZE mplsz . Variable-length memory pool region size
DT _UINT fblksz : Maximum size that can be got
DT _UINT ablkent : Count of blocks that have got (upper limit for blklst)
T_ROMPL_BLKLST * ablklst
. Pointer to detailed information about each block
DT_UINT wtskent : Count of tasks waiting for get (wtsklst upper limit)
DT _ID * wtsklst . Pointer to region storing I1Ds of tasks waiting for getting
} T_ROMPL,;

* T_ROMTX [rif_ref_obj]
typedef struct t_romtx

{
BITMASK valid . Validfield flag
DT_ATR mtxatr . Mutex attribute
DT_PRI ceilpri . Upper-limit priority
DT _ID htskid . ID of task that locks mutex
DT_UINT wtskent : Count of waiting tasks (also used as upper limit for wtsklst)
DT_ID * wtsklst . Pointer to region storing ID list of waiting tasks
} T_ROMTX;

* T_ROOVR [rif_ref_obj]
typedef struct t_roovr

{
BITMASK vaid : Validfield flag
DT_ATR ovratr . Attribute
DT_FP ovrhdr . Startup address

DT_STAT ovrstat : Handler start status
DT_OVRTIM lefttmo: Remaining processor time

177 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

1 T _ROOVR;

* T_ROPOR [rif_ref_obj]
typedef struct t_ropor

{
BITMASK vaid : Validfield flag
DT_ATR poratr : Rendezvous port attribute
DT_UINT maxcmsz : Call message maximum size
DT_UINT maxrmsz : Response message maximum size
DT _UINT ctskent : Count of tasks waiting for a call (also used as upper limit for
ctsklst)
DT_ID * ctsklst : Pointer to region storing I1Ds of all tasks waiting for call
DT _UINT atskent : Count of waiting tasks (also used as upper limit for atsklst)
DT_ID * atsklst . Pointer to region storing IDs of all waiting tasks
} T_ROPOR;

*T_RORDYV [rif_ref_obj]
typedef struct t_rordv

{

BITMASK valid : Vaid field flag

DT_ID tskid . 1D of task waiting for rendezvous
} T_RORDY,

*T_RORDQ [rif _ref obj]
typedef struct t_rordq

{
BITMASK vaid : Validfield flag
DT _ID runtskid . 1D of currently executing task
DT_UINT tskent : Count of ready tasks (running ones included) (upper limit for
tsklst)
DT_ID * tsklst : Pointer to region storing I1Ds of all executable tasks
} T_RORDQ;

* T_ROSEM [rif_ref_obj]
typedef struct t_rosem

{
BITMASK vaid : Validfield flag
DT_ATR sematr . Semaphore attribute
DT _UINT isement : Initial semaphore count
DT_UINT maxsem : Semaphore maximum value
DT _UINT sement : Semaphore count value
DT_UINT wtskent : Waiting task count (also used as upper limit for wisklst)
DT_ID * wtsklst . Pointer to region to storing ID list of waiting tasks
} T_ROSEM;

178 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

* T_ROTEX [rif_ref_obj]
typedef struct t_totex

{
BITMASK valid : Vdid field flag
DT_TEXPTN pndptn: Suspended exception cause
DT_FPtexrtn . Exception handler startup address
} T_ROTEX;

* T_ROTMQ [rif_ref_obj]
typedef struct t_rotmq_quelst

{
UINT objtyp . Pointer to region storing types of waiting objects
DT _ID wobjid . Pointer to region storing IDs of waiting objects

DT_TMO |efttmo : Pointer to region storing remaining wait time
} T_ROTMQ_QUELST;

typedef struct t_rotmq

{
BITMASK valid . Valid field flag
SYSTIM systim . System time prevailing at getting information
DT _UINT quecnt : Count of waiting objects in timer queue (upper limit for quel st)
T _ROTMQ_QUELST * quelst
. Pointer to information about waiting objectsin timer queue
} T _ROTMQ;

e T_ROTSK [rif_ref_obj]
typedef struct t_rotsk

{
BITMASK valid . Validfield flag
DT_ATR tskatr : Task attribute
DT VP INT exinf : Extension information
DT _FPtask . Startup address
DT_PRI itskpri . Initial priority
DT VP stk . Initial stack start address
DT _SIZE stksz . Stack size
DT_STAT tskstat : Task status
DT_PRI tskpri . Task current priority
DT_PRI tskbpri . Task base priority
DT_STAT tskwait : Factor of task wait
DT _ID wobjid . 1D of object to be waited for
DT_TMO |efttmo : Time remaining before timeout
DT_UINT actent . Count of queued start requests
DT _UINT wupent : Count of queued wake-up request
DT _UINT suscnt : Count of nested forced wait requests
} T_ROTSK;

179 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

* T_ RRCND_DBG [rif_ref_cnd]
typedef struct t_rrcnd_dbg

{
DT_VP execadr . Execution address (NULL: NC)
DT VP valadr : Address (NULL: NC)
UINT vallen . Datalength (1, 2, or 4 bytes)
VP_INT value . Data or pointer value

} T_RRCND_DBG;

* T_ RRCND_RTOS]rif_ref_cnd]
typedef struct t_rrcnd_rtos

{
FLAG type . Contents to be examined

DT_ID objid : 1D as condition
} T_RRCND_RTOS;

*T_RSBRK [rif_set_brk]
typedef struct t_rsbrk

{
UINT brktype : Break type
UINT brkent : Count before break
DT_ID tskid : Task ID
DT _ID objid : Object ID
UINT objtype : Object type
VP_INT brkprm : Parameter for callback function
DT_VP brkadr : Address for break setting
DT_FN svcfn : Functional code
} T_RSBRK;

T _RGLOG [rif_get_log]
typedef struct t _rglog

{

UINT logtype : Log type

LOGTIM logtim : Occurrence time

BITMASK valid . Valid field bit map

UINT bufsz . Size of buffer region *buf’ (in bytes)

char buf[] . Buffer region for information storage (detailed later)
} T_RGLOG;

T RSLOG_CPUEXC [rif_set_log]
typedef struct t_rslog_cpuexc

{
DT_EXCNO excno : CPU exception code (ID_ALL available)
} T_RSLOG_CPUEXC;

180 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

* T_RSLOG_DISPATCH [rif_set_log]
typedef struct t rslog_dispatch

{
DT _ID tskid - Task ID (ID_ALL available)
} T_RSLOG_DISPATCH:;

* T_RSLOG_INTERRUPT [rif_set_log]
typedef struct t_rslog_interrupt

{
DT _INTNOintno : Interrupt number (ID_ALL available)
} T _RSLOG_INTERRUPT:

* T_RSLOG_ISR [rif_set_log]
typedef struct t_rslog_isr

{
DT _IDisrid . Interrupt serviceroutine ID (ID_ALL available)

DT _INTNOintno : Interrupt number (ID_ALL available)
} T_RSLOG_ISR;

* T _RSLOG_SVC [rif_set_log]
typedef struct t rslog_svc

{
DT_FN svcfn : Functional code (ID_ALL available)
DT _ID objid . Targeted object 1D (ignored when SVC does not have target,
ID_ALL available)
DT_ID tskid : Task ID (ID_ALL available)

BITMASK param . Parameter to begot (ID_ALL available)
} T_RSLOG_SVC;

typedef struct t rslog_svc

{
DT_FN svcfn : Functional code (ID_ALL available)
DT _ID objid . Targeted object 1D (ignored when SVC does not have target,
ID_ALL available)
DT_ID tskid : Task ID (ID_ALL available)

BITMASK param . Parameter to begot (ID_ALL available)
} T_RSLOG_SVC;

typedef struct t T _RSLOG_TIMERHDR [rif_set_log]
typedef struct t _rslog_timerhdr
{
UINT type : Handler type (OBJ_ALL available)
(Stores constant OBJ_xxx used for rif_ref _obj::objtype)
(All types are targeted when OBJ_ALL(=ID_ALL) is specified.)
DT_ID hdrid : Handler ID (ID_ALL available)
} T_RSLOG_TIMERHDR;

181 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

e T_RSLOG_TSKEXC [rif_set_log]
typedef struct t rslog_tskexc

{
DT _ID tskid - Task ID (ID_ALL available)
1 T _RSLOG_TSKEXC;

* T_RSLOG_TSKSTAT [rif_set_log]
typedef struct t rslog_tskstat

{
DT _ID tskid - Task ID (ID_ALL available)
} T _RSLOG_TSKSTAT:

* T_RSLOG_USEREVT [rif_set_log]
typedef struct t_rslog_comment

{
UINT length : Comment character string length
} T_RSLOG_COMMENT;

* T_TCFNCItif_cal_fnc]
typedef struct t_tcfnc_prmary

{
UINT prmsz . Parameter size (in bytes)

VP prmptr . Pointer to region storing parameter
} T_TCFNC_PRMARY:;

typedef struct t_tcfnc

{
DT_VP fncadr : Function address
DT_VP stkadr . Stack pointer for function issue
UINT retsz . Size (in bytes) of region storing parameter
VP retptr . Pointer to region storing execution results
UINT prmcent . Parameter count
T_TCFENC_PRMARY prmary[]
. Parameter
} T_TCFNC;

* T_TGLOG [tif_get_log]
typedef struct t_tglog

{

ID logid : Corresponding log ID

DT_VP staaddr . Set starting address

DT_VP endaddr . Set ending address

UINT logtype . Log type information

LOGTIM logtim . Time stamp

DT _SIZE bufsz . Buffer size

char buf[] . Theregion that stores a value which was got
} T_TGLOG;

182 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

183

 T_TSBRK [tif_set_brk]
typedef struct t_tsbrk

{
UINT brktype . Break type
DT_VP brkadr . Addressto set a break
VP_INT brkprm . Callback routine report flag
} T_TSBRK;

« T_TSBRK_CND [tif_set_brk]
typedef struct t_tsbrk_cnd

{
UINT brktype . Break type
DT _VP brkadr . Addressto set a break
VP_INT brkprm : Callback routine report flag
DT_VP cndadr . Addressto be set for conditional break
VP_INT cndval . Value to be set for conditional break
UINT cndlen . Bytelength (1, 2, or 4) of value to be set for conditional break

} T_TSBRK_CND;

* T_TSLOG [tif_set_log]
typedef struct t_slog

{
UINT logtype . Log typeflag
DT_VP staadr . Starting address
DT_VP endadr : Ending address (NULL if range not to be specified)
DT_VPvalptr . Read start position (NULL: event occurrence position)
DT _SIZE valsz . Datalength (in bytes)

} T_TSLOG;

Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

9.2 Function List

Get of object status [OBJ] O
ER rif_ref_obj
(VP p_result, UINT objtype, DT_ID objid, FLAG flags)
Get of description table [CTX]IO
ER rif_get rdt (const T_GRDT ** ppk_pgrdt, FLAG flags)
Get of task context [CTX]IO
ER rif_get_ctx
(VP p_ctxblk, BITMASK_8 * p_valid, DT_ID tskid, FLAG flags)
Set of task context [CTX]O
ER rif_set ctx
(VP p_ctxblk, BITMASK_8 * valid, FLAG flags)
Issue of service call [SVC]O
ER rif_cal_svc (T_RCSVC * pk_psvc, FLAG flags)
Cancel of an issued service call [SVC] O
ER rif_can_svc (FLAG flags)
Report of service call end [SVC:callback] []
void rif_rep_svc (DT_ER result)
Get of function code [SVC]IO
ER rif_ref_svc (DT_FN * p_svcfn, char * strsvc, FLAG flags)
Get of service call name [SVC]1 O
ER rif_rrf_svc (char * p_strsvc, UINT buf, DT_FN svcfn, FLAG flags)
Set of break point [BRK] O
ER_ID rif_set_brk (ID brkid, T_RSBRK * pk_rsbrk, FLAG flags)
Delate of break point [BRK] O
ER rif_del_brk (ID brkid, FLAG flags)
Report of break hit [BRK:callback] []
void rif_rep_brk (ID brkid, VP_INT exinf)
Get of break informationt [BRK] O
ER rif_ref_brk (ID brkid, T_RSBRK * ppk_rsbrk, FLAG flags)
Get of break condition [CND]1 O
ER rif_ref_cnd
(T_RRCND_DBG * ppk_dbg, T_RRCND_RTOS * pk_rtos, FLAG flags)
Set trace log [LOG] O

ER_ID rif_set_log
(ID logid, UINT logtype, VP pk_rslog , FLAG flags)

Delete of trace log [LOG] O
ER rif_del_log (ID logid, FLAG flags)

Request of trace log function start [LOG] O
ER rif_sta_log (ID logid, FLAG flags)

Request of trace log stop [LOG]I O
ER rif_stp_log (ID logid, FLAG flags)

Get of trace log [LOG] O
ER rif_get log (T_RGLOG * ppk_rglog, FLAG flags)

184 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

Reconfigure of Trace log mechanism [LOG] O
ER rif_get_log (T_RGLOG * ppk_rglog, FLAG flags)
Get of kernel configuration R1O
ER rif_ref_cfg
(T_INFO * p_information, UINT packets, FLAG flags)
Allocate memory (on host) [R]1[]
ER tif_alc_mbh (VP * p_blk, UINT blksz, FLAG flags)
Allocate Memory (on target) [E] L]
ER tif_alc_mbt (DT_VP * p_blk, DT_SIZE blksz, FLAG flags)
Free Memory (on host) R
ER tif_fre_mbh (VP blk, FLAG flags)
Free Memory (on target) [E]1[]
ER tif_fre_mbt (DT_VP blk, FLAG flags)
Read memory [R][]
ER tif_get_mem
(VP p_result, DT_VP memadr, DT_SIZE memsz, FLAG flags)
Read memory by block set [R]]
ER tif_get_bls
(VP p_result, T_BLKSET * blkset, FLAG flags)
Write memory R1]
ER tif set mem
(VP storage, DT_VP memadr, DT_SIZE memsz, FLAG flags)
Write memory by block set R]1[]
ER tif_set_bls (VP storage, T_BLKSET * blkset, FLAG flags)
Set of memory data change report [E] L]

ER _ID tif_set pol
(ID polid, DT_VP adr, DT_INT value, UINT length, FLAG flags)

Delete of change report setting [E]L]
ER tif_del_pol (ID polid, FLAG flags)

Report of memory data change [E:callback] O
void tif_rep_pol (ID polid, DT_INT value, FLAG flags)

Read of register value R1[]
ER tif_get_reg (VP r_result, BITMASK_8 * p_valid, FLAG flags)

Write of register value [R]1]
ER tif_set_reg (VP storage, BITMASK_8 * p_valid, FLAG flags)

Start of target execution [R]1[]
ER tif_sta tgt (DT_VP staaddr, FLAG flags)

Stop of target execution [E] L]
ER tif_stp_tgt (FLAG flags)

Break of target execution [E]]
ER tif_brk_tgt (FLAG flags)

Resumption of target execution [R][]
ER tif_cnt_tgt (FLAG flags)

185 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

Set of break point [R]]
ER_ID tif_set_brk (ID brkid, T_TSBRK * pk_tsbrk, FLAG flags)
Delete of break point [R]]
ER tif_del_brk (1D brkid, FLAG flags)
Report break [R:callback] O
ER tif_rep_brk (ID brkid, VP_INT param)
Reference of in symbol table value [R]]
ER tif_ref_sym (INT * p_value, char * strsym, FLAG flags)
Reference of symbol in symbol table [E][]
ER tif_rrf_sym
(char * p_sym, UINT maxlen, INT value, FLAG flags)
Function call [E]1[]
ER tif_cal_fnc (T_TCFENC * pk_tcfnc, FLAG flags)
Report of function execution end [E:callback] O
void tif_rep_fnc (FLAG flags)
Set of trace log [E][]
ER _ID tif_set log (ID logid, T_TSLOG * pk_tslog, FLAG flags)
Delete of trace log setting [E] L]
ER tif_del_log (ID logid, FLAG flags)
Start of trace log [E]]
ER tif_sta_log (ID logid, FLAG flags)
Stop of trace log [E] L]
ER tif_stp_log (ID logid, FLAG flags)
Trace logs callback [E:callback] O
void tif_rep_log (ID logid, UINT event, FLAG flags)
Get of trace log [E] (]
ER tif_get_log (VP p_result, FLAG flags)
Get of debugging tool information [R]1[]
ER dgb_ref _dbg
(T_INFO * pk_rdbg, UINT packets, FLAG flags)
RIM initialization [R] O
ER dbg_ini_rim (VP param)
RIM finalization process R1O
ER dbg_fin_rim (VP param)
Get of RIM information [RIO
ER dbg_ref_rim
(T_INFO * ppk_rrim, UINT packets, FLAG flags)
Interface initialization [E]1O
ER dbg_ini_inf (T_INTERFACE * ppk_interface, VP param)

186 Reference- Structures

ITRON Debugging Interface Specification Ver. 1.00.00

9.3 Option Flags

9.3.1 Common flags

FLG_AUTONUMBERING (400000004): ID automatic assignment

Automatically assigns ID. If an argument is used to specify the ID, it is
ignored by the function. When the function is successfully executed, it
returns the automatically assigned ID.

FLG_NOCONSISTENCE (100000004): Nonconsistency flag
When this flag is specified, the got data need not be consistent (e.g., the task
is not freed from the waiting state although there is no factor for the task
wait).

FLG_NOREPORT (800000004): Report function invalidation
The paired callback function is not called.

FLG_NOSYSTEMSTOP (200000004): An explicit system stop is not permitted

When thisflag is specified, tif_brk_tgt must not be used within the function
to halt the system. If thisflag isnot supported, the E_ NOSPT error occurs.

9.3.2 Unique flags

OPT_APPCONTEXT (1)
Handles context on application level

OPT_BLOCKING (1)
Performs execution in blocking mode
OPT_CANCEL (0)
Does not consider effect of issued service call (default)

OPT_CMPVALUE (2)
Sets value targeted for comparison

OPT_CNDBREAK (4)
Uses conditional break mechanism of debugging tool
OPT_EXTPARAM (2)
Specifies extension parameter
OPT_GETMAXCNT (1)
Even when the upper limit value is smaller than the variable-length data
count, thisflag tracks to get the data count.

OPT_NOCNDBREAK (1)

Does not use conditional break for break setting
OPT_NORDT (2)

Does not get register set description table

OPT_PEEK (1)
Gets trace log without deleting it from spool

OPT-RESTART (1)
Restarts target (ignores argument staadr)

187 Reference - Option Flags

ITRON Debugging Interface Specification Ver. 1.00.00

188

OPT_SEARCH_BACKWARD (2)
Search backward (in decreasing address direction) to locate symbol closest
to specified value

OPT_SEARCH_COMPLETELY (0)
Searches for only symbol that perfectly matches search key (default)

OPT_SEARCH_FORWARD (1)
Search backward (in increasing address direction) to locate symbol closest to
specified value
OPT_UNDO (1)
Returns to state before issue.
OPT_VENDORDEPEND (2)
Gets implement-dependent information.

Reference - Option Flags

ITRON Debugging Interface Specification Ver. 1.00.00

9.4 Constants

9.4.1 Object identification constants

OBJ_SEMAPHORE (1)
Semaphore

OBJ_EVENTFLAG (2)
Event flag

OBJ_DATAQUEUE (3)
Data queue

OBJ_MAILBOX (4)
Mailbox

OBJ_MUTEX (5)
Mutex

OBJ_MESSAGEBUFFER (6)
Message buffer

OBJ_RENDEZVOUSPORT (8)
Rendezvous port

OBJ_RENDEZVOUS (9)
Rendezvous

OBJ_FMEMPOOL (10)
Fixed-length memory pool

OBJ_VMEMPOOL (11)
Variable-length memory pool

OBJ_TASK (12)
Task

OBJ_READYQUEUE (14)
Ready queue

OBJ_TIMERQUEUE (15)
Timer queue

OBJ_CYCLICHANDLER (17)
Cyclic handler

OBJ_ALARMHANDLER (18)
Alarm handler

OBJ_OVERRUNHANDLER (19)
Overrun handler

OBJ_ISR (20)
Interrupt service routine

OBJ_KERNELSTATUS (21)
Kernd information

OBJ_TASKEXCEPTION (22)
Task exception handler

OBJ_CPUEXCEPTION (23)

CPU Exception handler
189 Reference- Constants

ITRON Debugging Interface Specification Ver. 1.00.00

OBJ_ALL (-1u)
Special constant that denotes all objects

9.4.2 Error constants

E_CONSIST (-225)
Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

E_EXCLUSIVE (-226)
Another request is already issued. The function could not receive a new
request until execution of the previous request ends.

E_FAIL (-227)
The operation faillure was caused by some reason (although the operation
could be continued)
E_ID (-146)
The specified object ID was invalid.
E_NOID (-162)
Count of 1Ds form automatic assignment was insufficient.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_NOSPT (-137)
An unsupported operation was executed.

E_OBJ (-169)
The targeted object on teh target was inoperative.

E_OK (0)
Normally ended.

E_PAR (-145)
A parameter value wasinvalid.

E_SYS (-133)
Anirrecoverable (fatal) error occurred for some reason.

E_TMOUT (-178)
The process timed out (when OPT_BLOCKING specified).

E_ID (-18)
The specified kernel object ID wasinvalid.

ET_MACV (-26)
Aninvalid memory region on the target was accessed.

ET_NOEXS (-42)
The targeted object was not found on the target.

ET_NOMEM (-33)
The request could not be executed due to insufficient memory on teh target.

ET_OACV (-27)
Anillegal target on an target was accessed (tskid < 0).

ET_OBJ (-41)
The targeted object on the target was inoperative.

190 Reference- Constants

ITRON Debugging Interface Specification Ver. 1.00.00

9.4.3 Break constants

BRK_ACCESS (2)
Sets access break.

BRK_DISPATCH (3)
Sets break for task dispatcher (after execution)

BRK_ENTER (0)
Places break at starting position (BRK_DISPATCH, BRK_SVC)

BRK_EXECUTE (1)
Sets execution break.

BRK_LEAVE (128)
Places break at escape position (BRK_DISPATCH, BRK_SVC)

BRK_REPORT (32)
Report only (and does not perform break)

BRK_SVC (4)
Breaks with SVC.

BRK_SYSTEM (0)
Stops entire system when break occurs.

BRK_TASK (64)
Stops only task when break occurs.

9.4.4 Log constants

Log type - Object

LOG_TYP_INTERRUPT (1)
Interrupt
LOG_TYP_ISR (2)
Interrupt service routine

LOG_TYP_TIMERHDR (3)
Timer event handler

LOG_TYP_CPUEXC (4)
CPU exception

LOG_TYP_TSKEXC (5)
Task exception

LOG_TYP_TSK STAT (6)
Task status

LOG_TYP_DISPATCH (7)
Task dispatch

LOG_TYP_SVC (8)
Service call

LOG_TYP_COMMENT (9)
Comment (log consisting of character string only; to be written mainly by
user)

191 Reference- Constants

ITRON Debugging Interface Specification

Log type - Break method

LOG_INSTRUCTION (0)
Instruction

LOG_DATA (4)
Data

Log type - Break conditions

LOG_READ (8)
Read

LOG_WRITE (16)
Write

LOG_MODIFY (32)
Modification (Read Modify Write)

Log mechanism - Configuration setup

LOG_HARDWARE (0)
Uses TIF-based hardware |og mechanism for getting

LOG_SOFTWARE (1)

Ver. 1.00.00

Uses software-based log mechanism executed by RIM alone, for getting

LOG_BUFFUL_STOP (0)
Stops getting log when buffer full

LOG_BUFFUL_CALLBACK (2)
Executes callback function when buffer full

LOG_BUFFUL_FORCEEXEC (4)
Continues getting by discarding oldest data when buffer full

Report events

EV_BUFFER_FULL (1)
The trace buffer isfull.

EV_STOP (2)
The trace log function is stopped.

EV_REPORT (4)
The report conditions specified by tif_sta_log are satisfied.

Dispatch type

DSP_NORMAL (0)
Dispatch from task context

DSP_NONTSKCTX (1)
Dispatch from interrupt process or CPU exception

192 Reference- Constants

ITRON Debugging Interface Specification Ver. 1.00.00

9.4.5 Other constants

ADR_SYSTEMSTART (0)

Restarts target
CND_CURTSKID (0)

Generates expression in which task ID used as condition
ID_ALL (-1)

Targetsall IDs

ID_NONTSKCTX (-127)
Targets nontask context

193 Reference- Constants

ITRON Debugging Interface Specification Ver. 1.00.00

9.5 Key Code List of Getting Information

194

First key Value [type]
Explanation of the information that this key can get
.Second key Value [type]
Explanation of the information that this key can get
.Third key Value [type]
Explanation of the information that this key can get
.Fourth key Value [type]
Explanation of the information that this key can get
RIF 4
UNIT 204
.OBJ 14[1]
Supports the "getting Object status® functional unit.
LOG 2y 1]
Supports the "getting execution history” functional unit.
.SVC 3 [1]
Supports the "service call invocation” functional unit.
.BRK 4., [1]
Supports the "break setting" functional unit.
.CND 54 [1]
Supports the "getting break condition" functional unit.
.CTX 6 [1]
Supports the "getting context” functional unit.
RIF 44
.RIF_REF_OBJ 14
.FLG_NOCONSISTENCE 14 [1]
The"FLG_NOCONSISTENCE" flag isavailable.
.FLG_NOSYSTEMSTOP 2y [1]
The"FLG_NOSYSTEMSTOP" flag is available.
.OPT_VENDORDEPEND 10y [1]
The"OPT_VENDORDEPEND" option is available.
.OPT_GETMAXCNT 114 [1]
The"OPT_GETMAXCNT" option is available.
STATICPARAMETER 124
.OBJ_SEMAPHORE 80K [T]
This structure has semaphore information that is statically determina-
tive.
.OBJ_EVENTFLAG 81y [T]
Thisstructure has event flag information that is statically determinative.
.OBJ_DATAQUEUE 824 [T]
This structure has data queue information that is statically determina-
tive.
.OBJ_MAILBOX 834 [T]

This structure has mailbox information that is statically determinative.

Reference- Constants

ITRON Debugging Interface Specification Ver. 1.00.00

195

.OBJ_MUTEX 84y, [T]

This structure has mutex information that is statically determinative.

.OBJ_MESSAGEBUFFER 85y [T]

This structure has message box information that is statically determina-
tive.

.OBJ_RENDEZVOUSPORT 86y [T]

This structure has rendezvous port information that is statically deter-
minative.

.OBJ_RENDEZVOUS 87H [T]

This structure has rendezvous information that is statically determina-
tive.

.OBJ_FMEMPOOL 88y, [T]

Thisstructure hasfixed-length memory pool information that is statical-
ly determinative.

.OBJ_VMEMPOOL 89y [T]

This structure has variable-length memory pool information that is stat-
icaly determinative.

.OBJ_TASK 8A [T]

This structure has task information that is statically determinative.

.OBJ_READYQUEUE 8By [T]

This structure has ready queue information that is statically determina-
tive.

.OBJ_TIMERQUEUE 8Cy [T]

This structure has timer queue information that is statically determina-
tive.

.OBJ_CYCLICHANDLER 8Dy [T]

This structure has cyclic handler information that is statically determi-
native.

.OBJ_ALARMHANDLER 8EH [T]

This structure has alarm handler information that is statically determi-
native.

.OBJ_OVERRUNHANDLER 8Fy [T]

Thisstructure has overrun handler information that is statically determi-
native.

.OBJ_ISR 90y [T]

This structure hasinterrupt service routine information that is statically
determinative.

.OBJ_KERNELSTATUS 914 [T]

This structure has kernel information that is statically determinative.

.OBJ_TASKEXCEPTION 92y [T]

This structure has task exception information that is statically determi-
native.

.OBJ_CPUEXCEPTION 93 [T]

This structure has CPU exception information that is statically determi-
native.

Reference- Constants

ITRON Debugging Interface Specification

RIF

RIF

RIF

RIF

RIF

RIF

RIF

RIF

196

04y
RIF_GET_RDT 024
.REGISTER 24
SIZE 04y [W]
Size (in bytes) of enough region for register storage
.CONTEXT 12
SIZE 04y [W]
Size (in bytes) of enough region for context storage
04y
RIF_GET_CTX 03y
.FLG_NOCONSISTENCE 01y [1]
The"FLG_NOCONSISTENCE" flag isavailable.
FLG_NOSYSTEMSTOP 02y [1]
The"FLG_NOSYSTEMSTOP" flag is available.
.OPT_APPCONTEXT 10y [1]
The"OPT_APPCONTEXT" option isavailable.
04y
RIF_SET_CTX 13
FLG_NOSYSTEMSTOP 02y [1]
The"FLG_NOSYSTEMSTOP" flag is available.
.OPT_APPCONTEXT 10y [1]
The"OPT_APPCONTEXT" option isavailable.
04y
.RIF_CAL_SVC 04y
FLG_NOREPORT 03y [1]
The"FLG_NOREPORT" flag is available.
.OPT_BLOCKING 10y [1]
The"OPT_BLOCKING" flag isavailable.
.NONBLOCKING 124 1]
A nonblocking SV C issue is supported.
04y
.RIF_CAN_SVC 054 [1]
rif_can_svc isimplemented.
.OPT_CANCEL 10y [1]
The"OPT_CANCEL" option isavailable.
.OPT_UNDO 114 1]
The"OPT_UNDO" option is available.
04
.RIF_CAL_SVC 064
04y
.RIF_REF_SVC 074
04y
RIF_RRF_SVC 08y

Ver. 1.00.00

Reference- Constants

ITRON Debugging Interface Specification Ver. 1.00.00

RIF 04y
RIF_SET_BRK 09y
.FLG_NOREPORT 034 [1]
The"FLG_NOREPORT" flag isavailable.
.FLG_AUTONUMBERING 04y [1]
The"FLG_AUTONUMBERING" flag is available.
.OPT_NOCNDBREAK 104 [1]
The"OPT_NOCNDBREAK" option is available.
.OPT_EXTPARAM 114 [1]
The"OPT_EXTPARAM" option is available.
RIF 04y
.RIF_DEL_BRK O0AH
RIF 04y
.RIF_REP_BRK 0By
RIF 04y
.RIF_REF_BRK 0CH
RIF 04y
.RIF_REF_CND 0Dy
RIF 04y
RIF_SET_LOG OEy
.FLG_AUTONUMBERING 04y [1]
The"FLG_AUTONUMBERING" flag is available.
.OPT_BUFFUL_STOP 104 [1]
The"OPT_BUFFUL_STOP" option is available.
.OPT_BUFFUL_FORCEEXEC 114 [1]
The"OPT_BUFFUL_FORCEEXEC" option isavailable.
RIF 04y
.RIF_DEL_LOG OF4
RIF 04y
RIF_STA_LOG 104
RIF 04y
RIF_STP_LOG 11
RIF 04y
RIF_GET_LOG 124
.OPT_PEEK 104 [1]
The"OPT_PEEK" option isavailable.
.STRUCT_SVC 114 [1]
Uses a dedicated structure for the start/end of LOG_TYP_SVC.
RIF 04y
RIF_CFG_LOG 134

197 Reference- Constants

ITRON Debugging Interface Specification Ver. 1.00.00

198

T
.CPUEXCEPTION 174
.MIN 14[W]
Minimum value of the internal exception factor that the kernel uses
MAX 2y W]
Maximum value of the internal exception factor that the kernel uses
.NUM 3y W]
Count of internal exception factor that the kernel uses
SYSTIM 204
.TICK_D 14 [W]
Denominator when the timer resolution is expressed in milliseconds
(ms)
.TICK_N 2y W]
Numerator when the timer resolution is expressed in milliseconds (ms)
{UNIT_D 3y W]
Denominator when the timer unit is expressed in milliseconds (ms)
{UNIT_N 4., [W]
Numerator when the timer unit is expressed in milliseconds (ms)
LOGTIM 21y
.TICK_D 14 [W]
Denominator when the log time resolution is expressed in milliseconds
(ms)
.TICK_N 2y W]
Numerator when the log time resolution is expressed in milliseconds
(ms)
{UNIT_D 3y W]
Denominator when the log time unit is expressed in milliseconds (ms)
UNIT_N 4y [W]
Numerator when the log time unit is expressed in milliseconds (ms)
INTERRUPT 224
.MIN 14 [W]
Minimum value of the external interrupt factor that the kernel uses
MAX 2y W]
Maximum value of the external interrupt factor that the kernel uses
.NUM 3y W]
Count of external interrupt factor that the kernel uses
ISR 254
.MIN 14 [W]
Minimum ISR number offered by kernel
MAX 2y W]
Maximum ISR number offered by kernel
.NUM 3y W]

Number of 1SRs offered by kernel

MAKER 23y, [W]

Manufacturer code

Reference- Constants

ITRON Debugging Interface Specification Ver. 1.00.00

PRIORITY 244
.MIN 14 [W]
Minimum value of the priority levels available to the kernel
MAX 2y W]
Maximum value of the priority levels available to the kernel
.OBJ_SEMAPHORE 80y
.MIN 14 [W]
Minimum value of assignable IDs
.MAX 2y W]
Maximum value of assignable IDs
.OBJ_EVENTFLAG 81y
MIN 1y [W]
Minimum value of assignable IDs
MAX 24 W]
Maximum value of assignable IDs
.OBJ_DATAQUEUE 82y
.MIN 14 [W]
Minimum value of assignable IDs
MAX 2H [W]
Maximum value of assignable IDs
.OBJ_MAILBOX 83H
MIN 1y [W]
Minimum value of assignable IDs
MAX 24 W]
Maximum value of assignable IDs
.OBJ_MUTEX 84y
.MIN 14 [W]
Minimum value of assignable IDs
MAX 24 W]
Maximum value of assignable IDs
.OBJ_MESSAGEBUFFER 85H
.MIN 14 [W]
Minimum value of assignable IDs
MAX 24 W]
Maximum value of assignable IDs
.OBJ_RENDEZVOUSPORT 864
.MIN 14 [W]
Minimum value of assignable IDs
MAX 2y[W]
Maximum value of assignable IDs
.OBJ_RENDEZVOUS 87y
MIN 1y [W]

Minimum value of assignable IDs

199 Reference- Constants

ITRON Debugging Interface Specification

TIF

TIF

TIF

TIF

200

MAX
Maximum value of assignable IDs

.OBJ_FMEMPOOL

.MIN
Minimum value of assignable IDs

.MAX
Maximum value of assignable IDs

.OBJ_VMEMPOOL

.MIN
Minimum value of assignable IDs

.MAX
Maximum value of assignable IDs

.OBJ_TASK

.MIN
Minimum value of assignable IDs

.MAX
Maximum value of assignable IDs

.OBJ_CYCLICHANDLER

.MIN
Minimum value of assignable IDs

MAX
Maximum value of assignable IDs

.OBJ_ALARMHANDLER

.MIN
Minimum value of assignable IDs
MAX
Maximum value of assignable IDs
.PRVER
Version number of the kernel
.SPVER
ITRON Specification version number
TIF_ALC_MBH
TIF_ALC_MBT
Supports this function.
.TIF_FRE_MBH
TIF_FRE_MBT
Supports this function.

Ver. 1.00.00

24 W]

88y,
14 (W]

21 [W]

89y,
1n [W]

21 [W]

8A,
1n [W]

21 [W]

8Dy
1n [W]

24 W]

8EL
14 W]

24 [W]
A0y [S]
ALy [S]

05
01,
05,
024 [1]

054,
03y
054,
04 [1]

Reference- Constants

ITRON Debugging Interface Specification

TIF 05y
TIF_GET_MEM 05y
.FLG_NOCONSISTENCE 01y [1]
Supportsthe"FLG_NOCONSISTENCE" flag.
.FLG_NOSYSTEMSTOP 02y [1]
Supportsthe"FLG_NOSYSTEMSTOP" flag.
TIF 05y
.TIF_GET_BLS 06H
.FLG_NOCONSISTENCE 01y [1]
Supportsthe"FLG_NOCONSISTENCE" flag.
.FLG_NOSYSTEMSTOP 02y [1]
Supportsthe"FLG_NOSYSTEMSTOP" flag.
TIF 05y
TIF_SET_MEM 07y
.FLG_NOCONSISTENCE 01y [1]
Supportsthe"FLG_NOCONSISTENCE" flag.
.FLG_NOSYSTEMSTOP 02y [1]
Supportsthe"FLG_NOSYSTEMSTOP" flag.
TIF 05y
.TIF_SET BLS 08y
.FLG_NOCONSISTENCE 01y [1]
Supportsthe"FLG_NOCONSISTENCE" flag.
.FLG_NOSYSTEMSTOP 02y [1]
Supportsthe"FLG_NOSYSTEMSTOP" flag.
TIF 05y
.TIF_SET_POL 09y [1]
Supports this function.
.FLG_AUTONUMBERING 04y [1]
Supportsthe"FLG_AUTONUMBERING" flag.
.OPT_CMPVALUE 104 [1]
Supportsthe "OPT_CMPVALUE" option.
TIF 05y
.TIF_DEL_POL 0Aq [1]
Supports this function.
TIF 05y
.TIF_REP_POL 0By
TIF 05y
.TIF_GET_REG 0CH
.FLG_NOCONSISTENCE 01y [1]
Supportsthe"FLG_NOCONSISTENCE" flag.
.FLG_NOSYSTEMSTOP 02y [1]

Supportsthe "FLG_NOSYSTEMSTOP" flag.

Ver. 1.00.00

201 Reference- Constants

ITRON Debugging Interface Specification Ver. 1.00.00

TIF 05y
TIF_SET_REG 0Dy
TIF 05y
TIF_STA_TGT OEH
.OPT_RESTART 10y [B]
OPT_RESTART isavailable.
TIF 05y
TIF_STP_TGT OFH [1]
Supports this function.
TIF 05y
TIF_BRK_TGT 10y [1]
Supports this function.
TIF 05y
TIF_CNT_TGT 11
TIF 054
.TIF_SET_BRK 134
.FLG_AUTONUMBERING 04y [1]
Supportsthe "FLG_AUTONUMBERING" flag.
.OPT_CNDBREAK 104 [1]
Supportsthe "OPT_CNDBREAK" option.
.BRK_ACCESS 114 [1]
An access break is available.
TIF 054
.TIF_DEL_BRK 14,
TIF 05y
.TIF_REP_BRK 124
Supports this function.
.FLG_AUTONUMBERING 04y [1]
Supportsthe "FLG_AUTONUMBERING" flag.
TIF 054
.TIF_REF_SYM 154
TIF 05y
.TIF_RRF_SYM 164 [1]
Supports this function.
.OPT_SEARCH_FORWARD 104 [1]
The"OPT_SEARCH_FORWARD" option is available.
.OPT_SEARCH_BACKWARD 114 [1]
The"OPT_SEARCH_BACKWARD" option isavailable.
.OPT_SEARCH_COMPLETELY 124 1]
The"OPT_SEARCH_COMPLETELY" option isavailable.
TIF 05y
.TIF_CAL_FNC 174 (1]

Supports this function.

202 Reference- Constants

ITRON Debugging Interface Specification Ver. 1.00.00

.FLG_NOREPORT 034 [1]
Supportsthe "FLG_AUTONUMBERING" flag.
.OPT_BLOCKING 114 [1]
Supportsthe "OPT_NONBLOCKING" option.
.NONBLOCKING 124 1]
Supports a nonblocking function call.
TIF 05y
.TIF_REP_FNC 18 [1]
Supports this function.
TIF 05y
TIF_SET_LOG 194 [1]
Supports this function.
.FLG_NOREPORT 034 [1]
The"FLG_NOREPORT" flag isavailable.
.FLG_AUTONUMBERING 04y [1]
Supportsthe "FLG_AUTONUMBERING" flag.
.OPT_BUFFUL_FORCEEXEC 114 [1]
The"OPT_BUFFUL_FORCEEXEC" option isavailable.
.OPT_BUFFUL_CALLBACK 124 [1]
The"OPT_BUFFUL_CALLBACK" option isavailable.
.LOG_INSTRUCTION 134 [1]
Thelog type "LOG_INSTRUCTION" is available.
.LOG_DATA 14, 1]
Thelog type "LOG_DATA" isavailable.
.LOG_READ 154 [1]
LOG_READ isavailable.
.LOG_WRITE 164 [1]
LOG_WRITE isavailable.
.LOG_MODIFY 174 [1]
LOG_MODIFY isavailable.
TIF 05y
.TIF_DEL_LOG 1AH [1]
Supports this function.
TIF 05y
TIF_STA_LOG 1By [1]
Supports this function.
TIF 05y
TIF_STP_LOG 1CH [1]
Supports this function.
TIF 05y
.TIF_REP_LOG 1Dy [1]

Supports this function.

203 Reference- Constants

ITRON Debugging Interface Specification Ver. 1.00.00

TIF 054
TIF_GET_LOG 1E4 [1]
Supports this function.
.OPT_PEEK 10y [1]
Supportsthe OPT_PEEK option.
DEBUGGER 14
.CNDBREAK 14
.NUM 3y W]
Count of conditional breaks that can be set (0: not supported)
LOG 24
.NUM 3y W]
Count of hardware logs that can be set (0: not supported)
.NAME 804 [S]
Unique character(s) for debugging tool identification
HOST 24
.ENDIAN 14 [W]
Host computer’ sendian (O: little; 1: big)
NAME 80y [S]
Unique character(s) for host computer identification
TARGET 34
.ENDIAN 1y W]
Target computer’sendian (0: little; 1. big)
REGISTER 2y
NUM 3y [W]
Count of target computer registers
NAME 804 [S]
Unique character(s) for target device identification
oS 8H
NAME 80y [S]

Unique character(s) for target OS identification ("I TRON")

204 Reference- Constants

ITRON Debugging Interface Specification 1.00.00

Appendix A

Member List

In honor of persons who contributed much to the preparation of the specification, the names of
the ITRON Debugging Interface Specification Working Group members are listed below (in
alphabetical order):

Table 26: Member List

Name Organization
Kouei Abe NEC Microcomputer Technology, Ltd.
Kazuyuki lori Midoriya Electric Co., Ltd. Design Center
Norihisalga NEC Software Product Engineering L aboratory
Hidehiro Ishii Y DC Corporation

Kazutoyo Inamitsu
Shigeto Ilwata
Kazuyuki Uchida
Shinnichiro Eto

Yoshinori Kaneko
Takao Kawal
Masahiro Kawakami
Motoko Kishitani
Kenji Kudo
Hisaya Kuroda
Yoshiyuki Koizumi
Masahiko Kohda
Shirou Kojima
Yasuhiro Kobayashi
Masaki Gondo
Masaaki Sakuraba
Shigeru Sasaki
Takako Sato
Shinji Shibata

Fujitsu Devices Inc.
eSOL Co., Ltd.
Matsushita Electric Industrial Co., Ltd.

Matsushita Information System Reserch Laboratory
Hiroshima Co., Ltd.

NEC Microcomputer Technology, Inc.
Al Corporation Inc.

Oki Electric Industry Co., Ltd.
MITSUBISHI Electric Semiconductors Systems Corporation
Fujitsu Devices Inc.

Sophia Systems Co., Ltd.

TOSHIBA Corporation

Advanced Data Controls Corp.

Fujitsu Devices Inc.

Fujitsu Limited

eSOL Co., Ltd.

Fujitsu Devices Inc.

Toyota Motor Corporation

NEC Microcomputer Technology, Ltd.

Firmware Systems Inc.

ITRON Debugging Interface Specification

Table 26: Member List

Name Organization
Masahiro Shukuguchi Mitsubishi Electric Micro-Computer Application Software
Co., Ltd.
Tetsuo Takagi DENSO Create Inc.
Hiroaki Takada Toyohashi Univ. of Technology
Chiharu Takel Y DC Corporation
Tohru Takeuchi TRON Association
Yuichi Tsukada Cats Corp.
Shoji Nagata Matsushita Electric Industrial Co., Ltd.

Satoshi Nagamine
Shigeki Nankaku
Yukio Nomoto
Shinnichi Hashimoto
Yasushi Hasegawa
Shinichi Hayakashi
Tadakatsu Masaki

Yukihiro Mizukoshi
Satoshi Midorikawa
Hiroyuki Muraki
Kiyoshi Motoki
Toshiko Morimoto
Shinjiro Yamada
Masaru Yamanaka
Tatsuo Yamada
Ichiro Yamamoto
Akira'Yokozawa
Munehiro Yoshida
Miyoko Yoshimura
Takayuki Wakabayashi

Matsushita Electric Industrial Co., Ltd.
Mitsubishi Electric Corporation
BITRAN Corporation

Access Co., Ltd.

Fujitsu Devices Inc.

TOSHIBA Corporation

Matsushita Information System Reserch Laboratory
Hiroshima Co., Ltd.

Oki Electric Industry Co., Ltd.

Midoriya Electric Co., Ltd.

MITSUBISHI Electric Semiconductors Systems Corporation
Fujitsu Devices Inc.

Y DC Corporation

Hitachi Ltd.

QNX Software Systems Ltd. Japan

MotorolalInc.

LIGHTWELL Co., Ltd.

TOSHIBA Corporation

MITSUBISHI Electric Semiconductors Systems Corporation
eSOL Co., Ltd.

Toyohashi Univ. of Technology

1.00.00

ITRON Debugging Interface Specification 1.00.00

Appendix B

Numerics
32-Dit RIM DLL TaIGEL TYPES ..vcveiveveieieiietesiesesieesteststesestesestesesteessasessesessesessessesessesessasessessssesessensssensasens 166
32-Dit RIM DLL HOSE TYPES oottt sttt st st sttt st st sttt 166
A
2T 10 0= 0| =0 1 1,3
0| OSSR 5
= 1= | SR 8,43,164,165
= 0 1117 | SRR 167
al10Cate MEMONY (0N NOSE) ...ttt bbb s ae st s beseese e e se e e eneeneeneeneaneas 107
al10CALE MEMONY (0N TAITEL)oeeeieieeee ettt eae et ae st ae e e be e see e e bene e e eseenesseesesaesbeseeanans 108
N OSSP 9,77,78
= T0] 00 = ot o USRS 12,13,14
2o 00z o g I o] =TSRSS 12
B
o720t (0| {011 0o 9
2T = USRS 24
BITIMASK ettt ettt st sa et sa st st st esesbe s e e beseebesaebesenbeseeteseesesens 23,36,55,56,124,126
BIOCK SEE ..ttt enn 7,113,114,118,185
o] oo (1 oo ST 38,72,73,76,142,187
0TS Q=" o] 1 ARSI 136
2] o SOOI 63,69,70,77,80
2] S O 01 S ST 80,133,191
BRK _DISPATCH ..ottt ettt sttt b s b se b et es et b et esessese st enesaenesenssenes 80,81,191
2] S = AV I =1 TSRO 81,191
BRI _EXECUTE ...ttt st sttt st sttt st et sttt b e st s beneeneneenennan 80,132,191
BREK _LEAVE .ottt ettt ettt ettt ettt et et e et et et et e e s e e s et st e et e s nnnes 81,191
(2] G L@ 10X USSR 81
2] G (= [T 81,136,191
2] S YL SRS 80,81,191
2] S S 1 I = TR 81,191
2] G I TSRS 81,191
C
Lo | oo GRS 2,15,18
cancel Of N ISSUE SENVICE Call ... e e b e ebe e 75
L4 TSSO 7,41
CND_CURTSKID ..oiiiiitiiieisieirieirte ettt et ste s sese e sesessa e s sesesse st se s besesbesesbenessenessenensens 87,193
o3 | PR U USSP 554
(oi0]010100T: 0| SO SRR RR 40,89,91,98,168,169,172,182,191
(@0 01= o A B 1o 7= 0 KSR 15
CONAITIONA] BIEEKcvvevieieiiiieiiriec et 17,18,42,46,82,133,183,187
L00) S S-S 22
CONSISEENCY @SSUIBICEuviueeeereeueereeeeeeueeueeseetestesseaseseeseessanseneeaseneassaseaaeaseeseseesaeaseseeseeasanseseeneeneeneesesneasesss 22
(oo g 11 o] I o] [oox QRS 12,16,39
(o0 00| 0= 1= (= PSP POPPURRRR 54
Lo L (o= IS o o o ISR 22,29
O 1) TSRS 41
D
Lo T T {10 T 1 S 158,160
(o o7 TN T 0 S 21,157,160,167
Lo (oo Y 11 . RSOOSR 21,157,160
Lo oo TN = oo 155,160,172
Lo oo TN = 12 S 72,102,159,160,172
(01 oTU T 1 oo USRI 7,39,47
(o S L= L= 0l o] "= oo 1 | RS 80
delete of Change rEPOIt SEIEING ..ovvieieieiceceir e et r e saesresae e sae e eseenenseenennens 122
delete Of traCe 100 SELEINGooeiiie ettt s b e et e e e e eneeneene e 93,149
DSP_INONTSKCTX otiieitirietirietesiete et st st see ettt se st s e sese s s et st en e s en e senseseneebenesseneesenessaneesesenss 97,192
DSP INORMAL .ottt sttt sttt b st b st b e se et e e b et b e b et e e e ne e e se st e s et e e teneetenes 97,192
duplication Can DE AVOITEM ..ot e e e et sttt e e se e e e e e eneeneeneas 167

207 B

ITRON Debugging Interface Specification 1.00.00

E
A 1 OO 64,67,69,71,73
B FALSE .ottt ettt et bRttt e st et e R et e e se s e nennen 44,46,136,137
E NOIMEM ..ottt ettt bbbt 64,67,69,71,73
E U INOSPT et bbbt b e bbb s 42,53,64,67,69
E OB ottt R ARt R et R e AR AR AR et et et Eene et 75,77,79,84
OSSR 64,67,68,69
N RPN 65,67,69,71
) S TSRS
I (] RS SST
L= 0T TSP
L= 010 1= o [PPSR
< (] RSSO
error constants
EV_BUFFER_FULL .
EV REPORT ..ottt sttt es st s s st s st ss st ss s ansesassansns
EV _STOP oottt sttt st s s st n st st s e san st
EXECULTION NISLOMY ..ttt st s
=010 OSSOSO
EXEENAEA FUNCLIONS ...ttt e sttt s sttt st s b e .
F
L=:= 0 SR 35,46
File Format of Standard EXECULION HiSLOIYc.coeiriieiieeieie ettt 168
L= S 5,54,55,66
e SRS 54,66,68,70
FLG_AUTONUMBERINGcoiiietiieieieieieiiiete sttt sterestsreste et ssssesessesassessssesessessnsenens 82,92,120,121
FLG_NOCONSISTENCEccotiitiiriiiriininiesisiesie ettt ssee s s sessesaenesaees 63,65,69,71
FLG_NOREPORTcotiiitiiietiriitesieiesteestee sttt et eseseesesbenestesesbenestenessesestensnsenenns 72,73,76,82
FLG NOSYSTEMSTORPoectiieiiieiisieteseeie et stese e e e se s senessensssensssensssessssessssensesensns 63,69,70,71
L0 USSR 9,17,75
L= TSSO SSRSRN 6,158
free Mmemory (0N NOSE)coeiiiiie e 109fFree memory (on target) 110
LY L 10 1= 0o o TSRS 167
FUNCHIONE] UNIT ..ot ettt bbbt b et bt b b e b s e nnenas 27,41,53
G
[0 o0 0 L= SOOI 65,67,68
get information iNto debUgQiNg tO0]coiiiiiiiii e et b e ebe e 13
Get Of Break CONAITIONo.oeiiee bbbttt ettt 411
Get Of Break INFOrMELTONc.oiiiiee ettt st s b e et e e e aeeneenas 86,184
Get Of deSCriPtioN TADIE ..ottt bbbt e ene e eneas 35,66,184
Get Of TUNCLION COURoveviiiiiieiesiee ettt bbbt 77,78,80,91,98
Get of Kernel CONFIGUIALIONco.iiuiie ettt b e se e e s seesee e sens 42,102,185
GEL OF ODJECE SEALUSvevieeeiiieeie ittt sttt sttt s sa e e 29,39,40,41,53,54,55
Gt Of SENVICE CAll NAIME ...ttt bbb 78,184
Gt Of TASK CONEEXT ...ttt ettt s e et be e et en e e e enesaeebesaeseeenas 35,36,66,68,184
Get RIM-related iNfOrMELIONoiiiieeiee ettt bbb e be e se e e ene e ene 159
OELS ALrACE 100 SOUMCE.....eveeeieieiesieseeeeseeeeete et et e st e teste e s te st e tesaesse e eseeseesesseesestesaessesteeeseensesaessaneensnsennensens 153
OIUB FOULINE ...ttt a ettt ettt e et e e e e et ea e e e e Rt e s e e a e e aeeaeebeebeseeebesbeaeeseeneesee s eneensnneeneanens 108
Lo i1 == o SR USSRSRRN 77
QUIAETTNE 1.t ettt ettt st sttt et et s 8,15,39,163,166,167
H
historical INformation SLOrage FEQIONcoieiiiirieeee ettt ettt st 51
I
SRS 4,39,40,45
0 TS 81,84,90,91
1AENtifiCatiON NUIMDELc.iiiiiiictieeee et b et b et b ettt bbbt 32
LN L TSRS 102
LN L = (5 SRS 25
IINF_OBUJ XXX tetteuteeeetisteesieeeesseasaeseeeneessessesssesssesseessesseesssssessssassensseseesssssessaesnsensesnsessemsesssenssessesnsensesnensses 27
LN L I 1 TSRS 156
NN L N RS 27
INFOrMAaLioN KEY COUReviiiiiiiieisieeee ettt st st e e e s e st s s e se e st et esaeneetene e e eneenennn 25,142
L g TR 2 1o TS 21,157,160,163,167,186
Interface FUNCHION REGISITAHIONcooiiiiie e ettt s b et e nes 21
INEErFACE INITIAIIZBIIONvieiieeiceeee ettt ettt 160
ISSUE OF FUNCEION ...ttt et ettt s b e b et ee et e et et e s b e e et se e e e e e e nnas 138

208 B

ITRON Debugging Interface Specification 1.00.00

ISSUE Of SENVICE CAll ..ot e st s r e e saeeteesresaeesrean 72,141,184
K
KB ettt e R bt bRttt e b ettt et et 2,25,26,53,63,67,69,71,73,75
S Yoo [P 2,25,26,27,53,68,101
L
= TSROSO 5
=0T 10 PSPPSR 5,18,23,24
LEVE! INAICALIONS ...ttt bbbttt bbbttt 41,42
LOG ettt b bbb R bR bRt E e e et b et ket be e ne et 3,41,89,90
oo SRS 7,16,23,32,41,48,49,77,89,145
LOG _DATA ettt sttt s b et bbbt bk e bkt s bk e s e et st et s e e n e st e st et e neebeneebe e eneneenea 145,147,192
LOG _ENTER ...ttt et bbbt sttt st 90,91,97,98
LOG _INSTRUGCTION ...octiiiiiiiieierietesieeseee s e st sesee e stesestesestesestesestesessessssessssensesessssensssensesens 145,147,192
LOG _LEAVE ..ottt bbbttt st bbb 90,91,98,99
LOG _MODIFY ittt sttt st s bbbt b st bbbttt be ettt 147,192,203
@R Y I LSS 147,192,203
LOG_TYP_COMMENT ..otiiiieiiieti et siee ettt st tese b sae st s stese st asessenessenessensnsnnen 89,91,98,191
LOG_TYP_CPUEXC ..ottt st st st eb bbbt sttt nenenen 89,90,97,191
LOG _TYP DISPATCH ...ooiitiieieieieieiis ettt sttt sttt s et e sasessenensenes 89,91,96,97,98
LOG _TYP_ INTERRUPTcooiiiictstet ettt sttt st ses sttt se s ssesessenessenessenssnnen 89,90,96,191
@ CI I = S TSRO 89,90,97,191
LOG TYP_SVC ottt be st st st st s e s s e s e s esesaesentenens 89,91,98,99,191,197
(0 T I =S Y4 O =\ SRS 98
LOG_TYP_TIMERHDR ...ttt sttt sttt 89,90,97,191
LOG _TYP _TSK oiiiiiieititeirteietes e ete st te et se et se et e s e be st ebessese s s esesses e ses et ese st asessesesses e sasensanensesennen 90,191
LOG _TYP_TSKEXC ..ottt stase st se et sesesnns 89,90,91,97,99,191
LOG _TYP_TSKSTAT .ottt esse ettt e et sbe st e st 89,90,91,97,99
LOG WRITE ..oitiiteiitece ettt ettt sttt se et sa sttt es et et e e besesbeseebesaebesaebesseneseeseseesensnneas 147,192,203
@ I SRS 23,96,153,166,167
TSRS PRPN 5,30,54
M
L0 o oSSR 107
[001= 001075V o] oo GRS SRRRR 7,111,116
Memory ManagemeEnt UNITcc.ooeieeieeeeee st se e stesse st s re st e teneesaeneanseseennnseenensenns 12
IMIMIU ettt b bt bR Rt bR Rt R bbb ARt et bttt bt 12
N
7= 10 USSR 12,34
N F= 0T ol =T 3
(g0 o [Tt (g o SRS 72,94,141,144,196,203
(970710 o 1SR 1,4,6,7
@)
(]2 TS 27,29,41,60,173,181
OBJ_ALARMHANDLER ..ottt sttt s s bbb st sttt 60,189
OBJ_CPUEXCERPTION ...ttt sttt ettt st s aebe s aebe st sbe e st sttt e sttt e sbeneens 62,189
OBJ CYCLICHANDLERootetitetetetetet sttt sttt sttt sttt st sttt 60,189
OBJ DATAQUEUE ...ttt sttt st st et ettt sttt st s be et 56,189
OBJ EVENTFLAG ...ttt sttt sttt s st bbb sttt sttt 56,189
OBJ FIMEMPOOL ..ottt st sttt sttt et st ettt et ebesteteste et e e tenentens 58,189
(02 S ST TSTS 61,189
OBJ_KERNELSTATUS ...ttt sttt sttt s st bbb sttt sttt 61,189
(0N Y 1 =) SRS 56,189
OBJ _MESSAGEBUFRFFER ...ttt st s e st st 57,189
(02N 1O I I 5 ST SSTS 57,189
OBJ OVERRUNHANDLERc.ooiititiictist sttt sttt ettt bese st s sttt 60,189
OBJ READYQUEUE ...ttt sttt s e st bbb bbbttt 59,189
OBJ _RENDEZVOUS ..ottt ettt st st s s sttt st st s be bbbt bbbt sttt 58,189
OBJ RENDEZV OUSPORTcoiiiiiietiietisieiesee e sasteststesaesessesesaessssesessessssessssesessesessessssessssessssessssessssens 57,189
OBJ_SEMAPHOREcoooiitite ettt st sttt ettt ettt sttt 55,81,189
OB _TASK ettt et b bbb R bR e b ek et bbbt 59,189
OBJ TASKEXCEPTIONociiteiiieieteie sttt se et saste s sas e e sae s saesessesestesestesesbasestesestesessesensens 61,189
OBJ_TIMERQUEUEcotiiittiiete sttt sttt st st st sttt sttt sttt 59,189
OBJ VMEMPOOL ...ttt sttt et st bbbt sttt et 58,189
(o] o 1= LY OSSR 1
o] TS 5
OPT_APPCONTEXT ..ottt sttt ettt st st sttt se et e st st 68,69,70,71,187,196

209 B

ITRON Debugging Interface Specification 1.00.00

OPT _BLOCKING ...ttt sttt sttt sttt st s stesesbeseste st be e benesteseetenenseneens 38,72,73,142
OPT_BUFFUL_CALLBAGCK ..ottt st 146,147,152,203
OPT_BUFFUL_FORCEEXEC ..ottt es 92,147,197,203
10 B 7N N 1 PSS 75,187,196
OPT_CIMPVALUE ...ttt st st sttt et e 120,121,187,202
OPT_CNDBREAK ..ottt sttt sttt sttt ese st nentenes 133,134,187,201
OPT_EXTPARAM ..ottt ettt ese ettt et et et et e et e e benestenentns 82,187,197
OPT_GETMAXCNT ettt sttt bbbt ettt st seene 63,187,194
OPT_NOCNDBREAK ...ttt sttt ettt s et st e 82,187,194
(0 B VL@ = TSSOSO 187
OPT_PEEK .ottt et sttt b et st b et ene e 99,153,187,197,204
OPT_RESTART ..ottt sttt st sttt etttk b et b et b e st b e st ekttt ek s b et e st e bt e s 127,202
OPT_SEARCH_BACKWARDootiiiiiieiisiee ettt sse s ssessssasssssnsnss 139,140,188,202
OPT_SEARCH_COMPLETELY ..ouiitiistiettreereese sttt 139,140,188,202
OPT_SEARCH_FORWARD ..ottt ettt e 139,140,188,202
10 B 6 11N 5T TSRS 75,188,196
OPT_VENDORDEPENDooetieiieiiietisie et ae s s sesessesessesessns 63,188,194
LoV 1 0T o PSSP 18,20,165
LY YT Y OSSR 9
P
07T =1 TSRS 5,91,136,141,157,181
pointersto all the iNterface fUNCLIONS.ccviceeiecicece e e sne s 21
070 | 11 2o TS 6,32,120,122,123
PIrEFIXES ...ttt b et st s e et et h e bRt e be b e R b et e A et et ene et e e e nets 3/4,7,23,25,34
Q1L NI ToTUISY TES (o VAR (ol r=To [= o o T 16,50
Primitive [0g INFOIMBLIONceiiiieiesesesiesee ettt st e e se e ese e e s resseseessestesae s anteneeneeneeneesennnnneas 96
10T =T o I oo [SRR 1
Prohibition ON Target Haltcoiiiieie ettt e e ne s 22
L0 SO SS 4,5,25,26,155,172
PPUIDOSES ...ttt eeeeueestesueeseesaeesbe et et e ebe e beeae e eee£as e et 2 e e saeemeeSaeeaeeeh e e b e b e e beeheen bt eabe bt e aeeabeeanesaeenseneeerbesaeas 8,9,32
R
(=0 00T 000 YOS 111,113
read memory DY BlOCK SEL UNILSoiviiiie e st r e 113
(g2 To o R L= 0TS = 7= U= SR 124
e UPPEr-IIMIT VAIUB ...ttt ettt b et e et e e et e e e seeneeneeneenesneas 54
=720 VA0 1= L ST 39,59,64,189,195
= | 11 0= USSR 9,118
REal-TiME OPEratiNg SYSLEMciuiiiiiteie ettt ettt e st se e e e e e e e e e eaesheebesaeesesbeseeseenseteseenessessesaesaens 9
reference of in Symbol tablE VAIUEcveiveeeecee s 138,139,186
L o 1 = TR 7,33
01 (= S TSRO 35,36,66,124
Register Set DeSCription TADIEcoviiiiiirise ettt s renresnesnens 7,8,35,66,124
=0T (= g 7= o 1= TSRS 8,66,68,70,124,126
[0o o] o = 2l 0 85
report of fUNCLION EXECULION BNcoieeicice et se e e ene e e 144
report of MEMOrY data ChaNGEoeeieee et s st 123,195
report Of SENVICE Call ENA ...ttt eaeas 72,76,184
LS00 0= 0 (SRS 136
request Of trace 10g FUNCHION SEAMo.oiiee e et 94
(S o (0SS o i = o=l oo [(o o F USRS 95
1S T SO SRRRPRR 5,9,10,12,16,17,19
RIF ettt ettt ettt e ARt Re et e Re e EeRe et Rt e EeneeEe e senentetne 27,32,41,42,46
L1 o= Y o
Lo TN YO
LN L= TS
L1 e = T (oo PSSR

rif_get ctx
rif_get log
L) o = S (o RSOSSN
LT T TSP
L) TG T o USSR
L = o 1o R

LT T o) SRS

210 B

ITRON Debugging Interface Specification 1.00.00

LN = A [o TSRS 48,77,89,93,145,184

L1 2= T o 48,93,94,184

LIRS 7o NN Lo PO 48,95,184

RIM ettt ettt st et st et s et st et e s et e e e se st e st e st s e ne et 2,8,15,16,17,18,19,20

RIM fiNaliZati ON PIrOCESS.....cueiuiieeiereeeeteeise s st sttt e se e e e e se e s sesse st e stesaeseenteseeeeneeneesesnessesseseensenses 158

B T TR 2 (o OO 157

RIM-dependent iNPUL/OULPUL...........coiteirie ettt st st e et be e et ebe st e see b enbese e e aneeneenes 16

RTOS ettt e b e b bbbt bbbt ettt bttt ee 9,10,11,12,13,14,15

RTOS 8CCESS INTEITACEcvieeeeete ettt e e bbb e s 6,8,15,44,53

RTOS INLEIfaCe MOUUIE........c.eiueitiieiie ettt e e e e e e e e b e saesbesbesbesaeneen 7,8,15

RTOS SUpport FUNCLION GUIAEIINE.......cceiieeeieeeese sttt ne e ene e nrenns 15,39

RTOS-AEPENdENt BrEAKcciiviieesieee ettt s eene e eseeneeresrennennens 17,80,84

RTOS-dependent iNfOrmMaLion............o et st e b s saesaen 15,16,17,22
S

same-space variabl -1ength FEJION ..ot s sae e 30,31

Ko = o1 1Y TSRS 9

separate-space variabl e-1eNgth rEJIONcociciiice et ere s 30

SEL Of BrEaK POINLveiieecieeeee e st sttt st b e st st bbb e s tetesteteste e be e tenesens 79,132

set of MemMOry data ChangE FEPOITccveieerecese ettt e s re e seennenen 120,195

S o = o) o o SRS 48,89,144

S = o QRS 36,39,59,61,68,72,141,175,182

standard informatiON SLOragE FEJIONecueveieieeeieiee e e e et ere e et e te e sreste et e seentesee e eseesensesnensenren 16

LStz B0 = o= oo SRR 150

S0 oo = o= [o o SO 151

S0 = o = S 5,16,17,26,30,35,37

SEUCEUrE DitS @lIGNMENTeee e et re st e s aeseese e aesae e eneenensennnnnens 167

SIFUCEUNE NMAIMIES ...ttt ettt ettt bt bt e et e a e be e e e eae et e sae e beeb e e ebesheeebeeasenbesaeabeabeesaesanesbeesenaeas 1,3

S SRR PSRTRSR 5,30,31,77,78

SUPPOIt FUNCLION QUIAETINE ...ttt st e e e e e e ereenennennens 15,39

SV C ettt h ettt E et b et R et Re e Re st et et et e et ete e eneeteteeterenraneas 41,72,73,75,76,81

SYNCAIONOUS OBJECE ... e et re st e s s s ae et e tese e e eneenenrennenrenren 39

NS =1 (= = 1= o SRS 39,40
T

T BLIKSET oottt ettt ettt ettt ne et ene 113,118,171,185

LI {0 TSP 35,66,171

T_INFO bbb bbbt 25,26,27,102,155,159,172

T INTERFAC ...ttt sttt ettt ettt se et e se et e s eebe s aebessebesee e see e st enesseneetesenteneeseneas 21,160

T MEMBLEK oottt sttt et a et et et et e et e et et e b et ek e eeeseebeseebeneebetenaereneene s 113,171

T RCSVC ettt etttk etk s bt se ke bkt s Ak e Akt s R et et e et et beneebeneereneas 72,73,171

T RGLOG ...ttt sttt sttt ettt te et et e st et e seebesaetesaatesbebesbe e s te e ntenesteneerenea 96,97,98,180

T _RGLOG _DISPATCH_ENTER ..ottt sttt saetesae e e saesessesessesessenessenens 97,172

T RGLOG DISPATCH _LEAVE ...ttt st ss st ss s 98,173

T RGLOG _SVC oottt antesans st snsansens e e aanannaes 98,173

T RGLOG_TSKSTAT oottt estes s s ses s tes s ses e s ess s s s sssssss s sessassesssessensessnsssesneanasnaes 97,173

T_ROALM

T_ROCYC

T RODTQ

T_ROEXC

T ROFLG

T ROISR oottt ettt et st s a et sa et e s e e s s e e st e e Rt e R e Rt et e Rt et e Rt Ee Rt e R eneete et ereeeesaeteneeneneas

T_ROKER

T_ROMBF

T_ROMBX

T_ROMPF

T_ROMPL

T_ROOVR

T RORDQ

T_RORDV .

T _ROSEM

T_ROTEX

T_ROTMQ

T_ROTSK

T_RRCND_DBG

T_RRCND_RTOS

T RSBRK

T RSLOG_INTERRUPTooiiiiiititie ettt s s s s st es s ss st ssesss s sanaanans 90,181

T RSLOG ISR ittt sttt sttt ettt se et e se et e s ae b e s b ebesaetesbe e see e be e sse e ebesentenenseneas 90,181

T RSLOG _SVC ettt sttt ettt s b st st e st st e et e st et e st et e seebeseete e ebe e eseseeseneesentnnens 91,181

211 B

ITRON Debugging Interface Specification 1.00.00

LI = 1L PTSR 141,182
T_TGLOG ..ottt sttt et sttt st s be e b et b e et b e ee bt bebe e b e bt e b e Rt b e st be st b e neebe e ebeneebeneene s 153,182
T _TSBREK ettt ettt et be e b 132,133,183,186
T _TSLOG ettt sttt bbbt b e ettt et R et et R et st s pe e 145,146,183,186
BAITEL oo ettt 6,8,15,22,29,36,44,45,107,127,185
target ACCESS INTEITACE ..oiviiie et ne e 6,8,15,29,36,44,107
TArGEL EXECULION ...ttt ettt b e et b et et ne et e ne e e eee 22,44,45,46,49,127
target EXECULION DIEAKcviceceeeieecee ettt s r e st sae e e ene e e e 22,130,136,185
target EXeCULION FESUMPLIONccviueiiieiesiestieeeee et ae et s e e e e e s e e nesneseenreseesrenes 22,131,185
L= 10 1= B 0] o R TP TP PP 129
BBSK 11ttt b e bbbttt e e 4,9,12,14,16,17,18,39,59,64
10 18T aT= IS 1] o R 26,78,98
L0100 OO P PP PP 8
LI ST 1,6,8,15,21,32,41,192
L1 H= o 2 2] TR 107,185
T _AIC IMDE Lottt b e b b et e be st reseerenaere s 41,108,185
L) o4 o | ST 22,63,69,70,111,114,116
HE_CAL_TNC e s 38,141,142,144,182,186
L) 1 (o | OO TR SRRSO 22,131,185
L) o= oSSR 44,135,186
LU o L= T o S 149,186
L1 o= oo SRS 122,185
LU= 1 0 o) o RS 109,185
L CS 1 o) ST 110,185
101 o 1=: T oSSR 133,118,185
L1 1= A o TSROSO 96,153,186
100 T=: R0 27= o OSSOSO 111,114,185
LEL (= =" SRS 35,36,37,124,171,185
1O LTV 2 USSR 138,186
LU LT o T o SR 44,45,133,136,186
LU o T (3SR 142,144,186
1O (= T oo SRS 146,147,152,186
LU= o T o P 120,122,123,185
1O T TS U 139,186
10N = T oSO RS 118,171,185
HE_SEE IK e 44,45,132,133,136,186
LEL S = A o USROS 48,145,149,150,152,153,186
LEL S = T 07 TP 116,185
LEL = T oo OO 38,120,122,123,185
OIS = = SRS 28,29,35,126,171,185
L) S = Y SRS 49,52,150,186,192
LU €= W o | S 22,127,185
LEL S 1 o T 0o TSSO 52,151,152,186
L1 S 1 o T (o | RPN 22,129,185
1O T Y= PSSR 60,173
LU (0T 00T= g SRS 9
LU ST L o= USRS 19
LU= G0 [0 1= 1= ST 59,64,189,195
TrACE LOG GELLING ..veteieeiteieeeie e seet ettt ettt e s e et ae e e e ae e e s aeeae et e s aeseeseeneesee e eneeneenesaeebesaesaeseenbesans 51,96
TrACE OGS CAIIDACK ... et et e b e e b e e be e e ene et eneeneenens 152
LS OSSR 132,133,183,186
(4] 1TSS RTUPR VRPN 23,166
type beginning With the PrefixX DT ... e e b eee e 23
U
LU] TSP 27,35,59,171
0100 = 1T 0T o TSSOSO 7,26,163
\%
AV A= o = = TR 3,139
Variable-Length StOrage REJIONcoiiuiiiiiieieie ettt st s b e et se b e e seebesaeebeseas 30
Y TSRS 23,25,54,56,57,59,68,70
Y2 1V TP 23,56,59,60,61,72,80
W
Windows-DLL Creation GUIAEIINEcc.coeeirieeeiereeiee ettt s e e ebesaeseesae e 166
WiNAOWS-DLL QUIAEIINESccueeeeeeciice sttt et ene s rentesnena e senes 157,158
LT L S0 01=: 270 Y/ S 116,118
write Memory DY DIOCK SEE UNITSouiiiece ettt et ene e ene s 118
WIITE Of TEQISIEN VAIUE ...ttt ettt e s sa e te st sa e tesae e eneensnnennnnnens 126

212 B

	ITRON Debugging Interface Specifications
	I. CONTENTS
	II. Table of Contents
	III. Fig of Contents
	IV. Function of Contents

	1. Formats in This Document
	1.1 Notation
	1.2 Naming Rules
	1.2.1 Variable name/Argument name
	1.2.2 Prefixes
	1.2.3 Supplementary explanation
	1.2.4 Explanation
	1.2.5 Function names

	1.3 Terms and Definitions
	1.4 Abbreviated Names

	2. Overview
	2.1 Background
	2.2 Standardization Objective
	2.3 Approaches to Standardization
	2.3.1 Approach plans
	2.3.2 Approach selection and its reasons

	2.4 Concept
	2.4.1 Operation
	2.5 Characteristics
	2.5.1 Two break methods with task ID
	2.5.2 Scalable debugging environment

	3. Common Regulations
	3.1 Interface Function Registration/Unregistration
	3.2 Consistency
	3.3 Prohibition on Target Halt
	3.4 Types
	3.5 Bit Mask
	3.6 Structure and Keys of Getting Information
	3.7 Error Codes
	3.7.1 E_xxx error and ET_xxx error
	3.7.2 Common errors
	3.7.3 Similar errors

	3.8 Variable-Length Storage Region
	3.8.1 Separate-space variable-length region
	3.8.2 Same-space variable-length region

	3.9 Identification Number (ID)
	3.10 Register Name
	3.11 Flag
	3.12 Register Set Description Table
	3.13 Special Blocking Mode

	4. RTOS Support Function Guideline
	4.1 Standardization of Implemented Functionalities
	4.2 Level Indications
	4.2.1 RIF level indication
	4.2.2 TIF level indication
	4.2.3 Other interface

	4.3 Terms and Definitions
	4.3.1 Debugging tool
	4.3.2 Debugging agent

	4.4 Break Mechanism
	4.4.1 Decision of callback
	4.4.2 Break of condition-getting type

	4.5 Trace Log Mechanism
	4.5.1 Set
	4.5.2 Start
	4.5.3 Execution
	4.5.4 Get
	4.5.5 End
	4.5.6 Delete

	5. RTOS Access Interface
	5.1 Functional Unit
	5.2 Get of object Status
	5.3 Get of Task Context
	5.3.1 Get of register set description table
	5.3.2 Get of task context
	5.3.3 Set of task context

	5.4 Issue of Service Call
	5.4.1 Issue of service call
	5.4.2 Cancel of an issued service call
	5.4.3 Report of service call end
	5.4.4 Get of function code
	5.4.5 Get of service call name

	5.5 Set of Break Point
	5.5.1 Set of break point
	5.5.2 Delete of break point
	5.5.3 Report of break hit
	5.5.4 Get of break information
	5.5.5 Get of break condition

	5.6 Execution History (Trace Log)
	5.6.1 Set of trace log
	5.6.2 Delete of trace log
	5.6.3 Request of trace log function start
	5.6.4 Request of trace log stop
	5.6.5 Get of trace log
	5.6.6 Reconfigur of trace log mechanism

	5.7 Other RTOS-related Information
	5.7.1 Get of kernel configuration

	6.Target Access Interface
	6.1 Memory Operations
	6.1.1 Allocate memory (on host)
	6.1.2 Allocate memory (on target)
	6.1.3 Free memory (on host)
	6.1.4 Free memory (on target)
	6.1.5 Read memory (memory block)
	6.1.6 Read memory (block set)
	6.1.7 Write memory (memory block)
	6.1.8 Write memory (block set)
	6.1.9 Set of change report
	6.1.10 Delete of change report setting
	6.1.11 Change report

	6.2 Register Operations
	6.2.1 Read of register value
	6.2.2 Wite register

	6.3 Target Operations
	6.3.1 Start of target execution
	6.3.2 Stop of target execution
	6.3.3 Break of target execution
	6.3.4 Resumption of target execution

	6.4 Hardware Break Operations
	6.4.1 Set of break point
	6.4.2 Delete of break point
	6.4.3 Break report

	6.5 Symbol Table Operations
	6.5.1 Reference of symbol table value
	6.5.2 Reference of symbol in symbol table

	6.6 Function Execution
	6.6.1 Function call
	6.6.2 Report of function execution end

	6.7 Trace Log Operations
	6.7.1 Set of trace log
	6.7.2 Delete of trace log setting
	6.7.3 Start of trace log
	6.7.4 Stop of trace log
	6.7.5 Trace logs callback
	6.7.6 Get of trace log

	7. Other Interfaces
	7.1 Debugging Tool Operations
	7.1.1 Get of debugging tool information

	7.2 RIM Operations
	7.2.1 RIM initialization
	7.2.2 RIM finalization process
	7.2.3 Get RIM-related information

	7.3 Interface Operations
	7.3.1 Interface initialization

	8. Recommended Guidelines
	8.1 RIM Guideline
	8.1.1 RIM operation guideline
	8.1.2 RIM data format for supplying
	8.1.3 Speed enhancement and debugging agent

	8.2 Windows-DLL Creation Guideline (32-bit RIM)
	8.2.1 Type
	8.2.2 Structure bits alignment
	8.2.3 Function export

	8.3 File Format of Standard Execution History

	9. Reference
	9.1 Structures
	9.2 Function List
	9.3 Option Flags
	9.3.1 Common flags
	9.3.2 Unique flags

	9.4 Constants
	9.4.1 Object identification constants
	9.4.2 Error constants
	9.4.3 Break constants
	9.4.4 Log constants

	9.5 Key Code List of Getting Information

	Appendix A
	Appendix B

